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Hybrid Josephson junctions (JJs) realized in superconductor-semiconductor heterostructures host
fermionic modes known as Andreev bound states (ABSs). In these structures, a promising and yet
unexplored avenue for harnessing spin and parity degrees of freedom is offered by JJs with three or more
superconducting terminals, where phase-induced spin polarization and transitions of the ground state to an
odd parity were predicted to arise. Here we spectroscopically probe the two-dimensional band structure of
ABSs in a phase-controlled InAs=Al three-terminal JJ. Andreev bands show signatures of spin-degeneracy
breaking, with level splitting in excess of ∼9 GHz, and zero-energy crossings associated to ground state
fermion parity transitions. Spin splitting and parity transitions are enabled and controlled by locally applied
magnetic fluxes, in the absence of Zeeman effect or Coulomb blockade. Our results underscore the
potential of multiterminal hybrid devices for phase engineering ABSs, with significant implications for
spin- and parity-based quantum devices.
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The spin of quantum particles offers an ideal basis for
two-level systems, enabling spin qubit-based quantum
information processing [1,2]. Access to spin-resolved
states, typically confined in semiconducting quantum dots,
requires breaking of the time-reversal symmetry to lift the
Kramers degeneracy, often achieved via large magnetic
fields. The combination of semiconductors and supercon-
ductors into hybrid material platforms [3,4] creates unprec-
edented opportunities for spin manipulation with Andreev
bound states (ABSs)—fermionic modes arising in a semi-
conducting region bounded by superconductors [5–13].
Previously, resolving spin-split ABSs was attained in large
magnetic fields (∼100 mT) [14,15] or by integration of
ferromagnetic elements [16–18]. An interesting route to
locally break time-reversal symmetry without the need
for these ingredients is via control over the superconduc-
ting phase difference, although it normally requires long
Josephson junctions (JJs) with strong spin-orbit coupling
(SOC) to lift the spin degeneracy [19–22]. This led to mea-
sured level splittings up to ∼1 GHz [23–25] and enabled

the realization of Andreev spin qubits [19,22,26–29], that
leverage the advantages of both superconducting and spin
qubit platforms.
Multiterminal JJs with SOC offer intriguing prospects

for superconducting spin manipulation [30]: in such devi-
ces, large spin splitting may be induced solely by control-
ling superconducting phase differences, while remaining in
the short-junction limit. Concomitantly, ground state fer-
mion parity transitions (i.e., switches between even and odd
number of fermions in the superconducting condensate) are
expected, marked by zero-energy Andreev level crossings in
the spectrum [31]. Parity engineering is of crucial importance
for realizing artificial Kitaev chains [32–35] and parity-
protected qubits [36–39]. Unlike their two-terminal counter-
parts, multiterminal JJs enable parity tuning in the absence
of charging energies and external magnetic fields [30].
Transport properties of multiterminal devices have been
the subject of intense investigation [40–52]. Recent experi-
ments revealing ABS spectra in phase-controlled three-
terminal JJs (3TJJs) [53] provided a first demonstration
of higher-dimensional Andreev band structures [54–56],
particularly in the context of Andreev molecules [57–62],
but the feasibility of spin-resolved ABSs is yet to be
established.
Here we report on spectroscopic measurements of planar

3TJJs with SOC. Andreev bound state spectra are con-
sistent with spin-degeneracy breaking and parity transi-
tions, controlled by superconducting phase differences. We
observe large ABS spin splitting (approximately 38 μeV,
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corresponding to a frequency in excess of 9 GHz) and level
crossings at zero energy, indicating ground state fermion
parity transitions. These phenomena are realized in the
absence of Zeeman magnetic fields or Coulomb blockade.
In situ spin and parity tuning is enabled by phase control
through integrated flux-bias lines. The spin nature of the
splitting is further supported by magnetic field-dependent
studies. We discuss our experimental observations in the
light of theoretical work on multiterminal JJs. These results
demonstrate a new approach for engineering spin and parity
degrees of freedom in hybrid quantum devices.
A schematic representation of a hybrid 3TJJ is displayed in

