
Tracking the Distance to Criticality in Systems with Unknown Noise

Brendan Harris *

School of Physics, The University of Sydney, New South Wales 2006, Australia

Leonardo L. Gollo
The Turner Institute for Brain and Mental Health, School of Psychological Sciences,

and Monash Biomedical Imaging, Monash University, Victoria 3168, Australia

Ben D. Fulcher
School of Physics, The University of Sydney, New South Wales 2006, Australia

(Received 25 October 2023; revised 17 April 2024; accepted 6 June 2024; published 8 August 2024)

Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often
with dramatic and irreversible consequences. Much existing theory on identifying the time-series
signatures of nearby critical points, such as increased signal variance and slower timescales, is derived
from analytically tractable systems, typically considering the case of fixed, low-amplitude noise. However,
real-world systems are often corrupted by unknown levels of noise that can distort these temporal
signatures. Here we aim to develop noise-robust indicators of the distance to criticality (DTC) for systems
affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and
variable across recordings. We present a highly comparative approach to this problem that compares the
ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf
bifurcation. Our method recapitulates existing theory in the fixed-noise case, highlighting conventional
time-series features that accurately track the DTC. But in the variable-noise setting, where these
conventional indicators perform poorly, we highlight new types of high-performing time-series features
and show that their success is accomplished by capturing the shape of the invariant density (which depends
on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the
noise amplitude). We introduce a new high-performing time-series statistic, the rescaled autodensity
(RAD), that combines these two algorithmic components. We then use RAD to provide new evidence that
brain regions higher in the visual hierarchy are positioned closer to criticality, supporting existing
hypotheses about patterns of brain organization that are not detected using conventional metrics of the
DTC. Our results demonstrate how large-scale algorithmic comparison can yield theoretical insights that
can motivate new theory and interpretable algorithms for solving important real-world problems.
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I. INTRODUCTION

A critical point, or bifurcation point, marks the value of
some control parameter at which the dynamical properties
of a system undergo a qualitative change, such as the
appearance or disappearance of an attractor [1]. Many
phase transitions occur at critical points described by
bifurcations in macroscopic models of statistical ensembles

or complex systems [2]. In spin glasses, a net magnetization
emerges at a critical value of the temperature order
parameter [3], while in cosmology, the temperature con-
trols the electroweak phase transition and baryon (matter-
antimatter) asymmetry [4]. The dynamics of complex
systems—from the brain to biological swarms—can also
be understood in terms of their vicinity to a critical point,
with near-critical systems possessing a range of functional
advantages [5]. In the brain, for example, traversing critical
points is thought to mediate changes in behavioral and
cognitive functions such as memory storage and retrieval,
as well as visual attention and processing [6–10].
Crossing a critical point can have dangerous conse-

quences. For example, generator voltages in power dis-
tribution networks undergo bifurcation and transition from
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fixed-point stability to unsafe oscillation at a critical value
of system load [11,12]. At so-called tipping points, where
crossing a critical point leads to instability, the system may
also change catastrophically as it rapidly transitions to a
new state [13,14]. Catastrophes occur in simple physical
systems, such as slipping events in wires under stress [15],
as well as in models of sleep-wake transitions [16,17],
transitions to epileptic brain states [18,19], and major
climate events such as the desertification of North Africa
[20]. Moreover, critical phenomena are studied across
scientific domains, including physics [21,22], neuroscience
[5,7], medicine [23,24], biology [25], and engineering [26].
The ubiquity of critical phenomena calls for a noise-robust
method that can predict how close a system is to a critical
point [27]: to give warning of epileptic seizure [18,19],
anticipate power distribution failures [28], forecast immi-
nent climate catastrophes [29], or to better control cognitive
changes using brain stimulation [30].
Despite the ubiquity and diversity of critical systems,

critical phenomena are remarkably linked by a common
mathematical foundation: normal forms and bifurcation
theory [13,14]. This theory categorizes most systems near a
critical point into a well-studied, analytical taxonomy of
bifurcations [1,31]. Moreover, a surprising number of
systems exhibit relatively simple, codimension-one bifur-
cations [1,32], including saddle-node bifurcations found in
the dynamics of neuronal spiking [33], pitchfork bifurca-
tions in Bose-Einstein condensates [34], or Hopf bifurca-
tions in laser cavities [35], financial markets [36], the
auditory system [37], thalamocortical models [38], and
models of interacting brain regions [39]. Each type of
bifurcation is associated with a normal form—a dynamical
equation that encapsulates the essential qualitative behavior
near the critical point, regardless of the system [40]. Driven
by the allure of solving a plethora of real-world challenges
simultaneously, much recent work has studied this unifying
mathematical structure of critical phenomena with the aim
of identifying universal indicators of criticality. For normal
forms and other systems that can be modeled analytically,
this task is equivalent to estimating the control parameter
that determines how close the system is to the bifurcation
point. As such, a primary goal of studying normal forms
has been to derive simple dynamical properties that
diagnose how close a critical system is to a bifurcation
point. Here, we term this quantity the distance to criticality
(DTC) [41], which is determined by the control parameter
in model systems.
Studies of normal forms and real-world critical systems

have identified basic but universal dynamical character-
istics that are informative of the DTC [42]: Near a critical
point, dynamics are more variable and evolve on a slower
timescale [25,43,44]. Both properties can be understood as
a by-product of the flattening of the potential function of a
system near the critical point. A flatter potential about a
local minimum (fixed point) increases the return time when

a system is perturbed [45] and slows the timescale of
fluctuations in a system driven by noise—a phenomenon
known as critical slowing-down [43]. Because a flatter
potential function also decreases the confinement of noise-
related diffusion, the domain explored by a stochastic
system will expand when the system is close to the critical
point. Hence, the standard deviation of a time series
increases near a bifurcation point, and has been shown
to scale like a negative power of the control parameter when
the strength of additive noise is close to zero [13,46,47].
Although properties of the potential function naturally
motivate standard deviation and autocorrelation as indica-
tors of criticality, many related features are used to estimate
the DTC in a variety of fields [42,48] including time-series
skewness of chlorophyll in lake ecosystems [49], increases
in low-frequency fluctuations of voltage in electrical power
systems [26], spatial autocorrelation of coupled dynamical
systems [50], and other multivariate critical indicators
[19,51,52]. Notably, qualitative signatures of criticality,
such as maximized autocorrelation timescales, are universal
across classes of bifurcations and forms of noise.
In deriving quantitative statistical indicators for the DTC,

mathematical analyses typically assume the presence of a
weak stochastic component relative to dominant determin-
istic dynamics [53]. Stochastic influences are typically
classified as either measurement noise, which is applied
to the final signal independent of the underlying dynamics
of the system, or dynamical noise, which is incorporated into
the equations of motion and constantly perturbs the deter-
ministic dynamics [54,55]. Progress has been made in
deriving scaling laws for critical indicatorswhen the strength
of dynamical noise is close to zero, such as the relationship
between variance and the control parameter when approach-
ing various bifurcations [13,14]. Unfortunately, even noise
with a small but nonvanishing strength complicates the task
of defining (let alone predicting) bifurcation points in
stochastic systems [56,57]. One common approach, which
we operate under in this work, is to designate the bifurcation
point as the value of the control parameter that divides
invariant densities with distinct qualitative properties (see
Sec. III C). For example, if dynamical noise is incorporated
into the normal form of a pitchfork bifurcation, then the
distribution of states visited by the system converges over
time for a fixed control parameter. The transition between a
unimodal and bimodal invariant density corresponding to
the appearance of a second attractor occurs at the same value
of the control parameter as bifurcation in the deterministic
terms alone [58]. This splitting of the invariant density (see
Sec. III C) termed a phenomenological bifurcation [53]
tends to precede other types of bifurcation points defined
by changes in dynamical measures (known as dynamical
bifurcations) [58] and gives a natural definition for the
critical point that we use here.
Many physical systems, however, are subject to noise

that is not small relative to the scale of their deterministic
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dynamics. In real-world applications, the limitations of
conventional indicators of nearby critical points are tied to
the need for quantitative accuracy despite a limited under-
standing of the system, in particular, its stochastic compo-
nents. Rather than looking for a qualitative increase or
divergence in a statistical indicator of the DTC, which may
be sufficient to diagnose a bifurcation after it has taken
place, tasks such as estimating the amount of time (e.g.,
minutes or seconds) until a patient will have an epileptic
seizure, or the amount of time (e.g., years) until an
ecosystem will collapse, require precise calibration of
the values of a critical indicator against a control parameter.
In such cases, variations in the strength of noise destroy
the precise relationships required for quantitatively estimat-
ing the DTC, such as by shifting the control parameter at
which dynamical measures peak [58]. For example, mod-
erate noise has been incorporated into models of critical
transitions to neuron spiking [33], climate tipping [59], and
the sleep-wake transition [17]. Although conventional
critical indicators are analytically universal (close to the
critical point, when noise is vanishingly small) and have
been successfully applied to some real-world problems
[18,20,42], they have yet to find widespread practical
application in many noisy scenarios, such as predicting
epileptic seizures [19,60]. Since properties such as standard
deviation, autocorrelation, or skewness are highly sensitive
to noise [47], the need for exact calibration is a point of
failure for conventional indicators of criticality in systems
where the strength of noise is unknown or variable.
Dynamical noise—particularly when it has an unknown
variance or distribution—is one of the major obstacles to
applying universal theory and critical indicators derived for
analytic systems to real-world scenarios involving finite,
noisy time series.
To our knowledge, all conventional indicators of criti-

cality are sensitive to noise. Some prior work has charac-
terized how the strength of a noise process affects the
time-series properties used to infer the control parameter,
and therefore the DTC. Although scaling laws, which
describe how the indicator varies with the control para-
meter, have been derived analytically for some indicators of
criticality in low-noise cases, such a scaling may not hold
under moderate or high levels of noise. For instance,
Meunier and Verga [58] demonstrated for the pitchfork
bifurcation that features such as the Lyapunov exponent
and autocorrelation no longer peak at the phenomenologi-
cal bifurcation point in the presence of additive noise.
Instead, the peak of these time-series features (which marks
a dynamical bifurcation point) is shifted along the control
parameter to a degree that depends on the noise variance,
thereby obscuring the critical point. Moreover, the splitting
of the invariant density becomes less abrupt with increased
noise, and other dynamical effects can occur after bifurca-
tion of the underlying deterministic component [58,61].
Even a recent measure formulated to reliably signal the

critical point across classes of bifurcations is sensitive to
dynamical noise [62].
While some studies have examined the behavior of critical

