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Exciton-exciton interactions are key to understanding nonlinear optical and transport phenomena in van
der Waals heterobilayers, which emerged as versatile platforms to study correlated electronic states. We
present a combined theory-experiment study of excitonic many-body effects based on first-principle band
structures and Coulomb interaction matrix elements. Key to our approach is the explicit treatment of the
fermionic substructure of excitons and dynamical screening effects for density-induced energy renorm-
alization and dissipation. We demonstrate that dipolar blueshifts are almost perfectly compensated by
many-body effects, mainly by screening-induced self-energy corrections. Moreover, we identify a
crossover between attractive and repulsive behavior at elevated exciton densities. Theoretical findings
are supported by experimental studies of spectrally narrow, mobile interlayer excitons in atomically
reconstructed, h-BN-encapsulated MoSe2=WSe2 heterobilayers. Both theory and experiment show energy
renormalization on a scale of a few meV even for high injection densities in the vicinity of the Mott
transition. Our results revise the established picture of dipolar repulsion dominating exciton-exciton
interactions in van der Waals heterostructures and open up opportunities for their external design.

DOI: 10.1103/PhysRevX.14.031025 Subject Areas: Condensed Matter Physics,
Materials Science, Optics

I. INTRODUCTION

Vertically stacked van der Waals heterobilayers with
type-II band alignment host layer-separated, Coulomb-
correlated electron-hole pairs forming interlayer excitons
(ILXs) with binding energies of more than 100 meV and
lifetimes that are often drastically increased in comparison
to excitons within a single layer [1–7]. For a wide range of
electron-hole densities below the excitonic Mott transition
[8,9], ILXs constitute an interacting quantum gas with

renormalized spectral properties. Exciton-exciton inter-
actions are of major importance in the context of under-
standingon-site repulsion energies and emergingmany-body
states inmoiré systems [10–14], excitonic transport [15–20],
and nonlinear optical response [21–23]. Importantly, they
lead to excitation-dependent shifts of the exciton resonance
toward higher energies, in close analogy to the physics
of coupled quantum well systems [24–29]. These energy
shifts are broadly used as key observables to assess the
strength of the exciton-exciton coupling and determine
exciton densities [30,31].
Conventionally, the interaction is described in the semi-

classical picture of long-range repulsion between two
dipoles representing spatially indirect excitons [32,33].
Corresponding theoretical descriptions range from basic
capacitor models [26,29] to correlation-corrected formulas
[27,28], microscopic theories beyond the effective bosonic
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picture [34,35], and adaptations of classical approaches to
describe localized moiré excitons [36–38]. Nevertheless,
the dominating picture of exciton-exciton interactions
broadly used in the field of van der Waals heterostructures
remains based on the dipole-dipole repulsion. Only
recently, predictions of additional contributions emerged,
associated with exchange interaction and Pauli blockade
from the underlying fermionic substructure [18,39]. This
state of affairs strongly suggests to test and revise the
dipolar description of the exciton-exciton interaction in van
der Waals heterostructures, motivating the development of
a comprehensive theoretical approach and a well-defined
experimental setting.
Here, we present a combined theory-experiment study of

density-dependent exciton energy renormalizations based
on a systematic many-body description of interacting
excitons as composite particles. We determine both the
resulting energy shifts and scattering-induced spectral
broadening. Supported by spectroscopic measurements
of mobile excitons in atomically reconstructed, h-BN-
encapsulated MoSe2=WSe2 heterobilayers, we find that
the classical dipolar description drastically overestimates
the interaction strength. We show that the dipole-dipole
repulsion is largely compensated by competing many-body
effects within the dense exciton gas, including correction
terms due to the fermionic substructure and screening.
Several contributions have large absolute values yet oppo-
site signs. As a net result, exciton energies shift by only a
few meV even at exciton densities close to ionization
threshold above 1012 cm−2. Moreover, we demonstrate
that the interplay of different renormalization effects can
result in an effectively attractive interaction with a density-
dependent crossover to the repulsive regime.
To obtain quantitative results, we consider a represen-

tative case of an H-stacked MoSe2=WSe2 heterobilayer
encapsulated in hexagonal boron nitride (h-BN) and build
on a theory for the dense exciton gas based on two-particle
Green functions [34,40]. Key to our method development
is the combination of this established many-body theory
with material-realistic band structure and Coulomb matrix
element calculations, augmented by frequency-dependent
excitonic screening effects. The starting point of our
calculations is the Bethe-Salpeter equation in the absence
of photoexcited carriers:

ðεeQ−k þ εhk − Eν;QÞΦν;Qðe; h;kÞ
−

X
q;h0;e0

Ve;h;h0;e0
Q−k;k;kþq;Q−k−qΦν;Qðe0; h0;kþ qÞ ¼ 0; ð1Þ

which we solve to obtain exciton wave functions
Φν;Qðe; h;kÞ and energies Eν;Q. Here, exciton eigenstates
are classified in terms of a quantum number ν for the
relative electron-hole motion and the total exciton momen-
tum Q. First-principle band structures εak and dielectrically

screened Coulomb matrix elements Va;b;b0;a0
k;k0;k0þq;k−q are used

in the electron-hole picture, expanding beyond the macro-
scopic Coulomb interaction model and parabolic bands
employed in the literature [18]. In the exciton representa-
tion, we formulate a self-consistency equation for renor-
malized exciton energies as

Ẽν;Q ¼ Eν;Q þ ReΣðν;Q; Ẽν;Q=ℏÞ; ð2Þ

with the frequency-dependent exciton self-energy

Σðν;Q;ωÞ ¼ ΣHðν;QÞ þ ΣFðν;QÞ þ ΣPBðν;QÞ
þ ΣMW; retðν;Q;ωÞ: ð3Þ

Explicit expressions as well as a detailed derivation
of the various self-energy contributions are given in
Appendix A. Energy renormalizations are accompanied
by excitation-induced broadening determined by Γν;Q ¼
−ImΣðν;Q; Ẽν;QÞ, where 2Γν;Q corresponds to the full width
at half maximum (FWHM) of the homogeneous exciton
linewidth. The self-energy consists of Hartree (H), Fock (F),
Pauli blocking (PB), and Montroll-Ward (MW) terms.
The different contributions to exciton-exciton interaction
describedby the exciton self-energy are schematically shown
in Fig. 1. A part of the Hartree term represents classical
electrostatic interaction between excitons [Fig. 1(a)]. It is of
dipole-dipole type and contains two repulsive and two
attractive contributions. Since like charges reside within
the same layer in type-II heterobilayers, the repulsive terms
dominate over the attractive interlayer terms. Therefore, the
net effect is a pronounced blueshift of exciton energies. On
the other hand, exchange interaction between the fermionic
constituents of excitons [included in both Hartree and Fock
terms, Fig. 1(b)] leads to an attractive interaction as in a
Fermi gas. Excitons as composite bosons also experience a
repulsive bosonic exchange interaction that is sketched in
Fig. 1(c), represented by the Fock term in Eq. (3). This can be
understood as the consequence of boson statistics favoring
occupation of the same states that, in turn, leads to stronger
Coulomb repulsion.
Pauli blocking of the fermionic phase space due to the

exciton substructure is illustrated in Fig. 1(d). It acts as a
source of the increased energy of the exciton transition,
well known from the semiconductor Bloch equations
[39,41,42]. Finally, the Montroll-Ward self-energy contains
all noninstantaneous contributions of the GW self-energy,
describing frequency-dependent screening of bosonic
exchange interaction by excitations within the dense exciton
gas. As discussed further below, this is a particularly
important contribution to density-dependent exciton energy
renormalizations that is explicitly treated beyond a more
phenomenological description of static excitonic screening
in the literature [18]. The result is a decrease of the exciton
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energies, conceptually similar to the excitation-induced band
gap renormalization [41–44].

II. EXPERIMENTAL SETUP

The experiments are performed on a MoSe2=WSe2
heterobilayer encapsulated in high-qualityh-BN.Weemploy
fabrication conditions of near-sixty-degree stacking favoring
large-scale atomic reconstruction [45], thus suppressing
formation of moiré patterns to achieve a flat potential
landscape. The Hh

h registry is identified by its characteristic
photoluminescence (PL) signatures, optical selection rules,
and associated g factors [20]. The PL spectra feature low-
energy triplet- and high-energy singlet-spin configurations
with narrow linewidths of the exciton resonances down to a
few meV confirming the sample quality. As localization
of ILXs is suppressed in Hh

h reconstructed samples, the
excitons are mobile, exhibiting phonon-limited free dif-
fusion at lowest temperatures. This is particularly important,
since the residual linewidth is likely to be determined by
small inhomogeneous broadening in addition to phonon-
induced scattering. Experimental demonstration of free
exciton diffusion at 5 K in this type of h-BN-encapsulated
monolayers [46] and heterobilayers [20] shows that the
remaining potential fluctuations occur on comparatively
large spatial scales. We, thus, stress the absence of evidence
for exciton localization in the studied sample to compare
the obtained results with theoretical calculations based on
the assumption of spatially flat potentials. Furthermore,
signatures of exciton-exciton annihilation and repulsion

validate that the excitons can scatter and interact effi-
ciently with each other [20].
The measurements are performed in an optical micros-

copy cryostat at the temperatures of 5 and 70 K. The sample
is excited by a pulsed, 140 fs Ti:sapphire laser with a
repetition rate of 80 MHz and its excitation wavelength
tuned resonantly into the A∶1s state of MoSe2. The excita-
tion energy densities ranged from0.2 to 20 μJ=cm2 per pulse.
Assuming an absorbance of 11%, as estimated from reflec-
tance measurements, we determine the corresponding
peak exciton densities of 6 × 1010 and 6 × 1012 cm−2 (see
Appendix B for details). The PL is spectrally dispersed by a
spectrometer and detected by a streak camera and a charge-
coupled device for time-resolved and time-integrated mea-
surements, respectively.

III. RESULTS

To quantify many-body renormalizations due to
the exciton-exciton interaction, we solve Eq. (2) self-
consistently for various exciton temperatures and densities.
The static renormalizations contained in the self-energy (3)
are explicitly given by

ΣHðν;QÞ ¼
X
ν0;Q0

�
ṼðDÞ;ν;ν0;ν0;ν
Q;Q0;Q0;Q − ṼðXÞ;ν;ν0;ν0;ν

Q;Q0;Q0;Q

�
NX

ν0;Q0 ; ð4Þ

ΣFðν;QÞ ¼
X
ν0;Q0

�
ṼðDÞ;ν;ν0;ν;ν0
Q;Q0;Q;Q0 − ṼðXÞ;ν;ν0;ν;ν0

Q;Q0;Q;Q0

�
NX

ν0;Q0 ; ð5Þ

(a) (b) (c) (d) (e)

FIG. 1. Contributions to exciton-exciton interaction. (a) Dipole-dipole interaction (dip-dip) between excitons in states ν and ν0. The
process is composed of elementary Coulomb interaction between the electron of ν and the electron of ν0, proportional to the matrix
element Vee, and between the electron of ν and the hole of ν0 (Vhh) as well as corresponding electron-hole terms (Veh). The resulting shift
of the exciton energy Eν is positive. (b) Fermionic exchange interaction (ferm X) between electrons or holes that are part of two different
excitons, resulting in a decrease of the exciton energy. (c) Bosonic exchange interaction (bos X) of the whole excitons, resulting in an
increase of the exciton energy. (d) Phase-space filling (PSF) due to fermionic constituents of exciton ν0 as experienced by exciton ν,
which yields an increase of Eν. (e) Screened bosonic exchange interaction (screen) from the exciton Montroll-Ward (MW) self-energy.
The interaction process is screened by a momentum- and frequency-dependent excitonic polarization ΠqðωÞ corresponding to scattering
processes of surrounding excitons between different internal states, which results in a lowering of exciton energy.
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ΣPBðν;QÞ ¼
X
ν0;Q0

�
ṼPB;ν;ν0;ν0;ν
Q;Q0;Q0;Q þ ṼPB;ν;ν0;ν;ν0

Q;Q0;Q;Q0

�
NX

ν0;Q0 ; ð6Þ

with effective exciton-exciton interaction matrix elements
Ṽ as defined in Appendix A and exciton populations NX

ν;Q.
Dielectric screening by the h-BN environment is modeled
by an effectively isotropic dielectric constant εh-BN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4.95 × 2.86

p
≈ 3.76 [47]. We consider the interlayer

excitons populating the K and K0 valleys of the two
lowest conduction and two highest valence bands, respec-
tively. The focus on K-valley states is motivated by their
representative nature for interlayer excitons and by the
absence of signatures from momentum-indirect excitons in
the experiment [20]. For the bright spin-singlet states,
we obtain a binding energy of 131 meV in good agree-
ment with typical experimental values [4]. Finally, we
limit the exciton density range to be below the predicted
exciton Mott density nMott ≈ 2 × 1012 cm−2 for this
material system [20].
Numerical results of our calculations are shown in Fig. 2.