Fig. 1(a): Three superconducting terminals, with phases ϕL,
ϕR, and ϕM, are coupled to a normal scattering region S.
Because of gauge invariance, we set ϕM ≡ 0; hence, ϕL and
ϕR correspond to the two independent superconducting
phase differences. As derived in Ref. [30] in the short-
junction limit, the necessary condition for a zero-energyABS
to exist in the spectrum is that the phases of the terminals
wind by 2π around the junction. This is referred to as the
“discrete vortex condition” and is geometrically illustrated in
Fig. 1(b). Assigning to each phaseϕα (where α∈ fL;R;Mg)
the point ieiϕα on the complex plane, the condition is fulfilled
when the area of the resulting triangle covers the origin (as
shown, for example, by the red triangle). In this case, the
ground state fermion parity can switch from even to odd, and
a zero-energy Andreev level crossing marks the transition. If
the condition is not fulfilled (e.g., gray triangle), the parity of
the system remains even, and the ABS energy cannot reach
zero but has a finite lower bound. In the two-dimensional
(2D) phase space, values of ðϕL;ϕRÞ for which a discrete
vortex is present in the 3TJJ (i.e., odd fermion parity is
allowed) describe a pair of triangular regions [red in Fig. 1
(c)].We note that when any phase difference is zero (ϕL ¼ 0,
ϕR ¼ 0, or ϕL ¼ ϕR), the system behavior is reduced to that
of a two-terminal JJ and its parity has to stay even, except at
the points where the other phase difference is ϕ ¼ π.
However, in a real junction with nonunity transmission τ,
ABSs never reach zero energy; thus the gap cannot close and
no parity transition may occur. Rather, ABSs described by
the energy-phase dispersion relation [63],

EAðϕÞ ¼ �Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ sin2ðϕ=2Þ
q

; ð1Þ

valid in the short-junction limit, have minimum energy
jEAðπÞj ¼ Δ

ffiffiffiffiffiffiffiffiffiffi

1 − τ
p

, where Δ is the induced superconduct-
ing gap. This corresponds to the spectrum plotted in Fig. 1(d)
as a function of ϕ≡ ϕL ¼ ϕR [cyan line in Fig. 1(c)].
Importantly, we remark that ABSs must remain spin degen-
erate in this configuration, even if spin-rotation symmetry is
broken by SOC in the 3TJJ. A different scenario unfolds
when ϕL ≠ ϕR (both finite): In this case, if SOC is present,
the spin degeneracy of the spectrum can be lifted, leading to a
large spin splitting up to a significant fraction of Δ. In
addition, ABSs are allowed to cross at zero energy forming

extended regions of odd ground state fermion parity [30].
Both effects are visible in the spectrum of Fig. 1(e), shown
along the phase-space line cut ϕL ¼ 2π − ϕR [green in
Fig. 1(c)].
To investigate these phenomena, we realized a 3TJJ in an

InAs=Al heterostructure [4,64], simultaneously exploiting
the strong Rashba SOC in the InAs 2D electron gas (2DEG)
and the scalable, top-down patterning approach offered by
the heterostructure material. The device, displayed in
Fig. 2, features three superconducting terminals (L, M,
and R), defined by selective etching of the Al layer and

