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The approach to equilibrium in interacting classical and quantum systems is a challenging problem of
both theoretical and experimental interest. One useful organizing principle characterizing equilibration is
the dissipative universality class, the most prevalent one being diffusion. In this paper, we use the effective
field theory (EFT) of diffusion to systematically obtain universal power-law corrections to diffusion. We
then employ large-scale simulations of classical and quantum systems to explore their validity. In particular,
we find universal scaling functions for the corrections to the dynamical structure factor hnðx; tÞni, in the
presence of a single Uð1Þ or SUð2Þ charge in systems with and without particle-hole symmetry, and present
the framework to generalize the calculation to multiple charges. Classical simulations show remarkable
agreement with EFT predictions for subleading corrections, pushing precision tests of effective theories for
thermalizing systems to an unprecedented level. Moving to quantum systems, we perform large-scale
tensor-network simulations in unitary and noisy 1D Floquet systems with conserved magnetization. We
find a qualitative agreement with EFT, which becomes quantitative in the case of noisy systems.
Additionally, we show how the knowledge of EFT corrections allows for fitting methods, which can
improve the estimation of transport parameters at the intermediate times accessible by simulations and
experiments. Finally, we explore nonlinear response in quantum systems and find that EFT provides an
accurate prediction for its behavior. Our results provide a basis for a better understanding of the nonlinear
phenomena present in thermalizing systems.

DOI: 10.1103/PhysRevX.14.031020 Subject Areas: Condensed Matter Physics,
Statistical Physics

I. INTRODUCTION

One of the main pursuits of condensed matter physics
is the understanding of out-of-equilibrium phenomena in
many-body systems. Transport probing the slightly out-of-
equilibrium (linear response) regime is particularly acces-
sible experimentally. Therefore, it is crucial to understand
it theoretically to link experiments with insights into
the fundamental structure of correlated matter. The

experimental accessibility of linear response observables
has allowed us to establish some of the most puzzling
phenomenology in condensed matter physics, including the
T-linear resistivity [1] of high-Tc superconductors and
heavy fermion systems, anomalous Hall angles [2], and
magnetoresistance [3], which have largely eluded explan-
ations despite decades of activity. More recently, experi-
ments in synthetic quantum matter, such as cold atoms and
superconducting quantum circuits, have offered new tools
to explore quantum transport (e.g., Refs. [4–8]), further
emphasizing the need for a better theoretical understanding
of the landscape of transport phenomena in many-body
systems. The theoretical challenge lies in finding controlled
methods to study dynamics in strongly correlated systems.
Hydrodynamics—broadly understood as the emergent

dynamics of conserved densities in thermalizing systems—
offers particularly suitable tools in this regard, providing a
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framework to parametrize and understand near-equilibrium
dynamics at late times. In the hydrodynamic limit, the
dynamics typically follow a universal behavior, character-
ized by a dissipative universality class, the most prevalent
being diffusion. While deriving the hydrodynamics of
diffusion from microscopics is typically a challenging task,
experimental and numerical evidence strongly suggests that
it describes the leading-order linear response at late times of
thermalizing classical and quantum many-body systems,
across diverse scales and platforms. However, the dissipa-
tive universality classes provide information beyond the
leading late-time behavior of linear response: They also
include nonlinear response and universal scaling correc-
tions to observables. In particular, the leading late-time
behavior of simple observables such as the dynamic
structure factor hnðx; tÞni can be found from classical
hydrodynamic equations [9]. However, the understanding
of corrections to linear response and more complicated
observables requires a framework for hydrodynamic fluc-
tuations that systematically treats noise. Several proposals
for doing so exist, including generalizations of the Martin-
Siggia-Rose formalism [10] to allow for non-Gaussian
noise, Fokker-Planck equations for continuous fields (e.g.,
Ref. [11]), macroscopic fluctuation theory [12], and effec-
tive field theories on Schwinger-Keldysh contours [13]. It is
not clear which of these effective theories—if any—
describes thermalizing many-body systems beyond the
leading late-time behavior. Furthermore, the differences
between classical and quantum systems in terms of hydro-
dynamic fluctuations remain ambiguous, as does the
capacity of these effective theories to discern them.
Beyond identifying the correct theory of fluctuations,

understanding corrections to observables in thermalizing
systems has important experimental and numerical impli-
cations. Starting with numerics, a systematic theory of
scaling corrections is critical for quantum simulations,
which can typically access intermediate times, during
which the effects of corrections can be significant. These
corrections can lead to an inaccurate determination of
transport parameters or even in an incorrect value of the
dynamical exponent z, as illustrated in Fig. 1. Additionally,
diffusive dynamics are also present in nongeneric systems,
such as certain integrable systems [14–16] and noninter-
acting systems where diffusion is induced by noise. In these
cases, even if the leading late-time behavior is the same, the
scaling corrections are sensitive to the number and type of
conserved densities; therefore, they offer precision tests of
thermalization, unambiguously distinguishing various
apparently diffusive systems. In experiments, the presence
of these corrections has interesting consequences for the
understanding of thermalization in correlated materials.
Power-law corrections to late-time observables come with
timescales related to the local equilibration time—the
timescale at which regular hydrodynamics kicks in. This
timescale is parametrically large in weakly coupled or

nearly integrable systems but seemingly cannot be made
arbitrarily small at strong coupling; this finding has led to
the expectation that the local equilibration time is univer-
sally bounded by the “Planckian” time, ℏ=T [17–20]. We
will show that the leading power-law corrections are in fact
entirely fixed by derivatives of diffusivities with respect to
the equilibrium value of the transported density or asso-
ciated potential D0 ≡ dD=dn (e.g., temperature for heat
diffusion); hydrodynamics, therefore, universally ties non-
linear response, scaling corrections to linear response, and
dependence of transport coefficients on experimental tun-
ing parameters. Since the latter are readily available in
experiments and numerics, this provides a timescale that
must be exceeded to access the asymptotic regime.
In this paper, we use the effective field theory (EFT) of

diffusion [13] to systematically and quantitatively study the
corrections to observables in generic diffusive systems.
The EFT relies on two mild assumptions: (1) the locality of
the generator of the dynamics and (2) the thermalization
of the system; i.e., the only collective excitations that
survive at late times are conserved densities and associated
noise fields. Therefore, it is expected to apply to a broad
range of quantum and classical systems. We focus on the

FIG. 1. (a) Nonlinear fluctuations of conserved densities in
generic many-body systems, (b) leading to universal corrections to
hydrodynamics at late times. Panel (c) shows that, in the case of a
single diffusive density, the leading correction is positive and can
cause a diffusive system (with the autocorrelation function
illustrated in green) to appear superdiffusive (yellow, z ¼ 3=2 is
shown above) at intermediate times. The EFT of diffusion predicts
the coefficient of this correction, τ ¼ ðχ2D02=16πD4Þ, together
with a universal scaling function of x=

ffiffiffiffiffiffi
Dt

p
; see Eqs. (1) and (2).
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dynamic structure factor hnðx; tÞni in 1D lattice systems
(generalizations greater than 1D are shown in the
Appendix A), where nonlinear corrections are particularly
strong, but we also study the nonlinear response (in the
Appendix D), which offers a complementary verification of
the theory’s predictions. The potential significance of
scaling corrections to correlation functions in quantum
systems has been studied for some time [21,22]; however,
even the corrections to the considerably simpler autocor-
relation function, hnð0; tÞni, were only obtained analyti-
cally and observed numerically recently [23,24].
We start by sharpening these results and generalizing the

approach in several directions to ultimately construct a
theory of scaling corrections in thermalizing systems,
providing a framework to make quantitative predictions
systematically in an expansion at late times. We first show
that the coefficient of the leading correction is entirely fixed
in terms of transport parameters of the system and their
derivatives with respect to equilibrium densities, which
allows us to establish that the correction is non-negative
in the case of a single diffusing density, making generic
diffusive systems appear superdiffusive at intermediate
times (Fig. 1). Next, generalizing to the dynamic structure
factor hnðx; tÞni, we find the universal scaling function
of x=

ffiffiffiffiffiffi
Dt

p
accompanying this correction. We also compute

subleading corrections, which arise from higher-order
(two-loop) fluctuation effects, as well as higher-derivative
terms in the EFT. These corrections are particularly
important in systems with particle-hole symmetry, where
the leading, one-loop, correction is absent. These new
corrections come with their own universal scaling functions
of x=

ffiffiffiffiffiffi
Dt

p
, summarized in Table I. We also present the EFT

framework required to study corrections in the presence of
multiple diffusive charges and derive the corrections for the
case of chaotic spin chains with SUð2Þ symmetry.
We then quantitatively test these predictions in numerics.

We first consider classical lattice gases where DðnÞ is
known analytically, so the theory prediction can be com-
pared to simulations without requiring any fitting param-
eter. We find remarkable agreement for the entire scaling
function accompanying the correction to diffusion, shown
in Fig. 4, thereby providing a test of theories of fluctuating

hydrodynamics with an unprecedented level of precision.
We next show that the EFT corrections are also present
in the dynamics of interacting quantum spin chains. In this
case, the classical resources required to accurately capture
the dynamics grow rapidly with the simulation time, and
therefore, our simulations cannot always reach asymptotic
times. We demonstrate that incorporating the EFT correc-
tions into the fitting process leads to considerably more
accurate transport parameters, such as diffusivity.
Finally, we discuss nonlinear response. We show that the

EFTuniversally ties higher-point functions of densities [25]
to scaling corrections to linear response. These observables
can therefore be used to understand which timescale must
be exceeded to enter the asymptotic (late-time or low-
frequency) regime. As controlled experimental probes of
nonlinear response improve [26,27], this case offers a
quantitative correspondence between these observables
and thermalization. We expect these nonlinear observables,
as well as fluctuation corrections to linear response, to be
within reach of current experiments in cold atoms as
well [6,8,28]. Measuring higher-point functions in
numerics can also help unambiguously establish the dis-
sipative universality class with limited resources.
The paper is organized as follows. In Sec. II, we present

the leading corrections to the full dynamical structure factor
in 1D for systems with one Abelian local charge. Next, we
present the corrections for systems that additionally exhibit
particle-hole symmetry and therefore exhibit vanishing
leading corrections. These corrections originate from
both linear and nonlinear fluctuations. However, nonlinear
fluctuations are logarithmically stronger in 1D and are
expected to dominate at long times. In Sec. III, we
formulate the EFT formalism and present the main steps
towards the calculation of the corrections. In Sec. III A, we
derive the leading one-loop corrections, and in Sec. III B,
we outline the basic steps for the two-loop calculation
required to obtain the nonlinear corrections in systems with
particle-hole symmetry. Then, in Sec. III C, we discuss the
structure of linear corrections. Section III D extends our
results to systems with multiple densities. In particular, we
present the result for a single non-Abelian [SUð2Þ] charge.
We conclude by numerically verifying the leading-order
corrections for classical systems in Sec. III E. In Sec. IV,
we study the linear response regime of quantum systems
(coherent and incoherent) with magnetization conservation.
For incoherent systems, we quantitatively verify the pres-
ence of EFT predictions. Coherent dynamics are more
complex, and they display longer transient phenomena that
persist on all simulated timescales. Nevertheless, our results
qualitatively agree with EFT. In the conclusion, Sec. V,
we consolidate our findings, discuss the relevance of
these results for the field, and outline potential avenues
for future research. In Appendix D, we explore the non-
linear response through a simple three-point function,
which offers a complementary test for the validity of EFT.

TABLE I. Leading-order corrections to the dynamical structure
factor of chaotic diffusive systems from loop corrections (non-
linear) or higher-derivative corrections (linear); see Eqs. (1)
and (4). The leading-order nonlinear correction (one-loop)
vanishes in the presence of particle-hole symmetry, and therefore,
the subleading correction (two-loop) dominates. These nonlinear
corrections are the leading corrections in one dimension (d ¼ 1).

Leading order No particle hole Particle hole

Nonlinear 1
td=2

F1;0
1
td
ðF2;0 þ logðtÞF̃2;0Þ

Linear 1
t F0;1

1
t F0;1
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II. FULL SCALING FUNCTION—ANALYTICAL
PREDICTIONS

Whenever diffusion or any other hydrodynamic behavior
emerges in a many-body system, it is inevitably accom-
panied by scaling corrections that may be important at
intermediate times. These corrections arise from higher-
derivative corrections [29] as well as fluctuation (or “loop”)
corrections [30] in the hydrodynamic description. While
these corrections have been seen in the context of quantum
many-body systems for some time (see, e.g., Ref. [21]),
they are often ignored. Since accessing late times in
quantum simulations is fairly prohibitive, accounting for
these corrections to scaling is crucial even to correctly
capture the dissipative universality class of a given system.
One central result of this work is that these scaling

corrections come with entire universal scaling functions,
which can be obtained from the EFT [13]. For example,
the leading correction to diffusive correlation functions
in one dimension comes from a one-loop correction and
takes the form

hnðx; tÞni ¼ χffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
�
F0;0ðyÞ þ

1ffiffi
t

p F1;0ðyÞ þO

�
log t
t

��
;

ð1Þ

where F0;0 and F1;0 are scaling functions of the scaling
variable y≡ x=

ffiffiffiffiffiffi
Dt

p
. The leading scaling function

F0;0ðyÞ ¼ e−y
2=4 solves the linearized diffusion equation,

whereas the leading correction F1;0ðyÞ comes from a
one-loop contribution [23], which, as we show below,
takes the form

F1;0ðyÞ¼
χD02

D5=2 F̃1;0ðyÞ;

F̃1;0ðyÞ¼
4þy2

16
ffiffiffi
π

p e−y
2=2þyðy2−10Þ

32
e−y

2=4Erfðy=2Þ: ð2Þ

We have separated F1;0 into a universal dimensionless
function F̃1;0 and a nonuniversal factor that involves the
susceptibility χ and the diffusivityD (like the leading-order
correlator) but also the derivative of the diffusivity with
respect to the background value of the diffusing density
D0 ≡ dDðnÞ=dn. If this parameter is known, e.g., by
measuring the diffusivity at several densities, the entire
functional form of the 1=

ffiffi
t

p
correction to diffusion is fixed.

