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Dynamical decoupling and Hamiltonian engineering are well-established techniques that have been used
to control qubit systems. However, designing the corresponding methods for qudit systems has been
challenging due to the lack of a Bloch sphere representation, more complex interactions, and additional
control constraints. By identifying several general structures associated with such problems, we develop a
formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit
systems. Our formalism significantly simplifies qudit pulse-sequence design while naturally incorporating
robustness conditions necessary for experimental practicality. We experimentally demonstrate these
techniques in a strongly interacting, disordered ensemble of spin-1 nitrogen-vacancy centers, achieving
more than an order-of-magnitude improvement in coherence time over existing pulse sequences. We further
describe how our techniques enable the engineering of exotic many-body phenomena such as quantum
many-body scars, and open up new opportunities for quantummetrology with enhanced sensitivities. These
results enable wide-reaching new applications for dynamical decoupling and Hamiltonian engineering in
many-body physics and quantum metrology.
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I. INTRODUCTION

The design and implementation of novel Hamiltonians
opens up a wide range of opportunities in quantum
science and engineering. Examples range from twisting
Hamiltonians for entanglement-enhanced quantum metrol-
ogy [1–3] and the toric code Hamiltonian for quantum
computation [4–6] to various XXZ spin-chain models for
quantum many-body physics [7–9]. One approach to the
experimental implementation of such models is to build
specific quantum simulator systems, where the desired
Hamiltonian is directly realized in the system [10–12]. An
alternative approach is to start with the native Hamiltonian
of a system and employ so-called Hamiltonian engineering
techniques to transform this native Hamiltonian into a
desired form [13,14]. Such methods are examples of
Floquet engineering and have emerged as a powerful
way to turn a quantum simulator of one specific
Hamiltonian into a simulator of many desired systems
[15–19]. As a special case of Hamiltonian engineering,

dynamical decoupling of interactions [20–24] plays a
particularly important role, both in preserving the state
of the system when needed and as a key step towards the
engineering of more complex interaction Hamiltonians.
Until now, the majority of existing Hamiltonian engi-

neering methods for spin systems have focused on qubits,
due to their ease of manipulation, the availability of
geometric intuition from the Bloch sphere, relevance to
many experimental systems, as well as maturity of control
techniques originally developed in the nuclear magnetic
resonance (NMR) community [20,23–30]. Extending these
techniques to qudit systems with more than two states
presents several new opportunities [22]. For quantum
many-body physics, qudits enable a richer landscape of
Hamiltonians [31], allowing for new explorations of
quantum many-body scars [32–34], quantum chaos [35],
and additional spin-exchange channels [36,37]. In quantum
metrology, the larger spin results in a larger dipole moment
for enhanced sensitivity [38–40] and may also allow time-
reversal operations required in certain protocols that are not
readily accessible with two levels [22,41,42]. Moreover,
such techniques will also be relevant for a large number of
experimental platforms, including nitrogen-vacancy (NV)
centers in diamond (spin-1) [38–40,43], quadrupolar NMR
(2H, 14N have nuclear spin-1) [44–46], cold molecules
[47,48], and nuclear spins or hyperfine states in trapped
atoms and ions [49–53].
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Designing qudit Hamiltonian engineering sequences,
however, is significantly more challenging. Indeed, despite
ample motivation in quadrupolar NMR (e.g., 14N) and
the use of qubit interaction decoupling sequences like
WAHUHA [20] for over 50 years, its qutrit counterpart was
only discovered recently [22,54]. Moreover, these qutrit
sequences do not take into account any practical robustness
considerations, making their implementation and applica-
tion challenging in practice (see, e.g., Fig. 8).
Consequently, while there has been work on single-qudit
dynamical decoupling [44–46,55–58], up to now there have
been no experimental demonstrations of full disorder and
interaction decoupling for interacting spin systems with
more than two levels.
One major obstacle to designing qudit Hamiltonian

engineering sequences is the lack of a simple Bloch sphere
picture, which makes the design procedure much less
intuitive [59–64]. At the same time, the significantly
larger Hilbert space leads to much more complicated
Hamiltonians, involving flip-flops between any pair of
states, whose analysis becomes qualitatively harder than the
qubit case (see Sec. II). In addition, because of selection
rule constraints, control is often available only on a subset
of transitions, which limits the family of pulses we can use
in sequence design. Moreover, even if it were possible to
design sequences to engineer Hamiltonians in the case of
ideal pulses, it is not clear whether they could be made
robust to experimental imperfections such as finite pulse
durations and other pulse errors.
To overcome these obstacles, we identify several key

structures in the qudit Hamiltonian engineering problem
and develop a general formalism for the task based on
them. More specifically, motivated by recent advances in
the robust Hamiltonian engineering of disordered and
interacting qubit systems [17], we devise a representation
of qudit Hamiltonian transformations based on the inter-
action picture transformations of the Sz operator, for any
secular interaction Hamiltonian [i.e., Hamiltonians satisfy-
ing the rotating wave approximation (RWA)]. We find that
the implementation of such transformations and the cor-
responding analysis of finite-pulse-duration effects and
other imperfections can be easily achieved with a graphical
representation of the desired transformations, where pulse
sequences represent a walk through the graph that starts
and ends at the same vertex [Figs. 3(b) and 3(e)]. The
details of these structures and the formalism will be
discussed in Sec. III.
Using this formalism, we design robust Hamiltonian

engineering pulse sequences and, for the first time, exper-
imentally demonstrate practical decoupling of spin-1 dipo-
lar interactions. In particular, we successfully build a pulse
sequence that not only decouples both on-site disorder and
dipolar interactions but also achieves robustness against
control errors and disorder during pulses. We experimen-
tally implement this sequence in a disordered, interacting

ensemble of spin-1 NV centers in diamond [Fig. 1(a)], a
leading platform for quantum metrology [65], and quantum
simulation of dipolar-interacting spin systems [43,66]. We
compare the performance of our sequence [Fig. 1(c)]
to existing sequences [22,66] and observe an order-of-
magnitude improvement in the coherence time [Fig. 1(b)].
The significant improvement, in the presence of large
disorder and control constrained by selection rules, high-
lights the power of our method.
The ability to robustly engineer qudit Hamiltonians

represents an important step towards the realization of
complex interaction Hamiltonians for quantum many-body
physics and quantum metrology, and we describe how our
techniques can be employed in these applications. As a
demonstration of the rich landscape of Hamiltonians now
accessible in qudit systems, we devise pulse sequences that
transform the native NV-NV interaction between two
groups of NVs with different lattice orientations into a
spin-1 XY Hamiltonian, realizing an exotic, bipartite
quantum many-body scar [32]. For quantum metrology,
we discuss how higher spin systems naturally lead to an
enhanced effective dipole moment for magnetic field
sensing and how to maximize sensitivity given the com-
plicated transformations of the Hamiltonian enacted by the
pulse sequences [68].
This paper is organized as follows: In Sec. II, we

compare the qudit case to the qubit case to motivate
finding new structures to the qudit problem, in the absence
of the Bloch sphere. In Sec. III, we introduce our general
formalism for designing robust sequences in qudit systems,
focusing on three key insights that enable robust sequence
design. In Sec. IV, we analyze a specific example of qutrit
decoupling sequence design, and in Sec. V, we demonstrate
experimentally significant improvements in decoupling
performance over existing pulse sequences. We then apply
these techniques to quantum many-body physics and
quantum metrology in Secs. VI and VII, and conclude
in Sec. VIII with an outlook for future directions.

II. QUDIT VS QUBIT: IMPORTANCE
OF STRUCTURE

The area of Hamiltonian engineering and dynamical
decoupling has been developed for over half a century in
the NMR community [20,23–30], leading to many pulse
sequences with good performance and high robustness
against control imperfections, including XY-8 [25],
WAHUHA [20], MREV-8 [27], DROID [17], etc.
However, this work has almost exclusively focused on
the qubit case, despite the relevance of the more general
qudit case to a variety of experimental systems, including,
e.g., 14N nuclear spins in NMR. The few exceptions [22,54]
studying the qutrit case suffer from the use of complicated
brute-force searches and limited performance in the pres-
ence of control imperfections. In this section, we will
highlight four major reasons why the qudit case is
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qualitatively harder than the qubit case, as is also illustrated
in Fig. 2.

A. More complex interactions

The more complex form of the interaction in the qudit
case makes it qualitatively harder to analyze. To see this, let
us first review the simpler qubit case, where the native
Hamiltonian of the system can be written as

Ĥ0 ¼
X
i

hiŜ
z
i þ

X
ij

JijŜ
z
i Ŝ

z
j : ð1Þ

The first term is an on-site disorder term, and the second
term is an Ising interaction between the qubits. We
emphasize that such a Hamiltonian form is the most generic
symmetric secular qubit Hamiltonian (i.e., satisfying the
RWA approximation), up to a Heisenberg part S⃗i · S⃗j that is
invariant under pulses due to its SU(2) symmetry [22].
To perform Hamiltonian engineering, one typically goes

into the interaction picture with respect to the pulses fP̂ng,
where the Hamiltonian transforms as H̃k ¼ U†

k−1H0Uk−1,
with Uk−1 ¼ Pk−1 � � �P1 being the accumulated pulse
unitaries. Examining the form of the native Hamiltonian,
Eq. (1), it is obvious that the transformation of the full
Hamiltonian is uniquely determined by the transformation
of the Sz operator S̃z ¼ U†SzU, which is referred to as the
“frame” in the literature [17,69]. For example, S̃z ¼ Sx

leads to the Hamiltonian H̃ ¼ P
i hiŜ

x
i þ

P
ij JijŜ

x
i Ŝ

x
j .

Engineering a target qubit Hamiltonian then simply con-
sists of spending a specified amount of time in the X, Y, Z
frames [17,20,70,71] to target a specific ratio between the
Hamiltonian terms.
In the qudit case, however, the Hamiltonian becomes

much more complicated. For example, the most generic
secular qutrit Hamiltonian involves all three flip-flop terms

(a) (b) (d)(b) (c)

FIG. 2. Main challenges in the qudit case. (a) Qudit interactions
involve flip-flop terms on every transition, together with multiple
types of Ising-like terms, making the analysis of their trans-
formation under pulses qualitatively harder. (b) The lack of a
Bloch sphere picture makes the design procedure much less
intuitive. (c) Available controls are constrained by the selection
rules. (d) The complicated trajectories of the frame during pulses
(the color gradient represents time during pulses) makes the
incorporation of robustness conditions much harder.

(b)

(c)

(a)

FIG. 1. Order-of-magnitude qutrit coherence improvement.
(a) Experiment performed in an interacting NV-center ensemble
in diamond. NV centers are spin-1 particles, and we use two
microwave tones to drive the j0i ↔ j1i and j0i ↔ j − 1i tran-
sitions, respectively. (b) Experimental demonstration of an order-
of-magnitude improvement in decoupling timescale compared to
existing sequences. The plotted curve is the measured average
decay trace for different pulse sequences, where the average is
taken over all three coherent superposition initial states
j0i þ j − 1i= ffiffiffi

2
p

, j0i þ j þ 1i= ffiffiffi
2

p
, and j þ 1i þ j − 1i= ffiffiffi

2
p

.
(c) Plot of our current best qutrit decoupling sequence
“DROID-C3PO” (i.e., disorder-robust interaction decoupling–
coherent 3-level pulse optimization). All pulses in this pulse
sequence simultaneously drive the two transitions with equal
amplitude. The thin lines represent spin-1π=2 pulses (i.e., rotation
of the spin-1 generalized Bloch sphere [22,67] by an angle π=2,
experimentally implemented by simultaneously driving the two
transitions with two π=

ffiffiffi
2

p
pulses), and the thick lines represent

spin-1π pulses. The color of the pulses represents the pulse axis
(X or Y), and the direction of the pulses (up or down) represents
the two opposite rotation directions (e.g., þπ=2 pulse and −π=2
pulse). The proportions of this plot are drawn consistently with
actual time durations. The ellipsis in the plot indicates that the
two rows are connected.
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between j0i ↔ j1i, j0i ↔ j − 1i, and j − 1i ↔ j1i, whose
transformation under unitaries becomes much more com-
plicated than Eq. (1). Indeed, the explicit expression for
the Hamiltonian transformation, which we tabulate in
Appendix A 6, is over 4 pages long, compared to the
one-liner in the qubit case. The complexity of these
expressions suggests the importance of more systematically
understanding the structure of qudit Hamiltonian engineer-
ing. Thus, unlike all existing works on qudit sequence
design, which focus on unitaries instead of frames, we
prove that the transformation of the Hamiltonian H̃ is still
uniquely determined by the frame transformation S̃z (see
Sec. III. 1 and Appendix A 3). This finding allows us to
obtain a much more succinct description of the transformed
Hamiltonian and significantly reduce the complexity of
qudit Hamiltonian engineering.

B. Lack of Bloch sphere picture

For qubits, the choice of frames is straightforward based
on the Bloch sphere picture: We simply choose the cardinal
directions along X, Y, Z, which have a high degree of

symmetry. To build a pulse sequence, one just needs to
connect the X, Y, Z frames with pulses, where π pulses and
π=2 pulses are the obvious choices based on the Bloch
sphere geometry. In a sense, the Bloch sphere picture serves
as a backbone, on which the design of pulse sequences is
converted to the design of trajectories on the Bloch sphere.
In the qudit case, however, there is no longer an obvious

candidate for the Bloch sphere: The naive generalization is
an eight-dimensional object [22,67] that is not particularly
informative. Although existing methods can find the
necessary unitaries to engineer the target Hamiltonian, it
is achieved by a brute-force search, as depicted in Fig. 3(d).
Therefore, it does not organize those unitaries in any
structured way similar to the Bloch sphere picture. In this
method, one starts with a pulse set that may not be
experimentally accessible (e.g., π=2 pulses on all transi-
tions) and searches over the entire space of unitaries
generated by them. Linear programming techniques are
used to find a subset of unitaries that transform the native
Hamiltonian to the desired form. As a result, the connection
between these unitaries often involves complicated
composite pulses that might go all the way back to the

FIG. 3. Decoupling frame graphs. Geometric representation of decoupling pulse sequences. Vertices indicate transformed Sz frames,
and edges indicate physically implementable pulses that connect different frames. (a)–(c) Representative qubit decoupling sequence.
The Bloch sphere picture in diagram (a) naturally leads to the decoupling frame graph in diagram (b), by trivially replacing all arcs with a
straight line. A walk on the decoupling frame graph (walk ordering given by color gradient and arrows) produces a pulse sequence
consisting of π=2 pulses (c). (d)–(f) Corresponding results for a qutrit decoupling sequence. Because of the lack of a Bloch sphere
picture, existing methods rely on the structureless brute-force search shown in diagram (d), which significantly limits the success of
pulse-sequence design so far. The decoupling frame graph in diagram (e) captures the structures of the problem and serves as the
backbone on which pulse sequences are designed [diagram (f)], in a way similar to the qubit case. These plots are only for high-level
illustration of our methods; the details of qutrit decoupling sequence design are discussed in Sec. IV, and the precise definition of the
frame set in diagram (e) is given in Eq. (10).
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root node in Fig. 3(d), which requires cumbersome and
structureless algebraic simplifications. Therefore, syn-
thesizing the required unitaries has been a tricky and
painful process, even without considering the actual per-
formance of the sequence.

C. Constrained controls due to selection rules

Another unique limitation in the qudit case is the
presence of selection rules, which constrain the available
transitions we can drive. The consequence is that generic
pairs of unitaries or frames cannot be directly connected via
a single pulse, leading to the need of composite pulses or
lambda-type drivings with a virtual intermediate level, both
making the experiment much more complicated. As a
specific example of pulse-sequence designs limited by
selection rules, there is a qutrit interaction decoupling
sequence based on unitary 2-designs and the Clifford group
in our complementary work [72], which is theoretically
elegant but not practical experimentally because it requires
driving on all three transitions.
To overcome this challenge and the previous point (i.e.,

the lack of a Bloch sphere picture), we propose the concept
of “decoupling frame graphs,” which keeps track of the
connectivity between frames using experimentally imple-
mentable pulses (see Sec. III B for detailed discussions). A
decoupling frame graph not only labels all pairs of frames
that can be directly connected using available controls but
also organizes the frames in a structured way, similarly to
the qubit Bloch sphere, and thereby serves as the backbone
on which pulse sequences are designed.

