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Circumnutations are widespread in plants and typically associated with exploratory movements;
however, a quantitative understanding of their role remains elusive. In this study we report, for the first
time, the role of noisy circumnutations in facilitating an optimal growth pattern within a crowded group of
mutually shading plants. We revisit the problem of self-organization observed for sunflowers, mediated by
shade response interactions. Our analysis reveals that circumnutation movements conform to a bounded
random walk characterized by a remarkably broad distribution of velocities, covering 3 orders of
magnitude. In motile animal systems such wide distributions of movement velocities are frequently
identified with enhancement of behavioral processes, suggesting that circumnutations may serve as a
source of functional noise. To test our hypothesis, we developed a Langevin-type parsimonious model of
interacting growing disks, informed by experiments, successfully capturing the characteristic dynamics
of individual and multiple interacting plants. Employing our simulation framework we examine the role of
circumnutations in the system, and find that the observed breadth of the velocity distribution represents a
sharp transition in the force-noise ratio, conferring advantageous effects by facilitating exploration of
potential configurations, leading to an optimized arrangement with minimal shading. These findings
represent the first report of functional noise in plant movements and establish a theoretical foundation for
investigating how plants navigate their environment by employing computational processes such as task-
oriented processes, optimization, and active sensing. Since plants move by growing, space and time are
coupled, and dynamics of self-organization lead to emergent 3D patterns. As such, this system provides
conceptual insight for other interacting growth-driven systems such as fungal hyphae, neurons and self-
growing robots, as well as active matter systems where agents interact with past trajectories of their
counterparts, such as stigmergy in social insects. This foundational insight has implications in statistical
physics, ecological dynamics, agriculture, and even swarm robotics.
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I. INTRODUCTION

The survival of plants greatly depends on light avail-
ability. In many natural habitats, multiple neighboring
plants shade each other, competing over this critical
resource. The presence of neighbors varies over space
and time, and plants have evolved the ability to detect
neighbors and respond by adapting their morphology
accordingly [1–5]. Indeed, a fundamental difference
between plants and other motile organisms is that plants
generally move by growing, an irreversible process which
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imbues plant movement with a commitment to the perma-
nent morphology. The direction of plant growth is dictated
either by external directional cues such as light, processes
termed tropisms, or by inherent internal cues, such as the
exploratory periodic movements termed circumnutations.
Recently, Pereira et al. [6] found that sunflower crops

growing in a row at high densities self-organized into a
zigzag conformation of alternating inclined stems, thus
collectively increasing light exposure and seed production.
Self-organized processes refer to initially disordered sys-
tems where order arises from local interactions between
individuals, facilitated by random perturbations, or noise.
Local interactions were found to be mediated by the shade
avoidance response, a form of tropism where plant organs
grow away from neighboring plants [7], responding to
changes in the ratio between red and far-red wavelengths,
characteristic of the light spectrum of plant shade [8–10].
However, the source of perturbations required for the
observed self-organization in this system remains elusive.
Noise plays a critical role in self-organized systems: At

the right magnitude relative to the interactions, it enables the
system to explore a variety of states, thus enabling reliable
adaptation to short-term changes in the environment while
maintaining a generally stable behavior [11–14]. Too little
noise confines the system to a suboptimal state, while too
much noise masks the interactions. In biological systems,
noise is often identified as being functional, exhibiting awide
spectrum of manifestations. For example, organisms use
noise in order to increase sensory salience, ultimately
enabling them to balance the behavioral conflict between
producing costly movements for gathering information
(“explore”) versus using previously acquired information
to achieve a goal (“exploit”) [15–17]. Additionally, the
navigation paths of bacteria [18], insects [19], and mammals
[20,21] exemplify the intricate trajectories adopted to
counterbalance uncertain surroundings [22]. Likewise, the
behavioral variability observed in honeybees, specifically in
the triggering of fanning, serves as a mechanism for
ventilating their hives [23]. In all of these instances, noisy
processes play a fundamental role in facilitating biological
functionality.
Here we propose cirumnutations as the predominant

source of perturbations in this system. These movements
are ubiquitous in plants, following elliptical or irregular
trajectories with large variations in both amplitude and
periodicity [24–28]. Circumnutations assist climbing plants
in locating mechanical supports [24,29], facilitate root
navigation around obstacles [30,31], and contribute to
the regulation of shoot stability during elongation growth
and tropic bending [32,33]. However, their ecological
function in nonclimbing shoots, which constitute the
majority of plants, remains unclear [28,34–36].
To test our hypothesis that noisy circumnutations can

benefit collective plant growth, we record movements of
mutually shading sunflowers in a controlled environment

and develop a Langevin-type minimal model where mutu-
ally shading sunflower crowns are represented by interact-
ing growing disks and the quasiperiodic circumnutation
movements are approximated by random perturbations
with equivalent statistics. The model, informed and vali-
dated by our experimental data, recovers the observed
dynamics of sunflower growth patterns and enables us to
examine the functionality of circumnutations.
Our model finds that the characteristic statistics of

measured circumnutations are such that they maximize
the light exposure of the system, suggesting that circum-
nutations play a critical role in reaching collectively
optimal growth configurations under light competition.