FIG. 1. (a) Schematic representation of a hybrid three-terminal
Josephson junction (3TJJ). Three superconducting leads with
phases ϕL, ϕR, and ϕM ≡ 0 are coupled to a common scattering
region S. (b) Geometric illustration of the discrete vortex
condition, i.e., the necessary condition for the occurrence of
zero-energy Andreev bound states (ABSs) and ground state
fermion parity transitions. A triangle with vertices ieiϕα (for
α∈ fL;R;Mg) is defined on the unitary circle in the complex
plane. If it covers the origin (red triangle), the phases wind by 2π
around the 3TJJ and the discrete vortex condition is fulfilled.
Otherwise (gray triangle), zero-energy ABSs and parity transitions
are not allowed (adapted from Ref. [30]). (c) Parity diagram in the
two-dimensional phase space, spanned by the superconducting
phase differences ϕL and ϕR. In the red regions, the discrete vortex
condition is fulfilled and parity transitions are allowed, whereas
parity must stay even in the gray regions. Dashed cyan and
green lines indicate the phase-space line cuts ϕL ¼ ϕR and
ϕL ¼ 2π − ϕR, respectively. (d) Energy-phase ABS dispersion
along ϕL ¼ ϕR, corresponding to a conventional, spin-degenerate
ABS described by Eq. (1). Fermion parity of the ground state must
remain even (gray shading). Nonperfect transmission τ ¼ 0.997 is
assumed, which prevents ABSs from reaching zero energy at π
phase. (e) Dispersion of ABSs along ϕL ¼ 2π − ϕR (schematic
representation adapted from Ref. [30]). Spin degeneracy is lifted
due to the combination of superconducting phases and spin-orbit
coupling in S. Blue and magenta ABSs have opposite spin
character. The red shading designates the phase range where
transitions from even to odd parity are allowed. Odd-parity regions
(o) are delimited by zero-energy Andreev level crossings and are
indicated by the yellow arrows.
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coupled to a common scattering region, forming a 3TJJ.
The dimensions of this region, 300 × 250 nm2, were
chosen to be relatively large on the scale of the spin-orbit
length in InAs, lSO ∼ 150 nm [65], yet substantially smaller
than the superconducting coherence length of proximitized
InAs, ξInAs ∼ 600 nm. As a result, the effect of SOC is
expected to be appreciable in the 3TJJ (unlike the imple-
mentation described by Ref. [53]). Compared to the system
studied in Ref. [30], that was simulated assuming the short-
junction limit and a diameter of the 3TJJ 10 times larger
than lSO, our device has finite size with respect to ξInAs and
lower SOC strength. In the middle of the scattering region,
a superconducting island of diameter of 200 nm is left for
two main purposes: First, it screens stray electric fields and
prevents uncontrolled depletion of the 3TJJ from the gates,
hence supporting the formation of high-transmission chan-
nels below it; second, the island facilitates uniform cou-
pling of all terminals to the scattering region, enabling
ABSs to depend on all superconducting phases. In par-
ticular, a direct conducting channel is observed to form

