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Among various proteinaceous nanocontainers and nanoparticles, the most promising ones for various
applications in nano- and medical science appear to be those whose structures differ fundamentally from
icosahedral viral capsids described by the paradigmatic Caspar-Klug model. By analyzing such anomalous
assemblies represented in the Protein Data Bank, we identify a series of shells with square-triangular local
order and find that most of them originate from short-period approximants of a dodecagonal tiling
consisting of square and triangular tiles. Examining the nonequilibrium assembly of such packings, we
propose a new method for obtaining periodic square-triangle approximants and then construct the simplest
models of tetragonal, octahedral, and icosahedral shells based on cubic and icosahedral nets cut from the
approximant structures. Since gluing the nets can change the distances between adjacent vertices of the
resulting shell, we introduce an effective energy, the minimization of which equalizes these distances.
While the obtained spherical polyhedra reproduce the structures of experimentally observed protein shells
and nanoparticles, the principles of protein organization that we lay out, and the ensuing structural models,
can help to discover and investigate similar systems in the future.
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I. INTRODUCTION

The first quasicrystal (QC) discovered in the Al-Mn
alloy about 40 years ago [1] had icosahedral symmetry,
which is excluded for crystals on general grounds. Over the
next decade, it was found that various icosahedral, octa-,
deca-, and dodecagonal QCs are quite common for binary
and ternary metal compounds [2]. Subsequently, QCs were
revealed also in a number of soft-matter systems, among
which one can highlight dendritic liquid quasicrystals
formed from complex treelike molecules [3], colloidal
nanocrystals self-assembling in an aqueous solution from
micelles with core-shell structure [4], various polymer QCs
[5,6], and other similar systems [7–9].
Unlike crystals, the structure of which is obtained by

periodically repeating a unit cell, QCs are incommensurate
structures, in which one can distinguish two (or several)
“unit cells” referred to as tiles and arranged in an aperiodic
manner. Structures of icosahedral protein viral shells

(capsids) can also be represented as spherical packings
of certain tiles. In the most typical case, as discussed by
Caspar and Klug (CK), a capsid is modeled as a packing of
pentamers and hexamers [10]. These tiles (usually referred
to as capsomers) consist of five and six individual proteins,
respectively, and their centers form a trigonal order on a
spherical surface [11,12].
Some structures of small anomalous viral capsids violate

the CK model and can be represented in another QC-like
manner, consisting of rhombuses, kites [13], or some other
tiles [14–16]. However, the “generic” relation between a
planar quasicrystalline order and the arrangement of
proteins in a spherical shell was uncovered only in the
case of bovine papillomavirus (Papillomaviridae family)
capsid structure [17]. This capsid is represented as a
dodecahedron, and the positions of individual proteins
within its facets were obtained by a nonlinear phason
strain of a planar decagonal tiling [15].
Anomalous protein shells of nonviral origin are also

known. In some cases, these shells are described in terms
of triangular and square tiles and concurrently resemble
both Archimedean solids and planar tilings typical of many
soft-matter systems [18]. Such spherical structures self-
assembling from24 proteins are shown in Figs. 1(a) and 1(c),
while location of individual proteins in these shells is
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characterized by a snub cube and rhombocuboctahedron
geometry, respectively; see Figs. 1(b) and 1(d). Along with
these assemblies, in the Protein Data Bank (PDB) [19] one
can find many structurally similar shells and nanoparticles.
Typical examples of the shellswith triangular and square tiles
are a hollow sphere from 24 identical sulfur oxygenase
reductase monomers, the structure of imidazoleglycerol-
phosphate dehydratase, and the octahedral apoferritin nano-
cage. These and structurally analogous protein complexes
can interact with DNA [20,21], act as enzymes [22,23], or
serve as nanocontainers for various molecules including iron
[24,25], iron-sulfur [26], vitamin E [27], and even misfolded
proteins [28].While there exist other shells, e.g., the recently
discovered polymorphic encapsulation system based on
Aquifex aeolicus lumazine synthase (AaLs) [29,30] that
are structurally different, it is nevertheless easy to verify
that themass centers of pentamers comprising these shells are
located approximately at the vertices of square and triangular
tiles, which in turn are organized into spherical shells with
tetrahedral and icosahedral symmetries.
We believe that the wide range of functionalities of the

abovementioned proteinaceous nanoassemblies is due to
their unusual structure, and therefore, in the main part
of this article we examine even more proteinaceous shells
with analogous square-triangular (S-T) local order. The
main aim of our study is to reveal the generic relation
between the considered spherical structures and planar

quasicrystalline tilings of appropriate types. As we
show, most of these shells originate from linear periodic
approximants of the dodecagonal S-T tiling; see Fig. 1(e).
Since the number of the short-period S-Tapproximants turns
out to be very limited, we build all the simplest models of
tetragonal, octahedral, and icosahedral shells based on the
dodecagonal S-T order. Some of these shells have already
been experimentally observed, while the rest of our pre-
dictions are likely to be discovered in the coming years.
Because of the lack of theoretical methods to generate

planar S-T packing, in the first part of the article, we
propose a new way to construct such tilings including
periodic approximants. Our method is based on the model
of nonequilibrium cluster growth [31]. Within our
approach, a new particle can attach to the growing cluster
only in those positions, which are separated from the
nearest occupied ones by at least one of 12 orientationally
equivalent translations. The choice of the attachment
position is based on the Boltzmann distribution function
that depends on the ratio between binding energies calcu-
lated for different attachment options and thermal energy.
Introduction of the effective binding energy based on the
concepts of n-dimensional (nD) crystallography allows us
to efficiently construct S-T periodic approximants, includ-
ing those that cannot be obtained by the inflation method
[32,33]. In the second part of the article, we then discuss
how the obtained periodic approximants are transferred
onto the sphere and compare the constructed shells with the
experimentally observed ones. Here, we also propose
structural models of yet undiscovered nanoshells with local
S-T dodecagonal order and consider the proteinaceous
nanoparticles originating from the octagonal tiling.

