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The initial immune response to an acute primary infection is a coupled process of antigen proliferation,
molecular recognition by naive B cells, and their subsequent clonal expansion. This process contains a
fundamental problem: the recognition of an exponentially time-dependent antigen signal. Here, we show
that an efficient immune response must be stringently constrained to B-cell lineages with high antigen
binding affinity. We propose a tuned proofreading mechanism for primary recognition of new antigens,
where the molecular recognition machinery is adapted to the complexity of the immune repertoire. We
show that this process produces potent, specific, and fast recognition of antigens, maintaining a spectrum of
genetically distinct B-cell lineages as input for affinity maturation. Our analysis maps the proliferation-
recognition dynamics of a primary infection to a generalized Luria-Delbrück process, akin to the dynamics
of the classic fluctuation experiment. This map establishes a link between signal recognition dynamics and
evolution. We derive the resulting statistics of the activated immune repertoire: Antigen binding affinity,
expected size, and frequency of active B-cell clones are related by power laws, which define the class of
generalized Luria-Delbrück processes. Their exponents depend on the antigen and B-cell proliferation rate,
the number of proofreading steps, and the lineage density of the naive repertoire. We extend the model to
include spatiotemporal processes, including the diffusion-recognition dynamics of a vaccination. Empirical
data of activated mouse immune repertoires are found to be consistent with activation involving about three
proofreading steps. The model predicts key clinical characteristics of acute infections and vaccinations,
including the emergence of elite neutralizers and the effects of immune aging. More broadly, our results
establish infections and vaccinations as a new probe into the global architecture and functional principles of
immune repertoires.
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I. INTRODUCTION

B cells are a central part of the human adaptive immune
system. These cells recognize pathogens by specific bind-
ing: B-cell receptors (BCRs) located in the cellular mem-
brane bind to antigenic epitopes, which are cognate binding
loci on the surface of pathogens. To capture a wide range of
a priori unknown pathogens, humans produce a large and
diverse naive B-cell repertoire, estimated to contain about
L0 ∼ 109 lineages with distinct BCR genotypes [1–3] and a
larger but comparable number of circulating naive B cells
[1,4]. Acute infections and vaccinations with a live-attenu-
ated virus are characterized by rapid, initially exponential
growth of the pathogen population. An infection often

starts with few particles and reaches peak densities of
the order of 108 ml−1 within a few days [5–8]. Inactivated
antigens, as used in most influenza vaccines, generate a
similar signal increase by diffusion from the point of
vaccination to a point of recognition, which is typically
in a lymph node. At some stage of this process, B cells start
to encounter the antigen. Antigen binding can activate
naive B cells in lineages of sufficiently high binding
affinity, triggering their rapid clonal proliferation.
Subsequently, activated B cells differentiate into comple-
mentary fates: They become antibody-secreting plasma
cells or memory B cells or undergo substantial affinity
maturation in germinal centers (GCs) [9,10]. Antibodies,
which are membrane-detached BCRs, will eventually help
to clear the pathogen. Activated repertoires are estimated
to contain multiple B-cell lineages, Lact ≳ 102 in mouse
models [11,12]. This study focuses on the first steps of
these dynamics: B-cell activation and proliferation trig-
gered by antigen-BCR binding.
The exponential growth of the antigenic signal, together

with a large number of circulating B-cell lineages, presents
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a formidable real-time specificity problem for recognition.
Consider an antigen that activates a high-affinity B-cell
lineage at a given point of time. One day later, at a > 100-
fold higher density, the antigen can potentially activate a
large number of low-affinity lineages, generating a poor
overall response of the immune repertoire. The actual
process activates only a tiny fraction of the preinfection
repertoire. Previous work has established upper bounds
of the order of Lact=L0 ≲ 10−5 [13,14], and a lower bound
follows from recent data, Lact=L0 ≳ 10−7 [11,12]. How is
such a highly specific immune response possible? At its
core, this is a fundamental problem of signal recognition:
how to process an exponentially increasing signal, here
of a growing antigen population, for a fast and specific
response. Molecular recognition problems, in and outside
the context of immunology, have so far been studied mostly
for steady-state signals [15–19]. In this paper, we show that
optimal recognition of an exponential signal depends on
three a priori unrelated factors: the signal processing
mechanism, the growth rates of signal and response, and
the complexity of the recognition repertoire.
Our basic model for the recognition dynamics has three

steps: (i) antigen proliferation, (ii) nonequilibrium molecu-
lar recognition and cell activation, and (iii) subsequent
proliferation of activated B cells (see Fig. 1). An extension
of the model includes antigen diffusion, which turns out to
be a relevant factor for the recognition dynamics of
vaccinations. The B-cell activation process contains kinetic
proofreading: a series of multiple, thermodynamically
irreversible steps [15,16]. In an appropriate regime of rate
parameters, processes with kinetic proofreading are known
to increase the affinity discrimination of their output
compared to near-equilibrium processes. For the activation
process in Fig. 1, we show that the activation rate of weak
binding B cells depends on the antigen-BCR binding
constant and on the number of activation steps, uact ∼ K−p.
Kinetic proofreading has been recognized as a key step

in the activation of T-cell immunity [17,20–22]. For B cells,
evidence for proofreading comes from experimental obser-
vations of characteristic time lags in activation, but little is
known about the underlying molecular mechanism [23].

Observed mechanisms of immune cell activation by
membrane-bound antigens include BCR clustering, mem-
brane spreading and contraction, quorum sensing, and
molecular tug-of-war extraction forces [24–27]. Such
mechanisms may contribute to proofreading, but their
relevance for the specificity of initial antigen recognition
addressed in this article remains unclear. Here, we use a
minimal p-step model of activation to show that proof-
reading is essential for specific and timely recognition of
an exponential antigen signal. This result complements
previous work on steady-state signal recognition by
kinetic proofreading [15–19].
To understand how activation and proofreading act in

the face of an exponentially increasing input signal,
we treat the recognition dynamics as a generalized
Luria-Delbrück process. This process resembles the
proliferation-mutation dynamics of the classical Luria-
Delbrück experiment [28]: The antigen corresponds to
the wild type, activation to mutation, and B-cell lineages
to mutant cell lineages. The new feature of the infection
or vaccination dynamics, which has no analog in the
original Luria-Delbrück process, is that each B-cell
lineage has a specific antigen binding constant K. This
sets the density of B-cell lineages available for activation,
Ω0 ∼ Kβact , and modulates their activation rate.
Our model predicts optimal immune responses to an

exponentially increasing pathogen population, tuned to a
balance between speed and potency, at an intermediate
number of proofreading steps. Recent data of vaccination-
activated mouse immune repertoires [11,12] are shown to
be consistent with this prediction. The model further
predicts that activated immune repertoires of different hosts
responding to the same antigen show giant fluctuations,
similar to mutant populations in a classical fluctuation
experiment. Such fluctuations are a hallmark of Luria-
Delbrück processes [28–32]. In a primary immune
response, giant fluctuations are generated by “jackpot”
clones of large size and high antigen affinity. We derive the
underlying statistics of activated repertoires and infer
clinically important characteristics of primary infections
and vaccinations.

FIG. 1. Antigen recognition in a primary infection. In a minimal model, immune recognition of a new antigen involves three stages.
(a) Exponential replication of free antigens with rate λA. (b) Activation of naive B cells: binding of antigens with association rate kon,
dissociation rate koff , and p irreversible activation steps with rate kstep. This mechanism yields a total activation rate uact that decays as
uact ∼ ðkstep=koffÞp in the low-affinity regime (see the text). (c) Exponential replication of activated B cells with rate λB.
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The paper is organized as follows. In the first part, we
develop the theory of generalized Luria-Delbrück processes
for antigen recognition. We compute the distribution of
lineages in activated B-cell repertoires, and we establish a
characteristic power-law statistics relating clone ranks,
clone size, and binding affinity. In Sec. III, we turn to
biological and clinical implications of the recognition
dynamics. Readers mainly interested in these applications
may take note of Fig. 2 and then turn to Sec. III.

II. THEORY OF EXPONENTIAL ANTIGEN
RECOGNITION

In this section, we first derive the activation probability
of individual B-cell lineages in an acute infection, which
depends on their antigen binding kinetics and on the growth
rate of the pathogen. In a second step, we compute the
activation characteristics of the entire B-cell repertoire,
which also depends on the density of available lineages
and determines the physiological immune response to an
infection. The underlying basic model of antigen prolifer-
ation, molecular recognition, and subsequent proliferation
of activated B cells describes antigens and B cells by
homogeneous densities, neglecting their spatial structure.
At the end of the section, we develop a fully spatiotemporal
model of the recognition dynamics, which includes antigen
diffusion from the starting point of the infection to a locus
of recognition. This model shows that generalized Luria-
Delbrück processes apply to infections and vaccinations,
validating the homogeneous-system approximation for
infection responses and establishing a new, diffusion-
limited regime relevant for vaccination responses.

A. Antigen-BCR binding

In the initial phase of an infection, the antigen population
grows exponentially with a rate λA [see Figs. 1(a) and 2(a)].
For viral pathogens, this process starts with few localized
antigen copies and reaches population numbers NAðtÞ
of the order of 1012 within about 5 days, which implies
replication factors > 100=d [5–8]. In a homogeneous
system, the total association rate between available antigens
and circulating naive B cells of a given lineage is given by

uonðtÞ ¼ NAðtÞb0konρB; ð1Þ

where NAðtÞ ¼ exp ðλAtÞ is the total number of antigen
particles, b0 ∼ 105 is the number of BCR per B cell [1],
ρB ∼ 1 cell=L is the density of B cells per lineage [1–4],
and kon is the molecular association rate [see Fig. 1(b)].
Association is known to be diffusion limited with typical
rates kon ∼ 106 M−1 s−1 [33]. Therefore, differences in
antigen binding affinity between different B-cell lineages
result primarily from differences in the dissociation rate
koff . Human B cells have dissociation rates in the range

N
o.