In Fig. 2(a), we analyze the cumulative effect of all
contributions to exciton-exciton interaction that have been
introduced in Fig. 1 for the 1s exciton with vanishing total
momentum Q ¼ 0 and bright spin-singlet configuration.
The individual contributions are presented in Fig. 2(b).

The repulsive dipole-dipole interaction given by the exciton
Hartree self-energy without fermionic correction terms
[first term in Eq. (4)] yields a linear blueshift of up to
30 meV at the highest density close to 2 × 1012 cm−2. The
blueshift is reduced by the combination of fermionic
exchange contributions, which are part of Hartree and
Fock self-energies [second terms in Eqs. (4) and (5)],
respectively, and Pauli blocking. The latter originates from
the filling of phase space by the fermionic constituents of
excitons, as described by the self-energy in Eq. (6).
Fermionic exchange and Pauli blocking, although on the
order of 50 meV each at a density of 1012 cm−2, compen-
sate each other to a large extent.
Bosonic exchange of excitons as described by the Fock

self-energy without fermionic terms [first term in Eq. (5)]
yields only a weak additional blueshift on the few-meV
scale. The relative weakness compared to the direct
exciton-exciton interaction can be partly understood
from the dependence of the different self-energies on
exciton populations. While the Hartree-like renormaliza-
tion of a certain exciton state is approximately propor-
tional to the total exciton density, ΣH;ðDÞðν;QÞ ≈
ṼðDÞ
Q¼0

P
ν0;Q0 NX

ν0;Q0 , the Fock-like term has a strong depend-
ence on the momentum and spin distribution of exci-

tons, ΣF;ðDÞðν;QÞ≈Pν0;Q0 ṼðDÞ
jQ−Q0jδseðνÞ;seðν0ÞδshðνÞ;shðν0ÞN

X
ν0;Q0 .

dip-dip

dip-dip

bos
screen

ferm X

ferm
bos
screen

FIG. 2. Exciton energy renormalization induced by exciton-exciton interaction. (a) Cumulative density-dependent renormalization of
the zero-momentum bright 1s-exciton (spin-singlet) energy at a temperature T ¼ 100 K, subsequently adding dipole-dipole interaction
(dip-dip), fermionic exchange interaction and phase-space filling (þ ferm Xþ PSF), bosonic exchange interaction (þ bos X), and
screened bosonic exchange (þ screen). The latter represents the result of the full calculation. (b) Individual contributions to the exciton
energy renormalization corresponding to the cumulative presentation in (a) at an electron-hole pair density of 1012 cm−2. The redshift
due to fermionic exchange and the blueshift due to phase-space filling compensate to a large extent. (c) Calculated temperature and
density dependence of energy renormalization for the zero-momentum bright 1s exciton. The result for T ¼ 5 K has been obtained from
extrapolating the high-temperature data. (d) Calculated temperature and density dependence of the zero-momentum bright 1s-exciton
broadening.
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Thus, bosonic exchange is sensitive only to a fraction of the
total exciton density, which splits into intra- and intervalley
excitons with like and unlike electron ðseÞ and hole
spins ðshÞ.
Finally, dynamical screening of the Coulomb interaction

due to the presence of a polarizable exciton gas provides a
substantial contribution to the energy renormalization. It is
represented by the Montroll-Ward self-energy (A71),
which contains the noninstantaneous contributions to the
exciton GW self-energy, leading to a redshift on the order
of tens of meV. Because of a sublinear increase of the
redshift with the density, the cumulative energy renormal-
ization is nonmonotonic. Although this self-energy is
determined by frequency-dependent screening caused by
the polarization of the dense exciton gas, we can under-
stand its attractive character in the static limit (A80). Here,
the self-energy splits into a contribution that leads to static
screening of exciton exchange (without fermionic correc-
tions) and a Coulomb hole (CH) contribution. The former
yields a reduction of the weak momentum-dependent
blueshift discussed above, while the latter is essentially a
rigid redshift of the exciton dispersion. Since the CH shift is
the dominant contribution, the Montroll-Ward self-energy
is more sensitive to the total exciton density than to the
distribution of excitons over the states.
To summarize these results in Figs. 2(a) and 2(b), the

main competition takes place between the blueshift due to
dipolar interaction and the redshift induced by excitonic
screening, which are both sensitive to the total exciton
density. This leads to the conclusion that the details of the
exciton band structure are likely to be secondary for
the total exciton shift. All in all, we find a remarkably
strong compensation of different renormalization effects,
leaving a net exciton blueshift of only a few meV even at
high densities, close to the Mott transition. This density-
dependent behavior is consistently found at both low and
high temperatures, as shown in Fig. 2(c) for spin-bright
excitons. For all temperatures, we find a few-meV redshift
at small and intermediate densities which turns into a few-
meV blueshift at high densities. This corresponds to a
density-dependent crossover from an effectively attractive
to repulsive exciton-exciton interaction. With decreasing
temperature, the attractive character of interaction becomes
slightly weaker yet also closer to the thermal energies of the
excitons. Moreover, we confirm that similar behavior is
expected for “gray” (spin-triplet) interlayer excitons, pre-
sented in Fig. 6 in Appendix A. Since the triplet exciton
state is about 20 meV below the bright one, it is more
strongly populated, which leads to an increase of fermionic
and bosonic exchange effects among exciton triplets.
As a result, the bright exciton interaction is slightly more
repulsive.
Importantly, the noninstantaneous nature of the

Montroll-Ward self-energy also results in a lifetime broad-
ening of excitonic resonances according to Eq. (A79).

Temperature- and density-dependent results are shown in
Fig. 2(d). Overall, we find a sublinear increase of broad-
ening with the exciton density that is more pronounced at
higher temperatures. At T ¼ 5 K, we find a FWHM
broadening of about 8 meV at highest densities, slightly
larger than the typical linewidths of the exciton resonances
in these systems, likely dominated by residual inhomoge-
neities. At elevated temperatures and densities, however,
exciton-exciton scattering causes an increase of exciton
linewidths by tens of meV, which is comparable to phonon-
induced broadening [48–52]. Exciton-exciton scattering
can, thus, provide a substantial contribution to dissipation
and dephasing.
We also note that exciton-exciton annihilation [53–55]

should not strongly contribute to the renormalization of the
exciton energies. The associated changes of the exciton
lifetimes are in the range of tens to hundreds of picoseconds
for both as-exfoliated and h-BN-encapsulated samples
[56]. The determined exciton-exciton annihilation coeffi-
cient is 5 × 10−3 cm2=s in the studied MoSe2=WSe2
heterobilayer, corresponding to recombination rates below
0.1 ps−1 across the density range. The corresponding
energy values are, thus, below 0.1 meV, justifying our
theoretical approach that does not include this effect.
Theoretical results are confirmed by experimental obser-

vations presented in Fig. 3. As outlined in Sec. II, we ensure
the following conditions for the experiment-theory com-
parison: suppression of long-range disorder [57], absence
of moiré-like potentials from large-area atomic recon-
struction [45], and the presence of mobile excitons even
at low excitation densities [20]. All three conditions are
important to avoid density-induced filling of localized tail
states and demonstrate that the excitons can diffuse
sufficiently far to interact with each other. The latter is
particularly important and is the main reason for using the
same sample as studied in Ref. [20] to extract density-
dependent energy shifts. In the studied case, the excitons
are shown to be mobile as well as subject to exciton-exciton
repulsion and exciton-exciton annihilation, confirming
the above.
A selection of time-integrated PL spectra for different

exciton peak densities at a temperature of 5 K is shown in
Fig. 3(a). The narrow linewidths allow for the distinct
assignment of the PL peaks of charged (IX−

T ) and neutral
(IX0

T) interlayer triplets of Hh
h registry [20,45]. A small

blueshift of only a few meV is observed for both exciton
species up to highest densities in the range of the Mott
transition, consistent with the literature for samples with
sufficiently narrow linewidths [58]. Simultaneously, the
relative PL weight shifts from IX−

T to IX0
T with increasing

density. We note that, for sufficiently large spectral broad-
ening, this shift of the center of gravity would lead to the
appearance of a much larger blueshift. To illustrate that, the
spectra are convoluted with a Gaussian (full width at half
maximum of 15 meV), so that the PL of charged and
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neutral excitons merges into one peak. By concealing the
multipeak structure of the emission, the density-dependent
blueshift is overestimated in contrast to weak shifts
obtained for the individual peaks.
In addition to analyzing time-integrated spectra, we use

an alternative method of investigating the effect of density
on ILX via time-resolved PL. Taking advantage of the
exciton decay, we relate the time axis to the relative change

in exciton density, gaining access to quasi-instantaneous
measurements of the energy shift at a given density. The
exciton lifetimes on the order of hundreds of picoseconds
are substantially longer than relevant timescales of the
theoretically calculated phenomena. A representative time-
resolved PL evolution at a nominal temperature of 5 K and
peak electron-hole pair density of 1012 cm−2 is shown in
Fig. 3(b). At time t ¼ 0, the injected electron-hole pair
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FIG. 3. Experimental energy shifts of interlayer excitons. (a) Time integrated spectra of K-K0 interlayer excitons in an Hh
h

reconstructed MoSe2=WSe2 heterobilayer for different exciton peak densities after pulsed excitation resonant with the MoSe2 intralayer
resonance at the lattice temperature of 5 K. For comparison, spectra convoluted with a Gaussian (FWHM of 15 meV) are presented to
simulate additional inhomogeneous broadening. (b) Streak camera image of the spectrally and time-resolved PL at a peak density of
1012 cm−2. The spectra are normalized at each time step, and the color scale is logarithmic. White dashed lines are guides to the eye,
following the shift of the peak energy with time. Corresponding PL transient is presented in the right. (c) (Upper) Density-dependent
energy shift of the interlayer exciton PL peaks at two different temperatures, extracted from time-resolved data. The resonances are
labeled according to the previously identified excitons in the Hh

h-reconstructed MoSe2=WSe2 heterobilayer: charged and neutral
interlayer triplets (IX0

T and IX−
T ) and the neutral interlayer singlet (IX0

S). Dashed lines are guides to the eye. (Lower) Corresponding
density-dependent linewidths of charged and neutral interlayer triplets at T ¼ 5 K. The error bars for the extracted peak energies are
below 1 meV for each individual data point, and there is a spread of the measured values from the two different analysis schemes and
measurement series. (d) Selected PL spectra of neutral interlayer triplets and singlets at 70 K. (e) Extracted energy shifts of neutral
interlayer triplets from experiment at 5 K. (f) Corresponding results from the calculations.

ALEXANDER STEINHOFF et al. PHYS. REV. X 14, 031025 (2024)

031025-6



density is set equal to the estimated peak density.
Consequently, at later times, the exciton density decreases
proportionally to the decaying PL intensity, allowing us to
extract the time-dependent peak position effectively as a
function of density. This is reflected in the shift of the peak
positions toward lower energies with time, as indicated by
the dashed lines in Fig. 3(b). We evaluate the energy peak
position for time steps of 50 ps width and assign the
corresponding densities to values given by the injected
maximum density and the relative change of PL intensity.
The results of both time-integrated and time-resolved

analysis are summarized in Fig. 3(c), upper, for all
measured triplet and singlet interlayer exciton states. The
density range covers the linear regime up to the estimated
Mott threshold of several 1012 cm−2 [9] and beyond. We
note, however, that the main focus for the experiment-
theory comparison is the low-to-intermediate regime of
interacting, bound excitons below the Mott transition. The
experiments are performed at a temperature of 5 K, to take
advantage of the narrow linewidths and maximum PLyield,
and at 70 K, where the influence of the interlayer trion in
PL is negligible. Representative PL spectra of neutral
interlayer triplets and singlets at 70 K are presented in
Fig. 3(d). The maximum blueshift is found to be less or
equal to 3 meV for all studied exciton species in good
agreement with theory with weak indications of a redshift.
A direct comparison between experiment and theory is
presented in Figs. 3(e) and 3(f) for the case of the neutral
interlayer triplets at 5 K. While there are quantitative
differences between the curves, the overall behavior is
very similar. Most importantly, the experiment does not
show large shifts that would be otherwise expected from the
simplified dipolar capacitor model.
The energy shifts are accompanied by a small spectral

broadening at higher densities, similar to theoretically pre-
dicted values, as illustrated in Fig. 3(c), lower. We also note
that the above observations are typical for samples with
sufficiently narrow linewidths, as shown in Supplemental
Material [59]. Also, the obtained data are subject to
experimental error resulting in the spread of the measured
values. Nevertheless, the experiments consistently reveal
small energy shifts in the meV range, independent of the
presence of charged excitons, observed at both low and
elevated temperatures.