indicators in systems with a given fixed noise level, prior
work has yet to address real-world settings inwhich the noise
amplitude is unknown and may vary (across different
recordings of the system, or over instances of otherwise
similar systems). For example, variable dynamical noisemay
arise when studying (i) the ecological dynamics of species,
with noise varying between sites with different climates or
weather patterns, (ii) the response of brain areas to random
stimulation, where the strength of the stimulation is metered
by anatomical differences such as skull thickness [63],
(iii) the sleep-wake or epilepsy transition, in which dynami-
cal noise may be influenced by a subject’s individual
physiology or environment [17,64], (iv) climate systems,
inwhich the influence of sources of variability such as human
activity change over time [59,65], or (v) components of other
systems that may be influenced by different external sto-
chastic drives or complex internal heterogeneity [9,66]. This
problem is particularly challenging because knowledge of
the noise process, especially its variance, is required to
properly calibrate time-series features for meaningful pre-
diction of theDTC.Additionally, established analytical tools
that have been used to make progress in idealized cases
cannot be applied straightforwardly to the variable-noise
setting because their precise relationship to the control
parameter depends on the noise amplitude. For example,
two prototypical time-series indicators of the DTC—
standard deviation and autocorrelation—both depend
strongly on the strength of noise in the system: standard
deviation increases with noise level, while autocorrelation
decreases.
Given the ubiquity of systems corrupted by an uncertain

amount of noise, it is of great importance to formulate
robust indicators of the distance of such systems to nearby
critical points. In this work, we introduce a data-driven
methodology to tackle this problem, in which we simulate a
noisy bifurcating system close to a critical point and then
search across a large candidate library of time-series
features, scoring each on how well it captures the DTC
of a simulated system (Sec. II C). The most comprehensive
collection of time-series features to date is the highly
comparative time-series analysis library hctsa, which con-
tains over 7000 diverse features [67–69]. It contains
measures of the distribution of time-series values, self-
correlation properties, measures of predictability and com-
plexity, methods relating to self-similarity and recurrence
properties derived from the literature on physics and
nonlinear time-series analysis, among many others.
Here, we address the challenge of inferring the DTC using
the data-driven approach of identifying the most inform-
ative time-series features for a given criticality problem
by searching across the hctsa feature set. To study how
each time-series feature is influenced by dynamical
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noise, we consider our model system in two scenarios
(Sec. II C): (i) the fixed-noise case in which the noise has a
fixed strength and (ii) the variable-noise case in which the
noise amplitude varies across repeated measurements of the
system. While ensemble methods that use combinations of
time-series features to optimize a performance metric have
been employed in many prior applications of feature
libraries such as hctsa [67,70], we aim in this work to
demonstrate an alternative approach: that a large library of
time-series analysis algorithms can form the foundation for
building novel time-series theory and interpretable algo-
rithms for analyzing real-world data. We find the most
noise-robust features by identifying those that covary most
strongly with the control parameter in the case of variable
noise, then use close inspection to explain how these high-
performing features combine the characteristics of noise-
driven fast fluctuations with measurements taken from the
stationary distribution (see Sec. III C). This combination
enables a precise estimate of the shape of the potential, and
hence an ability to track the DTC, despite the confound of
uncertain noise amplitude.
The paper is structured as follows. In Sec. II, we

introduce the supercritical Hopf normal form that we use
as a model critical system (in Sec. II A) and describe how
we sample noise and control parameters to generate a
dataset of simulated time series (in Sec. II B). We detail our
feature-extraction procedure and our scoring method for
identifying high-performing features in the fixed-noise and
variable-noise cases in Sec. II C. Next, in Sec. III, we reveal
how well features across the hctsa library perform in the
fixed-noise (Sec. III A) and variable-noise (Sec. III B)
cases. After identifying the top-performing hctsa features
in the variable-noise case and examining them in detail
(Sec. III C), in Sec. III D we summarize the theoretical
insight we gained from our data-driven approach and
encapsulate our findings in a new time-series feature,
which we call rescaled autodensity (RAD), that can
robustly track the DTC in near-critical systems with
unknown noise amplitude. In Sec. III E, we use RAD to
examine mouse electrophysiology data sourced from the
Allen Neuropixels Visual Behavior dataset. Our investiga-
tion tests a structure-function hypothesis positing that
regions higher in the cortical hierarchy exhibit longer
timescales [71–75] due to their closer proximity to criti-
cality [7,76]. Our findings demonstrate the ability of RAD
to accurately track the anatomical hierarchy of visual
cortical regions, outperforming conventional indicators of
the DTC. Finally, in Sec. IV we provide concluding
remarks, discuss the implications of our findings for other
noisy critical phenomena, and outline potential directions
for future research.

II. METHODS

Here we outline our data-driven approach to finding
useful statistical indicators of the DTC in the presence of

dynamical noise in two cases: the fixed-noise case and the
variable-noise case. Our approach is shown schematically
in Fig. 1 and can be summarized in two main steps:
(i) simulate a time-series dataset from the normal form of a
supercritical Hopf bifurcation [see Eq. (1)], where each
time series is generated using a specific control parameter
(varying over a range up to the bifurcation point) and noise
variance (either fixed or varying over a specified range),
and (ii) extract candidate features from each time series
using the hctsa time-series feature library [67,68] and score
each feature on how well it tracks the control parameter μ
across the dataset. In the fixed-noise case, the noise process
has a constant strength; i.e., η is fixed for all time series in
the dataset. By contrast, in the variable-noise case the noise
amplitude can take a different value for any given time
series; this setting models real-world situations in which the
strength of noise might vary across different recordings of a
system or across different instances of similar systems.

A. The model system

We first describe the model system used for generating
time series at various distances, in the control parameter,
from a critical point. We choose the radial component of the
normal form for a supercritical Hopf bifurcation with
dynamical noise, as it applies to a broad range of real-
world systems, including the wake-sleep transition [17],
seizure dynamics [64], auditory hair cells [77,78], financial
markets [36], and many others [6,7,37,79,80]. Our system
derives from the general normal form of a supercritical
Hopf bifurcation [81], in which a stable fixed point
bifurcates to a stable limit cycle and an unstable fixed
point. Since noise often acts radially with a strength that is
independent of the system’s phase, we choose to use the
simplified radial component of the Hopf normal form
given by

dx ¼ ðμx − x3Þdtþ ηdW; x ≥ 0; ð1Þ

where W is a Wiener process. Notably, this resembles the
normal form of pitchfork bifurcation with a reflecting
boundary at the origin [6], permitting our results to
generalize via a simple transformation to systems that
exhibit pitchfork-type bifurcations (such as spin-glass
systems [3] or models of epigenesis [82]). As shown in
the bifurcation diagram in Fig. 1(a), a bifurcation occurs at
the critical value μ ¼ 0: For μ < 0 there is a single stable
fixed point at x ¼ 0, whereas for μ > 0 the origin is
unstable. The corresponding potential function of this
system detailed in Sec. III C is unimodal for μ < 0, flattens
as μ is increased to 0, and is bimodal for μ > 0.
Here we consider the more complex problem of

approaching the critical point from μ < 0 corresponding
to the regime with a single, stable fixed point where the
system hovers near the origin [shaded in Fig. 1(a)]. We
focus our study on this regime for three reasons. First,
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during events such as power-system failure [11,12] and
epileptic seizures [64] the fixed-point regime corresponds
to safety, with the presence of low-power fluctuations, in
contrast to the dangerous high-power oscillations that occur

for μ > 0. Second, the DTC is much more straightforward
to estimate for μ > 0: Features that measure simple proper-
ties of the distribution, such as the mean or median, are
insensitive to η when the noise amplitude is not large

Score time-series featuresExtract time-series features

Can we predict the DTC, μ, when uncertain
noise corrupts conventional features? 

Simulate time series for a range of μ Vary η between time series

0.25 0.50.1 10.01

0

-0.25

-0.5

-0.75

-1

0

-0.25

-0.5

-0.75

-1

0 5000 500

(a) (c)

(d) (f)

(g)

(b)

(e)

FIG. 1. We take a data-driven approach to identifying time-series features that accurately track the DTC of a noisy, near-critical system
across a range of noise levels. (a) We investigate a model system close to the critical point: the radial component of the normal form for a
supercritical Hopf bifurcation with μ < 0 given by Eq. (1). A bifurcation diagram shows the radius of equilibrium points x against the
control parameter μ; when μ < 0 (shaded red), there is a stable fixed point (solid black) at the origin. The model incorporates additive
white Gaussian noise given by dW with a noise amplitude of η. We simulate time series across −1 ≤ μ ≤ 0 and 0 < η ≤ 1. Snippets of
representative time series are annotated. (b) Representative time series of 5000 samples for the fixed-noise problem, for which the noise
level is fixed (shown here for η ¼ 0.01) at selected values of μ ¼ −1;−0.75;…; 0. As μ approaches zero, it is visually clear that signal
variance increases and fluctuations are slower. (c) Sample time series for the variable-noise problem: A different value of 0.01 ≤ η ≤ 1 is
chosen for each time series, as indicated by the coloration. Relative to the fixed-noise case, the variable-noise amplitude obscures the
underlying variation in the control parameter μ. (d),(e) To find time-series properties that are sensitive to μ in both the fixed-noise and
variable-noise settings, we compare 7492 candidate time-series features using hctsa [68]. (d) The result of this feature extraction for a
fixed value of η is depicted as a time series × feature matrix, with rows ordered by μ. (e) The feature matrix for our full dataset, with
variation in both μ and η, is depicted in the right panel, with rows ordered by η. (f),(g) Finally, we score each feature for its performance
under the two conditions as ρfixμ and ρvarμ . In the fixed-noise setting (f), ρfixμ is computed by averaging the magnitudes of the correlation of
a feature with μ for each separate value of η ¼ 0.01; 0.02;…; 1 (colored lines). In the variable-noise case (g), ρvarμ is an overall correlation
to μ after η labels are discarded (indicated in gray). An example is shown here for the autocorrelation at lag 1 (labeled AC_1), which is
strongly correlated to μ for a given noise-level η (f) but weakly correlated only in the variable-noise case (g).
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compared to the equilibrium radius [given by
ffiffiffi
μ

p
for

Eq. (1)]. Third, when the noise strength is large enough
to mask changes in the distribution caused by varying
μ > 0, the system is already sufficiently close to the
bifurcation point for the disappearance of the unstable
branch to be insignificant.

B. Time-series simulation

To evaluate the performance of individual time-series
features at tracking μ in the presence of a stochastic
component with strength η, we simulated Eq. (1) in the
range −1 ≤ μ ≤ 0. We studied both the fixed-noise and
variable-noise scenarios with a combined time-series data-
set generated by varying parameters across ranges −1 ≤
μ ≤ 0 and 0 < η ≤ 1. In total, we simulated 10100 time
series x using all combinations of 101 equally spaced
values for μ ¼ −1;−0.99;…; 0, and 100 equally spaced
values of η ¼ 0.01; 0.02;…; 1. Time series were simulated
using the Euler-Maruyama method [83] over 1000 s with a
time step of 10−3 s. To avoid the effects of transient
dynamics (which are sensitive to the initial condition),
we set an initial radius of x0 ¼ 0 coinciding with the stable
fixed point of the system. Moreover, we discarded the first
500 s of the integration period corresponding to an interval
far wider than the longest timescale in any of our
simulations (estimated using the first zero crossing of
the autocorrelation function). Finally, we down-sampled
the remaining 500 s to a sampling period of Δt ¼ 0.1 s,
yielding 5000-sample time series that were analyzed in the
remainder of this work. From this combined dataset, we
studied the fixed-noise case by searching for features that
varied with μ when η was fixed, as depicted in Fig. 1(b). In
the variable-noise case depicted in Fig. 1(c), we searched
for time-series features that varied with μ in a way that was
consistent over confounding variation of η. Finally, note
that our data-driven approach was focused on relatively
short time series containing 5000 samples, in contrast to
other studies that evaluated critical indicators on simulated
data [62]. Representative examples of simulated time series
are in Figs. 1(b) and 1(c).