FIG. 2. Generalized Luria-Delbrück replication-activation
dynamics. (a) The antigen population NAðtÞ grows exponen-
tially with rate λA. Diamonds mark the start of B-cell activation
in the low-specificity regime (LS, p ¼ 1) and the high-
specificity regime (HS, p ¼ 4). (b) Average binding constant
of activation, KactðtÞ (thick lines), and moving front of
deterministic activation, KdetðtÞ (dashed lines), in both activa-
tion regimes (LS, blue lines; HS, red lines). LS activation starts
ahead of the moving front in the stochastic regime; HS
activation follows the moving front from the start. Character-
istic repertoire scales: Kp (dots), K� (star); see the text. (c) The
number of activated lineages LactðtÞ grows exponentially with
initial rates λA (LS) and βactλA=p (HS). (d) The population of
activated lineages, NiðtÞ (i ¼ 1; 2;…,), shows initially expo-
nential growth with rate λB. In the mapping to a classical Luria-
Delbrück process, the antigen population corresponds to the
wild-type cell population, activation to mutation, and B-cell
lineages to mutant cell clones under selection. The generalized
Luria-Delbrück process couples growth to neutralization func-
tion and repertoire complexity, setting independent growth
rates of KactðtÞ and LactðtÞ. Analytical results are shown for the
following parameters: kinetic parameters kon ¼ 106 M−1 s−1

and kstep ¼ 0.5 min−1; number of BCRs per cell, b0 ¼ 105;
growth rates λA ¼ 6 d−1 and λB ¼ 2 d−1; repertoire size
L0 ¼ 109; carrying capacity N̄ ¼ 104.
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koff ¼ 10−5�101 s−1 [1]; the corresponding equilibrium
binding constant K ¼ koff=kon varies in the range K ¼
10−11–10−5 M. This constant is related to the lineage-
specific energy gap between the bound and the unbound
state, K ¼ K0 expðΔEÞ, where K0 is a normalization
constant and all energies are measured in units of kBT
(see Appendix A). Importantly, with these parameters, the
fraction of antigen-bound B cells remains small throughout
the infection process. Antigen consumption by B cells,
which becomes relevant during affinity maturation, can be
neglected at this stage of the process.

B. B-cell lineage activation

Upon binding, we assume that B cells undergo a series of
p thermodynamically irreversible steps to activation [see
Fig. 1(b)]. That is, cells in each intermediate state transform
to the next state (with rate kstep) or unbind from the antigen
(with rate koff ) but do not revert to the previous state. The
stepwise, stochastic activation dynamics is an inhomo-
geneous Poisson process, the output of which is the
activation rate. In the relevant regime of low antigen
concentration, the activation rate per B-cell lineage,
uactðtÞ, takes the form

uactðK; tÞ ¼
�
1þ K

Kstep

�
−p
uonðtÞ ð2Þ

with Kstep ¼ kstep=kon. In the low-affinity regime, this rate
has the asymptotic form uactðK; tÞ ∼ ðK=KstepÞ−p ∼
ðkstep=koffÞp, which can be read off from Fig. 1(b): Each
activation step generates a factor ðkstep=koffÞ relating the
thermodynamic weights of consecutive intermediate states.
Next, we compute the activation probability of a B-cell

lineage up to time t, RðK; tÞ. For exponential antigen
growth, we find

Rðt; KÞ ¼ 1 − exp

�
−
uactðt; KÞ

λA

�

≃

8<
:

1 ½t > t0; K < KdetðtÞ��
K

KdetðtÞ
�
−p ½t > t0; K > KdetðtÞ�

ð3Þ

(see Appendix A), where KdetðtÞ describes a moving front
of deterministic activation given by

KdetðtÞ ¼ Kstep exp

�
λA
p
ðt − t0Þ

�
; ð4Þ

where R reaches values of the order of 1 [see Figs. 2(b)
and S1 [34] ]. The front starts at affinity K−1

step and time
t0 ¼ log½λA=ðb0konρBÞ�=λA. With increasing antigen con-
centration, it moves toward lineages of decreasing antigen
affinity at a p-dependent speed [see Fig. 2(b)]. Ahead of the

front, for K ≫ KdetðtÞ, activation of individual lineages is a
rare stochastic event. For p ¼ 1, activation is asymptoti-
cally proportional to the inverse equilibrium constant,
or Boltzmann factor, R ∼ K−1 ∼ expð−ΔEÞ. For p > 1,
the nonequilibrium dynamics of kinetic proofreading gen-
erate stronger suppression of activation for weak binders,
R ∼ K−p [15,16]. Kinetic proofreading appears to be the
simplest mechanism to generate deterministic activation of
high-affinity lineages together with strong suppression of
low-affinity lineages; mechanisms with reversible antigen-
receptor binding have R ∼ K−1 or remain in the stochastic
regime (R ≪ 1) under the physiological conditions of an
early primary infection (see Fig. S1 [34] and Appendix A).
Lineage activation marks the onset of the B-cell immune

response to a new antigen. Activated cells proliferate
exponentially with an initial rate λB that is comparable
to λA [35] [see Fig. 1(c)]. As the activated repertoire grows,
cells start to compete for space and resources, including
T-cell help [36]. Here, we model the clone dynamics as
logistic growth:

ṄjðtÞ ¼ λBNjðtÞ
�
1 −

X
j

NjðtÞ
N̄

�
; ð5Þ

where NjðtÞ is the number of activated cells in clone j and
N̄ ∼ 104 [35] is a carrying capacity for the total size of the
activated repertoire [see Fig. 2(d)]; here and below, over-
bars refer to the repertoire statistics at carrying capacity.

C. Repertoire response to a given antigen

To characterize the immune repertoire available for a
primary response against a given antigen, we grade naive
B-cell lineages by their affinity to the antigen’s binding
epitope. We use a simple sequence-specific binding energy
model, where epitopes and their cognate BCR are sequence
segments, a ¼ ða1;…; alÞ and b ¼ ðb1;…; blÞ, respec-
tively. Binding aligns these segments and couples pairs of
aligned amino acids, and the binding energy gap ΔEðKÞ ¼
logðK=K0Þ is additive:

ΔEða;bÞ ¼
Xl
k¼1

εðak; bkÞ: ð6Þ

Here, εða; bÞ denotes the binding energy of an amino acid
pair ða; bÞ, which is assumed to be independent of the
sequence position k. For a given antigen, this model defines
the density of naive lineages available for activation,
Ω0ðKÞ ¼ ðKd=dKÞL0ðKÞ, where L0ðKÞ is the expected
number of lineages in an individual with binding constant
< K to the epitope a (see Fig. 3 and Appendix B). Here,
we assume that naive repertoires are randomly sampled
from an underlying amino acid distribution [3]. Hence,
most lineages bind only weakly to a new antigen (K ∼ 0).
The expected minimum binding constant in an individual,
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K�, is given by the extreme value condition L0ðK�Þ ¼ 1.
This point is to be distinguished from the global minimum
for a given antigen, Km, which often corresponds to a
unique BCR genotype bm (here called the master
sequence). Because individual repertoires cover only a
small fraction of the BCR genotype space, the expected
maximum antigen affinity remains substantially below the
master sequence (K� > Km). We characterize the lineage
spectrum by the log increase of the lineage density:

βðKÞ ¼ dSðKÞ
d½ΔEðKÞ� ; ð7Þ

where SðKÞ ¼ logΩ0ðKÞ þ const. In the terminology of
statistical thermodynamics, SðKÞ is the microcanonical
entropy and βðKÞ the inverse microcanonical temperature
in reduced units. This function measures the exponential
increase in lineage density with binding energy, Ω0ðK0Þ∼
exp½βðKÞΔEðK0Þ�, in the vicinity of a given point K.
Two specific points in the lineage spectrum are important:

the proofreading scale Kp defined by the condition
βðKpÞ ¼ p and the maximum-binding point K� (as defined
above) with the associated inverse temperature β� ¼ βðK�Þ
(see Fig. 3). We call β� the repertoire exponent, because
it is a summary measure of repertoire complexity: It
increases with the repertoire size L0, the binding length
l, and the information content of the energy matrix ε (see
Fig. S3 [34]).

D. Repertoire response to diverse antigens

How comparable are the response repertoires of different
antigens? To address this question, we evaluate the lineage
spectrum Ω0ðKÞ for a random sample of antigenic epitopes
a (see Fig. S2 [34]). The interaction energy matrix εða; bÞ
of our main analysis is proportional to the TCRec matrix
originally inferred for T-cell receptors [37]; similar spectra
are obtained from the Miyazawa-Jernigan matrix [38]
and from normally distributed random energies. For a
given antigen, the lineage density depends on broad
statistical features of the energy matrix, including the
binding length l and the variance of interaction energies,
σ2ε (see Appendix B). Here, we determine these parameters
from observed binding constants K� ∼ 10−7 M and
Km ∼ 10−11 M of high-affinity antibodies generated in
primary infections and of ultrapotent affinity-maturated
antibodies, respectively [1,39].
Remarkably, these physiological constraints generate

a consistent ensemble of response repertoires (see
Fig. S2 [34]). First, the distributions of inferred binding
lengths and of the rms energy variation per site are strongly
peaked around values l ∼ 20 and σε=ðl1=2Þ ∼ 1, respec-
tively, which are in tune with known examples. Second, the
lineage densities Ω0ðKÞ depend only weakly on the antigen
sequence a and have a nearly universal shape determined
solely by the overall repertoire size L0. In other words,
the antigen-averaged lineage density Ω0ðKÞ captures the
response repertoire available in a typical primary
infection. In particular, for a given value of L0, response
repertoires of different antigens with similar K� and Km
have similar repertoire exponents, β� ¼ ð2.5� 0.3Þ
for humans (L0 ¼ 109) and β� ¼ ð2.2� 0.3Þ for mice
(L0 ¼ 108) [1–3]. Importantly, these values are substan-
tially larger than the inverse physiological temperature
[β ¼ 1=ðkBTÞ ¼ 1 in our units]. This difference measures
the specificity gain of an optimal immune response, as we
now show.