D. Complicated trajectories of frames during pulses

In order to build in robustness against dynamics during
the finite pulse duration and possible rotation angle errors
coming from miscalibration or Rabi inhomogeneity, one
must know the frame S̃z during the pulses because it
determines the transformation of H̃. In the qubit case, this
task is easy: We can see from the Bloch sphere picture that,
during any π=2 pulse rotation,

S̃zðθÞ ¼ S1 cos θ þ S2 sin θ; ð2Þ

where S1=2 are the frames before and after the π=2 pulse and
θ represents the time during the pulse. Thus, the whole
trajectory during the pulse is conveniently represented as a
linear combination of the discrete frames before and after
the pulse. With this exact and simple expression, the effect
of control imperfections can be calculated analytically,
which enables the design of pulse sequences robust to
them [17].
In the qudit case, however, the trajectories during pulses

can be very complicated due to the higher (i.e., d2 − 1)
dimension of the operator space. For example, in the qutrit
case, the frame trajectory lives in a six-dimensional space

during a generic pulse, which makes the instantaneous
frames completely untractable (see Appendix B 4). In fact,
even for relatively simple pulses, such as a π=2 pulse on a
single transition, no decomposition like Eq. (2) is possible,
as discussed in Appendix B 4.
To overcome this challenge, we identify special con-

ditions under which Eq. (2) continues to hold in the qudit
case: The pulse needs to transform frames along geodesics
on the generalized Bloch sphere [22,67]. Remarkably,
such geodesic-generating pulses only involve transitions
between neighboring jmSi states, which satisfy the selec-
tion rules in most cases. See Sec. III C for detailed
discussions.
The challenges discussed above make qudit sequence

design substantially harder than the qubit case. It should be
clear from the preceding discussion that a better under-
standing of the underlying structure of the qudit sequence
design problem is necessary to facilitate their design.
Our work develops a formalism that identifies and captures
this structure, thereby providing a general recipe for robust
qudit sequence design.

III. GENERAL FORMALISM FOR QUDIT
HAMILTONIAN ENGINEERING

In this section, we introduce our general formalism for
robust qudit Hamiltonian engineering. Key to our formal-
ism are insights into compact algebraic and graphical
representations of the engineered Hamiltonian, combined
with judicious choices of pulse families to satisfy real-
world constraints and achieve robustness. Many of these
observations are inspired by methods for robust qubit
sequence design, yet require viewing the results from a
new perspective and making substantial generalizations.
For a more detailed description of robust qubit sequence
design, we refer the reader to Ref. [17].
In each subsection below, we first illustrate the intuitions

behind key insights using simple examples with qubits and
then generalize the statements to the qudit case. As we shall
see, this is a nontrivial extension and requires developing
new geometric intuitions and understandings of the
Hamiltonian engineering constraints.

A. Hamiltonian representation
and decoupling frame set

The setting we are interested in is a generic qudit
Hamiltonian

H ¼
X
i

Hdis
i þ

X
i≠j

Hint
ij ; ð3Þ

where the first term describes an on-site disorder and the
second term describes a symmetric two-body interaction
that satisfies the rotating wave approximation (i.e., the
secular approximation). We focus on the case where we
only have global control over the spin system, consisting of
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pulses allowed by the selection rules of the system. Going
into the interaction picture with respect to the ideal pulses,
we can write the interaction picture Hamiltonian as
H̃k ¼ U†

k−1HUk−1, with Uk−1 ¼ Pk−1 � � �P1. In average
Hamiltonian theory, the evolution of the system can be
described by an effective Hamiltonian Heff , which is the
average of H̃k weighted by the corresponding evolution
times τk [26], Heff ¼

P
k τkH̃k=T, T being the Floquet

period. The goal of Hamiltonian engineering is then to
design a pulse sequence fPkg that leads to the desired form
of Heff .
As we discussed in Sec. II, the key insight that

significantly simplifies the pulse-sequence design problem
in the qubit case is that the Hamiltonian transformation
H̃ ¼ U†HU is uniquely determined by the frame trans-
formation S̃z ¼ U†SzU. This observation allows us to keep
track of only the Sz transformation, instead of the whole
unitary U or the pulse-sequence history, which contain
unnecessary information about the transformations of Sx

and Sy.
The fundamental reason for this insight is the rotating

wave approximation (i.e., secular approximation).
Intuitively, when there is a strong quantizing field that
separates the two energy levels, the Hamiltonian rapidly
rotates around the z axis. Therefore, any part of the
Hamiltonian that is not rotationally invariant rapidly
averages out, and the resulting Hamiltonian must be
invariant under z rotations. Because of this, the rotation
of the x and y axes in the plane perpendicular to the z axis
does not matter, as they are equivalent, and the trans-
formation of the z axis determines everything.
The observation that S̃z uniquely determines H̃ can be

directly generalized into the higher spin case, and we
formulate this statement precisely as the following theorem:
Theorem 3.1. For two unitaries U1, U2, such that

S̃z ¼ U†
1S

zU1 ¼ U†
2S

zU2, we have ðU†
1Þ⊗nHU⊗n

1 ¼
ðU†

2Þ⊗nHU⊗n
2 , where n is the number of spins in the

system and H is a qudit Hamiltonian satisfying the secular
approximation on each transition.
The full proof is given in Appendix A 3, but the basic

intuition is similar to the spin-1
2
case: The rotating wave

approximation causes operators other than diagonal ones to
drop out, leaving S̃z as the only relevant information.
Since transformations of the Sz operator alone are

sufficient to describe the Hamiltonian transformations,
we only need to keep track of them for the Hamiltonian
engineering problem. Compared to prior approaches that
did not utilize the secularity of the Hamiltonian [22,54],
Theorem 3.1 reduces the information we need to keep track
of and makes it possible to extract physical insights from
the frames S̃z themselves that help inform sequence design,
as we shall see in Sec. IV.
The proof in Appendix A 3 does not provide an explicit

construction of the transformed Hamiltonian as a function

of S̃z, although it is easy to show that the final result will be
a polynomial in the decomposition coefficients of S̃z in
the Gell-Mann basis, as we describe in Appendix A 4. The
explicit form of the transformed Hamiltonian is rather
complicated and is 4 pages long (Appendix A 6). Using the
representation theory of Lie groups, such expressions
can, in fact, also be directly constructed, as we show in
complementary work [72].

B. Graphical representation of qudit decoupling

In this section, we introduce a new graphical represen-
tation, which we call the decoupling frame graph, to
describe the frame set we use to decouple the interaction
and the pulses connecting them. In these graphs [e.g.,
Figs. 3(b) and 3(e)], the vertices represent the frames we
use for decoupling, and the edges represent the pulses
connecting these frames. As we will discuss in this section,
this graphical representation directly reflects the structure
of the problem, significantly simplifying the inclusion of
connectivity requirements while also providing a simple
visualization of the pulse sequence.
To make Hamiltonian engineering techniques relevant to

real-world experiments, the key is to ensure that the desired
transformations can indeed be experimentally implemented
given the constraints of selection rules. To build in robust-
ness into a pulse sequence, the pulses connecting neigh-
boring frames must be simple enough that we can easily
analyze the effects of disorder and interaction during them.
Therefore, we require neighboring frames to be connected
by simple and experimentally implementable pulses.
For qubit systems, this requirement is automatically

achieved through the Bloch sphere picture in Fig. 3(a),
where the frames �Sx;�Sy;�Sz are connected by simple
π=2 pulses. Generalizing this to the qudit case would
require us to keep track of the connectivity between
relevant frames and to build a graph similar to Fig. 3(b),
where vertices represent the frames and edges represent
connectivity between them. However, it is not obvious that
such a representation is even well defined because, depend-
ing on the pulse history, there could be multiple different
unitaries Ui leading to the same frame S̃z ¼ U†

i S
zUi while

the other omitted information (i.e., S̃x and S̃y) is different.
Therefore, one may generically expect that the connectivity
from one frame to another frame may depend on which
underlying unitary is used to realize the first frame.
To see this subtle point more clearly, let us consider a

simple qubit example. The frame Sz may come from two
different unitaries: The first one is the trivial identity
U1 ¼ I, and the second one is a rotation by π=2 around
the Z axis, U2 ¼ e−i

π
2
Sz , which rotates the Z axis into itself.

In order to reach the frame Sx from these two unitaries that
both lead to the Sz frame, one actually needs to apply a π=2
pulse around −Y in the first case and a π=2 pulse around
þX in the second case. Therefore, the specific pulse
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required to go from one frame to another frame may depend
on the details of the pulse history, and there is no guarantee
that all these different pulses would satisfy the selection
rules in the qudit case. Fortunately, as we state precisely in
the following theorem, we find that all these different
pulses can only differ by the phase of the driving on each
transition, which does not change the implementability
under the selection rules.
Theorem 3.2. For two unitaries U1, U2 leading to the

same frame S̃z ¼ U†
1S

zU1 ¼ U†
2S

zU2 and a pulse UP that
transforms the first case to S̃znew ¼ U†

1U
†
PS

zUPU1, there
exists a diagonal phase operatorUphase, such that the phase-

shifted pulse UP0 ¼ U†
phaseUPUphase transforms the second

case to the same frame S̃znew ¼ U†
2U

†
P0SzUP0U2.

The proof of the theorem is given in Appendix A 5.
Given Theorem. 3.1, stating that the only thing we need to
keep track of is the frame S̃z, and Theorem. 3.2, stating that
the connectivity between the frames is well defined, the
structure of the whole problem can be naturally incorpo-
rated in the graphical representation in Fig. 3, where
vertices represent the frames that dictate the transformed
Hamiltonian and edges represent experimentally imple-
mentable pulses connecting those frames. We refer to this
representation as the decoupling frame graph. A pulse
sequence can then be represented as a path on this graph,
with the decoupling requirement Heff ¼

P
k H̃kτk ¼ 0

becoming a requirement on the frame set and the time
τk spent at each vertex. We emphasize that the decoupling
frame graph plays a similar role to the missing Bloch sphere
picture [see Figs. 3(b) and 3(e)], which encodes the
adjacency of relevant frames and serves as the backbone
for pulse-sequence designs.
To build a decoupling frame graph, one starts with a

simple pulse set motivated by selection rules and easy
analysis of robustness (Sec. III C). One then applies the
pulses a few layers deep to generate a set of frames
accessible using these pulses. Crucially, one should also
keep track of how the different frames are connected by
pulses in the chosen pulse set in this process and generate an
overcomplete decoupling frame graph in which not every
vertex is necessarily needed. Finally, one applies the linear
programming techniques described in Ref. [22] on the set of
frames generated (instead of on all possible unitaries in the
existing methods) to identify a subset of frames and weights
that achieve decoupling. The subset of frames and the
connectivity between them gives the decoupling frame graph
on which we design pulse sequences.
Two comments are in order: First, when there are

multiple solutions to the linear programming question
when choosing the subset of frames, frames connected
in a single patch are more favorable because this eliminates
the need for intermediate vertices to connect frames, which
could complicate the cancellation of finite-pulse-duration
effects. Similarly, well-connected graphs are preferred

because they support more ways to traverse the vertices.
This extra degree of freedom can be utilized to satisfy
the robustness conditions. Second, the choice of a well-
motivated, implementable set of pulses is very important, as
it determines the frames we consider and the connectivity
between them. As we will see in Sec. III C, balanced
double-driving pulses (i.e., pulses that simultaneously drive
both j0i ↔ j þ 1i and j0i ↔ j − 1i transitions with equal
amplitude) are usually good choices in spin-1 systems due
to their simple transformations of disorder during pulses
and their ease of implementation and calibration.
Let us now provide a few concrete examples of the

decoupling frame graph to gain a bit more intuition.
First, consider the qubit case, where we would like to

spend equal time along each of the six cardinal directions.
The vertices thus correspond to�Sx,�Sy,�Sz frames, and
the connecting edges, corresponding to π=2 pulses, organ-
ize the decoupling frame graph into an octahedron, as
shown in Fig. 3(b). A representative path on this graph can
then be directly translated into the decoupling pulse
sequence shown in Fig. 3(c). This sequence is a variant
of the spin-1=2 WAHUHA sequence that decouples inter-
actions and disorder [20].
Another decoupling frame graph, which we use for qutrit

disorder and interaction decoupling, is shown in Fig. 3(e).
The definition of the frames and why it decouples disorder
and interactions is discussed in Sec. IV; for now, however, it
is just an illustration of a generic qudit decoupling frame
graph. Similar to the qubit case, we can easily draw a path
through all vertices in a simply connected fashion.
The pulse sequence corresponding to the path is shown
in Fig. 3(f) and consists of balanced double-driving pulses
with different phases on each transition.

C. Robust qudit decoupling

In order to incorporate robustness into sequence design,
we have to analyze the transformation of the Hamiltonian
during pulses. For qudit systems, the transformation
trajectory can be much more complex than the qubit case
(see below and Appendix B 4), complicating the robustness
analysis. Nevertheless, we will show that, by carefully
choosing the pulses that constitute the sequence, we can
recover the favorable properties of the qubit case.
Before diving into the more complicated case of qudits,

let us first briefly review how disorder during pulses is
canceled in the qubit case in order to remind readers about
the key properties that simplify the analysis. Because the
on-site disorder is proportional to Sz, we need to analyze
the transformation of the Sz operator during pulses. In the
qubit case, the transformation of the Sz operator during
pulses is a continuous rotation along a geodesic on the
Bloch sphere from the frame before the pulse S1 to
the frame after the pulse S2. If we focus on the two-
dimensional subspace that contains the trajectory of S̃z

during the pulse, this trajectory is represented by the red arc
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in Fig. 4(a). Therefore, the average effect of disorder during
the pulse, which is represented by the center of mass of
the red arc, can be decomposed as a simple average of S1
and S2. Indeed, by integrating over the pulse explicitly,
one finds that the average effect of disorder during a π=2
pulse is

S ¼ 4

π

�
S1 þ S2

2

�
: ð4Þ

The contributions of these terms can be easily incorporated
into the effective Hamiltonian by treating it as extra time
spent in the frames before and after the pulse, with minimal
changes to the decoupling conditions otherwise. Thus, in
the qubit case, this decomposition significantly simplifies
the incorporation of robustness into the sequence design
problem. For more details on qubit robust sequence design
and a similar analysis of other contributions, we refer
readers to Ref. [17].
However, this decomposition of disorder during pulses

as a simple average before and after the pulse no longer
holds for generic pulses in the qudit case. A concrete
counterexample is the transformation of the spin-1 Sz

operator during a π=2 pulse applied on a single transition,
which is discussed in more detail in Appendix B 4. A
geometric picture that explains why this decomposition
[i.e., Eq. (4)] no longer holds is that the trajectory of the Sz

transformation during pulses is no longer a geodesic on the

generalized Bloch sphere [22,67] for generic higher spin
pulses. To see the effect of this case, examine Fig. 4(b),
where the red curve represents a trajectory of S̃z that
follows a geodesic and the blue curve is a trajectory that
does not follow a geodesic. For the red curve, since it lives
entirely in the two-dimensional subspace spanned by S̃z

before and after the pulse (i.e., the shaded plane), the
averaged S̃z during the pulse can always be decomposed as
a scaled average of S̃z before and after the pulse. However,
for the blue curve, since its center of mass does not live
in the shaded plane, there is no way to perform this
decomposition.
One way to overcome this challenge is to find pulses that

transform Sz along geodesics and use them to build the
decoupling sequence. For the case of a spin-1 system, we
find that balanced double-driving pulses (i.e., pulses that
simultaneous drive both j0i ↔ j þ 1i and j0i ↔ j − 1i
transitions with equal amplitude) satisfy this condition.
For concreteness, let us write down the form of the
Hamiltonian for balanced double-driving pulses:

Hp ∝

0
B@

0 e−iθ1 0

eiθ1 0 e−iθ2

0 eiθ2 0

1
CA: ð5Þ

To see that balanced double-driving pulses transform Sz

along geodesics, notice that the Hamiltonian of balanced
double-driving pulses can be related to the spin-1 Sx

operator by a simple conjugation Hp ¼ U†SxU, where
the unitary

U ¼

0
B@

eiθ1 0 0

0 1 0

0 0 e−iθ2

1
CA ð6Þ

is a phase operator that conjugates the Sz operator trivially
(i.e., U†SzU ¼ Sz). Then, the transformation of the Sz

operator during the pulse is

S̃zðtÞ ¼ eiHptSze−iHpt

¼ U†½eiSxtSze−iSxt�U: ð7Þ

Notice that the term e−iS
xt is a spin-1 spatial rotation

operator, so its conjugation on Sz transforms Sz along the
geodesic cos tSz þ sin tSy. This property still holds after
conjugation by U, and we find that, for arbitrary balanced
double-driving pulses that rotate the spin by π=2, the
transformation of Sz during the pulse is a geodesic:

S̃zðθÞ ¼ cos θS1 þ sin θS2; ð8Þ

where S1;2 are the frames before and after the pulse and θ
is the angle rotated from S1. We remark that the above

(a) (b)

FIG. 4. Disorder during pulses. (a) In the qubit case, the
disorder during pulses is a continuous rotation from the frame
before the pulse S1 to the frame after the pulse S2, as represented
by the red arc. Therefore, its average effect, which is represented
by the center of mass “C” of the red arc, can be written as a scaled
average of S1 and S2. The factor 4=π in Eq. (4) comes from the
fact that the center of mass C is slightly further from the origin
compared to the midpoint of S1 and S2. (b) Illustration of
geodesics. If the trajectory of Sz during the pulse follows a
geodesic, as in the case of the red curve, then the whole curve
lives in the two-dimensional subspace (i.e., the shaded plane)
spanned by the frame before and after the pulse, and therefore
the average effect of disorder during the pulse can naturally be
decomposed as an average before and after the pulse. If the
trajectory of Sz does not follow a geodesic, as in the case of
the blue curve, then the center of mass of the curve no longer lives
in the shaded plane and no such decomposition is possible.
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constructions and proof can be generalized to qudits with
arbitrary d, where the balanced double driving is general-
ized to a phase-conjugated higher spin Sx operator.
Furthermore, such pulses are implementable in most
experimental systems because they only require driving
between neighboring jmSi states.
Equation (8) shows that, by using pulses that transform

Sz along geodesics in qudit sequence design, we achieve
exactly the same transformation of Sz as in the qubit case.
This finding significantly simplifies the robustness con-
dition analysis, and as we will discuss in Sec. IV, it allows
us to cancel other terms, including disorder that is propor-
tional to ðSzÞ2, rotation angle errors, and dominant higher-
order contributions, by analogy with the qubit case. For a
more detailed analysis of robustness conditions, see
Appendixes B 4 and B 5.