C. Feature scoring

We next aimed to determine which types of time-series
features extracted from the noisy time series simulated
above could accurately track variations in the known
parameter μ. We achieved this in a data-driven way using
a comprehensive collection of 7873 candidate time-series
features from the highly comparative time-series analysis
toolbox hctsa (version 0.98) [67,68]. Each time-series
feature f∶ RN → R maps an input time series (of
N ¼ 5000 samples here) to a single, real-valued summary
statistic. The hctsa feature set contains methods developed
across the interdisciplinary time-series analysis literature,
including measures of outliers, periodicity, stationarity,

predictability, self-affine scaling, and many others.
We extracted all hctsa features from each simulated time
series in the dataset described above. After feature extrac-
tion, we removed 381 features from our analysis that were
not well behaved across all time series (e.g., produced not-
a-number values or constant outputs across the dataset),
leaving 7492 good-quality features. The result of feature
extraction across our full time-series dataset is visualized as
a time series × feature matrix in Fig. 1(e).
Our next goal was to assess the ability of each time-series

feature to track the underlying variation of the control
parameter μ across the time-series dataset described in
Sec. II B. We scored each feature using a Spearman
correlation coefficient ρ between its outputs across the
dataset and the corresponding values of μ; features with
high jρj strongly monotonically track the variation in μ. As
depicted in Figs. 1(f) and 1(g), we considered the fixed-
noise and variable-noise cases separately.

1. Fixed-noise case

In the fixed-noise case, where the noise amplitude is
constant across recordings, we analyzed subsets of time
series with the same value of η. As depicted in Fig. 1(f), for
each set of 100 time series with a given value of η, we
calculated the Spearman correlation of each feature with μ
(over μ ¼ −1;−0.99;…; 0). We then computed the fixed-
noise score of a given feature ρfixμ as the mean magnitude of
these 100 Spearman correlation coefficients calculated
independently for each noise level. That is, ρfixμ measures
the average performance of a time-series feature across
many settings that each have a unique fixed noise level.

2. Variable-noise case

In the variable-noise case, where the noise amplitude
varied between recordings, we disregarded the η labels of
each time series (treating them as unknown), as depicted in
Fig. 1(g). We then computed the variable-noise score of a
given feature ρvarμ as the Spearman correlation between the
10 100 feature values (over all time series) and the
corresponding values of μ. In contrast to Fig. 1(f), all
points in Fig. 1(g) are uncolored, reflecting how the
variable-noise score is a correlation across all data points,
regardless of the noise strength. That is, ρvarμ measures the
performance in a single setting where the noise amplitude
varies across time series. Unlike the fixed-noise score ρfixμ
(which takes absolute values and is therefore non-negative
by construction), the variable-noise score ρvarμ can be
positive or negative, indicating whether the feature
increases or decreases with the proximity to criticality.

III. RESULTS

By systematically exploring a supercritical Hopf bifur-
cation, our main aim was to investigate which types of
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time-series properties (from a diverse library of over 7000
candidates in hctsa [68]) accurately track the DTC given
by jμj in the precritical regime of μ < 0. As detailed in
Sec. II C above, features were scored based on their
correlation to μ using either ρfixμ in the fixed-noise setting
(Sec. III A), and, separately, ρvarμ in the variable-noise
setting (Sec. III B). In the variable-noise case, we found
surprising types of features that strongly varied with the
DTC. By examining the algorithmic elements that are
common among these features and summarizing the
theoretical insight they provide (Sec. III C), we developed
a new time-series feature for tracking the DTC, which we
named the rescaled autodensity (see Sec. III D).

A. The fixed-noise case

We first investigated the fixed-noise case, where indi-
vidual features were scored according to their correlation
with μ for a fixed noise level η. We quantified this
correlation as ρfixμ (an average of absolute Spearman
correlation coefficients across each of the 100 noise levels
η; cf. Sec. II C). We hypothesized that features that are
well known to track the vicinity of a system to a
critical point—including measures of signal variance and

autocorrelation—would receive high ρfixμ scores. We also
sought to investigate whether any new types of features
showed strong performance.
The distribution of ρfixμ values across all 7492 time-series

features is shown as a histogram in Fig. 2(a). We found
many time-series features with strong performance on
this fixed-noise task, e.g., 1348 of the 7492 tested features
have ρfixμ > 0.8, and some features were scored as high
as ρfixμ ¼ 0.98. To more closely investigate the highest-
performing time-series features, we focused on the 100
features with ρfixμ > 0.97. We then sought to isolate groups
of similarly behaving features from within this set of 100
features by computing pairwise Spearman correlation
coefficients between all pairs of features (calculated using
all time series), and reordering them using hierarchical
linkage clustering. The results shown in Fig. 2(b) reveal
two distinct groups of high-performing features: one group
measuring autocorrelation properties (annotated with an
orange square), and another (smaller) group measuring
properties of the distribution of time-series values, includ-
ing mean and variance (annotated with a blue square).
The first cluster contains features that are sensitive to

autocorrelation; all features in this cluster are highly
correlated to lag-1 autocorrelation (hctsa feature name

(a) (b)

FIG. 2. For a near-critical system with a fixed noise level, we recovered high-performing conventional statistical indicators of the
distance to criticality by comparing the behavior of over 7000-candidate time-series features. (a) A histogram of fixed-noise feature
scores ρfixμ across 7492 time-series features (from the hctsa feature library). Selected high-performing features are annotated including
standard deviation (ρfixμ ¼ 0.98, labeled as standard_deviation, blue) and lag-1 autocorrelation (ρfixμ ¼ 0.97, AC_1, red). Names
of the top features for the variable-noise case are also annotated for comparison (cf. Fig. 3). (b) The top 100 features with ρfixμ ≥ 0.97 are
plotted as a pairwise correlation matrix. The brightness of each element corresponds to the similarity between each pair of these features,
using the metric 1 − jρj, where ρ is the Spearman correlation coefficient. Rows and columns have been reordered to place similar
features close to one another using average hierarchical linkage clustering (on Spearman correlation distances), revealing two clusters of
features with common behavior, which have been annotated using transparent colored squares. As labeled, the first cluster contains
features measuring properties of signal autocorrelation (orange), while the second cluster contains features measuring properties related
to the signal variance (blue). Features annotated in (a) are detailed in Table I, and for (b) a sorted list of features is in Supplemental
Material Table S2 [84].
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AC_1), which has ρfixμ ¼ 0.97. Disregarding the confounds
of noise amplitude and the time step, lag-1 autocorrelation
and other features that measure timescales of a system are
sensitive to the critical slowing-down that occurs close to
the critical point [20]. As well as lag-1 autocorrelation, our
data-driven analysis also revealed a range of conceptually
related features that can also effectively capture the same
variation in the self-correlation timescale, including mea-
sures of automutual information [85], properties of fitted
autoregressive time-series model residuals, and others (see
Supplemental Material Table S2 [84] for a list of the top
100 fixed-noise features clustered by similarity).
In the second cluster of features, which are related to the

distribution of time-series values, the standard deviation
(hctsa feature name standard_deviation) displays
very strong performance with ρfixμ ¼ 0.98. This is consistent
with expectation; the potential function described in
Sec. III C flattens when approaching a critical point,
leading to higher-variance fluctuations for a given noise
level η. Moreover, since the potential for our model system
has a reflecting boundary at x ¼ 0 [see Eq. (2)], we also
found that measures of central tendency such as the mean,
median, and root-mean-square, are highly correlated to the
spread of the distribution (as captured by the standard
deviation).
Our results have thus flagged two types of features that

vary with the DTC, recapitulating prior literature which has
focused on critical slowing-down (captured by measures of
time-series autocorrelation [20], including the simple and

effective indicator, lag-1 autocorrelation [13,14,42,43,48])
and fluctuations of increased variance (captured by the
spread of the distribution of time-series values) [86] near a
critical point. A complete list of hctsa features along with
their fixed-noise scores ρfixμ is in Supplemental Material
Table S1 [84].

B. The variable-noise case

Having established the ability of our data-driven
approach to recapitulate a theoretical literature on time-
series features for tracking the DTC in a system with fixed
noise, we next investigated the more difficult problem of
finding features that track the DTC in a variable-noise
setting. We are unaware of prior work that has examined
this relevant real-world scenario with a comprehensive
evaluation of statistical properties of time series that are
sensitive to μ but insensitive to η. The lack of an a priori
understanding of how to construct a noise-level-robust
indicator of the DTC from finite time series, and the
difficulty (or intractability) of a direct analytical route to
tackling the problem, makes it an ideal setting for our data-
driven approach.
We computed the variable-noise performance score

ρvarμ for all candidate time-series features in hctsa (full
results are in Supplemental Material Table S1 [84]). The
distribution of jρvarμ j across all 7492 features is plotted in
Fig. 3(a), including annotated scores of two selected
features (the standard deviation and lag-1 autocorrelation).

(a) (b)

FIG. 3. In the variable-noise setting, we identified a set of high-performing time-series features that measured properties of
the distribution of time-embedded values. (a) A histogram of the variable-noise scores jρvarμ j is shown across all 7492 hctsa time-
series features. Conventional indicators of criticality perform poorly, including standard deviation (ρvarμ ¼ 0.23, annotated as
standard_deviation) and lag-1 autocorrelation (ρvarμ ¼ 0.48, annotated as AC_1). (b) The top 20 features in the variable-
noise case (jρvarμ j > 0.86) are plotted in a pairwise correlation matrix, revealing many diverse clusters of features. Families of
conceptually similar features are annotated, and the top features from outlined clusters were selected for closer study. Features annotated
in (a) are detailed in Table I, and a sorted list of the features in (b) is in Supplemental Material Table S3 [84].
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Reflecting the increased difficulty of the variable-noise
setting, jρvarμ j values are lower on average than ρfixμ . We
nevertheless observed a tail of high-scoring features; e.g.,
49 time-series features have jρvarμ j > 0.8. As expected,
the top-performing features in the fixed-noise case, includ-
ing lag-1 autocorrelation (AC_1) and standard deviation
(standard_deviation) are sensitive to both μ and η,
and thus do not accurately track variation in μ in the
presence of confounding variation in η. For example, for
standard_deviation, ρfixμ ¼ 0.98 (in the fixed-noise
setting) drops to ρvarμ ¼ 0.23 (in the variable-noise setting),
while for AC_1, ρfixμ ¼ 0.97 drops to ρvarμ ¼ 0.48. To
understand this behavior, we plotted the dependence of
these two features as a function of μ for five selected noise
levels in Figs. 4(b) and 4(a). We saw that these features
varied monotonically with μ for any given η value (under-
lying their strong fixed-noise performance), but they were
highly sensitive to variation in η, making them unreliable
indicators of the DTC in the variable-noise setting.
We next aimed to better understand the high-performing

features that make up the right tail of Fig. 3(a). Focusing on
the top 20 features, with ρvarμ > 0.86, we plotted their
pairwise distance matrix (on Spearman correlation distan-
ces, 1 − jρj) in Fig. 3(b) (see Supplemental Material
Table S3 [84] for details on each cluster). One large family
of highly correlated features examines how properties of
extreme values within small windows (of approximately
100 samples) are distributed across the time series, such as
the average ratio between themaximum andminimum value
in each window [ST_LocalExtrema_l100_meanrat
shown in pink in Fig. 2(a)]. Other high-performing features
include those that measure the change in autocorrelation
after a proportion of time-series extrema are removed
(such as DN_RemovePoints_max_01_ac1diff, pur-
ple), the occurrence of simple motifs in a symbolization of
the time series (i.e., transforming a sequence of real values
to a symbolic string; SB_MotifTwo_mean_uu, green),
or the change in the distribution of time-series values after
smoothing the time series using a moving average
(PP_Compare_rav2_kscn_olapint, orange).