II. RESULTS

A. Recapitulating alternate inclination experiments

We recapitulate the self-organized zigzag growth con-
formation observed by Pereira et al. [6] in a controlled
environment, as described schematically in Fig. 1(c),
enabling us to record the crown dynamics throughout.
The slow dynamics of the sun was shown not to affect the
observed staggered formation [6], and therefore a fixed
light source provides a good approximation for field
experiments. Figure 1(a) shows an initial arrangement of
five young sunflowers (Helianthus annuus) approximately
7 days old, where the plant crowns and their centers are
highlighted, clearly aligned to a horizontal line. We define
the position of crown i at time t as riðtÞ and define the
average center-to-center distance between adjacent plants
dCCðtÞ [defined in Eq. (8) in Sec. IV], normalized by the
initial center-center distance at t ¼ 0 so that dCCð0Þ ¼ 1 by
definition. This value serves as a measure of how closely
(dCC < 1) or sparsely (dCC > 1) the plant crowns are
distributed. We allow the plants to grow undisturbed over
7 days, following the position and size of the crowns
throughout. Figure 1(b) shows their final configuration,
where the crowns have grown in size and their centers are
clearly in a staggered formation. In this particular example,
the average distance has increased such that dCC ¼ 1.2,
ascribed to the zigzag configuration. A time lapse is shown
in Video 1 in the Supplemental Material (SM) [37]. The
trajectories of the tracked crown centers over the course
of this specific multiple-plant experiment are shown in
Fig. 1(d). Over 12 such experiments, we observe that the
final center-to-center distance is generally greater than
the initial distance, with an average value of dCC ¼ 1.21
[Fig. 1(e)], indicating that crowns indeed deflect away from
one another in dense growth setups.

B. Langevin-type minimal model for dynamics
of noisy interacting crowns

We formulate the general framework for a minimal
model describing interacting plant crowns in the 2D plane
based on Langevin-type description. We approximate
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growing crowns with circular disks whose radius RCðtÞ
increases according to a measured growth rate [Fig. 2(a)].
As in the experiments, riðtÞ describes the position of the
crown center of plant i at time t. We approximate the
sunflower shade avoidance response, and other possible
contributions such asmechanical interactions (seeVideo 1 in
the SM [37]), as an effective pairwise interaction between
disks. When two crowns i and j overlap, rijðtÞ ¼ jriðtÞ−
rjðtÞj < 2RCðtÞ, they experience an effective repulsive
shading force FS

ij [Fig. 3(a)] which, in the absence of a
clear relation, we assume follows a simple inverse-square
relation:

FS
ij ¼ −ε

��
2RC

rij

�
2

− 1

�
r̂ij; rij < 2RC; ð1Þ

where rij ¼ jrijj ¼ jri − rjj is the center-to-center distance
between two crowns i and j at time t (explicit time
dependence omitted for clarity), and r̂ij ¼ rij=rij is a unit
vector. The coefficient ε scales themagnitude of the force and
is determined from experiments, as detailed in the next
section. Here FS

ij → 0 for rij → 2RC avoiding a jump dis-

continuity at rij ¼ 2RC, and we fix FS
ijðrijÞ ¼ FS

ijðRCÞ for
rij < RC to prevent extremely large forces in simulations.

The forces are symmetric; i.e., FS
ji ¼ −FS

ij. For a system of
multiple mutually shading crowns, the force acting on crown
i is the sum of all pairwise forces with other crowns FS

i ¼P
j≠i F

S
ij [Fig. 3(a)]. In the SM we show that the resulting

dynamics are robust to different powers in Eq. (1) (Fig. S2
[37]). We represent the perturbations driven by circum-
nutation movements with a noise term η, where we assume
step sizes η are taken from a distribution PðηÞ in random
directions such that hηi ¼ 0, and uncorrelated in time such
that hηðtÞηðt0Þi ¼ σ2δðt − t0Þ where the variance σ2 is given
by

hη2i ¼
Z

∞

0

η2PðηÞdη: ð2Þ

Weshow this approximation holds in the next section. Lastly,
the range of motion of the crown is limited by the stem size
[38], which in turn increases linearly in time. We therefore
introduce a circular reflective boundary of radius RBðtÞ
surrounding each crown in the model [depicted in Fig. 2(c)]
and assume it increases linearly in time.Building on the force
and noise terms defined above, we describe the crown center
dynamics of plant i using coupled overdamped Langevin-
type equations, following
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FIG. 1. Plants grown in a dense row deflect away from each other to minimize mutual shading. (a) Snapshot of five sunflowers
(Helianthus annuus) placed in a row, on the first day of recording. Pink dots indicate crown centers, and circles illustrate the model
representation of crowns as disks in the x-y plane. The initial average center-to-center separation between pairs of adjacent plants,
represented by connecting lines, is normalized such that d0CC ¼ 1 [Eq. (8)]. (b) After 7 days, plants deflect from the center line, captured
by the increased center-to-center distance dCC ¼ 1.2. Blue triangles indicate crown centers, and circles represent crowns. (c) Schematic
of experimental setup: Five plants are arranged in a row, with homogeneous lighting placed overhead, and their dynamics are recorded
from above. (d) Trajectories of crown centers during a sample 7-day recording are shown (black lines), where initial and final crown
positions are represented by pink dots and blue triangles, respectively. Blue lines illustrate the increased center-to-center separation dCC
between pairs of adjacent plants, highlighting the arising deflected pattern. (e) Histogram of the final dCC values from 12 multiple-plant
experiments, indicating a final separation with a mean dCC ¼ 1.21� 0.14 (solid line), greater than that of the initial separation dCC ¼ 1
(dashed line).
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dri
dt

¼
X
j≠i

rij<2RC

FS
ij þ η; ð3Þ

where for clarity we omit the dependence on time. All terms
are informed by experiments, as detailed in the next section.