IV. CONCLUSIONS

In conclusion, we have demonstrated that the established
picture of dipolar repulsion of interlayer excitons is
insufficient and severely overestimates energy shifts result-
ing from exciton-exciton interaction. Among relevant
contributions, we identify fermionic and bosonic exchange
effects as well as the phase-space filling and excitonic
screening that lead to renormalizations of comparable
magnitude but opposite signs. The main competition takes
place between the repulsive dipolar interaction and the

attractive screening-induced self-energy correction, which
both essentially depend on the total exciton density. The net
result is an energy shift of only a few meV at exciton
densities up to theMott transition.Moreover,wedemonstrate
conditions for the emergence of weakly attractive exciton
potentials, predicted to occur at low and intermediate
densities. Interestingly, elevated temperatures yield a
stronger tendency toward the attractive regime. In addition,
the energy shifts are accompanied by scattering-induced
spectral broadening of exciton states with a linear temper-
ature dependence. The theoretical predictions are confirmed
in experiment by taking advantage of well-defined, atomi-
cally reconstructed MoSe2=WSe2 heterobilayers void of
localization with spectrally narrow resonances and mobile
excitons. The magnitude of the measured energy shifts
agrees with the results of the theoretical calculations within
the experimental uncertainty. This holds both for low and
elevated temperatures and is independent of the presence or
absence of residual doping.
The developed understanding of the excitonic inter-

actions has wide implications for the interpretation of
optical and nonlinear transport phenomena as well as the
overall phase diagram of interlayer excitons. It challenges
the common notion of dominant dipole-dipole repulsion
and offers a more nuanced approach to understanding
exciton-exciton interactions in van der Waals heterostruc-
tures. Rendering the extraction of interlayer exciton den-
sities from the energy shifts via capacitor model less useful
than previously assumed, it highlights the importance of
spectral analysis for samples featuring multiple, closely
spaced resonances. Interestingly, one can expect that
individual contributions to the exciton energy renormali-
zation could be tunable using distinct sample geometries,
dielectric environments, and external fields. Making use of
this tunability, it should even be possible to design and
switch between effectively repulsive and attractive inter-
action regimes. The implications range from the possible
realization of local compression and excitonic droplets, to
potentially favorable conditions for the formation of macro-
scopic many-body states such as superfluids and conden-
sates. Natural extensions of the presented approach and
results toward interlayer excitons in moiré and moiré-like
superlattices would have major consequences for the on-
site interaction terms determining the correlations. Overall,
exciton-exciton interactions beyond the dipolar regime
should have a substantial impact on the behavior of dense
excitonic quantum gases on a fundamental level and be
highly relevant for exploiting nonlinearities in photonic and
optoelectronic applications.
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APPENDIX A: THEORY

To obtain a material-realistic description of renormali-
zation effects induced by exciton-exciton interactions, we
combine first-principle band structures and Coulomb inter-
action matrix elements with a many-body theory for the
dense exciton gas based on nonequilibrium Green func-
tions. We essentially follow the derivation given by May,
Boldt, and Henneberger [34,40], extending it with respect
to (i) the generality of matrix elements and (ii) the inclusion
of frequency-dependent screening effects.

1. Density functional theory calculations, spin-orbit
coupling, and Coulomb matrix elements

Density functional theory (DFT) calculations for a
freestanding Hh

h MoSe2=WSe2 heterobilayer are carried
out using QUANTUM ESPRESSOV.6.6 [60,61]. We apply the
generalized gradient approximation by Perdew, Burke, and
Ernzerhof [62] and use an optimized norm-conserving
Vanderbilt pseudopotential [63] at a plane-wave cutoff
of 80 Ry. Uniform meshes (including the Γ point) with
18 × 18 × 1 k points are combined with a Fermi-Dirac

smearing of 5 mRy. Using a fixed lattice constant of
a ¼ 3.29 Å [64] and a fixed cell height of 35 Å, forces
are minimized below 5 × 10−3 eV=Å. The D3 Grimme
method [65] is used to include van der Waals corrections.
We use RESPACK [66] to construct a lattice Hamiltonian

H0ðkÞ in a 22-dimensional localized basis of Wannier
orbitals (dz2 , dxz, dyz, dx2−y2 , and dxy for Mo and W,
respectively, and px, py, and pz for Se) from the DFT
results. We also calculate the dielectric function as well as
bare and screened Coulomb matrix elements in the local-
ized basis. Spin-orbit interaction is included using an on-
site L · S-coupling Hamiltonian, which is added to the
nonrelativistic Wannier Hamiltonian:

HðkÞ ¼ I2 ⊗ H0ðkÞ þHSOC: ðA1Þ

Here, I2 is the 2 × 2 identity matrix in the Hilbert space
spanned by eigenstates j↑i and j↓i of the spin z component
(perpendicular to the monolayer). We assume that the
Coulomb matrix in Wannier representation is spin inde-
pendent and that spin-up and spin-down states are not
mixed. Diagonalization of HðkÞ yields the band structure
ελk and the Bloch states jψλ

ki ¼
P

α c
λ
α;kjk; αi, where the

coefficients cλα;k describe the momentum-dependent con-
tribution of the orbital α to the Bloch band λ. The Bloch
sums jk;αi are connected to the localized basis via
jk; αi ¼ ð1= ffiffiffiffi

N
p ÞPR eik·RjR; αi with the number of unit

cells N and lattice vectors R. The SOC Hamiltonian is
given by

HSOC ¼ 1

ℏ2
L̃ · S ¼ 1

2ℏ
L̃ · σ ðA2Þ

with the Pauli matrices σ ¼ ðσx; σy; σzÞ and the angular
momentum operator provided in Ref. [20].
Starting from the density-density-like bare Coulomb

interaction matrix elements in the Wannier basis,

UαβðqÞ ¼
X
R

eiq·RUαββαðRÞ ¼
X
R

eiq·Rh0; αjhR; βjUðr; r0ÞjR; βij0; αi ðA3Þ

and the corresponding (statically) screened matrix elements VαβðqÞ, we obtain an analytic description of Coulomb
interaction in freestanding transition metal dichalcogenide (TMD) heterobilayers that can be augmented by screening from
a dielectric environment [8,67,68]. The parametrization of Coulomb matrix elements for a freestanding Hh

h MoSe2=WSe2
heterobilayer is provided in Ref. [20]. Environmental screening can be taken into account according to the Wannier function
continuum electrostatics approach [69] that combines a macroscopic electrostatic model for the screening by the dielectric
environment with a localized description of Coulomb interaction. The macroscopic dielectric function of a freestanding
bilayer embedded in a vertical heterostructure is obtained by solving Poisson’s equation [70].
We finally compute screened Coulomb matrix elements in the Bloch state representation by a unitary transformation

using the coefficients cλα;k:

Vλ;ν;ν0;λ0
k1;k2;k3;k4

¼ 1

A

X
α;β

ðcλα;k1
Þ�ðcνβ;k2

Þ�Vαβ
k1−k4

cν
0
β;k3

cλ
0
α;k4

; ðA4Þ
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where k4 ¼ k1 þ k2 − k3 þG due to momentum con-
servation and A denotes the crystal area.
Inspired by the discussion in Ref. [71], we assume that

Bloch states are approximately spin diagonal. We assign a
definite spin to each band according to the dominant
contribution given by the coefficients cλα;k. Furthermore,
we make use of the fact that Coulomb interaction is
spin conserving, so that we can set Coulomb matrix
elements Vλ;ν;ν0;λ0

k1k2k3k4
to zero if λ and λ0 or ν and ν0 belong

to different spins.

2. Derivation of a GW self-energy for excitons

We start from the definition of the exciton Schwinger-
Keldysh Green function:

Kð1; 10Þ ¼ 1

iℏ
⟪hk1

ðt1Þep1
ðt1Þe0†p0

1
ðt01Þh0†k0

1
ðt01Þ⟫T; ðA5Þ

which describes the creation of an electron-hole pair at time
t01 and annihilation at time t1. The notation ⟪ · ⟫T is short
for the statistical average

⟪ÂðtÞ⟫T ¼ hTC½SCÂðtÞ�i
hSCi

ðA6Þ

with the time evolution operator

SC ¼ TC exp

�
−
i
ℏ

Z
C
dt0Hextðt0Þ

�
ðA7Þ

and TC being the time-ordering operator on the Keldysh
contour, which is depicted in Fig. 4. The Keldysh time
coordinate t includes the branch index n ¼ � of the con-
tour as well as the physical time coordinate t. The super-
index 1 stands for electron momentum p1, hole momentum
k1, electron band e, hole band h, and Keldysh time t1.

The band index also contains the spin quantum number. In
Eq. (A5), the external Hamiltonian

HextðtÞ ¼
e
A

X
k;k0;a;a0

Va0;a
ext ðk;k0; tÞρa0;aðk0;−k; tÞ ðA8Þ

couples the time-dependent external potential Vext to the
particle-density operator

ρa
0;aðk0;k; tÞ ¼ saa0

†
k0þkðtÞak0 ðtÞ: ðA9Þ

Here, we introduce the convention to assign a positive sign
sa ¼ þ1 to electrons (a ¼ e) and a negative sign sa ¼ −1
to holes (a ¼ h). Whenever densitylike operator pairs of
the type in Eq. (A9) appear, it is understood that both band
indices describe the same carrier species.
In the following, we derive an equation of motion (EOM)

for the exciton Green function (A5) by means of
Heisenberg’s equation for operators in the interaction
picture with respect to HextðtÞ:

iℏ
∂

∂t
ÂðtÞ ¼ ½ÂðtÞ; H�; ðA10Þ

where the Hamiltonian describes the interacting gas of
electrons and holes:

H ¼
X
p;e

εepe
†
pep þ

X
k;h

εhkh
†
khk þ 1

2

X
k;k0;q

X
e;e0;a;a0

sesaV
e;a;a0;e0
k;k0;k0þq;k−qe

†
ka

†
k0ak0þqe0k−q

þ 1

2

X
k;k0;q

X
h;h0;a;a0

shsaV
h;a;a0;h0
k;k0;k0þq;k−qh

†
ka

†
k0ak0þqh0k−q: ðA11Þ

Hole energies and wave functions are obtained from the valence-band quantities as εhk ¼ −εvk and chα;k ¼ ðcvα;kÞ�. The EOM
for creation and annihilation operators can be derived using

½Â B̂; Ĉ� ¼ Â½B̂; Ĉ�þ − ½Â; Ĉ�þB̂; ðA12Þ
with the anticommutator ½·; ·�þ. To proceed, we apply the time-ordering operator in Eq. (A5):

iℏ
∂

∂t1
Kð1; 10Þ ¼ ∂

∂t1

n
θCðt1; t01Þ⟪hk1

ðt1Þep1
ðt1Þe0†p0

1
ðt01Þh0†k0

1
ðt01Þ⟫þ θCðt01; t1Þ⟪h0†k0

1
ðt01Þe0†p0

1
ðt01Þep1

ðt1Þhk1
ðt1Þ⟫

o
; ðA13Þ

where the step function on the Keldysh contour is introduced as θCðt1; t2Þ ¼ δn1;− þ n1δn1;n2θðt1 − t2Þ to take all four
combinations of branch indices n1 and n2 into account correctly. We use brackets ⟪ · ⟫ to denote the statistical average (A6)

FIG. 4. The Keldysh contour C starts at initial time t0, extends
to ∞ on the upper branch (þ), and returns to t0 on the lower
branch (−).
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without time ordering. The time derivative of expectation values is evaluated by splitting the exponential in SC according to
the Keldysh time ordering. Then, we obtain

iℏ
∂

∂t1
Kð1; 10Þ ¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ ðεep þ εhkÞKð1; 10Þ þ e