D. General recipe for robust qudit sequence design

Combining the preceding insights, we arrive at the
following prescription for designing qudit robust
Hamiltonian engineering sequences:
(1) Choose a fixed set of physically implementable

pulses; ideally ones that cause frame trajectories
along geodesics.

(2) Apply the pulses a few layers deep to build a
decoupling frame graph, where edges correspond
to the pulses chosen above and vertices are frames S̃z

accessible using pulses in the chosen pulse set.
(3) Apply linear programming techniques described in

Ref. [22] to identify a subset of frames and weights
that achieve decoupling.

(4) Identify a path on the decoupling frame graph that
walks through all desired frames, spends the re-
quired time at each vertex, and cancels the evolution
during pulses. This is usually achievable if we
choose a pulse set that transforms Sz along simple
trajectories (e.g., geodesics) in step 1.

The end result will be an experimentally implementable
decoupling sequence that decouples both disorder and
interactions and is robust to various control imperfections.
We note that some of these conditions can be relaxed. For
example, even if the pulses do not exclusively result in
geodesic precessions, we can still perform robust
Hamiltonian engineering through careful design, as
described in Appendix B 7.

IV. DESIGNING A GOOD QUTRIT DECOUPLING
SEQUENCE

In this section, we use the general recipe described in
Sec. III D to design a robust disorder and interaction
decoupling sequence for a dipolar interacting spin-1
ensemble. The Hamiltonian of the system we are consid-
ering is

H ¼
X
i

½hiSzi þDiðSzi Þ2�

þ
X
ij

Jij

�
Szi S

z
j −

1

2
HXY;0þ

ij −
1

2
HXY;0−

ij

�
; ð9Þ

where the first term describes two independent modes of
the on-site disorder, which we call “Sz disorder” and “ðSzÞ2
disorder” from now on, and the second term is the dipole-
dipole interaction after applying RWA. The symbol HXY;0þ

ij

in the second term is shorthand for the flip-flop term
HXY;0þ

ij ≡ jþ1; 0ih0;þ1j þ H:c: between j0i and j þ 1i,
and the symbol HXY;0−

ij is a similar flip-flop term between
j0i and j − 1i.
Now, let us design a robust disorder and interaction

decoupling sequence using this general recipe. We choose
to work with balanced double-driving pulses because they
transform Sz along geodesics. By a linear programming
search on the accessible frames, which is described in more
detail in Ref. [22] and Appendix B 1, we find that the 12
frames in Fig. 3(d) constitute a decoupling frame set when
we spend equal time on each vertex. The explicit expres-
sions of these frames are

�Sx¼� 1ffiffiffi
2

p

0
B@
0 1 0

1 0 1

0 1 0

1
CA; �Sx̃¼� 1ffiffiffi

2
p

0
B@
0 1 0

1 0 −1
0 −1 0

1
CA;

�Sy¼� 1ffiffiffi
2

p

0
B@
0 −i 0

i 0 −i
0 i 0

1
CA; �Sỹ¼� 1ffiffiffi

2
p

0
B@
0 −i 0

i 0 i

0 −i 0

1
CA;

�Sz¼�

0
B@
1 0 0

0 0 0

0 0 −1

1
CA; �Sz̃¼�

0
B@
0 0 −i
0 0 0

i 0 0

1
CA:

ð10Þ
The next step is to build in robustness by choosing a good

path on the decoupling frame graph. In order to build a high-
performance decoupling sequence, in addition to the robust-
ness conditions, it is also crucial for the dominant terms in
the Hamiltonian to be canceled as locally as possible to avoid
generating a large higher-order contribution in the Magnus
expansion [73]. Therefore, the overall design principle
involves a hierarchical structure: Shorter sequences are
designed to robustly cancel the dominant terms in the
Hamiltonian, and they are used as building blocks for longer
sequences that cancel the subdominant terms.
In our experimental platform consisting of a dense NV

ensemble, the ordering of energy scales in the Hamiltonian
(from large to small) is magnetic noise (∝ Sz), electric field
noise and strain inhomogeneities [∝ ðSzÞ2], and the dipole-
dipole interaction, and we also aim to cancel them in
this order in our pulse sequence. We note that different
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experimental platforms can have different relative magni-
tudes of these terms, and the hierarchical design method we
discuss in this section should still lead to good pulse
sequences in those cases.
Let us now describe the hierarchies from the lowest level

to the highest level.

A. Cancel magnetic noise Sz

Since magnetic noise is the dominant term in our
platform, it is canceled on the lowest level in the pulse-
sequence hierarchy. The basic structure to cancel the
magnetic noise is shown in Fig. 5(a). In these plots, we
represent the pulse sequence by a frame matrix, where each
column describes a frame and each row represents a basis
vector we use to decompose the frames. The frames are
represented by their decomposition coefficients in this
basis; for example, a “þ1” in the row corresponding to
S2 denotes the frame þS2, and a “−1” in the S1 row
denotes the frame −S1. The square blocks in these plots
represent free evolution periods between pulses, and the
thin lines represent intermediate frames that we go
through during pulses. For a more detailed description
of these plots in the qubit case, see Ref. [17]. In Fig. 5(a),
there is a pair of square blocks þS2 and −S2, so the Sz

disorder during free evolution is canceled; in addition,

there is a pair of thin lines −S1 andþS1, so the Sz disorder
during pulses is also canceled. Therefore, this basic
structure cancels Sz disorder robustly, and we will use
it as the building block for higher-level sequences that
cancel other terms in the Hamiltonian.

B. Cancel electric field and strain noise ðSzÞ2
The next level in the hierarchy is canceling electric field

noise and strain inhomogeneities. An important observa-
tion here is that the WAHUHA sequence [20], which is
designed to cancel spin-1

2
XXZ interactions, can also cancel

the spin-1 ðSzÞ2 disorder. Specifically, consider a spin-1
version of the WAHUHA sequence that goes through the
frames Sx, Sy, and Sz, where Sx;y;z are conventional spin-1
operators (see above). The reason that this sequence cancels
the ðSzÞ2 disorder is because it transforms the disorder into
ðŜxÞ2 þ ðŜyÞ2 þ ðŜzÞ2 ¼ Ŝ2 ¼ SðSþ 1Þ1 ∝ 1, which is a
trivial constant. Moreover, because of the similar structure
of ðŜzÞ2 and the spin-1

2
interaction Ŝz ⊗ Ŝz, both being

quadratic in Sz, their contribution during the finite pulse can
be canceled using the same method, as discussed in more
detail in the fourth level of the hierarchy and in Ref. [17]. In
addition, we find that the 12 frames in Fig. 3(d) can be
divided into two blocks of six frames (as shown in Fig. 6),
in which the frames in each block (�Ŝ1;�Ŝ2;�Ŝ3) satisfy
Ŝ21 þ Ŝ22 þ Ŝ23 ∝ 1, achieving the same cancellation as
above. Therefore, we can cancel the ðSzÞ2 disorder locally
by applying a WAHUHA sequence on each block, as
shown in Fig. 5(b). Note, however, that a WAHUHA
sequence does not fully cancel the ðSzÞ2 disorder during
the finite pulse duration, and we postpone this cancellation
to the fourth level.

(a) (b)

(c)

FIG. 5. Hierarchy of sequences. (a) Basic building block we use
to cancel Sz disorder. Here, S1 and S2 represent two generic
frames connected by microwave pulses, and yellow and green
represent the signs þS1;2 and −S1;2, respectively. The large
square blocks indicate free evolution between pulses, and the thin
lines indicate intermediate frames during pulses (e.g., the thin
green line in the S1 row indicates a π pulse from S2 to −S2 that
goes through −S1). Notice that disorder during both free
evolution and pulses is canceled. (b) AWAHUHA-like sequence
built by the building blocks in diagram (a), which cancels the
ðSzÞ2 disorder. (c) A sequence that decouples both disorder and
interactions, obtained by applying the WAHUHA sequence in
diagram (b) on each block in Fig. 6.

FIG. 6. Dividing the 12 frames into two pseudo-Bloch
spheres. The six frames in each pseudo-Bloch sphere
(�Ŝ1;�Ŝ2;�Ŝ3) satisfy Ŝ21 þ Ŝ22 þ Ŝ23 ∝ 1; therefore, a WA-
HUHA sequence in each pseudo-Bloch sphere cancels the
ðSzÞ2 disorder. We emphasize that the observation of such a
simplification heavily relies on the geometric insights provided
by the decoupling frame graph.

HENGYUN ZHOU et al. PHYS. REV. X 14, 031017 (2024)

031017-10



C. Cancel dipole-dipole interactions

The third level in the hierarchy is to cancel the dipole-
dipole interaction. As we found from our linear program-
ming analysis in Sec. III B, this process requires us to spend
equal time in all 12 frames in Fig. 6 and is achieved by
concatenating the WAHUHA sequences on the two blocks
in Fig. 6. The frame representation of this sequence is
shown in Fig. 5(c).

D. Further improvements inspired
by advanced qubit sequence design

Inspired by recent advances in qubit higher-order
sequence design [74] and the similarity between certain
terms in qutrit decoupling and qubit decoupling, we can
use the interaction decoupling sequence shown in Fig. 5(c)
as a building block and apply the higher-order designs
in Ref. [74] to further improve its performance.
Phenomenologically, we repeat the sequence in Fig. 5(c)
8 times while flipping the signs and ordering of the frames
in each repetition, as shown in Fig. 14(a). The combination
of these different sign and ordering choices further cancels
the residual ðSzÞ2 disorder during the pulses, the Rabi
inhomogeneity effect, and dominating higher-order terms
in the Magnus expansion coming from commutators
between various terms (see Ref. [74] for detailed discus-
sions), and leads to better decoupling performance. We
emphasize that the decoupling frame graph plays an
important role in this process: It provides graphical insights
that help one easily reason about possible variants of the
sequence in Fig. 5(c) and combine multiple variants to
symmetrize the trajectory on the decoupling frame graph. A
numerical comparison of sequences with different levels of
symmetrization is shown in Fig. 19.
As an example, the ðSzÞ2 disorder during the pulses and

the Rabi inhomogeneity effect are canceled by flipping the
signs of the intermediate frames (or the free evolution
frames, but not both) in the basic building block shown in
Fig. 5(a). The cancellation of ðSzÞ2 disorder during pulses
relies on the fact that it transforms in the sameway as spin-1

2

Ising interactions. Specifically, if we denote the frame
before and after a spin-1 π=2 pulse by S1 and S2 and
denote the angle rotated from S1 by θ, then the instanta-
neous frame is cos θS1 þ sin θS2 (see Sec. III C for the
derivation). The ðSzÞ2 disorder is thus transformed to
cos2 θS21 þ sin2 θS22 þ sin θ cos θðS1S2 þ S2S1Þ. The terms
proportional to S21 and S22 can be viewed as additional time
spent in the frame right before and right after, and therefore
are canceled by the WAHUHA block itself. The cross term
S1S2 þ S2S1 is canceled here because one of S1 and S2 is an
intermediate frame whose sign is flipped, in analogy to the
rule for interaction cross terms in Ref. [17]. Meanwhile, the
Rabi inhomogeneity effect is canceled because the rotation
direction changes when the sign of one frame in S1 and S2
is flipped, leading to forward and backward rotations that

compensate each other, in direct analogy to the chirality
sum rule in Ref. [17]. Because of this robust design, the
sequence performance is not very sensitive to a slight
miscalibration of the rotation angle, despite the sequence
involving as many as 100 pulses. Furthermore, by a similar
analysis, one can show that the final sequence is not only
robust to rotation angle errors common to both transitions
as discussed above, but it is also robust to rotation angle
errors on each individual transition (see Appendix B 5 for
details). Similar analogies to the qubit case also apply to
higher-order contributions.
With the preceding hierarchical construction, we arrive

at a set of promising decoupling pulse sequences, as
described in full detail in Appendix B 2. For applications
on other experimental platforms, the ordering of levels 1 to
3 in the hierarchy can be changed based on the relative
magnitude of disorder and interactions; the symmetriza-
tions in level 4 are optional based on the trade-off between
better decoupling performance versus shorter sequence
length, which is discussed in more detail in Appendix C 2.

V. QUTRIT DECOUPLING EXPERIMENT

We now test the performance of the robust qutrit
decoupling sequence proposed in Sec. IV in a high-density
ensemble of spin-1 NV centers in diamond [43,75],
resulting in the first demonstration of full decoupling of
qudit interactions. We isolate NVs with the same lattice
orientation with an external magnetic field aligned with
one group of NV centers. This magnetic field also breaks
the degeneracy between energy levels j � 1i, allowing us to
address the transitions j0i ↔ j þ 1i and j0i ↔ j − 1i
separately, using microwaves with frequencies 3.647 GHz
and 2.092 GHz, respectively. The density of NV centers
along each lattice orientation in our sample is about 4 ppm,
which corresponds to a typical interaction strength of
J ¼ 2π × 35 kHz. The strength of the on-site Sz disorder
and ðSzÞ2 disorder is about 2π × 4 MHz and 2π × 1 MHz,
respectively (Gaussian standard deviation). In the experi-
ment, we optically initialize the state of NVs to be in j0i,
apply microwave pulses to prepare various initial states,
then apply the decoupling sequence, and finally reverse the
preparation sequence before reading out the population in
state j0i via fluorescence differences (see Fig. 7 and
Ref. [43] for more details).
The measured decay of the signal under various decou-

pling sequences is plotted in Fig. 8(a). Sequences with
numerical labels are existing sequences from the literature,
while the ones with alphabetical labels are new sequences
we designed. Sequence 2 is the interaction decoupling
sequence in Ref. [22]. Its performance in our experiment is
not good because it does not decouple the disorder, which is
the dominant term in our system. To cancel the disorder, we
can use Seq. 1 from Ref. [66], which directly generalizes
the spin-1

2
spin-echo sequence to the spin-1 case. Similarly

to the spin-echo sequence, Seq. 1 only cancels disorder
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during the free evolution, but it is not robust to disorder
during pulses.
To improve the performance, we designed Seq. A, which

is an enhanced version of Seq. 1 that is highly robust to
disorder effects during pulses. This robust disorder decou-
pling sequence shows a significant timescale extension
compared to its nonrobust counterpart, Seq. 1, highlighting
the importance of robust sequence design. Furthermore,
since Seq. A does not cancel interactions, it serves as a
baseline for verifying interaction decoupling in further
sequences. To decouple both the disorder and interaction,
we designed Seq. B, which is the sequence shown in
Figs. 3(e) and 3(f). Although this sequence further decou-
ples the interaction, its performance in experiments is
worse than Seq. A because it has no robustness built in.
For a more detailed description of these sequences, see
Appendixes B 2 and B 3.
Most importantly, after integrating all robustness con-

siderations into the sequence design, we arrive at our
current best sequence, Seq. C, which we call DROID-
C3PO. This sequence decouples both disorder and inter-
actions, and is robust to disorder during pulses, rotation
angle errors, and dominant higher-order contributions. In
the experiment, this sequence shows significant improve-
ment over Seq. A, constituting the first demonstration of
full disorder and interaction decoupling in a qudit system,
and it achieves a tenfold improvement over the existing
sequences. In addition, we verify in Fig. 8(b) that the
decay timescales of all initial states are extended under
Seq. C, confirming that this sequence is a true decoupling
sequence that preserves an arbitrary quantum state. We
note that some of the other sequences plateau at higher
values in Fig. 8(a). This may originate from residual
disorder, which can project the spin population onto the
disorder axis and give rise to a long-lived signal.
However, this does not affect our conclusion because
the plateau values for other sequences are higher than
those for DROID-C3PO, which can only cause an
overestimation of those coherence times relative to
DROID-C3PO. The complete plot of Seq. C is shown

in Fig. 1(b), and its frame matrix representation is shown
in Fig. 14(a). The remaining decoherence under Seq. C is
discussed in Appendix C 1, and the possibility for adding
more observational windows in addition to integer num-
bers of Floquet periods is discussed in Appendix C 2.

