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A characteristic feature of “quantum chaotic” systems is that their eigenspectra and eigenstates display
universal statistical properties described by random matrix theory (RMT). However, eigenstates of local
systems also encode structure beyond RMT. To capture this feature, we introduce a framework that allows
us to compare the ensemble properties of eigenstates in local systems with those of pure random states. In
particular, our framework defines a notion of distance between quantum state ensembles that utilizes the
Kullback-Leibler divergence to compare the microcanonical distribution of entanglement entropy (EE) of
eigenstates with a reference RMT distribution generated by pure random states (with appropriate
constraints). This notion gives rise to a quantitative metric for quantum chaos that not only accounts
for averages of the distributions but also higher moments. The differences in moments are compared on a
highly resolved scale set by the standard deviation of the RMT distribution, which is exponentially small in
system size. As a result, the metric can distinguish between chaotic and integrable behaviors and, in
addition, quantify and compare the degree of chaos (in terms of proximity to RMT behavior) between two
systems that are assumed to be chaotic. We implement our framework in local, minimally structured,
Floquet random circuits, as well as a canonical family of many-body Hamiltonians, the mixed-field Ising
model (MFIM). Importantly, for Hamiltonian systems, we find that the reference random distribution must
be appropriately constrained to incorporate the effect of energy conservation in order to describe the
ensemble properties of midspectrum eigenstates. The metric captures deviations from RMT across all
models and parameters, including those that have been previously identified as strongly chaotic, and for
which other diagnostics of chaos such as level spacing statistics look strongly thermal. In Floquet circuits,
the dominant source of deviations is the second moment of the distribution, and this persists for all system
sizes. For the MFIM, we find significant variation of the KL divergence in parameter space. Notably, we
find a small region where deviations from RMT are minimized, suggesting that “maximally chaotic”
Hamiltonians may exist in fine-tuned pockets of parameter space.
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I. INTRODUCTION

The emergence of statistical mechanics from the dynam-
ics of isolated quantum systems is a topic of fundamental
interest [1–4]. While the foundations of this subject date
back to the birth of quantummechanics, the topic has seen a
recent revival due to remarkable experimental advances in
preparing isolated quantum systems that can be coherently
evolved over unprecedented timescales [5–9]. Unlike in
classical systems, notions of “ergodicity” and “chaos” in

many-body quantum systems are much more ill defined.
One prevailing approach to characterize quantum chaos is
through the eigensystem properties of Hamiltonians (or
time-evolution operators), specifically with respect to the
emergence of universal behavior described by random
matrix theory (RMT). This method applies both to corre-
lations of eigenvalues, such as the level spacing statis-
tics [10–12] or the spectral form factor [13–18], and to
the properties of eigenstates. In particular, the central
conjecture underpinning the celebrated eigenstate thermal-
ization hypothesis (ETH) is that highly excited (infinite-
temperature) eigenstates of chaotic quantum systems look
like random pure states within subsystems [1–3,19–23].
This conjecture is reflected in the eigenstate expectation
values of local observables [24,25], as well as the behavior
of the eigenstate entanglement entropy (EE) [19,20,26–28].
In recent years, a series of works have used the von

Neumann entanglement entropy to refine the correspondence
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between midspectrum eigenstates of local, physical
Hamiltonians [29] (or Floquet systems) and random pure
states (see Ref. [28] for a recent review). A widely
prevailing expectation [28] is that—in the absence of
additional conservation laws—infinite-temperature eigen-
states of chaotic Hamiltonians (or eigenstates of chaotic
Floquet systems) are nearly maximally entangled, with EE
following the Page equation [30] derived for random pure
states [Eq. (6)]. More recently, the Page result has been
generalized to pure random states in various physically
relevant constrained settings, in which the Hilbert space
does not factor into a tensor product of the Hilbert spaces of
subsystems [1,26,31–33]. Notable examples are systems
with a local additive conserved charge, such as particle
number, for which the Hilbert space is a direct sum of
tensor products in different charge sectors. In this case, the
typical EE for pure random states constrained to a given
charge sector was recently derived analytically by Bianchi
and Dona [31] and found in numerical studies to agree well
with the eigenstate entropy of chaotic local Hamiltonians
with particle-number conservation [28].
The fact that the eigenenergies and eigenstates of a wide

range of nonrandom, sparse Hamiltonians numerically
display universal RMT correlations (derived for random,
dense matrices) is quite remarkable; understanding why
this happens is a longstanding question in the study of
quantum chaos. In particular, RMT ensembles, by design,
have no spatial correlations while local Hamiltonians do.
Furthermore, while a random many-body wave function in a
system of size L has exponentially many [OðexpLÞ] random
parameters, a local Hamiltonian or Floquet unitary is
specified with just polynomially many [OðLÞ] parameters.
Thus, various recent papers have focused on the question

of how the eigenspectra of local systems encode structure
beyond the leading-order RMT behavior, even in the
absence of additional symmetries or constraints. For
example, Refs. [34–38] have numerically and analytically
studied systematic deviations between the EE of midspec-
trum Hamiltonian eigenstates and the Page entropy.
Separately, Refs. [18,39–44] showed that matrix elements
of local operators evaluated in the eigenbasis of
Hamiltonian or Floquet systems are correlated up to certain
energy scales (or inverse timescales related to, but possibly
parametrically larger than, the so-called Thouless time);
these works clarified that these correlations can be
understood through the existence of a “light cone” in the
growth of out-of-time ordered commutators in spatially
local extended systems. In fact, eigenstates of local
Hamiltonians “know” that they are not RMT: The corre-
lations encoded in a single eigenstate suffice to reconstruct
the entire Hamiltonian [19,45]. However, despite these
various works, a systematic and unified understanding of
eigenstate diagnostics of chaos, including universal devia-
tions from RMT, is considerably less developed. This case
is in contrast to eigenvalue diagnostics of chaos for which