C. Model variables informed by experiments

1. Single-plant dynamics

We approximate a growing plant crown as a disk
whose area AðtÞ ¼ πR2

CðtÞ increases linearly in time with
a growth rate dA=dt, graphically represented in Fig. 2(a).
We evaluate crown size from single-plant experiments over
10 days. Figure 2(a) shows an example of the segmentation
of a plant crown, with a snapshot from the beginning of the
experiment overlaid with one from the end. Figure 2(b)

shows AðtÞ as a function of time. A linear fit yields a crown
growth rate of

dA
dt

¼ 2.4� 0.5 cm2=h: ð4Þ

Following Eq. (3), we approximate the kinematics of single
plants, driven by circumnutations, as a random walk with
step sizes η taken from a distribution PðηÞ [schematically
shown in Fig. 2(c)]. The statistical characteristics of the
random walk are evaluated from extracted trajectories
of the crown centers from single-plant experiments. An
example of a trajectory spanning 10 days is shown in
Fig. 2(c), where discontinuities are due to the untracked
movement during nighttime (8 h). In order to quantify the
circumnutation movements we first assess the sampling
time step which captures the movement in a relevant way,
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FIG. 2. Characterization of single-plant dynamics. Left: crown growth dynamics. (a) Left: graphical representation of model; plant
crown is approximated with a circle of radius RCðtÞ that increases according to the growth rate dA=dt. Right: example outlines of a
segmented plant crown at the beginning (pink) and after 10 days (blue). (b) Crown area, AðtÞ ¼ πR2

CðtÞ, as a function of time, averaged
over N ¼ 8 experiments (solid black line); shaded area represents 1 standard deviation. Each experiment is individually fit to a line; the
average fit (dashed red line) yields a slope ðdA=dtÞ ¼ 2.4� 0.5 cm2=h [Eq. (4)]. Right: circumnutation dynamics. (c) Left: graphical
representation of model; the crown (blue circle) is bounded by a reflective boundary of radius RBðtÞ (dashed line), increasing with time
following Eq. (5). The crown follows a random walk (RW) and takes a step in a random direction at each time step; if a step crosses the
boundary (red arrow) it is reflected back. Right: example of measured crown trajectory. The initial and final positions of the crown, after
10 days, are marked by a pink dot and blue triangle, respectively. Gaps in the trajectory indicate the nightly 8 h “dark” period (not
recorded). Color code represents local velocity (light colors represent a larger step size, and therefore higher velocity). (d) The
autocorrelation of steps Cvv as a function of time lag shows that at a time lag of Δt ¼ 0.6 h, steps are uncorrelated. (e) The mean squared
displacement (MSD) hr2ðtÞi across the length of single-plant experiments, averaged over all plants (solid black line). The gaps in the
curve represent 8-h nighttime periods where the plant is not recorded. The dashed red line represents the linear fit in Eq. (5),
hr2ðtÞi ¼ 0.027tþ 0.074, with R2 ¼ 0.84. The solid red line represents the MSD averaged over 5000 simulation instances of single
plants. (f) The step size distribution (black line). The sampling rate of trajectories is based on the autocorrelation of steps Cvv (d). The
resulting distribution of step sizes (equivalent to velocities) is wide, spanning 3 orders of magnitude, and can be approximated to a power
law (dashed red line) yielding PðηÞ ¼ 0.052η−1.40 with R2 ¼ 0.802 [Eq. (6)], or a two-parameter Gaussian mixture model (GMM, with
means 0.0060 and 0.229 with mixing proportions 0.59 and 0.41, respectively, R2 ¼ 0.818, dash-dotted red line).
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similar to the approximation in a Langevin equation
describing Brownian motion; choosing a time step which
is too short oversamples the trajectory, resulting in corre-
lated steps, and if it is too long it loses information. We
therefore calculate the step-step velocity autocorrelation
CvvðtÞ [defined in Eq. (9) in Sec. IV] as a function of
different time steps, shown in Fig. 2(d), and choose the
shortest time step at which the autocorrelation goes to zero,
at Δt ¼ 0.6 h. That is, steps Δt ¼ 0.6 h apart are uncorre-
lated and can be modeled as a random walk with step sizes
η ¼ jΔrj ¼ jrðtþ ΔtÞ − rðtÞj, at the basis of the noise term
η in Eq. (3).
We further validate this by examining the mean squared

displacement (MSD) hr2ðtÞi of crown centers [given by
Eq. (10) in Sec. IV] averaged over 8 plants each recorded

over a period of up to 10 days, shown in Fig. 2(e). Gaps
in the MSD represent the untracked nighttime movement.
The MSD agrees with a linear fit, yielding

hr2ðtÞi ¼ 0.027tþ 0.074 cm2 ð5Þ

for t expressed in hours, with coefficient of determination
R2 ¼ 0.84. Fitting the MSD to a power law yields a slightly
sublinear description, with a similar goodness of fit (Fig. S3
in the SM [37]). For simplicity we adopt the linear MSD
which allows us to use a regular random walk representa-
tion. Next, we extract the distribution of step sizes PðηÞ,
and find that it exhibits a remarkably broad range, spanning
almost 3 orders of magnitude. The distribution is well
approximated with a two-component Gaussian mixture
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FIG. 3. Plant-plant interaction simulations recover self-organization dynamics. (a) The shade response of mutually shading crowns are
represented by repulsive forces FS [Eq. (1)]. As an example, three crowns are placed in a staggered formation, such that j is equidistant
from i and k, experiencing repulsive forces from both FS

ji þ FS
jk. The x components of these forces cancel, leading to a net force in the y

direction. The outer crowns i and k are affected by the central crown, with reciprocal forces FS
ij and FS