C. Algorithmic steps underlying
noise-robust features

In the previous section, we isolated a set of time-series
features that can track the control parameter μ, while being
minimally affected by changes in the noise level η, with
a surprisingly strong correlation (ρvarμ > 0.86). In this
variable-noise setting, conventional indicators of the
DTC, like standard deviation and lag-1 autocorrelation,
perform poorly. In this section, we aim to understand why
these features perform so well. We are able to explain this
by inspecting the algorithms underlying four of the highest-
performing features selected to represent the main clusters
of high-performing feature behavior [in Fig. 3(b)]. These

four features, which are named and briefly described in
Table I, are annotated in Figs. 2(a) and 3(a). Scatter plots of
these top features with the DTC μ for different noise levels η
[plotted in Figs. 4(c)–4(f)], as well as the joint distribution of
hctsa features over the fixed-noise and variable-noise scores
[plotted in Supplemental Material Fig. S1(a) [84] ] indicate
their high performance in both the fixed-noise and variable-
noise cases. Unlike the standard deviation [Fig. 4(a)] and
lag-1 autocorrelation [Fig. 4(b)], these high-performing
features vary strongly with μ in a similar way across noise
levels η, demonstrating their robustness to noise.
Despite appearing to be distinct features, close inspection

of the algorithmic steps underlying each top feature revealed
two key shared algorithmic components: (i) They involve
estimating a statistic derived from the distribution of time-
series values, such as a proportion of points within an
interval of values, and (ii) they compare this statistic to the
standard deviation of the incrementally differenced time
series (a quantity that is closely related to the lag-1
autocorrelation). In this section, we aim to summarize
how these two algorithmic steps, which appear critical to
the top-performing features, allow them to act as noise-
robust estimators of the DTC. As with conventional metrics
of criticality, such as standard deviation and autocorrelation,
we notice that both algorithmic steps are closely related to a
system’s potential function. By expressing these two proper-
ties in terms of the potential, we are able to explain how these
features can successfully infer the DTC despite uncertain
noise amplitude.We first derive the relationship between the
potential and the two algorithmic steps: (i) the distribution of
values and (ii) the spread of differences.

1. The shape of the potential VðxÞ depends on μ

The ability of some features to accurately track the DTC
in the presence of uncertain noise amplitude can be
understood in terms of the potential function of a system.
The potential function of a stochastic system describes the
effect of the deterministic components on the system
dynamics: The gradient of the potential at a given point
determines the rate of change due to the deterministic terms
at that point [1]. In this formalism, the evolution of a system
can be viewed intuitively as the trajectory of a heavily
damped particle following the gradient of the potential
toward a local minimum [1] in addition to any diffusive (or
stochastic) drives. The potential formulation provides a
useful way of understanding critical slowing-down and
other conventional metrics of the DTC [42]. The potential
function for the model system studied here is obtained by
integrating Eq. (1), giving

Vðx; μÞ ¼ −
μx2

2
þ x4

4
; x ≥ 0: ð2Þ

As depicted in Figs. 5(a)–5(d), as μ increases toward 0,
VðxÞ becomes shallower, reducing the restorative force
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(g) RAD

FIG. 4. Conventional features for tracking theDTCperformwell only in the fixed-noise setting, butwe uncover new features that robustly
track the DTC across different noise amplitudes. Feature values are plotted against μ for five values of the noise amplitude η ¼ 0.01, 0.25,
0.5, 0.75, 1. Two of the top fixed-noise features, (a) standard deviation and (b) lag-1 autocorrelation, are highly correlated to μ for any given
value of η (the fixed-noise case), but are poorly correlated across multiple η values (the variable-noise case). (c)–(f) The highest-performing
time-series features in thevariable-noise case are highly correlated to μ bothwithin and across η values, demonstrating robust tracking of the
DTC despite unknown noise amplitude. (g) A new feature introduced here, fitSupercriticalHopfRadius_1, distills the key
algorithmic elements of the top-performing features. However, the curve-fitting algorithm is unstable for η < 0.05, so only η ¼ 0.05 is
shown for this feature. (h) A second new feature, RAD, uses elementary time-series operations to yield a computationally efficient and
numerically stable estimate of the DTC. Each feature is summarized in Table I and detailed in Sec. III C.
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toward the origin. This change in the shape of the potential
results in dynamics with slower fluctuations (increased
autocorrelation) and diffusion over a larger domain
[increased standard deviation; cf. orange distributions in
Figs. 5(a)–5(d)]. However, Figs. 5(a)–5(d) also show that η
can make the relationship between the potential and auto-
correlation or standard deviation ambiguous: The time-
series autocorrelation takes a similar value for μ ¼ −2;
η ¼ 0.5 [Fig. 5(a)] as for μ ¼ −0.1; η ¼ 1.5 [Fig. 5(d)],
and the distribution has a similar standard deviation for

μ¼−2;η¼1.5 [Fig. 5(b)] and μ ¼ −0.1; η ¼ 0.5 [Fig. 5(c)].
While both the potential function and driving noise deter-
mine how a system evolves over time,we can see that a high-
performing algorithm for estimating μ in the presence of
variable noise should target a property that is specifically
affected by μ: the shape of the potential function Vðx; μÞ.

2. The invariant density pðxÞ
Under the conceptual framing provided by the potential

formulation, we next aimed to investigate whether the

(a)

Ambiguity in SD Ambiguity in AC

(c)

(e) (f)

(g)

(b)

(d) (h)

FIG. 5. Rescaling time-series values by the spread of differenced values corrects for the confounding effect of a variable-noise
amplitude. (a)–(d) We plot the potential function VðxÞ (determined by the control parameter μ shown black) and distribution of values
pðxÞ (orange) for four combinations of μ and η: (a) μ ¼ −2, η ¼ 0.5, (b) μ ¼ −2, η ¼ 1.5, (c) μ ¼ −0.1, η ¼ 0.5, and (d) μ ¼ −0.1,
η ¼ 1.5. The control parameter μ defines the DTC and determines the potential function VðxÞ. The flatness of VðxÞ gives rise to critical
slowing-down that, in combination with the noise amplitude η, determines pðxÞ and the lag-1 autocorrelation (annotated as AC_1, top
right). Both pðxÞ and lag-1 autocorrelation values give ambiguous estimates of the DTC: Different pairs of μ and η can result in the same
feature value. (e)–(h) Scatters of ðxt; xtþ1Þ (orange) and the rescaled ½xt=σðΔxÞ; xtþ1=σðΔxÞ� (blue) for the same four parameter settings
as in (a)–(d): (e) μ ¼ −2, η ¼ 0.5, (f) μ ¼ −2, η ¼ 1.5, (g) μ ¼ −0.1, η ¼ 0.5, and (h) μ ¼ −0.1, η ¼ 1.5. After rescaling by the standard
deviation in the xtþ1 − xt direction σðΔxÞ (described in Sec. III D), the distribution of xt þ xtþ1 becomes less sensitive to changes in the
noise amplitude. Annotated ellipses indicate the covariance of ðxt; xtþ1Þ (orange), which is strongly affected by changes in η, but
becomes more characteristic of μ after rescaling by σðΔxÞ (blue).

TABLE I. Summary of top-performing time-series features from the hctsa feature library. The magnitude of ρfixμ and ρvarμ indicate how
well each feature can track the distance to criticality in the fixed-noise and variable-noise settings, respectively. Our new features are
fitSupercriticalHopfRadius_1 and the RAD, CR_RAD_1.

Feature name ρfixμ ρvarμ Description

standard_deviation 0.98 0.23 Sample standard deviation
AC_1 0.97 0.48 Lag-1 autocorrelation
DN_RemovePoints_max_01_ac1diff 0.94 −0.88 Change in lag-1 autocorrelation from removing the largest 10% of values
SB_MotifTwo_mean_uu 0.93 0.88 Proportion of pairs of consecutive values that are both above the mean
PP_Compare_rav2_kscn_olapint 0.88 −0.87 Change in distribution after two-sample moving-average smoothing
ST_LocalExtrema_l100_meanrat 0.91 −0.90 Ratio between the average maximum and minimum in 100-sample

windows

fitSupercriticalHopfRadius_1 0.92 −0.90 Potential function curve fit to a kernel-density estimate of the distribution
RAD 0.93 0.93 Product of the spread of differences and tailedness of the distribution
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top-performing features were able to extract a noise-robust
estimate of μ from time-series data by estimating the shape
of the potential Vðx; μÞ. As described above, all top-
performing features measure properties of the distribution,
suggesting that this step may be relevant to robustly
estimating the DTC (see Sec. III B). Following this con-
nection, we investigated the invariant density pðxÞ: the
probability density to which the distribution of values from
a stationary system will converge over time. The invariant
density is valuable for describing bifurcations when the
abruptness of the qualitative change that occurs in the
deterministic system is destroyed or smoothed by noise
[58]. For a stationary system, the invariant density can be
derived from the potential function and the noise term by
taking the Fokker-Planck equation in the limit of infinite
time [81]. For the system studied here, Eq. (1), the invariant
density has the form

pðx; μ; ηÞ ¼ A exp

�
−2Vðx; μÞ

η2

�
; x ≥ 0; ð3Þ

which is normalized to unit probability mass by A [58]. For
fixed η, the potential can be inferred from the invariant
density as

Vðx; μÞ ¼ −
1

2
η2½lnpðxÞ − lnA�; ð4Þ

where it is straightforward to obtain an estimate of the
probability density pðxÞ from measured data (e.g., using a
kernel estimator [87]). Since Eq. (2), and therefore Eq. (4),
depend on μ, time-series features that measure properties of
the distribution of values in the time series (such as mean,
standard deviation, and skewness) are able to provide
accurate estimates of the DTC in the fixed-η case (as we
verified in Sec. III A). However, as Eq. (4) depends
strongly on η, features measuring the distribution of
time-series values are highly sensitive to noise and thus
have low ρvarμ (as we found in Sec. III B).
We now seek to incorporate the second algorithmic

component of the top-performing features, the spread of
differences, into our expression for the potential function, in
the hope that it may eliminate the noise amplitude η from the
invariant density and yield a noise-insensitive estimate of μ.