II. SELF-ASSEMBLY OF PLANAR
SQUARE-TRIANGLE STRUCTURES

Constructing approximants of the planar S-T
dodecagonal tiling [Fig. 1(e)] is not a trivial task. The
original tiling is obtained exclusively by the inflation
transformation [32], while the methods allowing regular
construction of periodic approximants are based on a linear
phason strain and developed only for those quasicrystalline
tilings, which can be obtained by a projection from the nD
space. However, known projection algorithms lead to the
dodecagonal tilings that contain along with squares and
triangles other tiles, for example, shields or narrow rhombuses
[33–35]; also, see Supplemental Material, Sec. A [36].
Let us first recapitulate the well-known inflation method

invoked to obtain the dodecagonal tiling and its specific
approximants [32,33]. To obtain the dodecagonal tiling,
one starts with a cluster of 19 nodes forming a so-called
“wheel” [Figs. 1(e)–1(g)]. In this cluster, all distances
between the nearest nodes are the same, and we assume
that they equal 1. After that, the wheel is inflated by τ ¼ffiffiffi
3

p þ 2 times, and each of its nodes is replaced by a wheel
of the original size. With this inflation coefficient, the edges

FIG. 1. S-Torder on a spherical shell and on a plane. (a) Vitamin
E transfer nanoparticle composed of 24 individual proteins
(6ZPD). (b) Snub cube with 24 vertices, which are arranged in
six square and 32 triangular tiles. (c) Chimallin (7SQQ).
(d) Rhombicuboctahedron with 24 vertices, which form 18
square and eight triangular tiles. (e) Fragment of dodecagonal
S-T tiling. (f),(g) Conjugation of four and three simple dode-
cagonal clusters called wheels.
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of adjacent wheels coincide exactly [Figs. 1(e)–1(g)], and
the process can be continued in successive cycles. To
maintain the average dodecagonal symmetry, the inserted
wheels at each cycle must be randomly rotated by an angle
divisible by 30°.
Similarly, by decorating the nodes of square or triangular

periodic lattices with wheels and repeating n inflations, one
can construct periodic approximants, which we refer to as
the Stampfli approximants [32]. Note that the period of
such a triangular approximant is equal to τn, while the
period of a square one is

ffiffiffi
2

p
times greater, because the

wheel has twofold symmetry, and in any periodic structure
with fourfold symmetry, the wheel centers must be located
between nearest translationally equivalent fourfold axes.
We note that within the inflation approach, it is impossible
to introduce the continuous phason degrees of freedom and
obtain its approximants in the usual way, i.e., by a linear
phason strain of the original tiling [40]. Therefore, we will
first consider the growth of a quasicrystalline cluster within
a model proposed below, and then modify this model by
introducing phason degrees of freedom.

A. Model of condensation of quasilattice gas

Let us suppose that, during the growth of a planar cluster,
a new particle can attach only at a point that is connected to
at least one of the filled positions by one of the following
vectors:

ai ¼ hcos iπ=6; sin iπ=6i; ð1Þ

where i ¼ 0; 1;…; 11. Note that eight of the 12 vectors ai
can be expressed as integer linear combinations of the
remaining basis vectors. For the sake of convenience, we
use the translations with numbers 0,1,2,3 as this basis.
Then, the coordinates of any filled or potentially filled
position can be expressed as

r ¼
X3
i¼0

niai; ð2Þ

where ni is integers. The perpendicular coordinates r⊥
of the same point is determined by the same set fnig,
but the vectors ai are replaced by a⊥i , where a⊥i ¼
hcos 5iπ=6; sin 5iπ=6i [2]. Note that the perpendicular
coordinates introduced in this way assume that there is a
4D lattice whose nodes are indexed by four integer indices,
while the coordinates Eq. (2) and perpendicular coordinates
are the orthogonal projections of these nodes; for more
detail, see Supplemental Material, Sec. A [36].
Let the attachment of particles occur step by step.

Suppose that at the current step there are q positions that
can be filled by only one particle. Then we find the
probability pj of filling the jth position as

pj ¼ exp

�
−Ej − μ

T

�
; ð3Þ

where Ej is the corresponding binding energy and the
chemical potential μ determined by the expression follow-
ing from the condition

P
pj ¼ 1, and T is the thermal

energy. Since only one particle is necessarily attached at
each step, to practically determine which of the possible
positions will be filled, it is convenient to divide the interval
of unit length into smaller segments with lengths propor-
tional to the probabilities Eq. (3), and then generate a
random number within the unit interval.
Note that our approach builds upon earlier works

proposing that at each step of the cluster growth one of
the predetermined positions is filled [41], or that the
position to be filled is selected from the most energetically
favorable positions around the cluster, using the Boltzmann
distribution [42]. However, while our approach and the
model [42] are both based on the Boltzmann distribution,
the model of nonequilibrium growth of a dodecagonal
cluster [31] assumes that the probability for negative values
of Ej is proportional to 1 − expðEj=TÞ, and for positive
values it is a priori set to zero. Since it is reasonable to
assume that the binding energy Ej for any potentially
occupied position is always negative, the above modifica-
tion of the classical distribution function is unnecessary. In
addition, our analysis shows that the dependence of the
distribution on Ej=T is significantly weaker than in the case
of the standard Boltzmann function. Nevertheless, in the
limit T → 0, both approaches naturally lead to filling the
most energetically favorable positions.
In Ref. [31], the binding energy is calculated as an energy

attributed to the formation of certain particle configurations.
However, several years earlier and within the framework of
the ordinary molecular dynamics, dodecagonal clusters
were modeled using the following Lennard-Jones-Gauss
(LJG) potential of pair interactions [43]:

VðrÞ ¼ 1

r12
− 2

r6
þ ϵ exp

�
− ðr − r0Þ2

2σ2

�
: ð4Þ

Note that various two-minima potentials can lead to the
formation of various packings [44–46]. With parameters
ϵ ¼ −0.866, σ ¼ 0.02, and r0 ¼ 1.9, the potential (4) has
two separate minima at r ¼ 1 ¼ jaij and r ≈ 1.897 ≈ jai þ
aiþ1j and is more suitable for assembling dodecagonal
packings [47]. Note that the first minimum of the potential
(4) establishes the distance between the nearest neighbors,
while the second one makes it energetically advantageous
to form isosceles three-particle configurations with a unit
length lateral side and an apex angle of 150°. Such
configurations arise when square and triangular tiles are
joined. In the next section, we analyze the structures
obtained within the quasilattice gas model using the
potential (4) and distribution (3).
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B. Square-triangle packings obtained with the
Lennard-Jones-Gauss potential

Let us first consider the most interesting case of low
temperatures, since the binding energies of proteins in their
structures are often higher than the thermal energy [48,49].
Note that the calculation of occupation probabilities in the
model that uses the original Boltzmann distribution is
invariant with respect to the choice of the energy reference
point. Therefore, in order to avoid numerical overflow, it is
convenient in the region of low temperatures to first
determine the position at which the attachment of a particle
is more favorable energetically, and then calculate all
binding energies Ej with respect to this level.
Typical results of self-assembly of planar clusters at T ¼