kj accordingly. Therefore, starting
from a line configuration crowns spread along the x axis, and perturbations are required to move along the y axis and reach a staggered
configuration. Inset: FS as a function of crown separation r, normalized by ε [Eq. (1)]. (b) In order to extract the force scaling factor ε
[Eq. (1)] corresponding to experiments (e.g., Fig. 1), we run a parameter sweep over ε for simulations of 5 interacting plants, with
dynamical parameters extracted from single-plant experiments as detailed in the main text. We plot the final center-center distance dCC
as a function of ε, and find that the value ε ¼ 1.29 corresponds to the experimental distance dCC ¼ 1.21, indicated by the dashed lines.
Shaded area corresponds to 2 standard deviations. (c) Example of a simulation informed by experiments, with shade avoidance scaling
factor ε ¼ 1.29 and step sizes sampled from the experimental distribution [Fig. 2(f)]. Initial and final configurations of plant crowns
(pink and blue circles, accordingly) over 7 simulated days, with crown centers marked by pink dots and blue triangles, respectively.
Connecting lines represent crown trajectories. (d) The center-center distance (dCC) between pairs of adjacent crowns increases over time.
The average over 12 experiments is indicated by the black line, with the shaded area representing 1 standard deviation. The red line
shows dCC over the course of the simulation in (c).
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model (GMM), with R2 ¼ 0.82, as well as a truncated
power law,

PðηÞ ¼ ηα−10

ηα
; ð6Þ

with exponent α ¼ 1.40� 0.05 and a normalizing prefac-
tor η0 ¼ 6.2 × 10−4 cm [Fig. 2(f)]. The minimal and
maximal step sizes that truncate the distribution are
ηmin ¼ 7.4 × 10−4 cm and ηmax ¼ 2.03 cm, respectively.
The minimal step size is limited by the image resolu-
tion, detailed in Sec. IV. The normalizing prefactor,
such that PðηÞ integrates to 1 within this range, is then
ηα−10 ¼ ð1 − αÞ=ðη1−αmax − η1−αmin Þ. The uncertainty of the
exponent is determined by bootstrapping (see Sec. IV).
Although the GMM fit is slightly better, we choose to
utilize the power-law form as it effectively captures the
breadth of the distribution using a single parameter, which
proves instrumental for the analysis conducted in the
following section. In Fig. S6 in the SM we show that this
distribution is robust over time and does not change
significantly throughout the experiment [37].
Lastly, we recall that the range of motion is limited

by stem size, accounted for by introducing a circular
reflective boundary surrounding each crown in the model
[depicted in Fig. 2(c)]. As described in the model in
the previous section, the radius of the boundary RBðtÞ
increases linearly in time, and without loss of generality
we take it to follow the MSD in Eq. (5), such that
RBðtÞ ¼ 0.027tþ 0.074 cm2. In the SM we show exam-
ples of nonlinear relations of RBðtÞ yielding incorrect MSD
trends (Fig. S5) [37].
Put together, we model the dynamics of the fluctua-

ting crown position of a single plant as an uncorrelated
random walk with steps taken from the extracted distribu-
tion PðηÞ in Eq. (6), bounded by a circular reflective
boundary RBðtÞ increasing linearly in time—akin to a
bounded truncated Lévy flight [39,40]. Simulations recover
the trend of the experimental MSD for single plants
[Fig. 2(e)].

2. Simulations of multiple interacting crowns recover
measured self-organization dynamics

We now simulate experiments of 5 mutually shading
sunflowers (as shown in Fig. 1), based on the Langevin-
type model in Eq. (3), informed by experiments. Plant
crowns are initially placed on a straight line 6.8 cm apart,
and dynamical variables are informed from single-plant
dynamics characterized in the previous section, namely, the
crown growth rate AðtÞ [Eq. (4)], step size distribution PðηÞ
[Eq. (6)], and repulsive boundary RBðtÞ.
To determine the scaling factor ε of the shading force FS

ij

[Eq. (1)], we perform a parameter sweep, running simu-
lations over a range of values of ε and calculating the final

dCC for each. We find that dCC generally increases for larger
values of ε [Fig. 3(b)], thus capturing the general self-
organization dynamics. The observed saturation represents
the maximal deflection governed by RBðtÞ: Even when
ε → ∞ (hard disk repulsion) the plants have nowhere to go
and therefore dCC cannot increase. We identify that ε≈1.29
reproduces the experimental value dCC ¼ 1.21, as shown in
Fig. 3(c). Put together with the crown growth rate and
the single-plant perturbation dynamics, despite the antici-
pated experimental spread our model captures the general
trends of the evolution of both the MSD of single plants
[Fig. 2(e)], as well as the dCCðtÞ representing the self-
organization in rows of multiple shading plants [Figs. 3(c)
and 3(d)], providing a quantitative description of the
system’s characteristic dynamics.

D. Analysis of effects of circumnutations
on the self-organization process

Having corroborated our minimal model, it now serves
as a virtual laboratory, enabling us to interrogate the role
of circumnutations, represented as noise, in the self-
organization process, and compare to different amounts
of noise. We tune the amount of noise in the system based
on the spread of the step size distribution PðηÞ. Assuming a
general power-law form as in Eq. (6), the width is governed
by the exponent α: Large values of α correspond to narrow
distributions and therefore mostly small fluctuations, while
small values of α correspond to (truncated) heavy-tailed
distributions allowing large fluctuations (illustrated in
Fig. 4). In order to be able to compare across noise
distributions, we require that PðηÞ integrates to 1 within
the limiting step sizes ηmin and ηmax (fixed and equal to
the experimental values), yielding normalizing prefactors
ηα−10 ¼ ð1 − αÞ=ðη1−αmax − η1−αmin Þ. We further quantify the
noise by calculating the variance, defined in Eq. (2). We
substitute the general power-law form [Eq. (6)] and
integrate within the range ½ηmin; ηmax�, leading to the form

hη2i ¼
�
1 − α

3 − α

��
η3−αmax − η3−αmin

η1−αmax − η1−αmin

�
: ð7Þ

The dependence of noise hηi on α is shown in Fig. S7B in
the SM [37]; numerical values agree with the analytic form
in Eq. (7), showing a sharp transition between two regimes,
in line with the assumption that α controls noise.
We define a parameter reflecting the performance of a