A

X
k

�X
e00

Ve;e00
ext ðp1 þ k;k; t1ÞKð1; 10Þ

����
p1þk;e00

−
X
h00

Vh;h00
ext ðk1 þ k;k; t1ÞKð1; 10Þ

����
k1þk;h00

�
−

X
q;h00;e00

Ve;h;h00;e00
p1;k1;k1þq;p1−qKð1; 10Þ

����k1þq;h00

p1−q;e00

þ
X

k;q;a;a0;h00
shsaV

h;a;a0;h00
k1;k;kþq;k1−qrð1; 10;k;q; a; a0; tþ1 Þ

����
k1−q;h00

þ
X

k;q;a;a0;e00
sesaV

e;a;a0;e00
p1;k;kþq;p1−qrð1; 10;k;q; a; a0; tþ1 Þ

����
p1−q;e00

ðA14Þ

with the phase-space filling factor

Fð1; 10Þ ¼ ⟪F̂ð1; 10Þ⟫ ¼ δk1;k0
1
δp1;p0

1
δh;h0δe;e0 − δp1;p0

1
δe;e0⟪h0

†
k0
1
ðt1Þhk1

ðt1Þ⟫ − δk1;k0
1
δh;h0⟪e0

†
p0
1
ðt1Þep1

ðt1Þ⟫ ðA15Þ

and the three-particle Green function

rð1; 10;k;q; a; a0; tÞ ¼ 1

iℏ
⟪a†kðtþÞa0kþqðtÞhk1

ðt1Þep1
ðt1Þe0†p0

1
ðt01Þh0†k0

1
ðt01Þ⟫T: ðA16Þ

Here, tþ denotes a time that is infinitesimally later on the Keldysh contour than t. We also introduce the notation
Kð1; 10Þjk1þq;h00ðp1þq;e00Þ for a Green function where the hole state (electron state) of argument 1 is changed. By introducing
the free inverse exciton Green function

K−1
0 ð1; 10Þ ¼ n1δn1;n01δðt1 − t01Þ

�
iℏ

∂

∂t1
δk1;k0

1
δp1;p0

1
δh;h0δe;e0 −H0ð1; 10Þ − Vextð1; 10; t1Þ

�
ðA17Þ

with the effective exciton Hamiltonian

H0ð1; 10Þ ¼ ðεep þ εhkÞδk1;k0
1
δp1;p0

1
δh;h0δe;e0 −

X
q;h00;e00

Ve;h;h00;e00
p1;k1;k1þq;p1−qδk1þq;k0

1
δp1−q;p0

1
δh00;h0δe00;e0 ðA18Þ

and the external potential

Vextð1; 10; t1Þ ¼
e
A

X
k

�X
e00

Ve;e00
ext ðp1 þ k;k; t1Þδk1;k0

1
δp1þk;p0

1
δh;h0δe00;e0 −

X
h00

Vh;h00
ext ðk1 þ k;k; t1Þδk1þk;k0

1
δp1;p0

1
δh00;h0δe;e0

�
;

ðA19Þ

we bring the EOM (A14) to its integral form:

Z
C
dt2

X
k2;p2;h2;e2

K−1
0 ð1; 2ÞKð2; 10Þ ¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ

X
k;q;a;a0;h00

shsaV
h;a;a0;h00
k1;k;kþq;k1−qrð1; 10;k;q; a; a0; tþ1 Þ

����
k1−q;h00

þ
X

k;q;a;a0;e00
sesaV

e;a;a0;e00
p1;k;kþq;p1−qrð1; 10;k;q; a; a0; tþ1 Þ

����
p1−q;e00

: ðA20Þ

The exciton Green function is coupled via Coulomb interaction to three-particle Green functions, which, in turn, are
coupled to four-particle Green functions and so forth. To truncate this hierarchy of EOM, we eliminate the three-particle
Green function in Eq. (A20) by using the functional derivative with respect to the external potential, which is contained in
the time evolution operator:
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δKð1; 10Þ
δVb0;b

ext ðq0;q; tÞ ¼
e
A

�
sb

1

iℏ
rð1; 10;q0 − q;q; b0; b; tÞ − Kð1; 10Þdb0;bðq0;−q; tÞ

�
ðA21Þ

with db
0;bðq0;−q; tÞ ¼ ð1=iℏÞ⟪ρb0;bðq0;−q; tÞ⟫. The integral EOM (A20) is then written asZ

C
dt2

X
k2;p2;h2;e2

K−1
effð1;2ÞKð2;10Þ

¼n1δn1;n01δðt1− t01ÞFð1;10Þþ iℏ
A
e

X
k;q;a;a0

(X
e00

Ve;a;a0;e00
p1;k;kþq;p1−q

δKð1;10Þjp1−q;e00

δVa;a0
ext ðkþq;q;tþ1 Þ

−
X
h00

Vh;a;a0;h00
k1;k;kþq;k1−q

δKð1;10Þjk1−q;h00

δVa;a0
ext ðkþq;q;tþ1 Þ

)
:

ðA22Þ
The operator K−1

effð1; 2Þ follows from K−1
0 ð1; 2Þ if the external potential Vext is replaced by the effective potential Veff that

also contains the electrostatic potential of the mean charge density:

Va;a0
eff ðkþ q;q; t1Þ ¼ Va;a0

ext ðkþ q;q; t1Þ þ
A
e

X
k0;b;b0

Va;b;b0;a0
k;k0;k0−q;kþqρ

b;b0 ðk0 − q;q; t1Þ: ðA23Þ

We exploit the chain rule for functional derivatives to reformulate the interaction term on the rhs of Eq. (A22):

δKð1; 10Þ
δVa;a0

ext ðkþ q;q; tþ1 Þ
¼

Z
C
dt2

X
k2;q2;a2;a02

δKð1; 10Þ
δV

a2;a02
eff ðk2 þ q2;q2; t2Þ

δV
a2;a02
eff ðk2 þ q2;q2; t2Þ
δVa;a0

ext ðkþ q;q; tþ1 Þ
: ðA24Þ

The second factor is identified as the inverse dielectric function

ε−1ðk2 þ q2;q2; a2; a02; t2;kþ q;q; a; a0; t1Þ ¼
δV

a2;a02
eff ðk2 þ q2;q2; t2Þ
δVa;a0

ext ðkþ q;q; t1Þ
¼ n1δn1;n2δðt1 − t2Þδk;k2

δq;q2δa;a2δa0;a02

þ
X
k0;b;b0

V
a2;b;b0;a02
k2;k0;k0−q2;k2þq2

n
Lðk0 − q2;q2; b; b0; t2;kþ q;−q; a; a0; t1Þ

− iℏdb;b
0 ðk0 − q2;q2; t2ÞÞda;a0 ðkþ q;−q; t1Þ

o
ðA25Þ

with the density-density expectation value

Lðk0 − q2;q2; b; b0; t2;kþ q;−q; a; a0; t1Þ ¼
1

iℏ
⟪ρa;a

0 ðkþ q;−q; t1Þρb;b0 ðk0 − q2;q2; t2Þ⟫T: ðA26Þ

Also, by defining the inverse exciton Green function viaZ
C
dt2

X
k2;p2;h2;e2

K−1ð1; 2ÞKð2; 10Þ ¼ n1δn1;n01δðt1 − t01Þδk1;k0
1
δp1;p0

1
δh;h0δe;e0 ; ðA27Þ

we find for the polarization function

Πð3; 10;k4 þ q4;q4; a4; a04; t4Þ ¼
δKð3; 10Þ

δV
a4;a04
eff ðk4 þ q4;q4; t4Þ

¼ e
A

Z
C
dt1

Z
C
dt2

X
k1;p1;h1;e1

X
k2;p2;h2;e2

Kð3; 1ÞΓð1; 2;k4 þ q4;q4; a4; a04; t4ÞKð2; 10Þ ðA28Þ

with the vertex function

Γð1; 2;k4 þ q4;q4; a4; a04; t4Þ ¼ −
A
e

δK−1ð1; 2Þ
δV

a4;a04
eff ðk4 þ q4;q4; t4Þ

: ðA29Þ
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Combining Eqs. (A22), (A24), (A25), and (A28), we arrive at the Dyson equation for the exciton Green function:Z
C
dt2

X
k2;p2;h2;e2

K−1
effð1; 2ÞKð2; 10Þ

¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ iℏ
X

k;q;a;a0

Z
C
dt2

X
k2;q2;a2;a02

ε−1ðk2 þ q2;q2; a2; a02; t2;kþ q;q; a; a0; t1Þ

×
Z
C
dt3

X
k3;p3;h3;e3

�X
e00

Ve;a;a0;e00
p1;k;kþq;p1−qKð1; 3Þjp1−q;e00 −

X
h00

Vh;a;a0;h00
k1;k;kþq;k1−qKð1; 3Þ

����
k1−q;h00

�

×
Z
C
dt4

X
k4;p4;h4;e4

Γð3; 4;k2 þ q2;q2; a2; a02; t2ÞKð4; 10Þ

¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ
Z
C
dt4

X
k4;p4;h4;e4

Σð1; 4ÞKð4; 10Þ ðA30Þ

with the self-energy Σð1; 10Þ. Equation (A30) is an exact EOM for the exciton Green function, where the many-body
interaction effects are contained in the self-energy or, more specifically, in the inverse dielectric function and the vertex
function. To solve the many-body problem for the dense exciton gas, approximations have to be applied to the self-energy.
We derive the lowest approximation to the vertex function (A29) by neglecting the density terms in the phase-space

filling factor Fð1; 10Þ and inverting Eq. (A30) to obtain an EOM for the inverse exciton Green function:

K−1ð1; 10Þ ¼ K−1
effð1; 10Þ − Σð1; 10Þ: ðA31Þ

The derivative of K−1
effð1; 10Þ with respect to Veff then yields a deltalike vertex function:

Γð3; 4;k2 þ q2;q2; a2; a02; t2Þ ≈ n3δn3;n4δðt3 − t4Þn3δn3;n2δðt3 − t2Þ
×
n
δk3;k4

δp3þq2;p4
δk2;p3

δh3;h4δa2;e3δa02;e4 − δp3;p4
δk3þq2;k4

δk2;k3
δe3;e4δa2;h3δa02;h4

o
: ðA32Þ

Inserting this into Eq. (A30), we obtain the self-energy in random-phase approximation (RPA):

Σð1; 10Þ ¼ iℏ
X

k;q;q2;a;a0

�X
ē

ε−1ðp0
1;q2; ē; e0; t01;kþ q;q; a; a0; tþ1 Þ

×

�X
e00

Ve;a;a0;e00
p1;k;kþq;p1−qKð1; 10Þ

����p1−q;e00

p0
1
−q2;ē

−
X
h00

Vh;a;a0;h00
k1;k;kþq;k1−qKð1; 10Þ

����k1−q;h00

p0
1
−q2;ē

	

þ
X
h̄

ε−1ðk0
1;q2; h̄; h0; t01;kþ q;q; a; a0; tþ1 Þ

×

�X
h00

Vh;a;a0;h00
k1;k;kþq;k1−qKð1; 10Þ

����k1−q;h00

k0
1
−q2;h̄

−
X
e00

Ve;a;a0;e00
p1;k;kþq;p1−qKð1; 10Þ

����p1−q;e00

k0
1
−q2;h̄

	�
: ðA33Þ

The matrix elements V contain background screening from
the filled valence bands as well as from the dielectric
environment. On the other hand, the inverse dielectric
function ε−1 describes screening from photoexcited elec-
trons and holes. Therefore, the (matrix) product ε−1V can
be identified as the fully screened Coulomb interaction W,
which gives the self-energy (A33) the well-known GW
form. As main difference to the standard GW self-energy,
its excitonic version contains four interaction terms be-
tween the electrons and holes constituting two interacting
excitons.Note thatCoulomb interaction between the electron
and hole within the same exciton is already included in the

free inverse exciton Green function (A17). However, as
discussed in Ref. [34], the RPA self-energy does not describe
effects due to the exchange of fermions between two excitons.
In the following subsection, we again follow Ref. [34] to
derive such fermionic corrections to the GW self-energy.