One interesting feature of this correction is that, for x ¼ 0,
it is non-negative, F1;0ð0Þ ¼ ðχD02=D5=2Þð1=4 ffiffiffi

π
p Þ ≥ 0,

which implies that the autocorrelation function approaches
its asymptotic diffusive form from above at late times:

hnð0;tÞni¼ χffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
�
1þ χD02

4
ffiffiffi
π

p
D5=2

1ffiffi
t

p þO

�
logt
t

��
: ð3Þ

Therefore, if a dynamic critical exponent z is extracted by
fitting the autocorrelation function as hnð0; tÞni ∼ 1=t1=z

at late times, a diffusive system will always naively
appear to be superdiffusive, z < 2. This is illustrated
in Fig. 1.
Eq. (1) includes the first two terms in a general

expansion in derivatives and fluctuations, whose structure
is shown in Eq. (A1). The correction to diffusion that
arises from l-loop contributions at nth order in the
derivative expansion in the EFT scales as 1=tnþld=2 in
d spatial dimensions and is encoded in a scaling function
Fl;nðyÞ, which is universal up to one (or a few) nonuni-
versal Wilsonian coefficients, similar to the functions
in Eq. (2).
Given that diffusivities generically depend on density,

the leading correction (2) is typically present. However,
D0 may vanish at special values of the density: for
example, if there is a particle-hole (or charge conjuga-
tion) symmetry, which commonly arises in lattice systems
at half filling. In this case, the leading correction to
diffusion takes the form

hnðx; tÞni ¼ χffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
�
F0;0ðyÞ þ

1

t
ðF0;1ðyÞ þ F2;0ðyÞ

þ F0
2;0ðyÞ log tÞ þO

�
log t
t2

��
ð4Þ

and has a higher-derivative contribution F0;1ðyÞ and a
two-loop contribution F2;0ðyÞ þ F0

2;0ðyÞ log t. The former
can be shown to take the form

F0;1ðyÞ ¼ ½c1ðy2 − 2Þ þ c2y2ðy2 − 6Þ�e−y2=4; ð5Þ

where c1, c2 are nonuniversal transport parameters while
the latter is obtained in this paper and is given by

F2;0þF0
2;0 log t¼

χ2D002

12
ffiffiffiffiffiffi
3π

p
D3

½F̃2;0þ F̃0
2;0 log t�

F̃2;0ðyÞ¼
Z

∞

0

ds
π
cosðsyÞs2

×

�
s2e−s

2

�
log

1

s2
þEi

�
2s2

3

��
−
3

2
e−s

2=3

�

F̃0
2;0ðyÞ¼

y4−12y2þ12

32
ffiffiffi
π

p e−y
2=4; ð6Þ

with EiðzÞ≡ −
R
∞
−zðdu=uÞe−u. In the first line, we again

separated the scaling function into a nonuniversal
factor, which now depends on D00 ≡ d2DðnÞ=dn2, and a
universal scaling function. Notice that a shift in the
logarithm log t → logðt=τÞ can be absorbed by the
higher-derivative corrections c1, c2 in Eq. (5). At
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asymptotically late times, the diffusive autocorrelation
function is again approached from above:

hnð0;tÞni¼ χffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
�
1þ χ2D002

32
ffiffiffi
3

p
πD3

logt
t

þO

�
1

t

��
: ð7Þ

We note, however, that this correction only has a log t
enhancement compared to the non-sign-definite 1=t
corrections from Eq. (5). For the reader’s convenience,
the universal scaling functions found above are illustrated
in Fig. 6 in the Appendix A 5.

III. SCALING CORRECTIONS FROM THE EFT

The universal corrections to diffusion quoted in Eqs. (1)
and (4) can be obtained from the effective field theory
(EFT) of diffusion [13,23]. These corrections arise from
thermal fluctuations (loops) of the hydrodynamic densities
and noise fields. Several qualitative properties of these
loops were understood shortly after their discovery in
classical numerics [30], e.g., through mode-coupling
approximations or the Martin-Siggia-Rose approach [10],
which established first steps towards a general EFT for
fluctuating hydrodynamics. The modern EFT approach
completes these constructions by elevating them into a
systematic expansion in derivatives and fluctuations; there-
fore, we follow this approach here.
We are interested in studying transport in a system with

at least one conserved quantity, leading to a continuity
equation (in the continuum limit)

ṅþ∇ · j ¼ 0: ð8Þ

The density n could correspond to energy density, charge
density, magnetization density, etc. We first focus on the
situation where a single density is conserved and discuss
generalizations to multiple densities in Sec. III D.
A generating functional for correlation functions of

densities and currents in the thermal state ρβ can be written

Z½A1; A2� ¼ TrðU½A1�ρβU†½A2�Þ; ð9Þ

where A1, A2 are background gauge fields that couple to the
conserved current in the time-evolution operator

U½A�¼T exp

�
−i
Z

∞

−∞
dt

�
H−

Z
ddxjμAμðt;xÞ

��
; ð10Þ

where we have collectively denoted the charge and current
density by jμ ¼ ðn; jiÞ. Derivatives of logZ with respect to
A1, A2 can generate correlation functions of jμ with various
time orderings. If the system thermalizes, one expects the
partition function to have a representation in terms of a
local effective Lagrangian of the long-lived hydrodynamic

variables. It is local in space and time because there are no
other long-lived excitations in the thermal state—this is the
assumption of thermalization. In the approach of Ref. [13],
this effective Lagrangian is a function of the fluctuating
density n and a conjugate field ϕa:

Z½A1; A2� ≃
Z

DnDϕae
i
R

dtddxL: ð11Þ

What is gained in universality is lost in exactness: While it
is not an exact representation of the microscopic partition
function (9), Eq. (11) provides a systematic expansion for
it when background fields A have slow variation in
time (and space) compared to the local equilibration time
of the system. We further motivate this construction in
Appendix A 2 and focus here on how it is used to obtain
universal corrections to diffusion. To leading order in
derivatives, the effective Lagrangian is found to be

L ¼ iσðnÞð∇ϕaÞ2 − ϕaðṅ −∇ðDðnÞ∇nÞÞ þ � � � : ð12Þ

Here, σðnÞ and DðnÞ are functions of the density that are
not fixed by the EFT: They correspond to the conductivity
and diffusivity of the system. These functions also play an
important role in macroscopic fluctuation theory [12].
In the present approach, they are just the leading terms
in a general expansion in derivatives (see, for example,
Ref. [31] for a discussion of certain terms in the EFT that
do not appear in constitutive relations).
As in most EFTs, it is typically impossible to derive

Eq. (11) from a microscopic model of interest. One
exception is in the context of strongly interacting holo-
graphic quantum field theories, where progress has been
made in deriving at least the quadratic part of the EFT from
microscopics [32–34] (see Refs. [35–38] for earlier work
in this direction); similar derivations may be possible for
lattice systems with large local Hilbert space dimension
(e.g., Refs. [39,40]) or noisy systems in the limit of strong
noise (e.g., Refs. [41,42]).
When studying linear response or more general corre-

lation functions, one expands these functions around the
background value of interest for the density n ¼ n̄þ δn,

DðnÞ ≃Dþ δnD0 þ 1

2
δn2D00 þ � � � ; ð13Þ

whereD;D0; D00, etc. on the right-hand side are evaluated at
the background density n̄. These parameters are Wilsonian
coefficients of the EFT: They are not fixed by the EFT (and,
in fact, are not universal), but the EFT instead predicts how
they enter in any late-time observable. Since the same
coefficients enter in a large number of observables, the
problem is highly overdetermined and the EFT has sub-
stantial predictive power.
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In the following subsections, we use the EFT in Eq. (12)
to compute one-loop and two-loop corrections to the
retarded Green’s function of the charge density

GRðω; qÞ ¼ σq2

−iωþDq2
þ δGRðω; qÞ: ð14Þ

Here, GR is simply related to the Fourier transform of the
dynamical structure factor through fluctuation-dissipation
relations, but it has a simpler analytic structure and is
therefore more convenient to work with. In the EFT, it can
be obtained from the mixed correlator (see Appendix A 2),

GRðω; qÞ ¼ iσq2hnϕaiðω; qÞ: ð15Þ

At tree level, it can be evaluated using the propagators of
the fields obtained from the Gaussian Lagrangian (12):

hnϕai0ðω; qÞ ¼
1

ωþ iDq2
;

hnni0ðω; qÞ ¼
2σq2

ω2 þD2q4
: ð16Þ

Using Eq. (15), one recovers the leading diffusive behavior
in Eq. (14). The second piece δGRðω; qÞ comes from loop
and higher-derivative corrections, which are studied below.

A. One-loop corrections

Loop corrections to Eq. (14) arise due to nonlinearities in
the EFT. For example, expanding DðnÞ as in Eq. (13) leads
to a cubic term,

Lð3Þ ¼ 1

2
D0∇2ϕan2: ð17Þ

This term produces a cubic vertex that, working perturba-
tively in these interactions, will lead to loop corrections
to GR. Note that the perturbative expansion is always
controlled because nonlinearities are irrelevant. Indeed,
Eq. (16) implies that density fluctuations scale as
δnðt; xÞ ∼ qd=2; since the cubic nonlinearity is suppressed
by an extra power of δn, it gives small corrections at late
times or long distances, where ω ∼ q2 → 0. This finding is
in contrast to momentum-conserving systems in d ¼ 1,
where nonlinearities are relevant and lead to a breakdown
of diffusion that is replaced by the KPZ universality
class [43]. That the perturbative expansion is controlled
in the present situation is a derivation of the EFT rather than
an assumption.
The cubic action also contains a term proportional to σ0.

While this term leads to a nonlinear response [25], in
Appendix A 3, we show that it does not contribute to the
one-loop corrected two-point function; we therefore ignore
it here.

The cubic vertex (17) leads to a one-loop correction
to hnϕai shown in Fig. 2. Its evaluation, performed in
Ref. [23], is streamlined here. It is convenient to amputate
the external legs and parametrize the correction as
δDðω; qÞ, namely,

δhnϕai ¼ −iq2δDðω; qÞðhnϕai0Þ2: ð18Þ

The one-loop correction then takes the form

δDðω; qÞ ¼ −iD02
Z
p0
q02hnϕaiðp0Þhnniðp − p0Þ; ð19Þ

where we have used the short-hand notation p≡ fω; qg,
and

R
p ≡

R ½dωddq=ð2πÞdþ1�. The loop integrals can be
readily evaluated in any dimension (see Appendix A 3), and
they give

δDðω; qÞ ¼ χD02

D2
ð−iωÞαd

�
q2 −

2iω
D

�
; ð20Þ

where χ ≡ σ=D is the static susceptibility, with

αdðzÞ ¼
ð−zÞd2−1

ð16πÞd=2Γðd
2
Þ ·
�
iπ if d odd

log 1
z if d even

: ð21Þ

The general scaling δD=D ∼ qd agrees with expectations:
The cubic interaction is suppressed by δn ∼ qd=2, and two
cubic vertices are necessary to produce a loop correction.
The detailed loop calculation is necessary to obtain the
overall coefficient, as well as the entire dependence on the
dimensionless ratio Dq2=ω. Nevertheless, several aspects
of the result could have been anticipated on general
grounds: (i) The fact that the correction vanishes in the
static limit limω→0 δDðω; qÞ ¼ 0 is required by the analy-
ticity of equilibrium thermal correlators due to the finite
thermal correlation length [44]; (ii) the existence of a
branch point at ω ¼ −ði=2ÞDq2 follows from a simple
cutting argument [23].
We are most interested in the case d ¼ 1:

δDðω; qÞ ¼ χD02

D2
ð−iωÞ 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 2iω

D

q : ð22Þ

FIG. 2. Left diagram: one-loop correction to diffusion. Right
diagram: two-loop correction to diffusion at half filling.
The propagators hnni0ðω; qÞ and hnϕai0ðω; qÞ from Eq. (16)
correspond to the solid lines and half-solid half-dashed lines,
respectively.
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Fourier transforming this expression, or rather δGRðω; qÞ,
is straightforward, but it is presented in Appendix A 5 for
completeness; this process results in a correction to the
correlation function shown in Eq. (2).