0.005 are presented in Fig. 2. At this temperature, structures
with two types of morphology are assembled. The first type
of morphology [see cluster containing 20 000 particles in
Fig. 2(a)] is closer to quasicrystalline. As one can see from
this figure, an aperiodic structure grows right around the
origin. The corresponding area may be larger or smaller,
but it is always limited. In clusters containing about 20 000

particles, as they grow, the quasicrystalline type of order
smoothly turns into a periodic one, and several differently
oriented triangular and square approximants emerge. They
are of Stampfli type with a minimal period of τ ¼ ffiffiffi

3
p þ 2,

which equals the distance between the centers of adjacent
wheels; see the central part of Figs. 2(b) and 1(e)–1(g).
Another interesting feature is that the approximants are
disordered; i.e., the wheels are randomly rotated relative to
each other. Also, there are no clear domain boundaries
within the cluster. The packing consists entirely of triangular
and square tiles, which sharply distinguishes this order from
the structures obtained in Refs. [43,47]. Regular growth of
clusters with a similar morphology can be achieved if the
inflated wheel is used as an initial nucleus at least once.
The second type of morphology [see cluster containing

10 000 particles in Fig. 2(c)] is further away from
quasicrystalline and corresponds to a polycrystal of
smoothly conjugated square and triangular structures with
a period of

ffiffiffi
3

p þ 1. A fragment of a triangular non-
Stampfli approximant [Fig. 2(d)] starts to grow directly
at the cluster center. Note also that the perpendicular

FIG. 2. Self-assembly within the quasilattice gas model at T ¼ 0.005 utilizing the interaction potential (4). (a) General view of a
cluster containing 20 000 particles with a morphology closer to the QC type. The change in particle color from pink to blue reflects the
corresponding change in the size of the growing cluster. The initial particle is located at the center of the wheel highlighted in gray.
(b) Close-up of the central part of the cluster (a). (c) General view of a cluster containing 10 000 particles whose morphology is further
away from the QC type. (d) Close-up of the central part of the cluster (c). (e),(f) Perpendicular coordinates of the particles belonging to
the clusters (a) and (c), respectively. In panels (a)–(d), the centers of hexagons at distances of

ffiffiffi
3

p þ 2 and
ffiffiffi
3

p þ 1 are connected by light
green lines and yellow lines, respectively.
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projection of the set of its nodes is significantly wider,
despite the 2 times smaller number of particles in the
cluster; compare Figs. 2(e) and 2(f). It happens because
the translations of length τ (highlighted in green) in the
perpendicular space have a length of 2 − ffiffiffi

3
p

, while the
translations of length τ − 1 (highlighted in yellow) in
the perpendicular space correspond to a longer period offfiffiffi
3

p − 1. In addition, the portion of regions with periodic
order in the second cluster is significantly higher. In the
limit T → 0, when the most energetically favorable posi-
tions are occupied, only the clusters with this type of
morphology grow, and as we verified numerically, this
always occurs at T < 0.001.
At higher temperatures (T > 0.1), the assembled

clusters necessarily include extended aperiodic regions;
see Supplemental Material, Fig. 2 [36]. Already at this
temperature, a noticeable number of defects appears in the
cluster, whose structure is represented by a random
alternation of periodic approximants and aperiodic regions
conjugating continuously. At T ≈ 0.2−0.3, the number of
defects as well as the perimeter of the cluster increase
drastically. The latter is due to the fact that the boundary of
the cluster is no longer smooth: Along the boundary, one
can observe a number of extended fjordlike defects. In
addition, multiple point defects also appear in the form of
deformed hexagons and shields.
Nevertheless, it is still possible to obtain large fully S-T

clusters at high temperatures if the contribution of certain
three-particle interactions is taken into account. Following
the idea that synthesis of dodecagonal structures requires
the stabilization of triangular and square tiles [7], we
assume that if the attached particle has two neighbors,
the distance between which is

ffiffiffi
2

p jaij or
ffiffiffi
3

p jaij, then its
attachment yields an additional contribution E3 to the
binding energy. This contribution increases the probability
of attaching the particle that completes a square tile or two
adjacent triangular tiles. As we have verified, even at high
temperatures, this two-component binding energy can lead
to the tilings of exclusively S-T order.
Characterizing the obtained structures on average, we

note that already at E3 ≈ −2, the number of fjords at the
boundaries decreases sharply. As the cluster grows, they
can simply disappear, turning into limited linear defects. At
E3 ≈ −3, fjords do not appear, while extremely rare point
defects may still emerge in the packings. At E3 < −4 and
T ≈ 0.4, the quasicrystalline order becomes the most
perfect, consisting exclusively of square and triangular
tiles. Nevertheless, the perpendicular sizes of the resulting
clusters turn out to be at least 2 to 3 times larger than the
corresponding size of the dodecagonal Stampfli tiling [50],
which indicates an essential phason disorder in the obtained
structures.
For what is to follow, it is important to note that in the

proposed framework, periodic approximants emerge at the
T → 0 limit, when the binding energy is much higher than

the thermal one. It is indeed very likely that besides the
three approximants that were found, there may exist also
other short-period approximants. In the next section, we
pursue this line of thought and develop a phenomenological
binding energy based on nD crystallography concepts.
Application of this energy together with geometrical
constraints resulting from the three-particle interactions,
allows us to obtain all possible short-period approximants
needed for the regular modeling of nanocontainers with
local S-T order.