E. Repertoire activation

The density of naive lineages, Ω0ðKÞ, and the recog-
nition function RðK; tÞ determine the time-dependent
density of activated lineages:

ΩactðK; tÞ ¼ Ω0ðKÞRðK; tÞ: ð8Þ

FIG. 3. B-cell response repertoires. Density of naive B-cell
lineages, Ω0ðKÞ (gray lines); density of activated lineages,
ΩactðK; tÞ, at the start of activation (t ¼ tact, thick lines) and at
two subsequent time points (thin lines) in the (a) LS regime
(p ¼ 1) and (b) HS regime (p ¼ 4). Specific values of K are
marked on the lineage density function: proofreading scale Kp

(dot); strongest antigen binding in typical individuals, K� (star);
start of activation, Kact (open diamond) with initial inverse
activation temperature βact (dotted line). Energy model: TCRen;
other parameters are as in Fig. 2.
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In Fig. 3, we plot ΩactðK; tÞ at subsequent times for two
different numbers of activation steps, with and without
proofreading (p ¼ 1, 4). The density of activated lineages
is strongly peaked; its high-affinity flank is given by the
density of naive lineages and its low-affinity flank by the
proofreading-dependent activation dynamics. This function
determines two repertoire summary statistics: the expected
number of activated lineages, LactðtÞ ¼

R
ΩactðK; tÞdK=K

[see Fig. 2(c)], and their average binding constantKactðtÞ ¼R
KΩactðK; tÞdK=K [see Fig. 2(b)]. Activation starts at an

expected time tact given by the condition LactðtactÞ ¼ 1.
This sets the initial binding constant Kact ≡ KactðtactÞ
(marked by diamonds in Fig. 3) and the inverse activation
temperature βact ≡ βðKactÞ (marked by a tangent dotted line
in Fig. 3). Because ΩactðK; tÞ is strongly peaked, KactðtÞ is
close to its peak position throughout the activation process.
Importantly, the interplay of the activation dynamics
mechanism and repertoire statistics generates two dynami-
cal regimes of activation.
In the low-specificity (LS) regime, for small values of p,

activation is peaked on the low-affinity flank of the spectral
function [see Fig. 3(a)]. The onset time tact and the time-
independent binding constant Kact are determined by the
condition βact ¼ p [see Figs. 2(b) and 3(a)], which follows
from the asymptotic form R ∼ K−p given by Eq. (3).
Hence, activation starts ahead of the moving front in the
stochastic regime, Kact ¼ Kp ≫ KdetðtactÞ. In this regime,
the number of activation steps, p, determines the specificity
of recognition; the activation probability and clone size
of individual lineages remains small. The LS activation
dynamics is characterized by

βact ¼ p;

tact ¼ t0 þ
1

λA
log

��
Kp

Kstep

�
p
Ω−1

0 ðKpÞ
�
;

KactðtÞ ¼ Kp;

LactðtÞ ¼ exp ½λAðt − tactÞ�; ð9Þ

as shown in Figs. 2(b) and 2(c) (see Appendix B). This
regime ends at a crossover point p ¼ β�, where Kp reaches
the expected minimum binding constant K�.
In the high-specificity (HS) regime, for p > β�, activa-

tion starts at a later time, tact ¼ t�, and at repertoire
parameters Kact ¼ K� and βact ¼ β�. Now, activation
becomes time dependent: The peak ofΩactðtÞ, which marks
the boundary of deterministic activation, follows the mov-
ing front KactðtÞ ¼ KdetðtÞ [see Figs. 2(b) and 3(b)]. Along
this front, lineages are activated deterministically and in
order of decreasing antigen affinity (increasing K). In this
regime, the lineage density of the naive B-cell repertoire
determines the specificity of recognition; high-affinity
lineages reach substantial clone size. We find in the HS
activation dynamics

βact ¼ β�;

tact ¼ t� ¼ t0 þ
1

λA
log

��
K�

Kstep

�
p
�
;

KactðtÞ ¼ K� exp
�
λA
p
ðt − t�Þ

�
;

LactðtÞ ¼ exp

�
λAβ

�

p
ðt − t�Þ

�
; ð10Þ

as shown in Figs. 2(b) and 2(c) (see Appendix B). In the
next section, we show that these regimes generate drasti-
cally different immune responses.

F. Clone size and affinity statistics

B-cell immune repertoires are known to have broad
variation of clone sizes, which can be described by power-
law distributions [40–42]. The proliferation-activation
process of acute infections provides a simple explanation
for such power laws: It relates observables that depend
exponentially on time (see Fig. 2). First, consider the
relation between clone size and probability of occurrence in
an individual’s repertoire. More lineages are activated later
(Lact ∼ exp½ðλAβact=pÞt�), but these clones reach smaller
size (N̄ ∼ exp½−λBt�). This relates clone size to rank:

hN̄ji ∼ j−ζ ð11Þ

with

ζ ¼ λBp
λAβact

ð12Þ

and βact ¼ minðp; β�Þ (see Appendix B). Here and below,
brackets h·i denote averages over an ensemble of hosts, i.e.,
an ensemble of independent, quenched realizations of the
immune repertoire. In what follows, we refer to ζ as the
size exponent of the recognition dynamics. The index j ¼
1; 2;… again orders the clones in an individual’s repertoire
by size. The cumulative distribution aggregated over
individuals has the form ΦðNÞ ∼ N−1=ζ, which is equivalent
to Eq. (11), and spans 3 orders of magnitude in size (see
Fig. S3 [34] and Appendix B). Simulations confirm these
power laws; the clone-rank statistics in a set of randomly
chosen individuals follows the same pattern [see Figs. 4(a)
and S2 [34] ]. In the HS regime, the exponent ζ increases
monotonically as a function of p, reflecting the increasing
bias to large clone size generated by proofreading [see
Fig. 4(d)]. The activation dynamics of a primary infection
include a recognition phenotype (here, antigen affinity),
generating additional power laws observable in repertoire
data. In the HS regime, activation occurs on a moving front,
as given by Eq. (10). This relates affinity to rank:

hKli ∼ l1=β
� ðHSÞ; ð13Þ
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where the index l orders clones by decreasing affinity
[see Fig. 4(b) and Appendix B]. Equation (13) is again
equivalent to a power law in the lineage density,
ΩactðKÞ ∼ Kβ� , and is consistent with the affinity-rank
statistics in randomly sampled individuals. The exponent
1=β� equals the activation temperature of the naive reper-
toire, as given by Eq. (7). By combining Eqs. (11) and (13),
we obtain a power-law relation between size and affinity:

hN̄ji ∼ hKji−ζβ� ðHSÞ; ð14Þ

as shown in Fig. 4(c). In the HS regime, the size and affinity
rankings coincide up to fluctuations, because both are related

to time: High-affinity clones get activated before low-affinity
clones. In the LS regime, the size-affinity correlation is lost.
Large clones have affinities of the order of Kp; high-affinity
clones have small size and show a faster decline of affinity
with rank than in the HS regime [see Figs. 3(a), 4(b),
and 4(c)]. Hence, empirical observations of this correlation
can provide specific evidence for activation by proofreading
in the HS regime.

G. Generalized Luria-Delbrück processes

The antigen recognition statistics of a primary infection,
as given by Eqs. (11)–(14), is characterized by two
independent exponents: the size exponent ζ and the

FIG. 4. Clone size and affinity statistics of activated repertoires. (a) Clone size statistics. Simulation results for the average relative
clone size, hN̄j=N̄1i, are plotted against the size rank j ¼ 1;…100, for p ¼ 1, 4 (blue and red, respectively). Lines mark the expected
power law, hN̄ji ∼ j−ζ , as given by Eq. (11). Thin lines give rankings in a set of randomly chosen simulated individuals. Inset: empirical
rank-size relation inferred from the repertoire data in Refs. [11,12]. (b) Affinity statistics. Simulation results for the average relative
antigen binding constant, hKl=Kdeti, are plotted against the affinity rank l ¼ 1;…; 100. A line marks the expected power law in the HS
regime, hKli ∼ l1=βact , as given by Eq. (13). Thin lines give rankings in a set of randomly chosen simulated individuals. (c) Size-affinity
correlation. HS regime: average relative affinity, hKj=Kdeti vs average relative clone size hN̄j=N̄1i for the largest clones (j ¼ 1;…; 100;
red stars), together with the expected power-law correlation hN̄ji ∼ hKji−ζβ� (red line). LS regime: hKj=Kdeti vs hN̄j=N̄1i for the largest
clones (j ¼ 1;…; 100; blue stars) and hKl=Kdeti vs hN̄l=N̄1i for high-affinity clones (l ¼ 1;…; 100; blue circles), indicating loss of the
size-affinity correlation. (d) Repertoire exponents from size and affinity rankings obtained from simulations are plotted as functions of
the number of activation steps p (diamonds); the high-specificity regime is marked by shading. Lines mark power laws emerging from
the Luria-Delbrück proliferation-activation dynamics; their exponents ζ and 1=β� depend on the proliferation rates of antigen and
activated B cells, the activation temperature, and the number of proofreading steps. Model parameters are as in Fig. 2.

NONEQUILIBRIUM ANTIGEN RECOGNITION DURING … PHYS. REV. X 14, 031026 (2024)

031026-7



phenotype exponent βact. These statistics define a specific
class of exponential processes, where growth is mediated
by a recognition phenotype. We argue this class to be
relevant for recognition of exponential signals and refer to
it as generalized Luria-Delbrück processes. The analogy
becomes clear by comparison with the proliferation-
mutation statistics of a classical Luria-Delbrück fluctuation
experiment, where a wild-type cell population grows
exponentially with rate λA, cells mutate with a constant
rate U, and mutant clones grow with rate λB. This process
produces a power-law clone size statistics of the form of
Eq. (11) with size exponent

ζ0 ¼
λB
λA

ð15Þ

(see Appendix B and Ref. [32]). In the LS regime
(βact ¼ p), the clone size statistics of activated B cells
follows the classical Luria-Delbrück form ζ ¼ ζ0. In the
HS regime (βact ¼ β�), however, the B-cell size exponent
takes a different form, ζ ¼ ζ0 × ðp=β�Þ, the correction
factor reflecting the correlation between clone size and
recognition phenotype (antigen affinity). The exponent βact,
which governs the statistics of the recognition phenotype
given by Eq. (13), has no analog in a classical Luria-
Delbrück process. This exponent enters the number of
activated B-cell clones, LactðtÞ ∼ exp½ðβact=pÞλAt� [see
Fig. 2(c)], which corresponds to the number of mutant
clones in a classical Luria-Delbrück process. Given a
constant molecular clock of mutations, this number always
grows with rate λA, proportionally to the wild-type pop-
ulation size.