3. Exchange corrections to the GW self-energy

Instead of eliminating the three-particle Green function r
by means of functional derivatives from the EOM of the
exciton Green function (A14), we derive an EOM for r itself
using an alternative decoupling mechanism. To this end, we
make use of the free inverse exciton Green function (A17):

ALEXANDER STEINHOFF et al. PHYS. REV. X 14, 031025 (2024)

031025-12



Z
C
dt2

X
k2;p2;h2;e2

rð1;2;k;q; a;a0; tþ1 ÞK−1
0 ð2;10Þ

¼
Z
C
dt2

X
k2;p2;h2;e2

rð1;2;k;q; a;a0; tþ1 Þn2δn2;n01δðt2 − t01Þ
�
iℏ

∂

∂t2
δk2;k0

1
δp2;p0

1
δh2;h0δe2;e0 −H0ð2;10Þ−Vextð2;10; t2Þ

�
: ðA34Þ

Since K−1
0 acts to the left, we have to apply the adjoint operators in each term. The time derivative

−iℏ
∂

∂t01
rð1; 10;k;q; a; a0; tþ1 Þ ¼ −

∂

∂t01

n
θCðt1; t01Þ⟪a†kðt1Þa0kþqðt1Þhk1

ðt1Þep1
ðt1Þe0†p0

1
ðt01Þh0†k0

1
ðt01Þ⟫

þ θCðt01; t1Þ⟪e0†p0
1
ðt01Þh0†k0

1
ðt01Þa†kðt1Þa0kþqðt1Þhk1

ðt1Þep1
ðt1Þ⟫

o
ðA35Þ

is evaluated along the same lines as for the two-particle Green function (A13). Note that, in Eq. (A35), the time derivative is
acting on creation instead of annihilation operators. Multiplying Eq. (A34) with K0ð10; 3Þ from the right, integrating over the
superindex 10, and using the relation

Z
C
dt2

X
k2;p2;h2;e2

K−1
0 ð1; 2ÞK0ð2; 10Þ ¼ n1δn1;n01δðt1 − t01Þδk1;k0

1
δp1;p0

1
δh;h0δe;e0 ; ðA36Þ

we arrive at the following explicit expression for r:

rð1; 3;k;q; a; a0; tþ1 Þ ¼
Z
C
dt01

X
k0
1
;p0

1
;h0;e0

r0ð1; 10;k;q; a; a0; tþ1 ÞK0ð10; 3Þ þ
Z
C
dt01

X
k0
1
;p0

1
;h0;e0

X
k0;q0;a00;a000

×

�X
h00

sh0sa00V
h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����
k0
1
þq0;h00

×
X
e00

se0sa00V
e00;a00;a000;e0
p0
1
þq0;k0;k0þq0;p0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����
p0
1
þq0;e00

�
K0ð10; 3Þ: ðA37Þ

Here, r0 results from the time derivative of the theta functions in Eq. (A35), for which we find

r0ð1; 10;k;q; a; a0; tþ1 Þ ¼ n1δn1;n01δðt1 − t01Þ⟪½a†kðt1Þa0kþqðt1Þhk1
ðt1Þep1

ðt1Þ; e0†p0
1
ðt1Þh0†k0

1
ðt1Þ�⟫

¼ n1δn1;n01δðt1 − t01Þ
n
⟪a†kðt1Þa0kþqðt1ÞF̂ð1; 10Þ⟫

þ δp0
1
;kþqδe0;a0⟪a

†
kðt1Þh0†k0

1
ðt1Þhk1

ðt1Þep1
ðt1Þ⟫þ δk0

1;kþqδh0;a0⟪e0
†
p0
1
ðt1Þa†kðt1Þhk1

ðt1Þep1
ðt1Þ⟫

o
:

ðA38Þ

The three-particle Green function couples to four-particle Green functions of the type

sð1; 10;k;q; a; a0; t;k0;q0; a00; a000; t0Þ ¼ 1

iℏ
⟪a†kðtþÞa0kþqðtÞhk1

ðt1Þep1
ðt1Þe0†p0

1
ðt01Þh0†k0

1
ðt01Þa00†k0 ðt0þÞa000k0þq0 ðt0Þ⟫T: ðA39Þ

The expression (A37) is inserted in the EOM for the two-particle Green function (A20), which yields

Z
C
dt2

X
k2;p2;h2;e2

K−1
0 ð1; 2ÞKð2; 10Þ ¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ

Z
C
dt2

X
k2;p2;h2;e2

Mð1; 2ÞK0ð2; 10Þ ðA40Þ

with
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Mð1; 10Þ ¼
X

k;q;a;a0

�X
h̄

sashV
h;a;a0;h̄
k1;k;kþq;k1−q

�
r0ð1; 10;k;q; a; a0; tþ1 Þ

����
k1−q;h̄

þ
X

k0;q0;a00;a000

�X
h00

sh0sa00V
h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����k1−q;h̄

k0
1
þq0;h00

þ
X
e00

se0sa00V
e00;a00;a000;e0
p0
1
þq0;k0;k0þq0;p0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����k1−q;h̄

p0
1
þq0;e00

�	

þ
X
ē

saseV
e;a;a0;ē
p1;k;kþq;p1−q

�
r0ð1; 10;k;q; a; a0; tþ1 Þ

����
p1−q;ē

þ
X

k0;q0;a00;a000

�X
h00

sh0sa00V
h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����p1−q;ē

k0
1
þq0;h00

þ
X
e00

se0sa00V
e00;a00;a000;e0
p0
1
þq0;k0;k0þq0;p0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����p1−q;ē

p0
1
þq0;e00

�	�
: ðA41Þ

Equation (A40) is not a full Dyson equation, since only the free exciton Green functionK0ð2; 10Þ appears on the rhs. It rather
represents the first skeleton diagram of an expansion of the full exciton Green function with respect to M. As discussed in
Ref. [34], it is meaningful to interpretM as a self-energy and upgrade K0ð2; 10Þ to Kð2; 10Þ. Indeed, it turns out that the four-
particle Green functions can be factorized into two-particle Green functions such that the GW self-energy obtained from
functional derivatives is reproduced. For example, the first four-particle term in Eq. (A41) can be rewritten as

X
k;q;a;a0

X
k0;q0;a00;a000

X
h̄

X
h00

sasa00V
h;a;a0;h̄
k1;k;kþq;k1−qV

h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1
sð1; 10;k;q; a; a0; t1;k0;q0; a00; a000; t01Þ

����k1−q;h̄

k0
1
þq0;h00

¼ 1

iℏ

X
k;q;a;a0

X
k0;q0;a00;a000

X
h̄

X
h00

sasa00V
h;a;a0;h̄
k1;k;kþq;k1−qV

h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1

× ⟪a†kðtþ1 Þa0kþqðt1Þh̄k1−qðt1Þep1
ðt1Þe0†p0

1
ðt01Þh00†k0

1þq0 ðt01Þa00†k0 ðt0þ1 Þa000k0þq0 ðt01Þ⟫T

≈
1

iℏ

X
k;q;a;a0

X
k0;q0;a00;a000

X
h̄

X
h00

sasa00V
h;a;a0;h̄
k1;k;kþq;k1−qV

h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1

× ⟪a†kðtþ1 Þa0kþqðt1Þa00†k0 ðt0þ1 Þa000k0þq0 ðt01ÞiiT⟪h̄k1−qðt1Þep1
ðt1Þe0†p0

1
ðt01Þh00†k0

1þq0 ðt01Þ⟫T

¼ 1

iℏ

X
k;q;a;a0

X
k0;q0;a00;a000

X
h̄

X
h00

Vh;a;a0;h̄
k1;k;kþq;k1−qV

h00;a00;a000;h0
k0
1
þq0;k0;k0þq0;k0

1

× iℏLðk0 þ q0;−q0; a00; a000; t01;kþ q;−q; a; a0; t1ÞiℏKð1; 10Þ
����k1−q;h̄

k0
1
þq0;h00

≈ iℏ
X

k;q;q0;a;a0

X
h̄;h00

Vh;a;a0;h̄
k1;k;kþq;k1−qðε−1ðk0

1;−q0; h00; h0; t0þ1 ;kþ q;q; a; a0; t1Þ

− n1δn1;n01δðt1 − t01Þδk0
1
;kþqδq;−q0δh00;aδh0;a0 ÞKð1; 10Þ

����k1−q;h̄

k0
1
þq0;h00

: ðA42Þ

In the fourth line, we use the definition (A26) of the
density-density expectation value. In the fifth line, we
replaced the latter by the inverse dielectric function
according to Eq. (A25), neglecting the term quadratic in
the carrier density. The first term in the fifth line reproduces
the hole-hole interaction term in theGW self-energy (A33),
while the second cancels the corresponding instantaneous

(Fock-like) contribution. We, therefore, note that the four-
particle terms in Mð1; 10Þ contain the retarded part of the
excitonicGW self-energy, while any instantaneous Hartree-
and Fock-type interaction are described by the r0 terms.
Unlike in Ref. [34], we keep the retarded part of the GW
self-energy as it is and focus on instantaneous correction
terms contained in r0.
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We evaluate the r0 terms in Eq. (A41) with Eq. (A38) by replacing the general band summation over a and a0 by electron
and hole bands and bringing all terms to normal order. Neglecting all expectation values with four electron or hole operators,
respectively, the resulting instantaneous exciton self-energy is given by

Mδð1; 10Þ ¼ n1δn1;n01δðt1 − t01Þ
�
Mδ;ð1Þð1; 10Þ þMδ;ð2Þð1; 10Þ þMδ;ð3Þð1; 10Þ þMδ;ð4Þð1; 10Þ

�
ðA43Þ

with

Mδ;ð1Þð1; 10Þ ¼
X
k

�X
h00;h000

Vh;h00;h000;h0
k1;k;kþk1−k0

1
;k0

1
δp1;p0

1
δe;e0⟪h00

†
kðt1Þh000kþk1−k0

1
ðt1Þ⟫

−
X
e00;e000

Vh;e00;e000;h0
k1;k;kþk1−k0

1
;k0

1
δp1;p0

1
δe;e0⟪e00

†
kðt1Þe000kþk1−k0

1
ðt1Þ⟫

−
X
h00;h000

Ve;h00;h000;e0
p1;k;kþp1−p0

1
;p0

1
δk1;k0

1
δh;h0⟪h00

†
kðt1Þh000kþp1−p0

1
ðt1Þ⟫

þ
X
e00;e000

Ve;e00;e000;e0
p1;k;kþp1−p0

1
;p0

1
δk1;k0

1
δh;h0⟪e00

†
kðt1Þe000kþp1−p0

1
ðt1Þ⟫

�
; ðA44Þ

Mδ;ð2Þð1; 10Þ ¼ −
X
k

�X
h00;h000

Vh;h00;h0;h000
k1;k;k0

1
;kþk1−k0

1
δp1;p0

1
δe;e0⟪h00

†
kðt1Þh000kþk1−k0

1
ðt1Þ⟫ −

X
e00

Vh;e00;e0;h0
k1;k;p0

1;k
0
1
δk;p0

1þk0
1−k1

⟪e00†kðt1Þep1
ðt1Þ⟫

−
X
h00

Ve;h00;h0;e0
p1;k;k0

1
;p0

1
δk;k0

1
þp0

1
−p1

⟪h00†kðt1Þhk1
ðt1Þ⟫þ

X
e00;e000

Ve;e00;e0;e000
p1;k;p0

1;kþp1−p0
1
δk1;k0

1
δh;h0⟪e00

†
kðt1Þe000kþp1−p0

1
ðt1Þ⟫

�
;

ðA45Þ

Mδ;ð3Þð1; 10Þ ¼
X
q

�X
h00;h000

Vh;h00;h0;h000
k1;k0

1
−q;k0

1
;k1−q

⟪h00†k0
1−q

ðt1Þe0†p0
1
ðt1Þep1

ðt1Þh000k1−qðt1Þ⟫

−
X
e00;h000

Vh;e00;e0;h000
k1;p0

1
−q;p0

1
;k1−q

⟪h0†k0
1
ðt1Þe00†p0

1−q
ðt1Þep1

ðt1Þh000k1−qðt1Þ⟫

−
X
h00;e000

Ve;h00;h0;e000
p1;k0

1
−q;k0

1
;p1−q

⟪h00†k0
1−q

ðt1Þe0†p0
1
ðt1Þe000p1−qðt1Þhk1

ðt1Þ⟫

þ
X
e00;e000

Ve;e00;e0;e000
p1;p0

1
−q;p0

1
;p1−q

⟪h0†k0
1
ðt1Þe00†p0

1−q
ðt1Þe000p1−qðt1Þhk1

ðt1Þ⟫
�
; ðA46Þ

and

Mδ;ð4Þð1; 10Þ ¼ −
X
q

�X
h00;h000

Vh;h00;h000;h00
k1;k0

1
−q;k1−q;k0

1
⟪h00†k0

1−q
ðt1Þe0†p0

1
ðt1Þep1

ðt1Þh000k1−qðt1Þ⟫

−
X

k;e00;e000;h000
Vh;e00;e000;h000
k1;k;kþq;k1−qδp1;p0

1
δe;e0⟪h0

†
k0
1
ðt1Þe00†kðt1Þe000kþqðt1Þh000k1−qðt1Þ⟫

−
X

k;h00;h000;e000
Ve;h00;h000;e000
p1;k;kþq;p1−qδk1;k0

1
δh;h0⟪h00

†
kðt1Þe0†p0

1
ðt1Þe000p1−qðt1Þh000kþqðt1Þ⟫

þ
X
e00;e000

Ve;e00;e000;e0
p1;p0

1
−q;p1−q;p0

1
⟪h0†k0

1
ðt1Þe00†p0

1−q
ðt1Þe000p1−qðt1Þhk1

ðt1Þ⟫
�
: ðA47Þ

The terms Mδ;ð1Þ and Mδ;ð2Þ, being proportional to electron and hole occupancies, correspond to the single-particle Hartree
and Fock self-energies, respectively. As discussed in detail in Ref. [34], the single-particle occupancies can be
approximately projected to the phase space of excitons using the relations
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h†kh
0
k0 ≈

X
p;e

e†ph
†
kh

0
k0ep; e†pe0p0 ≈

X
k;h

e†ph
†
khke

0
p0 : ðA48Þ

A similar projection technique has also been used in
Refs. [18,72]. The resulting four-particle expectation val-
ues, along with the corresponding terms in Mδ;ð3Þ and
Mδ;ð4Þ, can be interpreted as exciton Green functions
evaluated on the time diagonal according to

iℏKð1; 10Þ
���
t0
1
¼tþ

1

¼ ⟪h†k0
1
ðtþ1 Þe0†p0

1
ðtþ1 Þep1

ðt1Þhk1
ðt1Þ⟫:

ðA49Þ

We note that the above projection in phase space assumes
that any photoexcited electron or hole is part of a bound

exciton, while no higher-order complexes such as biexci-
tons contribute beyond a pure factorization in pairs of
excitons. This is an assumption that becomes more accu-
rate for lower densities. It is consistent with a treatment
of renormalization effects by means of a Dyson-type
equation for the exciton Green function with a self-energy
formulated solely in terms of excitons [upgraded Eq. (A40)].
The Dyson-type equation establishes a self-consistency
within the exciton gas but does not introduce any higher-
order complexes.