3. The spread of differences, σðΔxÞ
In addition to the distribution of time-series values, the

time-series features with the highest ρvarμ also indirectly
measure the spread of the incrementally differenced time
series Δx, where Δ is the first difference operator and
Δxt ¼ xt − xt−1 [88]. We write this spread here as σðΔxÞ,
where σ is the standard deviation (see Sec. A for further
details). Considering the drift and diffusion terms of
Eq. (1), we see that the standard deviation of increments
of the Wiener process scale with

ffiffiffiffiffiffi
Δt

p
[89], whereas

increments of ðμx − x3Þdt scale with Δt. Hence, for a
small time step Δt the standard deviation of the differenced
time series is dominated by the stochastic component ηdW.
In the short-time-step limit Δt → 0, such that

ffiffiffiffiffiffi
Δt

p
≫ Δt,

we obtain an approximation for inferring η:

σðΔxÞ ≈ η
ffiffiffiffiffiffi
Δt

p
; ð5Þ

where σðΔxÞ is the standard deviation of the incrementally
differenced time series Δx.
The top-performing variable-noise features all involve

measuring this dynamical quantity σðΔxÞ that is inform-
ative of η. This insight allows us to understand how they
may be able to eliminate the noise amplitude term from the
invariant density to more accurately estimate the DTC.
Incorporating this empirical estimate of η from Eq. (5) into
our expression for the potential in terms of the invariant
density, Eq. (4), yields

Vðx; μÞ ≈ −
σ2ðΔxÞ
2Δt

½lnpðxÞ − lnA�; ð6Þ

where we assumed a fixed sampling period Δt.
To test Eq. (6), we used it to infer the DTC in the fixed-

noise and variable-noise cases studied here. For the system
given by Eq. (1), we can infer VðxÞΔt, and therefore the
DTC, using two properties that are easily measured from
time-series data: the probability density pðxÞ and the spread
of differences σðΔxÞ. The algorithmic procedure for
inferring the DTC from data using Eq. (6) is as follows:
(i) produce a kernel-density estimate for pðxÞ; (ii) calculate
σðΔxÞ using the standard deviation and the first difference
operator [88]; (iii) transform the density to a potential using
Eq. (6); (iv) curve fit Eq. (2) to the estimated potential;
(v) infer μ by calculating the value of the second derivative
at x ¼ 0. We give this procedure the feature name
fitSupercriticalHopfRadius_1 and show how
it varies with both μ and η in Fig. 4(g).
Since fitSupercriticalHopfRadius_1 varies

strongly with the control parameter μ but minimally with
the noise amplitude η, we find that it tracks the DTC in
the variable-noise case far more strongly than conven-
tional fixed-noise metrics, yielding scores that are on par
with the top-performing hctsa features (see Sec. III B):
ρfixμ ¼ 0.92 and ρvarμ ¼ 0.90 (see Supplemental Material
Table S1 [84] for a complete list of scores for both new
features and hctsa features). The strong performance of
fitSupercriticalHopfRadius_1 suggests that
Eq. (6) is indeed capturing key algorithmic principles relevant
to robustly tracking theDTC.However, the top hctsa features
(detailed in Appendix A) are able to infer the DTC with
disparate and often simple algorithms that do not rely on the
computationally expensive steps of density estimation and
curve fitting, and do not require explicitly knowing the form
of the potential or the noise process. Furthermore,we find that
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fitSupercriticalHopfRadius_1 suffers from
numerical instability and produces noisy values when the
noise amplitude is low since the distribution is tightly
concentrated around x ≈ 0; in our simulations, this instability
occurred only at η ¼ 0.01. Armed with a theoretical explan-
ation of how time-series features are able to estimate theDTC
in the presence of noise, we next aim to develop a simple,
efficient, stable, and generic algorithm that implements the
potential-based inference of the DTC described above.

D. Rescaled autodensity: A new noise-robust
metric of the distance to criticality

In this section, we develop and test a new feature that
directly implements the key algorithmic steps underpinning
the success of the top-performing hctsa features, allowing
us to efficiently estimate the DTC from data. We first detail
a simplified approach to inferring the potential function
VðxÞ [cf. Eq. (6)] that eliminates η by rescaling time-series
values by the standard deviation of incremental time-series
differences, σðΔxÞ. We then describe how the density of
points in an ðxt; xtþ1Þ time-delay embedding can be used to
infer the DTC from the noise-robust rescaled potential.
Finally, we introduce the RAD, a new time-series feature
that uses elementary time-series operations to implement
these key algorithmic principles.

1. Rescaled potential

We first notice that when the system is close to the origin
x ≪ 1, the quadratic term in Eq. (2) −μx2=2 dominates the
quartic term x4=4. Since our system is driven only by noise
and has no extreme jumps or perturbations, it is naturally
confined to a region close to the origin by the “steep walls”
of the quartic term [see Figs. 5(a)–5(d)]. This behavior can
be observed from the Taylor expansion of the invariant
density Eq. (3) given by

p̃ðx; μ; ηÞ ¼ B

�
1þ μ

x2

η2
þ μ2

2

x4

η4
−

x4

2η2
þOðx6Þ

�
; ð7Þ

where B is a constant that normalizes p̃ðxÞ to unit
probability mass. Note, however, that this behavior breaks
down when η becomes too large (the noise drives the
system to extreme values where the quartic term dominates)
or μ becomes too small (the quartic term dominates as the
quadratic term is silenced). Under the approximation that
the system tends to reside close to equilibrium x ≪ 1, we
can write a simplified, rescaled potential as

V̂ðx̂; μÞ ¼ −
μx̂2

2
¼ −

ln½pðx̂Þ� − c
2Δt

; ð8Þ

where x̂ ≥ 0, c is a constant, and x̂¼x=½σðΔxÞ�≈x=ðηΔtÞ.
This approximate potential V̂ provides an algorithmically

simpler way to estimate the DTC: We first rescale the
system with x̂ ¼ x=½σðΔxÞ� (aiming to eliminate the con-
tribution of η) and then infer the potential of the rescaled
system using the distribution of the rescaled values (to
estimate μ). Unlike the theory described above, in
Sec. III C, this simplified, highly approximate approach
is not specific to the potential function of our model system.

2. The autodensity

Having identified a simpler method for “sensing” the
underlying potential function governing the deterministic
dynamics, by rescaling the system with the standard
deviation of incremental time-series differences, we now
develop a simple algorithm for estimating the DTC from
the inferred potential. We notice that the key attributes for
robustly inferring the DTC—the invariant density and the
spread of differences—can both be measured from the
distribution of time-series values in an ðxt; xtþ1Þ time-delay
embedding [90], as illustrated in Figs. 5(e)–5(h). For the
purposes of naming our feature, we refer to this two-
dimensional distribution in ðxt; xtþ1Þ as the lag-1 autoden-
sity (in analogy to autocorrelation). This autodensity
captures the two properties we have found to be key for
robustly inferring the DTC: the spread of differences σðΔxÞ
and the distribution pðxÞ. First, in a two-dimensional
embedding space ðxt; xtþ1Þ, the factor σðΔxÞ is propor-
tional to the standard deviation of shortest distances from
xt ¼ xtþ1 or xtþ1 − xt. Second, when the sampling period is
small Δt ≪ 1, the distribution pðxÞ is well approximated
by the linear projection of xt values onto the line defined by
xt ¼ xtþ1 proportional to the distribution of the quantity
xt þ xtþ1. The approximation given by Eq. (8) can then be
implemented by rescaling xt and xtþ1 with the width of the
autodensity in the xtþ1 − xt direction. As illustrated in
Figs. 5(e) and 5(f), rescaling the time-series values pro-
duces a distribution that is minimally sensitive to changes
in the noise amplitude.

3. The rescaled autodensity

We now encapsulate the key algorithmic steps described
above into a new time-series feature, RAD, that aims to
robustly infer the DTC of noisy systems. It begins by
partitioning the time-series values about a threshold that is
insensitive to changes in extreme densities. The median ðx̃Þ
is a suitable choice for this threshold, partitioning the time
series into two sets: time-series values above the median

U ¼ fxt∶xt ≥ x̃g; ð9Þ

and the time-series values below the median

L ¼ fxt∶xt < x̃g: ð10Þ

RAD then aims to summarize of the shape of the invariant
density while avoiding the need for the curve fitting
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(as required by fitSupercriticalHopfRadius_1;
cf. Sec. III C). For a simple measurement of the shape of the
probability density, we quantify the tailedness as the differ-
ence in the average density between the upper and lower
partitions. Here we define the average density in each
partition as the ratio of the probability mass contained in
the partition and the width of the partition measured by the
standard deviation. Noting that the two partitions are split by
the median, and therefore have an equal probability mass of
0.5, we can capture the average density in a partition as the
inverse of the standard deviation 1=σ. Rescaling the differ-
ence between the average densities of the upper and lower
partitions (which measures the shape of the distribution, in
particular, the higher-order moments) by σðΔxÞ completes
our RAD feature, which is then given by

fRAD ¼ σðΔxÞ
�

1

σðUÞ −
1

σðLÞ
�
: ð11Þ

RAD takes negative values far from criticality and
approaches zero when a system is close to the critical point.
We also define the centered RADdenoted as cRAD,which is
applicable to nonradial data:

fcRAD ¼ fRADðjx − x̃jÞ; ð12Þ

where x̃ is themedianvalue ofx and j · j is the absolute value.
Toverify theDTC-tracking performance ofRAD,we applied
it to the fixed-noise and variable-noise cases analyzed above,
as shown in Fig. 4(h). In the variable-noise case, RAD
outperformed all other hctsa features, with ρfixμ ¼ 0.93 (see
the RAD feature in Supplemental Material Table S1 [84]).
RAD also exhibited competitive performance relative to the
top features in the fixed-noise setting, with ρvarμ ¼ 0.93.
Furthermore, we verified that RAD outperforms conven-
tionalmetrics in a range of other systemswith various normal
forms and noise processes (see Sec. S2 in Supplemental
Material [84]). RAD is a straightforward and transparent
algorithm that behaves as a reliable indicator ofDTC in noisy
systems. MATLAB, JULIA, and PYTHON implementations of
RAD are provided in an accompanying code repository [91]
and are also included in the hctsa time-series feature
library [68].