H. Spatiotemporal antigen dynamics

An acute viral infection typically starts in narrowly
localized spatial region. The spread of the antigen into
the surrounding tissue is driven by proliferation and
diffusion, generating an increasing density:

ρAðr; tÞ ¼
N0

ð4πDtÞ3=2 exp
�
λAt −

r2

4Dt

�
; ð16Þ

where N0 is the initial number of antigens, D is the
diffusion constant, and r is the distance vector to the point
of origination [see Fig. 5(a)]. Subsequently, antigen par-
ticles are drained in lymph vessels into the vicinity of B
cells, most of which are located in secondary lymphoid
organs like lymph nodes and spleen [43]. This transport
process also involves antigen capture by macrophages.
Hence, antigen recognition requires a characteristic initial
distance r0, typically to a nearby lymph vessel, to be
bridged by diffusion. Here, we describe this constraint by a
reduced, effective number of antigen particles interacting
with B cells, NA;effðtÞ ¼

R
jrj>r0 ρAðr; tÞdr [shaded region in

Fig. 5(a)]. This number of antigens enters the activation

dynamics described by Eqs. (1)–(3) [see Fig. 5(b)]. The
start of activation in the HS regime, described as before by
the condition RðK�; t�Þ ∼ 1, now takes place at a diffusion-
dependent time t�ðD; r0Þ, with an effective growth rate
λ�ðD; r0Þ≡ ṄA;effðt�Þ=NA;effðt�Þ. The statistics of activated
B-cell repertoires retains the form described above; the
clone size exponent takes a diffusion-dependent value
ζðD; r0Þ given by Eq. (12) with the effective growth rate
λ�ðD; r0Þ replacing the growth rate λA.
The spatiotemporal activation dynamics has two

regimes, which are distinguished by the scaled recognition
radius α ¼ r0=ðDt�Þ1=2. In the growth-dominated regime
(α ≲ α̃), typical activation events take place within the
diffusive range, which implies a weak diffusion constraint
on antigen recognition. In this regime, the activation start
time t�ðD; r0Þ, the effective growth rate λ�AðD; r0Þ, and the
resulting clone size exponent ζðD; r0Þ remain close to
the values for the homogeneous system (Fig. S4 [34]).
For α ≳ α̃, activation requires rare diffusive paths, which
causes a strong increase of t�ðD; r0Þ and λ�AðD; r0Þ. A full
analytical treatment of both regimes is given in
Appendix A. For physiological parameters of the antigen
dynamics in an acute infection (N0 ∼ 1, D ∼ 10−3 cm2 d−1

[44], and r0 ∼ 0.1–1 cm), the recognition dynamics is in
the growth-dominated regime (α ¼ 0.3–3.5 < α̃ ≈ 10) (see
Fig. S4 [34]). Hence, the homogeneous-system calculus
used above provides a good approximation for physiologi-
cal antigen recognition processes in acute infections.

I. Immune response to vaccination

Following immunization with an inactivated vaccine,
antigen spreads by diffusion but without proliferation
[see Fig. 5(c)]. Here, we analyze the antigen dynamics
as a function of the vaccine dosage, N0, with a diffusion
constant similar to live antigens and near-zero growth
(λA ≈ 0, neglecting molecular decay on the relevant time-
scale). In vaccination-induced immune responses, the
dosage and the diffusion parameters set the scaled recog-
nition radius of antigen diffusion, αðD; r0; N0Þ, the start of
activation, t�ðD; r0; N0Þ ¼ ðr20=DÞα−2, and the effective
growth rate λ�ðD; r0; N0Þ ≃ ðD=r20Þα4 (α ≳ 1) [see
Figs. 5(d) and S4 [34] and Appendix B]. We conclude
that the generalized Luria-Delbrück model of activated
repertoires also applies to vaccinations; a diffusion-
dependent clone size exponent ζðD; r0; N0Þ is now given
by Eq. (12) with the effective growth rate λ�ðD; r0; N0Þ.
Moreover, the spatiotemporal recognition model predicts

a dosage window for successful vaccinations. For too
low dosage [α≲ 1, corresponding to N0 ≲ ðb0konρBÞ−1
ðK�=KstepÞp], the vaccine fails to efficiently activate high-
affinity B-cell lineages, because the onset of activation is
delayed. For too high dosage (N0 ≫ Nmin), the activated
repertoire gets strongly biased toward low-affinity clones,
as indicated by small values of ζ (see Fig. S4 [34] and
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Appendix A). For typical vaccine dosage values (10 μg,
corresponding to N0 ∼ 1013 particles [11,12]), the recog-
nition dynamics is in the diffusion-limited regime
[α ≈ 4 > α̃ ≈ 1; shaded region and dashed line in
Figs. S4(c)–S4(f) [34] ]. Below, we apply this model to
data of activated mouse repertoires induced by vaccination.

III. BIOLOGICAL FEATURES OF PRIMARY
IMMUNE RESPONSE

A. Efficient immune response by kinetic proofreading

In Figs. 6(a) and 6(b), we show simulation results for
primary B-cell activation in secondary lymphoid organs for
typical individuals without proofreading (p ¼ 1) and with
proofreading at an intermediate number of steps (p ¼ 4)
(see Appendix D for details on the simulation procedure).
Shaded areas record the time-dependent size of activated
B-cell clones induced by an acute infection or vaccination.
These clone dynamics are marked by an initially

exponential growth and subsequent saturation given by
the carrying capacity of the total activated repertoire [35].
Later stages of the antigen and B-cell dynamics, including
affinity maturation in GCs, antigen clearance, and sub-
sequent degradation of activated B cells, are not relevant for
the recognition dynamics discussed in this paper and not
displayed here.
Three effects of proofreading are immediately recogniz-

able: It reduces the number of activated clones, increases the
binding affinity of typical clones, and delays the onset of
activation. These effects reflect the basic function of proof-
reading in the HS regime derived in the previous section:
Deterministic activation of high-affinity lineages is coupled
to strong suppression of low-affinity lineages. To quantify
the impact of the activation dynamics on immune function,
we evaluate the potency of the B-cell immune response:

ZðtÞ ¼
X
j

NjðtÞ
KjðtÞ

; ð17Þ

FIG. 5. Spatiotemporal recognition dynamics. (a),(b) Time-dependent antigen density ρðr; tÞ, plotted as a function of the scaled
distance from the antigen entry point, r=r0. (a) Infection; (b) immunization with an inactivated vaccine. Dashed lines indicate the
diffusion range

ffiffiffiffiffiffi
Dt

p
; the shaded region contains the approximate number of antigen particles contributing to B-cell activation, NA;effðtÞ

(see the text). (c),(d) Effective number of antigen particles, NA;effðtÞ, for different values of the scaled recognition radius α. These
functions are plotted together with the total antigen number (c) NAðtÞ ¼ λAt [corresponding to the limit α ¼ 0, yellow line, the same as
in Fig. 2(a)] and (d) NAðtÞ ¼ N0 (dashed lines). Diamonds mark the start of B-cell activation. Model parameters: (a),(b) r0 ¼ 0.5 cm;
D ¼ 3 × 10−3 cm2 s−1; (c) r0 ¼ 0.5 cm; D ¼ 6 × 10−4; 3 × 10−3; 1.5 × 10−2 cm2 s−1, corresponding to α ¼ 2.0, 4.3, 8.0;
(d) r0 ¼ 0.5 cm; D ¼ 3 × 10−3 cm2 s−1; N0 ¼ 1010; 1013; 1016, corresponding to α ¼ 3.3, 5.7, 7.5. Other parameters are as in Fig. 2.
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as well as the contributions of individual lineages, zjðtÞ ¼
NjðtÞ=Kj (the index j ¼ 1; 2;… orders clones by decreas-
ing size). The response function ZðtÞ, which sums the
antigen affinities of all activated B cells, has two impor-
tant features: the saturation value Z̄ set by the carrying
capacity of the activated repertoire and the response
time t50, where ZðtÞ reaches the half-saturation point
Z50 ¼ Z̄=2. We measure potency relative to a reference
value Z0 describing a hypothetical repertoire with homo-
geneous binding constant K�. Importantly, these features
of B-cell proliferation also govern the subsequent neu-
tralization of the virus. Activated plasma B cells produce
antibodies at a given rate, generating antibody clones of
time-dependent size AjðtÞ and a resulting antiserum
potency ZabðtÞ ¼

P
j AjðtÞ=KjðtÞ. Therefore, t50 is also

the onset time of high antiserum potency, and Z̄ is
proportional to the peak value of Zab.

In Fig. 7(a), we plot the host-ensemble average hZ̄i as a
function of the number of proofreading steps. Potency
comes close to the reference value in the HS regime but
quickly drops with decreasing p in the LS regime.
Without proofreading (p ¼ 1), hZ̄i is about 20-fold lower
than at p ¼ 4, argued below to be the approximate
number of proofreading steps in human B-cell activation.
The difference between activation regimes is even more
pronounced for the potency contribution of the largest
clone, hz̄1i [see Fig. 7(a)]. In the HS regime, where the
largest clone is likely also the clone of highest affinity,
hz̄1i contributes a substantial fraction of the total potency;
the HS potency-rank relation predicted by our model is
shown in Fig. S3 [34]. There is again a rapid drop in the
LS regime; without proofreading, hz̄1i is about 1000-fold
lower than at p ¼ 4.

FIG. 6. Activation patterns of B-cell repertoires in an acute infection. (a),(b) Affinity and size of activated clones in randomly sampled
individuals in the LS regime (p ¼ 1) and in the HS regime (p ¼ 4). Muller plots with filled areas representing individual clones (height,
time-dependent population size; shading, antigen binding constant K, as given by the color bar); activation times of the first few clones
(filled diamonds) are shown together with the expectation value tact (open diamond). (c) Activated clones in an elite neutralizer occurring
at population frequency 10−3. This repertoire is marked by the early activation of a high-affinity jackpot clone. (d) Activated clones of an
aged individual with a 10× reduced number of naive lineages. The onset of activation, tact (black dashed line), is delayed with respect to
a full repertoire (b). Model parameters are as in Fig. 2.
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Another striking difference between the activation
regime is in the activation probability of individual line-
ages, as given by the recognition function RðK; tÞ. In the
HS regime, almost all high-affinity lineages get activated
(R reaches values close to 1); in the LS regime, most
available high-affinity lineages do not get activated and are
wasted for pathogen suppression (R ≪ 1). Together, we
conclude that the lineage activation profile generated by
kinetic proofreading in the HS regime is a prerequisite for a
potent, specific, and efficient primary immune response to
an infection or vaccination.