4. Real-time self-energy in the exciton representation

We now switch to an exciton representation of the
instantaneous self-energy by introducing

Gðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼

X
k1;p1;k0

1
;p0

1
;e;h;e0;h0

Φ�
ν1;Q1

ðe;p1; h;k1ÞKð1; 10ÞΦν0
1
;Q0

1
ðe0;p0

1; h
0;k0

1Þ ðA50Þ

with exciton wave functions as solutions to the Bethe-Salpeter equation that corresponds to the effective exciton
Hamiltonian (A18):

ðεep þ εhkÞΦν;Qðe;p; h;kÞ −
X
q;h0;e0

Ve;h;h0;e0
p;k;kþq;p−qΦν;Qðe0;p − q; h0;kþ qÞ ¼ Eν;QΦν;Qðe;p; h;kÞ: ðA51Þ

The quantum number of the relative electron-hole motion is denoted by ν, while the total exciton momentum isQ ¼ kþ p.
Exciton energies are denoted by Eν;Q. Since the wave functions form a basis of the electron-hole-pair Hilbert space, the
exciton representation can be inverted:

Kð1; 10Þ ¼
X

ν1;ν01;Q1;Q0
1

Φν1;Q1
ðe;p1; h;k1ÞGðν1;Q1; t1; ν01;Q

0
1; t

0
1ÞΦ�

ν0
1
;Q0

1
ðe0;p0

1; h
0;k0

1Þ: ðA52Þ

We obtain the exciton Hartree self-energy from Eq. (A44) and the first and fourth terms in Eq. (A45) as

ΣHðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ iℏn1δn1;n01δðt1 − t01Þ

X
ν2;ν02;Q2;Q0

2

Ṽ
ν1;ν02;ν2;ν

0
1

Q1;Q0
2
;Q2;Q0

1
Gðν2;Q2; t1; ν02;Q

0
2; t1Þ ðA53Þ

with the effective exciton-exciton interaction matrix elements

Ṽν1;ν2;ν3;ν4
Q1;Q2;Q3;Q4

¼ Ṽν1;ν2;ν3;ν4
Q1;Q2;Q¼Q3−Q2

¼
X

k1;k2;h1;h2;e1;e2

Φ�
ν1;Q1

ðe1;h1;k1ÞΦν3;Q2þQðe2;h2;k2Þ
�X

ē

Φ�
ν2;Q2

ðē;h2;k2Þ

×

�X
e0
Ve1;ē;e2;e0
Q1−k1;Q2−k2;Q2−k2þQ;Q1−k1−QΦν4;Q1−Qðe0;h1;k1Þ

−
X
e0
Ve1;ē;e0;e2
Q1−k1;Q2−k2;Q1−k1−Q;Q2−k2þQΦν4;Q1−Qðe0;h1;k1Þ−

X
h0
Vh1;ē;e2;h0
k1;Q2−k2;Q2−k2þQ;k1−QΦν4;Q1−Qðe1;h0;k1−QÞ

	

þ
X
h̄

Φ�
ν2;Q2

ðe2; h̄;k2−QÞ
�X

h0
Vh1;h̄;h2;h0
k1;k2−Q;k2;k1−QΦν4;Q1−Qðe1;h0;k1−QÞ

−
X
h0
Vh1;h̄;h0;h2
k1;k2−Q;k1−Q;k2

Φν4;Q1−Qðe1;h0;k1−QÞ−
X
e0
Ve1;h̄;h2;e0
Q1−k1;k2−Q;k2;Q1−k1−QΦν4;Q1−Qðe0;h1;k1Þ

	�

¼ ṼðDÞ;ν1;ν2;ν3;ν4
Q1;Q2;Q¼Q3−Q2

− ṼðXÞ;ν1;ν2;ν3;ν4
Q1;Q2;Q¼Q3−Q2

: ðA54Þ
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Note that we make use of the momentum conservation
relation p ¼ Q − k implied in the exciton wave functions
to eliminate electron momenta. Terms number 1, 3, 4, and 6
stem from the single-particle Hartree term and correspond
to the semiclassical dipolar Coulomb interaction between
excitons [27], which is described by ṼðDÞ. We find two
repulsive and two attractive contributions caused by the
opposite charge of electrons and holes. Terms number 2
and 5, however, are nonclassical terms due to the fermionic
nature of the exciton constituents: These fermionic

correction terms describe the exchange of either an electron
or a hole between two excitons leading to an attractive
interaction proportional to ṼðXÞ. Notably, besides the sign
the only difference between “direct” and “exchange” terms
inside the effective matrix element is the swap of two states
in the elementary Coulomb matrix element.
In a similar way, an exciton Fock self-energy is obtained

from Eq. (A46) as well as the first and fourth terms
in Eq. (A47):

ΣFðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ iℏn1δn1;n01δðt1 − t01Þ

X
ν2;ν02;Q2;Q0

2

Ṽ
ν1;ν02;ν

0
1
;ν2

Q1;Q0
2
;Q0

1
;Q2

Gðν2;Q2; t1; ν02;Q
0
2; t1Þ: ðA55Þ

The exciton Fock self-energy can be interpreted as resulting from the bosonic exchange of two excitons, with only two
states in the effective matrix element swapped with respect to the exciton Hartree term. As the latter, the Fock term contains
fermionic exchange terms.
The remaining four terms of the instantaneous self-energy, which are the second and third terms in Eqs. (A45) and (A47),

respectively, can be grouped together similar to the exciton Hartree and Fock self-energies:

ΣPBðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ iℏn1δn1;n01δðt1 − t01Þ

X
ν2;ν02;Q2;Q0

2

�
Ṽ
PB;ν1;ν02;ν2;ν

0
1

Q1;Q0
2
;Q2;Q0

1
þ Ṽ

PB;ν1;ν02;ν
0
1
;ν2

Q1;Q0
2
;Q0

1
;Q2

�
Gðν2;Q2; t1; ν02;Q

0
2; t1Þ: ðA56Þ

We introduce new effective matrix elements

ṼPB;ν1;ν2;ν3;ν4
Q1;Q2;Q3;Q4

¼ ṼPB;ν1;ν2;ν3;ν4
Q1;Q2;Q̄¼Q4−Q2

¼
X

k1;k2;h1;h2;e1;e2

Φ�
ν1;Q1

ðe1; h1;k1Þ

×

�
Φν4;Q2þQ̄ðe2; h2;k2Þ

X
h̄;e00

Vh1;e00;e2;h2
k1;Q2þQ̄−k1;Q2þQ̄−k2;k2

Φν3;Q1−Q̄ðe1; h̄;k1 − Q̄ÞΦ�
ν2;Q2

ðe00; h̄;k1 − Q̄Þ

þΦν3;Q1−Q̄ðe2; h2;k2 − Q̄Þ
X
ē;h00

Vh00;e1;e2;h2
k1−Q̄;Q1−k1;Q1−k2;k2−Q̄

Φν4;Q2þQ̄ðē; h1;k1ÞΦ�
ν2;Q2

ðē; h00;k1 − Q̄Þ
�
: ðA57Þ

The self-energy contribution (A56) appears on the same
level as the Hartree-Fock energy renormalizations, is propor-
tional to electron-hole interaction matrix elements, and has
the positive sign of a repulsive interaction. It is, therefore,
plausible to attribute the self-energy to Pauli blocking caused
by phase-space filling from the fermionic constituents. In a
Bethe-Salpeter or Wannier equation for the exciton, phase-
space filling appears as a prefactor similar to Eq. (A15) of the
electron-hole term, thereby reducing the exciton binding
energy [42]. Expanding the densitylike terms in the phase-
space filling factor according to Eq. (A48) and adding the
corresponding bosonic exchange term, ΣPB can be derived.
We note that, unlike the fermionic exchange corrections in

ΣH and ΣF, ΣPB cannot simply be obtained by swapping two
states in a Coulomb matrix element. Both the fermionic
correction terms and the Pauli-blocking terms are beyond the
RPA self-energy derived in the previous subsection via
functional derivative technique.
We now bring the retarded part of the exciton GW self-

energy to a form similar to the above exciton Hartree and
Fock self-energies. Starting from Eq. (A42), we derive an
expression that contains the fully screened Coulomb
interaction W. Based on the arrangement of operators in
the definition (A25), the elements of the dielectric matrix
can be identified as

ε−1ðk2 þ q2;q2; a2; a02; t2;kþ q;q; a; a0; t1Þ ¼ hψa2
k2
jhψa0

kþqjε−1ðr; r0; t2; t1Þjψa
kijψ

a0
2

k2þq2
i

≈ ε
−1;a2;a0;a;a02
k2;kþq;k;k2þq2

ðt2; t1Þδq;q2δk;k2
; ðA58Þ
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in analogy to Coulomb matrix elements. The first Kronecker delta takes momentum conservation into account, while the
second is an additional approximation. Expanding the dielectric and Coulomb matrix elements in terms of Wannier
functions and making use of the completeness of Bloch states, we find

iℏ
X

k;q;q0;a;a0

X
h̄;h00

Vh;a;a0;h̄
k1;k;kþq;k1−qε

−1ðk0
1;−q0; h00; h0; t0þ1 ;kþ q;q; a; a0; t1ÞKð1; 10Þ

����k1−q;h̄

k0
1
þq0;h00

¼ iℏ
X
q;a;a0

X
h̄;h00

Vh;a;a0;h̄
k1;k0

1
−q;k0

1
;k1−q

ε−1;h
00;a0;a;h0

k0
1
−q;k0

1
;k0

1
−q;k0

1
ðt0þ1 ; t1ÞKð1; 10Þ

����k1−q;h̄

k0
1
−q;h00

¼ iℏ
X
q

X
h̄;h00

X
α;α0

ðch00α0;k0
1
−qÞ�ðchα;k1

Þ�Wα0α
−qðt0þ1 ; t1Þch̄α;k1−qc

h0
α0;k0

1
Kð1; 10Þ

����k1−q;h̄

k0
1
−q;h00

¼ iℏ
X
q

X
h̄;h00

Wh00;h;h̄;h0
k0
1
−q;k1;k1−q;k0

1
ðt0þ1 ; t1ÞKð1; 10Þ

����k1−q;h̄

k0
1
−q;h00

ðA59Þ

with the fully screened Coulomb matrix

Wαβ
q ðt; t0Þ ¼

X
γ

ε−1;αγq ðt; t0ÞVγβ
q : ðA60Þ

Analogous calculations are carried out for the three remaining four-particle terms in Eq. (A41). Then, we arrive at the
exciton GW self-energy:

ΣGWðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ iℏ

X
ν2;ν02;Q2;Q0

2

W̃
ν1;ν02;ν

0
1
;ν2

Q1;Q0
2
;Q0

1
;Q2

ðt01; t1ÞGðν2;Q2; t1; ν02;Q
0
2; t

0
1Þ ðA61Þ

with the effective matrix element

W̃ν1;ν2;ν3;ν4
Q1;Q2;Q¼Q3−Q2

ðt01; t1Þ ¼
X

k1;k2;h1;h2;e1;e2

Φ�
ν1;Q1

ðe1; h1;k1ÞΦν3;Q2þQðe2; h2;k2Þ

×

�X
ē

Φ�
ν2;Q2

ðē; h2;k2Þ
�X

e0
Wē;e1;e0;e2

Q2−k2;Q1−k1;Q1−k1−Q;Q2−k2þQðt01; t1ÞΦν4;Q1−Qðe0; h1;k1Þ

−
X
h0
Wē;h1;h0;e2

Q2−k2;k1;k1−Q;Q2−k2þQðt01; t1ÞΦν4;Q1−Qðe1; h0;k1 −QÞ
	

þ
X
h̄

Φ�
ν2;Q2

ðe2; h̄;k2 −QÞ
�X

h0
Wh̄;h1;h0;h2

k2−Q;k1;k1−Q;k2
ðt01; t1ÞΦν4;Q1−Qðe1; h0;k1 −QÞ

−
X
e0
Wh̄;e1;e0;h2

k2−Q2;Q1−k1;Q1−k1−Q;k2
ðt01; t1ÞΦν4;Q1−Qðe0; h1;k1Þ

	�
: ðA62Þ

In summary, we obtain a Dyson-type equation for the exciton Green function by upgrading Eq. (A40):