analytic results for the spectral form factor have been
derived for various systems and have been shown to display
RMT “ramp” behavior for times larger than the so-called
Thouless time [13–18]. The Thouless time encodes the
effects of locality and, in general, grows with system size;
the Thouless time is minimized (and system-size indepen-
dent) in certain “maximally chaotic” kicked-Ising Floquet
models that are dual unitary [13,46,47].
Our perspective in this work is to compare the ensemble

properties of eigenstates relative to RMT ensembles in
order to quantify how chaotic a many-body Floquet or
Hamiltonian systems is—in the sense of providing a
continuous “ruler” measuring deviations from RMT
(Fig. 1). The framework that we propose defines a measure
of “distance” to the appropriate RMT ensemble by comput-
ing the Kullback-Leibler (KL) divergence, DKLðPE; PRÞ,
between the microcanonical distribution of eigenstate EE,

FIG. 1. (a) Histograms of EE of (left) midspectrum eigenstates
of themixed-field Isingmodel (MFIM)Hamiltonian [see Eq. (18)]
and (right) eigenstates of a Floquet random circuit (FRC) with
nearest-neighbor Haar random gates [see Eq. (10)]. The MFIM
parameters are chosen to be strongly chaotic, with g ¼ 1.08 and
h ¼ 0.3; FRCs are averaged over 50 circuit realizations. For
comparison,we plot the referenceRMTdistributions, Page (dotted
lines) and Bianchi-Dona (BD; dashed-dotted lines); see Secs. III A
and IVA. We see that the former is the appropriate reference
distribution for Floquet systems while the latter describes Ham-
iltonians with energy conservation. The reference distributions are
plotted as Gaussian functions with analytically known means and
standard deviations (see Appendix A). For all distributions, we
consider a system of size L ¼ 16 and a subsystem of size LA ¼ 8.
(b) Distance betweenmicrocanonical distribution of eigenstate EE
and RMT, as quantified through the KL divergence DKL, Eq. (3).
Shown are thevalues ofDKL plotted for a systemof sizeL ¼ 16 for
the FRC and differentMFIMparameters studied in the literature or
discussed later in themain text:maximally chaotic (MC), Banulus-
Cirac-Hastings (BCH) [48], and Kim-Huse (KH) [49]; see Fig. 4.
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PEðSAÞ, and an appropriate reference RMT distribution,
PRðSAÞ. Here, SA refers to the EE of a subsystem A of a pure
state, which is chosen to be either an eigenstate or a random
state. In other words, we ask how well the microcanonical
ensemble of eigenstates reproduces the distribution of EE
generated by an (appropriately constrained) ensemble of
random pure states. For Hamiltonian systems, the micro-
canonical ensemble is obtained from a narrow window of
eigenstates centered at infinite temperature, while we use the
entire eigenspectrum for Floquet systems.
Importantly, the framework that we introduce compares

ensemble properties beyond the first moment by also
incorporating higher moments of the distributions,
which depend on the fluctuations of EE across eigenstates.
In fact, we show that these fluctuations play a key role
and capture deviations from RMT that may not be visible in
the first moment in certain systems. In addition, because
DKL employs the same baseline distribution for all
Hamiltonians, we can quantify and compare the degree
of quantum chaos of two different systems assumed to be
chaotic using the same ruler DKL. In particular, we say that
system A is more chaotic (or has a larger “degree of chaos”)
than system B if all the moments of the eigenstate
distributions of system A are closer to the RMTexpectation
values than those of systemB; see Fig. 1(b). [50] As wewill
see, this case will allow us to identify special Hamiltonians
in a broad landscape of local physical systems that behave
almost RMT-like.

A. Summary of results

We study two models in this work: local FRCs and a
family of MFIMHamiltonians parametrized by the strength
of the transverse and longitudinal fields. Our main results
are summarized as follows.
First, in minimally structured FRCs (which only retain

locality and have no other structure or conservation laws),
we find that the dominant contribution to DKL comes from
the microcanonical fluctuations of EE. In particular,
we find that σE, the standard deviation of the micro-
canonical distribution, is systematically larger than σR,
the standard deviation of the Page distribution, which is the
reference RMT distribution. In contrast, the means μE and
μR are much better converged. We note thatDKL furnishes a
very finely resolved comparison between the microcanon-
ical and RMT distributions by normalizing the differences
between the distributions by σR, so the contributions of the
first two moments of the microcanonical distribution to
DKL are functions of the ratios jμE − μRj=σR and σE=σR;
see Eq. (4). For the reference RMT distribution, the
standard deviation is exponentially small in system
size: σR ∼

ffiffiffiffiffiffiffiffi
2−L

p
. Thus, unlike prior works, DKL not only

measures whether jμE − μRj decreases with system size, or
whether σE displays exponentially small scaling similar
to RMT, but rather, it probes these differences on the
exponentially small scale set by σR. For FRCs, we find that

the difference in mean between the microcanonical and
RMT distributions is small even on the scale of σR, while
the ratio σE=σR shows a sizable and positiveOð1Þ departure
from 1 that appears stable with system size (Fig. 2). In other
words, for FRCs, we find that σE ∼

ffiffiffiffiffiffiffiffi
2−L

p
but with a

systematically larger prefactor than the reference Page
distribution. We attribute this relative increase in σE to
locality since FRCs do not have any structure or sym-
metries beyond locality and time periodicity.
Second, even for Hamiltonian systems, we find that the