(a)

(b)

FIG. 8. Decoupling experiment results. (a) Measured average
decay trace for different pulse sequences, where the average is
taken over all three coherent superposition initial states
j0i þ j − 1i= ffiffiffi

2
p

, j0i þ j þ 1i= ffiffiffi
2

p
, and j þ 1i þ j − 1i= ffiffiffi

2
p

.
Among the sequences, Seqs. 1 and 2 are existing sequences in
Refs. [22,66], respectively, while Seqs. A–C are new sequences
that we designed. The inset table shows whether or not a
sequence decouples disorder and interactions, and whether it
achieves robustness against disorder during pulses. For more
details on these sequences, see Appendixes B 2 and B 3. The
measurement is performed with a differential readout, where we
rotate the population in each of the three states j þ 1i, j0i, and
j − 1i to state j0i before doing the fluorescence measurement.
Denoting the measured fluorescence by Iþ, I0, and I−, respec-
tively, the signal on the vertical axis is defined as
S ¼ 3

2
ð2I0 − I− − Iþ=I0 þ I− þ IþÞ, which is proportional to

P0 − 1
3
, where P0 is the population in state j0i. The experimental

parameters are ðtπ=2 ¼ 8 ns; τ ¼ 25 nsÞ, where tπ=2 is the time
duration of each spin-1 π=2 pulse and τ is the time spent in each
frame. (b) Decay curve of different initial states for our best
decoupling sequence DROID-C3PO (Seq. C), showing that the
sequence preserves an arbitrary initial quantum state.

FIG. 7. Decoupling experiment. In the experiment, we first
initialize the NVs to state j0i by shining a 532-nm green laser on
our sample. We then apply the initialization microwave pulse Û
to prepare the initial state whose decay curve we want to measure.
Next, the decoupling pulse sequence is applied, and finally, the
preparation pulse is reversed before measuring the population in
state j0i.
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VI. MANY-BODY PHYSICS:
QUANTUM MANY-BODY SCARS

The same techniques developed above can also be
used to engineer a rich family of interesting many-body
Hamiltonians, which enables new phenomena not acces-
sible in spin-1

2
systems. As a specific example, we will

discuss the engineering of a Hamiltonian that supports
quantum many-body scars—exotic nonthermalizing eigen-
states embedded in an otherwise thermal spectra, which
constitute a new class of thermalization phenomena in
between thermalizing systems and many-body localized
systems [32,76–84].
A recent paper [32] proposed that the bipartite spin-1 XY

model naturally realizes quantum many-body scars.
Specifically, the model contains two groups of spin-1
particles with no intragroup interactions but with intergroup
XX þ YY interactions. The Hamiltonian for this model is
given by

H ¼
X

i∈A;j∈B

Jij
�
Sxi S

x
j þ Syi S

y
j

�þ h
X
i∈A;B

Szi ; ð11Þ

where spins i and j reside in different groups A and B in the
first term, and h is an external magnetic field coupled to Sz.
In this particular example, the scar subspace is formed

by acting with raising operators, which act only on the
j þ 1i; j − 1i subspace. More concretely, for the bipartite
spin-1 XY model we are considering, we can define the
SUð2Þ algebra operators:

J� ¼ 1

2

X
i

aiðS�i Þ2; Jz ¼ 1

2

X
i

Szi ; ð12Þ

where ai ¼ 1= − 1 for spins in group A=B, and S�i ; S
z
i

are spin-1 raising, lowering, and Sz operators. With this
notation, the eigenstates

jSni ∝ ðJþÞnj − 1iN ð13Þ

form the nonthermalizing scar manifold according to
Ref. [32], where j − 1iN is the state with all spins fully
polarized into j − 1i and N is the total number of spins in
the two groups. At the same time, the Hamiltonian itself
does not commute with the subspace SUð2Þ generator J�,
indicating that it is not integrable. Indeed, one can verify
that this Hamiltonian has a thermal spectrum [32], where
generic initial states thermalize. Thus, the spin-1 XY model
constitutes a quantum many-body scar.
Using our techniques, the bipartite spin-1 XY model

discussed above can be engineered from the native dipole-
dipole interaction in high-density NV-center samples. Here,
the two groups in the model can be realized as NV centers
along two lattice orientations, where the transition frequen-
cies of the two groups are spectrally resolved and the two

groups can be controlled independently. The intragroup
interaction can be canceled by applying the robust inter-
action decoupling sequence in each group as discussed
above. To engineer the intergroup XY interaction, notice
that the two groups of NV centers along different lattice
orientations are not on resonance with each other when an
external magnetic field is applied. Therefore, the interaction
between NVs residing in different groups is an Ising
interaction Sz ⊗ Sz. Thus, a simple way to engineer the
intergroup XY Hamiltonian is to repeat the basic sequence
twice and, in the second iteration, flip the signs of the frame
pairs f�Sz;�Sx

0
;�Sy

0
;�Sz

0 g on the second group of NVs
while leaving the signs of the frame pairs f�Sx;�Syg
unchanged (see Fig. 9). In this way, the −SzSz;−Sx0Sx0 ;
−Sy0Sy0 ;−Sz0Sz0 interactions in the second iteration cancel
with theþSzSz;þSx

0
Sx

0
;þSy

0
Sy

0
;þSz

0
Sz

0
interactions in the

first iteration, while the þSxSx;þSySy interactions in both
iterations add up and give the desired XY Hamiltonian. A
frame representation of the pulse sequence that engineers
the scar Hamiltonian is shown in Fig. 9.
We simulate the dynamics of various initial states under

this pulse sequence. The simulated initial states include
½ðjþ1i þ j−1iÞ= ffiffiffi

2
p

; ðjþ1i − j−1iÞ= ffiffiffi
2

p �, ½jþ1i; jþ1i�,
½ðjþ1i þ j−1iÞ= ffiffiffi

2
p

; ðjþ1i þ j−1iÞ= ffiffiffi
2

p �, ½jþ1i; j−1i�,
½j0i; j0i�, where the first state in the brackets represents
the initial state of the first group of spins and the second
state in the brackets represents the initial state of the second
group of spins. Based on the geometric intuition discussed
in Appendix B 6 (which states that the scar subspace jSni is
the maximal spin subspace after rotating the second group
of spins by π around the z axis), the first two states live in

FIG. 9. Sequence engineering the scar Hamiltonian. The
whole sequence to engineer the scar Hamiltonian H ¼P

i∈A;j∈B JijðSxi Sxj þ Syi S
y
jÞ is plotted. Note that all intragroup

interactions are decoupled by applying a decoupling sequence on
each group individually and that, because of the sign flip in the
second half of the sequence for group 2, all intergroup inter-
actions are canceled (see blue boxes) except the SxSx and SySy

terms, which add up (see red boxes) and give the desired bipartite
spin-1 XY model.
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the scar subspace and therefore are not expected to
thermalize, while the last three states do not live in the
scar subspace and are expected to thermalize. The simu-
lated dynamics of these initial states is plotted in Fig. 10. In
the plot, we see that the initial states living in the scar
subspace do not thermalize (their signal either stays large or
has persistent oscillations), while the signals for other
initial states quickly decay away. These results show that
exotic quantum many-body scar states can be observed
even in highly disordered, natural systems such as ran-
domly positioned ensembles of NVs, in contrast to the
more regular, clean systems in which they have been
observed to date [76–78].

VII. ENHANCED QUANTUM SENSING WITH
QUDIT HAMILTONIAN ENGINEERING

In addition to a rich landscape of many-body
Hamiltonians, higher spin systems also give rise to inter-
esting opportunities in quantum sensing. First, the higher
spin implies a larger effective dipolar moment, which can
lead to a linear or quadratic enhancement in magnetic field
sensitivity, depending on the nature of the signal [85].
A well-known example of this for noninteracting spins is
the use of double-quantum magnetometry for nitrogen-
vacancy centers [38–40,86], and interacting spin systems
present further challenges and opportunities for sensing
sequence design [75,87]. Second, the larger Hamiltonian
design space may also enable full time reversal of the

interaction Hamiltonian, useful for entanglement-enhanced
sensing [41,88], which may not otherwise be accessible
with a subset of levels [43]. For example, the spin-1 dipolar
interaction Hamiltonian projected onto j0i and j þ 1i has a
nonzero trace when expressed in the Pauli basis, resulting
in a Heisenberg interaction component that cannot be
reversed through global drives; however, the full spin-1
dipolar interaction can nevertheless be fully canceled. In
this section, we provide a systematic understanding of how
to evaluate the sensitivity for a given sensing sequence,
which is determined by the difference between the largest
and smallest eigenvalues of the transformed toggling frame
operator; in addition, we provide simple examples to
illustrate this. We leave the systematic design of sensing-
oriented pulse sequences for higher spin systems to
future work.
In order to perform quantum sensing, we add to the

Hamiltonian a term corresponding to the target sensing
field:

H ¼ Hdis þHint þHsense: ð14Þ

We focus on the case of sensing time-dependent magnetic
fields, where HsenseðtÞ ¼

P
i BðtÞSzi , although the same

techniques can be readily adapted to electric field or strain
sensing, among others. Note that the rotating wave
approximation implies that Hsense will be diagonal, regard-
less of the type of target sensing field, and can thus be
written as a polynomial in Szi .
Under the Hamiltonian engineering transformations, the

sensing Hamiltonian will be transformed accordingly, and
the effective average Hamiltonian contribution becomes

H̄sense ¼
1

T

Z
T

0

dtBðtÞS̃zi ðtÞ: ð15Þ

This can be readily evaluated based on the instantaneous
toggling frame transformations S̃zðtÞ.
The sensitivity to an external magnetic field is generally

characterized by the quantum Fisher information (QFI)
[3,89]. In our case, since the sensing field only involves
single-body operators, we can directly read off the optimal
initial state and measurement axis that maximizes the QFI;
we simply prepare an equal superposition between the
eigenstates of H̄sense with the largest and smallest eigen-
values, and perform a Ramsey experiment within this two-
level subspace. This method maximizes the amount of
phase accumulation under a weak perturbation, achieving
the best possible magnetic field sensitivity for a given pulse
sequence.
Let us illustrate this case with a few concrete examples.

First, consider the case of quantum sensing with interacting
spin-1

2
ensembles. As described in Refs. [20,75], the

conditions for interaction decoupling transform the original
target sensing field BSz into an effective sensing field

FIG. 10. Numerical simulation of the scar dynamics under the
sequence in Fig. 9. We simulate the dynamics of various initial
states under the sequence that engineers the scar Hamiltonian
[Eq. (11)]. The experiment we simulated is the same type of
experiment (i.e., initialize, evolve, readout) as in Fig. 7. The
simulation parameters are (Δ¼0, J¼2π×35 kHz, h¼
2π×25 kHz, tπ=2 ¼ 5 ns, τ ¼ 20 ns, N1 ¼ N2 ¼ 4), where Δ
is the disorder strength, tπ=2 is the time duration of each π=2
pulse, τ is the free evolution time spent in each frame, and N1, N2

are the number of spins in the two groups.
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BðSx þ Sy þ SzÞ= ffiffiffi
3

p
. The largest and smallest eigenvec-

tors are spin states aligned and anti-aligned with the sensing
field direction, and the optimal initial state will be a spin
state prepared in the plane orthogonal to the sensing field.
Thus, the precession around the sensing field is maximized,
as illustrated in Fig. 11(d), consistent with the results
of Ref. [75].
We can also use the same technique to calculate the

sensitivity of existing pulse sequences in the literature to a
dc magnetic field. For simplicity, we assume ideal, infi-
nitely fast pulses and consider the average Hamiltonian
contribution from a dc magnetic field for both spin-1 pulse
sequences considered in Refs. [22,54], as well as the
famous spin-1

2
WAHUHA sequence in Ref. [20]. The

average Hamiltonian H̄sense and its eigenvalues λ are
summarized in Table I, where we see a larger eigenvalue
difference Δλ for the two spin-1 sequences compared to the

spin-1
2
sequence, indicating a higher-spin-enhanced sensi-

tivity. We also find that, contrary to the suggestion in
Ref. [54] that HoRD-qutrit-8 is better for sensing, the
sequence CYL-6 in Ref. [22] has a larger eigenvalue
difference, implying a higher sensitivity when preparing
the optimal initial state. This finding highlights the impor-
tance of evaluating sensitivity using our approach of
examining eigenvalue differences.
The two example sequences (CYL-6 and HoRD-qutrit-8)

are likely not optimal sensing sequences, but the physical
picture we discussed here provides a convenient method
to incorporate quantum sensing into the sequence design
procedure. We can follow the same procedure as described
in the preceding sections but add in maximizing metro-
logical sensitivity as an additional design criteria in
choosing the ordering of toggling frames. We leave the
detailed design of such sequences to future work.

VIII. CONCLUSIONS

In this work, we introduced a graph-based framework
for the design of robust Hamiltonian engineering sequen-
ces in qudit systems and used this to experimentally
demonstrate the first full decoupling of qudit interactions.
In particular, our experiments demonstrate that our robust
qutrit disorder and interaction decoupling sequence
DROID-C3PO results in a tenfold improvement in coher-
ence time over existing sequences, highlighting the power
of our design framework. This framework only requires
tracking the transformation of the Sz operator under
pulses (i.e., frames), significantly reducing the sequence
search space compared to prior approaches. Furthermore,
by keeping track of all experimentally implementable
connections between frames, we reduced the sequence
construction into a simple graph traversal problem,
avoiding the complicated, unstructured algebraic simpli-
fications in prior approaches. Finally, we showed how
pulses that transform Sz along geodesics lead to the
natural and elegant incorporation of robustness consid-
erations into our framework.
Our work also opens up new opportunities for future

studies. For quantum many-body physics, higher spins
enable new classes of Hamiltonians and phenomena, includ-
ing quantum many-body scars [32–34], new spin-exchange
channels [36,37], lattice gauge theories [16,90–97], and
SUðNÞ magnetism [50,51]. With larger Hilbert space
dimensions, it also becomes possible to detect the Berry
phase on a subsystem by using the additional levels as a
phase reference. This opportunity may enable the study of
interesting topological phenomena in Floquet engineered
systems [98]. In quantum metrology, the larger spin trans-
lates to a larger dipole moment for enhanced sensing
[38–40], and in our experimental platform of interacting
NV ensembles, using the full spin-1 degree of freedom
allows time-reversal operations that are not readily
accessible with two levels [22], which are crucial for

(a) (b) (c) (d)(c) (d)

FIG. 11. Sensing with higher spin. (a) Sensing with spin-1
2

particles involves preparing spins in an equal superposition of
the two basis states. Preparing the same initial state in a spin-1
system (b) yields a worse sensitivity than preparing a superposition
of maximal and minimal eigenvalues in the spin-1 system (c). The
number of arrows in (a–c) represents the phase accumulation
speed. (d) Preparing the initial state to be an equal superposition of
the largest and smallest eigenvalues maximizes precession. For the
spin-1

2
case, this result is achieved by preparing an initial state that

is perpendicular to the effective field, as shown by the red circle.

TABLE I. H̄sense and λ for three sensing sequences. We see a
larger Δλ for the two spin-1 sequences compared to the spin-1

2

sequence, indicating a higher-spin-enhanced sensitivity. By
further comparing the two spin-1 sequences, we see that their
eigenvalue differences Δλ are not the same, and CYL-6 has a
larger eigenvalue difference despite having smaller diagonal
matrix elements.