B. Two-loop half-filling correction

WhenD0 ¼ 0, there is no one-loop correction to diffusion.
This situation naturally arises in particle-hole symmetric
systems at half filling because D0 ≡ ½dDðnÞ=dδn� is
odd under particle-hole (or charge conjugation) symmetry
δn → −δn and must therefore vanish. The leading fluc-
tuation corrections come instead from a two-loop diagram,
shown in Fig. 2, arising from the quartic vertex

Lð4Þ ¼ 1

6
D00∇2ϕan3: ð23Þ

Because this interaction scales as Lð4Þ=Lð2Þ ∼ δn2 ∼ qd, and
since two such vertices will be necessary to give a nonana-
lytic correction to the two-point function, the two-loop
correction will scale as δGR=GR ∼ q2d ∼ ωd (up to loga-
rithms). In d ¼ 1, these corrections are as large as higher-
derivative corrections to diffusion, studied in the next
section, which scale as q2.
The two-loop correction to hnϕai, with external legs

amputated, is given by

δDðω;qÞ

¼−
i
2
D002

Z
p0;p00

q002hnϕaiðp00Þhnniðp0−p00Þhnniðp−p0Þ:

ð24Þ

The integrals are evaluated in Appendix A 4. One finds

δDðω; qÞ ¼ 1

2

ðχD00Þ2
D2

ð−iωÞβd
�
q2 −

3iω
D

�
; ð25Þ

with

βdðzÞ ¼
ð−zÞd−1 log 1

z

ð12 ffiffiffi
3

p
πÞdΓðdÞ : ð26Þ

This result has the expected q2d scaling, vanishes in the
static limit limω→0 δDðω; qÞ ¼ 0, and features the expected
three-diffuson branch point at ω ¼ −ði=3ÞDq2 [45].
For d ¼ 1, this result becomes

δDðω; qÞ ¼ 1

24
ffiffiffi
3

p
π

ðχD00Þ2
D2

ð−iωÞ log 1

q2 − 3iω
D

; ð27Þ

leading to a correction to GRðω; qÞ whose Fourier trans-
form is computed in Eq. (A35) and shown in Eq. (6).

C. Higher-derivative corrections

Higher-derivative corrections are also captured by the
EFT for diffusion [Eq. (12)]. These corrections will
either involve extra time derivatives ∂t or two extra spatial
derivatives ∇2 (by reflection symmetry); therefore, they
give corrections to the leading behavior that are suppressed
by q2, or equivalently 1=t. One can write the most general
such higher-derivative corrections to the EFT (see
Ref. [13]). However, since we are interested in the two-
point function, we can instead directly write the most
general corrections to GR. The higher-derivative correc-
tions should be treated perturbatively, as quadratic
vertices; the final expression therefore contains at
most two powers of the diffusive propagator. The most
general Oðq2Þ correction to the retarded Green’s function
is therefore

GRðω; qÞ ¼ σq2

−iωþDq2

�
1þ c1ð−iωÞ þ c2

ð−iωÞ2
−iωþDq2

�
þ c̃1q2 þ c̃2ð−iωÞ þOðq4Þ: ð28Þ

The two coefficients c̃1; c̃2 are contact terms and will not
affect the correlation function at separated points: c̃1 has the
interpretation of a q2 correction to the static susceptibility
χðqÞ ¼ χ þ c̃1q2 þ � � �, and c̃2 is in fact forced to vanish
to guarantee GRðω; q → 0Þ ¼ 0. Fourier transforming
hnni ¼ ð2=1 − e−βωÞImGRðω; qÞ leads to Eq. (5) (we
have taken the liberty to redefine the nonuniversal coef-
ficients c1, c2).
Equation (28) can also be derived through more conven-

tional approaches to hydrodynamics [9,46]: One writes the
linearized constitutive relation for the current in terms of
the charge δn up to subleading order in derivatives,

jiðt; xÞ ¼ −D∂iδnþD2∇2
∂iδnþ � � � : ð29Þ

We have omitted a term ∂t∂iδn, which would have the same
scaling as D2, because it can be absorbed in D2 using the
leading equations of motion ∂tδn ¼ D∇2δn. To obtain
response functions, one needs to know the constitutive
relation in the presence of a source δμðt; xÞ for charge
density. Assuming that the equilibrium response is given by
δnðqÞ ¼ χðqÞδμðqÞ, with χðqÞ ≃ χ þ χ2q2 þ � � � the static
susceptibility, the current constitutive relation in the pres-
ence of sources must take the form (in momentum space)

jiðt; qÞ ¼ −iqiðDþD2q2Þðδn − ðχ þ χ2q2ÞδμÞ
þ γiqi∂tδμþ � � � ; ð30Þ

where the combination δn − χðqÞδμ in the first line is
required for the current to vanish in thermal equilibrium.
Note, however, that this argument allows for terms
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involving the time derivative of the source, as in the second
line. Inserting the current in the continuity relation ∂tnþ
∂iji¼0 and solving for δn yields a retarded Green’s
function GRðω; qÞ≡ ½δnðω; qÞ=δμðω; qÞ� that matches
Eq. (28), with χ2 ¼ c̃1; D2 ¼ −D2c2; γ ¼ c̃1 þ ðc1 þ c2Þσ.

D. Multiple densities

Systems with multiple conserved densities can be
studied similarly by including all densities in the EFT.
The general scaling of loop corrections remains unchanged;
however, mixing of the densities allows for new scaling
functions with qualitatively different features. Indeed,
consider, for example, systems with conservation of both
charge ṅþ∇ · j ¼ 0 and energy (or heat), ε̇þ∇ · jε ¼ 0.
Nonlinearities can now involve both densities, e.g.,

ji ¼ � � � þ λδε∂iδnþ � � � : ð31Þ

The coefficient λ arises from a temperature-dependent
conductivity ∂Tσ (or, equivalently, a density-dependent
thermoelectric conductivity ∂μα). While it seems similar
to the single density nonlinearity D0 considered above,
this term is qualitatively different because it is not a
total derivative contribution to the current. It therefore
contributes to the q ¼ 0 optical conductivity σðωÞ∼
1þ λ2jωjd=2 þ � � �, as was already recognized in Ref. [21].
In order to obtain the universal scaling functions at finite

q, which are necessary to make predictions for the structure
function hnðt; xÞni, the EFT is generalized to systems with
multiple conservation laws in Appendix B. The scaling
functions are, in this case, complicated by the fact that there
are several diffusivities and therefore several natural scaling
variables y ¼ x=

ffiffiffiffiffiffi
Dt

p
. To illustrate the appearance of novel

scaling functions with multiple densities in a simple
context, we focus on the hydrodynamics of densities for
a non-Abelian internal symmetry, say, SUð2Þ. This sit-
uation is simpler because the SUð2Þ symmetry restricts the
susceptibilities to be diagonal, χAB ≡ ðdnA=dμBÞ ¼ χδAB,
leads to a single diffusivity D, and only allows for one
cubic nonlinearity in the EFT, which has a clear similarity
with Eq. (31):

jAi ¼ −D∂inA þ λϵABCnB∇nC þ � � � : ð32Þ

Here, A;B;C;… run over the three elements of the SUð2Þ
algebra. The hydrodynamic description of thermalizing
systems with non-Abelian internal symmetries has been
studied before [24,42,47–49], with the role of the non-
linearity λ particularly emphasized in Refs. [24,42]. In
Sec. III B, we show that the one-loop correction to the
density two-point function is, in one spatial dimension,

GR
nAnBðω; qÞ ¼ δABGRðω; qÞ;

GRðω; qÞ ¼ σq2

Dq2 − iω
þ λ2χ2

D
iωq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 2iω

D

q
ðDq2 − iωÞ2 þ � � � :

ð33Þ

This correction produces a nonanalytic correction, at small
frequencies, to the optical conductivity

σðωÞ ¼ lim
q→0

−iω
q2

GRðω; qÞ

¼ σ −
λ2χ2

D3=2 ð1 − iÞ ffiffiffiffi
ω

p þ � � � : ð34Þ

The correction to the density two-point function in the
spacetime domain can be found by Fourier transforming
(see Sec. B). One finds a correction similar to Eq. (1), with
a different universal scaling function,

Fmult
1;0 ðyÞ ¼ χλ2

D5=2 F̃
mult
1;0 ðyÞ;

F̃mult
1;0 ðyÞ ¼ 4 − y2

4
ffiffiffi
π

p e−y
2=2 þ yð2 − y2Þ

8
e−y

2=4Erfðy=2Þ: ð35Þ

E. Confirming the EFT with classical numerics

Before turning to quantum simulations, where the
limited accessible timescales make it crucial to account
for power-law corrections to diffusion, we confirm the EFT
predictions in classical thermalizing systems. We focus on
classical lattice gases satisfying the “gradient condition,”
namely, where the current density is a total derivative
microscopically. In these situations, the diffusivity DðnÞ is
known analytically [50], making it simple to perform
precision tests of EFT predictions [25]. Indeed, since the
loop corrections (1) and (4) only depend on the suscep-
tibility χ and derivatives of DðρÞ, they are entirely fixed
analytically and can be directly compared to numerics.
As a simple example of a lattice gas satisfying the

gradient condition with a nontrivial DðρÞ, we consider the
one-dimensional Katz-Lebowitz-Spohn model [51–53]
describing a collection of hard-core particles hopping
on a lattice with rates depending on the occupation of
neighbors:

0100 ⟶
rð1þδÞ

0010; ð36aÞ

1101 ⟶
rð1−δÞ

1011; ð36bÞ

1100 ⟶
rð1þϵÞ

1010; ð36cÞ

0101 ⟶
rð1−ϵÞ

0011; ð36dÞ
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with equal rates for the spatially reversed processes. Note
that δ and ϵ are two parameters of the model, whereas r
defines the unit for time and can be set to unity. We focus
on the model with ϵ ¼ 0, corresponding to infinite-
temperature dynamics, which allows us to use a random
initial state as a thermal state (taking ϵ ≠ 0 instead
requires prethermalizing the system, making numerics
more costly). In this situation, the susceptibility is χðρÞ ¼
ρð1 − ρÞ, and the diffusivityDðnÞ ¼ 1þ δð1 − 2ρÞ, so that
D0 ¼ −2δ. This fixes all parameters entering in the leading
correction to diffusion, Eqs. (1) and (2). Figure 3 shows
the excellent agreement between the EFT prediction and
numerics. We stress that the entire scaling function agrees
quantitatively with the one-loop prediction F1;0ðyÞ and
that no fitting parameter is involved in this comparison.
Analytical knowledge of the leading-order correction

allows for considerably improved predictions for diffusivity
when the available integration time is short, i.e., when
one-loop effects are strong. Both experiments and

simulations, especially in quantum systems, are usually
limited to relatively short timescales, and uncontrolled
extrapolations are therefore employed to obtain infinite-
time properties such as diffusivity. We propose a robust
method that takes into account one-loop effects by fitting
the three-dimensional data set hnðx; tÞniρ versus t, x, ρwith
Eq. (1). We compare this method to the fit using just
the leading-order term (equivalently, taking F1;0 ¼ 0). For
example, we aim to approximate Dðδ ¼ 0.9Þ ¼ 1.9 − 1.8ρ
around ρ ¼ 0.9. For that purpose, we simulate a sample of
densities ρ ¼ ð0.85; 0.86;…; 0.93Þ. The diffusivity is para-
metrized byDfit ¼ a − bρ since we know its analytic form.
In general, the parametrization may include additional
powers of density as the precise form of diffusivity is
not polynomial. We constrain the time window t ¼ 40 − T,
T ¼ 100 and find the deviations of the fit from the
exact diffusivity: ð1.9 − aÞ=1.9 ≈ ð0.135; 0.081Þ and
ð1.8 − bÞ=1.8 ≈ ð0.12; 0.084Þ, where the first and second
numbers in the parentheses denote the fit without and
with the one-loop correction. Our results show a
quantitative improvement, which increases as T
decreases and one-loop effects become stronger. In prin-
ciple, it is possible to perform time extrapolations to the
above fitting method by using time windows of vary-
ing size.

IV. QUANTUM TRANSPORT

To test and make use of the EFT predictions in a minimal
setting, we focus on quantum-coherent and incoherent
chaotic systems with a single conserved charge. We
estimate the dependence of diffusivity on the equilibrium
magnetization using various approaches, and we show that
the corrections to diffusion are in agreement with EFT.
Moreover, incorporating these corrections in the fitting
methods can significantly improve the diffusivity approxi-
mation at finite times.

A. Model and methods

The conserved charge is chosen to be magnetization,

N ¼
XL
i¼1

σzi ; ð37Þ

where σz is the Pauli-z matrix and L is the system
size. Since magnetization is a sum of local operators,
the equilibrium ensemble is a product state, i.e.,
eμN ¼QL

i¼1 e
μσzi . We did not consider systems with charges

such as energy density which have equilibrium states with a
finite correlation length because this adds an additional
layer of complexity to the simulations, even though the
EFT predictions are the same.
As a minimal chaotic model where magnetization is the

only conserved quantity, we choose the Floquet-XXZ chain

FIG. 3. (a) Profile of the dynamical structure factor for the
KLS model with parameters δ ¼ ρ ¼ 0.9; ϵ ¼ 0. Different
colored curves denote different times t∈ f200; 2000g,
with smaller times corresponding to darker colors. The red
dashed curve is the diffusive prediction ðχ= ffiffiffiffiffiffiffiffiffi

4πD
p ÞF0;0ðyÞ.