B. Repertoire-tuned proofreading

Figures 6(a) and 6(b) show two further functional
differences between the activation regimes. In the LS
regime, a large number of lineages get activated, but these
clones reach only small population frequencies at carrying
capacity, x̄j ≡ N̄j=N̄. In the HS regime, activation gets
increasingly focused on a few high-frequency and high-
affinity lineages. We can describe the diversity of activated
repertoires by the Shannon entropy Σ ¼ −

P
j x̄j log x̄j. In

the LS regime, the host-ensemble average hΣi is large and
varies only weakly; in the HS regime, hΣi drops substan-
tially with increasing p [see Fig. 7(a)]. Subsequent to
activation, a part of the B cells undergoes affinity matura-
tion in GCs. This mutation-selection process produces
high-affinity plasma B cells, as well as a diverse set of
memory B cells. In the HS regime, the larger repertoire
diversity found close to the crossover point (p ¼ β�) serves
both channels of affinity maturation: It facilitates the search

for mutational paths toward high-affinity BCR genotypes in
plasma cells, and it provides diverse input for memory cell
formation [45].
In Fig. 7(b), we plot the time-dependent, host-ensemble-

averaged potency for different values of p. The response
time t50, where hZiðtÞ reaches the half-saturation point
Z50 ¼ hZ̄=2i, is marked by dots. The p-dependent increase
in potency is coupled to an increased time delay of
activation, caused by the sequence of intermediate steps
and by the constraint to high-affinity lineages. In the HS
regime, increasing p yields a diminishing return of potency,
while t50 continues to increase proportionally to p.
Similarly, efficient proofreading requires a sufficiently
small activation rate. In the HS regime, for kstep < K�kon,
decreasing kstep yields a diminishing return of potency,
while t50 continues to increase proportionally to 1=kstep (see
Fig. S5 [34]). The trade-off between potency and speed of
immune response defines a Pareto surface [see Fig. 7(b)].
This trade-off, together with the entropy pattern, suggests
that optimal immune response is tuned to the lineage
density of the naive repertoire: The number and rate of
proofreading steps are in the HS regime and close to the
crossover point p ¼ β� and kstep ¼ K�kon, respectively.

C. Activated B-cell repertoires in mice

While there is no direct evidence of proofreading in
B-cell activation to date, available data show activation
patterns consistent with proofreading in the tuned regime.
Specifically, we analyze recent data of clonal B-cell
populations in early GCs of vaccinated mice that were

Elite

Aged

FIG. 7. Proofreading determines potency, speed, and diversity of recognition. (a) B-cell potency hZ̄i=K0, potency component of the
largest clone, hz̄1i, and Shannon entropy of the activated repertoire, Σ. Host-ensemble averages are shown as functions of the number of
activation steps, p, at carrying capacity and relative to a reference valueZ0 as defined in the text. Shading marks the HS regime (p≳ β�),
and an open circle with error bars gives the empirical entropy inferred from the repertoire data in Refs. [11,12]. (b) Time-dependent
B-cell potency hZiðtÞ. The host-ensemble average is shown in the HS regime (p ¼ 4, thick red line); the half-saturation point ðt50; Z50Þ
is marked by a dot. The family of half-saturation points for different values of p characterizes the trade-off between potency and speed of
typical immune responses, which defines a Pareto line (black line). The potency ZðtÞ of typical elite neutralizers (at population
frequencies 10−3 and 10−4, light red lines) is above and that of aged immune systems (at 10× and 100× lineage reduction, dark red lines)
is below the host-ensemble average (HS regime, p ¼ 4). Model parameters are as in Fig. 2.
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immune naive previously to the experiment [11,12].
First, the clonal diversity of these populations can be
characterized by a repertoire entropy Σ ¼ 4.2� 0.4 [circle
in Fig. S6(a) [34] ]. Second, the empirical rank-size relation
can be fit to a power law with exponent ζ ¼ 0.50� 0.04
[inset in Fig. 4(a)]. Strikingly, these data demonstrate that
broad clone size distributions can be generated already in
the first stages of a primary B-cell immune response.
Both of these summary statistics can be quantitatively

explained by a generalized Luria-Delbrück recognition
dynamics with tuned proofreading. We recall from the
previous section that the recognition dynamics induced by
an inactivated vaccine involves an effective antigen growth
rate at the locus of recognition, λ�ðD; r0; N0Þ, which
depends on the antigen diffusion constant D, the effective
distance r0 to be bridged by diffusion, and the vaccine
dosage N0 (see also Appendix B). Using empirical values
of these parameters, we infer λ� ≈ 5.4 d−1, similar to typical
antigen growth rates in an infection. Together with physio-
logical parameters λB and β� characterizing the naive
repertoire, the model predicts a proofreading-dependent
repertoire entropy hΣiðpÞ and a clone size exponent ζðpÞ
by Eq. (12) [Fig. S6 [34], to be compared with Figs. 4(d)
and 7(a)]. The empirical values of Σ and ζ obtained from
the data in Refs. [11,12] are seen to match the model
predictions for p ¼ 2.7 [2.2, 3.1], consistent with proof-
reading on the Pareto line of repertoire-tuned proofreading.
Details of data analysis and inference of repertoire statistics
are provided in Appendix C.
Remarkably, clone size distributions extracted from

data of human B-cell repertoires [46], which include
memory-induced clone activation, show power laws with
a similar exponent, ζ ¼ 0.57� 0.12 [42]. Given that
memory cells are in the same affinity range as activated
naive cells [12,47], this may point to a common dynamical
mechanism generating power laws in early immune
responses. However, our present model describes only
the primary activation dynamics and is not directly appli-
cable to memory cells. In Refs. [41,42], the power laws
of memory repertoires have been attributed to long-term
selection, which requires multiple recurrent infections
affecting the same set of B-cell lineages.

D. Elite neutralizers

Generalized Luria-Delbrück immune activation shows
particularly pronounced variation between hosts. In the HS
regime, a subset of elite neutralizers is distinguished by
early activation of a single high-affinity clone. This jackpot
clone dominates the activated immune repertoire and
generates exceptionally high potency. Figure 6(c) shows
an example of the activation dynamics that occurs in one
of 103 individuals, which is to be compared with the
pattern in typical individuals [see Fig. 6(b)]. Such elite
neutralizers are ahead of the Pareto surface of typical
immune responses [see Fig. 7(b)]. The cumulative

distribution ΦðZÞ, which gives the fraction of responders
with saturation potency > Z, displays two regimes of elite
neutralizers (see Fig. S3 [34]). In the preasymptotic regime,
the jackpot clone takes a large part but not all of the
repertoire (N̄1 < N̄). The preasymptotic potency distribu-
tion turns out to be dominated by clone size fluctuations,
which implies ΦðZÞ ∼ Z−1=ζ (see Appendix B). In the
asymptotic regime, the jackpot clone dominates the reper-
toire (N̄1 ≃ N̄); hence, ΦðZÞ is proportional to the naive
density of high-affinity clones, ΦðZÞ ∼ L0ðN̄=ZÞ. For
example, one in 105 individuals has a primary response
with potency 100× above average, comparable to a
memory immune response carried by affinity maturated
B-cell lineages.

E. Immune aging

Recent results indicate that the most prominent effect of
immune aging is a decrease in the overall size and diversity
of the repertoire [48–51]. Our model predicts two effects of
this decrease: Primary immune responses come later and
with reduced potency. Simulations of the activation dynam-
ics in an aged repertoire in the HS regime show that the
activation is delayed and antigen affinities are reduced
compared to a full-size repertoire [see Fig. 6(d), to be
compared with Fig. 6(b)]. The time-dependent potency
remains behind the Pareto line and reaches a reduced
value at carrying capacity [see Fig. 7(b)]. For a tenfold
decrease in repertoire size, t50 increases by about 1 d and
hZ̄i drops to half of its full-size value. Figure S5 [34]
shows the full dependence of potency on repertoire size.
Given a reference point in the HS regime, a reduction of
size always has a sizable effect, while an increase
eventually induces a crossover to the LS regime and a
diminishing return of potency.

IV. DISCUSSION

A potent adaptive immune response to a new antigen
requires the specific activation of immune cells with high
affinity to the antigen. Here, we have developed a minimal,
biophysical model for immune recognition by naive B cells
in a primary infection or vaccination (see Fig. 1). We have
shown that active processes of antigen recognition—kinetic
proofreading—are essential to constrain a primary immune
response to high-affinity lineages. A possible proofreading
mechanism is macrophage-mediated active transport of
multiple antigen particles to the same B cell. The T-cell
response of an acute infection is expected to follow a
similar kind of exponential signal recognition dynamics,
albeit at overall lower affinities and by different molecular
pathways. This will be the subject of a future publication.
A highly specific real-time response to a new antigen

requires proofreading with depth above a threshold value
p > β�. Available data of mouse B-cell repertoire activa-
tion are consistent with proofreading close to the specificity
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threshold p ≈ β�, which amounts to about three consecu-
tive proofreading steps (see Figs. 4 and 7). As shown by our
model, immune responses tuned to this point are close to a
functional optimum: They balance potency and speed, and
they generate a diverse set of activated clones for sub-
sequent affinity maturation.
Our model treats the proliferation-activation dynamics

of a primary immune response as a generalized Luria-
Delbrück process (see Fig. 2). This class of processes is
argued to be relevant for the molecular recognition of
exponential signals. It is characterized by fluctuations
coupled to recognition function: Jackpot clones have large
size and high affinity to the recognition target, here the
exponentially growing antigen population [see Figs. 6(c)
and 7(b)]. The underlying statistics of activated immune
repertoires is characterized by statistical power laws
with two basic exponents: the size exponent ζ and the
repertoire exponent β�. These exponents characterize the
proofreading-dependent specificity of activated immune
repertoires, as given by Eqs. (11) and (13). Importantly,
our model predicts ζ and β� in terms of independently
measurable quantities and without fit parameters. The
statistics of activated B-cell repertoires shape clinically
important characteristics of primary infections and vacci-
nations, including the potency drop of aged responders and
the increased response of elite neutralizers (see Fig. 7).
Power-law statistics of lineages and the occurrence

of elite neutralizers are commonly ascribed to antigen-
mediated selection on immune repertoires, often through
multiple exposures [41,42,52–54]. Here, we have shown
that similar features can already emerge in primary immune
responses to an acute infection or vaccination, prior to any
antigen-mediated selection effects. This model is consistent
with the clone size statistics observed in mice subject to a
single immunization [11,12]. Following the primary
response, a part of the activated B-cell repertoire is further
processed by affinity maturation. This step is again driven
by nonequilibrium antigen recognition processes [27].
Repertoire sequencing combined with neutralization

assays can test our model and probe adaptive immune
systems in new ways. By recording the power-law rank-
size relation of lineages in early postinfection B-cell
repertoires and measuring the antigen binding constant
of these clones, we can extract the corresponding power
laws and infer the central parameters of our model: the
repertoire exponent β� and the number of proofreading
steps p (see Fig. 4). The parameter β� measures the antigen
affinity distribution of B-cell lineages in the extreme-value
regime close to the maximum-affinity lineage. Its value is
set by the global architecture of B-cell immunity: the size
of the naive repertoire and the complexity of the antigen-
receptor binding motif. Both quantities emerge as key
determinants of primary immune responses. In contrast,
the parameter p characterizes the molecular dynamics
of antigen recognition. As we have shown, p-step