Sequence name H̄sense λ Δλ

WAHUHA [20]
�

1
6

1−i
6

1þi
6

− 1
6

�
−0.289

0.5770.289

CYL-6 [22]
0
B@

1
6

ffiffi
2

p
i

6
− i

6

−
ffiffi
2

p
i

6
0 −

ffiffi
2

p
6

i
6

−
ffiffi
2

p
6

− 1
6

1
CA

−0.333

0.789−0.122
0.455

HoRD-qutrit-8 [54]
0
@

1
3

0 0

0 0 0

0 0 − 1
3

1
A −0.333

0.6670
0.333
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entanglement-enhanced metrology [41,42] and measure-
ments of out-of-time-ordered correlators (OTOCs) [99]. In
quantum computation, where the use of qudits may have
some advantages over qubits in gate complexity [100–103],
our decoupling sequence can be applied to preserve quantum
information for longer timescales [104] and allow for more
quantum operations within the coherence time. Finally, as a
generic framework, our method can be used to design
practical decoupling or Hamiltonian engineering sequences
for a wide range of experimental platforms, even if they have
different dominant decoherence channels or spin greater
than 1. These results may have wide-ranging implications
for a number of different experimental systems beyond
NV centers, including quadrupolar NMR [44–46], cold

molecules [47,48], and nuclear spins or hyperfine states
in trapped atoms [49–53].
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APPENDIX A: DEFINITIONS AND PROOFS

1. Convention for Gell-Mann matrices

For qutrit Hamiltonians, we adopt the following convention for the Gell-Mann basis, where the basis elements are
defined as

λ1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ2 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; λ4 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

λ5 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; λ6 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA; λ7 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; λ8 ¼

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA;

λ0 ¼
ffiffiffi
2

3

r 0
B@

1 0 0

0 1 0

0 0 1

1
CA: ðA1Þ

2. Constraints on frame matrices

Generically, we can decompose the transformed S̃z

operator in the generalized Gell-Mann basis fλμg as

S̃zk ¼ U†
k−1S

zUk−1 ¼
P

μ Fμ;kλμ.
The frame matrices Fμ;k are required to satisfy certain

constraints due to the frame transformation U†SzU being
unitary. For example, for qubit systems, we require

F2
x;k þ F2

y;k þ F2
z;k ¼ 1 ðA2Þ

for all k.
For qudit systems, the constraint is that a unitary

conjugation leaves the eigenvalues unchanged, such that
U†

k−1S
zUk−1 ¼

P
μ Fμ;kλμ should have the same set of

eigenvalues as Sz. As an example, for qutrit systems, the
following requirements are imposed,

F2
1 þ F2

2 þ F2
3 þ F2

4 þ F2
5 þ F2

6 þ F2
7 þ F2

8 ¼ 1; ðA3Þ

2F3
8

3
ffiffiffi
3

p −
2F2

1F8ffiffiffi
3

p −
2F2

2F8ffiffiffi
3

p −
2F2

3F8ffiffiffi
3

p þ F2
4F8ffiffiffi
3

p þ F2
5F8ffiffiffi
3

p

þ F2
6F8ffiffiffi
3

p þ F2
7F8ffiffiffi
3

p − F3F2
4 − F3F2

5 þ F3F2
6 þ F3F2

7

− 2F1F4F6 − 2F2F5F6 þ 2F2F4F7 − 2F1F5F7 ¼ 0;

ðA4Þ
where we have dropped the k index for simplicity.

3. Proof of Theorem III.1

We can rewrite the condition U†
1S

zU1 ¼ U†
2S

zU2 as
½U1U

†
2; S

z� ¼ 0, which implies that Sz and U1U
†
2 are

simultaneously diagonalizable. Since Sz has nondegenerate
eigenvalues, this implies that the matrix U1U

†
2 must also be

diagonal. Moreover, the unitarity of U1 and U2 implies that
U1U

†
2 is also unitary. Combined, these imply thatU1U

†
2 is a

composition of rotations around the ẑ axis of individual
transitions.
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On the other hand, by definition, H is a qudit
Hamiltonian satisfying the secular approximation on each
transition; i.e., for any spin rotation Uz formed by the
composition of rotations around the ẑ axis of individual
transitions, we have

ðU†
zÞ⊗nHU⊗n

z ¼ H: ðA5Þ

Since U1U
†
2 belongs to the type of rotation Uz, we have

ðU2U
†
1Þ⊗nHðU1U

†
2Þ⊗n ¼ H; ðA6Þ

which implies

ðU†
1Þ⊗nHU⊗n

1 ¼ ðU†
2Þ⊗nHU⊗n

2 : ðA7Þ

4. Proof of polynomial representation of Hamiltonian

In the case of spin-1
2
particles with two-body interactions,

we have shown that the transformed Hamiltonian is a
second-order polynomial in the coefficients of the Pauli
decomposition of U†SzU. In the more general case, we can
generalize this idea as follows:
Theorem A.1. For a spin-ðd − 1=2Þ (where d is the

dimension of the local Hilbert space) secular Hamiltonian
consisting of at most k-body terms, if the Sz operator is
transformed as U†SzU ¼ P

μ aμλμ, then the transformed
Hamiltonian can be written as an order-kðd − 1Þ polyno-
mial in aμ.
Proof. First, we note that if the transformation of the Sz

operator is specified, then so are the transformations of all
powers of Sz since U†ðSzÞmU ¼ ðU†SzUÞm. In addition,
linear combinations of the zeroth to (d − 1)th powers of the
spin-ðd − 1=2Þ operator Sz generate all diagonal matrices
of dimension d. To generate off-diagonal matrices, we can
make use of the spin-ðd − 1=2ÞSx operator and its powers:
The product of diagonal matrices and Sx generates all
matrices containing only elements on the 1-diagonal (i.e.,
the diagonal that is 1 element offset from the main
diagonal), the product of diagonal matrices and ðSxÞ2
generates all matrices containing only elements on the
2-diagonal, and so on.
Therefore, if we write the transformed spin operators

as S̃z ¼ U†SzU ¼ P
μ aμλμ and S̃x ¼ U†SxU ¼ P

μ bμλμ,
then any other spin operator can be expressed asP

α fαðaμ; bμÞλα, with fαðaμ; bμÞ being a multivariate
polynomial in aμ, bμ that is at most order (d − 1) in each
aμ. The Hamiltonian, consisting of at most k-body terms,
can in turn be written as a polynomial,

H̃ ¼
X
α1���αk

gα1���αkðaμ; bμÞλα1 ⊗ � � � ⊗ λαk ; ðA8Þ

where gα1���αkðaμ; bμÞ is a multivariate polynomial in aμ, bμ
that is at most order kðd − 1Þ in each aμ.

At this point, our expression of the Hamiltonian still
depends on both aμ and bμ. However, based on Theorem 3.1,
we know that this can be simplified into a form that only
contains aμ. The constraints that can be used to perform this
simplification are the preservation of eigenvalues (and thus
the characteristic polynomial) under unitary transformations,
e.g., jλI −P

μ aμλμj ¼ jλI − Szj. This result will give rise to
polynomial constraint equations within aμ values as well
as between aμ and bμ. Crucially, the imposition of these
equations to simplify gα1���αkðaμ; bμÞ can only lead to a
reduction of the order of the polynomial in aμ. Therefore, we
see that the final expression for the Hamiltonian in terms of
aμ will be a polynomial of order at most kðd − 1Þ. ▪
Explicit expressions for the polynomial can be elegantly

obtained using representation theory of Lie groups, as
described in more detail in an accompanying paper,
Ref. [72]. For completeness, the explicit expression for
the qutrit dipolar interaction is documented in Appendix A 6.

5. Proof of Theorem III.2

According to Appendix A 3, two unitaries U1 and U2

leading to the same frame S̃z ¼ U†
1S

zU1 ¼ U†
2S

zU2 must
satisfy U1 ¼ UphaseU2. Plugging this requirement into the
expression of S̃znew, we obtain

S̃znew ¼ U†
1U

†
PS

zUPU1

¼ U†
2U

†
phaseU

†
PS

zUPUphaseU2

¼ U†
2ðU†

phaseU
†
PUphaseÞðU†

phaseS
zUphaseÞ

× ðU†
phaseUPUphaseÞU2

¼ U†
2ðU†

phaseU
†
PUphaseÞSzðU†

phaseUPUphaseÞU2

¼ U†
2U

†
P0SzUP0U2; ðA9Þ

where UP0 ¼ U†
phaseUPUphase is the phase conjugation of

the original pulse UP.
Since the pulse unitaries UP and UP0 are related by a

phase conjugation, the underlying Hamiltonians that realize
these unitaries are also related by the same phase con-
jugation. The effect of phase conjugation on a Hamiltonian
is simply changing the phases of off-diagonal elements.
As a concrete example, for a spin-1 system, a generic
rotation generator matrix is transformed by a phase
operator Uphase ¼ diagfeiθ1 ; e−iθ1−iθ2 ; eiθ2g as

U†
phase

0
B@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CAUphase

¼

0
B@

a11 a12e−ið2θ1þθ2Þ a13eiðθ2−θ1Þ

a21eið2θ1þθ2Þ a22 a23eiðθ1þ2θ2Þ

a31eiðθ1−θ2Þ a32e−iðθ1þ2θ2Þ a33

1
CA: ðA10Þ
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As one can see, the only effect is to change the phases of the drives applied on each transition, which does not change the
experimental implementability of the pulses because selection rules are not concerned with phases.

6. Explicit expression for transformed qutrit dipolar Hamiltonian

The qutrit dipolar Hamiltonian [Eq. (9)] can be transformed to
P

ij aijλi ⊗ λj, where λi is the Gell-Mann basis (see
Appendix A 1) and aij are coefficients that can be written as a fourth-order polynomial of the frame representation
S̃z ¼ P

i aiλi according to Appendix A 4. The explicit expressions for aij are

a11 ¼
4a48
3

þ 4

3
a22a

2
8 þ

4

3
a23a

2
8 þ

4

3
a24a

2
8 þ

4

3
a25a

2
8 þ

4

3
a26a

2
8 þ

4

3
a27a

2
8 −

4a1a4a6a8ffiffiffi
3

p −
4a1a5a7a8ffiffiffi

3
p

þ a22 þ a23 þ
5a24
4

þ 5a25
4

− a24a
2
6 þ

5a26
4

− a25a
2
7 þ

5a27
4

− 2a4a5a6a7 − 1;

a12 ¼ a6a7a24 − a5a26a4 þ a5a27a4 −
2a2a6a8a4ffiffiffi

3
p þ 2a1a7a8a4ffiffiffi

3
p −

4

3
a1a2a28 − a1a2 − a25a6a7 −

2a1a5a6a8ffiffiffi
3

p −
2a2a5a7a8ffiffiffi

3
p ;

a13 ¼ −
1

2
a6a34 −

1

2
a5a7a24 −

a1a8a24ffiffiffi
3

p þ 1

2
a36a4 þ

1

2
a6a27a4 −

1

2
a25a6a4 −

2a3a6a8a4ffiffiffi
3

p þ 1

2
a5a37

−
4

3
a1a3a28 − a1a3 −

1

2
a35a7 þ

1

2
a5a26a7 −

a1a25a8ffiffiffi
3

p þ a1a26a8ffiffiffi
3

p þ a1a27a8ffiffiffi
3

p −
2a3a5a7a8ffiffiffi

3
p ;

a14 ¼ −a3a36 −
a8a36ffiffiffi

3
p þ a1a4a26 þ 2a2a5a26 −

2a38a6
3

ffiffiffi
3

p þ a3a25a6 − a3a27a6 þ
a3a6
4

− a2a4a7a6 þ a1a5a7a6 þ
2a22a8a6ffiffiffi

3
p

þ 2a23a8a6ffiffiffi
3

p −
a25a8a6ffiffiffi

3
p −

a27a8a6ffiffiffi
3

p þ a8a6
4

ffiffiffi
3

p þ a2a5a27 þ
2

3
a1a4a28 −

5a1a4
4

−
a2a5
4

− a3a4a5a7 −
2a1a3a4a8ffiffiffi

3
p

þ 2a1a2a7a8ffiffiffi
3

p þ a4a5a7a8ffiffiffi
3

p ;

a15 ¼
2a8a37ffiffiffi

3
p − a1a5a27 þ

2a38a7ffiffiffi
3

p − a3a25a7 þ
a3a7
4

− a1a4a6a7 − a2a5a6a7 þ
2a22a8a7ffiffiffi

3
p þ 2a23a8a7ffiffiffi

3
p þ 2a24a8a7ffiffiffi

3
p þ

ffiffiffi
3

p
a25a8a7

þ 2a26a8a7ffiffiffi
3

p −
7a8a7
4

ffiffiffi
3

p − a2a4a26 þ
2

3
a1a5a28 þ

a2a4
4

−
5a1a5
4

− a3a4a5a6 −
2a1a3a5a8ffiffiffi

3
p −

2a1a2a6a8ffiffiffi
3

p þ a4a5a6a8ffiffiffi
3

p ;

a16 ¼
2a8a34ffiffiffi

3
p − a1a6a24 þ

2a38a4ffiffiffi
3

p þ a3a26a4 −
a3a4
4

− a2a5a6a4 − a1a5a7a4 þ
2a22a8a4ffiffiffi

3
p þ 2a23a8a4ffiffiffi

3
p þ 2a25a8a4ffiffiffi

3
p þ

ffiffiffi
3

p
a26a8a4

þ 2a27a8a4ffiffiffi
3

p −
7a8a4
4

ffiffiffi
3

p þ 2

3
a1a6a28 −

5a1a6
4

− a2a25a7 þ
a2a7
4

þ a3a5a6a7 −
2a1a2a5a8ffiffiffi

3
p þ 2a1a3a6a8ffiffiffi

3
p þ a5a6a7a8ffiffiffi

3
p ;

a17 ¼
2a8a35ffiffiffi

3
p − a1a7a25 þ

2a38a5ffiffiffi
3

p þ a3a27a5 −
a3a5
4

− a1a4a6a5 þ a2a4a7a5 þ
2a22a8a5ffiffiffi

3
p þ 2a23a8a5ffiffiffi

3
p þ 2a24a8a5ffiffiffi

3
p þ 2a26a8a5ffiffiffi

3
p

þ
ffiffiffi
3

p
a27a8a5 −

7a8a5
4

ffiffiffi
3

p þ 2

3
a1a7a28 þ a2a24a6 −

a2a6
4

−
5a1a7
4

þ a3a4a6a7 þ
2a1a2a4a8ffiffiffi

3
p þ 2a1a3a7a8ffiffiffi

3
p þ a4a6a7a8ffiffiffi

3
p ;

a18 ¼
1

2

ffiffiffi
3

p
a6a34 þ

1

2

ffiffiffi
3

p
a5a7a24 þ a1a8a24 þ

1

2

ffiffiffi
3

p
a36a4 þ

1

2

ffiffiffi
3

p
a6a27a4 þ

2a6a28a4ffiffiffi
3

p þ 1

2

ffiffiffi
3

p
a25a6a4 −

1

2

ffiffiffi
3

p
a6a4 þ

1

2

ffiffiffi
3

p
a5a37

þ 4

3
a1a38 þ

2a5a7a28ffiffiffi
3

p þ 1

2

ffiffiffi
3

p
a35a7 þ

1

2

ffiffiffi
3

p
a5a26a7 −

1

2

ffiffiffi
3

p
a5a7 þ a1a25a8 þ a1a26a8 þ a1a27a8 − 2a1a8;

a22 ¼ −
4

3
a28a

2
2 − a22 −

4a5a6a8a2ffiffiffi
3

p þ 4a4a7a8a2ffiffiffi
3

p þ a24
4
þ a25

4
− a25a

2
6 þ

a26
4
− a24a

2
7 þ

a27
4
þ a28

3
þ 2a4a5a6a7;
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a23 ¼
1

2
a7a34−

1

2
a5a6a24−

a2a8a24ffiffiffi
3

p −
1

2
a37a4þ

1

2
a25a7a4 −

1

2
a26a7a4þ

2a3a7a8a4ffiffiffi
3

p þ 1

2
a5a36

þ 1

2
a5a6a27 −

4

3
a2a3a28−a2a3−

1

2
a35a6−

a2a25a8ffiffiffi
3

p þa2a26a8ffiffiffi
3

p þa2a27a8ffiffiffi
3

p −
2a3a5a6a8ffiffiffi

3
p ;

a24 ¼ a3a37þ
ffiffiffi
3

p
a8a37þa2a4a27− 2a1a5a27þ

8a38a7
3

ffiffiffi
3

p −a3a25a7þa3a26a7−
a3a7
4

−a1a4a6a7

−a2a5a6a7þ
2a22a8a7ffiffiffi

3
p þ 2a24a8a7ffiffiffi

3
p þ

ffiffiffi
3

p
a25a8a7þ

ffiffiffi
3

p
a26a8a7−

3

4

ffiffiffi
3

p
a8a7−a1a5a26

þ 2

3
a2a4a28 −

5a2a4
4

þa1a5
4

−a3a4a5a6−
2a2a3a4a8ffiffiffi

3
p −

2a1a2a6a8ffiffiffi
3

p þa4a5a6a8ffiffiffi
3

p ;