C. Effective binding energy and construction of
structurally perfect square-triangle tilings

Let us consider how to construct the most structurally
perfect dodecagonal S-T cluster within the framework of
nonequilibrium assembly and the quasilattice gas model.
Since a perfect cluster must have a minimum size in the
perpendicular space, a natural way to obtain it is to put
each new particle in the position with the minimum length
of its perpendicular coordinate r⊥j corresponding to the
limit T → 0 and the simplest effective binding energy
Eb þ ðr⊥j Þ2. Here, Eb is a constant term making the energy
negative; its value has no relevance at T → 0. Because of
its simplicity, this energy cannot prevent the attachment of
particles that are too close to the occupied cluster
positions (as the LJG potential does). Therefore, we must
exclude them from the set of allowed positions.
Additionally, we take into account the three-particle
interactions introduced above: If a defective square tile
or a pair of adjacent defective triangular tiles appear, we
necessarily add a particle that turns these tiles into regular
ones. Disabling this procedure leads to an appearance of
point defects even if all other geometric constraints
described below are met.
As a result of applying the above algorithm, clusters like

that shown in Fig. 3(a) arise. They are indeed characterized
by a radius, which is limited to one in the perpendicular
space. However, the obtained structures are defective and
contain symmetrical holes, the smallest of which can be
perfectly filled with wheels. Therefore, it is required to
impose an additional constraint on the phenomenologi-
cal model.
Assuming that the cluster should grow relatively uni-

formly around the origin in all directions, we introduce into
the model the minimum Rmin and maximum Rmax radii of
the growing cluster. With each particle attached, these radii
are recalculated. Let us define Rmin as the minimum among
the lengths of rj vectors, which enumerate positions
allowed for filling. Also, we suppose that the value
Rmax − Rmin ¼ ΔR is a model parameter, and at each step
we will remove from the set of allowed positions all those,
for which jrjj > Rmax. Clearly, the case of ΔR ¼ ∞ is
identical to the simplest model discussed above.
One of the clusters obtained at ΔR ¼ 0 is shown in

Fig. 3(b). The cluster structure is formed by S-T tiles and
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represents a set of smoothly conjugated regions with
locally periodic orders of various types and resembles
the structure shown in Fig. 2(c). The size of such clusters in
perpendicular space grows infinitely with the particle
number. Since the structure has no holes, it becomes clear
that there is a critical value of ΔR at which holes do not yet
appear, and the size of the cluster in perpendicular space is
minimal. Since the smallest holes of the structure in
Fig. 3(a) can be perfectly filled with wheels (whose size
is τ ¼ ffiffiffi

3
p þ 2), then the critical value of ΔR should also be

close to τ (and, in fact, a bit smaller than τ). Figure 3(c) in
the main text and Fig. 3 in Supplemental Material [36]
show the most perfect dodecagonal packings, which
emerge at ΔR ≈ 2.7. The size of such a packing in
perpendicular space [Supplemental Material, Fig. 3(b)
[36] ] is only slightly larger than that of the Stampfli
dodecagonal tiling [50]. Accordingly, the Stampfli dode-
cagonal tiling has a somewhat lower total energy that can
be calculated using the effective binding energy introduced
in the beginning of this subsection. The diffraction patterns
of both tilings are extremely similar; see Supplemental
Material, Fig. 3(c) [50]. The high crystallographic perfec-
tion of the obtained tiling is also proven by the fact that the
superimposed tiling of the second order (with edges
inflated by τ times) contains only rare defects; see tiling
in light green in Fig. 3(c).
The main advantage of the developed approach is the

ability to control phason degrees of freedom of the resulting
clusters. Namely, redefining the energy of particle attach-
ment as Eb þ ðr⊥j − ε̂rjjj −R⊥

0 Þ2, one can obtain clusters

with various periodic structures centered at the point Rjj
0 .

These structures emerge at appropriate values of 4D vector
R0 and 2D tensor ε̂ (see more detail in the Appendix). In
the next section, we present the short-period approximants
obtained in this way and use them to construct related
model shells.

III. MODEL SHELLS DEDUCED FROM THE
STRUCTURES OF PERIODIC APPROXIMANTS

The simplest approximants of the dodecagonal tiling are
primitive square and triangular lattices. Mapping of a
triangular lattice onto a sphere through icosahedron nets
is well known and leads to geodesic icosahedral polyhedra.
Decorating the vertices of such polyhedra with pentamers
and hexamers is the base of the Caspar-Klug model [10],
which describes most of the viral shells [11]. Similarly,
more complex hexagonal approximants can also be mapped
onto a sphere through icosahedron nets. However, the
mapping of periodic structures with fourfold symmetry
through the cube nets requires amore detailed consideration.
First, let us note that in any planar structure with a square
lattice, not all fourfold symmetry axes are equivalent;
namely, between the four closest translationally equivalent
axes there is a nonequivalent one. When superimposing a
cube net on square order, to glue net edges smoothly, its
vertices must fall on fourfold axes, which become the
threefold ones of the resulting shell.
Geodesic icosahedral polyhedra and their nets are clas-

sified using two integers (h; k), and the squared length of a
distance between icosahedron vertices equals the triangu-
lation number T ¼ h2 þ hkþ k2. However, in contrast to
the icosahedral case, due to the presence of nonequivalent
fourfold symmetry axes, the cube nets can also be
characterized by half-integer indices, and an analogous
quantifier T 0 ¼ h2 þ k2 then takes the following values:
1=2; 1; 2; 5=2; 4;…. In addition, one pair of indices can
correspond to two different nets, which are obtained from
each other by a shift connecting the two nearest nonequiva-
lent fourfold symmetry axes (one in the center and one at the
vertex of the unit cell). Also, we note that if the indices are
half-integer, then the resulting shell does not possess four-
fold symmetry axes. The simplest cubic nets (T 0 ≤ 4) and the
corresponding polyhedra are shown in Fig. 4.

FIG. 3. Constructing the phenomenological model of square-triangle packings. (a) The simplest dodecagonal S-T packing with a
minimum perpendicular size. (b) Dodecagonal S-T packing assembling under the condition ΔR ¼ 0. (c) Perfect dodecagonal S-T
packing corresponding to the conditionΔR ¼ 2.7 and containing 5000 particles. A superimposed tiling (shown in light green) has edges
inflated by τ ¼ ffiffiffi

3
p þ 2 times.
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If not all the polyhedron vertices are located on the
symmetry axis (such examples are shown in the bottom row
of Fig. 4), then to make the shell more regular, one can
minimize the following elastic energy:

E ¼
X
i>j

ðjri − rjj − r0Þ2 þ
X
k>l

ðjrk − rlj − r00Þ2; ð5Þ

where ri are the coordinates of the polyhedron vertices. The
first sum in Eq. (5) runs over the edges of the polyhedron,
and the second one runs over the diagonals of square tiles.
The values r0 and r00 are the average edge length and the
average diagonal length of a square tile, respectively. After
minimization of energy Eq. (5), the resulting polyhedra
become either regular, i.e., consisting of regular square and
triangular tiles (like in the case of rhombicuboctahedron) or
the comprising tiles become very close to regular [in the
case of a (1=2, 3=2) polyhedron].
The vertices of all polyhedra shown in Fig. 4, except

for the last one, lie on the spherical surface. The radii
of the last polyhedron are characterized by their ratio of
Rmax=Rmin ≈ 1.217. Note that the radii can be equalized by
retaining all the polyhedron vertices on the spherical surface
during minimization of Eq. (5). Constrained and uncon-
strained minimizations of elastic energy are discussed in
more detail below, using examples of more complex shells.
For the polyhedra shown in the top row of Fig. 4, mini-
mization of Eq. (5) is pointless since the net gluing
immediately leads to the regular or semiregular polyhedra.
Let us now delve into more complex S-T structures.