Inset: autocorrelation function (y ¼ 0). Diffusive predictions
with (black) and without (red) leading-order corrections
[Eq. (3)] are shown. (b) Comparison between the correction
to diffusion from simulation data Δn≡ ffiffi

t
p ½hnðx; tÞni −

ðχ= ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p ÞF0;0ðyÞ� and the EFT prediction F1;0ðyÞ (black
dashed line), Eq. (1). Inset: absolute area between the
finite-time curves and the analytic expression,
F ¼ R 30 dyjΔnðtÞ − F1;0j=

R
3
0 dyjF1;0j.
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with a staggered field, whose stroboscopic dynamics are
generated by a Floquet operator,

U ¼ UeUo; Ue ¼
YL=2
i¼1

U2i;2i−1; Uo ¼
YL=2
i¼1

U2i−1;2i−2;

Ui;iþ1 ¼ exp
	
−iðhXXZi;iþ1 þVi;iþ1Þ



: ð38Þ

The evolution is performed by first evolving the odd bonds
and then the even bonds, with two-body gates generated by
the following operators,

hXXZi;iþ1 ¼ Jðσþi σ−iþ1 þ H:c:Þ þ Δ
2
σziσ

z
iþ1;

Vi;iþ1 ¼ gðð−1Þiσzi þ ð−1Þiþ1σziþ1Þ: ð39Þ

In the absence of a staggered field V, the Floquet-XXZ
chain is integrable [54]. For our choice of parameters,
J ¼ π=4;Δ ¼ J − 0.2, the magnetization at V ¼ 0 displays
ballistic transport. Turning on the staggered field leads to
integrability breaking, the system becomes chaotic, and
therefore magnetization is expected to diffuse. To establish
our method, we alternatively perturb the XXZ chain with
Markovian noise (dephasing). Dephasing effectively sup-
presses the generation of operator entanglement in the
simulation, leading to very accurate numerical data. To
simulate the noise-averaged state, we define the dephasing
map by the action of the local channel on the state of a
single spin,

Di

�
ρ1;1 ρ1;0

ρ0;1 ρ0;0

�
¼
�

ρ1;1 e−γρ1;0
e−γρ0;1 ρ0;0

�
: ð40Þ

The global noise channel is a product of local channels and
is applied to the state following a period of coherent
evolution,

D ¼ ⊗
N

i¼1
Di; ρðtþ 1Þ ¼ DðUρðtÞU†Þ: ð41Þ

To study the linear response dynamics, we employ
the weak domain-wall initial state proposed by Ljubotina
et al. [55],

ρðμ; δ; t ¼ 0Þ ¼ 1

M
eμN
 YL=2

i¼1

e−δσ
z
i ⊗

YL
i¼L

2
þ1

eδσ
z
i

!
; ð42Þ

where M ¼ trρ is the normalization constant and δ → 0
generates a weak domain-wall perturbation on top of the
equilibrium state characterized by the chemical potential μ.
The linear response regime is characterized by a quench
where the amount of injected magnetization is not exten-
sive. Inspired by the leading nonlinear correction, Eq. (1),
a natural condition for the linear response regime is

δ ≪ ðχD0=
ffiffiffiffiffiffiffiffi
tmax

p
DÞ, where tmax is the maximum simulation

time. We use δ ¼ 0.0005, which satisfies the condition and
is also numerically checked to be in the linear response
limit for all simulated times.
The Floquet evolution defined by Eq. (38) breaks

translation invariance since even and odd sites are not
equivalent. To simplify the analysis, we average over even
and odd sites. In addition, we shift the magnetization by its
equilibrium value, σ̄ ¼ trðσziρðμ; 0ÞÞ ¼ tanh μ, and normal-
ize its initial magnitude to 1=2,

sj ¼
trðσz2j−1ρÞ þ trðσz2jρÞ − 2σ̄

4jtrðσz1ρðt ¼ 0ÞÞj ; ð43Þ

where j∈ f1; 2;…; L̄g and L̄ ¼ L=2. In this normalization,
the initial-state profile is sj≤L̄=2 ¼ −0.5 and sj>L̄=2 ¼ 0.5
for all values of μ and δ. Since we doubled the
lattice spacing, diffusivity and static susceptibility,
χ ¼ ð1=LÞðhN2i − hNi2Þ ¼ ðcosh μÞ−2, are rescaled
accordingly, D → D=4, χ → χ=2. We will always present
the results of diffusivity computed using the original lattice
spacing. For clarity, we employ a continuum description of
the lattice variables sj → sðxÞ since the hydrodynamic
corrections are defined in continuum.
A simple relation between the domain-wall quench for

δ → 0 and the dynamical structure factor was originally
derived in Ref. [56]. In the continuum limit, and under
the conventions described in the previous paragraph, the
relation simply reads hσzðx; tÞσzic ¼ χðds=dxÞ, where the
subscript c stands for the connected part of the correlation
function and the average is performed over the equilibrium
state, ρðμ; δ ¼ 0Þ. The distance x is measured from the
position of the domain wall at L̄=2. While the two quenches
are formally equivalent, we prefer to transform (simple
integral in space) the EFT results to the domain-wall picture
because taking the spatial derivative (or directly calculating
the dynamical structure factor) of the numerical data
enhances the errors generated by the simulations.
Therefore, the magnetization profile in the domain-wall
quench takes the form

Sðx; tÞ ¼
X
m;n

1

tm=2þn Fm;n;

Fm;n ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
Z

x

0

dxFm;n; ð44Þ

where Fm;n are the functions described in Sec. II. The
leading-order diffusion is given by F0;0 ¼ 1

2
Erfðy=2Þ, and

the corrections are presented in Eq. (A37).
The diffusive corrections are numerically explored by

simulating the dynamics of large system sizes, using tensor
network techniques. We employ the matrix product density
operator (MPDO) [57,58] representation of the state and
evolve it with time-evolving block decimation (TEBD) [59]
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algorithm. The simulations are performed using the ITensor
library [60]. We simulate the dynamics from equilibrium
states with chemical potentials μ ¼ ð0; 0.01;…Þ. In our
simulations, we evolve up to a time T ¼ 400 and fix the
system size to L ¼ 2T in order to avoid finite-size effects.
The numerical results are shown to be convergent for the
bond dimensions employed.
To probe the strength of the nonlinear corrections, we

calculate the prefactor of F1;0 defined in Eq. (A37),

C1 ¼
χD02ffiffiffiffiffiffiffiffiffiffiffi
4πD5

p ; ð45Þ

where D0 ¼ ðdD=dσ̄Þ and the magnetization profile after
subtracting the leading-order term is

ΔsðyÞ ¼ sðyÞ − F0;0: ð46Þ

The estimation of diffusivity Dðσ̄Þ is achieved by three
different fitting schemes, labeled I, II, and III. In the
following, we present a brief overview of each scheme
and further elaborate on the novel method II, which, for
reasons that will become clear later, is more accurate than
leading-order diffusion fitting and can be applied to any
diffusive system efficiently. Methods I and III are elabo-
rated in Appendix C. Method I is a scheme in which the
approximate diffusivity is extracted by fitting the dynami-
cal structure factor at the largest time with the leading-order
profile F0;0. Method II additionally takes into account
the EFT corrections F1;0;F0;1, and F2;0 that were explicitly
computed in Sec. III. Method III is based on the mini-
mization of the deviation of the total current of the system
from the expected generalized Fick’s 1st law. Many higher-
derivative and loop corrections cancel in method III and in
fact account for more corrections to leading-order diffusion
than method II, without having to compute them explicitly.
Namely, all zero-loop and one-loop higher-derivative
corrections F0;n and F1;n, as well as all l-loop zero-
derivative corrections Fl;0, cancel in method III; see
Appendix C 2. However, it is a more expensive method
as it requires measuring the full current, which is equivalent
to measuring the full structure factor. Method II, on the
other hand, can be equally efficient when a few points of
the structure factor are sampled. Additionally, method III is
less accurate than method II in systems with multiple
conserved charges, as explained in Appendix C.
We now further elaborate on method II, which is

a general fitting scheme for the estimation of Dðσ̄Þ.
Method II is inspired by our classical simulations (see
Sec. III E), where we found that diffusivity estimation by
finite-time simulations is more accurate when the correc-
tions to the leading-order diffusion are taken into account.
The fitting is performed as follows: We simulate the
dynamics for different equilibrium magnetizations and
store the local magnetization values for different sites at

different times, sðσ̄i; xj; tkÞ, where the subscripts i, j, k
denote different samples in the discretized data set. The
diffusivity is estimated by fitting the numerical data set with
the EFT function Eq. (44) using a simple least-squares
method,

minD;c⃗

X
i;j;k

jsðσ̄i; xj; tkÞ − Sðσ̄i; xj; tk; Dðσ̄Þ; c⃗ðσ̄ÞÞj2: ð47Þ

The functional minimization over Dðσ̄Þ is simplified
by employing a Taylor expansion around half filling,
Dðσ̄Þ ¼PM

i¼0 biðσ̄Þ2i, where M ¼ 3 is found to give
converged results for the parameter regimes studied in
this work. Only even powers are allowed in the expansion
due to the particle-hole symmetry in our system [Dðσ̄Þ ¼
Dð−σ̄Þ]. The parameters c⃗ ¼ ðc1; c2;…Þ are nonuniversal
parameters arising from linear fluctuations described in
Sec. III C. Since we only use leading- and subleading-order
corrections, we just require the two parameters c⃗ ¼ ðc1; c2Þ
defined by Eq. (5) and present in F0;1.

B. Results

Dephasing.—To establish the efficiency of the fitting
methods and the accuracy of EFT predictions, we switch
off the staggered-field perturbation (g ¼ 0) and simulate
the Floquet-XXZ chain, Eq. (41), in the presence of
dephasing with γ ¼ 0.1. Diffusive transport induced by
dephasing has two distinct features. First, the single-
particle limit (equivalently, the noninteracting limit Δ ¼ 0)
in the presence of dephasing remains diffusive, and there-
fore, diffusivity is finite for all magnetizations. This finding
is in contrast to purely interaction-induced diffusion
where the single-particle limit is ballistic (free particles).
Second, for increasing strengths of dephasing, magnetiza-
tion transport becomes less sensitive on the interactions in
the strong noise limit where, to leading order in 1=γ,
D ∝ J2=γ [41] is independent of magnetization density σ̄
and hence D0 ≡ ∂σ̄D ≃ 0.
In Fig. 4(a), we show the dependence of diffusivity on

magnetization, DIII ∼DII ≈ 5.35þ 3.03σ̄2 þ 0.54σ̄4. For
the fit II, we have employed the terms ðF0;0;F1;0;F0;1Þ.
In contrast to the noninteracting (Δ ¼ 0) limit, diffusivity
has a magnetization dependence due to the presence of
nonlinear corrections. However, the one-loop correction
F1;0 is small at timescales of order t ∼Oð100Þ since
C1 ∼Oð10−2Þ. Methods II and III converge to almost
the same curve (independently of bond dimension), which
is indicative of the fast convergence to the asymptotic
behavior. Method I slightly underestimates the asymptotic
value. The reason is that method I does not capture the
linear corrections F0;1, which dominate at these timescales
for all fillings, despite being suppressed by a factor of 1=

ffiffi
t

p
compared to the one-loop corrections [Fig. 4(c)]. The one-
loop effects only have a visible effect at the largest
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simulated times. In all cases, the corrections Δs are
accurately captured from our theory. Finally, we observe
that the correction profiles are almost time independent,
which is indicative that, besides one-loop corrections,
higher-order corrections are also suppressed.
Unitary dynamics.—Shifting to unitary dynamics, in

Fig. 4(c), we show that the staggered field generates a
strong dependence of diffusivity to magnetization,
independently of the fitting method used, C1 ∝ Oð1Þ.
Unsurprisingly, the fitted diffusivity is then considerably
affected by the method used, as shown by the d ¼ 256,
T ¼ 400 fits: DII ≈ 1.77þ 13.7σ̄2 þ 220σ̄4, DIII ≈ 1.73þ
27σ̄2 þ 190σ̄4. For fit II, we have employed the terms
ðF0;0;F1;0;F0;1Þ. This discrepancy is not due to truncations
in the dynamics; instead, we believe it arises from fitting
timescales that are not in the asymptotic diffusive regime,
which is reflected by the dependence of parameters yielded
by each method on the maximum timescale of the simu-
lation. The methods are affected according to the number of
corrections to diffusion they include in the approximation.
In that sense, method III is more converged than method II,
and method II is more converged than method I, which
employs no additional corrections to asymptotic diffusion.
As expected, when simulations are performed for longer
times, different methods tend to show better agreement.
Because of the discrepancy in the determination ofD, the

form of the corrections Δs depends on the fitting method.
Here, we have chosen to use the diffusivity estimated by
method II since, by construction, it fits these corrections
arising from nonlinearities and higher-derivative terms,
while in method III, such leading effects are absent. In
Appendix C, we show that the different methods result in
corrections with similar profiles. Figure 4(d) shows that, for
finite magnetization σ̄ ¼ 0.2, Δs scales as t−1=2 and has a

closely matching profile to that of the expected one-loop
correction F1;0. We again note that the one-loop profile is
completely determined by (D; ∂σ̄D), and no additional fitting
is involved. We observe that the correction profile shows a
significant time dependence, indicative of higher corrections
being still at work at these timescales. In contrast to finite
equilibrium magnetization, σ̄ ¼ 0 requires special attention.
First, the correction signal is weaker and requires a bond
dimension d ¼ 400 to be accurately captured. Additionally,
the strength of nonlinear corrections suggests that the leading
corrections, F2;0 and F0;1, will be of similar magnitude
at intermediate timescales. Eventually, F2;0 will dominate
due to its logarithmic divergence in time. For this reason,
we perform a different fit II around σ̄ ¼ 0, by including a
few points σ ∈ ð0; 0.01; 0.02; 0.03Þ and all terms ðF0;0;F1;0;
F0;1;F2;0Þ. Figure 4(d) indeed shows that both F2;0 and F0;1

are important at these timescales. However, the available
timescales are not sufficient to see the ultimate dominance of
the logarithmic part of F2;0, which would lead to a profile
with an opposite sign around y ¼ −0.2, 0.2.
Overall, we have shown that employing EFT corrections

to study quantum transport can significantly improve the
estimation of asymptotic transport parameters such as
diffusivity. In addition, these corrections help us understand
the different processes that drive a system towards equi-
librium. For example, dephasing, which is often used to
accelerate thermalization, achieves this goal at the cost of
flattening the diffusivity as a function of filling or mag-
netization. Moreover, we have found that even if noise
γ < Δ; J, the system’s behavior is similar to the strong
noise limit γ ≫ Δ; J, where the equation of motion for the
conserved charge can be perturbatively derived [41,42]. In
that case, the diffusivity has weak dependence on equilib-
rium magnetization σ̄, leading to smaller loop corrections