system of self-organizing sunflowers, in terms of the
shaded area (SA) ratio of the crowns after 7 days, relative
to the total crown areas [defined in Eq. (15) in Sec. IV]: The
lower the shaded area, the greater the energy the system is
able to extract through photosynthesis, and the better the
performance. We run simulations with parameters set by
experiments, as described before, and perform a parameter
sweep over α, which sets the noise. Figure 4(a) displays the
relative shaded area as a function of α, and reveals three
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distinct regimes. For low perturbations with α ≥ 2.5,
the shaded area remains constant. It then decreases
to a minimum for intermediate perturbations with
2.5 < α < 0.5, and increases monotonically for larger
fluctuations with approximately α < 0.5. While the distri-
butions are truncated due to physiological and resolution
limitations, it is interesting to note that nontruncated power-
law distributions have a well-defined mean over η∈ ½1;∞Þ
only if α > 2, and have a finite variance for α > 3. In the
figure, we also highlight the shaded area for plants that
remain in their initial positions over the course of growth
(upper dashed line), and we observe that for some simu-
lation instances at low α, the dominance of noise results in
shaded area greater than this value. We also highlight the
lowest possible shaded area given the reflective boundary
RB constraining the plants’ movements (lower dashed line)

and observe that the minimum achieved for moderate α is
close to this value, but does not reach it exactly.
Examples of final configurations from simulations corre-

sponding to different regimes are shown in Figs. 4(b)–4(d):
strong noise (α ¼ 0.1), moderate noise (the experimentally
measured value, α ¼ 1.4), and weak noise (α ¼ 8). As
expected, with weak noise plants remain close to their
initial linear configuration, only deflecting along the row,
but not away from it. This can be understood by considering
that shading neighbors on opposite sides of a crown will
convey repulsive forces of equal magnitude but opposite
directions, resulting in no net movement of the crown away
from the line, as illustrated in Fig. 3(a). As noise increases,
random fluctuations cause plants to break the symmetry of
the system by displacing off the horizontal axis, resulting
in alternating off-axis deflections in a zigzag pattern that

Step size distribution exponent 

Sh
ad

ed
 a

re
a 

(S
A

)

(a)

10110 010-1

(d)

Step size (cm)

Pr
ob

ab
ilit

y 
de

ns
ity(b) (c)

Step size (cm)

Pr
ob

ab
ilit

y 
de

ns
ity

Initial configuration

Final configuration

Pr
ob

ab
ilit

y 
de

ns
ity

100

10

10

10010-1 10010-1

100

10

10

100

10

10

102

103

Fo
rc

e-
no

is
e 

ra
tio

 �F
S
�/�

η�

0.2

0.25

0.3

0.35

10010-1

Step size (cm)

� = 1.40 � = 8

B D

101

� = 0.1

C

-2 -2 -2

22 2

FIG. 4. Simulations suggest circumnutations as source of functional noise. (a) Left-hand axis: fraction of shaded area (SA) as a
function of α, the power-law exponent of the step size distribution in Eq. (6) which controls noise. The center red line represents an
average over 5000 simulations, while the shaded area corresponds to 2 standard deviations. We identify three regimes. For high noise
(small values of α), random movements dominate over repulsive interactions, producing disordered configurations that can result in
greater shaded area. For very low noise (large values of α), plants remain close to their initial locations due to the lack of symmetry-
breaking perturbations that push plants off the horizontal axis. In between, there is a minimum at an optimal range of α, where symmetry
breaking results in the plants self-organizing into an alternately deflecting “zigzag” pattern. Dashed vertical lines represent exemplary α
values for high noise [α ¼ 0.1, shown in (b)], the measured experimental value [α ¼ 1.4, in (c)], and low noise [α ¼ 8, in (d)]. The gray
shaded region represents 2 standard deviations about the experimental value, determined via bootstrapping. The upper horizontal red
dashed line represents the shaded area if the plants do not move from their initial configurations. The lower horizontal red dashed line
represents the minimum possible shaded area given the reflective boundary RB on the plants’movements. Right-hand axis: the black line
plots the force-noise ratio, given by the average net force on a plant at the end of the simulation hFSi divided by hηi ¼

ffiffiffiffiffiffiffiffi
hη2i

p
[Eq. (2)].

The ratio is low for small values of α where noise dominates, and increases with increasing α, saturating at large α where perturbations
are too small to break symmetry. The minimum in SA occurs within the transition between these two regimes. (b)–(d) Dashed lines show
examples of step size distributions for α ¼ 8 (low noise), α ¼ 1.40 (measured value), and α ¼ 0.1 (high noise), respectively, with
examples of simulated final plant configurations for each respective distribution. In panel (c), the experimental distribution is also
shown, as a solid black line.
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minimizes the shaded area. This represents the ability of the
system to explore a variety of states. As noise increases
further, random movements dominate over the repulsive
forces, potentially leading to suboptimal disordered con-
figurations with higher shaded area. We observe that the
experimentally determined noise, represented by the power-
law exponent of α ¼ 1.40� 0.05, is within the range of
minimal shaded area, demonstrating how sunflowers may
leverage circumnutations as functional noise to self-organize
optimally.
To better understand these regimes, we examine the