difference between the microcanonical and RMT prediction
is exponentially small in system size (and comparable to σR
in large regions of parameter space, away from integra-
bility), provided we suitably constrain the RMT ensemble.
This case may seem at odds with various works that
recently noted that the EE of midspectrum Hamiltonian
eigenstates shows a small but systematic Oð1Þ negative
departure from the Page value [34–38]. Remarkably, we
show instead that the departure is captured if we instead
compare μE to the mean of the BD distribution [31]
obtained for systems with a local Uð1Þ charge. In other
words, a “better” RMT ensemble for describing midspec-
trum eigenstates of local Hamiltonians is the BD distribu-
tion (as opposed to the Page distribution): Energy
conservation plays the role of an additive local charge—
even at infinite temperature and in the absence of addi-
tional symmetries such as particle number conservation—
and the BD distribution incorporates this important feature
(see Fig. 1). This result is of independent interest, and it
updates numerous prior studies in which midspectrum
eigenstates of local Hamiltonians (without additional
symmetries) have been compared to the Page distribution
[28]. We note that the deviation between the average
microcanonical EE for Hamiltonian systems and the Page
entropy was also previously argued by Huang in
Refs. [35,36], agreeing with the results obtained by using
the BD ensemble. In Fig. 1, we plot the microcanonical
EE distribution for a nonintegrable Hamiltonian and
Floquet random circuit, and show that they are well
described (to leading order) by the BD and Page distri-
butions, respectively. In particular, Fig. 1 shows that the
means of the two reference RMT distributions differ by
about 0.1, which entirely captures theOð1Þ deviation from
Page that was previously observed for the EE of
Hamiltonian eigenstates [34–36].
Third, for Hamiltonian systems, we find that DKL shows

significant variation in parameter space for the models and
system sizes we study—even in parameter regimes where
other metrics of chaos such as level statistics have saturated
to the RMT predictions (Fig. 4). Remarkably, there are
small islands in parameter space that minimize DKL, and
these are quite far in parameter space from “standard”
reference values that are widely used in studies of chaos in
the MFIM, such as the Kim-Huse parameters of Ref. [49].
At the strongly chaotic points, the deviations in both
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jμE − μRj=σR and σE=σR are comparable, while these
differences steeply increase away from the maximally
chaotic regions, resulting in a large DKL. As such, our
FRC and Hamiltonian results show that DKL can resolve
differences in microcanonical and RMT distributions, even
if the moments of the former are “exponentially close” to
the latter. This variation in parameter space suggests that
there might be “maximally chaotic” Hamiltonians in
judiciously tuned regions of parameter space, similar to
maximally chaotic dual-unitary Floquet circuits [13,46,47]
or minimally chaotic integrable models, with the degree of
chaos attainable being constrained by features such as
locality or the type of allowed interactions.
More generally, the approach to compare microcanonical

and RMT distributions, including higher moments, is
reminiscent of (but different in detail from) studies of
unitary and state design in quantum information theory
[51–56]. For example, studies of k-design formation
compare the lowest k moments of candidate probability
distributions over a unitary group against the uniform Haar
distribution; this approach is particularly informative in
understanding distributions for which the lower moments
agree with the Haar distribution while higher moments
show deviations. Likewise, a notable feature of our work is
that the microcanonical standard deviation of EE is
informative in characterizing chaos even in models where
the mean agrees with RMT predictions.
There are also practical advantages of quantifying chaos

through the microcanonical statistics of entanglement
entropy. A single Hamiltonian produces its own micro-
canonical ensemble of eigenstates, which is then used to
characterize chaos. This case contrasts with other metrics
like the spectral form factor, which requires sampling over
Hamiltonian ensembles [57]. It also makes the approach
quantitative as it allows one to compare the distance to
RMT for two different systems using the same well-
characterized benchmark. Furthermore, only a relatively
small number of eigenstates are required to characterize the
distribution of EE up to the second moment, therefore
making the method inexpensive and relatively easy to
implement for relatively large system sizes through
various shift-invert or polynomial filtering techniques for
targeting eigenstates in small energy or quasienergy win-
dows [58,59]. Finally, our metric of chaos is intrinsic to
eigenstates and is therefore operator independent, unlike
methods that rely on susceptibility metrics, which require
specifying a perturbing operator [60].
The outline of the rest of this paper is as follows. In

Sec. II, we introduce our metric for quantum chaos and
describe its behavior in simple limits. In Sec. III, we begin
the discussion by introducing the relevant RMT distribution
that will be used to quantify chaos in Floquet random
circuits, namely, the Page distribution. We then present
numerical results for the distribution of EE of eigenstates in

minimally structured Floquet random circuits and discuss
contributions of the first two moments to the distance
measure. In Sec. IV, we begin by introducing the relevant
RMT distribution that will be used to quantify chaos in
Hamiltonian systems, namely, the BD distribution. We then
present numerical results for the MFIM, a paradigmatic
Hamiltonian system that exhibits both integrable and
chaotic regimes. We discuss the behavior of the eigenstate
EE distribution in the proximity of maximally chaotic
parameters, as well as the differences with respect to other
metrics of chaos employing spectral statistics. Finally, in
Sec. V, we summarize the main results of our work and
discuss directions for future work.