Figure 5 shows the first shortest-period approximants we

FIG. 4. The simplest cube nets (T 0 ≤ 4) and the corresponding
polyhedral shells. The shell vertices correspond to the nodes of
the square lattice. After the net assembly, the elastic energy
Eq. (5) is minimized, and the tiles in resulting polyhedra become
regular or very close to regular.

FIG. 5. First short-period approximants of the S-T dodecagonal order and the polyhedral nets corresponding to nanocontainers with
octahedral, tetrahedral (a)–(d), and icosahedral (e),(f) symmetry. (a) Square approximant with the 4D translation (1,1,0,0) and the periodffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ ffiffiffi
3

pp
≈ 1.93. In the top part of panel (a), the nets (1=2, 1=2) and (1=2, 3=2) with N ¼ 12 and N ¼ 24, respectively, are

superimposed on the approximant. Below, the nets (1,1) and (1=2, 3=2) (N ¼ 48 and N ¼ 60) are shown. (b) Square approximant with

the 4D translation (1,1,1,1) and the period
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 3

ffiffiffi
3

pp
≈ 3.35. Here, the nets (1=2, 1=2) and (1,0) withN ¼ 36 andN ¼ 72, respectively,

are superimposed on the approximant. (c) Stampfli square approximant with the distance between the centers of the nearest wheels

τ ≈ 3.73 and the net (1=2, 1=2) with N ¼ 90. (d) Square approximant with period
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 6

ffiffiffi
3

pp
≈ 4.63 corresponding to the 4D

translation (2,2,1,0). The net (1=2, 1=2) with N ¼ 138 is shown. (e) Triangular approximant with the 4D translation (1,1,1,0) and the
period τ − 1 ≈ 2.73. The simplest icosahedron net N ¼ 72 is superimposed on the approximant. (f) Stampfli triangular approximant and
the simplest icosahedron net with N ¼ 132.
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have constructed. Simplest possible nets are superimposed on
the approximants. In Figs. 5(a)–5(d), translationally non-
equivalent fourfold axes that pass through the centers of the
square tiles are highlighted in green and pink. For these cases,
there is no sense in considering the shifted nets since they lead
to either enantiomorphic or unchanged shells. Triangles
around the sixfold symmetry axes [including the local axes
in Figs. 5(a)–5(d)] are highlighted in yellow. Two of the
approximants shown in Figs. 5(c) and 5(f) are Stampfli ones.
The cube net ð1=2; 1=2Þ presented in the upper left

corner of Fig. 5(a) is of particular interest. Generally, after
assembling the net with half-integer indices, a tetrahedral
shell should appear, but in this particular case, the nodes of
square order fall into the vertices of the icosahedron, and a
shell with icosahedral symmetry emerges. In this context,
let us emphasize that the AaLs nanocontainers discussed
below are characterized by a polymorphism of icosahedral
and tetrahedral structures. The assembly of the next net
(1,0) shown in Fig. 5(a) leads to a snub cube structure
[Fig. 1(b)], and many protein structures have a similar
organization of N ¼ 24 individual proteins forming a shell
with the O symmetry (see the Introduction).
The rest of the model nanocontainers are shown in Fig. 6

in two versions: one with a spherical shape (in rows 1
and 3) and the other with a faceted one (in rows 2 and 4). If
one supposes that r00 ¼

ffiffiffi
2

p
r0, then the energy minimization

makes the tiles maximally regular, and a faceting emerges.
Its type (icosahedral or cubic) is determined by the type of
net. Spherical polyhedra are obtained if the energy mini-
mization is carried out under the condition that the positions
of the polyhedron vertices are retained on the sphere and the
relation between r0 and r00 is not imposed. The latter option is
more interesting since most of the real protein shells
considered here are approximately spherical in shape.
Geometric parameters of the model shells shown in Fig. 6

are presented in Table I. Comparing the model shells, let us
note that snub cube vertices lie exactly on the sphere;
however, with an increase in N, the ratio of the maximum
and minimum radii Rmax=Rmin for faceted model structures
also increases. Nevertheless, among the shells presented in
Table I, faceted polyhedra with O symmetry (obtained
through a cube net) have smaller ratios Rmax=Rmin than
polyhedra with icosahedral symmetry. The degree of regu-
larity of triangular and square tiles in faceted and spherical
shells can be introduced as the standard deviationsΔ andΔ0
of the values r0=Rmin and r00=Rmin (Table I). In particular,
both faceted icosahedral shells and a cubic shell with Th
symmetry (N ¼ 36) consist of only regular triangular and
square tiles.
Correspondingly, Δ and Δ0 as well as the energy Eq. (5)

of these shells are equal to zero (the first and last two
columns of Table I). For the same structures but with a
spherical shape, the presence of corresponding mirror
reflection planes results in equal diagonals of all square
tiles and Δ0 ¼ 0. For other shells with N ≥ 60 obtained
through a cube net, the values of Δ and Δ0 in the faceted
versions of the polyhedra are 5 to 10 times smaller than in
the spherical versions.
In future studies, a more detailed theory based on the

above results can be developed, precising how the shells with
S-T order change their shape depending on the relationship
between bending and the in-plane rigidities of the shell. Such
a theory would be a generalization of both the present study
and the theory [51] that shows how the relationship between
mechanical parameters controls the shape of the icosahedral
shells built from identical triangular finite elements.
Following Ref. [52], one can also consider an additional
generalization elucidating the effect of protein charges on the
shape of the shells with quasicrystalline local order.