a25 ¼−
2a6a8a22ffiffiffi

3
p −a5a26a2þ

2

3
a5a28a2−

5a5a2
4

þa4a6a7a2 −
2a3a5a8a2ffiffiffi

3
p −

2a1a7a8a2ffiffiffi
3

p þa1a4a27

−
a1a4
4

−a3a25a6þ
a3a6
4

þa3a4a5a7−a1a5a6a7þ
a25a6a8ffiffiffi

3
p þa6a8

4
ffiffiffi
3

p −
a4a5a7a8ffiffiffi

3
p ;

a26 ¼−
2a5a8a22ffiffiffi

3
p þ 2

3
a6a28a2−a25a6a2−

5a6a2
4

þa4a5a7a2 −
2a1a4a8a2ffiffiffi

3
p þ 2a3a6a8a2ffiffiffi

3
p þa3a5a26

−
a3a5
4

−a1a4a5a6þa1a24a7 −
a1a7
4

−a3a4a6a7þ
a5a26a8ffiffiffi

3
p þa5a8

4
ffiffiffi
3

p −
a4a6a7a8ffiffiffi

3
p ;

a27 ¼
2a4a8a22ffiffiffi

3
p þ 2

3
a7a28a2þa4a5a6a2−a24a7a2 −

5a7a2
4

−
2a1a5a8a2ffiffiffi

3
p þ 2a3a7a8a2ffiffiffi

3
p −a3a4a27

þa3a4
4

−a1a25a6þ
a1a6
4

þa1a4a5a7þa3a5a6a7 −
a4a27a8ffiffiffi

3
p −

a4a8
4

ffiffiffi
3

p þa5a6a7a8ffiffiffi
3

p ;

a28 ¼−
1

2

ffiffiffi
3

p
a7a34þ

1

2

ffiffiffi
3

p
a5a6a24þa2a8a24−

1

2

ffiffiffi
3

p
a37a4 −

2a7a28a4ffiffiffi
3

p −
1

2

ffiffiffi
3

p
a25a7a4−

1

2

ffiffiffi
3

p
a26a7a4þ

1

2

ffiffiffi
3

p
a7a4þ

1

2

ffiffiffi
3

p
a5a36

þ 4

3
a2a38þ

1

2

ffiffiffi
3

p
a5a6a27þ

2a5a6a28ffiffiffi
3

p þ 1

2

ffiffiffi
3

p
a35a6−

1

2

ffiffiffi
3

p
a5a6þa2a25a8þa2a26a8þa2a27a8− 2a2a8;

a33 ¼−
a44
4
−
1

2
a25a

2
4þ

1

2
a26a

2
4þ

1

2
a27a

2
4− 2a28a

2
4þ

a24
4
þ 4a1a6a8a4ffiffiffi

3
p −

4a2a7a8a4ffiffiffi
3

p −
a45
4
−
a46
4
−
a47
4
−
16a48
9

−a23þ
a25
4

þ 1

2
a25a

2
6þ

a26
4
þ 1

2
a25a

2
7−

1

2
a26a

2
7þ

a27
4
−
4

3
a23a

2
8 −2a25a

2
8− 2a26a

2
8− 2a27a

2
8þ

5a28
3

þ 4a2a5a6a8ffiffiffi
3

p þ 4a1a5a7a8ffiffiffi
3

p ;

a34 ¼−
a8a34ffiffiffi

3
p þ 1

2
a1a6a24−

1

2
a2a7a24−

4a38a4
3

ffiffiffi
3

p þ 2

3
a3a28a4 −

5a3a4
4

þa2a5a6a4þa1a5a7a4

−
2a23a8a4ffiffiffi

3
p −

a25a8a4ffiffiffi
3

p −
2a26a8a4ffiffiffi

3
p −

2a27a8a4ffiffiffi
3

p þ 5a8a4
4

ffiffiffi
3

p þ 1

2
a1a36−

1

2
a2a37þ

1

2
a1a6a27

−
1

2
a1a25a6−

a1a6
4

þ 1

2
a2a25a7−

1

2
a2a26a7þ

a2a7
4

−
2a1a3a6a8ffiffiffi

3
p þ 2a2a3a7a8ffiffiffi

3
p ;

a35 ¼−
a8a35ffiffiffi

3
p þ 1

2
a2a6a25þ

1

2
a1a7a25−

4a38a5
3

ffiffiffi
3

p þ 2

3
a3a28a5−

5a3a5
4

þa1a4a6a5−a2a4a7a5

−
2a23a8a5ffiffiffi

3
p −

a24a8a5ffiffiffi
3

p −
2a26a8a5ffiffiffi

3
p −

2a27a8a5ffiffiffi
3

p þ 5a8a5
4

ffiffiffi
3

p þ 1

2
a2a36þ

1

2
a1a37þ

1

2
a2a6a27

−
1

2
a2a24a6−

a2a6
4

−
1

2
a1a24a7þ

1

2
a1a26a7 −

a1a7
4

−
2a2a3a6a8ffiffiffi

3
p −

2a1a3a7a8ffiffiffi
3

p ;
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a36 ¼−
1

2
a1a34−

1

2
a2a5a24þ

2a6a8a24ffiffiffi
3

p −
1

2
a1a25a4−

1

2
a1a26a4þ

1

2
a1a27a4þ

a1a4
4

þa2a6a7a4

−
2a1a3a8a4ffiffiffi

3
p −

1

2
a2a35þ

4a6a38
3

ffiffiffi
3

p −
1

2
a2a5a26þ

1

2
a2a5a27þ

2

3
a3a6a28þ

a2a5
4

−
5a3a6
4

−a1a5a6a7þ
a36a8ffiffiffi

3
p þa6a27a8ffiffiffi

3
p −

2a2a3a5a8ffiffiffi
3

p þ 2a23a6a8ffiffiffi
3

p þ 2a25a6a8ffiffiffi
3

p −
5a6a8
4

ffiffiffi
3

p ;

a37 ¼
1

2
a2a34−

1

2
a1a5a24þ

2a7a8a24ffiffiffi
3

p þ 1

2
a2a25a4−

1

2
a2a26a4þ

1

2
a2a27a4−

a2a4
4

−a1a6a7a4

þ 2a2a3a8a4ffiffiffi
3

p −
1

2
a1a35þ

4a7a38
3

ffiffiffi
3

p þ 1

2
a1a5a26 −

1

2
a1a5a27þ

2

3
a3a7a28þ

a1a5
4

−
5a3a7
4

−a2a5a6a7þ
a37a8ffiffiffi

3
p −

2a1a3a5a8ffiffiffi
3

p þ 2a23a7a8ffiffiffi
3

p þ 2a25a7a8ffiffiffi
3

p þa26a7a8ffiffiffi
3

p −
5a7a8
4

ffiffiffi
3

p ;

a38 ¼
1

4

ffiffiffi
3

p
a44þ

1

2

ffiffiffi
3

p
a25a

2
4þ

4a28a
2
4ffiffiffi

3
p −

1

4

ffiffiffi
3

p
a24 −2a1a6a8a4þ 2a2a7a8a4þ

1

4

ffiffiffi
3

p
a45−

1

4

ffiffiffi
3

p
a46

−
1

4

ffiffiffi
3

p
a47þ

8a48
3

ffiffiffi
3

p þ 4

3
a3a38 −

1

4

ffiffiffi
3

p
a25þ

1

4

ffiffiffi
3

p
a26−

1

2

ffiffiffi
3

p
a26a

2
7þ

1

4

ffiffiffi
3

p
a27þ

4a25a
2
8ffiffiffi

3
p

þ 2a26a
2
8ffiffiffi

3
p þ 2a27a

2
8ffiffiffi

3
p −

2a28ffiffiffi
3

p þ 2a3a26a8þ 2a3a27a8− 2a3a8− 2a2a5a6a8 − 2a1a5a7a8;

a44 ¼ a46þa22a
2
6þa24a

2
6þa25a

2
6þa27a

2
6 −

4a3a8a26ffiffiffi
3

p −a26þ 2a2a3a5a6þ 2a1a2a7a6þ
4a1a4a8a6ffiffiffi

3
p

þ 2a2a5a8a6ffiffiffi
3

p −
8a48
9

−
8a3a38
3

ffiffiffi
3

p −
5a24
4

þa23a
2
5−

a25
4
−a22a

2
7−a23a

2
7−

4

3
a24a

2
8−a25a

2
8−a27a

2
8

þa28
2
þ 2a1a3a5a7−

2a3a25a8ffiffiffi
3

p −
4a3a27a8ffiffiffi

3
p þ 1

2

ffiffiffi
3

p
a3a8−

4a2a4a7a8ffiffiffi
3

p þ 2a1a5a7a8ffiffiffi
3

p þ 1

4
;

a45 ¼ a7a36−a1a2a26þa37a6þa7a28a6−a2a3a4a6−a1a3a5a6þ 2a22a7a6þa23a7a6þa24a7a6þa25a7a6 −a7a6þ
a2a4a8a6ffiffiffi

3
p

þa1a5a8a6ffiffiffi
3

p þa1a2a27 −
1

3
a4a5a28−a23a4a5 −a4a5−a1a3a4a7þa2a3a5a7þ

2a3a4a5a8ffiffiffi
3

p þa1a4a7a8ffiffiffi
3

p −
a2a5a7a8ffiffiffi

3
p ;

a46 ¼−a6a34 − 2a5a7a24−
2a1a8a24ffiffiffi

3
p −a36a4−a6a27a4 −

4

3
a6a28a4−a2a3a5a4−a22a6a4 −a25a6a4−

a6a4
4

−a1a2a7a4

þa2a5a8a4ffiffiffi
3

p − 2a5a37−
8a1a38
3

ffiffiffi
3

p þa1a3a25−a1a3a27 − 2a5a7a28þa1a2a5a6− 2a35a7− 2a5a26a7−a22a5a7

−2a23a5a7þ
7a5a7
4

−a2a3a6a7−
ffiffiffi
3

p
a1a25a8−

2a1a26a8ffiffiffi
3

p −
ffiffiffi
3

p
a1a27a8þ

1

2

ffiffiffi
3

p
a1a8−

a2a6a7a8ffiffiffi
3

p ;

a47 ¼ a6a35−a2a3a25þ
ffiffiffi
3

p
a2a8a25þa36a5þa6a27a5þa6a28a5−a1a3a4a5−a22a6a5þa23a6a5þa24a6a5

−
3a6a5
4

−a1a2a7a5þ
a1a4a8a5ffiffiffi

3
p þ 8a2a38

3
ffiffiffi
3

p þa2a3a26 −
1

3
a4a7a28−a1a2a4a6þa22a4a7þa23a4a7

−
5a4a7
4

þa1a3a6a7þ
2a2a24a8ffiffiffi

3
p þ

ffiffiffi
3

p
a2a26a8þ

2a2a27a8ffiffiffi
3

p −
1

2

ffiffiffi
3

p
a2a8þ

a1a6a7a8ffiffiffi
3

p ;
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a48 ¼ a8a34−
1

2

ffiffiffi
3

p
a1a6a24þ

1

2

ffiffiffi
3

p
a2a7a24þ

2

3
a38a4þ

ffiffiffi
3

p
a3a26a4þ

ffiffiffi
3

p
a3a27a4þ

2a3a28a4ffiffiffi
3

p −
1

4

ffiffiffi
3

p
a3a4−

ffiffiffi
3

p
a2a5a6a4

−
ffiffiffi
3

p
a1a5a7a4þa25a8a4þa26a8a4þa27a8a4−

7a8a4
4

þ 1

2

ffiffiffi
3

p
a1a36−

1

2

ffiffiffi
3

p
a2a37þ

1

2

ffiffiffi
3

p
a1a6a27þ

2a1a6a28ffiffiffi
3

p

−
2a2a7a28ffiffiffi

3
p þ 1

2

ffiffiffi
3

p
a1a25a6 −

1

4

ffiffiffi
3

p
a1a6−

1

2

ffiffiffi
3

p
a2a25a7−

1

2

ffiffiffi
3

p
a2a26a7þ

1

4

ffiffiffi
3

p
a2a7;

a55 ¼ a47þa22a
2
7þa23a

2
7þa24a

2
7þa25a

2
7þa26a

2
7þa28a

2
7−a27 −2a1a3a5a7− 2a1a2a6a7þ

2a1a5a8a7ffiffiffi
3

p −
a24
4

−a23a
2
5−

5a25
4

−a22a
2
6−

1

3
a25a

2
8−

a28
6
− 2a2a3a5a6þ

2a3a25a8ffiffiffi
3

p −
a3a8
2

ffiffiffi
3

p þ 2a2a5a6a8ffiffiffi
3

p þ 1

4
;

a56 ¼ a7a34þa37a4þa7a28a4−a1a3a5a4 −a1a2a6a4þa22a7a4þa23a7a4þa25a7a4þa26a7a4 −
3a7a4
4

þa1a5a8a4ffiffiffi
3

p −a2a3a25

þa2a3a26−
1

3
a5a6a28 −a22a5a6þa23a5a6−

5a5a6
4

−a1a2a5a7þa1a3a6a7þ
a2a25a8ffiffiffi

3
p þa2a26a8ffiffiffi

3
p −

a2a8
2

ffiffiffi
3

p þa1a6a7a8ffiffiffi
3

p ;

a57 ¼ a7a35−a1a3a25þ
a1a8a25ffiffiffi

3
p þa37a5þ

2

3
a7a28a5þa2a3a4a5−a1a2a6a5þa22a7a5þ 2a23a7a5þa24a7a5þa26a7a5

−
9a7a5
4

−
a2a4a8a5ffiffiffi

3
p þa1a3a27þa22a4a6−

a4a6
4

þa1a2a4a7þa2a3a6a7þ
a1a27a8ffiffiffi

3
p −

a1a8
2

ffiffiffi
3

p þa2a6a7a8ffiffiffi
3

p ;

a58 ¼ a8a35−
1

2

ffiffiffi
3

p
a2a6a25−

1

2

ffiffiffi
3

p
a1a7a25þ

2

3
a38a5þ

ffiffiffi
3

p
a3a26a5þ

ffiffiffi
3

p
a3a27a5þ

2a3a28a5ffiffiffi
3

p −
1

4

ffiffiffi
3

p
a3a5 −

ffiffiffi
3

p
a1a4a6a5

þ
ffiffiffi
3

p
a2a4a7a5þa24a8a5þa26a8a5þa27a8a5 −

7a8a5
4

þ 1

2

ffiffiffi
3

p
a2a36þ

1

2

ffiffiffi
3

p
a1a37þ

1

2

ffiffiffi
3

p
a2a6a27þ

2a2a6a28ffiffiffi
3

p

þ 2a1a7a28ffiffiffi
3

p þ 1

2

ffiffiffi
3

p
a2a24a6−

1

4

ffiffiffi
3

p
a2a6þ

1

2

ffiffiffi
3

p
a1a24a7þ

1

2

ffiffiffi
3

p
a1a26a7−

1

4

ffiffiffi
3

p
a1a7;

a66 ¼ a44þa22a
2
4þa25a

2
4þa26a

2
4þa27a

2
4þ 4a28a

2
4−a24 − 2a1a2a5a4þ 2a2a3a7a4−

4a1a6a8a4ffiffiffi
3

p þ 2
ffiffiffi
3

p
a2a7a8a4

þ 8a48
3

þ 8a3a38
3

ffiffiffi
3

p −a22a
2
5−a23a

2
5−

5a26
4

þa23a
2
7−

a27
4
þ 3a25a

2
8þ

8

3
a26a

2
8þ 3a27a

2
8 −

13a28
6

−2a1a3a5a7þ
4a3a26a8ffiffiffi

3
p þ 2

ffiffiffi
3

p
a3a27a8−

1

2

ffiffiffi
3

p
a3a8−

4a2a5a6a8ffiffiffi
3

p − 2
ffiffiffi
3

p
a1a5a7a8þ

1

4
;

a67 ¼ a5a34þa1a2a24þa35a4þa5a26a4þa5a27a4þa5a28a4þ 2a22a5a4þa23a5a4−a5a4 −a2a3a6a4þa1a3a7a4−
a2a6a8a4ffiffiffi