E. Structure-function organization across
the mouse visual cortex

We next aimed to test the performance of RAD in a real-
world setting using electrophysiological data, alongside
conventional metrics of tracking the DTC. Real-world
complex systems, such as the brain, are thought to exploit
near-critical states for computational advantage [7,9,92,93],
with near-critical systems exhibiting enhanced dyna-
mic range [92,94,95], input separation and sensitivity,
information-storage capacity, and information-transfer
capabilities [5,41,96]. In neural systems, which benefit

from such advantages, evidence for criticality has been found
atmultiple scales, fromsingle neurons [33,97,98] to neuronal
spike trains [99–106], local field potentials [107–109], as
well as magnetoencephalography [110] and functional
magnetic resonance imaging time series [111].
Numerous studies have suggested that, despite the com-

monly reported benefits of criticality, the brain tends to
operate in a subcritical state [112–114], often associatedwith
focused attention [115,116]. However, other research sug-
gests that the brain fluctuates around a critical threshold
[9,106]. A more comprehensive perspective, considering the
diversity of brain regions, suggests the advantages of
integrating regions with varying dynamical states, combin-
ing those closer to criticality with others that are more
subcritical [76,95,117]. Many theories of neural criticality
then predict that regions further along the cortical hierarchy
(i.e., regions responsible for higher-order cognitive functions
such as the integration of complex stimulus features, con-
scious perception, or decision-making [118]) require longer
timescales for integrating information [71,72,74,119], and
are thus expected to sit closer to criticality [7,76,117]. This
hypothesis has been supported, in part and indirectly, by a
corresponding hierarchical variation in the excitation-to-
inhibition ratio [76,120] and other structural features
[73,121], structural and functional connectivity [122,123],
as well as intrinsic timescales [72,74] across cortical areas.
While much work has analyzed the theoretical and anatomi-
cal basis for tuning the DTC of neural systems [7,124], the
presence of variable stochastic drives across brain regions—
perhaps arising from differences in connectivity to external
regions [125], nearby vasculature [126], or heterogeneous
cytoarchitectures and their influence on high-frequency
dynamics [127]—confound the inference of the DTC in
real-world macroscale recordings of neural activity using
conventional measures like autocorrelation and variance.
Based on the hypothesis that the proximity of a cortical

area to criticality increases along the visual hierarchy
[7,76,117], and that brain regions may be subject to different
levels of dynamical noise, here we aimed to compare how
well RAD tracks the hierarchical level—measured inde-
pendently using anatomical data [128,129]—against con-
ventional measures: lag-1 autocorrelation and standard
deviation. We used experimental electrophysiological
recordings of the mouse brain from the Allen Neuropixels
Visual Behavior dataset [130], which provides local field
potential (LFP) data from approximately 20 channels
(between 15 and 24 for any given mouse) in each of six
regions of the mouse visual cortex [shown schematically in
Fig. 6(a)]. We selected recording sessions based on quality
metrics, extracted LFP data from periods where mice where
viewing a static gray screen, applied a (1–20) Hz bandpass
filter, and finally decimated the signals to a sampling rate of
125 Hz, yielding approximately 20 time series (approxi-
mately 5 min, or approximately 37 500 samples long)
for each of six visual cortical regions over 39 sessions
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(39 mice; see Appendix B). We then calculated RAD, lag-1
autocorrelation, and standard deviation for each time series.
Note that we used centered RAD, Eq. (12), appropriate for
these data with negative values. To rank regions according to
their position in the anatomical hierarchy, we used data on
the hierarchical level from Siegle et al. [128], who recom-
puted the connectome-based scores from Harris et al. [129]
for the visual regions of the Allen Neuropixels dataset [see
Fig. 6(b)]. We performed a one-way analysis of variance
on feature values (averaged across channels for a given
probe) against cortical regions (using data pooled across
all mice) to determine if there were significant differences

in the distribution of feature values between regions.
We identified significant effects for each of centered
RAD [Fð5; 190Þ ¼ 66, p < 10−38], standard deviation
[Fð5; 190Þ ¼ 14, p < 10−11], and lag-1 autocorrelation
[Fð5; 190Þ ¼ 4, p ¼ 1.5 × 10−3], encouraging more
detailed analysis of the variation of these features across
the hierarchy.
We then sought to determine, at the level of individual

mice, the strength of the relationship between the values of a
given feature (computed across LFP channels) and the
hierarchical ordering of the cortical areas of each channel.
We first calculated Kendall’s τ (a tie-robust correlation
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FIG. 6. RAD tracks the anatomical hierarchy of mouse visual cortical regions from neural electrophysiology data. (a) Six Neuropixels
probes (lines, black to yellow) in the mouse brain and the key areas they intersect (visual cortex, blue; hippocampus, green; thalamus,
pink). (b) Six visual cortical regions and their hierarchy ranks (black to yellow) shown with anatomical similarities from Siegle et al.
[128] (blue arrows, width weighted by similarity, directed from lower-order to higher-order areas). (c) The distribution of centered RAD
over n∈ ½15; 24� channels for each of the six cortical regions in a single representative mouse (session 1065908084). The strong
Kendall’s τ correlation of centered RAD to the hierarchy score (τ ¼ 0.55, p ¼ 0.03; *) is annotated, and is equal to the group median;
see (d). Connected dots show the median centered RAD, and regions are ordered based on the anatomical hierarchy shown in (b).
Outside right are similar plots for standard deviation (red, top right; τ ¼ 0.13, p ¼ 0.4) and lag-1 autocorrelation AC_1 (blue, bottom
right; τ ¼ −0.04, p ¼ 0.7), both showing weak and nonsignificant (ns) correlations. (d) The distribution over mice (n ¼ 39) of
Kendall’s τ correlations, as depicted by box plots in (b), for standard deviation (red), lag-1 autocorrelation (blue), and centered RAD
(gray). Bars show median values, boxes show the interquartile range, dots show outliers (>1.5 × IQR from the nearest quartile), and
whiskers show the range of nonoutlier values. p-values for Mann-Whitney U tests between the correlations for each feature and their
corresponding null distributions [shown by dashed box plots, over n ¼ 39 × 106 values of τ; (see main text)] are annotated. Single-
mouse correlations of centered RAD to the hierarchical level are highly significant, with p < 10−18 (**** signifies p < 10−4), but are
not significant for both standard deviation (p ¼ 0.3) and lag-1 autocorrelation (p ¼ 0.5). (e) The distribution of centered RAD pooled
across all mice and channels (yielding n ≈ 750 data points for each region). The group-level Kendall’s τ computed on this pooled data is
annotated alongside an estimated p-value (see main text). Even at a group level, the correlation of centered RAD to the hierarchy rank is
strong and highly significant (τ ¼ 0.42, p < 10−6), unlike both standard deviation (red, top right; τ ¼ −0.01, p ¼ 0.8) and lag-1
autocorrelation (blue, bottom right; τ ¼ −0.01, p ¼ 0.5).
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coefficient) between feature values and hierarchical ranks
across all channels, as shown for a single representative
mouse in Fig. 6(c). We used a permutation-based procedure
to estimate a p-value for each computed τ statistic, gen-
erating an empirical null distribution for each feature by
shuffling, for each mouse, the hierarchical ranks assigned to
each region (ensuring that channels from the same region
retained the same rank, thereby accounting for spatial
correlation between nearby channels). After calculating a
τ coefficient for each of 106 independently shuffled datasets,
p-values were estimated as the proportion of surrogate
correlations, τ that were larger in magnitude than the τ
statistic of the real data. We found that regions lower in the
visual hierarchy (e.g., the primary visual area, “VISp”) have
a lower value of centered RAD—corresponding to a greater
DTC—than higher regions (e.g., the anteromedial visual
area, “VISam”). To assess this relationship across mice, we
performed aMann-WhitneyU test between the distributions
of correlations for the original and shuffled datasets. As
shown in Fig. 6(d), neither standard deviation nor lag-1
autocorrelation had single-mouse correlation coefficients
that were significantly different from their corresponding
null distributions (at a threshold of p ¼ 0.05). By contrast,
centered RAD achieved strikingly strong correlations for
most mice (a median τ ¼ 0.55), and was highly significant
(p < 10−18). That this signaturewas detectable by the noise-
robust RAD but not lag-1 autocorrelation or standard
deviation was consistent with the presence of variable-noise
levels across regions, masking the effects of criticality from
traditional features.
Our results above provide evidence consistent with the

hypothesis that, in a given mouse, brain regions higher in
the visual hierarchy are closer to criticality. We next aimed
to test whether the result also held across mice, i.e., that
variability due to the hierarchical variation detectable by
RAD was stronger than intermouse variability. To achieve
this, we pooled the data from all channels in all mice to
calculate a group-level τ coefficient for each feature [shown
in Fig. 6(e)]. We estimated the statistical significance of
group-level correlations using a similar permutation-based
procedure as above (i.e., calculating the proportion of 106

shuffles that had a correlation greater than the true
measured value for a feature). Remarkably, centered
RAD remained highly correlated to the visual hierarchy
even at the group level (τ ¼ 0.42, p < 10−6), whereas
standard deviation (τ ¼ −0.01, p ¼ 0.8) and lag-1 auto-
correlation (τ ¼ −0.01, p ¼ 0.5) did not detect any sig-
nificant relationship, as per the individual-level analysis.
Our results suggested that higher-order cortical regions
exhibited dynamics consistent with being closer to criti-
cality [7,117], even though they may have been influenced
by varied levels of noise due to external input, cellular
composition, laminarity, or the presence of vasculature.
Together with the hypothesis that sensory regions are
differentiated by their proximity to criticality, these results

provide strong evidence that RAD can be a more reliable
metric of the DTC than conventional metrics in noisy, real-
world systems.

IV. DISCUSSION

This work addressed the challenge of estimating the
distance to a critical point DTC in the presence of an
uncertain, and potentially variable, confounding noise
amplitude. While many studies have tackled the challenge
of describing how noise disrupts conventional metrics of the
DTC [13,14,47,58] or intensifies low-amplitude perturba-
tions by stochastic resonance [131], to our knowledge no
work has identified a new feature that is insensitive to
possible changes in noise levels and demonstrated its
efficacy in a real-world system. Moreover, our work high-
lighted the ability of our novel data-driven methodology to
motivate new theory and algorithmic implementations
relevant to working with real (finite and noisy) time series.
Specifically, by comparing the performance of thousands of
time-series analysis features, we identified analysismethods
that were able to robustly track the DTC in systems with
variable levels of dynamical noise, but which have not been
applied to this problem in the past. By analyzing the
algorithmic steps underlying top-performing time-series
features, we developed a deeper theoretical understanding
that enabled us to reverse engineer a novel, efficient, and
noise-robust index of the DTC that outperformed all other
hctsa features on this problem: the RAD.
Our data-driven approach to solving theory-based prob-