IV. EXPERIMENTALLY OBSERVED SHELLS
WITH A SQUARE-TRIANGULAR ORDER

In the general case, the placement of structural units at
vertices of model polyhedra is accompanied by vertex
displacements and can lead to the polyhedron symmetry
breaking. The vertex does not shift if and only if the global
symmetry axis of the polyhedron passes through this
vertex, and its local symmetry is compatible with that of
the structural unit.
The polyhedra shown in Fig. 4 correspond to the simplest

square approximant. However, after gluing the cubic nets,

FIG. 6. Model shells with the number of vertices N ≥ 36. (a)–
(f) Structures obtained by superimposing cubic nets on square
approximants. These shells have N ¼ 36, N ¼ 48, N ¼ 60,
N ¼ 72, N ¼ 90, and N ¼ 138 vertices, respectively. (g),(h)
Structures obtained by superimposing icosahedron nets on
triangular approximants. The shells have N ¼ 72 and N ¼ 132
vertices, respectively.

ROCHAL, ROSHAL, KONEVTSOVA, and PODGORNIK PHYS. REV. X 14, 031019 (2024)

031019-8



triangular tiles may appear in the resulting structures. Such
nanoclusters are widely observed in nature. Along with the
proteinaceous complex shown in Fig. 1(c), many other
structurally analogous metallic and metal-organic clusters
are known (see, for example, Ref. [53]).
We next move on to shells based on other approximants.

Let us discuss approximately spherical AaLs nanocon-
tainers formed from pentamers. Depending on mutations in
the initial proteins [29,30], the shells take on one of four
structures with tetrahedral or icosahedral symmetries
(Fig. 7). The simplest structure includes 12 pentamers
located at the vertices of an icosahedron [54]. Recall that
this polyhedron can be obtained using either the simplest
triangular approximant or the first nontrivial square one;
see the net (1=2, 1=2) in Figs. 5(a) and 7(a). Note also that
pentamer placing reduces the symmetry of the decorated
shell Ih down to I.
The shells, in which individual proteins are located at the

vertices of a snub cube,were presented in the Introduction. In
these shells, the proteins are symmetrically equivalent, the
shell hasO symmetry, and the difference between positions
of the mass centers of individual proteins and vertices of the
snub cube is minimal. In contrast, placing pentamers at the
vertices of the snub cube reduces the symmetry fromO to T,
and induces a small shift of the pentamer centers away from
the vertices of the snub cube because the pentamers cannot
form four equivalent bonds along the edges of the square.
They chose their orientation in such a way that their contacts
are localized only along the two opposite edges of the square
[55]. As a result, in this nanocontainer the fourfold axis
disappears while two types of symmetrically nonequivalent
pentamers appear; see Fig. 7(a).
Figure 7(b) compares the structure of a spherical poly-

hedron with Th symmetry, which has 36 vertices, with the

FIG. 7. Structures of AaLs nanocontainers and spherical
polyhedra with S-T order superimposed on their surfaces.
(a)–(c) Nanocontainers 7A4F, 7A4G, and 5MQ7, respectively.
(d)–(f) Spherical model shells. Positions of small balls
correspond to the centers of pentamers. The procedure for
calculating the coordinates of the spherical polyhedron vertices
is described in the text.
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structure of the corresponding AaLs nanocontainer. The
placement of pentamers leads to a Th → T symmetry
breaking and the splitting of the two orbits of the poly-
hedron vertices into three orbits of the pentamer centers.
Finally, Fig. 7(c) shows the last example, comparing the
shell consisting of 72 AaLs pentamers and corresponding
spherical polyhedron [earlier shown in Fig. 6(g)].
All experimentally known AaLs nanocontainers have the

same motif of bonds between pentamers, which have the
form of a flattened hexagon. The centers of the pentamers
closest to the center of the flattened hexagon form an
approximate square, but only the pentamers lying along
the perimeter of the hexagon are in contact with each other
[29]. On a plane, the internal angles of the flattened hexagon
(formed by a square and two triangular tiles) are equal to 60°
or 150°. Spherical AaLs nanocontainers are designed so that
the first angle can be slightly increased, while the second can
be decreased, which facilitates the establishment of bonds
between pentamers. In Ref. [55], an attempt was made to
predict other spherical shells with the same motif of bonds
between pentamers. Having considered possible packings of
flattened hexagons, they concluded that two additional
tetrahedral shells of 48 and 60 pentamers are possible,
and our analysis shows that these shells correspond to the
polyhedra shown in Figs. 6(b) and 6(c).
We have tried to superimpose the motif of flattened

hexagons on other polyhedra, noting that while it can be
done locally, the resulting shells have holes, and it is likely
that such shells cannot be assembled from AaLs pentamers
but can be assembled from other structural units. For
example, using the spherical polyhedron shown in
Fig. 6(h) [which originates from the Stampfli approximant
presented in Fig. 5(f)], one can rationalize viral shells from
the Partitiviridae and Picobirnaviridae families (Fig. 8).
Such shells consist of 120 proteins, whereas the model shell
has 12 additional positions lying on the icosahedron sym-
metry axes. These positions cannot be occupied by the
asymmetric proteins and thus remain empty [Fig. 8(b)] [56].
Antigen-displaying nanoparticles I53_dn5 (6VFJ)

composed of artificial proteins have an analogous struc-
ture [57]. Their proteins, like AaLs pentamers, can form
other polymorphic shells with octahedral and tetrahedral
symmetry [57], which are further discussed at the end of
this section.
Also, we note that the shells shown in Figs. 6(g) and 6(h)

and consisting of tetrahedral SUs appear on the surface of a
growing icosahedral quasicrystalline cluster when the
cluster is formed from an undercooled liquid [58].
Let us proceed to two examples of shells with QC local

order and cubic nets. Figure 8(c) shows a nanocontainer
consisting of 48 individual proteins, which has O sym-
metry [59]. Although in this shell, only tiles lying on the
fourfold and threefold axes of the O symmetry group have
fully regular shape. A comparison of the protein mass
centers with the positions of the nodes of the model

spherical shell reveals that the experimentally observed
structure agrees well with our theoretical framework; see
Figs. 8(d) and 6(b).
Dimers forming the icosahedral capsid of bacteriophage

MS2 [60] can also self-assemble into a cubic shell with O
symmetry [Fig. 8(e)]. To unveil the underlying spherical
tiling, we calculated the positions of mass centers of all
36 dimers in this shell and then connected them based on
the dimer-dimer contacts in the real structure. After that,
by minimizing elastic energy Eq. (5) corresponding to
the tiling, we obtained the positions of the nodes of the
resulting model shell. As can be seen in Fig. 9(d), the
differences between their position and positions of dimer
mass centers in the real structure are very small. At the
same time, S-Torder on the sphere surface is defective: The
centers of the hexagons lying around threefold symmetry
axes remain empty. This is due to the fact that dimers have
twofold symmetry and thus cannot occupy positions on
threefold axes [56,61]. In Fig. 8(g), the net of the obtained
spherical structure is shown with blue lines. The underlying
approximant has the same period as the one shown in
Fig. 5(a), although the way in which it is decorated with
square and triangular tiles is different.