FIG. 4. Tensor network simulations of driven XXZ chain with (a), (b) decoherence, γ ¼ 0.1, and (c), (d) staggered field, g ¼ 0.4. (a),
(c) Diffusivity as a function of equilibrium magnetization. Top: different bond dimensions d. Bottom: different simulated times T, using
the same bond dimension d ¼ 256. Different colors denote fitting methods, which take into account an increasing amount of corrections
to leading-order diffusion, I → II → III [see Appendix (C 2)]. (b), (d) Corrections to diffusion for d ¼ 256, evaluated at different times
t ¼ ð40; 80;…; 400Þ, denoted by dark blue to yellow colors. The black dashed line denotes linear corrections, F0;1. The red dashed line
denotes F1;0 in panel (d), and F0;1 þ

ffiffiffiffi
T

p
F1;0 with T ¼ 400 in panel (b). The brown dashed line in panel (d) denotes the combined effect

of the two-loop correction and linear corrections F0;2 þ F1;0, where the logarithmic-in-time component of F0;2 is evaluated at T ¼ 400.
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and faster thermalization: Indeed, the leading-order non-
linear terms in the diffusivity only appear at third order,
OðΔ2J2=γ3Þ. In our situation, even if perturbation theory in
1=γ is not strictly valid, we observe the same behavior:
weak nonlinear corrections, F1;0, which are almost invisible
at the simulated timescales, and a fast approach to asymp-
totic times, which is driven by the subleading linear
corrections F0;1.
Staggered perturbations, on the other hand, induce

strong nonlinear effects, leading to a slower approach to
equilibrium. Additionally, the classical resources required
to simulate the system increase rapidly with the simulation
time, and therefore, the accessible timescales are limited.
We have shown that employing fitting methods that take
into account the EFT corrections to diffusion leads to a
significant improvement in the diffusivity estimation for
σ̄ > 0. At the same time, our numerical data strongly
suggest that the EFT corrections to the dynamical structure
factor are present in interacting quantum systems.

V. DISCUSSION

We have employed the EFT of diffusion to derive the
scaling functions of the leading power-law corrections to
diffusive transport for thermalizing systems with one or
more conserved local charges. We confirmed these pre-
dictions by numerical simulations in a classical model,
finding percent-level agreement of the entire scaling
function without any fitting parameter (see Fig. 3).
While testing subleading EFT predictions in quantum
simulations with this same level of precision is currently
beyond reach, due to the rapid growth of required classical
resources, these corrections are expected to be particularly
important there due to the shorter accessible timescales.
We showed that knowledge of these corrections allows
for more accurate extraction of transport parameters,
especially when the accessible timescales are very limited.
Furthermore, our results open a number of promising
directions for future research; we list these and other
applications below.
Precision tests of thermalization.—Our findings can also

be used to test possible deviations from standard diffusion
in numerics and experiments. For example, tracking the
density (or temperature) dependence of transport parame-
ters can help estimate power-law corrections to observ-
ables. Given that these corrections typically make diffusive
systems appear superdiffusive at intermediate times, it
would be interesting to study them quantitatively in the
context of 1D chains showing apparent anomalous diffu-
sion or superdiffusion [61–63] (see Ref. [24] for prelimi-
nary work in this direction, and Ref. [64] for related work),
as well systems featuring subdiffusion without dipole
conservation [65,66]. Higher-point functions of local oper-
ators offer useful information in this regard. Indeed, we
show in Appendix D that these are controlled by the same
EFT parameters (in particular,D0), which lead to power-law

corrections to linear response at intermediate times.
Measuring higher-point functions of density (or heat)
therefore provides a timescale that must be exceeded to
access the asymptotic dynamics. The EFT also points to
other observables, such as correlation functions in momen-
tum space hnðq; tÞni, which instead are not suitable for
precision tests of thermalization because they receive large
fluctuation corrections [45].
Beyond diffusion.—Our theoretical results can be

extended in various directions. We have assumed the
dissipative fixed point to be diffusive; however, one can
similarly study corrections to subdiffusive or superdiffusive
universality classes or even in generalized hydrodynamics
for integrable models (for the KPZ universality class, the
leading scaling correction was studied in Refs. [67–69]).
These corrections are also important to incorporate for
quantum simulations in higher dimensions d > 1, where
our ability to numerically study large systems and times is
limited. Our results for the one-loop and two-loop correc-
tions, Eqs. (20) and (24), hold in any dimension.
Connections to simulation complexity.—We believe that

EFT corrections present new hints towards understanding
the hardness of quantum simulations in the linear response
regime. We found that classical resources increase with
time faster when nonlinear corrections are stronger, in our
case, when σ̄ increases. This finding obstructed exploring
magnetizations beyond σ̄ ≈ 0.25 in the staggered-field
simulations. We lack a detailed theory behind this obser-
vation, but we believe that this is related to the strong
nonlinear corrections since they enhance multipoint corre-
lation functions such as the ones explored in Appendix D.
This idea implies that the accurate simulation of a system
with strong nonlinear contributions requires keeping
more information on multibody correlations in the density
matrix, which in turn increases the resources (bond
dimension) required by the tensor network simulations.
Benchmark for new methods.—Our results on universal

corrections to hydrodynamics are also useful to benchmark
theoretical and computational [42,70–73] approaches to
thermalization in many-body systems, as these will have to
reproduce not only the leading diffusive behavior but the
corrections as well. For example, Ref. [71] approximates
correlation functions based on extrapolations of Lanczos
coefficients, which, by design, produce a meromorphic
GRðω; qÞ that cannot capture the universal nonanalytic
corrections (22). Incorporating EFT results into such
constructions is a promising path to “bootstrapping” trans-
port in correlated quantum systems.
Distinguishing theories of fluctuating hydrodynamics.—

We have also shown that high-precision classical stochastic
simulations offer valuable precision tests for theories
of fluctuating hydrodynamics, in the present case confirm-
ing the leading and subleading corrections predicted
by the Schwinger-Keldysh EFT approach [13,23]. Other
approaches for fluctuating hydrodynamics exist, which
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treat the noise fields somewhat differently; it would be
interesting to further push these tests to possibly rule out
certain theories and identify the correct systematic frame-
work. One possible concrete target for the numerics in this
regard are effects arising from non-Gaussianities in noise
fields that do not enter in constitutive relations [44].
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APPENDIX A: EFT DETAILS

1. General structure of the corrections

The corrections to diffusion shown in Eqs. (1) and (4)
correspond to the first few terms arising from an expansion
in fluctuations and derivatives in the EFT. This expansion
takes the general form, in d spatial dimensions,

hnðx; tÞni ¼ χ

ð4πDtÞd=2
�
F0;0ðyÞ þ

1

t
F0;1ðyÞ þ

1

t2
F0;2ðyÞ þ � � � þ 1

td=2

�
F1;0ðyÞ þ

1

t
F1;1ðyÞ þ

1

t2
F1;2ðyÞ þ � � �

�

þ 1

td

�
F2;0ðyÞ þ

1

t
F2;1ðyÞ þ

1

t2
F2;2ðyÞ þ � � �

�
þ � � �

�
; ðA1Þ

where Fl;n are scaling functions of the scaling variable
y≡ x=

ffiffiffiffiffiffi
Dt

p
. The overall form of the expansion (A1) is

simple to justify on general grounds: Higher-derivative
corrections to diffusion come with two derivatives (assum-
ing reflection or rotation symmetry) and therefore give
corrections suppressed by ∇2 ∼ ð1=x2Þ ∼ ð1=tÞ at late
times. Loop corrections instead come from nonlinearities
in the dynamics of the densities: A single cubic nonlinearity
is suppressed by δn ∼ qd=2 ∼ 1=td=4 compared to the linear
(Gaussian) dynamics. The first loop correction requires two
insertions of a cubic nonlinearity and is hence 1=td=2

suppressed. Generalizing, an l-loop contributions at nth
order in the derivative expansion will give a correction to
correlation functions suppressed by 1=tnþld=2 (up to
logarithms); this correction comes with a dimensionless
scaling function Fl;n and is shown in the lth line and nth
column in Eq. (A1). This general structure of corrections to
hydrodynamics applies not only to density two-point
functions, but also to higher-point functions [25], as well
as to correlators of arbitrary microscopic operators that
have the same quantum numbers as (composites of)
densities [24,45].
While the simple scaling argument above predicts the

general expansion of correlation functions at late times
in diffusive systems, obtaining the dimensionless scaling
functions Fl;n in Eq. (A1) requires detailed use of the EFT.
The leading diffusive scaling function is well known,
F0;0ðyÞ ¼ e−y

2=4, and captures the density two-point func-
tion universally in any diffusive system. The subsequent
Fl;n capture scaling corrections to diffusion; they are also
universal, up to one or a few theory-dependent factors.
In this paper, we focus on the first few corrections and

explicitly evaluate F1;0 [Eq. (2)], F2;0 [Eq. (6)], and F0;1

[Eq. (5)]. Note that, in Eq. (A1), we have suppressed certain

factors of log t that can arise from loop corrections coming
with integer powers of 1=t; see Eq. (6) for an example.

2. Details of the EFT

In this section, we further motivate the EFT representa-
tion of the generating functional (11) and go over several
key steps in the construction of the EFT. Most of the
discussion in this section can be found elsewhere, e.g.,
Refs. [13,74], but we include it for completeness.
One of the guiding principles in constructing the

Schwinger-Keldysh EFT for hydrodynamics is to introduce
a minimal set of fluctuating degrees of freedom that will
ensure gauge invariance of the generating functional

Z½A1
μ þ ∂μλ

1; A2
μ þ ∂μλ

2� ¼ Z½A1
μ; A2

μ�. ðA2Þ

This is achieved by introducing phases ϕ1;2 that always
enter in the combination Aμ þ ∂μϕ (sometimes called the
“Stückelberg trick”):

Z½A1
μ; A2

μ� ¼
Z

Dϕ1Dϕ2ei
R

dtddxL½A1
μþ∂μϕ

1;A2
μþ∂μϕ

2�: ðA3Þ

This result now satisfies Eq. (A2) for any functional L
because a gauge transformation can be absorbed through a
redefinition of the dynamical fields ϕ1;2 that are being
integrated over. It is clear that the degrees of freedom we
have introduced are related to the continuous symmetry of
the system. If one had considered instead a system with N
separate continuity relations (8), 2N fields would have been
introduced. One can already notice a resemblance with
earlier approaches to fluctuating hydrodynamics, where
each continuity relation leads to 2 degrees of freedom:
a density and an associated noise field. The central
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assumption in the construction of the EFT is that L is a
local functional of the fields ϕ1;2. This assumption
implements the expectation of thermalization: The only
long-lived quantities are associated with symmetries, so
integrating out other degrees of freedom produces a local
EFT with a derivative expansion controlled by the scale at
which the system thermalizes (this scale acts as the UV
cutoff of the hydrodynamic EFT).
It is useful to define the symmetric and antisymmetric

combinations of fields [74],

ϕr ≡ ϕ1 þ ϕ2

2
; ϕa ≡ ϕ1 − ϕ2: ðA4Þ

One advantage of fields in this basis is that they satisfy
the “latest time” property: Correlators in which the latest
time is carried by a ϕa field vanish due to cyclicity of the
trace in Eq. (9),

hO1ðt1Þ � � �OnðtnÞϕaðtnþ1Þi ¼ 0; tnþ1 > ti; ðA5Þ

which will lead to simplifications in the diagrams below.
This construction bears a resemblance to EFTs for

spontaneously broken phases, where the long-lived degrees
of freedom are Goldstone bosons. In fact, constructing
the most general local Lagrangian L in Eq. (A3) leads
to an effective description of a thermalizing system in the
symmetry-broken phase (a dissipative superfluid). To
describe the normal phase, Ref. [13] proposed forbidding
the propagating sound mode by imposing an additional
symmetry:

ϕrðx; tÞ → ϕrðx; tÞ þ λðxÞ: ðA6Þ

See Refs. [32,33] for discussions on this symmetry in a
holographic context. Recently, Ref. [75] proposed a slightly
different approach that bypasses the need to impose this
somewhat artificial symmetry by viewing the density nr
rather than ϕr as the fundamental degree of freedom of the
EFT. We expect both of these approaches to be equivalent.
Otherwise, one simply constructs the most general local

functional of the gauge-invariant combinations of fields,

B1
μ ≡ A1

μ þ ∂μϕ
1; B2

μ ≡ A2
μ þ ∂μϕ

2; ðA7Þ

in an expansion in fields and derivatives. There are a
few additional constraints to impose, such as unitarity
Z½A1; A2�� ¼ Z½A2; A1� [which simply follows from the
definition (9)] and KMS symmetry; we refer the reader
to Ref. [13] for details. To leading order in derivatives, the
action can be expressed as [25]

L ¼ σðnÞBaiðiBai − βEriÞ þ Ba0n −DðnÞBai∂inþ � � � ;
ðA8Þ

where β is the inverse temperature, Eri ¼ ∂0Ari − ∂iAr0 is
the electric field, and Baμ ¼ Aaμ þ ∂μϕa. We have changed
variables from ϕr to the density n. The ellipses denote
higher-derivative terms (the most important of which are
discussed separately in Sec. III C), as well as nonlinear
terms that contain higher powers of ϕa, which are more
irrelevant than the nonlinearities considered here.
Setting the background fields to zero A1;2 → 0 leads to

the action (12) used in the main text. The background fields
are, however, useful to generate various correlation func-
tions. For example, the retarded Green’s function of charge
density is

GRðt; xÞ≡ iθðtÞTrðρ½nðt; xÞ; n�Þ
¼ ihnrðt; xÞnai

¼ i
δ2 logZ

δðiAa0ðt; xÞÞδðiAr0ð0ÞÞ
¼ −ihnðt; xÞ∂iðσðnÞ∂iϕaÞi: ðA9Þ

In particular, when σðnÞ ¼ σ ¼ const, the retarded Green’s
function is simply related to the hnϕai propagator,

GRðω; qÞ ¼ iσq2hnϕaiðω; qÞ: ðA10Þ

The two-point function can be obtained from GR as usual
from a fluctuation-dissipation relation,

hnniðω; qÞ ¼ 2

1 − e−βω
ImGRðω; qÞ: ðA11Þ

3. One-loop calculation

The universal leading one-loop correction to diffusion
was computed in Ref. [23] (see also Refs. [31,44,76–79]
for further studies of loop effects in the EFT of diffusion).
We review the derivation here and discuss an interesting
cancellation between certain diagrams that simplifies the
calculation.
We focus on nonanalytic and UV finite corrections to

GRðω; qÞ. This correlator also receives UV-divergent cor-
rections, which can be absorbed with local counterterms in
the EFT, and renormalize existing transport parameters.
These findings can be interesting in their own right [80],
but they do not lead to power-law corrections to diffusive
behavior, which are the focus of this paper. We can therefore
omit diagrams such as the one shown in Fig. 5(a), which
cannot produce novel singular IR structure. One therefore
only needs the cubic vertices of the EFT:

Lð3Þ ¼ iσ0nð∇ϕaÞ2 þ
1

2
D0∇2ϕan2: ðA12Þ

Diagrammatically, one expects these vertices will generate
one-loop corrections proportional to σ02, σ0D0, and D02.
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The first is shown in Fig. 5(b) and can easily be seen to
vanish: Indeed, the only such diagram involves a loop where
all poles in frequency lie on the same half complex plane.
Alternatively, this diagram can be seen to vanish in
the time domain using the latest time condition (A5).
Indeed, the diagram involves the computation of a correlator
hðnϕaÞðt1ÞðnϕaÞðt2Þi—since a ϕa field appears at the latest
time (whether it is t1 or t2), the correlator must vanish. These
types of considerations were already well known to produce
diagrammatic simplifications in Schwinger-Keldysh EFTs;
see, e.g., Ref. [81]. There is in fact a more general argument,
showing that the EFT (12) with DðnÞ ¼ const but σðnÞ
arbitrary has no loop corrections to the two-point function;
acting with the diffusive kernel on the two-point function,
one has

ð∂t −D∇2Þhnðt; xÞni ¼ −2i∇hðσðnÞ∇ϕaÞt;xni; ðA13Þ

where we used the equation of motion δL=δϕa ¼ 0 [this
equation holds up to contact terms proportional to δðtÞδðxÞ].
The right-hand side vanishes because a ϕa field is at the
latest time (assuming, without loss of generality, that t > 0),
showing that the two-point function is unaffected by non-
linearities in this theory, and is equal to

hnðt; xÞni ¼ χ

ð4πDtÞd=2 e
−x2=ð4DtÞ: ðA14Þ

This result is known to occur in certain lattice gas models
[50]. Here, we have temporarily ignored higher-derivative
corrections, which will enter, as usual, through F0;n as
in Eq. (A1).

We have established that the σ02 contribution to
hnniðω; qÞ vanishes. One can in fact show that the σ0D0
contribution vanishes as well, although the argument is
slightly more subtle. Diagrammatically, the two diagrams
that give corrections to hnniðω; qÞ are shown in Fig. 5(c).
They can be shown to cancel by explicit calculation—
however, the cancellation only happens after performing
the integral over frequency and dropping a UV divergence
in the integral over momenta. Note that, after amputating
one external leg on the D0 vertex, the remaining object to
be computed is a two-point function between n and the
normal-ordered composite operator n2:

hnðt; xÞn2ð0; 0Þi: ðA15Þ
Crucially, this object is to be computed in the theory with σ0
as its only cubic interaction (since theD0 vertex has already
been used). By time-reversal symmetry, one can take t > 0.
Acting with the diffusive kernel and using the equation of
motion as in Eq. (A13), one again finds that the result
vanishes, which implies that this correlator must be propor-
tional to the diffusive two-point function

hnðt; xÞn2ð0; 0Þi ∝ 1

td=2
e−x

2=ð4DtÞ: ðA16Þ

Therefore, the diagram, at most, renormalizes χ or D,
without producing new nonanalytic structures.
We are left with the D02 contribution to the two-point

function, shown in Fig. 2. It is simplest to study the one-
loop correction to the retarded Green’s function GR, which
is simply related to hnϕaiðω; qÞ by Eq. (A10) [given that
we have shown that one can set σðnÞ ¼ σ ¼ const in
the action]. This method is used in Sec. III, where it is
shown that the loop can be expressed as a correction
D → Dþ δDðω; qÞ with Eq. (19),

δDðω; qÞ ¼ −iD02
Z
p0
q02hnϕaiðp0Þhnniðp − p0Þ

¼ −iχðD0Þ2
Z

ddq0

ð2πÞd
q02

ωþ iD½q02 þ ðq − q0Þ2� ;

ðA17Þ
where, in the second line, we inserted the propagators (16)
and evaluated the integral over frequencies

R ðdω=2πÞ.
Here, χ ≡ σ=D. Changing integration variables to q0 → k≡
q0 − 1

2
q and defining

z≡ q2 −
2iω
D

; ðA18Þ

we obtain

δDðω; qÞ ¼ −
χD02

2D

Z
ddk
ð2πÞd − iω

χD02

D2

Z
ddk
ð2πÞd

1

zþ 4k2
:

ðA19Þ

(a) (b)

(c)

(d)

FIG. 5. Diagrams not contributing to transport corrections to
diffusion. (a) Diagrams where the external momentum does not
flow through a loop cannot produce new IR singularities; they
only renormalize tree-level transport parameters. (b) The one-
loop contribution proportional to σ02 vanishes due to the latest
time condition (A5). (c) The two one-loop contributions propor-
tional to σ0D0 cancel. (d) A similar cancellation happens at two
loops for the σ00D00 contribution.
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The term in the first line is a UV-divergent contribution
to the diffusivity and can be absorbed with a counterterm
D → Dþ δD in the EFT. The term in the second line
instead has interesting nonanalytic IR behavior. It is
entirely UV finite in d ¼ 1. In d ≥ 2, it produces additional
UV divergences that are analytic in z and can be absorbed
by higher-derivative counterterms in the EFT. The UV
finite part is given by

αdðzÞ≡
Z

ddk
ð2πÞd

1

zþ 4k2
− UV

¼ ð−zÞd2−1
ð16πÞd=2Γðd

2
Þ ·
�
iπ if d odd

log 1
z if d even:

ðA20Þ

One therefore finds Eq. (20).

4. Two-loop calculation

In systems with charge conjugation symmetry, the EFT
must by invariant under

n → −n; ϕa → −ϕa: ðA21Þ

This case forbids cubic terms in the EFT: in particular,
D0; σ0 ¼ 0. The leading nonlinearities are instead quartic
and can be found again by expanding Eq. (12):

Lð4Þ ¼ i
2
σ00n2ð∇ϕaÞ2 þ

1

6
D00∇2ϕan3: ðA22Þ

The leading fluctuation correction to transport then comes
from two-loop diagrams involving the two quartic vertices,
such as those in Figs. 2 and 5(d). These have not been
computed before—we evaluate them below. The contribu-
tion proportional to σ002 vanishes due to the latest time
condition (A5). The contributions proportional to σ00D00

can also be shown to vanish, following the same argument
as in the previous section: They involve computing
hnðt; xÞn3ð0; 0Þi in the theory with only the quartic inter-
action σ00. The only remaining contribution is the one
proportional to D002. It is studied in Sec. III and leads to a
correction [see Eq. (24)]

δDðω; qÞ ¼ −
i
2
D002

Z
p0;p00

q002hnϕaiðp00Þhnniðp0 − p00Þhnniðp − p0Þ

¼ χD002

2D2

Z
p0
ð−iω0Þαd

�
q02 −

2iω0

D

�
hnniðp − p0Þ

¼ ðχD00Þ2
2D2

Z
q0
ð−iωþDðq − q0Þ2Þαd

�
q02 þ 2ðq − q0Þ2 − 2iω

D

�
; ðA23Þ

where, in the third line, we used the result of the one-loop
calculation (A17) and, in the last one, we performed the ω0

integral using the residue theorem [note that αd½q02 −
ð2iω0=DÞ� is analytic in the upper-half ω0 plane]. Changing
integration variables to q0 → k≡ ð3= ffiffiffi

2
p Þðq0 − 2

3
qÞ leads to

δDðω; qÞ ¼ ðχD00Þ2
2D2

� ffiffiffi
2

p

3

�d

×
Z
k

�
−iωþ 1

9
Dðq2 þ 2k2Þ

�
αd

�
2

3
ðk2 þ zÞ

�
;

ðA24Þ

where we defined

z≡ q2 −
3iω
D

: ðA25Þ

Let us first focus on d odd, where one can write

αdðzÞ ¼ adz
d
2
−1; ðA26Þ

with ad ¼ ½ð−1Þd−12 π�=½ð16πÞd=2Γðd=2Þ�. The corrections
then take the form

δDðω;qÞ¼ 3ðχD00Þ2
4D2

��
−iωþD

9
q2
�
Jd;0ðzÞþ

2D
9
Jd;2ðzÞ

�
;

ðA27Þ
with

Jd;nðzÞ ¼
� ffiffiffi

2
p

3

�d

ad

Z
ddk
ð2πÞd k

nðk2 þ zÞd2−1: ðA28Þ

This final integral has several power-law UV divergences:
They are analytic in ω, q and can therefore be absorbed
with counterterms in higher-derivative corrections to hy-
drodynamics. We thus focus on the UV-finite (or UV log-
divergent) nonanalytic part. By dimensional analysis, it has
the form

Jd;nðzÞ ¼ zd−1þn
2

�
bd;n log

Λ2

z
þ cd;n

�
þ UV: ðA29Þ
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Note that the cd;n contribution is always analytic, so it can
be ignored. The coefficients of interest are found to be

bd;0 ¼
1

ð12 ffiffiffi
3

p
πÞd

1

ΓðdÞ ; bd;2 ¼ −
1

2
bd;0: ðA30Þ

This second equality implies that the q2zd−1 logð1=zÞ
correction vanishes, so δDðω; qÞ is proportional to
ð−iωÞzd−1 logð1=zÞ, which guarantees that static correla-
tors ω → 0 are analytic, as expected [44]. We are then
left with

δDðω; qÞ ¼ 1

2
bd;0

ðχTD00Þ2
D2

ð−iωÞzd−1 log 1
z
: ðA31Þ

One can repeat this calculation in d even, where instead of
Eq. (A26), one has αdðzÞ ¼ ãdz

d
2
−1 logð1=zÞ. One finds the

same results as above, apart from a sign bd;n → −bd;n. The
result in general dimensions therefore takes the form (25).