proofreading generates an effective inverse temperature
β ≈ p that measures the specificity gain in a dense
repertoire. At the point of optimal recognition, p ∼ β�,
antigen recognition dynamics matches repertoire complex-
ity. From this point, increasing p at a constant repertoire
size L produces a diminishing return of proofreading;
conversely, increasing L at constant p produces a dimin-
ishing return of repertoire size.
The infection response dynamics described in this paper

is a direct target of the coevolution between pathogens and
host immune systems. For respiratory viruses, infection
characteristics relevant for pathogen fitness include the
duration and viral load of the symptomatic infectious
period [55,56]. Given the speed-specificity trade-off of
host response (see Fig. 7), viruses can increase fitness by
increasing the within-host reproduction rate λA. The clear-
ance of the virus involves antibody binding; the resulting
fitness effects depend on the distribution of antigen binding
affinities K in the host population, which, in turn, depends
on age-dependent repertoire sizes. The statistics of acti-
vated repertoires developed here serves to stratify antigenic
interactions in populations structured by age and infection
history, setting the molecular basis for escape evolution
from immune recognition.
Finally, the link between repertoire size and antigen

recognition machinery has implications for the macroevo-
lution of adaptive immune systems.
The size of the total B-cell repertoire varies drastically

across vertebrates, ranging from approximately 3 × 105 cells
in zebrafish [40] to approximately 1011 in humans [1–3].
Because potency and timeliness of immune responses are
likely to be under strong selection, the functional balance
of tuned proofreading, p ≈ β�, is also expected to be a
maximum of fitness. Evolutionary changes of the repertoire
size are then predicted to occur together with changes of the
recognition machinery, which includes number and rate of
proofreading steps. Tracing these coevolutionary dynamics
by comparative cross-species studies may provide a new
avenue to understand the evolution of complex immune
systems.
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APPENDIX A: ANTIGEN RECOGNITION
DYNAMICS

1. Antigen-receptor interaction models

Here, we model the binding (free) energy between
an antigen with epitope sequence a ¼ ða1;…; alÞ
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and a BCR sequence b ¼ ðb1;…; blÞ as an additive
function:

ΔEða;bÞ ¼
Xl
k¼1

εðak; bkÞ: ðA1Þ

This function includes entropy contributions of nontransla-
tional degrees of freedom, i.e., rotations and elastic
deformations of the molecules involved. We use three
established models of amino acid interactions εða; bÞ: the
TCRec model originally inferred for T-cell receptors [37],
the Miyazawa-Jernigan matrix [38], and normally distrib-
uted random energies. In each case, we introduce a scale
factor that is inferred from measured BCR-antigen binding
energies (see below). The zero point of ΔE, by definition,
corresponds to a reference antigen-BCR pair with equilib-
rium binding constantK0 ¼ 1 M. In this gauge, the binding
energy and the dissociation constant K of an arbitrary pair
are related by

Kða;bÞ
K0

¼ exp

�
ΔEða;bÞ

kBT

�
; ðA2Þ

where kB is Boltzmann’s constant. In the main text and
below, we express all energies in units of kBT at a fixed,
physiological temperature T.

2. Activation of B cells by kinetic proofreading

An early infection is characterized by low densities of
antigens and B cells. Accordingly, we model the activation
of individual B cells upon functional binding with a single
antigen. We assume that activation of antigen-bound cells
requires a chain of p irreversible steps with characteristic
rate kstep (see Fig. 1). Hence, the B-cell activation rate takes
the form

uactðK; tÞ ¼ uonðtÞpaðKÞ: ðA3Þ

Here, the association rate per B-cell lineage,

uonðtÞ ¼ NAðtÞb0konρB; ðA4Þ

is proportional to the number of antigen particles NA,
the number of receptors per cell b0, the diffusion-limited
association rate to a single B-cell receptor, kon, and the
lineage specific B-cell density ρB. The probability of
activation after association is given by

pa ¼
�

kstep
kstep þ koff

�
p
¼

�
1

1þ K=Kstep

�
p
; ðA5Þ

where koff ¼ Kkon and kstep ¼ Kstepkon. At each intermedi-
ate state, the antigen can dissociate or undergo the next
activation step; these alternatives are independent Poisson

processes with rates koff and kstep, respectively. Hence,
the next activation step occurs before dissociation with
probability kstep=ðkstep þ koffÞ.
The probability that a lineage gets activated up to

time t is

RðK; tÞ ¼ 1 − exp

�
−
Z

t

0

uactðK; t0Þdt0
�

¼ 1 − exp

�
−
uactðK; tÞ

λA

�
; ðA6Þ

as given by Eq. (3) in the main text. Here, we use that
antigens proliferate exponentially: ρAðtÞ ∼ expðλAtÞ. At
early times, activation is association limited and rare
for all K:

RðK; tÞ ≃ NAðtÞ
b0konρB

λAð1þ K=KstepÞp
ðA7Þ

< exp ½−λAðt0 − tÞ� ðt < t0Þ; ðA8Þ

where

t0 ¼
1

λA
log

�
λA

b0konρB

�
: ðA9Þ

For t > t0, we obtain the activation pattern of Eq. (3):

RðK; tÞ ≃
8<
:

1 ½t > t0; K < KdetðtÞ�;�
K

KdetðtÞ
�
−p ½t > t0; K > KdetðtÞ�;

ðA10Þ

with KdetðtÞ ¼ Kstep exp½ðλA=pÞðt − t0Þ�. That is, determin-
istic activation of B-cell lineages occurs along a moving
front KdetðtÞ. Ahead of the front, activation is strongly
suppressed by proofreading.

3. Alternative models of B-cell activation

To highlight the specific role of kinetic proofreading in
the activation of naive B cells, we compare the proposed
activation mechanism to alternative mechanisms with
reversible binding kinetics (see Fig. S1 [34]). The corre-
sponding rates govern transitions between unbound and
intermediate antigen-bound B-cell states (marked by gray
shading in Figs. 1 and S1 [34]). We note that all activation
mechanisms have at least one irreversible step: the last
transition to exponential proliferation (marked by green
shading).
In an early primary infection, the activation of B cells

takes place under specific physiological conditions. (i) The
antigen density and, hence, the equilibrium occupancy
of B cells remains low (ρA=K ≲ 10−1, given ρA ≈ 1011=l ≲
10−13 M and K ≳ K� ≈ 10−7 M). These conditions differ
drastically from the densities in confined spaces,
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e.g., lymph nodes and GCs, which are relevant for the
binding kinetics of presented antigens. (ii) The associa-
tion kinetics of virions and plasma B cells is believed to
be diffusion limited; i.e., it takes place at a homogeneous
rate kon [57]. This excludes mechanisms for specific
recognition by formation of immunological synapses,
which have been proposed for presented antigen
and operate by modulation of an activation-limited
rate kon [20,58–61]. (iii) For efficient activation, the rate
kstep cannot be smaller than all other transition rates,
as is usually assumed in models of kinetic proofreading
[15,16]. Tuned rates discussed in the main text are of the
order of kstep ¼ 4 × 10−3 s−1, which implies kstep ≳ koff
for high-affinity B-cell lineages. In this regime, the
activation dynamics at a given antigen density ρA is close
to a nonequilibrium steady state, even if the binding
kinetics satisfies detailed balance. We consider two
specific classes of models with diffusion-limited associ-
ation and reversible binding kinetics.

a. Activation via an excited intermediate state

This process is a reversible analog of the proofreading
dynamics discussed in the main text. Allowed transitions
are between the unbound state and the primary bound
state (with rates kon and koff ) and between the primary
bound state and the excited intermediate state (with
rates kþe and k−e ), as shown in Fig. S1 [34]. Using detailed
balance, the antigen-bound states have reduced binding
energies ΔE ¼ logðK=K0Þ and ΔEe ¼ ΔEþ ΔΔEe,
respectively, where K ¼ koff=kon and ΔΔEe ¼
logðk−e =kþe Þ. Like the proofreading model, this reversible
model has a deterministic activation front given by
Eqs. (A9) and (4). However, the activation probability
is asymptotically proportional to the equilibrium occu-
pancy of the intermediate state:

RðK; tÞ ≃ NAðtÞ
b0kstep
λA

ρB
K0

exp ð−ΔEeÞ

∼
NAðtÞρB

K
½K ≫ KdetðtÞ�; ðA11Þ

leading to weak suppression of low-affinity lineages [15,16].

b. Activation by cooperative binding

In this process, activation requires binding of two
or more virions to receptors of the same B cell, which
has been observed for antigens actively transported to
lymph nodes and presented to B cells [59,60,62]. A bound
state of p virions has the reduced binding energy ΔEp ¼
pΔEþ ΔΔEp ¼ logðKp=K0Þ, where ΔE ¼ logðK=K0Þ is
the single-particle binding energy and ΔΔEp is the con-
tribution of cooperative binding. Figure S1 [34] shows
the case p ¼ 2, where ΔΔEp ¼ logðk0off=koffÞ. In the
cooperative binding model with detailed balance,

the asymptotic activation probability is proportional to
the equilibrium occupancy of the p-virion bound state:

RðK; tÞ ≃ NAðtÞ
b0kstep
λA

ρp−1A ðtÞρB
Kp

0

exp ð−ΔEpÞ

∼
ρpAðtÞ
Kp ðKp ≫ KstepÞ; ðA12Þ

with Kstep ¼ kstep=kon. For p > 1, this model leads to
stronger suppression of low-affinity lineages; however, at
the low antigen concentrations of an early infection, even
high-affinity naive lineages do not reach deterministic
activation [R ≪ 1 for ρAðtÞ=K ≲ 10−1].
We conclude that the kinetic proofreading mechanism of

B-cell activation introduced in the main text is the simplest
model to generate deterministic activation of high-affinity
lineages together with strong suppression of low-affinity
lineages under the physiological conditions of an early
primary infection.