Z
C
dt2

X
k2;p2;h2;e2

K−1
0 ð1; 2ÞKð2; 10Þ ¼ n1δn1;n01δðt1 − t01ÞFð1; 10Þ þ

Z
C
dt2

X
k2;p2;h2;e2

Mð1; 2ÞKð2; 10Þ: ðA63Þ

The exciton self-energyMð1; 2Þ contains Hartree- and Fock-type contributions including fermionic corrections and a Pauli-
blocking term as well as an RPA-type correlation term stemming from the factorization of four-particle Green functions.
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Consistent with the derivation of the RPAvertex function in Eqs. (A31) and (A32), we drop the densitylike terms in Fð1; 10Þ.
Then, using the Bethe-Salpeter equation (A51), Dyson’s equation can be expressed in the exciton representation:

Z
C
dt2

X
ν2;Q2

��
iℏ

∂

∂t1
− Eν1;Q1

	
δν1;ν2δQ1;Q2

n1δn1;n2δðt1 − t2Þ

− ΣHðν1;Q1; t1; ν2;Q2; t2Þ − ΣFðν1;Q1; t1; ν2;Q2; t2Þ − ΣPBðν1;Q1; t1; ν2;Q2; t2Þ
�
Gðν2;Q2; t2; ν01;Q

0
1; t

0
1Þ

¼ n1δn1;n01δðt1 − t01Þδν1;ν01δQ1;Q0
1

þ
Z
C
dt2

X
ν2;Q2

�
ΣGWðν1;Q1; t1; ν2;Q2; t2Þ − ΣGW;δðν1;Q1; t1; ν2;Q2; t2Þ

�
Gðν2;Q2; t2; ν01;Q

0
1; t

0
1Þ: ðA64Þ

Here, ΣGW;δ denotes the instantaneous part of the exciton-GW self-energy emerging from the factorization of four-particle
Green functions according to Eq. (A42). As described in Refs. [34,40,73], we transform Dyson’s equation to physical times
by unfolding the Keldysh contour ðRC dt2 ¼ P

n2

R∞
−∞ dt2Þ, dropping the external potential and using the Langreth-Wilkins

theorems. In close analogy to single-particle Green functions, we introduce greater and lesser Green functions

g>ðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ Gn1¼−;n0

1
¼þðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ;

g<ðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ Gn1¼þ;n0

1
¼−ðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ ðA65Þ

and retarded Green functions

gretðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ θðt1 − t01Þ

�
g>ðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ − g<ðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ
�
: ðA66Þ

Retarded self-energies additionally contain an instantaneous contribution:

Σretðν1;Q1; t1; ν01;Q
0
1; t

0
1Þ ¼ Σδðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ þ θðt1 − t01Þ

�
Σ>ðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ − Σ<ðν1;Q1; t1; ν01;Q

0
1; t

0
1Þ
�
:

ðA67Þ

In the following, we assume that Green functions and self-energies are diagonal in the exciton representation. Equal-time
Green functions, which appear in the instantaneous self-energy, correspond to g< functions, consistent with the replacement
(A49). We further assume that the exciton gas is in a quasiequilibrium state, where g< is a time-independent distribution
function. We again discard Pauli-blocking nonlinearities by describing excitons as ideal bosons, which implies

iℏg<ðν1;Q1Þ ¼ NX
ν1;Q1

¼


exp

�
Eν1;Q1

− μX
kBT

	
− 1

�
−1

ðA68Þ

with the temperature T and the exciton chemical potential μX. The exciton density is given by nX ¼ ð1=AÞPν;Q NX
ν;Q.

According to the bosonic commutator rules, it is

iℏg>ðν1;Q1Þ ¼ 1þ iℏg<ðν1;Q1Þ: ðA69Þ

In the quasiequilibrium case, evaluating iℏð∂=∂t1Þgretðν1;Q1; t1Þ with Eqs. (A66) and (A64), an algebraic equation for the
retarded exciton Green function can be derived in the frequency domain:�

ℏω − Eν1;Q1
− ΣHðν1;Q1Þ − ΣFðν1;Q1Þ − ΣPBðν1;Q1Þ − ΣMW;retðν1;Q1;ωÞ

�
gretðν1;Q1;ωÞ ¼ 1: ðA70Þ

The retarded Green function describes the spectral properties of the dense exciton gas. Many-body interaction effects are
taken into account via the self-energy ΣðωÞ ¼ ΣH þ ΣF þ ΣPB þ ΣMW;retðωÞ, which acts as a frequency-dependent operator.
We introduce a Montroll-Ward self-energy ΣMW;retðωÞ for excitons, which contains only the retarded part of the GW self-
energy (A61). Assuming that excitons can be described as quasiparticles with a renormalized energy Ẽν1;Q1

and a
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broadening Γν1;Q1
, the exciton Montroll-Ward self-energy can be derived along the same lines as in the single-particle

case [8,73]:

ΣMW;retðν1;Q1;ωÞ ¼ iℏ
X
ν0
1
;Q0

1

Z
∞

−∞

dω0

2π

ð1þ NX
ν0
1
;Q0

1
ÞW̃>;ν1;ν01;ν1;ν

0
1

Q1;Q0
1
;Q1;Q0

1
ðω0Þ − NX

ν0
1
;Q0

1
W̃

<;ν1;ν01;ν1;ν
0
1

Q1;Q0
1
;Q1;Q0

1
ðω0Þ

ℏω − Ẽν0
1
;Q0

1
þ iΓν0

1
;Q0

1
− ℏω0 : ðA71Þ

The plasmon propagators W̃>=<ðωÞ are given by the
effective fully screened matrix elements (A62), which
are linear combinations of Coulomb matrix elements W
in the Bloch basis. Using the unitary transformation to
Wannier orbitals as shown in Eq. (A59), the exciton
Montroll-Ward self-energy can be expressed in terms of
plasmon propagators in the Wannier basis. The latter fulfill
the Kubo-Martin-Schwinger relation [73]

W>
αβ;qðωÞ ¼ eℏω=kBTW<

αβ;qðωÞ; ðA72Þ

which in combination with 2iImWret
αβ;qðωÞ ¼ W>

αβ;qðωÞ −
W<

αβ;qðωÞ allows one to directly relate the propagators to the
retarded Coulomb interaction:

W>
αβ;qðωÞ ¼ ½1þ nBðωÞ�2iImWret

αβ;qðωÞ;
W<

αβ;qðωÞ ¼ nBðωÞ2iImWret
αβ;qðωÞ ðA73Þ

with the Bose distribution function nBðωÞ. The retarded
fully screened Coulomb matrix is obtained using the
inverse dielectric matrix for photoexcited carriers according
to Eq. (A60):

Wret
αβ;qðωÞ ¼

X
γ

ε−1;ret;αγq ðωÞVγβ
q : ðA74Þ

The dielectric matrix itself is given by

εret;αβq ðωÞ ¼ δα;β −
X
γ

Vαγ
q Πret;γβ

q ðωÞ ðA75Þ

and is discussed in the following subsection.
The instantaneous part of the self-energy is derived from

Eqs. (A53), (A55), and (A56) using the approximation for
the equal-time (lesser) Green functions (A68) and the
splitting of effective matrix elements (A54) into direct
and exchange parts:

ΣHðν1;Q1Þ ¼
X
ν0
1
;Q0

1

Ṽ
ν1;ν01;ν

0
1
;ν1

Q1;Q0
1
;Q0

1
;Q1

NX
ν0
1
;Q0

1
¼ ΣH;ðDÞðν1;Q1Þ þ ΣH;ðXÞðν1;Q1Þ; ðA76aÞ

ΣH;ðDÞðν1;Q1Þ ¼
X
ν0
1
;Q0

1

Ṽ
ðDÞ;ν1;ν01;ν01;ν1
Q1;Q0

1
;Q0

1
;Q1

NX
ν0
1
;Q0

1
; ðA76bÞ

ΣH;ðXÞðν1;Q1Þ ¼ −
X
ν0
1
;Q0

1

Ṽ
ðXÞ;ν1;ν01;ν01;ν1
Q1;Q0

1
;Q0

1
;Q1

NX
ν0
1
;Q0

1
; ðA76cÞ

ΣFðν1;Q1Þ ¼
X
ν0
1
;Q0

1

Ṽ
ν1;ν01;ν1;ν

0
1

Q1;Q0
1
;Q1;Q0

1
NX

ν0
1
;Q0

1
¼ ΣF;ðDÞðν1;Q1Þ þ ΣF;ðXÞðν1;Q1Þ; ðA77aÞ

ΣF;ðDÞðν1;Q1Þ ¼
X
ν0
1
;Q0

1

Ṽ
ðDÞ;ν1;ν01;ν1;ν01
Q1;Q0

1
;Q1;Q0

1
NX

ν0
1
;Q0

1
; ðA77bÞ

ΣF;ðXÞðν1;Q1Þ ¼ −
X
ν0
1
;Q0

1

Ṽ
ðXÞ;ν1;ν01;ν1;ν01
Q1;Q0

1
;Q1;Q0

1
NX

ν0
1
;Q0

1
; ðA77cÞ

ΣPBðν1;Q1Þ ¼
X
ν0
1
;Q0

1

�
Ṽ
PB;ν1;ν01;ν

0
1
;ν1

Q1;Q0
1
;Q0

1
;Q1

þ Ṽ
PB;ν1;ν01;ν1;ν

0
1

Q1;Q0
1
;Q1;Q0

1

�
NX

ν0
1
;Q0

1
: ðA78Þ

Because of the Coulomb singularity at long wavelength [Q ¼ 0 in Eq. (A54)], the Hartree interaction requires a separate
treatment in the Wannier representation. For a charge-neutral system, the macroscopic (leading) term drops out, and only
microscopic contributions to Hartree interaction remain. Following the procedure in Ref. [74], we calculate Hartree-type
matrix elements by setting the macroscopic eigenvalue of the Coulomb matrix to zero before transforming the matrix
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element to the Wannier representation. This means that the
dipole-dipole interaction is not screened by the dielectric
environment but only by the polarizability of the bilayer
itself. This observation is consistent with the model
developed in Ref. [18].
The quasiparticle approximation for exciton Green func-

tions implies that the exciton self-energy Σðν1;Q1;ωÞ¼
ΣHðν1;Q1ÞþΣFðν1;Q1ÞþΣPBðν1;Q1ÞþΣMW;retðν1;Q1;ωÞ
has to be evaluated self-consistently:

Ẽν1;Q1
¼ Eν1;Q1

þ ReΣðν1;Q1; Ẽν1;Q1
=ℏÞ;

Γν1;Q1
¼ −ImΣðν1;Q1; Ẽν1;Q1

=ℏÞ þ Γ0: ðA79Þ

Since the instantaneous part of the self-energy is real valued,
quasiparticle broadening induced by exciton-exciton inter-
action stems only from the Montroll-Ward self-energy. We
additionally introduce a phenomenological broadening Γ0

that takes into account scattering of excitons with phonons
and defects. We choose Γ0 ¼ 5 meV independent of the
temperature.
Finally, we note that a static limit can be applied to the

self-energy similar to the single-particle case [75], which
results in a screened-exchange-Coulomb-hole (SXCH)
self-energy for excitons:

ΣF;ðDÞðν1;Q1Þ þ ΣMW;retðν1;Q1; Ẽν1;Q1
=ℏÞ ≈ ΣSXCHðν1;Q1Þ

¼
X
ν0
1
;Q0

1

W̃
ν1;ν01;ν1;ν

0
1

Q1;Q0
1
;Q1;Q0

1
ðω ¼ 0ÞNX

ν0
1
;Q0

1
þ 1

2

X
ν0
1
;Q0

1

�
W̃

ν1;ν01;ν1;ν
0
1

Q1;Q0
1
;Q1;Q0

1
ðω ¼ 0Þ − Ṽ

ðDÞ;ν1;ν01;ν1;ν01
Q1;Q0

1
;Q1;Q0

1

�
: ðA80Þ

From the structure of the exciton Montroll-Ward self-
energy, it follows that (static) screening due to photo-
excited carriers is applied to the bosonic exchange
interaction described by the exciton Fock self-energy.
However, the fermionic correction terms to the Fock self-
energy are not screened. Also, the exciton Hartree and
Pauli-blocking contributions remain unscreened. Besides
screening of excitonic exchange, a Coulomb hole self-
energy arises and leads to a redshift of energies.
Throughout this work, we take into account the full
frequency dependence of screening, which is discussed in
detail in the following.