II. QUANTIFYING QUANTUM CHAOS

Our goal is to quantify the proximity of a given
Hamiltonian or Floquet unitary to RMT behavior by
comparing the microcanonical distribution of eigenstate
EE, PEðSAÞ, with a reference distribution for the EE of
(appropriately constrained) pure random states, PRðSAÞ.
We consider systems of size L and Hilbert space dimension
d partitioned into two subsystems A and B with sizes
LA ≤ LB, respectively. We find it convenient to introduce
the ratio f ¼ LA=L ≤ 1=2. All the numerical data in this
work will be for one-dimensional spin-1=2 systems, but the
methods readily generalize to higher dimensions and
systems of qudits.
To obtain the microcanonical distribution, we choose

eigenstates jki of the Floquet or Hamiltonian systems with
energy/quasienergy Ek=φk, respectively. The reduced den-
sity matrix obtained from eigenstate jki is

ρA;k ¼ TrB½ρk�; ρk ¼ jkihkj; ð1Þ

with associated von Neumann entanglement entropy

SA;k ¼ −Tr½ρA;k log ρA;k�: ð2Þ

For Hamiltonian systems, we construct the microcanonical
distribution PEðSAÞ by computing the EE of eigenstates in a
small window centered around the middle of the spectrum,
i.e., at an energy density corresponding to infinite temper-
ature (details are discussed in Sec. IV). For Floquet
unitaries, there is no conserved energy or notion of
temperature (or, colloquially, all states are at infinite
temperature); therefore, the full eigenbasis corresponding
to states at all quasienergies is used to construct PEðSAÞ.
Our goal is to define a distance between the micro-

canonical distribution PEðSAÞ and a reference random
distribution PRðSAÞ. A natural choice for the distance
between distributions is the KL divergence,
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DKLðPE; PRÞ ¼
Z

dSAPEðSAÞ log
PEðSAÞ
PRðSAÞ

≥ 0: ð3Þ

The KL divergence is the expectation of the logarithmic
difference between probability distributions, and it is a
measure of the information loss when the reference dis-
tribution PRðSAÞ is used to approximate the empirical
eigenstate distribution PEðSAÞ. The KL divergence is a
type of distance since it is always non-negative and takes
value 0 when the reference and empirical distribution are
equal. However, it is not a metric distance because it is
asymmetric in the two distributions and does not satisfy the
triangle inequality.
Let us evaluate Eq. (3) in a simple yet important

limit. Given the first two moments μE=R and σE=R of the
empirical (eigenstate) and reference (or random state)
distributions, we make a Gaussian approximation for
both PEðSAÞ ≈ ð1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2E

p
Þ exp f−½ðSA − μEÞ2=2σ2E�g and

PRðSAÞ ≈ ð1=
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2R

p
Þ expf−½ðSA − μRÞ2=2σ2R�g. Within

this approximation, DKL quantifies the difference between
means (relative to σR) and the ratio σE=σR through the
nonlinear relations

DKL ¼ Dð1Þ
KL þDð2Þ

KL;

Dð1Þ
KL ¼ ðμE − μRÞ2

2σ2R
;

Dð2Þ
KL ¼ 1

2

��
σE
σR

�
2

− 1

�
− log

σE
σR

: ð4Þ

In what follows, we make this Gaussian approximation and
only focus on the first two moments for the reference and
empirical distributions while computing DKL. While this is
not strictly accurate (the strict upper bound on the value of
entropy produces a skewness, for instance, which has been
computed for random states with and without charge
conservation symmetry [31]), it is still a good approxima-
tion because the higher moments scale with increasing
powers of 1=d, where d is the Hilbert space dimension [31].
The different PRðSAÞ studied in this work, i.e., the Page

and Bianchi-Dona distributions, will be discussed in the
following sections. Both distributions have σR ∼

ffiffiffiffiffiffiffiffi
2−L

p
;

thus, as mentioned earlier, DKL provides a highly resolved
comparison between the microcanonical and reference
RMT distributions by comparing the differences between
their moments on the exponentially small scale set by σR, as

seen by the expressions for Dð1;2Þ
KL in Eq. (4).

As a final remark, we note that the choice of entangle-
ment observable to be used in Eq. (3) is not important for
the purposes of the present work. In particular, we focus
on the von Neumann entanglement entropy as it is a well-
established and well-understood quantity. However, other
entanglement observables could have been used, such as
the Renyi entropy Sn ¼ ð1=1 − nÞ log ðTr½ρnA�Þ, or even the

entire entanglement spectrum. In fact, certain entangle-
ment observables, especially the second Renyi entropy
(n ¼ 2), are easier to measure in ongoing experiments [6].
In the Appendix F, we show that all the conclusions
obtained using the von Neumann EE SA are also true when
calculations are performed using the second Renyi
entropy S2.

III. FLOQUET SYSTEMS

We start by analyzing a minimally structured model of
chaotic thermalizing dynamics, namely, Floquet random
circuits that only feature locality and no other conservation
laws. In the absence of energy or Uð1Þ conservation, we
employ the Page distribution as the reference RMT dis-
tribution. We include a discussion of μR; σR for the Page
distribution for completeness and to set notation, before
presenting our numerical results.

A. Reference distribution I: Page distribution

We begin by recapitulating the Page distribution for the
bipartite entanglement entropy of pure random states
chosen uniformly with respect to the Haar measure, uncon-
strained by symmetry. Our nomenclature takes some
historical liberties: In fact, Page only conjectured (and
partially proved) the expression for the first moment of this
distribution [30]; explicit derivations for the first and higher
moments were later furnished in Refs. [31,61,62].
As mentioned above, we focus on the first two moments

of the Page distribution in this work. The exact analytical
expressions for these moments (for finite system sizes) are
reproduced in Appendix A and used in our numerical
comparisons below. We briefly discuss these expressions
in the limits LA; LB ≫ 1 and when 0 < f ≤ 0.5 is a finite
fraction as L → ∞. The first moment in this limit is
approximated as

hSAiP ≡ μPðfÞ ≈ logðdAÞ −
dA
2dB

; ð5Þ

where dA and dB refer to the Hilbert space dimensions
of subsystems A and B, respectively. We henceforth use
the subscript “P” for Page in order to denote moments
computed with respect to the Haar measure. For a system of
qubits, this reduces to

μPðfÞ ≈ fL logð2Þ − 2−Lð1−2fÞ−1: ð6Þ
The first term is the volume law term, which describes an
entanglement entropy scaling with the size of subsystem A,
LA ¼ fL, while the second term is the Page correction,
which is exponentially small when f < 1=2. For f ¼ 1=2,
it gives rise to a “half-bit” shift:

μP

�
f ¼ 1

2

�
≈
L
2
logð2Þ − 1

2
: ð7Þ
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More recently, the second moment of the distribution was
calculated using various techniques [31,61,62] and, in the
limit LA; LB ≫ 1, is approximated as [28]

σ2PðfÞ ≈
�
1

2
−
1

4
δf;1

2

�
1

d2B
¼

�
1

2
−
1

4
δf;1

2

�
2−2Lð1−fÞ: ð8Þ

The second moment of the distribution σP is exponentially
small in L and scales as

ffiffiffiffiffiffiffiffi
1=d

p
at f ¼ 1=2:

σP

�
f ¼ 1

2

�
≈
1

2

ffiffiffiffiffiffiffiffi
2−L

p
: ð9Þ

Because σP=μP ≪ 1, a typical random state will have EE
given by Eq. (6).

B. Numerical results

We consider a Floquet random unitary circuit comprised
of two layers of Haar random two-site unitary gates acting
on odd and even bonds, UF ¼ UoddUeven, in a spin-1=2
chain of even length L with periodic boundary conditions:

Ueven ¼ U0;1 ⊗ U2;3 ⊗ U4;5 � � � ⊗ UL−2;L−1;

Uodd ¼ U1;2 ⊗ U3;4 ⊗ U5;6 � � � ⊗ UL−1;0: ð10Þ
Each of the unitary matrices Ui;iþ1 is chosen randomly and
uniformly from the Haar measure on Uð4Þ. The time-
evolution operator for integer times t is UðtÞ ¼ Ut

F. We
emphasize that the system has locality and time periodicity
but no additional symmetries.
The microcanonical EE distribution PEðSAÞ is computed

as a function of L for LA ¼ L=2 and compared with the
Page distribution of EE for pure random states. The mean
and standard deviation of the EE distribution are denoted
μU and σU, respectively, where we use the subscript U to
denote eigenstates of unitary circuits, which is more
descriptive than the μE and σE symbols introduced in
Sec. II (which referred collectively to moments of eigen-
state distributions of either Hamiltonian or Floquet sys-
tems). For each system size, we average the microcanonical
EE distribution over 50 circuit realizations and compute the
microcanonical distribution from the entire Floquet spec-
trum for a given realization. For L ≤ 14, we use exact
diagonalization to compute all eigenvectors and quasiener-
gies for UF. For L ¼ 16, we use the polynomial filtering
diagonalization method introduced in Ref. [59] to obtain a
total of 2000 eigenstates per circuit. These eigenstates are
obtained in groups of 50 states centered around 40 evenly
spaced quasienergies distributed across the full quasienergy
spectrum. In Appendix B, we show that our results are not
sensitive to whether the microcanonical distribution is
obtained using the full spectrum vs narrower windows
of states clustered around particular quasienergies.
In Fig. 1(a), we show that the distribution PEðSAÞ for

L ¼ 16 and LA ¼ 8 shows good agreement with the Page

distribution, so the entanglement properties of eigenstates
of FRCs are well described by the entanglement properties
of Haar random states, as expected from numerous
prior works. We now provide a more finely resolved
comparison of the microcanonical and Page distributions
for different system sizes; in particular, we compare both
the first and second moments of these distributions and
probe differences on the exponentially small scale set by σP.
For each eigenstate, we shift the EE of the eigenstate by μP
and normalize by σP [the expressions for μP and σP depend
on L and are provided in Eqs. (A3) and (A4)]. With these
transformations, the Page distribution (within the Gaussian
approximation) reduces to a standard normal distribution
for all L. The shifted and rescaled distributions for
x ¼ ðSA − μPÞ=σP are plotted in Fig. 2(a), with the standard
normal distribution shown for comparison. We see from
this figure that, while the means of the microcanonical and
Page distributions are in close agreement, we find that
PEðSAÞ converges with increasing L to a wider distribution
than Page, i.e., with a larger standard deviation. Both the
right and left tails of PEðSAÞ contribute to the increased
width; thus, in comparison to the Page distribution over
random states, it is more likely for the entropy of FRC
eigenstates to show larger positive and negative deviations
from the Page mean.

FIG. 2. (a) Histogram of eigenstate EE for a FRC as a function
of system size showing a broader distribution than that predicted
by RMT; see also Fig. 1. The standard normal distribution is
shown with dotted lines. (b) System-size scaling of the first two
moments of the EE distribution relative to RMT behavior. Shown
is the convergence of differences in EE means (plotted both
relative to μP and to σP) while finite deviations of standard
deviations persists for all system sizes. (c) Contributions to DKL
by the first two moments of the EE distribution of FRC
eigenstates.
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In Fig. 2(b), we compare the first two moments of the
Page and microcanonical distributions. We find that
μP > μU, but the difference ðμP − μUÞ converges to zero
exponentially with L. First, we normalize ðμP − μUÞ by
μP ∼ L and notice the exponential decrease in ðμP − μUÞ=μP
with increasing L. Next, even upon normalizing by
σP ∼

ffiffiffiffiffiffiffiffi
2−L

p
, which is itself exponentially decreasing with

L, we notice that not only is ðμP − μUÞ an order or
magnitude smaller than σP, but the ratio ðμP − μUÞ=σP still
shows a weak decrease with increasing L (consistent with
plateauing at larger L). In contrast, the differences in
standard deviations is more stark: The ratio of standard
deviations σU=σP plateaus to a constant value of about 1.2,
so the microcanonical standard deviation is about 20%
larger than the Page standard deviation. In other words,
while σU ∼

ffiffiffiffiffiffiffiffi
2−L

p
shows the same exponential scaling as

σP, the prefactor for the scaling is about 20% larger.
The different moments (normalized by σP) contribute to