4. Spatiotemporal recognition dynamics

The minimal spatiotemporal antigen dynamics intro-
duced in the main text captures two key inhomogeneities
relevant for immune recognition: Acute infections and
vaccinations start with a narrowly localized antigen dis-
tribution, and B-cell recognition takes place predominantly
in secondary lymphoid organs. The minimal model
describes the initial diffusion and proliferation of antigen
particles through tissue, starting from an initial particle
number N0. This process generates a time-dependent
antigen density ρAðr; tÞ given by

∂

∂t
ρAðr; tÞ ¼ D∇2ρAðr; tÞ þ λAρAðr; tÞ; ðA13Þ

where D is the diffusion constant. The solution of this
equation is given by Eq. (16). Diffusion takes place over a
characteristic distance r0 from the starting point of the
immunization to a nearby lymph vessel. Our model uses a
simple approximation for the diffusive constraint on rec-
ognition: Antigen particles are counted as interacting with
B cells when they have reached a diffusive displacement
jrj > r0. This condition defines an effective antigen num-
ber NAðt;D; r0Þ. We neglect details of the subsequent
drainage dynamics in lymph vessels, which can be
absorbed into a lineage-independent effective value of
the association rate kon. A key quantity of the model is
the scaled recognition radius

αðD; r0Þ ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dt�ðD; r0Þ
p ; ðA14Þ

which is defined as the ratio of r0 and the diffusion range
at the start of activation. This parameter delineates two
regimes of recognition: weakly diffusion limited (α≲ 1)
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and strongly diffusion limited (α ≫ 1). It determines the
effective number of antigen particles interacting with B
cells at the start of activation:

NA;effðt�;D; r0Þ ¼
NAðt�Þffiffiffiffiffiffi

4π
p α3I0ðαÞ; ðA15Þ

where NðtÞ is the total number of antigen particles and

IκðαÞ≡
Z

∞

d
e−x

2α2=2x2þκdx: ðA16Þ

In analogy to Eqs. (A4)–(A6), the onset of activation in the
HS regime is determined by the condition Rðt�; K�Þ ∼ 1,
here evaluated as

uactðt�; K�Þ
λ�

¼ NA;effðt�;D; r0Þ
N�

inf
¼ 1 ðA17Þ

with

N�
inf ¼

λ�

b0konρB

�
1þ K�

Kstep

�
p
: ðA18Þ

This condition determines the onset time of activation,
t�ðD; r0Þ, and the corresponding effective antigen growth
rate λ�ðD; r0Þ≡ ṄA;effðt�;D; r0Þ=NA;effðt�;D; r0Þ, for the
spatiotemporal process.
In the case of infections with antigen of initial particle

number N0 ¼ 1 and proliferation rate λA, we obtain a
closed solution by using the approximation λ� ≈ λA in the
onset condition (A17). The onset time of activation then
takes the form

t�ðD; r0Þ ¼ t�gt;infðαÞ; ðA19Þ
where t� is the onset time in the homogeneous system given
by Eq. (10) and

gt;infðαÞ ¼ 1 −
1

logN�
inf

log

�
1ffiffiffiffiffiffi
4π

p α3I0ðαÞ
�

≃
	
1þOðα3Þ ðα≲ α̃Þ;

1
4 logN�

inf
α2 ðα≳ α̃Þ: ðA20Þ

Similarly, the effective growth rate at the onset of activation
is given by

λ�ðD; r0Þ ¼ λAgλ;infðαÞ ðA21Þ
with

gλ;infðαÞ ¼ 1þ α2

α2 þ 4 log ½N�
infα

2
ffiffiffiffiffiffi
4π

p �

≃
	
1 ðα ≲ α̃Þ;
2 ðα ≳ α̃Þ: ðA22Þ

In Eqs. (A20) and (A22), the crossover scale α̃ is given by
the condition

α̃2 ¼ 4 log ½
ffiffiffiffiffiffi
4π

p
N�

inf α̃
2�: ðA23Þ

The solution (A19)–(A23) is plotted in Figs. S4(a) and
S4(b) [34] together with numerical evaluations of the
onset condition (A17). As expected, the onset time and
the effective growth rate increase with increasing diffusive
constraint. However, λ�ðD; r0Þ remains always close to λA,
justifying the above approximation for the condition (A17).
In the case of vaccinations with antigen of initial particle

numberN0 ≫ 1 and proliferation rate λA ¼ 0, rapid antigen
growth at the locus of recognition emerges in the diffusion-
limited regime (α≳ 1). In this regime, we can again write
the time and the effective growth rate in scaling form:

t�ðD; r0; N0Þ ¼
r20
D
α−2 ðα ≳ 1Þ; ðA24Þ

and the corresponding effective growth rate is given by

λ�ðD; r0; N0Þ ¼
D
r20
gλ;vacðαÞ ðα≳ 1Þ ðA25Þ

with

gλ;vacðαÞ ¼
α4

4

�
I2ðαÞ
I0ðαÞ

−
6

α2

�

≃
α4

4
ðα≳ 1Þ: ðA26Þ

In this case, the onset time decreases, while the effective
growth rate increases with increasing recognition radius;
see Figs. S4(c) and S4(d) [34]. The effective recognition
radius now also depends on the vaccine dosage. From
Eqs. (A17), (A18), (A25), and (A26), we obtain the relation

α2 ≈ 4 log

�
N0

N�
vac

α−2
�

ðα≳ 1Þ ðA27Þ

with

N�
vac ¼

ffiffiffiffiffiffi
4π

p
D

4r20b0konρB

�
1þ K�

Kstep

�
p
: ðA28Þ

In Figs. S4(e) and S4(f) [34], we plot the resulting dosage
dependence of the activation time t�ðD; r0; N0Þ and the
effective growth rate λ�ðD; r0; N0Þ. A dosage window
for successful vaccination emerges: For too small dosage
(α ≲ 1, corresponding to N0 ≲ N�

vac), the onset time
t�ðD; r0; N0Þ becomes large; for too large dosage
(N0 ≫ N�

vac), the clone size exponent ζðD; r0; N0Þ
becomes small, distorting the spectrum of activated line-
ages toward weak antigen affinity.
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APPENDIX B: ANTIGEN RECOGNITION
STATISTICS

1. Density of BCR states

To characterize the naive B-cell repertoire available for
response to a given antigen a, we use the density of lineage
states defined by a unique BCR sequence b:

Ω0ðΔEÞ ¼
d

dΔE
L0ðΔEÞ; ðB1Þ

where L0ðΔEÞ is the expected number of lineages in an
individual with binding constant K < expðΔEÞ to the
epitope a (we suppress the dependence on a in this para-
graph). By Eq. (A2), this form is equivalent to the definition
given in the main text, Ω0ðKÞ ¼ ðKd=dKÞL0ðKÞ. We
further define the microcanonical entropy

SðΔEÞ ¼ logΩ0ðKÞ ðB2Þ

and the associated microcanonical inverse temperature

βðΔEÞ ¼ dSðΔEÞ
dΔE

; ðB3Þ

a parameter that is independent of the physiological temper-
ature T appearing in Eq. (A2). Because we measure energies
in units of kBT, the parameter β gives the inverse temperature
in units of ðkBTÞ−1. To compute these microcanonical
quantities, we evaluate the canonical partition function

ZðβÞ ¼
X
b

exp½−βΔEða;bÞ�

¼
Yl
i¼1

X
b

exp½−βεðai; bÞ�; ðB4Þ

which depends on β as an independent parameter. This
function defines the canonical binding energy

ΔEcðβÞ ¼ −
d
dβ

logZðβÞ; ðB5Þ

which is an expectation value in the ensemble (B4), and the
associated entropy

ScðβÞ ¼ logZðβÞ þ βΔEcðβÞ: ðB6Þ

We invert the relation (B5) to write the inverse temperature
as a function of the binding energy, βðΔEcÞ, and we
substitute this function into Eq. (B6) to obtain ScðΔEcÞ.
Upon equating ΔE ¼ ΔEc, these functions provide an
excellent approximation to their microcanonical counterparts
βðΔEÞ and SðΔEÞ, as given by Eqs. (B2) and (B3). Thus,

the canonical formalism provides an efficient way to
compute the density of statesΩ0ðΔEÞ for the system at hand.

2. Antigen-receptor ensembles

To compare the response repertoires for different
antigens, we evaluate the BCR lineage density Ω0ðK; aÞ
for a random sample of epitope sequences a in a repertoire
of overall size L0. For a given amino acid interaction
matrix and a given antigen, our energy model has two
free parameters: the binding length l and the scale factor
of the energy, which sets the energy variance
σ2ε ¼

P
kf
P

b ε
2ðak; bÞ=20 − ½Pb εðak; bÞ=20�2g. Here,

we calibrate these parameters by tuning the minimum
binding constant expected in an individual repertoire and
the global minimum binding constant to observed values
of typical high-affinity antibodies generated in primary
infections and of ultrapotent antibodies, K� ≈ 10−7 M and
Km ≈ 10−11 M [1,39].
The resulting ensemble of response repertoires has the

following properties (see Fig. S2 [34]): (i) The distributions
of inferred binding lengths and of the rms energy variation
per site are strongly peaked around values l ∼ 20 and
σε=l1=2 ∼ 1. (ii) A higher energy variance per site
can be traded for a shorter binding length, consistent with
a constraint on the total energy variance σ2ε . (iii) The lineage
densities ρ0ðKÞ depend only weakly on the antigen
sequence a and have similar repertoire exponent
β� ≡ βðK�Þ ¼ 2.5� 0.3 for L0 ¼ 109.

3. Activation statistics of B-cell repertoires

Given the density of naive B-cell lineages, Ω0ðKÞ, and
the activation probability Rðt; KÞ, we can evaluate the
density of activated lineages,

ΩactðK; tÞ ¼ Ω0ðKÞRðK; tÞ; ðB7Þ

and the total number of activated lineages, LactðtÞ ¼R
ΩactðK; tÞdðlogKÞ.
Using Eq. (A10) for RðK; tÞ, we obtain a strongly peaked

distribution of activated lineages with two flanks:

ΩactðK; tÞ ≃
	Ω0ðKÞ ½K < KdetðtÞ�;
Ω0ðKÞ × K−p ½K > KdetðtÞ�;

ðB8Þ

where Ω0 ∼ KβðKÞ by definition. Two activation regimes
emerge.

a. Low-specificity regime

In this regime, the specificity of activation is limited by
the number of proofreading steps. According to Eq. (A7),
the function Ωact is strongly peaked at a value Kp defined
by the condition βðKpÞ ¼ p [see Fig. 3(a)]. Integrating this

NONEQUILIBRIUM ANTIGEN RECOGNITION DURING … PHYS. REV. X 14, 031026 (2024)

031026-17



function yields the expected number of activated lineages
at time t:

LactðtÞ ¼
Z

ΩactðK; tÞdðlogKÞ ðLSÞ

≈
b0kon exp ½λAt�

N

Z
Ω0ðKÞdðlogKÞ
ð1þ K=KstepÞp

¼ exp ½λAðt − tactÞ�; ðB9Þ
where tact is given by the condition LactðtactÞ ¼ 1.

b. High-specificity regime

In this regime, the specificity of activation is limited
by the complexity of the naive repertoire. According to
Eq. (A10), the function Ωact is peaked around the moving
front KdetðtÞ [see Fig. 3(b)]. In this case, we obtain

LactðtÞ ¼
Z

ΩactðK; tÞdðlogKÞ ðHSÞ

≈ Ω0½KdetðtÞ�
Z

Ω0ðKÞdðlogKÞ
Ω0½KdetðtÞ�ð1þ K=KstepÞp

ðB10Þ

¼ exp

�
λAβ

�

p
ðt − tactÞ

�
: ðB11Þ

Here, we use Eqs. (4) and (B2), and we note that the
integrand in Eq. (B10) has a peak value of the order of 1
and depends only weakly on t.
These results are given in Eqs. (9) and (10) in the main

text. In the activation dynamics discussed here, we assume
that genetically distinct B-cell lineages are also distinguish-
able in terms of their antigen binding affinity. Specifically,
in our energy models, random mutations generate a binding
energy change of the order of kBT. If the sequence-energy
map is highly degenerate, multiple activations occurring in
sequence clusters of very similar antigen affinity can
generate new scaling regimes.