ratio of the average net force exerted on a plant hFSi ¼
hPj≠i F

S
iji to the average noise hηi ¼

ffiffiffiffiffiffiffiffi
hη2i

p
—the two

terms governing the Langevin-type equation Eq. (3). This
force-noise ratio represents the ratio of shading-driven
motion to diffusive motion, and can be thought of as an
analogy to the Péclet number. The force-noise ratio is
plotted together with the SA in Fig. 4(a), as a function of α.
For low α, this ratio is small, due to the dominance of noise,
and increases sharply for high values of α where the weak
noise does not induce a significant out-of-row net force to
break the symmetry. Comparing this to the SA ratio, we
find that optimal arrangements, with a minimum in SA,
occur during a sharp transition between two regimes or
“phases,” as represented by the force-noise ratio.
We note that the value of ηmin is set by resolution

limitations, and in reality may be smaller. In Fig. S7 in the
SM we find that our results are robust to decreasing values
of ηmin, leading to a slight shift in the position of the
SA minimum closer to the experimental α value [37].
Our simulations also reveal that the system is robust to
variations in the repulsive interaction (Fig. S2), which may
correspond to, for example, variations in the shading due to
leaf thickness, distance between leaves, or fluctuations in
the environmental lighting.

III. DISCUSSION

While circumnutations are ubiquitous in plant systems,
and generally associated with exploratory movements, a
quantitative understanding of their role is elusive. Here we
report, for the first time, their role in facilitating an optimal
growth pattern for a crowded group of mutually shading
plants. We revisit the problem of self-organization observed
for sunflowers [6], mediated by shade response interactions,
suggesting circumnutations as a source of functional noise.
In order to test our hypothesis,wedeveloped aLangevin-type
parsimonious model of interacting growing disks, informed
by experiments, successfully capturing the characteristic
dynamics of single plants as well as multiple interacting
plants. This framework provided an in silico laboratory,
enabling us to interrogate the role of circumnutations.
While traditionally circumnutation movements have

been investigated in terms of the geometry of the final
trajectory, here we examined the characteristic statistics of

their dynamics. We found that the movements can be
described as a bounded random walk characterized by a
remarkably broad distribution of step sizes, or velocities,
covering 3 orders of magnitude. This wide distribution may
be related to both internal and external factors, such as
ultradian and circadian rhythms, mechanical effects asso-
ciated with self-weight, changes in turgor pressure due to
watering, and changing light gradients, warranting further
investigation. We ran simulations spanning a range of noise
values α, and an analysis of the shading area ratio (SA),
describing the photosynthetic performance of the system,
revealed that the experimental value occurs within a
minimum in the SA, or peak performance. We then carried
out an analysis of the ratio between the average net force
exerted on a plant and the noise associated with circum-
nutations—the two terms governing the Langevin-type
equation Eq. (3), and an analogy to the Péclet number
of the system. We found that optimal arrangements, with a
minimum in the SA ratio, occur during a sharp transition
between two regimes or phases as represented by the force-
noise ratio. In all, we find that the observed breadth of the
velocity distribution is beneficial, enabling the system to
explore possible configurations in order to reach an
optimum in terms of minimal shading, and thus solving
a explore-versus-exploit problem [15,16]. These results are
also in line with the so-called “criticality hypothesis” that
biological systems are tuned to phase transitions that
optimize collective information processing [41,42], ena-
bling collective agility and responsiveness [43,44]. We
therefore interpret circumnutations as functional noise.
Indeed, in motile animal systems such wide distributions
of movement velocities are frequently identified with
enhancement of behavioral processes, for example, trun-
cated power laws yielding Lévy flights, associated with
animal search and foraging [45], and broad shouldered
distributions related to sensory salience [16,17]. We note
that while we find here that circumnutations are beneficial,
they also pose a cost to the plant, due to both the continuous
change in leaf orientation (which by definition will not
always be in the direction of light), as well as the
mechanical cost of drooping sideways compared to grow-
ing straight. This cost-benefit trade-off needs to be
addressed in future work. To the best of our knowledge
this is the first report of functional noise in plant move-
ments and provides a theoretical backdrop for investigating
how plants negotiate their environment, employing com-
putational processes such as task-oriented processes, opti-
mization, and active sensing.
The simple system of plants in a row serves as a minimal

model for a range of ecological scenarios. On one end, our
work has implications on future design of agricultural
systems, as suggested by previous observations that self-
organization in dense sunflower arrays gives rise to an
increased oil yield [6]. In tandem with advances in
agronomic research and selective breeding, our results
can provide insight into optimal plant spacing and harness
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growth dynamics to increase crop yield. On the other end,
this system provides a minimal representation of natural
environments such as a meadow or forest, where crowded
plants shade each other in a competition for light.
Understanding the dynamics of our simplified system over
a wide range of timescales will be crucial to embedding the
mechanics of self-organization in an ecological context.
Indeed, while dynamics are considered a critical aspect of
collective behavior of social organisms, this is generally
overlook in plants [46]. This work provides unique insight
on the role of growth dynamics on the ecological picture, a
dividend of the statistical physics approach used here.
While we primarily analyze emergent self-organization

in the two-dimensional top-down view of the system, we
note that in fact, since plants move by growing, the system
is an emergent three-dimensional structure where space and
time are coupled—a conceptually novel class of active
matter. The shape of a shoot at a given moment in time
represents its sensorial history; e.g., a plant grows toward a
light source placed on its left, and when the light is
switched to the right it will redirect its growth accordingly,
resulting in aU-shaped stem. Therefore, neighboring plants
interact not only with the current state of one another, but
also their histories. An analogy can be drawn to active
matter systems with memory, such as stigmergy in the
social interactions of ant colonies, where ants interact with
pheromone trails deposited by other ants, resulting in a
collective convergence on optimal paths [47,48]. Finally,
we note that our approach can be applied to growth-driven
systems other than plant organs, such as neurons, fungal
hyphae, and the new generation of growing robots [49–52].