5. Fourier transformation of corrections to diffusion

In this section, we detail the computation of the inverse
Fourier transform that produces the two-point function,
focusing on d ¼ 1, for simplicity,

hnðt; xÞni≡
Z

dωdq
ð2πÞ2 e

−iωtþiqxhnniðω; qÞ; ðA32Þ

where hnniðω; qÞ can be obtained from the retarded
Green’s function using Eq. (A11),

hnniðω; qÞ ≃ 2

ω
Im

σq2

−iωþ ðDþ δDðω; qÞÞq2

≃
2σq2

ω2 þD2q4
−
2

ω
Im

σq4δDðω; qÞ
ð−iωþDq2Þ2 ; ðA33Þ

where we have expanded to linear order in δD [given by
Eqs. (22) or (27)] because we are only interested in the
leading correction.
The Fourier transformation of the first term is straight-

forward, and it is given by

hnðt; xÞni0 ¼
χffiffiffiffiffiffiffiffiffiffiffi
4πDt

p e−y
2=4; y≡ xffiffiffiffiffiffi

Dt
p : ðA34Þ

Let us now turn to the Fourier transform of the correction.
Introducing the dimensionless variables w ¼ ω=ðDq2Þ and
τ ¼ tDq2, one has

δhnniðt; qÞ ¼
Z

dω
2π

e−iωthnniðω; qÞ

¼ χq2
Z

dw
2π

e−iwτ
δD=ð−iωÞ
ð1 − iwÞ2 : ðA35Þ

We have taken t > 0, implying that one can disregard
nonanalyticities in the upper-half w plane. Inserting the
one-loop expression (22) leads to

δhnniðt; qÞ ¼ iχ2D02jqje−τ=2
4
ffiffiffi
2

p
D2

Z
0

−∞

dz
2π

Disc
ezτffiffiffi

z
p ðzþ 1

2
Þ2 ;

where we defined z ¼ 1
2
− iw and deformed the contour to

pick up the discontinuity across the two-diffuson branch
cut, DiscfðzÞ ¼ fðzþ i0þÞ − fðz − i0þÞ. Evaluating the
integral gives

δhnniðt; qÞ ¼ χ2D02jqje−τ=2
4D2

×

"
e−τ=2ð1þ τÞErfi

� ffiffiffi
τ

pffiffiffi
2

p
�
−

ffiffiffiffiffi
2τ

p ffiffiffi
π

p
#
; ðA36Þ

with ErfiðzÞ≡ ErfðizÞ=i. To perform the final Fourier
transform

R ðdq=2πÞeiqx, one can express the integrand
as a product of two Fourier transforms and evaluate their
convolution. This process gives Eq. (1).
The two-loop contribution can be obtained similarly:

One inserts Eq. (27) into Eq. (A35) and evaluates the
discontinuity across the three-diffuson branch cut to obtain

δhnniðt;qÞ¼ χ3D002q2

24
ffiffiffi
3

p
πD2

�
τe−τ

�
log

1

q2
þEi

�
2τ

3

��
−
3

2
e−

τ
3

�
;

where EiðzÞ≡ −
R
∞
−zðdu=uÞe−u (ExpIntegralEi[z] in

Mathematica). We were not able to express the final
Fourier transform

R ðdq=2πÞeiqx in terms of known special
functions—the resulting integral is shown in Eq. (6). The
one-loop and two-loop scaling functions are shown
in Fig. 6.

FIG. 6. Universal scaling functions describing nonlinear cor-
rections to the diffusive structure factor as a function of the
hydrodynamic variable y ¼ x=

ffiffiffiffiffiffi
Dt

p
. The leading-order Gaussian

spreading is F0;0 ¼ e−y
2=4, and the leading-order nonlinear

fluctuations are given by Eq. (2) for general systems and by
Eq. (6) in the presence of particle-hole symmetry.

MICHAILIDIS, ABANIN, and DELACRÉTAZ PHYS. REV. X 14, 031020 (2024)

031020-18



6. EFT predictions for the domain-wall quench

In this section, we present the EFT predictions for the
domain-wall initial condition, Eq. (42). As explained in the
main text, the conversion from the dynamical structure
factor to the domain-wall picture is a simple integration in
space, Eq. (44). Here, we present the equations employed in
the fitting processes,

F0;0 ¼
1

2
Erfðy=2Þ;

F1;0 ¼
χD02ffiffiffiffiffiffiffiffiffiffiffi
4πD5

p
 
−
4e−

y2

2 y
8
ffiffiffi
π

p −
e−

y2

4 ð−6þ y2ÞErfðy=2Þ
16

!
;

F0;1 ¼ e−
y2

4 yðc1 þ c2y2Þ;

F2;0 ¼
χ2D002

24π
ffiffiffi
3

p
D3

ðF̃2;0 þ F0
2;0 log tÞ;

F̃2;0 ¼
Z

∞

0

ds
π
sinðsyÞs

×

�
s2e−s

2

�
log

1

s2
þ Ei

�
2s2

3

��
−
3

2
e−s

2=3

�
;

F0
2;0 ¼ −

e−
y2

4 yðy2 − 6Þ
16

ffiffiffi
π

p : ðA37Þ

The parameters in the term F0;1 are defined in order to
absorb the numerical constant.
Equation (D2) follows from a simple manipulation of the

three-point function derived in Ref. [25],

fðx̄;x; tÞ
¼ hnðx1; tÞnðx2; tÞnð0;0Þi

¼ χ2D0

8πD2t
e−

y2
1
þy2

2
4

�
1−

ffiffiffi
π

p
y1
2

e
y2
2
4 ðErfðy2=2Þþ signðy1−y2ÞÞ

�
þy2 ↔ y1; ðA38Þ

where y1 ¼ x1=
ffiffiffiffiffiffi
Dt

p
, y2 ¼ x2=

ffiffiffiffiffiffi
Dt

p
, and x̄ ¼ ðx1 þ x2Þ=2,

x ¼ x1 − x2 correspond to the center-of-mass coordinates.
In the domain-wall initial state, the center of mass will be
summed over all positions, while the second operator is
fixed at x2 ¼ 0. This case corresponds to a spatial inte-
gration with respect to the center-of-mass coordinate,

s3;EFT ¼ 1

χ

Z
0

∞
fðx̄; x; tÞdx̄: ðA39Þ

APPENDIX B: EFT FOR MULTIPLE
DIFFUSING DENSITIES

1. General construction of the EFT

The EFT approach can be generalized to account for
multiple continuity relations giving rise to conserved

densities. Consider a thermalizing system with Abelian
Uð1ÞN symmetry, and couple it to background fields AA

μI ,
where I ¼ 1, 2 denotes the SK contour and the index
A ¼ 1;…; N. The action will be made up of the gauge-
invariant combinations

BA
μI ≡ AA

μI þ ∂μϕ
A
I : ðB1Þ

Imposing diagonal shift symmetry

BA
ir → BA

ir þ ∂iλ
Aðx⃗Þ; ðB2Þ

and KMS as before, the quadratic action to leading order in
derivatives is

Lð2Þ ¼ B0a · χ · B0r þ Bia · σ · ðiTBia − ḂirÞ; ðB3Þ

where χAB; σAB are matrices and dots denote matrix
multiplication. Both χ and σ have to be symmetric by
time-reversal symmetry (Onsager relation). The cubic
action to leading order in derivatives is

Lð3Þ ¼ 1

2
B0a · ∂Aχ · B0rBA

0r þ Bia · ∂Aσ · ðiTBia − ḂirÞBA
0r:

ðB4Þ

The cubic interactions arise, as before, as dependence of
transport or thermodynamic parameters on potentials:
∂Aχ ≡ dχ=dμA; ∂Aσ ≡ dσ=dμA. One can change variables
to the density as before, ϕA

r → nA ≡ ðδL=δAA
a0Þ. In terms of

these variables, the full action up to cubic order is

Lð2Þ ¼B0a ·nþBia · σ · ðiTBia−F0i;rÞ−Bia ·D · ∂in;

Lð3Þ ¼−
1

2
Bia · ∂AD · ∂iðnnAÞþBia · ∂Aσ · ðiTBia−F0i;rÞnA

þ 1

2
Bia · ∂Aσ · χ−1 · ðn∂inA − ∂innAÞ: ðB5Þ

The derivatives of transport parameters are now taken with
respect to densities, e.g.,

∂
Aσ ¼ d

dnA
σ ¼ ðχ−1ÞAB∂Bσ; ðB6Þ

and the diffusion matrix has been defined as

D · χ ¼ σ or DA
B ¼ σACðχ−1ÞCB: ðB7Þ

As the product of two symmetric positive matrices, D can
be diagonalized—its eigenvalues correspond to the location
of poles of the density two-point function ω ¼ −iDAq2.
While the first two lines in Lð3Þ [Eq. (B5)] are analogous

to the N ¼ 1 case, the term in the third line is qualitatively
new. It is a contribution to jir ¼ δL=δAia, as expected
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[see Eq. (31)]. These terms lead to different corrections to
diffusion. We study them below, in the more constrained
situation of non-Abelian densities.

2. Non-Abelian densities

The EFT can also be straightforwardly generalized to
non-Abelian Lie groups [24,75]. We focus here on SUð2Þ
for concreteness. Since the densities nA transform linearly
(in the adjoint representation) under the group action, one
can implement the symmetry by making sure that they are
contracted with group covariant tensors [for SUð2Þ, these
are δAB; ϵABC]. The nonlinear transformation of ϕA

a requires
more attention: Instead of using Bμa ¼ ∂μϕa þ Aμa, one
should use the Maurer-Cartan form

iBμa ¼ e−iϕ
A
aTAð∂μ þ iAB

μTBÞeiϕC
a TC ; ðB8Þ

which also transforms in the adjoint of SUð2Þ. Here, TA are
the generators of the algebra. The cubic SUð2Þ-invariant
action is therefore

Lð2Þ ¼ B0a · nþ σBia · ðiTBia − F0i;rÞ −DBia · ∂in;

Lð3Þ ¼ λϵABCBA
ian

BðχFC
0i þ ∂inCÞ: ðB9Þ

The term in the last line of Eq. (B5) produces the cubic term
above; we have written its coefficient as ∂AσBC ≡ χλϵABC.
Note that there are also cubic terms in the first line, coming
from expanding Eq. (B8): However, one can show, using
the leading-order equation of motion, that they will not
contribute to the one-loop correction studied below.

3. One-loop correction

Let us study the one-loop correction to hnrnai. There
are two contributions: The first comes from the nonlinear
piece in

nAa ≡ ∂L
∂A0r

¼ −σ∇2ϕA
a þ χλϵABC∂ið∂iϕB

anCÞ þ � � � : ðB10Þ

Writing hnAr nBa i ¼ δABhnrnai, this leads to the following
correction to hnrnai:

2iχλ2hnϕiðpÞqiqj
Z
p0
½q0jð2q0 − qÞi�hnϕiðp0Þhnniðp − p0Þ:

ðB11Þ
The other contribution comes from two insertions of the
cubic interaction Sð3Þ:

2σλ2½hnϕiðpÞ�2q2qi
×
Z
p0
½q0jð2q0 − qÞið2q − q0Þj�hnniðp − p0Þhnϕaiðp0Þ:

ðB12Þ

Summing these two diagrams, one finds (in d ¼ 1
dimensions)

GR
nnðω;qÞ ¼ ihnrnaiðω;qÞ

≃
σq2

−iωþDq2
þ λ2Tχ2

D
q2ðiωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2− 2iω

D

q
ðDq2− iωÞ2þ �� � :

ðB13Þ
Like before, there are couple consistency checks that this
result satisfies: It vanishes when q → 0 (as it must by
current conservation) and when ω → 0 (as it must by
analyticity of static correlators). The two diagrams above
do not satisfy the latter check individually; only their sum
does. Our result slightly differs from the one obtained in a
strong noise expansion in Ref. [42]—because their result
does not become analytic in the static limit, we suspect
that they may have missed a contribution to the one-loop
correction.

4. Fourier transformation

We would like to compute the Fourier transform of

δhnniðω; qÞ ¼ 2T
ω

ImδGR
nnðω; qÞ

¼ λ2ðTχÞ2
D

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 2iω

D

q
ðDq2 − iωÞ2 þ c:c: ðB14Þ

Fourier transforming
R ðdω=2πÞe−iωt by picking up the cut

as usual, one finds

δhnniðt; qÞ ¼ −
λ2ðTχÞ2
D2

2ffiffiffi
π

p jqje−τ=2

×
h
−

ffiffiffiffiffiffiffi
τ=2

p
þ ðτ − 1ÞFð

ffiffiffiffiffiffiffi
τ=2

p
Þ
i
: ðB15Þ

The final Fourier transform
R ðdq=2πÞeiqx can be per-

formed by convoluting the Fourier transforms of both
products above. The result is shown in Eq. (35).

APPENDIX C: DETAILS ON
QUANTUM TRANSPORT

In this appendix, we (1) identify the effects of the
truncation of the bond dimension in the DMPO dynamics
and (2) compare different fitting approaches for the
extraction of diffusivity. We find that, even when truncation
is only weakly affecting the simulation, the fact that the
system is not yet at the asymptotic regime can lead to
different fitting results depending on the method.

1. Effects of information truncation in the dynamics

The main source of error in tensor network approaches
to quantum dynamics is the truncation of information,
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e.g., operator entanglement in the case of density matrix
evolution [82]. Operator entanglement is generated by
quantum dynamics and is expected to increase linearly
with time, Sop ∝ t, corresponding to an exponential scaling
of the required classical resources (bond dimension of local
tensors) [83,84]. In practice, one sets a maximum dimen-
sion for the local tensors effectively bounding the amount
of operator entanglement in the state. The effect of this
truncation to the long-time dynamics in linear response
quenches is an active area of research [70,85]. Since there is
no theory for the effects of truncation to the dynamics, we
simply change the bond dimension and compare the results.
If there is agreement between bond dimensions, we assume
that the truncation is weak.
In the presence of dephasing γ in the system, coherences

are destroyed at a timescale tγ ∼ 1=γ. This result leads to a
saturation of Sop. Therefore, if the bond dimension is
enough to produce accurate results up to tγ, it will also be
accurate for t ≫ tγ. We confirm this finding for the results
shown in the main text (γ ¼ 0.1) by comparing bond
dimensions d ¼ 128, 256 (not shown).
Coherent simulations, on the other hand, are much more

demanding as the amount of resources increases exponen-
tially with time. In Fig. 7(a), we show that different bond
dimensions agree well at different times at the leading-
order level. For a better understanding of the accuracy, we
calculate the distribution differences between different

bond dimensions [Fig. 7(b)]. The values of these
differences will be employed to estimate the accuracy of
subleading effects. These results show that, as we deviate
from half filling, the simulations become more demanding,
leading to a decrease of accuracy for the same resources.
While we do not fully understand this phenomenon, it is
likely related to the increased strength of the nonlinear
corrections.