between terminals L and R despite their larger separation
compared to L-M and M-R, likely aided by the presence of
the superconducting island (see discussion below and in the
Supplemental Material [66], Sec. VI). The small size of
the island with respect to ξInAs (that is, the length scale
governing ABS hybridization through the common prox-
imitized region [61]) prevents the formation of independent
two-terminal JJs between each terminal and the island
itself. The three leads L, M, and R are connected to a
common node defining two closed superconducting loops,
which allow for independent tuning of two phases [53].
A JJ integrated on R (referred to as “switch JJ”), with a
length of 40 nm and a width of 5 μm, was designed to have
a critical current much larger than between any pairs of L,
M, and R; therefore, the phases of the 3TJJ are not
influenced by it. The presence of the switch JJ does not
affect the following discussion, and a description of its
effect is provided in Ref. [66]. A fourth superconducting
terminal (P), biased by the dc voltage Vbias, served as a
probe to perform tunneling spectroscopy of subgap states in
the 3TJJ. Metallic gate electrodes and flux-bias lines were
patterned on top of a dielectric layer, uniformly deposited
across the entire sample. Gates energized by the voltages
VTL and VTR were both set to VT ¼ −1.285 V to deplete
the 2DEG below and form a tunneling contact between P
and the 3TJJ (see Fig. S1 [66] for a full dependence on VT).
In such a weak-coupling regime, the influence of the
probe on the rest of the circuit can be neglected and the
differential conductance G, measured between P and
the common node with low-frequency lock-in techniques
[see Fig. 2(c)], is proportional to the convolution between
the density of states (DOS) of the probe and the DOS of
the 3TJJ weighted by the transmission of the tunneling
contact [7,13,67]. Assuming a Bardeen-Cooper-Schrieffer-
like DOS for the superconducting probe, which peaks at
energy �Δ, the differential conductance exhibits a peak at
bias voltage ðΔþ EÞ=e for a peak in the DOS of the 3TJJ at
energy E > 0, or at voltage ð−Δþ EÞ=e for E < 0. Gates
covering the normal regions between the island and the
three superconducting terminals were kept at VL ¼ VM ¼
VR ¼ 0 and had the main role of screening the effect of
the other gates on the scattering region, without introducing
a charging energy. Two additional gates were set to
Vprobe ¼ 0.42 V and Vswitch ¼ 0 throughout. Currents IL
and IR injected into the flux-bias lines generated external
magnetic fluxes ΦL and ΦR threading the superconducting
loops and enabled full control over the 2D phase space.
Experiments were performed in a dilution refrigerator with
base temperature below 10 mK, equipped with a three-axis
vector magnet. Magnetic field directions Bx and By are
indicated in Fig. 2, together with the additional orientations
û1 and û2 (rotated by 22.5° counterclockwise with respect
to By and Bx, respectively). Further details regarding
materials, fabrication, and measurement setup are provided
in Ref. [66] (Sec. I).

FIG. 2. (a) False-colored scanning electron micrograph of a
device identical to that under study. Selective removal of Al
(blue) exposes the III-V semiconductor below (pink), before
being uniformly covered by a dielectric layer (not visible). Gates
(yellow) and flux-bias lines (purple) are patterned on top of the
dielectric. (b) Enlargement of (a) near the three-terminal Joseph-
son junction region. (c) Schematic of the device together with the
measurement setup. Tunneling spectroscopy is performed by
measuring the current I flowing through the superconducting
probe P (biased by voltage Vbias) and the voltage V across the
device with lock-in techniques, to obtain the differential con-
ductanceG. Independent control over two superconducting phase
differences is enabled by the flux-line currents IL and IR, that
generate external magnetic fluxes ΦL and ΦR threading the two
superconducting loops. An in-plane magnetic field can be applied
with a vector magnet. Bx and By directions are indicated, as well
as û2 and û1 that are rotated by 22.5° counterclockwise.

SPIN-DEGENERACY BREAKING AND PARITY TRANSITIONS … PHYS. REV. X 14, 031024 (2024)

031024-3



Tunneling spectroscopymeasurements of phase-dispersing
ABSs are shown in Fig. 3. The spectra are probed as a function
ofVbias along the two flux-space line cutsΦL ¼ ΦR [Figs. 3(a)
and 3(c)] and ΦL ¼ Φ0 −ΦR [Figs. 3(b) and 3(d)], obtained
from linear combinations of the flux-line currents IL and IR
[see also Fig. 4(a), and Fig. S2 [66] for the dependence onΦL
and ΦR]. Here, Φ0 ¼ h=2e is the superconducting flux
quantum, with h the Planck constant and e the elementary
charge. These line cuts correspond to those introduced in
Figs. 1(c)–1(e) for the 2D phase space (cyan and green line,
respectively). All measurements show a transport gap of
2Δ=e ¼ 334 μV introduced by the superconducting probe,
bounded by differential conductance peaks at Vbias ¼
�167 μV with negligible flux dependence. Above the trans-
port gap, the spectrum is dominated by flux-dependent
resonances, representing ABSs in the 3TJJ [7,13,53]. The
main spectral features are symmetric about Vbias ¼ 0, com-
patible with a particle-hole symmetric DOS, while their
linewidth and conductance amplitude display some asymme-
try, with the features being sharper for Vbias < 0. An asym-
metry in the differential conductancemight be related to a bias
voltage-dependent transmission of the tunneling contact, and