lems is highly flexible and could be extended to many real-
world problems, particularly those involving short, noisy
time-series data. The approach involves first simulating a
known dynamical mechanism (to generate time-series
data with a known structure) and then searching across a
sufficiently large and comprehensive set of candidate time-
series features for those that can best recover the underlying
structure. This highly comparative methodology has been
used previously by Fulcher et al. [67] to find statistical
estimators of the scaling exponent of self-affine time series,
and the Lyapunov exponent of Logistic Map time series;
problems for which high-performing features were known
to exist within the candidate feature set. This is also the case
for the first fixed-noise setting investigated here, where our
data-driven approach recapitulated the strong performance
of conventional criticality metrics related to autocorrelation
and the distribution of values. However, here we also
extended it to a new setting, the variable-noise setting,
in which it was not known whether any features would
exhibit strong performance. We showed that conventional
metrics with high ρfixμ (which strongly correlate with the
DTC in the fixed-noise setting) perform poorly in this
variable-noise setting, with a low ρvarμ (Sec. III B). But,
surprisingly, we identified several high-ρvarμ features that
can track DTC in the presence of confounding variations in
noise amplitude.
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Having identified noise-robust features of DTC from
hctsa, we then showed how our data-driven methodology
can motivate the development of new theory and under-
standing. While a list of top-performing features is already
a valuable resource for addressing the problem of inferring
the DTC—and brings about the possibility of using an
ensemble of metrics for a more accurate estimate—we also
sought practical insight regarding these top-performing
metrics, the problem itself, and the broader context of
criticality in noisy systems. In this capacity, our approach
sits alongside recent efforts to generate practical under-
standing from data using interpretable machine-learning
algorithms [132,133] or to solve analytical problems using
artificial intelligence [134]. Unlike existing approaches, our
methodology uses a simple search across a comprehensive
library of transparent algorithms drawn from existing
literature, automatically flagging those that are relevant
to a given problem. Studying the highlighted algorithms
can then yield new theoretical insight into the problem at
hand. In this work, noticing key algorithmic similarities in
the top-performing features motivated us to develop a
theoretical account of how these algorithmic steps were
able to track DTC so successfully. The resulting theory—
invoking a potential formulation Eq. (2), and the corre-
sponding expression for the invariant density Eq. (3)—was
used to formulate a new high-performing time-series
feature, RAD, that robustly infers the shape of the potential
function, which depends only on the DTC, by measuring
the time-series distribution after rescaling values with the
spread of differences (see Sec. III D). RAD performs well
in both noise settings, having a higher correlation to the
DTC than all other features in the variable-noise setting, as
well as competitive performance (relative to conventional
metrics) in the fixed-noise setting. As such, RAD requires
less prior knowledge of a system to produce an accurate
estimate of the DTC, making it a practical statistic for
tracking the DTC in real-world settings. Given the increas-
ingly broad and detailed datasets being generated across
scientific domains, this work thus demonstrates an ability
to derive theoretical insight and develop practical analytic
tools via the broad algorithmic comparison enabled by
large algorithmic libraries like hctsa [68]. Our approach
serves as a model for using wide methodological compari-
son to tackle similar problems that aim to develop new
theory for bridging dynamical mechanisms with the stat-
istical properties, such as criticality, that are most sensitive
to the theoretical structures of interest.
No previous studies have tackled the challenge of

developing noise-robust indicators of the DTC by distilling
theory from data-driven exploration. However, the algo-
rithmic components of RAD, including the spread of
differences and a measurement of asymmetry in the
distribution Eq. (11), share similarities with existing
metrics related to criticality. For instance, the spread of
differences (see Sec. III C) has been used to anticipate

critical transitions in cryptocurrency markets [135],
whereas skewness and related properties of the distribution
(see Sec. III C) have been used to mark abrupt changes in
ecosystems [136] and climates [137]. Crucially, neither the
spread of differences nor the distribution alone give noise-
robust features. As we highlighted here, the confounding
influence of the noise amplitude can be eliminated only by
carefully combining these two properties (see Sec. III D).
Furthermore, estimating the DTC typically requires fea-
tures to be precisely calibrated against the control param-
eter and the noise amplitude with repeated observation on a
system-by-system basis. Methods for calibrating indicators
of criticality, which have been addressed elsewhere and are
not the focus of this work, include learning simple thresh-
olds [18], performing linear regression [138], or training
supervised machine-learning models [139] to predict criti-
cal phenomena from labeled data—RAD can be readily
dropped into these existing pipelines, alongside the conven-
tional metrics of criticality. We briefly illustrated, using
linear regression and our simulated dataset, how the top
variable-noise features can be calibrated to make concrete
predictions of the DTC in Sec. S1(b) of Supplemental
Material [84]. RAD still requires calibration to the control
parameter, as for typical indicators of the DTC, but there is
less need to recalibrate for changes or uncertainty in noise.
Moreover, RAD is superior even in contexts that do not
require concrete estimates of the DTC; we showed in
Sec. III E that being robust to noise allows RAD to more
accurately recover the relative positioning of brain regions
in the mouse visual hierarchy. RAD also has many other
advantages over other existing critical indicators that have
been applied in noisy settings, including (i) it does not
require perturbing the system [140], (ii) it operates on
univariate time series [51], and (iii) it performs well on
short time series (but assumes a small sampling period).
Many real-world systems are corrupted by noise with an
unknown strength, can be recorded only for short periods,
and cannot be measured in their full multivariate complex-
ity. As such, RAD may improve accuracy in the wide range
of tasks that involve quantitatively anticipating criticality
from time-series data.
We verified the real-world utility of RAD by applying it

to a dataset of electrophysiological recordings from the
mouse visual cortex, where it outperformed conventional
metrics of the DTC in tracking the anatomical hierarchy of
visual cortical regions (in Sec. III E). A long-standing
hypothesis on cortical organization is that higher-order
regions are closer to criticality, facilitating the integration of
multiple external signals or stimulus features [7,76,117],
but this hypothesis has lacked concrete experimental
evidence. Our finding that RAD increases along the mouse
visual hierarchy offers a mechanistic explanation for the
escalating gradient of slow fluctuations along the visual
hierarchy as being caused by critical slowing-down, with
regions higher in the hierarchy exhibiting a smaller DTC.
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Furthermore, our results suggest that in real-world neuronal
systems, noise is better represented heterogeneously, with
variable rather than fixed intensity. Variable noise renders
conventional time-series metrics of criticality, which are
highly sensitive to variations in noise level between brain
regions, blind to variation in the DTC. Future work could
aim to extend our analysis of heterogeneity in the DTC to
the broader cortex, incorporating LFP recordings from
other cortical areas or whole-cortex data using imaging
modalities with a wider field of view [141]. Moreover,
changes and disruptions to the DTC have been implicated
in broader neural contexts [142]: for insomnia disorder and
the transition to sleep [17], autism spectrum disorder [143],
and epilepsy at the transition to seizure [18,19]. In these
instances, employing RAD could also present a pertinent
and innovative approach. For seizure anticipation espe-
cially, simple but reliable indicators that can be applied to
noisy, noninvasive recordings are essential for building
practical monitoring devices [18,19]. Having been formu-
lated for robustness against dynamical noise (in Sec. III D),
verified against moderate levels of measurement noise (in
Supplemental Material Sec. S2 [84]), and demonstrated on
experimental electrophysiological data (in Sec. III E), RAD
opens the door to studying criticality in noisy real-world
settings and thereby connecting our measurements of the
world around us to the deeper mechanistic principles that
underlie them.
Even though our data-driven methodology for finding

noise-robust features can be generically applied to various
critical systems, we made a number of simplifying choices
that limit how well RAD will perform on arbitrary critical
systems. Foremost, we chose to examine a simple normal
form [see Sec. II A and Eq. (1)] that describes a broad range
of systems, from auditory hair cells [77,78] to financial
markets [36], and many others [6,79]. Features that perform
well for the radial part of the supercritical Hopf bifurcation,
Eq. (1), can be adapted for the full form of the Hopf
bifurcation by calculating the radius, and for the pitchfork
bifurcation by taking the absolute value; we verified that
this centering step allows RAD to translate to the pitchfork
bifurcation in Sec. S2 of Supplemental Material [84].
Although numerical simulations were performed only for
normal forms, we expect our summary feature to perform
well on other systems that exhibit a Hopf or pitchfork
bifurcation. However, other normal forms can exhibit
fundamentally different changes during bifurcation from
the Hopf or pitchfork normal forms. The saddle-node
normal form, for instance, occurs when an unstable and
a stable equilibrium annihilate one another. In this case, the
potential grows more asymmetric as the critical point is
approached: Unless the noise is sufficiently weak, the DTC
is large, and RAD is unlikely to remain noise robust for
saddle-node bifurcations (and other systems with asym-
metric normal forms, such as for transcritical bifurcations).
Nevertheless, many systems, such as the saddle-node,

transcritical, and subcritical Hopf or pitchfork bifurcations
]13 ], exhibit critical transitions in which proximity to the

critical point corresponds to explosive jumps toward distant
attractors. For these systems, time-series features are unable
to give a deterministic estimate of the time to catastrophe at
high values of η, since crossings of the unstable threshold
can be induced by noise well before the critical point [13].
The DTC is still a useful quantity, however, for inferring the
likelihood of a critical transition, and given that most
potential functions are locally quadratic around stable fixed
points, we expect RAD to generically outperform conven-
tional metrics under variable-noise conditions, in particular,
for subcritical Hopf and pitchfork bifurcations. Applying
our data-driven methodology to find the most noise-robust
DTC indicators for new normal forms is a promising
avenue for future work, along with using our approach
across classes of bifurcations to find a critical indicator that
is not only noise robust, but remains consistent over classes
of bifurcations [62].
In addition to a simple deterministic component, our

model system also bears a highly simplified noise process.
Additive dynamical noise, which here is Gaussian, inde-
pendent, and identically distributed, appears in many
systems and is a common modeling assumption. Unlike
measurement noise, which is incorporated into the signal
after a system has evolved and been measured, dynamical
noise is present in the equations of motion for a system, and
continually interplays with the deterministic dynamics
controlled by the potential function. We verified that
RAD is robust to both additive measurement noise, as
well as low levels of colored dynamical noise in Sec. S2 of
Supplemental Material [84]. Indeed, recent work has
analytically studied the problem of estimating the distance
to criticality in linear stochastic differential equations with
nonstationary colored noise from simulated data [144],
developing an algorithm that fits a parametrized power
spectrum. In contrast, our data-driven approach demon-
strated that simple, noise-robust statistics can be formulated
for problems involving analytically intractable nonlinear
systems. We also showed that our new metric of criticality
has novel and scientifically useful behavior on real-world
neural data. Future work may look to extend RAD with
multiple time lags to improve its performance in systems
with colored noise [144] or subsampled data [99]. Critical
systems can also possess non-Gaussian noise [61,145],
multiplicative noise, highly nonstationary noise, or even
noise in the control parameter itself [6]; we did not study
such cases here. Moreover, we did not aim to find features
that were insensitive to variation in both the noise ampli-
tude and the sampling period, although we expect this to
be a more difficult problem. Regardless, we expect our
results will generalize well to systems that (i) are near Hopf
or pitchfork bifurcations, (ii) are sufficiently close to a
potential minimum, with no extreme perturbations, and
(iii) have a noise level small enough for the system to
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remain localized around a single potential minimum. For
systems outside of this regime, the methodology we used to
develop our summary feature—performing a data-driven
exploration of candidate features to uncover new theoretical
principles—is viable for phase transitions and noise proc-
esses of other varieties, and is a promising avenue for future
scientific work.
Given the inherent stochasticity and complexity of real-

world critical systems, accurately tracking the DTC using
statistical properties of time-series data poses a significant
challenge, prompting interdisciplinary research efforts
spanning several decades. Most work has relied on two
substantial assumptions: that the DTC is small enough for
the theory of normal forms to apply and that the dynamical
noise is negligible or fixed. However, conventional metrics
of the DTC are highly sensitive to the more realistic setting
of variable, or uncertain, noise. In this work, we used a
powerful and thorough data-driven approach that surveys a
vast library of time-series features to (i) confirm that
conventional metrics are disrupted by a variable-noise
amplitude, (ii) uncover unstudied time-series features that
are insensitive to the noise amplitude, (iii) scrutinize these
noise-robust features to develop new theoretical insight,
and (iv) summarize our new understanding of a simple
new feature for accurately inferring the DTC in noisy real-
world systems. This work thus demonstrated a pragmatic,
data-driven way of understanding theoretical systems
through simulated data and wide methodological compari-
son, which can automatically flag promising algorithms to
motivate the development of new theory. The result of this
process, RAD, introduced here, is a viable measure of DTC
for realistic settings of systems corrupted by unknown, and
in general variable, noise amplitude. We expect these
innovations to enable new applications of dynamical
systems thinking to noisy, real-world systems.