FIG. 8. Proteinaceous shells in which individual proteins form
square-triangular local order. (a),(b) Capsid of human picobirna-
virus (6Z8D) and its model. Centers of small balls are the mass
centers of individual proteins in the shell. Black lines show the
icosahedral spherical polyhedron with 132 vertices. (c),(d) Nano-
container consisting of 48 proteins (8FWD) and the protein mass
centers. (e) Shell consisting of 36 MS2 dimers (2VTU). (f) Mass
centers of the dimers in the shell (e). (g) Square net of the shell (f).
Outside of the net, tiling is completed by the addition of square
and rhombic tiles.
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Also note that in order to tile empty regions around
fourfold axes (that turn into threefold axes in the shell) one
must use 30° rhombs. In Fig. 8(g), outside of the net, the
tiling is completed with additional squares and rhombs.
This approximant can be assembled in the framework
of the lattice gas condensation model, provided that the
phenomenological binding energy is minimized without
additional constrains on the set of allowed positions (see
Sec. II C).
Concluding this section, we note that shells with square

and triangular tiles in their structure can originate not only
from dodecagonal but also from octagonal approximants.
Figure 9(a) shows antigen-displaying nanoparticles
O43_dn18, which have the O symmetry and consist of
48 artificial proteins [57]. The shell has a visible cubic
faceting and empty octagons in the structure. Figure 9(b)
shows the spherical model shell consisting of triangles,
squares, and octagons and projections of proteinmass centers
on the spherical surface. When constructing this shell, the
edges of the spherical tiling were equalized by minimizing
energyEq. (5). Figure 9(c) demonstrates parent periodic tiling
consistingof squares and octagonswith cubic net (1,1) on top.
Interestingly, there is a tetragonal antigen-displaying

nanoparticle T33_dn10 [57], which assembles from the
same proteins, and corresponds to net (1,0) superimposed
on the same periodic motif. Thus, at least a dozen shells,
where protein order corresponds to the structures of short-
period quasicrystalline approximants, is already known,
and it is safe to assume that in the near future even more
such shells will be discovered. We hope that the theory
developed in this work will help in the search for analogous
nanocontainers that may play an important role in various
fields of nanotechnology and nanomedicine.

V. DISCUSSION AND CONCLUSION

In recent years, protein nanoparticles and nanoshells
with unconventional structural organization have begun to
be synthesized and used for various practical applications
in nano- and medical sciences. These protein assemblies
are fundamentally different from the ones typically
observed in icosahedral viral capsids, and, as we showed

above, some of the unconventional shells share common
structural organization motifs with planar quasicrystals.
Examining hundreds of structures from PDB, we identified
a whole series of such protein shells based upon the S-T
order and containing up to 360 individual proteins. The S-T
order is the most common type of quasicrystalline order
possible in soft-matter systems, and it is not surprising that
we found a number of protein shells displaying similar
structural organization that originates from short-period
approximants of dodecagonal and octagonal quasicrystal-
line tilings. Triangular tiles in shells of the latter type appear
exclusively on threefold axes as topological defects asso-
ciated with the transfer of octagonal order to the sphere.
After an exhaustive search, we were unable to identify

any published method for a regular construction of periodic
approximants with an S-T order, and we therefore
developed our own methodology as a part of this study.
We proposed a new model describing the nonequilibrium
growth of an S-T cluster with desired periodicity, with the
probability of a particle attachment to the cluster in a certain
position calculated from the Boltzmann distribution
dependent on the temperature and the corresponding bind-
ing energy. After considering the traditional microscopic
two-minimum potential Eq. (4) to calculate the binding
energy, we elaborated a more straightforward phenomeno-
logical approach, withinwhich the binding energy explicitly
depends on the 4D coordinates of the quasilattice positions
and the macroscopic 4D shift vector. Subsequently, in
the framework of the traditional phason strain approach,
we obtained all possible short-period dodecagonal
approximants with S-T order and used them to construct
icosahedral and cubic nets of the polyhedral model shells. It
is interesting to note that in order to classify the cubic nets,
one needs to invoke the half-integer indices along with the
integer ones. After folding the nets and gluing their edges
together, we obtained the polyhedra and then minimized
their energy Eq. (5) to make the quasicrystalline order more
regular. For this regularization, we considered two different
options, leading to faceted andmore typical spherical shapes
observed in real shells. Note that small icosahedral capsids
(containing up to 360 proteins) are also almost spherical in
most cases.
The theory that we developed successfully reproduces all

the shells with the S-T order that we found in the PDB, and
establishes new general rules that control the structure of
such shells; it is significant that the proposed theory
predicts yet undiscovered analogous shells [Figs. 6(c), 6(e),
and 6(f)].
Some limitations of our approach may be related to the

fact that all the shells found were able to be rationalized
within the framework of linear periodic approximants and
regular nets of icosahedron and cube types. Nevertheless,
the phason strain can be nonlinear, and the nets can be
asymmetric, possibly guiding a more general approach.
Discussing the general reasons that can lead to the

formation of protein shells with the S-T order, we first

FIG. 9. A shell with octagonal local order. (a) Octahedral
nanoparticle 6VFI formed from 48 proteins. (b) Corresponding
model shell. Centers of small balls are the projections of protein
mass centers on the spherical surface. (c) Periodic tiling con-
sisting of squares and octagons with cubic net (1,1) on top.
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note that even protein numbers in these assemblies are not
compatible with the paradigmatic CK model [10], which
describes the majority of known protein shells. However,
the CK principle of quasiequivalence (according to which
the proteins strive to form a minimum number of equivalent
or quasiequivalent bonds with their neighbors) itself still
continues to work, and the formation of symmetrical shells
with regular nets allows proteins to minimize the number of
their environments.
The CKmodel is also violated by some small icosahedral

capsids exhibiting a protein order which is in no way
similar to the square-triangular one [15,16,56]. In both
cases, the restrictions imposed by the symmetry on the
possible number of structural units in a shell and the
connection between the intrinsic curvature of the structural
units and the shell radius lead to specific ways of protein
organizations. When the intrinsic curvature of structural
units tends to zero, it ceases to influence the radius and, as a
consequence, the number of proteins in the shell.
Therefore, spherical shells that violate the CK model
become extremely rare.
Discussing a possible mechanism for the assembly of