2. Fitting methods

Following the raw data comparison, we perform a
consistency check between different fitting approaches to
the simulation data. The classical numerics presented in
Sec. III E suggest that when dealing with limited resources,
making use of our knowledge of the general structure of
corrections to diffusion improves the precision in fitting
transport parameters. Consequently, we employ three
qualitatively different fitting methods that are designed
to take an increasing amount of corrections to diffusion into
account. The first two methods (I and II) perform fits on the
dynamical structure factor. The third method (III) is based
on Fick’s first law and the total current in the system.
Method I assumes knowledge of only the leading-order

diffusion,

SIðx; tÞ ¼ F0;0 ¼
1

2
Erfðx= ffiffiffiffiffiffiffiffiffiffiffi

4ασ̄;tt
p Þ; ðC1Þ

FIG. 7. Estimation of stability of corrections for different fillings μ ¼ 0, 0.2, 0.3 and bond dimensions d ¼ 256 (red), 400 (blue),
600 (green), for the staggered XXZ chain. (a) Profiles of magnetizations at three different times t ¼ 100, 200, 400 (three visibly different
sets of curves). The bond dimension d ¼ 600 is only shown for t ¼ 100; the maximum integrated time is t ¼ 150. A slight difference is
only visible for μ ¼ 0.3. (b) Difference between the profiles at times t ¼ 100, 200, 400, denoted by full, dashed, and dotted lines,
respectively. For μ ¼ 0.3, the difference is almost an order of magnitude larger than μ ¼ 0, 0.2, indicating the enhancement of simulation
error at larger fillings. (c) Predictions of diffusivity by employing fitting method I. At μ ¼ 0, diffusivity decreases with time, indicating
that the system is not yet at asymptotic diffusion. At larger μ, we observe a monotonic increase over time, compatible with the EFT
predictions. (d) Correction to diffusion, Δs ¼ s − F0;0, using method II and times up to T ¼ 150 for d ¼ 256, 600. At μ ¼ 0, the
difference between this plot and the main text is due to the smaller timescale used here in order to compare with d ¼ 600. For μ ¼ 0.2,
the profiles are more than 1 order of magnitude larger than the error estimated from panel (b), suggesting that the quantitative structure of
the correction is not considerably affected by errors. For μ ¼ 0.3, the profiles agree well; however, deviations in panel (b) become
significant for t ≥ 200, and therefore, we do not fit these data in the main text.
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where an explicit time dependence on diffusivity ασ̄;t is
assumed in order to encapsulate the finite-time corrections.
This method is simple to implement and commonly

used. However, it is entirely phenomenological and, strictly
speaking, incorrect—indeed, the scaling corrections dis-
cussed in Sec. III imply that the autocorrelation function
does not take the form Eq. (C1) at intermediate times. We
nevertheless study this method to compare it to other
methods that are consistent with EFT predictions. The fit
is performed for each time t and equilibrium magnetization
σ̄ on the spatial profile of magnetization sðxÞ defined by
Eq. (43). One can then estimate diffusivity from the longest
simulation time t ¼ T. However, the true diffusivity is
defined as D ¼ limt→∞ ασ̄;t. In principle, it is possible to
extrapolate diffusivity with some appropriate function of
inverse time. However, in simulations that have increasing
errors with time, such extrapolations can capture artifacts,
so we will not be performing them. Once diffusivityDðσ̄Þ is
extracted, the nonlinear corrections are either calculated by
discrete derivatives, or analytically, by first performing a
low-order polynomial fit,

Dðσ̄Þ ¼
XM
i¼0

biðσ̄Þ2i; ðC2Þ

where only even powers appear due to the particle-hole
symmetry in the system. In Fig. 7(c), we show how this
method performs on the staggered-field simulations for
different bond dimensions. Compared to methods II and III,
method I gives a time-dependent illustration of the system’s
behavior by showing how the asymptotic limit is
approached.
Method II, which is explained in the main text, is based

on a full fit of the hypersurface sðσ̄; x; tÞ. This method is
performed by either employing the leading-order diffusion
or more elaborate assumptions for the fitting function,
Eq. (44), based on our knowledge of the leading corrections
to diffusion. We use the same trial function for diffusivity as
before, Eq. (C2), and similar trial functions for the linear
corrections, c1=2 ¼

P
M
i¼0 b

1=2
i ðσ̄Þ2i. We note that c1=2 are

taken to be constant in the coherent simulations since the
maximum reliable chemical potential is approximately 0.25
and the dependence of the constants with a chemical
potential is weak. Figure 7(d) shows the correction to the
leading-order diffusive profile at T ¼ 150. We observe that,
for sufficiently low μ ≤ 0.25, the correction is more than 1
order of magnitude stronger than the bond dimension
difference [Fig. 7(b)], indicative of a quantitatively accurate
result. For the incoherent simulation where we fit μ ¼ 0–1, it
is important to allow for the constants to depend on σ̄.
Method III studies the relaxation of the total current

J ¼ R dx jðxÞ. On general grounds, the constitutive relation
for the current density is

j ¼ −DðnÞ∂xnþ higher derivatives: ðC3Þ

We ignore the higher-derivative terms for now and come
back to them below. The first term is responsible for all
higher-loop corrections to the dynamic structure factor at
leading order in gradients, Fl;0 (the first two l ¼ 1, 2,
coming from D0; D00, were computed in Sec. III). None of
these corrections contributes to correlators of the total
current: Defining CðnÞ such that C0ðnÞ ¼ DðnÞ and inte-
grating from x ¼ 1 to x ¼ L, we have

J ≃ CðnðLÞÞ − Cðnð1ÞÞ
≃Dðσ̄ÞðsðLÞ − sð1ÞÞ; ðC4Þ

where, in the second line, we expanded the density
around the equilibrium magnetization nðxÞ ¼ σ̄ þ sðxÞ,
and Dðσ̄Þ is approximated by Eq. (C2). It is justified to
drop higher-order terms in sðxÞ (which could otherwise
lead to fluctuating corrections) because the dynamics has
not affected the magnetization sufficiently far from the

FIG. 8. Subleading correction estimation for diffusivity fits
using different fitting methods for μ ¼ 0.2. Increasing diffusivity
faster results in suppressed edge corrections, while increasing
diffusivity more slowly leads to suppressed corrections around
y ¼ 0. The analytical result (red dashed line) denotes the EFT
result F1;0, which relies only on the fitted diffusivity Dðσ̄Þ.
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domain-wall position at any time. This case is true since,
for all times integrated, the Lieb-Robinson light cone
has not reached the system’s boundary, meaning that
sðLÞ ¼ −sð1Þ ≃ χðσ̄Þδ. Let us now turn to the higher-
derivative terms in Eq. (C3). Because of the argument
above, ∂

n
xsðxÞ ¼ 0 at the boundaries x ¼ 1; L, so other

contributions to the current that are total derivatives
vanish. This finding includes linear higher-derivative terms
j ⊃ ∂

2nþ1
x s, which otherwise would have led to corrections

of the form F0;n. This case also includes certain nonlinear
higher-derivative terms: For example, all terms involving
two diffusive fluctuations are total derivatives, s∂2nþ1

x s ¼
∂xð…Þ, so one-loop corrections with any number of
derivatives F1;n do not contribute. The first correction to
Eq. (C4) comes from the leading EFToperator that is parity
odd and not a total derivative. For the case of a single
diffusive density, this correction is j ⊃ s2∂3xs [21]. This
result will lead to a l ¼ 2 loop correction at order n ¼ 2
in derivatives (F2;2) to the current decay JðtÞ scaling as
1=tnþl=2 ¼ 1=t3 at late times. While a precise exponent is
difficult to extract from the numerics, we observe fast decay
of the total current, consistent with the observation that
many of the leading EFT corrections vanish in this
observable (fast polynomial decay due to high-order hydro-
dynamic tails is known to be difficult to observe quanti-
tatively [24]). Because the convergence to the late-time
value of the current limt→∞ JðtÞ is therefore fast, there is no
need to extrapolate in time to obtain accurate results. We
note that this method becomes less powerful in the presence
of multiple conserved charges since there is a larger number
of terms that are not total derivatives [see Eq. (31)]. In this
case, the decay of the current is due to a one-loop correction
F1;0, scaling as 1=tnþl=2 ¼ 1=

ffiffi
t

p
.

The diffusivity Dðσ̄Þ is therefore obtained from the
late-time current using Eq. (C4) and fit as a function of
magnetization using Eq. (C2), limiting ourselves toM ¼ 2.
The parameters b0, b1, b2 are estimated by minimizing the
distance between the measured currents at different fillings
and Eq. (C3). To avoid overparametrization, we fit a
number of equilibrium magnetizations much larger than
the number of free parameters (three in this case).
The subleading correction is qualitatively similar for

fitting methods II and III despite the small variations in
diffusivity (Fig. 8); however, method I clearly underesti-
mates diffusivity, leading to larger deviations in the
corrections.

APPENDIX D: NONLINEAR RESPONSE

In the previous appendixes, we explored the effects of
scaling corrections in the DSF, which is a two-point
correlation function. While the effect of fluctuations on
the DSF can be important, it is always subleading at long
times. Here, we go one step further and explore many-body
correlations that would vanish in the absence of

nonlinearities in hydrodynamics. In particular, we explore
the late-time behavior of the observable,

s3ðx; tÞ ¼
hσzðL=2; tÞσzðL=2þ x; tÞic

j2trðσz1ρðt ¼ 0ÞÞj ; ðD1Þ

where the average is performed on the domain-wall state
defined by Eq. (42). As we illustrate in Appendix A 6, this
observable is, up to a spatial integration, a special case of the
density three-point function. Higher-point functions general-
ize full counting statistics in that they allow for operator
insertions at multiple times and can be obtained from the
EFT of diffusion [25]. According to the EFT, the asymptotic
behavior of s3ðx; tÞ in diffusive systems with a single
conserved charge is given by a universal scaling function

s3;EFTðy; tÞ ¼
1ffiffi
t

p D0χ

8
ffiffiffiffiffiffiffiffiffi
D3π

p ðe−y2=4 þ Erfðy=2Þ − 1Þ; ðD2Þ

where y ¼ x=
ffiffiffiffiffiffi
Dt

p
. As expected for multibody functions

in linear response, s3;EFTðy; tÞ vanishes as t → ∞. It also
vanishes in systems that are particle-hole symmetric
(D0 ¼ 0).
As shown in Fig. 9, for both dephasing and staggered

perturbations, s3 scales according to the EFT prediction,
1=

ffiffi
t

p
. In the presence of dephasing, we observe a precise

late-time agreement of the correction profile to s3;EFT,
which verifies the validity of the EFT prediction. No fitting
parameter was used in this test, as D and D0 were already
obtained from the linear response analysis. In the case of a
staggered field, we find that while the shape of the profile is
qualitatively similar, there is a quantitative deviation from
the EFT prediction (independent of the diffusivity fitting
method). The similarity between the EFT profile (D2)
and the numerical data can be illustrated by performing a
fit of s3;EFT for y > 1, with D and D0 now taken to be
independent fitting parameters. The result is illustrated
in the inset of Fig. 9(b), the two profiles agree well for
ðD ∼ 1.85DIII; D0 ∼ 0.36D0

IIIÞ. This agreement suggests
that the staggered profile at y ≫ 1 has the same functional
form as the EFT prediction and features a Gaussian tail,
despite the apparent disagreement with the values of D and
D0 obtained from linear response.
While the discrepancy between the EFT prediction and

quantum dynamics in staggered-field simulations remains
unclear to us, we have verified that this disagreement is not
due to simulation errors. Additionally, the good conver-
gence with time suggests that subleading corrections are
not at play. Taking into account these observations leaves
us with several possibilities: (i) The diffusivity fits of the
previous section may not be accurate for the staggered-field
simulations. This possibility could be an artifact of the
short accessible timescale or of large diffusivity fluctua-
tions with magnetization. We have extensively checked for
these artifacts, and we did not find any evidence of them in
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the data. (ii) This system may simply have a very long local
equilibration time, τeq ≳ 200, so our numerics never probes
the truly asymptotic regime controlled by the EFT. This
possibility could, e.g., arise from the presence of additional
long-lived degrees of freedom protected by approximate
symmetries and could be related to the integrability of the
Floquet-XXZ chain or to other prethermalization mecha-
nisms [86]. (iii) Finally, the EFT may fail to capture even
the asymptotic dynamics of coherent many-body Floquet
systems. While we do not have a particular reason to
believe that the EFT should fail, there is no proof that it
must emerge, in general. We leave this interesting pos-
sibility, as well as further exploration of these phenomena,
for future work.
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