DKL according to Eq. (4). We show in Fig. 2(c) that Dð2Þ
KL,

the contribution from the second moment, is more than an

order of magnitude larger than Dð1Þ
KL, the contribution from

the first moment. In other words, while the average entropy
of eigenstates of FRCs is well described by the average
entropy of random pure states, the fluctuations of the
microcanonical distribution are markedly larger, so an
increase in the standard deviation is the dominant source
of difference between the microcanonical and Page dis-
tributions. Since the FRC lacks any structure beyond
locality, we attribute the relative increase in the standard
deviation of PEðSAÞ as a correction to RMT that arises from
locality. [63] Indeed, in Appendix C, we show increasing
convergence to the Page moments as the constraint of
locality is relaxed by increasing the period of the Floquet
circuit (i.e., by incorporating increasing numbers of even-
odd layers). We obtain similar results by increasing the gate
range while keeping the period fixed (Appendix C).
There are (at least) two mechanisms by which locality

could affect entropy fluctuations. First, the entanglement
entropy of eigenstates of local FRCs will be sensitive to the
entangling properties of the local unitary gates straddling
the entanglement cuts (in our case, these are two two-site
gates displaced by half the system size). These local unitary
gates have a much larger likelihood of being either weakly
entangling (i.e., close to the identity) or maximally entan-
gling (for example, close to the iSWAP gate) in comparison
to global Haar random unitaries. Thus, even though the
microcanonical distribution of entropy for local FRCs
shows the same exponential scaling as for global Haar
random circuits, σU ∼

ffiffiffiffiffiffiffiffi
2−L

p
, the effect of locality (and, in

particular, the distribution in entangling power for local
gates) could contribute to a larger prefactor for σU. This
idea suggests that exploring different families of local
FRCs could allow us to tune σU and DKL to identify
“maximally chaotic” families of circuits where DKL is

minimized, which would be an eigenstate analog of the
property of maximally chaotic dual-unitary circuits for
which the Thouless time in the spectral form factor is
minimized (and system-size independent) despite spatial
locality [13]. We defer this analysis to future work.
Second, Refs. [18,42–44] showed that there are micro-

canonical correlations between expectation values of local
operators computed in eigenstates of local Floquet circuits
(also implying correlations between reduced density matri-
ces of eigenstates, which are used to compute entanglement
entropy as well). These correlations are not present in an
RMT description of the system, and they arise from the
presence of light cones in the spreading of local operators
(or scrambling of quantum information) in spatially local
systems. In particular, these correlations will be present
even in dual-unitary models for which the Thouless time is
minimized and agrees with RMT. While this analysis does
not directly apply to the microcanonical distribution of
half-system von Neumann entanglement entropy, it is
reasonable to expect that eigenstate correlations of reduced
density matrices could also affect the eigenstate entropy
distribution. Understanding this connection better, and
teasing apart different effects induced by locality that
may contribute to increased σU, is also an interesting
direction for future work.
In summary, the results of this section corroborate that

DKL, particularly microcanonical entropy fluctuations,
furnishes a sensitive and easy-to-characterize metric for
quantifying chaos via deviations from RMT. This metric
can be used to compare different models with ease and can
encapsulate various different effects of locality that may
individually be more difficult to calculate, benchmark, and
compare across models and observables. We now turn to
studying this metric in a family of mixed-field Ising
Hamiltonians parametrized by the strength of a transverse
and longitudinal field. We will identify maximally chaotic
models within this family of Hamiltonians by minimizing
DKL in parameter space.

IV. HAMILTONIAN SYSTEMS

We now consider the microcanonical distribution of EE
produced by midspectrum eigenstates in the MFIM, a
paradigmatic model that exhibits both chaotic and inte-
grable limits depending on the model parameters. We first
present the Bianchi-Dona distribution and argue why it
serves as a better reference random distribution (as com-
pared to the Page distribution) for Hamiltonian systems
with energy conservation. We then introduce the MFIM
model, generate the empirical distribution of midspectrum
eigenstate entropies, PEðSAÞ, and compare the first two
moments with the BD distribution. We quantify the dis-
tance between the distributions using the KL divergence,
Eq. (4), and compare with conventional measures of
quantum chaos such as level statistics.
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A. Reference distribution II: Bianchi-Dona distribution

The presence of symmetries can affect the distribution of
the EE. We argue that the symmetry of primary interest in
this work corresponds to the conservation of an additive
local scalar charge M. We refer to the distribution of
entanglement entropy for pure random states subject to this
constraint as the BD distribution [31], but note that some
aspects of this ensemble of random states were previously
discussed by Huang in Refs. [35,36]. We first describe this
distribution and then argue why it captures important
contributions of energy conservation to the EE of mid-
spectrum eigenstates of spatially local Hamiltonians.
BD considered systems with an additive local charge that

decomposes between a bipartition of the system into
subsystems A and B as M ¼ MA þMB. For concreteness,
it is convenient to think of 0 ≤ M ≤ L as an integer particle
number, with each site only able to accommodate a
maximum of one particle. The Hilbert space HðMÞ of
states with fixed charge M no longer has a tensor product
structure but instead decomposes as a direct sum of tensor
products:

HðMÞ ¼ ⨁
minðM;LAÞ

MA¼maxð0;M−LBÞ
HAðMAÞ ⊗ HBðM −MAÞ: ð11Þ

The Hilbert space dimension of HAðMAÞ is dA;MA
¼ ðLA

MA
Þ,

and the Hilbert space dimension of HBðM −MAÞ is
dB;M−MA

¼ ð L−LA
M−MA

Þ. The total Hilbert space dimension isP
MA

dA;MA
dB;M−MA

¼ dM ¼ ðLMÞ. A random state with
fixed total charge jΨMi∈HðMÞ can be expressed as a
superposition of orthonormal basis states,

jΨMi¼
X
MA

XdA;MA

α¼1

XdB;M−MA

β¼1

ψ ðMAÞ
α;β jα;MAi⊗ jβ;M−MAi; ð12Þ

where the limits of the sum over MA are the same as in

Eq. (11), and ψ ðMAÞ
α;β are uncorrelated random numbers up to

normalization.
The reduced density matrix of such a state in subsystem

A is of block-diagonal form, ρA;M ¼ P
MA

pMA
ρA;MA

, where
the factors pMA

≥ 0 come from normalizing ρA;MA
in each

MA sector and satisfy
P

MA
pMA

¼ 1. The probability of
finding MA particles in A is given by pMA

, which is thus
interpreted as the (classical) probability distribution of
particle number in A. The entanglement entropy can then
be expressed as

SðρA;MÞ ¼
X
MA

pMA
SðρA;MA

Þ − pMA
logpMA

; ð13Þ

where the second term on the rhs is the Shannon entropy of
the number distribution pMA

, which captures particle

number correlations between the two halves, while the
first term captures quantum correlations between configu-
rations with a fixed particle number [64].
The uniform measure onHðMÞ was derived in Ref. [31]

and is the product of the distribution on the pMA
’s and the

uniform Haar measure within each number sector. The
resulting analytical expression for the first two moments of
the EE distribution for random states of the form Eq. (12) is
reproduced in Appendix A (as a function of L, M), and
these exact results are used in our numerical comparison
below. In this section, we again discuss these moments in
the limits LA; LB ≫ 1, for which asymptotic forms were
derived in Ref. [28]. In these limits, the average entangle-
ment entropy of the BD distribution is given by

μBDðf;mÞ ≈ fL½−ð1 −mÞ logð1 −mÞ −m logðmÞ�

−
ffiffiffiffi
L

p
δf;1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1 −mÞ

2π

r ���� log
�
1 −m
m

�����
þ f þ logð1 − fÞ

2
−
1

2
δf;1=2δm;1=2; ð14Þ

wherem ¼ M=L. The first term is the volume law term that
scales proportionately with LA ¼ fL, and the prefactor
accounts for the reduced Hilbert space dimension in
symmetry sector M. When f ¼ 1=2, the EE has an addi-
tional

ffiffiffiffi
L

p
contribution, which comes from a saddle-point

evaluation of the probability distribution of m and which
has also been discussed in Refs. [26,27]. This correction
can make finite-size analysis more complicated, but it
vanishes at half-filling, m ¼ 1=2, which is the maximum
entropy case that will be of interest to us in our comparisons
with infinite-temperature eigenstates.
Evaluating Eq. (14) at half-filling (m ¼ 1=2) and for

equal bipartitions (f ¼ 1=2) yields

μBDðf ¼ 1=2;m ¼ 1=2Þ≈ fL logð2Þ− 1

2
þ 0.5þ logð0.5Þ

2
:

ð15Þ

Relative to the Page entropy at f ¼ 1=2, Eq. (6),
this expression has an “extra” deficit of size
j0.5þ logð0.5Þ=2j ≈ 0.0966 (see relative shifts in Page
and BD distributions plotted in Fig. 1; numerical values
for μP and μBD showing the 0.1 difference for L ¼ 8 to 16
are shown in Table I of Appendix A). As we will show in
the next section, this shift accounts for the Oð1Þ deviations
between infinite-temperature eigenstates of local
Hamiltonians (without any additional symmetries) and
the Page entropy, which have been previously noted in
the literature [34–36].
The second moment of the BD distribution in the

LA; LB ≫ 1 limit is approximated by

σ2BDðf; nÞ ≈ αL3=2e−βL; ð16Þ
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where β ¼ −m logm − ð1 −mÞ logð1 −mÞ and α is an
Oð1Þ numerical prefactor in the limits of interest. At
m ¼ f ¼ 1=2, the variances for the Page and BD distri-
butions scale similarly with system size, i.e., around
1=d2B ∼ 2−L. Away from this limit, the rate of exponential
decrease β is different for the two distributions. However,
similarly to Page, σBD=μBD ≪ 1, so the average entropy of
a constrained pure state in a fixed M sector is also typical.
Finally, note that we compare the BD distribution to the

EE distribution produced by eigenstates of the MFIM
model in Eq. (18). The MFIM has time-reversal symmetry,
and thus its eigenstates are real-valued vectors, whereas the
BD distribution was derived for complex random states.
Thus, the references μBD and σBD need to be adjusted. For
the case of unconstrained random states (i.e., without any
symmetry), it has been found [61,65,66] that the distribu-
tion of EE for both real and imaginary pure random states
asymptotically has the same mean value, given by the Page
mean, μGOEP ≈ μGUEP , Eq. (A3). On the other hand, the
standard deviation of the EE distribution, σP, is (asymp-
totically) larger by a factor of

ffiffiffi
2

p
for real random states

[61,65,66], σGOEP ≈
ffiffiffi
2

p
σGUEP , where GOE and GUE refer to

the orthogonal and unitary ensembles applicable for real
and complex random states. The exact finite-size expres-
sions for the mean and standard deviation of the EE of real
random states look significantly more complicated than the
expressions for the Page distribution for complex random
states, but we show in Appendix A that numerically
obtained values for the mean and standard deviation of
real random states converge to μGUEP and

ffiffiffi
2

p
σGUEP with

increasing L. For constrained states, exact analytic results
for real random states with charge conservation, i.e., the
GOE version of the BD distribution, have not yet been
derived. However, similar to the Page case, in Appendix A,
we numerically find that the means of the EE distribution
produced by real and imaginary states in a given symmetry
sector converge to the same value with increasing L, while
the standard deviation is again a factor of

ffiffiffi
2

p
larger for

real states. In what follows, whenever we refer to σBD, we
are referring to σGOEBD , which is inflated by a factor

ffiffiffi
2

p
relative to the exact expression for σBD in Eq. (A6), while
we continue to use the expression for μBD in Eq. (A5) for
the mean [67].