4. Statistics of clone size

Here, we compute the cumulative distribution function
(CDF) of clone size, ΦðN; tÞ, which is defined as the
fraction of activated clones with size > N at time t. Given
exponential growth with rate λB, this function is given by
the fraction of lineages activated before a time t0ðNÞ:

ΦðN; tÞ ¼ Lact½t0ðNÞ�
LactðtÞ

with t0ðNÞ ¼ t −
logN
λB

: ðB12Þ

Using Eqs. (B9) and (B11), we obtain

ΦðN; tÞ ¼ exp fζ½t0ðNÞ − tact�g ∼ N−1=ζ; ðB13Þ
where the exponent ζ is defined in Eq. (12) in the main text.
In a similar way, we compute the expected size of
the jth largest clone, hNjiðtÞ (j ¼ 1; 2; 3;…). We write

hNjiðtÞ ∼ exp½λBðt − tjÞ�, where the activation time tj is
given by the condition LactðtjÞ ¼ j. Using again Eqs. (B9)
and (B11), we have tj ∼ ζ log j and

hNjiðtÞ ∼ j−ζ: ðB14Þ

Equations (B13) and (B14) are related by Zipf’s law. Both
are independent of t and, hence, valid also for the saturation
clone sizes N̄j, as used in Eq. (13) in the main text.
In the special case of a classical Luria-Delbrück pro-

liferation-mutation process, LactðtÞ denotes the number of
mutant clones present at time t, and Eqs. (B9) and (B11)
reduce to the simpler form LactðtÞ ¼ expðλAtÞ, where λA is
the wild-type growth rate. The resulting clone size statistics
is still of the form (B13) and (B14) with size exponent
ζ0 ¼ λB=λA, where λB is the mutant growth rate.

5. Statistics of antigen affinity

We now evaluate the CDF of antigen binding constants,
ΦðK; tÞ ¼ LactðK; tÞ=LactðtÞ, in the HS regime. For the
high-affinity tail of this function, K ≳ K�, activation occurs
deterministically, which implies LactðK; tÞ ≃ L0ðKÞ.
Recalling that Ω0ðKÞ ¼ ðKd=dKÞL0ðKÞ, we obtain
ΦðKÞ ∼ L0ðKÞ ∼Ω0ðKÞ. Hence,

ΦðK; tÞ ∼ Kβ� ðHSÞ: ðB15Þ

Using Zipf’s law, as for the clone size, we obtain the
expectation value of the lth lowest binding constant:

hKliðtÞ ∼ l1=β
� ðHSÞ; ðB16Þ

as given in Eq. (13) in the main text. Again, this relation is
independent of t and valid also at the saturation point.
Because activation occurs on the moving front KdetðtÞ, the
clone rankings by size and affinity are equivalent up to
fluctuations. Hence, by combining Eqs. (B14) and (B16),
we obtain a power law relating size and affinity:

hN̄ji ∼ hKji−ζβ� ðHSÞ: ðB17Þ

In the LS regime, there is no clear power-law relation
between affinity and rank [see Fig. 4(b)]. High-affinity
activated clones span the range between K� and Kp and
show a faster decline of affinity with rank than in the
HS regime [see Figs. 4(b) and 4(c)]. Hence, empirical
exponents fitted to affinity-rank data take values > 1=β�
[see Fig. 4(d)].

6. Potency statistics and elite neutralizers

In the HS regime, Eqs. (B14) and (B16) also determine
the statistics of single-clone potencies z̄j ¼ N̄j=Kj:

hz̄ji ∼ j−ζ−1=β
� ðHSÞ: ðB18Þ
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For typical individuals, many clones contribute to the total
potency Z̄ ¼ P

z̄i. However, a characteristic of Luria-
Delbrück models is the existence of giant fluctuations. In
the HS regime of the model proposed here, there is a set of
elite neutralizers singled out by early activation of their first
clone. These jackpot clones have simultaneously high
affinity and large size, which takes a sizable fraction of
the total activated repertoire, N̄1 ≲ N̄ [see Fig. 6(c)]. The
CDF of potency, ΦðZÞ, is defined as the fraction of
individuals with Z̄ < Z. For Z̄ ≫ hZ̄i, potency is domi-
nated by jackpot clones, Z̄ ≃ z̄1. We find two scaling
regimes [see Fig. S3(c) [34] ]. In the preasymptotic regime
(N̄1 < N̄), size fluctuations of the jackpot clone are
dominant, and we can write z̄1 ≈ N̄1=K�. Hence, by
Eq. (B13), the CDF of potency takes the form

ΦðZÞ ∼ Z−1=ζ ðHS; preasymptotic regimeÞ: ðB19Þ

In the asymptotic regime (N̄1 ≈ N̄), affinity fluctuations are
dominant, and we have z̄1 ≈ N̄=K. Hence,

ΦðZÞ ∼ L0ðN̄=ZÞ ðHS; asymptotic regimeÞ: ðB20Þ

APPENDIX C: EMPIRICAL CLONE SIZE
STATISTICS IN EARLY GERMINAL CENTERS

1. Datasets of vaccination-induced B-cell response

We analyze sequencing data of early GCs from
Refs. [11,12] as a proxy for the initial population of
activatedB-cell clones.Weuse complementarity-determining
region 3 (CDR3) sequence counts to estimate the clone size
of the different B-cell lineages taking part in the response.
The dataset contains samples from ten independent lymph
nodes 6 d postimmunization with the model antigen
chicken gamma globulin (each lymph node belongs to a
different mouse); four lymph nodes correspond to first
immunization and six to secondary immunization. Given
that participation of memory lineages is highly restricted,
recall GCs are mainly seeded by de novo recruited, naive
B-cell lineages [12]. Data from immunization with other
antigens are undersampled for our statistical analysis.

2. Empirical statistics of clone size

We calculate the expected scaled clone size of the jth
largest clone found in each lymph node, Nj=N1 [thin lines
in Fig. 4(a), inset] and the average value over all ten lymph
nodes [thick line in Fig. 4(a), inset]. We obtain an empirical
value of ζ by fitting these data to the form Nj ∼ j−ζ, as
given by Eq. (11). We also calculate the clonal entropy
Σ ¼ −

P
j xj log xj with xj ¼ Nj=N and N ¼ P

j Nj (the
sum runs over all clones in the dataset). The empirical
values of Σ and ζ are marked in Fig. S6 [34] by circles with
error bars.

3. Calibrated recognition model

To compare the data with the model, we evaluate the
effective antigen growth rate λ�ðD; r0; N0Þ, as given by
Eq. (A26). Using the dosage used in the experiments,
N0 ≈ 1013, and physiological values of the diffusion con-
stant, D ¼ 3 × 10−3 [44], and the recognition radius,
r0 ¼ 0.5 cm, we obtain λ� ≈ 5.4 d−1. Then, we evaluate
the repertoire entropy Σ, using stationary clone sizes N̄j,
given by N̄j ∼ K−p

j in the LS regime and by Eq. (B17) in
the HS regime, as well as the clone size exponent ζ,
given by Eq. (12). We use physiological parameters
λB ¼ 2 d−1 [35] and β� ¼ 2.2, computed as described
in the theory section for a mouse repertoire size
L0 ¼ 108 [1]. Together, we obtain functions ΣðpÞ and
ζðpÞ with p as the only free parameter (Fig. S6 [34]).
For both observables, data and model are seen to be
compatible for p ≈ 3.

APPENDIX D: MODEL PARAMETERS AND
NUMERICAL SIMULATIONS

In the analytical and numerical analysis, we use the
following empirical parameters for the activation process
and the B-cell repertoire: (i) size of the naive repertoire,
L0 ¼ 109 lineages [1–4]; (ii) growth rate of the antigen
population, λA ¼ 6 d−1 [5–8]; (iii) proliferation rate of
activated B cells, λB ¼ 2 d−1 [35]; (iv) activation step rate
kstep ¼ 0.5 min−1—as discussed in the main text, this
value is tuned to a repertoire size L0 ¼ 109 for humans
and L0 ¼ 108 for mice [1]; (v) antigen-BCR diffusion-
limited association rate kon ¼ 106 M−1 s−1 [33]; (vi) carry-
ing capacity of activated B cells, N̄ ¼ 104 cells [35]. In the
optimality analysis of tuned repertoires (see Fig. S5 [34]),
we vary p, kstep, and L0 around the LS-HS crossover point
given by p ∼ β�ðL0Þ, kstep ≈ konK�ðL0Þ.
To simulate a primary B-cell response, we start by

creating an initial population of L0 B-cell lineages. Each
B-cell lineage is represented by a BCR sequence of length
l, randomly drawn with the set of 20 amino acids.
Assuming a deterministic expanding antigen concentration
as defined in the main text, we calculate the nonhomo-
geneous activation rate of each B-cell lineage, uactðt; KÞ, as
given in Eq. (A3). Here, we use the fact that the time for the
first event, t0, in a nonhomogeneous Poisson process with
rate uðtÞ is distributed according to

Pðt0Þ ¼
1

N
uðt0Þ exp

�
−
Z

t0

0

uðtÞdt
�

ðD1Þ

with N ¼ R∞
0 PðtÞdt. We sample then the activation time

of each B-cell lineage by sampling uniformly distributed
random numbers r ∼ U½0; 1� and then using the inverse of
the cumulative version of Eq. (D1). Once we have all
activation times, we proceed to determine the clone size of
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each of the B-cell clones. Here, we integrate Lact coupled
differential equations

ṄbðtÞ ¼ λBNbðtÞ
�
1 −

P
bNbðtÞ
N̄

�
; ðD2Þ

assuming all clones start with clone size Nbð0Þ ¼ 1. We
neglect all B-cell clones whose final clone size is smaller
than N̄b ¼ 2, corresponding to less than one cell division.
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