to direct gating of the 3TJJ normal region by the voltage
applied to the probe. Furthermore, since the device is not
spatially symmetric along the direction of the current
flow, it may not exhibit symmetric current-to-voltage char-
acteristics for positive and negative Vbias. Regions of negative
differential conductance are visible in the data and char-
acteristic of superconductor-insulator-superconductor spec-
troscopy [13,67]. Finite conductance features within the
transport gap are ascribed to a nonzero DOS in the super-
conducting probe for energies jEj≲ Δ, presumably due to a
combination of quasiparticle-lifetime broadening [68] and
high-energy subgap bound states forming on the probe side
of the tunneling contact. The spectrum shown in Figs. 3(a) and
3(c) reveals an ABS resembling the conventional energy
dispersion ofEq. (1)with near-unity transmission, as it forms a
sharp cusp that approaches the transport gap edgevery closely.
We note that the state does not reach ejVbiasj ¼ 2Δ=e at
ΦL ¼ ΦR ¼ 0;Φ0, which might be attributed to the finite
dimensions of the 3TJJ on the scale of ξInAs [Eq. (1) is valid in
the short-junction limit]. Alternatively, ABS repulsion from
�Δ could be ascribed to the interaction with high-energy
subgap states forming at the individual leads and, thus,
independent of applied magnetic fluxes.
Conversely, the spectrum probed along ΦL ¼ Φ0 −ΦR

[Figs. 3(b) and 3(d)] exhibits a striking difference from that
of Eq. (1): As the ABS moves from high jVbiasj toward
ejVbiasj ¼ Δ, it markedly splits into two resonances (white
arrows). Both appear to fully reach ejVbiasj ¼ Δ; i.e., the
split ABSs cross zero energy. This is more evident for the
outermost ABS, that overlaps with ejVbiasj ¼ Δ at a flux
significantly different from ΦL ¼ 0.5Φ0, resulting in a
point of enhanced conductance; concomitantly, the slope of
the state dispersion has a sharp change of sign at the
crossing point.
Next, we map the 2D phase space by performing

tunneling spectroscopy at fixed values of Vbias as a function
of both IL and IR, resulting in constant-energy cut planes
of the Andreev band structure. In Fig. 4(a), where
eVbias ¼ −Δ − 20 μeV ¼ −187 μeV, the phase space is
scanned over an extended region, showing periodicity
along two main directions (white lines) that correspond
to the external fluxes ΦL and ΦR, defined in Fig. 2. The
dashed cyan and green segments represent the ΦL ¼ ΦR
andΦL ¼ Φ0 −ΦR line cuts displayed in Fig. 3. Two high-
transmission ABSs, dispersing with ΦL and ΦR, respec-
tively, form avoided crossings around the ðΦ0=2þ
nΦ0;Φ0=2þmΦ0Þ points (with n, m integers), which
indicates ABS hybridization and the formation of a
phase-dependent Andreev molecule [53]. Furthermore,
we note additional split lines (turquoise arrows)—only
encountered along ΦL ¼ Φ0 −ΦR and whose paths on the
phase space depend on both ΦL and ΦR—that are the split
ABSs described for Figs. 3(b) and 3(d). To study zero-
energy Andreev level crossings in the phase space, we set
Vbias ¼ −167 μV (i.e., eVbias þ Δ ¼ 0), resulting in the cut