IV. METHODS

A. Plant experiments

We conducted single- and multiple-plant assays using
sunflowers grown from seed (EMEK 6 variety, Sha’ar
Ha’amakim Seeds). The seeds were first cooled in a
refrigerator (seed stratification) at 5 °C, peeled from their
shell coats, and soaked in water for 24 h. Each seed
was then placed in a plastic test tube filled with wet
Vermiculite and left to germinate in a growth chamber at
24 °C, with a relative humidity of 72% and a 12:12 h light:
dark photoperiod. The light intensity in the chamber
was 22.05 W=m2.
Germination occurred after 4–7 days for each batch.

Following germination, 3- to 7-cm-tall seedlings with two
to four leaves that appeared healthy and well separated
were transplanted to pots with dimensions 10 × 10 cm2,
and 15 cm tall black plastic pots containing garden soil. The
plants were exposed to white LED light with intensity
41.92 W=m2 on a 16:8 h light:dark cycle, and the setup was
enclosed with black fabric to eliminate sources of reflec-
tion. The ambient temperature was approximately 26 °C
during the light period and 28 °C during the dark period,

and the humidity ranged between 43% and 51%. Each plant
was watered with 100 mL of a 0.2% 20-20-20 nitrogen (N),
phosphorus (P), and potassium (K) fertilizer solution every
2 days. Plants were maintained in this setup for approx-
imately one week.
Plants were then selected for single-plant or multiple-

plant assays that took place in conditions similar to the
growth conditions described above, with the exception
of light intensity at 27.05 W=m2. In single-plant assays
(9 experiments in total), plants were maintained in the
enclosed experimental setup for 7–10 consecutive days.
Multiple-plant assays consisted of five plants in individual
pots closely arranged side by side in a horizontal row, again
for 7–10 consecutive days [Figs. 1(a) and 1(b)]. Out of the
total 12 multiplant experiments, 6 were on a continuous
light regimen; however, the characteristic statistics are
similar to 16∶8 light:dark regimen (Fig. S1 [37]), ruling
out any effects of circadian rhythms.

B. Image acquisition and tracking

We record plants during a 16-h-long “light” period for up
to 10 consecutive days. Each plant assay was recorded from
a top-down view with a Logitech C270 HD webcam.
Images were acquired every 5 minutes during the light
period using a Raspberry Pi Model 4 single-board com-
puter. We obtain images from 8 single-plant assays and 13
multiple-plant assays.
We perform image segmentation on videos of plants

grown in individual setups using the colorThresholder
function in MATLAB (MathWorks Inc., Natick, MA), from
which we determine the area of the plant crown from the
top-down view in single-plant assays. We segment the plant
crown for every image, thus recording the crown area and
the crown’s center position as a function of time.
For multiple-plant assays, plant crowns can overlap

from the top-down views, complicating image segmenta-
tion. To track the movement of the crowns in both single-
and multiple-plant experiments, we manually annotate
the center point of each crown in the first frame of the video
and track its position using the DLTdv tracking software [53].

C. Plant dynamics

1. Center-to-center distances between plants

We define the position of crown i at time t as riðtÞ, and
the initial position as r0i ¼ rið0Þ. We define the average
center-to-center distance between adjacent plants dCCðtÞ,
normalized by the initial center-center distance at t ¼ 0, as

dCCðtÞ ¼
X
i¼0

jriðtÞ − riþ1ðtÞj=
X
i¼0

jr0i − r0iþ1j: ð8Þ

This value serves as a measure of how closely (dCC < 1) or
sparsely (dCC > 1) the plant crowns are distributed, where
dCCð0Þ ¼ 1 by definition.
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2. Velocity autocorrelation

To obtain a sampling rate of plant movement that
captures random walk dynamics, we first quantify the
autocorrelation of velocities, CvvðtÞ. If the instantane-
ous velocity vðtÞ of the plant at time t is given by
vðtÞ ¼ ½rðtÞ − rðt − dtÞ�=dt, where dt is the length of time
between subsequent frames in the recording (5 min), then
the velocity autocorrelation as a function of time lag Δt,
CvvðΔtÞ, where Δt ¼ ndt is an integer n multiple of the
time between frames dt, is given by

CvvðΔtÞ ¼
1

ðN − nÞ
XNdt

t¼0

vðtÞ · vðtþ ΔtÞ; ð9Þ

where N is the total number of frames in the video. We
observe that CvvðΔtÞ is initially positive for Δt < 0.6 h,
before decreasing to 0 at Δt ≈ 0.6 h. Hence we choose a
time step in our model that corresponds to 0.6 h, such that
steps taken 0.6 h apart are uncorrelated and can be
represented by random walk.

3. Step size distribution

To determine the step size distribution, we compute the
distribution of all steps separated by Δt ¼ 0.6 h, i.e., the
distribution of jηðtÞj ¼ jΔrðtÞj ¼ jrðtÞ − rðt − 0.6 hÞj for
all t∈ ½0; T�, where T is the length of the video. We perform
a least-squares fit of this distribution to a power law,
PðηÞ ∼ η−α, and find a best-fit value of α ¼ −1.4. To obtain
an error estimate of α, we perform bootstrapping by
sampling from the step size distribution with replacement,
fitting the resampled distribution to a power law, and
repeating the resampling and fitting process for 104

iterations. We then compute the standard deviation of α
over these 104 bootstrapped iterations to obtain a value
of 0.05.

4. Mean squared displacement

To characterize the trajectories of plants, we compute the
mean squared displacement across all single-plant record-
ings as

hr2ðtÞi ¼ 1

Np

XNp

i¼1

jriðtÞ − rið0Þj2; ð10Þ

where riðtÞ is the position of plant i at time t, and Np is
the total number of plants, in this case Np ¼ 8. There
are gaps in the MSD during the nighttime periods
when the plants were not recorded. We perform a
least-squares linear fit of the MSD, obtaining the best-
fit expression MSDðtÞ¼ð0.027 cm2=hÞtþ0.074 cm2,
for t expressed in hours, with coefficient of determi-
nation R2 ¼ 0.84.