The supporting data for the simulations presented in this
article are openly available from Figshare [146]. MATLAB

code for reproducing our analyses and figures is available
at the Criticality repository on GitHub [147], which
includes functions for RAD (located in the file RAD.m)
and fitSupercriticalHopfRadius_1 (at
potentialDistributions.m). MATLAB, JULIA, and
PYTHON functions for RAD are collected in the
RAD repository [91]. Alternatively, RAD is available as
the CR_RAD function in hctsa v1.08 [148] and the
TimeseriesFeatures.jl JULIA package [149].
RAD is also included in the default set of hctsa features
as CR_RAD_1 (centered RAD using lag-1 differences),
CR_RAD_2 (with lag-2 differences), and CR_RAD_TAU
(using a lag equal to the first zero crossing of the
autocorrelation function). For the electrophysiological
application presented in Sec. III E, we accessed all
Neuropixels Visual Behavior data (manifest v0.5.0)
through open software published by the Allen Institute

for Brain Science (the allensdk [150]) using the Julia-
language wrapper AllenNeuropixelsBase.jl
[151]. Julia scripts to reproduce our analyses of the
neuropixels data are available in the accompanying
Criticality repository [147].
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APPENDIX A: INSPECTING
HIGH-PERFORMING FEATURES

Here we outline of four hctsa features that robustly track
the DTC in the presence of uncertain noise (as identified in
Sec. III B), which we studied in close to detail to uncover
the two algorithmic principles vital for noise-robust infer-
ence of the DTC (see Sec. III C). As described in Sec. III B,
we manually selected four features from the clustering
analysis depicted in Fig. 3, aiming for features that were
algorithmically dissimilar and belonged to different clus-
ters. We then studied these four top features in turn to
uncover the common algorithmic components that allow
for noise-robust inference of the DTC.

1. Change in autocorrelation after
discarding extrema

The first feature we investigated was
DN_RemovePoints_max_01_ac1diff, which mea-
sures the change in the autocorrelation of a time series after
discarding extreme values. This feature performed well
in both the fixed-noise (ρfixμ ¼ 0.94) and variable-noise
(ρvarμ ¼ −0.88) settings. Acting on an input time series x,
this feature first discards the largest 10% of positive values
(while maintaining the temporal ordering of the remaining
data points) to produce a thresholded time series x0. Next, it
calculates the lag-1 autocorrelation r1 for both the original
and thresholded time series, outputting the difference of the
resulting values as

fDNðxÞ¼ r1ðxÞ− r1ðx0Þ; x0 ¼ fxijxi <P90ðxÞg; ðA1Þ
whereP90ðxÞ is the 90th percentile ofx. ProvidedΔt is small
compared to the timescale of the deterministic dynamics of a
system, it follows from the covariance of the sum of random
variables that the lag-1 autocorrelation is approximated by a
simple function of only the variance of a time series σ2ðxÞ
and the variance of differences σ2ðΔxÞ. Described by these
two quantities, the lag-1 autocorrelation is given by

r1 ≈
2σ2ðxÞ − σ2ðΔxÞ=2
2σ2ðxÞ þ σ2ðΔxÞ=2 : ðA2Þ
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Thus, DN_RemovePoints_max_01_ac1diff relies
on (i) properties of the tailedness of the distribution, namely,
how σ2ðxÞ differs from σ2ðx0Þ, which are (ii) calibrated
against the variance of differences σ2ðΔxÞ. Hence, the
algorithmic components of this feature motivated our close
study of these two properties, the distribution and the
variance of differences, in Sec. III C.

2. Probability of two consecutive high values

A second high-performing feature, in both the fixed-
noise (ρfixμ ¼ 0.93) and variable-noise (ρvarμ ¼ 0.88) cases,
is SB_MotifTwo_mean_uu, which counts the propor-
tion of consecutive pairs of time-series values that are both
above the mean:

fSB ¼ Pðxt > x̄ ∩ xtþ1 > x̄Þ; ðA3Þ

where x̄ is the mean of x. Since Δx depends predominantly
on the noise amplitude, as described in Sec. III C, the
probability of a point crossing the mean over an increment
in time depends on (i) its distance from the mean and (ii) the
variance of its diffusive motion given by σ2ðΔxÞ. Hence, by
counting the proportion of values that remain above the
mean, SB_MotifTwo_mean_uu depends on both prop-
erties we identified as crucial for robustly inferring the
DTC: (i) the proportion of values that are above the mean at
the initial time point (related to the distribution) and (ii) the
probability of crossing for points above the mean (related to
the variance of differences).

3. Change in distribution after moving-average filter

Our third noise-robust estimator for the DTC is
PP_Compare_rav2_kscn_olapint, which has a
high ρfixμ ¼ 0.88 and ρvarμ ¼ −0.87. This feature measures
the change in the probability density of time-series values
(via an overlap integral to a best-fitting Gaussian distribu-
tion) after it has been smoothed by a single-period, two-
sample moving average:

fPP ¼
O½pðx;M½x�Þ�
O½pðx;xÞ� ; ðA4Þ

where pðx;xÞ is a kernel-density estimate for the distri-
bution of x, M is a two-sample moving-average filter, and
O is an overlap integral given by

O½pðxÞ� ¼ σðxÞ
Z

pðxÞφ(x̄; σðxÞ)dx; ðA5Þ

where φðμ; σÞ is the probability density of a Gaussian
distribution with mean μ and standard deviation σ. The
main effect of a moving average filter on the distribution is
an increase in the density at medial values, which is a result
of peaks and troughs in the time series being truncated
and depends on the distribution of values. Moreover, the

magnitude of the effect of truncating the most extreme
values also depends on the mean size of the fastest-
timescale fluctuations as well as the frequency of extreme
peaks, which are both determined by the variance of
differences.

4. Comparison of extrema in time-series windows

Finally, we outline ST_LocalExtrema_l100_
meanrat, which has ρfixμ ¼ 0.91 and ρvarμ ¼ −0.90. This
feature finds the average of maximum and minimum values
computed across nonoverlapping, 100-sample windows of
a standardized (z-scored) time series, then returns the
ratio of these two values. From another perspective, this
feature is a proxy for the relative extent to which the
invariant density expands on either side of the mean as η
increases. This can be seen by noting that the minimum
time-series value in each window is close to zero, such
that when the time series is standardized, a value of 0
becomes −x̄=σðxÞ. Therefore, standardization reduces
ST_LocalExtrema_l100_meanrat to the ratio of
the non-normalized average maxima and the mean time-
series value:

fST ¼ hmax½ðxw − x̄Þ=σðxÞ�i
hjmin½ðxw − x̄Þ=σðxÞ�ji ≈

hmax½xw − x̄�i
x̄

; ðA6Þ

where hmax½xw�i is the mean value of the maximum in each
100-sample window, and min½·� is the minimum value. As
illustrated in Fig. 5, the mean of the distribution (related to
the standard deviation) depends on both the DTC and the
noise amplitude. The average maximum within a window,
however, depends on the rate at which the system diffuses
within the short, 100-sample windows. Hence, this final
feature, in a similar way to the other top hctsa features we
have detailed, also compares a distributional property to the
variance of differences.

APPENDIX B: CASE STUDY METHODOLOGY

In Sec. III E, we demonstrated how centered RAD
applied to electrophysiological data tracks the functional
hierarchy of the mouse visual cortex where conventional
indicators of criticality and dynamic range failed. Here we
provide detailed methods for our case study, including a
description of the Allen Visual Behavior Neuropixels
recordings, our pipeline for accessing and preprocessing
the open dataset, as well as our procedure for evaluating
RAD and other metrics on these data.
The Allen Neuropixels Visual Behavior dataset [130]

comprises electrophysiological recordings from the mouse
visual cortex acquired with Neuropixels probes [152],
while the mouse is presented with a series of visual stimuli
[153]. A Neuropixels probe houses a checkerboard array of
electrodes spaced vertically by 20ðμÞm along a linear shank
1 cm in length [152]. Inserted into the mouse brain, each
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probe records the electrical activity at hundreds of sites. For
the Allen Neuropixels Visual Behavior dataset, six probes
were inserted at the retinotopic centers of six areas of the
visual cortex in each mouse [153], and raw recordings
were filtered into the local field potential (<1000 Hz) and
neuronal spikes (0.3–10 kHz). Each of the 75 mice were
presented with a series of visual stimuli, including a blank
gray screen, Gabor patches, full-field flashes, and an
image-change detection task, across two recording ses-
sions. The Neuropixels Visual Behavior dataset having a
high recording quality and a large number of probes that
cover the majority of areas in the visual cortex provides a
valuable opportunity to study the distribution of critical
dynamics across the visual hierarchy.
We selected recording sessions that had location-tagged

channels in all six of the target visual areas, and mice that
displayed no abnormal histology or activity. Session filter-
ing resulted in 39 sessions from 39 mice. From these 39
sessions, we selected all LFP channels located in the cortex,
giving between 15 and 24 channels for each visual area,
for each mouse. We accessed LFP time series for each
channel during the “spontaneous” stimulus, during
which the mouse was presented with a static gray screen.
The resulting LFP time series were five minutes in length
and sampled at a rate of 1250 kHz. We then decimated the
signal to a sampling rate of 125 Hz, after bandpass filtering
between 1 and 20 Hz to (i) avoid high-frequency down-
sampling artifacts as well as (ii) capture the dominant low-
frequency activity in the theta (4–8 Hz) band alongside a
portion of the higher-frequency 1=f activity. Finally, we
computed the centered RAD, AC_1, and standard deviation
for each cortical channel, for each session, before compar-
ing to the structural hierarchy (as presented in Sec. III E).
An exact record of the filtering thresholds and the resultant
sessions can be found in the paper/Criticality.jl
folder of the accompanying code repository [147], along-
side scripts and data for reproducing Fig. 6.
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