FIG. 3. Tunneling spectroscopy of Andreev bound states along
phase-space line cuts. (a) Differential tunneling conductance G as
a function of voltage bias Vbias along line cutΦL ¼ ΦR, revealing
a high-transmission ABS with conventional phase dispersion.
Because of the superconducting probe, a transport gap between
Vbias ¼ �Δ=e ¼ �167 μV is present in the spectrum. (b) G as a
function of Vbias along line cut ΦL ¼ Φ0 −ΦR. The ABS
spectrum is strongly modified compared to (a), showing level
splitting, compatible with spin-degeneracy breaking, and zero-
energy crossings (highlighted by the conductance enhancement at
jVbiasj ¼ Δ=e) marking ground state parity transitions in the
spectrum. (c),(d) Enlargement of (a),(b) on the ABS spectrum at
negative Vbias. The white arrows indicate the spin-split Andreev
levels discussed in the text.
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plane of Fig. 4(b). Here, we observe conductance reso-
nances defining pairs of triangles, which are within the
phase space areas fulfilling the discrete vortex condition
[red triangles in Fig. 1(c), whose perimeter is reported as
the dotted white triangles in Fig. 4(b)]. Finally, Fig. 4(c)
shows the cut plane at eVbias þ Δ ¼ −40 μeV, revealing
the evolution of the high-transmission ABSs and of the split
lines at higher bias, and the occurrence of an additional
ABS with lower transmission in the spectrum. More cut
planes for varying Vbias are presented in Ref. [66] (see
Fig. S3 [66]), as well as the conversion from the flux-line-
current axes ðIL; IRÞ to the flux axes ðΦL;ΦRÞ (see
Fig. S11 [66]).
To further investigate the origin of the splitting identified

in Figs. 3 and 4, we measure additional constant-energy
planes and ABS spectra along the ΦL ¼ Φ0 −ΦR direction
while an external in-plane magnetic fieldB is applied to the
device. Rashba SOC in InAs is expected to result in an in-
plane spin-orbit field BSO perpendicular to the direction of
motion [69]; however, since the geometry of the 3TJJ does

not impose a preferential direction for transport, we cannot
make assumptions regarding the orientation of BSO.
Instead, we perform a coarse angle dependence of B
and identify directions û1 and û2 that are inferred to be
approximately parallel and orthogonal to BSO based on the
symmetry of the resulting spectrum (see Ref. [66],
Sec. VIII for additional orientations of the in-plane mag-
netic field). When Bkû1 [Figs. 5(a) and 5(d)], we observe
a pronounced asymmetry in both the triangular features
at zero energy [Fig. 5(a)] and the split ABS spectrum
[Fig. 5(d)], as expected from spin-orbit-split states in the
case that B has a large component along BSO [21–23,70].
Compared to the zero-field case, ABSs appear to smoothly
cross the flux-independent line, consistent with the soft-
ening of the superconducting gap of the probe caused by
the applied magnetic field [71]. Notably, the splitting is
enhanced on one side of the line cut (ΦL ¼ Φ0 −ΦR >
0.5Φ0) and reduced on the other side, consistent with
the Zeeman effect. For example, at fluxes 0.32Φ0 and

FIG. 4. Constant-energy cut planes of the Andreev band
structure measured in the two-dimensional phase space. (a) Dif-
ferential tunneling conductance G as a function of flux-line
currents IL and IR at fixed voltage bias Vbias, such that eVbias þ
Δ ¼ −20 μeV (with Δ ¼ 167 μeV), resulting in a cut plane
20 μeV below the Fermi level. Periodicity along two directions,
corresponding to the external magnetic fluxes ΦL and ΦR, is
highlighted by the white segments. Dashed cyan and green lines
indicate the phase-space line cuts ΦL ¼ ΦR and ΦL ¼ Φ0 −ΦR,
shown in Fig. 3, and correspond to the paths ϕL ¼ ϕR and ϕL ¼
2π − ϕR plotted in Fig. 1(c). Split lines marked by the turquoise
arrows are related to the spin-split Andreev levels visible in the
spectrum [Figs. 3(b) and 3(d)]. (b) As (a), but measured at
eVbias þ Δ ¼ 0 to probe the Andreev band structure at zero
energy. Conductance peaks are zero-energy Andreev level cross-
ings in the spectrum, corresponding to transitions in the ground
state parity of the system, and thus enclose regions of odd parity.
These are comprised in the phase-space regions where the
discrete vortex condition is verified [red in Fig. 1(c), reported
here as the dotted white triangles]. (c) As (a), but at
eVbias þ Δ ¼ −40 μeV, showing the Andreev band structure at
higher energy.