D. Minimal model of shade avoidance response

We formulate a model of crown deflections in the 2D
plane by modeling each plant as a circular crown with an
area that grows linearly in time. When the separation
between a pair of crowns is less than the sum of their
radii, each crown experiences a repulsive “shade avoid-
ance” force FS of equal magnitude [Fig. 3(a)].
Consider a system consisting of two crowns i and j each

with radius RC (we note that RC implicitly depends on time,
but omit this dependence for simpler notation) and sepa-
rated by the vector rij ¼ rj − ri. Then, the shade avoidance
force FS

i [Fig. 3(a)] acting on crown i is given by

FS
i ðrijÞ ¼

8<
:−ε

�
ð2RCÞ2
jrijj2 − 1

�
r̂ij jrijj < 2RC

0 jrijj ≥ 2RC;
ð11Þ

where ε is a coefficient that scales the magnitude of the
force, r̂ij is the unit vector in the direction of rij, and the −1
term is introduced to shift the value of the force such that it
approaches 0 when jrijj → ð2RCÞ− and avoids the jump
discontinuity that would otherwise occur at jrijj ¼ 2RC.
Furthermore, we fix FS

i ðrijÞ ¼ FS
i ðRCÞ for jrijj < RC to

prevent extremely large forces from occurring in the
simulation.
The shade avoidance force FS

j acting on crown j is of
equal magnitude and points in the opposite direction along
the unit vector r̂ji. For a system of multiple mutually
shading crowns, the force FS

i acting on crown i is the sum of
all pairwise forces between crown i and all other crowns in
the system.
Then, at each time step of the simulation, the change in

position of crown i is given by the overdamped equation of
motion,

riðtþ ΔtÞ ¼ riðtÞ þ FS
i Δtþ η; ð12Þ

where η is a vector representing a random step, with
direction sampled from the uniform distribution ½0; 2πÞ,
and magnitude sampled from the step size distribution. To
generate the results illustrated in Fig. 3, the magnitude is
sampled from the step size distribution extracted from
single-plant experiments [Fig. 2(d)]. To generate the results
illustrated in Fig. 4, where we vary the magnitude of the
noise by changing the power-law exponent α, we sample
from a step size distribution of the form

PðηÞ ¼ 1 − α

η1−αmax − η1−αmin

η−α; ð13Þ

where the preceding term is a normalization factor such that
PðηÞ integrates to 1 over the range ½ηmin; ηmax�. The value
ηmax ¼ 2.03 corresponds to the largest step size observed
in the experiment, while the value ηmin ¼ 7.4 × 10−4 cm
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corresponds to the largest distance a plant can move
without being detected in a video recording (i.e., the
measurement precision). The position of the plants is
tracked using the DLTdv tracking software [53] (see
Sec. IV B above), which interpolates positions to a
precision of 0.01 pixel. Then, the largest distance a
plant can move without being tracked is the 0.01 times
the diagonal of one pixel, which corresponds to 0.01

ffiffiffi
2

p
times the pixel-to-centimeter conversion rate (1=19 cm−1),
or 7.4 × 10−4 cm.
Sampling from a given step size distribution is achieved

using inverse transform sampling. The cumulative distri-
bution function CDFðxÞ is determined from the experi-
mental distribution; then, a random variable u is sampled
from the uniform distribution [0, 1]. The step size magni-
tude is chosen to be the value x at which u ¼ CDFðxÞ. In
the SM we verify that the variance of simulated step sizes is
equal to the analytical value (Fig. S7B) [37].
Because the center of the crown is rooted to the ground

via a stem of finite length and stiffness, the crown’s
movement is constrained in the x-y plane by the amount
by which the stem is able to deflect. To quantify this
constraining region, we compute the MSD of the crown
over the course of entire single-plant experiments
[Fig. 2(c)].
The MSD then represents the increasing radius of a

circle, centered on the crown, that bounds the movement of
the crown as the stem grows, allowing for greater deflection
over time. The bounding circle acts as a reflecting boundary
condition: If the change in position of the crown places the
crown center outside of this bounding circle, the excess
movement outside the bounding circle is reflected back
toward the interior of the circle.
The radius of the crown increases according to the

relation

RCðtÞ ¼ R0 þ
ffiffiffiffiffi
Ȧt
π

s
; ð14Þ

where R0 is the radius at the start of the simulation and Ȧ is
the growth rate of the area of the crown [Eq. (4)]. For
simplicity, in our simulations, we set the radius to be equal
across each crown in the system.
We simulate multiple-plant systems with our model

using experimentally determined parameters. Five plants
are initially separated by a distance of 12.8 cm, the average
value of the initial center-center distance dCC without
normalization. Each crown has an initial radius of
6.8 cm, which is estimated by segmenting the plant area
in the first frames of multiple-plant assays, and taking this
segmented area to represent five circular crowns. The
area of each crown increases linearly at a rate of 57 cm2

[Fig. 2(b)] per day. Each time step of the simulation
represents 0.6 h, and the magnitudes of their random

movements are drawn from the experimental step size
distribution [Fig. 2(e)].
The system performance is evaluated by determining the

fractional shaded area across all plants, given by

SA ¼ 1

NpπR2

XNp

i¼1

XNp

j¼iþ1

�
2R2 cos−1

�
rij
2R

�

−
1

2
rij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 − r2ij

q �
; ð15Þ

whereNp is the total number of plants and rij is the distance
between the centers of plants i and j.

The code or the function that simulates the model can be
found in this repository [54].
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