5. Excitonic screening in RPA

Consistent with the inverse dielectric function (A25), the
dielectric function itself is given by

εðkþ q;q; a; a0; t1;k2 þ q2;q2; a2; a02; t2Þ

¼ δVa;a0
ext ðkþ q;q; t1Þ

δV
a2;a02
eff ðk2 þ q2;q2; t2Þ

ðA81Þ

with the relation between Vext and Veff given in Eq. (A23).
Using the definition of the particle-density operator (A9),
we obtain

εðkþ q;q; a; a0; t1;k2 þ q2;q2; a2; a02; t2Þ
¼ n1δn1;n2δðt1 − t2Þδk;k2

δq;q2δa;a2δa0;a02

−
A
e

X
k0

δ

δV
a2;a02
eff ðk2 þ q2;q2; t2Þ

�X
e;e0

Va;e;e0;a0
k;k0;k0−q;kþq⟪e

†
k0 ðt1Þe0k0−qðt1Þ⟫ −

X
h;h0

Va;h;h0;a0
k;k0;k0−q;kþq⟪h

†
k0 ðt1Þh0k0−qðt1Þ⟫

�
:

ðA82Þ

Consistent with the derivation of Hartree-type self-energy terms, we proceed by expanding the single-particle densities in
terms of exciton densities according to Eq. (A48) and interpreting the resulting four-particle expectation values as exciton
Green functions. This means that Eq. (A82) contains functional derivatives of the exciton Green function with respect to the
effective potential, which we have identified before as the polarization function; see Eq. (A28). Thus, the dielectric function
has the well-known form ε ¼ 1 − VΠ with an excitonic polarization function Π. The polarization function is calculated in
RPA by inserting the deltalike vertex function (A32):

Πð3; 4;k2 þ q2;q2; a2; a02; t2Þ ≈
e
A

�X
k1;h1

Kð3; a2;k2; h1;k1; t2ÞKða02;k2 þ q2; h1;k1; t2; 4Þ

−
X
p1;e1

Kð3; e1;p1; a2;k2; t2ÞKðe1;p1; a02;k2 þ q2; 4Þ
�
: ðA83Þ
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Since we consider only two-particle Green functions K that describe electron-hole pairs, the band index a2 has to be an
electron index in the first line and a hole index in the second line in Eq. (A83), respectively. We now evaluate Eq. (A82)
using the RPA polarization function, introducing the exciton representation (A52) and assuming that Green functions are
diagonal in the exciton basis, which results in

εðkþ q;q; a; a0; t1;k2 þ q2;q2; a2; a02; t2Þ
¼ n1δn1;n2δðt1 − t2Þδk;k2

δq;q2δa;a2δa0;a02 − iℏ
X

ν1;ν2;Q1;Q2

Gðν1;Q1; t1; ν1;Q1; t2ÞGðν2;Q2; t2; ν2;Q2; t
þ
1 Þ

×
X
k0

� X
e;e0;h00;k00
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�X
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ðe000;k2; h1;k1ÞΦν2;Q2
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ν2;Q2

ðe;k0; h00;k00Þδa2;e000δa02;e0000

−
X
e1;p1
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ðe0;k0 − q; h00;k00ÞΦ�

ν1;Q1
ðe1;p1; h000;k2ÞΦν2;Q2

ðe1;p1; h0000;k2 þ q2ÞΦ�
ν2;Q2

ðe;k0; h00;k00Þδa2;h000δa02;h0000
	

−
X
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ðA84Þ

Similar to the inverse dielectric matrix (A58), the dielectric matrix elements are identified as

εðkþ q;q; a; a0; t1;k2 þ q2;q2; a2; a02; t2Þ ≈ ε
a;a0

2
;a2;a0

k;k2þq2;k2;kþqðt1; t2Þδq;q2δk;k2

¼
X
α;β

ðcaα;kÞ�ðc
a0
2

β;k2þq2
Þ�εαβ−qðt1; t2Þca2β;k2

ca
0

α;kþqδq;q2δk;k2
; ðA85Þ

assuming again diagonality in the k index. We can now expand the Coulomb matrix elements in terms of Wannier
functions and make use of the completeness of Bloch states to derive the dielectric matrix in the Wannier
representation:

εαβ−qðt1; t2Þ ¼
X

a;a0;a2;a02

caα;kc
a0
2

β;kþqε
a;a0

2
;a2;a0

k;kþq;k;kþqðt1; t2Þðca2β;kÞ�ðca
0

α;kþqÞ�

¼ n1δn1;n2δðt1 − t2Þδα;β − iℏ
X

ν1;ν2;Q1;Q2

Fðν1;Q1; t1; ν2;Q2; t2Þ
X
δ

Vαδ
−qΠ̃

δβ
−qðν1; ν2;Q1;Q2Þ ðA86Þ

with

Fðν1;Q1; t1; ν2;Q2; t2Þ ¼ Gðν1;Q1; t1; ν1;Q1; t2ÞGðν2;Q2; t2; ν2;Q2; t
þ
1 Þ: ðA87Þ

Using the momentum conservation implied by the exciton wave functions, the matrix elements of Π̃ can be explicitly
calculated as

Π̃δβ
−qðν1; ν2;Q1;Q2Þ ¼ δQ2;Q1þqMδ

ν1;ν2;Q1
ð−qÞðMβ

ν1;ν2;Q1
ð−qÞÞ� ðA88Þ
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with the wave function overlap

Mδ
ν1;ν2;Q1

ðqÞ ¼
X
k;e;h

Φν1;Q1
ðe; h;kÞ

�X
e0
ce

0
δ;Q1−k−qðceδ;Q1−kÞ�Φν2;Q1−qðe0; h;kÞ −

X
h0
ch

0
δ;k−qðchδ;kÞ�Φν2;Q1−qðe; h0;k − qÞ

��
:

ðA89Þ

Finally, we calculate the retarded dielectric matrix by transforming the Keldysh dielectric matrix (A86) to physical
times as discussed in the previous chapter. Assuming stationary exciton distribution functions, one can show that

iℏFretðν1;Q1; ν2;Q2;ωÞ ¼
NX

ν2;Q2
− NX

ν1;Q1

Eν2;Q2
− Eν1;Q1

þ ℏωþ iγ
: ðA90Þ

With this, we arrive at the final result [see Eq. (A75)]:

εret;αβq ðωÞ ¼ δα;β −
X
δ

Vαδ
q Πret;δβ

q ðωÞ ðA91Þ

with the polarization matrix

Πret;δβ
q ðωÞ ¼

X
ν1;ν2;Q1

NX
ν2;Q1−q − NX

ν1;Q1

Eν2;Q1−q − Eν1;Q1
þ ℏωþ iγ

Mδ
ν1;ν2;Q1

ðqÞðMβ
ν1;ν2;Q1

ðqÞÞ�: ðA92Þ

We, thus, derive a microscopic dielectric function that
describes excitonic screening in RPA corresponding to the
bubble-type polaripzation shown in Fig. 5. Our result is a
generalization of the bound-state dielectric function
derived by Röpke and Der [76], which has also been
used in Ref. [8]. In fact, the Röpke-Der dielectric function
can be considered a macroscopic limit of our result. We
emphasize that a microscopic treatment of screening
encoded in the matrix form of εret;αβq ðωÞ is essential to
capture local-field effects arising due to the layered
structure of the crystal unit cell. The interplay of interlayer
and intralayer interactions in the TMD bilayer is, thereby,
naturally taken into account. For numerical calculations,

we use a phenomenological damping γ ¼ min(10 meV,
ℏω) in Eq. (A92) to ensure the correct analytic behavior in
the static limit ω → 0.

6. Numerical details for the exciton Dyson equation

The exciton energy renormalizations (2) are evaluated
self-consistently with the self-energy (3) based on exciton
eigenstates from the Bethe-Salpeter equation (BSE) (1). We
use a Brillouin zone sampling with 48 × 48 × 1 k points,
limiting the Brillouin zone to the regions with radius 2.3
around the K and K0 points. The two highest valence and
two lowest conduction bands are considered. For every total
exciton momentum Q, 48 exciton eigenstates from the BSE
are taken into account. Thus, for the given sampling of the
Brillouin zone, an energy range between the lowest bound
state at about −150 meV and about 100 meV above the
continuum edge is covered. This is particularly important to
converge the excitonic polarization function that determines
the dynamical excitonic screening. Even at elevated densities
up to 1012 cm−2, only a small fraction of these states is
occupied. The larger fraction of unoccupied states is then
needed to properly describe the excitonic polarization. The
frequency integration in the Montroll-Ward self-energy
(A71) extends from −500 to 500 meV using a sampling
with 80ω points. We have checked that exciton energy
renormalizations are converged to within 1 meV.

FIG. 5. Feynman diagram for the excitonic RPA polarization
Πδβ

q ðωÞ inserted between two Coulomb interaction lines in
Wannier representation. The interaction vertices depicted in gray
correspond to the wave function overlaps defined in Eq. (A89).
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7. Numerical results for spin-triplet excitons

To complement the numerical results for spin-singlet
excitons shown in Fig. 2, we provide data for spin-triplet
excitons in Fig. 6. The larger population of triplet states
leads to an increase of fermionic and bosonic exchange
effects among exciton triplets. As a result, the interaction
between exciton triplets is slightly less repulsive than
between singlets.

APPENDIX B: EXPERIMENTAL DETAILS

1. Estimation of electron-hole pair density

The injected electron-hole pair density is estimated using
the following equation:

neh ¼
Pα

frepπr2Eph
ðB1Þ

with P the laser power (ranging from 250 nW to 25 μW),
α ¼ 0.11 absorption, frep ¼ 80 MHz laser repetition rate,
Eph ¼ 1.63 eV photon energy (resonant with the MoSe2
A∶1s state), and r ¼ ð0.7� 0.1Þ μm radius of the focused
laser spot (according to our previous work [20]). The
absorption value is estimated from transfer matrix analysis
of reflectance measurements on the heterobilayer; see
Fig. 7. For estimating the peak density, the radius is chosen
as r ¼ FWHM=ð2 ffiffiffiffiffiffiffi

ln 2
p Þ so that the effective density is

equal to the maximum density of the spot center,
neh × πr2 ¼ N0. It is assumed that the majority of the
created excitons form interlayer excitons due to the ultrafast
charge transfer.

2. Time-dependent energy shifts at higher temperature

A streak camera image acquired at 70 K is presented in
Fig. 8(a). It is taken in the spectral region of neutral
interlayer triplets, demonstrating the time-dependent
change of the emission peak. As the time after the
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FIG. 6. Exciton energy renormalizations induced by exciton-exciton interaction. (a) Cumulative density-dependent renormalization of
the zero-momentum “gray” 1s-exciton (spin-triplet) energy at a temperature T ¼ 100 K, subsequently adding dipole-dipole interaction
(dip-dip), fermionic exchange interaction and phase-space filling (þ ferm Xþ PSF), bosonic exchange interaction (þ bos X), and
screened bosonic exchange (þ screen). The latter represents the result of the full calculation. (b) Calculated temperature and density
dependence of energy renormalization for the zero-momentum 1s-exciton triplet. The result for T ¼ 5 K is obtained from extrapolating
the high-temperature data.

Meas
Fit

FIG. 7. (Upper) Reflectance contrast derivative of MoSe2=
WSe2 heterobilayer and respective fit from transfer matrix analysis.
The extracted parametrized dielectric function is used to obtain the
effective absorption spectrum (lower). Spectrum of the pump laser
(λ ¼ 761 nm) in red, overlapping with the absorption peak of the
MoSe2 A∶1s state. Adapted from Ref. [20].
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excitation increases, the exciton density and the strength of
the PL signal decreases, as illustrated by the transient. For
the analysis, we estimate the initial exciton density from the
pump fluence and absorption and set the changes of this
density proportional to the decrease of the PL signal.
Spectra taken at different times are shown in Fig. 8(b)
including Gaussian fits to extract peak energies. The data
demonstrates the time- and thus density-dependent shift of
the emission to lower energies with a weak reversal
observable at later times toward higher energies.
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