3
p

þa1a7a8a4ffiffiffi
3

p −a1a2a25−
1

3
a6a7a28þa1a3a5a6þa2a3a5a7 −a23a6a7−a6a7þ

a1a5a6a8ffiffiffi
3

p þa2a5a7a8ffiffiffi
3

p −
2a3a6a7a8ffiffiffi

3
p ;

a68 ¼
1

2

ffiffiffi
3

p
a1a34þ

1

2

ffiffiffi
3

p
a2a5a24− 2a6a8a24þ

1

2

ffiffiffi
3

p
a1a25a4þ

3

2

ffiffiffi
3

p
a1a26a4þ

1

2

ffiffiffi
3

p
a1a27a4þ

2a1a28a4ffiffiffi
3

p −
1

4

ffiffiffi
3

p
a1a4

−
ffiffiffi
3

p
a2a6a7a4þ

1

2

ffiffiffi
3

p
a2a35 −

ffiffiffi
3

p
a3a36− 2a6a38þ

3

2

ffiffiffi
3

p
a2a5a26þ

1

2

ffiffiffi
3

p
a2a5a27−

ffiffiffi
3

p
a3a6a27þ

2a2a5a28ffiffiffi
3

p

−
2a3a6a28ffiffiffi

3
p −

1

4

ffiffiffi
3

p
a2a5þ

1

4

ffiffiffi
3

p
a3a6þ

ffiffiffi
3

p
a1a5a6a7− 2a36a8 − 2a6a27a8− 2a25a6a8þ

a6a8
4

;
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a77 ¼ a45 þ a22a
2
5 þ a23a

2
5 þ a24a

2
5 þ a26a

2
5 þ a27a

2
5 þ a28a

2
5 − a25 þ 2a1a2a4a5 þ 2a1a3a7a5 þ

2a1a7a8a5ffiffiffi
3

p − a22a
2
4

−
a26
4
− a23a

2
7 −

5a27
4

−
1

3
a27a

2
8 −

a28
6
− 2a2a3a4a7 −

2a3a27a8ffiffiffi
3

p þ a3a8
2

ffiffiffi
3

p −
2a2a4a7a8ffiffiffi

3
p þ 1

4
;

a78 ¼ −
1

2

ffiffiffi
3

p
a2a34 þ

1

2

ffiffiffi
3

p
a1a5a24 − 2a7a8a24 −

1

2

ffiffiffi
3

p
a2a25a4 −

1

2

ffiffiffi
3

p
a2a26a4 −

3

2

ffiffiffi
3

p
a2a27a4 −

2a2a28a4ffiffiffi
3

p þ 1

4

ffiffiffi
3

p
a2a4

þ
ffiffiffi
3

p
a1a6a7a4 þ

1

2

ffiffiffi
3

p
a1a35 −

ffiffiffi
3

p
a3a37 − 2a7a38 þ

1

2

ffiffiffi
3

p
a1a5a26 þ

3

2

ffiffiffi
3

p
a1a5a27 þ

2a1a5a28ffiffiffi
3

p −
2a3a7a28ffiffiffi

3
p

−
1

4

ffiffiffi
3

p
a1a5 −

ffiffiffi
3

p
a3a26a7 þ

1

4

ffiffiffi
3

p
a3a7 þ

ffiffiffi
3

p
a2a5a6a7 − 2a37a8 − 2a25a7a8 − 2a26a7a8 þ

a7a8
4

;

a88 ¼ −
3a44
4

−
3

2
a25a

2
4 −

3

2
a26a

2
4 −

3

2
a27a

2
4 − 2a28a

2
4 þ

3a24
4

−
3a45
4

−
3a46
4

−
3a47
4

−
4a48
3

þ 3a25
4

−
3

2
a25a

2
6 þ

3a26
4

−
3

2
a25a

2
7 −

3

2
a26a

2
7 þ

3a27
4

− 2a25a
2
8 − 2a26a

2
8 − 2a27a

2
8:

Note that, because of the symmetry of the Hamiltonian, aij ¼ aji.

In contrast to the qubit case where such expressions are
simple and intuitive, the long expressions in the qutrit case
are hard to use directly. The complexity of these expres-
sions shows that Theorem 3.1 is not a trivial statement,
despite it being straightforward in the qubit case.

APPENDIX B: DETAILS OF PULSE SEQUENCES
AND FRAME SETS

1. Details of qutrit decoupling frame sets

In this appendix, we utilize the linear programming
formulation described in Ref. [22] to identify promising
candidates for frame sets.
Before discussing the details, let us first comment on the

existence of some equivalence relations between distinct
frame sets, in close relation to the results in Appendix A 5.
Consider the frames formed by conjugating by pulses P1

and P2:

S1 ¼ P†
1S

zP1; S2 ¼ P†
1P

†
2S

zP2P1: ðB1Þ

Then, a further conjugation by U would give rise to

S01 ¼ U†P†
1S

zP1U; S02 ¼ U†P†
1P

†
2S

zP2P1U: ðB2Þ

However, physically speaking, we could regard U as an
initial-state preparation pulse. The subsequent decoupling
pulses will then be unaffected, and therefore, from the
perspective of the average Hamiltonian, the two sequences
are equivalent.
Given this equivalence, when performing calculations, it

may be convenient to conjugate the whole pulse set by the

same unitary P†
1, in order to start with the frame Sz. This

method will also allow us to analyze different pulse
sequences on a more equal footing. Moreover, this process
helps to prevent potential confusion in analyzing pulse
sequences related to the order of conjugations when
applying a pulse sequence. For example, it may appear
that the Gell-Mann basis λ1 can be transformed into λ4 by a
cyclic echo pulse Pc (see Appendix B 3 for the definition),
in the sense that P†

cλ1Pc ¼ λ4; however, in fact, if one
starts in the frame S1 ¼ λ1 ¼ P†

1S
zP1, then the cyclic echo

pulse Pc will not bring one to the frame λ4, i.e.,
P†
1P

†
cSzPcP1 ≠ λ4, since the new pulse acts from the

middle instead of being added at the ends.
After imposing that one starts with the frame Sz, there is

still an additional degree of freedom to conjugate pulse
sequences, namely, a conjugation of all frames by a
diagonal phase rotation. This process will give rise to a
family of frame configurations that are distinct but can be
related to each other. Moreover, if one member of this
family can be implemented with some set of elementary
pulses composed of resonant driving on one or both
magnetically allowed transitions, the pulses necessary to
implement a different member of this family can be easily
obtained by changing the phase of the original pulses. This
finding could be useful in performing additional symmet-
rization of a pulse sequence to further improve its perfor-
mance and cancel higher-order terms.
We now describe some of the promising frame sets that

were found. By allowing π=2 driving pulses on all three
transitions, including the magnetically forbidden transition,
we found that the following 12 frames with equal time
duration achieve full disorder and interaction decoupling:
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0
B@
0 0 0

0 0 �1

0 �1 0

1
CA;

0
B@
0 0 0

0 0 �i

0 ∓ i 0

1
CA;

0
B@

0 0 �1

0 0 0

�1 0 0

1
CA;

0
B@

0 0 �i

0 0 0

∓ i 0 0

1
CA;

0
B@

0 �1 0

�1 0 0

0 0 0

1
CA;

0
B@

0 �i 0

∓ i 0 0

0 0 0

1
CA: ðB3Þ

This frame set does not contain Sz as an element. Therefore,
based on the preceding discussion, we can perform a global
unitary rotation to bring this frame set into the following
form (alternatively, it can also be directly found by
performing linear programming with a pulse set composed
purely of balanced double-driving pulses):

�Sx¼� 1ffiffiffi
2

p

0
B@
0 1 0

1 0 1

0 1 0

1
CA; �Sx̃¼� 1ffiffiffi

2
p

0
B@
0 1 0

1 0 −1
0 −1 0

1
CA;

�Sy¼� 1ffiffiffi
2

p

0
B@
0 −i 0

i 0 −i
0 i 0

1
CA; �Sỹ¼� 1ffiffiffi

2
p

0
B@
0 −i 0

i 0 i

0 −i 0

1
CA;

�Sz¼�

0
B@
1 0 0

0 0 0

0 0 −1

1
CA; �Sz̃¼�

0
B@
0 0 −i
0 0 0

i 0 0

1
CA:

ðB4Þ

This is the basic frame set that we use for the majority of
our qutrit decoupling pulse sequences. Note that by
globally changing the phases of all rotations, we can also
generate other equivalent classes of frames. In addition,
note that another way to specify these frames is to specify
them as commutators and anticommutators of spin-1
operators:

Sðx;y;zÞ ∝ ½Sμ; Sν�;
Sðx̃;ỹ;z̃Þ ∝ fSμ; Sνg; ðB5Þ

with μ; ν∈ fx; y; zg, which generate the irreducible repre-
sentations of SUð2Þ discussed in Ref. [72].
Another example frame set that was identified with these

methods is

0
BB@

0 1ffiffi
2

p 0

1ffiffi
2

p 0 − 1ffiffi
2

p

0 − 1ffiffi
2

p 0

1
CCA;

0
BB@

0 iffiffi
2

p 0

− iffiffi
2

p 0 − iffiffi
2

p

0 iffiffi
2

p 0

1
CCA;

0
BB@
−1

2
0 −1

2

0 1 0

−1
2
0 −1

2

1
CCA;

0
BB@

0 iffiffi
2

p 0

− iffiffi
2

p 0 1ffiffi
2

p

0 1ffiffi
2

p 0

1
CCA;

0
BB@

0 iffiffi
2

p 0

− iffiffi
2

p 0 − 1ffiffi
2

p

0 − 1ffiffi
2

p 0

1
CCA;

0
BB@
−1

2
0 − i

2

0 1 0

i
2

0 −1
2

1
CCA;

0
BB@

0 iffiffi
2

p 0

− iffiffi
2

p 0 iffiffi
2

p

0 − iffiffi
2

p 0

1
CCA;

0
BB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 iffiffi
2

p

0 − iffiffi
2

p 0

1
CCA;

0
BB@
0 0 0

0 1 0

0 0 −1

1
CCA;

0
BB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 − 1ffiffi
2

p

0 − 1ffiffi
2

p 0

1
CCA;

0
BB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 1ffiffi
2

p

0 1ffiffi
2

p 0

1
CCA;

0
BB@
−1 0 0

0 1 0

0 0 0

1
CCA;

ðB6Þ

but we do not use this frame set in practice because its
graph connectivity is considerably worse.

2. Details of qutrit decoupling pulse sequences

In this section, we describe in detail Seq. 2 (interaction
decoupling), Seq. B (nonrobust decoupling), and Seq. C
(DROID-C3PO), which we mentioned in Fig. 8(a).
Sequence 2 (interaction decoupling) is the interaction

decoupling sequence designed in Ref. [22]. This sequence
only decouples interactions but not disorder, so its perfor-
mance is not expected to begood inour experimental platform
of interacting NV ensembles because our system is disorder
dominated. This pulse sequence is plotted in Fig. 12.
Sequence B (nonrobust decoupling) is the sequence

plotted in Figs. 3(e) and 3(f), which go through the 12
frames in a somewhat arbitrary fashion. When spending

FIG. 12. Pulse-sequence “interaction decoupling.” This se-
quence was proposed in Ref. [22].

ROBUST HAMILTONIAN ENGINEERING FOR INTERACTING … PHYS. REV. X 14, 031017 (2024)

031017-23



equal time in the 12 frames, the disorder and interaction
decoupling sequence is not robust to finite-pulse-duration
effects. The frame representation of this sequence is shown
in Fig. 13.

Sequence C (DROID-C3PO) is our current best
sequence whose design is discussed in Sec. IV. The
sequence is plotted in Fig. 1(b), and its frame representation
is shown in Fig. 14(a).
One subtle point about Seq. C is that it has a net π

rotation in each Floquet period. Namely, the unitary due to
the pulses in each Floquet period is

Û ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA: ðB7Þ

This net rotation has the potential advantage that the frames
in two neighboring Floquet periods are not exactly the
same; therefore, it allows further cancellation between
Floquet periods, but it also requires one to be careful
because the net rotation changes the readout axis.

FIG. 13. Frame representation of Seq. B (nonrobust decou-
pling). This sequence is the sequence plotted in Figs. 3(e)
and 3(f), which is a nonrobust disorder and interaction decou-
pling sequence.

(a)

(b)

FIG. 14. Plot of Seq. C (DROID-C3PO). This sequence is our current best disorder and interaction decoupling sequence. It is robust to
disorder during pulses and rotation angle errors in both transitions, and also cancels some higher-order terms in the Magnus expansion.
(a) Frame representation of this sequence. The yellow and green colors represent plus and minus signs of the frames, and the thick and
thin lines represent free evolution frames and intermediate frames during pulses, respectively. The sequence is built from the building
blocks in Fig. 5(c), which are repeated 8 times with different sign and ordering choices to further cancel the ðSzÞ2 disorder during the
pulses, the Rabi inhomogeneity effect, and the first-order terms in the Magnus expansion. See Ref. [74] for more details on this
symmetrization strategy. (b) Actual pulses constituting this sequence. All pulses in this sequence are balanced double driving. The thin
lines represent spin-1π=2 pulses (i.e., rotation of the spin-1 generalized Bloch sphere by an angle π=2, experimentally implemented by
simultaneously driving the two transitions with two π=

ffiffiffi
2

p
pulses), and the thick lines represent spin-1π pulses. The colors of the pulses

represent the pulse axis (X or Y), and the direction of the pulses (up or down) represent the two opposite rotation directions (e.g., the
þπ=2 pulse and the −π=2 pulse). The proportions of this plot are drawn consistently with actual time durations. The ellipsis in the plot
indicates that the two rows are connected. The plot is identical to Fig. 1(b), repeated here for convenience.
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3. Robust disorder decoupling

In this section, we describe the disorder decoupling
sequences, Seq. 1 (cyclic echo) and Seq. A (robust cyclic
echo) that we mentioned in Fig. 8(a).
Sequence 1 (cyclic echo) is the simplest sequence that

allows one to decouple the on-site disorder. This sequence
is plotted in Fig. 15, and it works by cyclically permutating
the three states j þ 1i, j0i, and j − 1i to average out the
disorder.
Sequence A (robust cyclic echo) is a sequence built on

the cyclic echo that decouples disorder and is robust to
finite pulse effects and Rabi inhomogeneity. This sequence
consists of two iterations of cyclic echo, where the
phase of pulses in the second iteration is adjusted to
ð−π1x; π2x; π1x;−π2x;−π1x; π2xÞ. The way this sequence cancels
the disorder during the pulses is by a simple one-to-one
cancellation between the two iterations, which is not hard
to verify explicitly. For optimization of performance, we
further symmetrize the sequence by adding a free evolution
time τ between the pairs of π pulses in Fig. 15(a), which
changes the cyclic permutation of the three levels shown in
Fig. 15(b) into a full permutation. This sequence also shares
the same net π rotation in each Floquet period as discussed
in Appendix B 2.

4. Derivation for disorder effects during pulses

In this section, we discuss how disorder transforms
during pulses, which is essential to understand for design-
ing sequences robust to it.
Before going into the details for the spin-1 case, we note

the simple geometric picture in the spin-1
2
case. In the spin-1

2

case, as we already discussed in the main text, an on-
resonance pulse leads to an Sz operator trajectory that

transforms along a geodesic on the Bloch sphere [repre-
sented by the red arc in Fig. 4(a) and repeated here in
Fig. 16(a) for convenience]. As a result, the averaged effect
of disorder during the pulse, as represented by the center of
mass of the red arc in Fig. 16(a), can be decomposed as an
average of the frames before and after the pulse:

S̄ ¼ 4

π

�
S1 þ S2

2

�
; ðB8Þ

where the factor 4
π comes from the fact that the center of

mass is slightly further from the origin than the midpoint
between S1 and S2.
Even if the pulse is not on resonance, the story does not

change too much because the trajectory of the Sz operator on
the Bloch sphere is still a circle (the only difference is that
now the circle is not a geodesic on the Bloch sphere). In this
case, the evolution of the Sz operator can be decomposed
into two parts as shown in Fig. 16(b): The first part is the
projection of Sz on the rotation axis, which is invariant
during the pulse; the remaining part rotates on a circle
perpendicular to the rotation axis, and therefore, its effect
during the pulse can be decomposed as a linear combination
before and after the pulse, similar to the case in Fig. 16(a).
Although the geometric picture in the spin-1

2
case is very

simple (the trajectory of the Sz operator is always a circle),
the trajectory of the Sz operator in the spin-1 case can be
much more complicated. To see this, let us consider the

(a)

(b)

FIG. 15. Plot of cyclic echo. (a) The cyclic echo consists of
three pairs of π pulses as shown in the plot. The pulses π1x and π2x
represent a π pulse around the x axis for the transition j0i ↔
j þ 1i and the transition j0i ↔ j − 1i, respectively. (b) Each pair
of π pulses in diagram (a) causes a cyclic permutation of the three
states (as shown by the green arrows); therefore, the disorder is
averaged out by this sequence.