FIG. 5. Effect of an in-plane magnetic field on the Andreev
bound state spectrum. (a) Differential tunneling conductanceG as
a function of flux-line currents IL and IR at fixed voltage bias
Vbias ¼ −167 μV, with an in-plane magnetic field B of magni-
tude of 15 mT applied along the direction of û1 [see Fig. 2]. The
strong asymmetry in the ABS features is attributed to the
alignment of B with the spin-orbit field BSO and indicates that
the split lines originate from the spin degree of freedom. (b) As
(a), but reversing the direction ofB, which causes the inversion of
all features with respect to ΦL ¼ ΦR ¼ Φ0=2. (c) As (a), but
applying a magnetic field of 20 mT along û2 (orthogonal to û1)
and at Vbias ¼ −157 μV. Symmetry of the features is compatible
with B⊥BSO. (d) Conductance G as a function of Vbias along the
ΦL ¼ Φ0 −ΦR line cut [dashed blue line in (a)], for a magnetic
field of 15 mT along û1, revealing the asymmetry in the ABS
spectrum. White bars indicate the spin splitting at ΦL ¼ Φ0 −
ΦR ¼ 0.32Φ0 and 0.68Φ0. (e) As (d), but reversing B. Spectral
ABS features are reversed. (f) As (d), but with a magnetic field of
20 mT applied along û2. The spectrum symmetry is consistent
with the cut plane in (c).
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0.68Φ0—where the maximum zero-field splitting of
approximately 38 μV is observed in Figs. 3(b) and 3(d)
—the two spin levels are split by about 32 and 44 μV,
respectively [see white bars in Fig. 5(d)]. AssumingBkBSO
and jBj ≪ jBSOj, the Zeeman splitting EZ ¼ g�μBjBj
(where g� is the effective g factor in InAs and μB the
Bohr magneton) is added to or subtracted from the
zero-field spin-orbit-induced splitting, thus yielding
EZ ≈ 6 μeV and g� ≈ 7, comparable to previous observa-
tions [72]. By further considering a Rashba coefficient
α ∼ 2.2 × 10−11 eVm [65] and an electron sheet density
ns ¼ 8 × 1011 cm−2 (see Ref. [66], Sec. I), we estimate
jBSOj ¼ α

ffiffiffiffiffiffiffiffiffiffi

8πns
p

=g�μB ∼ 24 T. Furthermore, we verify
that all spectral features of Figs. 5(a) and 5(d) are flipped
around ΦL ¼ ΦR ¼ Φ0=2 upon inversion of the magnetic
field direction, as seen in Figs. 5(b) and 5(e). Conversely,
an asymmetry is not expected when the field is applied
orthogonal to BSO, which is approximately the situation of
Figs. 5(c) and 5(f) for Bkû2.
The measurements presented in Figs. 3(b) and 3(d)

display the two key signatures of the spectra predicted
by Ref. [30], schematically summarized in Fig. 1(e): ABS
splitting and zero-energy crossings. We thus interpret the
former as spin-degeneracy breaking, and the latter as
fermion parity transitions in the ground state of the system
]31 ]. We note that our device is not an exact realization of