shells with the S-T local order, we stress that, as we found,
planar S-T periodic approximants readily assemble within
the framework of a nonequilibrium assembly model when
T → 0, and attachment of the next structural unit occurs in
one of the most energetically favorable positions near the
growing cluster. It is therefore likely that a similar non-
equilibrium assembly mechanism could operate for both
spherical shells with S-T order and some other protein
structures, reducing the likelihood of their misassembly. In
this context, it is worth recalling the very-high-temperature
stability of AaLs nanocontainers [29], which clearly means
that under normal conditions the binding energy of pen-
tamers in this system is significantly greater than the
thermal energy.
In future studies, it would be interesting to obtain the

quasicrystalline shells also in the framework of approaches
that are based either on the minimization of energy or on an
appropriate cost function [62]. In particular, it is worth
considering the nonequilibrium assembly of particles con-
fined to a spherical substrate and interacting via a suitable
potential. Since in the case of nonequilibrium assembly the
planar dodecagonal approximants emerge at T → 0, we
suggest that spherical shells with analogous quasicrystal-
line order can be formed in the same limit, provided an
appropriate choice is made for the double-minimum poten-
tial and the substrate radius. As a side note, we emphasize
that due to the substrate curvature the second minimum of
the potential should be relatively closer to the origin than in
the planar case. It is also worth noting that some of the
simplest S-T packings on a spherical surface can be
obtained by using a single-minimum Lennard-Jones poten-
tial. By attaching particles to the most energetically
favorable positions near the growing spherical cluster

and minimizing the cluster energy after each attachment,
we obtained the snub cube, cuboctahedron, and rhombi-
cuboctahedron structures, together with several other shells
with S-T order as well as various geodesic polyhedra with
icosahedral symmetry. We leave the many details of the
nonequilibrium assembly of the spherical shells to a
future study.
It is worth noting that the methods developed in this

paper can be also applied in the theory of ordinary
quasicrystals. The model of quasilattice gas condensation
combined with the proposed phenomenological binding
energy allows us to construct, not only the linear S-T
approximants, but also structurally perfect dodecagonal
S-T tilings which, while being morphologically close to the
Stampfli tiling, differ from each other by a homogeneous
phason shift. Our approach that introduces and operates
with macroscopic phason degrees of freedom of
dodecagonal S-T packings can be of great use for the
development of various physical and structural models of
systems exhibiting this type of order, which is quite
widespread both in soft matter as well as in metal alloys.
Finally, the structural relationships between spherical

proteinaceous shells and planar quasicrystals are poten-
tially important because quasicrystals have material proper-
ties that are starkly different from those of crystals. Thus,
our study may be of interest not only to specialists dealing
with the development of design and applications of various
proteinaceous nanocontainers, but also to a wide range of
readers interested in chemistry and physics of condensed
matter, as well as modern problems of nD crystallography.
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APPENDIX: CONSTRUCTION OF PERIODOC
APPROXIMANTS WITH SQUARE AND

TRIANGULAR LATTICES

First, let us note that one can uniformly shift the cluster
by a 4D translation vector T0. To obtain a shifted packing,
one should impose a condition on the minimum lengths of
the vectors r⊥j − T⊥

0 instead of the vectors r⊥j , and the
packing should be assembled around the point with

coordinates Tjj
0, instead of the origin. Because of the
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presence of 4D translation symmetry in the model, the
packing shifted by the 4D translation turns out to be simply
shifted by its parallel component. In a more general case of
an arbitrary 4D shift vector R0, along with a shift of the
cluster center, a phason rearrangement of the structure also
occurs; see Supplemental Material, Figs. 3(d) and 3(e) [36].
The next step in obtaining approximants is the intro-

duction of phason strain into the model. To do so, when
constructing a cluster and choosing a position to be filled,
along with considering the displacement of cluster center,
one must require the length jr⊥j − f⊥j j to be minimal. In this

expression, f⊥j is a function of rjjj that describes the phason
strain. Accordingly, the energy of particle attachment must
be redefined as Eb þ ðr⊥j − f⊥j Þ2. To construct linear

approximants, we suppose that f⊥j ¼ R⊥
0 þ ε̂rjjj , where ε̂

is a constant tensor of the linear phason strain. This
approach allows us to regularly obtain periodic S-T
approximants, including those that are different from the
Stampfli ones.
The shells considered in this work are based on cubic and

icosahedral nets. Thus, we need to construct the approx-
imants with square and triangular lattices only. The con-
struction of these approximants starts with the selection of
components {ni} of the first 4D translation A1. In order to
reduce the enumeration of possible 4D translations, we

assume that the direction of the parallel component Ajj
1 is

limited to the 30° sector, and its length is less than 5 (since
we consider short-period approximants only). We also
assume that the length of the orthogonal projection A⊥

1

is smaller than the maximal radius (approximately 1.3) of
the Stampfli tiling in the perpendicular space.
By rotating translationA1 by 60° or 90°, one can find the

second 4D translationA2 of the considered approximant. In

fact, to get the explicit forms of components Ajj
2 and A⊥

2 ,
one needs to replace index i in the expressions for ai and
a⊥i . A 60° rotation corresponds to the replacement
i → iþ 2, while a 90° rotation corresponds to i → iþ 3.
Then, using the obtained components, we calculate linear
phason strain tensor ε, whose coefficients are expressed

through standard relations A┴
1 ¼ ε̂Ak

1 and A┴
2 ¼ ε̂Ak

2.
Since approximants with square lattices are assembled

around a central square tile, one must use an appropriate
homogeneous 4D shift r0 upon their generation. In the
special case when the edges of this square tile are parallel to
vectors a0 and a3, R0 equals ð1; 0; 0; 1Þ=2. For other
possible orientations of the central tile 4D vector, R0

can be found analogously. Approximants with triangular
lattices are constructed around a central particle; thus, for
them R0 ¼ 0.
Regarding the limitations of this method, we first note

that periodic S-T order is not compatible with all possible
A1 and A2 vector pairs. In the case of incompatibility,

instead of exact translations, Ajj
1 and Ajj

2 refer to average

translations. Second, even if it is possible to construct a
periodic approximant using these translations, the wheels
(if they exist in the structure) turn out to be randomly
oriented.
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