(a) (b)

FIG. 16. Transformation of Sz during pulses. (a) When the
trajectory of Sz lives on a geodesic, its transformation during the
pulse is a simple rotation from its initial position S1 to its final
position S2, as shown by the red arc. Then, the averaged Sz

operator during the pulse is represented by the center of mass of
the red arc. From the plot, we can see that the averaged Sz

operator can be decomposed as a simple average of S1 and S2,
and the extra 4=π factor in Eq. (B8) comes from the fact that the
center of mass of the red curve is slightly further from the origin
O compared to the midpoint between S1 and S2. The plot is
identical to Fig. 4(a), repeated here for convenience. (b) When the
trajectory of Sz lives in a two-dimensional slice that does not go
through the origin (as shown by the black circle in the plot), S̃zðtÞ
can be decomposed into an invariant part Sfix during the pulse and
a part Srot that rotates on a circle, with the latter’s averaged effect
following the same rule as in plot (a).
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trajectory of the Sz operator transformed by a generic
Hamiltonian H:

S̃zðtÞ ¼ eiHtSze−iHt: ðB9Þ
Generically, the conjugation of the SUð3Þ operator e−iHt

on Sz leads to a rotation on an eight-dimensional sphere,
which is the spin-1 generalization of the Bloch sphere (the
coordinates on the eight-dimensional sphere are the expan-
sion coefficients of S̃z in the Gell-Mann basis; see
Refs. [22,67] for more details). In order to analyze the
trajectory of S̃zðtÞ on this eight-dimensional sphere, let us
calculate its time derivatives at t ¼ 0:

S̃zjt¼0 ¼ Sz;

d
dt

S̃zjt¼0 ¼ ½iH; Sz�;
d2

dt2
S̃zjt¼0 ¼ ½iH; ½iH; Sz��;

… ðB10Þ
From the above expression, we know that the trajectory of
S̃zðtÞ lives in a subspace spanned by f½iH; Sz�; ½iH; ½iH;
Sz��; ...g. Therefore, the number of linearly independent
matrices in the set f½iH; Sz�; ½iH; ½iH; Sz��; ...g is the dimen-
sion of the subspace that the trajectory of S̃zðtÞ lives in.
By calculating the rank of the above set for randomly

chosenH, we know that for generic pulses, the dimension of
the subspace is 6. Even when we restrict the pulses to be on
resonance, the dimension is still 4. Therefore, the trajectory of
S̃zðtÞ is very complicated in the generic case, and there is no
simple expression for the disorder during pulses. However,
we can still obtain useful results in certain special cases:

(i) Most importantly, as we already discussed in the
main text, when the pulse is a balanced double-
driving pulse (i.e., simultaneously driving the two
magnetically allowed transitions with equal ampli-
tude), the trajectory of the Sz operator becomes a
geodesic, and therefore, all of the nice properties in
the spin-1

2
case are recovered. This finding is the key

insight that allows us to elegantly cancel the disorder
during pulses.

(ii) When the pulse is a resonant driving on a single
transition, the trajectory of Sz can be decomposed
into a fixed part and a rotating part similar to
Fig. 16(b). To see this case, consider a pulse applied
on the j0i ↔ j − 1i transition. In this case, we can
explicitly decompose Sz as

Sz¼

0
B@
1 0 0

0 0 0

0 0 −1

1
CA¼

0
B@
1 0 0

0 −1
2

0

0 0 −1
2

1
CAþ

0
B@
0 0 0

0 1
2

0

0 0 −1
2

1
CA;

ðB11Þ

where the first term is invariant under the rotation
and the second term rotates as a spin-1

2
Sz operator

during the pulse. If the pulse is a π=2 pulse, then the
average effect of the second term during the pulse is
given by Eq. (B8), and the average effect of the first
term is simply itself. Because of the extra coefficient
4=π that only appears for the second term, when the
two terms are summed together, their average effect
is no longer a simple average before and after the
pulse. This finding is a concrete example that shows
the complication in the qudit case compared to the
qubit case.

(iii) Although the trajectory of S̃z is very complicated for
generic on-resonance pulses, the trajectory of ðS̃zÞ2
always lives in a two-dimensional space [i.e., looks
like the trajectory in Fig. 16(b)]. To see this case,
notice that when j0i is coupled to j þ 1i and j − 1i
by on-resonance pulses, it can also be seen that j0i is
coupled to a bright state jBi while leaving a dark
state jDi not coupled to anything. For convenience,
we can perform a basis transformation from fj0i;
j þ 1i; j − 1ig to fj0i; jBi; jDig. Since ðSzÞ2 is the
identity in the fj þ 1i; j − 1ig subspace, it is invari-
ant under this basis transformation. Working in this
bright- and dark-state basis, since j0i is only coupled
to jBi, the transformation of ðSzÞ2 is kept block
diagonal, with one block (corresponding to jDi)
invariant and the other block (corresponding to
fj0i; jBig) transforming as a two-level system.
Therefore, the trajectory of ðS̃zÞ2 can be decomposed
into a fixed part and a rotating part, as shown in
Fig. 16(b). As a specific example, for a spin-1 π=2
pulse,

Up ¼ exp

2
64−i

0
B@

0 θ1 þ iθ2 0

θ1 − iθ2 0 θ3 þ iθ4
0 θ3 − iθ4 0

1
CA
3
75;

ðB12Þ

with θ21 þ θ22 þ θ23 þ θ24 ¼ θ2tot ¼ π2=4; the averaged
ðSzÞ2 operator during this pulse is

S̄ ¼ 4

π

�ðS21 − SfixÞ þ ðS22 − SfixÞ
2

�
þ Sfix; ðB13Þ

where S1 and S2 are the frames before and after the
pulse, and Sfix ¼ ð1=2πÞ R 2π

0 dθU†
pðθÞðSzÞ2UpðθÞ is

the invariant part of ðSzÞ2 during the pulse.

5. Analysis of rotation angle error

In this section, we show that the robust qutrit decoupling
sequence we designed [see Fig. 14(a) for its frame
representation] is not only robust to rotation angle errors
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common to both transitions, as discussed in the main text,
but also to rotation angle errors on each individual transition.
To see this case, examine Fig. 14(a), and note what was

exactly done in the “further improvement” level in the
hierarchy described in the main text. In the whole sequence
DROID-C3PO, there are eight iterations of the basic
disorder and interaction decoupling sequence shown in
Fig. 5(c). The difference between the first four iterations is
that signs of free evolution frames and intermediate frames
are flipped. For two neighboring frames A and B, their
signs go over all four possibilities ðA;BÞ, ðA;−BÞ, ð−A; BÞ,
and ð−A;−BÞ. The second four iterations are obtained by
flipping both the signs and the ordering of the frames in the
first four iterations [74]. Because of the structure discussed
above, for any neighboring frames ðA;BÞ in the first four
iterations, there is a pair of frames ð−A;−BÞ in the first four
iterations, and therefore, there is a pair of frames ðB;AÞ in
the second four iterations. Because the rotation from frame
B to frame A is exactly the reverse rotation from A to B, the
rotation angle error on each individual transition is can-
celed between frame pairs ðA;BÞ in the first four iterations
and ðB;AÞ in the second four iterations. Thus, we see how
rotation angle errors on each individual transition are
canceled in the sequence.

6. Geometric intuition of scar subspace

In this section, we discuss the geometric structure of the
scar subspace jSni as defined in Eq. (13). When restricted
to the subspace spanned by j þ 1i and j − 1i, the operator
1
2
ðSþi Þ2 becomes the spin-1

2
raising operator. If we further

rotate the spins in the second group by π around the z
axis, this raising operator will flip its sign (because the
signs of Sx and Sy are flipped), and the operator Jþ will
become exactly the many-body raising operator. Since the
state jΩi is the state jS ¼ ðN=2Þ; mS ¼ −ðN=2Þi, the
states jSni will be jS ¼ ðN=2Þ; mS ¼ −ðN=2Þ þ ni after
rotating the spins in the second group by π around the z
axis. Therefore, the subspace spanned by jSni is the
maximal spin subspace after rotating the second group by
π around the z axis.

7. Decoupling with nongeodesic pulses

In this section, we show another robust qutrit disorder
and interaction decoupling sequence whose frame set is
different from the 12 frames shown in Fig. 3(e) and whose
pulses do not lead to a geodesic trajectory of S̃z (see
Sec. III C for the context of geodesics).
The basic idea of this sequence is also a hierarchical

design: Since disorder is much stronger than interactions in
our experimental platform, we want to robustly decouple
disorder first and then decouple interactions on top of that.
Therefore, we can use Seq. A (robust cyclic echo) (see
Appendix B 3 for descriptions) as the inner layer to
robustly decouple the disorder and, on top of that, design

sequences to decouple the interaction transformed by the
robust cyclic echo.
Because the robust cyclic echo sequence cyclically

permutes the three energy levels, the form of the interaction
is symmetrized under the transformation of this sequence.
More concretely, the original interaction Hamiltonian,
which only contains flip-flop terms between j0i↔ jþ1i
and between j0i ↔ j − 1i, is transformed to

H0
int ¼

1

2
Sz ⊗ Sz þ 1

2
Sz⊥ ⊗ Sz⊥

−
1

3
HXY;þ0 −

1

3
HXY;0− −

1

3
HXY;þ−; ðB14Þ

where HXY;ij ¼ 1
2
ðXij ⊗ Xij þ Yij ⊗ YijÞ is the flip-flop

term between state jii and state jji, and Sz⊥ is defined as

Sz⊥ ≡ 1ffiffiffi
3

p

0
B@

1 0 0

0 −2 0

0 0 1

1
CA: ðB15Þ

Using the framework we proposed in this paper, we found
that the following 12 frames with equal time duration
decouple the symmetrized interaction Eq. (B14):

S1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; S2 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

S3 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; S4 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA;

S5 ¼
1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; S6 ¼

1ffiffiffi
2

p

0
B@

0 1 0

1 0 −1
0 −1 0

1
CA;

S7 ¼
1ffiffiffi
2

p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA; S8 ¼

1ffiffiffi
2

p

0
B@

0 −i 0

i 0 i

0 −i 0

1
CA;

S9 ¼
1ffiffiffi
2

p

0
B@

0 −i 0

i 0 1

0 1 0

1
CA; S10 ¼

1ffiffiffi
2

p

0
B@

0 −i 0

i 0 −1
0 −1 0

1
CA;

S11 ¼
1ffiffiffi
2

p

0
B@

0 1 0

1 0 −i
0 i 0

1
CA; S12 ¼

1ffiffiffi
2

p

0
B@

0 1 0

1 0 i

0 −i 0

1
CA:

ðB16Þ

The connectivity of these 12 frames by experimental pulses
is shown in Fig. 17. As the figure shows, these 12 frames
can be connected by balanced double-driving (i.e., equal
driving amplitude on the two allowed transitions) π=4
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pulses, which is easily implementable in experiments. The
whole disorder and interaction decoupling sequence is
made of 12 iterations of robust cyclic echo, with the
double-driving π=4 pulses connecting the above 12 frames
inserted between neighboring iterations. A concrete exam-
ple of such a sequence is given in Fig. 18. The sequence in

Fig. 18 is nearly robust to disorder during pulses because
the disorder during the pulses in each iteration of the robust
cyclic echo is canceled. Although the disorder during the
π=4 pulses connecting the above 12 frames is not canceled,
it does not matter too much because these pulses take only a
very small fraction of time in the whole sequence. Finally,
we note that there are at least three ways to further improve
the performance of the sequence in Fig. 18:

(i) We can further symmetrize the robust cyclic echo
by adding a free evolution time τ between the pair
of π pulses constituting the cyclic echo, just as in
Seq. A.

(ii) The sequence can in fact be made fully robust to
disorder during pulses: We can compensate for
disorder during the balanced double-driving π=4
pulses by slightly adjusting the free evolution times
inside neighboring iterations of robust cyclic echo.

(iii) Nearly all pulses in the sequence in Fig. 18 are along
the X axis, so there is potential space for further
improvements by utilizing pulses along the Y axis.

APPENDIX C: DISCUSSIONS ON DROID-C3PO

1. Remaining decoherence mechanisms

In this section, we discuss the possible remaining
decoherence mechanisms in DROID-C3PO, which we
observed to have a coherence time of 4 μs in Fig. 8(a).
The remaining decoherence mechanisms can be divided

into two categories: one intrinsic to the many-body system,
and the other coming from external noise or experimental
imperfections. The intrinsic part contributes about half of
the observed decay, characterized by numerical simulations
including dipolar interactions and static on-site disorder
(see Fig. 19, blue trace). The dominant contribution to this
part comes from residual interactions during pulses since

FIG. 17. Connectivity graph of the 12 frames in Eq. (B16).
Each vertex represents one frame, and each segment represents a
balanced double-driving π=4 pulse. The four straight lines
represent four geodesics on which frames can be transformed
to each other by repeating the same spin-1 π=4 pulse. Notice that
vertices with the same label represent the same frame. For
convenience, four pairs of identical frames are connected by
blue arcs.

FIG. 18. Nongeodesic decoupling pulse sequence. There are two different types of pulses in this pulse sequence. One type of pulse is
the π pulse on a single transition, represented by the taller pulses in the plot; these pulses constitute the robust cyclic echo, which
decouples disorder robustly and locally. The other type of pulse is the balanced double-driving π=4 or π=2 pulse connecting the frames
in Fig. 17, represented by the shorter pulses in the plot; these pulses further decouple interactions on top of disorder decoupling building
blocks. The colors of the pulses represent the pulse axis (X or Y), and the direction of the pulses (up or down) represent the two opposite
rotation directions (e.g., the þπ=2 pulse and the −π=2 pulse). The proportion of this plot is drawn consistently with the actual time
duration. The ellipsis in the plot shows that the two rows are connected.
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the sequence is only robust to disorder during pulses but not
against interactions during pulses. This effect can poten-
tially be reduced by decreasing the proportion of time
during pulses or by carefully designing better sequences
that are robust to interactions during pulses as well.
The other half of the decay is attributed to extrinsic

sources, and we believe it mainly comes from the presence
of dynamical disorder. In our spin-1

2
decoupling sequences,

dynamical disorder limits us to a coherence time of 16 μs,
so it is not unexpected that the same mechanism can give us
an 8-μs extrinsic decay time in the spin-1 case, where the
sensitivity to magnetic noise is twice that of the spin-1

2
case.

Decoupling faster should, in general, help to reduce the
effect of dynamical disorder since the power spectrum of
noise is typically a decreasing function of frequency.
However, one will eventually be limited by pulse distor-
tions and inaccurate synchronization between the
j0i ↔ j þ 1i and j0i ↔ j − 1i driving, which becomes
more and more significant when the pulse duration and
spacing become shorter and shorter. In our spin-1

2
case, we

find a sweet spot at π pulse duration tπ ¼ 10 ns and free
evolution time τ ¼ 25 ns, so we believe our parameters
tπ ¼ 16 ns and τ ¼ 25 ns in the spin-1 case should be

pretty close to the sweet spot as well. Another way one
can potentially reduce dynamical disorder without encoun-
tering the pulse distortion problem is to go to low
temperatures.

2. Trade-off between sequence length
and decoupling performance

In Fig. 8(a), we see that the sequence DROID-C3PO has
good coherence time, but the sequence duration is on the
same order of magnitude as the coherence time itself,
leaving only a few observational windows before the signal
is gone. In this section, we discuss how to create more
observational windows within the coherence time.
In general, there are many ways to obtain more obser-

vational windows within the coherence time, including
obvious methods such as decoupling faster or using a less
dense ensemble that has a longer coherence time. For fixed
external conditions, we can still use what we refer to as
“subsampling” to create more observational windows
without significantly hurting the performance of the
sequence [70].
The subsampling method is based on the fact that

DROID-C3PO has the structure of eight similar building
blocks, as shown in Fig. 14(a). Each of the building blocks
is a decoupling sequence on its own, and their combination
makes the decoupling performance even better. Thus, one
does not have to wait until the end of the whole Floquet
period to probe the system; instead, probing at the end of
each building block is possible since the dominant con-
tribution of disorder and interactions is already decoupled
there. We emphasize that this subsampling method is better
than directly using a shorter sequence such as the Floquet
sequence being repeated because, in this subsampling
method, we are still benefiting from the mutual cancellation
between different building blocks; it is only the last few
building blocks that are not paired up that lead to slight
degradation of the performance. Numerical results compar-
ing the performance of sequences with different lengths are
shown in Fig. 19, confirming our intuition.
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