the theoretical proposal and, in line with the additional
complexity and different parameter regime of the exper-
imental platform, some details of the measured spectra
deviate from the simulations. Nevertheless, to the best of
our knowledge, the model proposed in Ref. [30] offers the
most suitable theoretical description of the system under
study. The essential ingredients of the model are present in
our realization, which motivates its use as a framework
to interpret the main experimental signatures. The two
effects that we report, occurring in the absence of Zeeman
magnetic fields, are a direct manifestation of the Andreev
band structure of a 3TJJ with Rashba SOC, and are enabled
by control over two superconducting phase differences.
Experimentally, such control via flux-bias lines is local and
allows for wide tunability of the spin-splitting size and of
the parity of the system. In our data, we observe a
maximum energy splitting of about 38 μeV, corresponding
to a frequency of over 9 GHz and to 0.22Δ (for an induced
superconducting gap of Δ ¼ 167 μeV), that is approxi-
mately one order of magnitude larger than what has been
achieved in long JJs based on nanowires with SOC [23,28]
and aligns to the theoretical prediction [30]. The cut planes
of the Andreev band structure at constant energy (Fig. 4)
show the trajectories of spin-split ABSs and of zero-energy
crossings in the 2D phase space. In Fig. 4(b), the triangles
enclosed by the zero-energy conductance peaks represent
regions where the ground state fermion parity has transi-
tioned from even to odd, fulfilling the discrete vortex
condition. Measurements in an in-plane magnetic field

display an anisotropic behavior, with a pronounced asym-
metry and an enhanced splitting when B is inferred to be
approximately aligned with BSO. This further indicates that
the origin of the splitting is related to the spin degree of
freedom.
The results discussed thus far were acquired with no

tuning of the 3TJJ gates, i.e., at VL ¼ VM ¼ VR ¼ 0.
Additional gate configurations are presented in Figs. S5–
S10 [66], showing the effect of individual gates and
indicating that the main spectroscopic features are still
present regardless of the specific tuning. Importantly, key
features such as ABS level splitting and zero-energy
crossings are visible only when all three terminals are
coupled to the scattering region. These data also reveal the
presence of a high-transmission conductive channel
between each pair of terminals. By comparing with a
previous realization [53], we deduce that the superconduct-
ing island constitutes an experimentally crucial ingredient
to enable this situation, in particular, to have a channel
between the terminals with the largest separation (which
was not observed in Ref. [53]). Spectral signatures similar
to those presented here were also measured on a second
device (see Figs. S14 and S15 [66]).
In summary, we investigated ABS spectra in a phase-

controlled 3TJJ with SOC via tunneling spectroscopy
experiments. Independent control over two superconduct-
ing phase differences enabled access to the Andreev band
structure in the 2D phase space. We observed ABS
splitting, compatible with breaking of the spin degeneracy,
and zero-energy Andreev level crossings, indicating ground
state fermion parity transitions. Theoretical predictions for
multiterminal JJs with SOC [30] were considered to
support our interpretation. In the phase space probed at
zero energy, odd-parity regions were enclosed by contours
of conductance peaks forming pairs of triangles, fulfilling
the necessary condition for parity transitions, namely the
presence of a discrete vortex in the 3TJJ. Both effects—spin
splitting and parity transitions—arise without the need for
Zeeman magnetic fields or Coulomb blockade, and are
tuned by controlling superconducting phase differences.
The size of the observed splitting (up to approximately
38 μeV, or over 9 GHz) is substantially larger than
previously reported values in nanowire-based long JJs.
These results demonstrate that spin and parity degrees of
freedom of quantum states are widely controllable by phase
tuning in multiterminal hybrid nanostructures. An imme-
diate application is the realization of superconducting spin
qubits benefiting from a large, phase-tunable spin-level
splitting at zero external fields. Parity control in open
systems could be exploited for the engineering of topo-
logically protected Kitaev chains and parity-protected
qubits. The access to transition frequencies between
spin-resolved levels of several gigahertz makes our devices
ideal for integration with circuit quantum electrodynamics
architectures, while in situ and fast frequency tuning via

M. CORAIOLA et al. PHYS. REV. X 14, 031024 (2024)

031024-6



integrated flux-bias lines will potentially enable high-
performance logic and multiqubit coupling schemes.
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openly available [73].
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