1. Application of the BD distribution to midspectrum
Hamiltonian eigenstates

We have seen in the previous section that the approach to
compare the eigenstates of FRCs with unconstrained pure
random states captures certain properties like the average
entropy, while deviations from RMT due to locality are
dominantly reflected in higher moments.
To generalize this analysis to Hamiltonian systems, we

must contend with the fact that energy conservation adds
additional structure that is not captured by the Page

distribution and that already results in finite deviations
in the average half-system entropy of infinite-temperature
eigenstates [34–37] (see Fig. 1). The goal is to identify a
new (more constrained) random state distribution that
incorporates the effect of energy conservation so that
differences between the new reference distribution and
the microcanonical distribution can be dominantly attrib-
uted to features such as locality.
We now argue why the BD distribution furnishes a better

RMT ensemble for describing midspectrum eigenstates of
local Hamiltonians, even in the absence of additional Uð1Þ
symmetries like particle number. The effect of energy
conservation alone can be captured, within certain approx-
imations, by that of conservation of a local additive Uð1Þ
charge, and the BD distribution incorporates this feature.
Our arguments recapitulate and build on part of the
discussion in Ref. [36], which argued for anOð1Þ deviation
between the Page entropy and mean EE of Hamiltonian
eigenstates.
As mentioned, we are interested in the eigenstate

entanglement entropy SA of a subsystem of size A. We
write the Hamiltonian as H ¼ HA þHB þHAB, where
HA (HB) has support in A (B) only and HAB has support
in both A and B. We can write any eigenstate of H with
energy E, jψEi, in the basis of tensor products of eigen-
states of HA, HB:

jψEi ¼
X
ij

cijjϵiiAjϵjiB ð17Þ

Deutsch proposed [1] that Hamiltonian eigenstates could be
modeled as random states in which cij is a random matrix
with a narrow bandwidth that approximately imposes that
the sum of energies of the subsystems is approximately
equal to E: δEij ≡ ϵi þ ϵj − E ≈ 0 (the equality is not exact
because of HAB). Reference [27] used ETH to refine this
conjecture to a more explicit form in which cij is modulated
by a “window function” FðδEijÞ that penalizes deviations
away from δE ¼ 0 on a scale set by Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψEjHABjψEi

p
.

With the condition δEij ≈ 0, Eqs. (12) and (17)
are conceptually very similar. However, there are also
differences that we must treat with caution: (i) The presence
of the HAB term (which is also responsible for the state
being entangled in the first place) means that the δEij is
only approximately (rather than exactly) equal to 0. (ii) The
spectrum ofH is dense, so the Hilbert space does not factor
into a sum of tensor products as in Eq. (13).
Both these differences can be addressed if we make an

approximation that sets the window function FðδEijÞ to be
strictly zero outside some width δ set by Δ so that cij is a
strictly banded random matrix. This method is also well
motivated because of a mathematical proof in Ref. [68],
which shows that, for local Hamiltonians, there exist
constants c, δ > 0 such that

P
ΔE≥Λ jcijj2 < ce−Λ=δ.
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The truncated state can now be put in the form of Eq. (12)
[note that ψMA

α;β in Eq. (12) is a banded random matrix]
because the same truncated state can be equivalently
obtained by discretizing the spectrum of HA, HB in steps
of size δ so that all eigenvalues with energy Ei − δ=2 ≤
E < Ei þ δ=2 are assigned to the ith step Ei. This process
produces a degeneracy for Ei, similar to the degeneracy in
MA=B for the Uð1Þ case. Then, the truncated state is just a
random constrained state with the strict constraint that
Ei þ Ej ¼ E, which now looks identical to the Uð1Þ
constrained state of the previous section in which the step
size was 1. Thus, the Hilbert space is factored into a sum
of tensor products, as in Eq. (13). The relative dimensions
of the steps at different energies also become equivalent
to the Uð1Þ case in the large system limit since the density
of states of the Hamiltonian approaches a Gaussian, as
does the binomial “choose” function, which sets the sizes
of the Uð1Þ sectors.
We emphasize that the locality of the Hamiltonian is

crucial for making the connection between the eigenstate
and BD distributions. The truncation scale Δ is set by HAB,
and we need Δ ∼Oð1Þ for the arguments above. More
colloquially, we want HAB to be a weak boundary term,
which is necessary to couple the subsystems but can be
taken to be arbitrarily small while still obtaining a thermal
state. In contrast, we expect that eigenstates of long-range
or k-local models (i.e., SYKmodels or systems with power-
law interactions) will have the same universal properties as
pure random states without any constraints, and we defer a
more detailed analysis of this to future work.
Finally, we note that our arguments above do not rule

out the possibility of nonuniversal Oð1Þ corrections in the
mean EE induced by the truncation of the cij matrix and the
presence of the HAB term. Nevertheless, we find below that
the agreement between BD and the Hamiltonian eigenstate
distribution is surprisingly good and that it captures most of
the observed difference between the eigenstate EE and Page
mean. For this reason, we conjecture that the BD distri-
bution is the best universal distribution to incorporate the
effects of energy conservation.

B. Mixed-field Ising model

We now describe the Hamiltonian model studied in this
work, the one-dimensional MFIM:

H ¼
X
i

ðσziσziþ1 þ gσxi þ hσzi Þ; ð18Þ

where σαi (α ¼ x, y, z) are Pauli matrices, g is the transverse
field, and h is the longitudinal field. We use open boundary
conditions in order to break translational symmetry, and we
add additional boundary fields h1 ¼ 0.25 and hL ¼ −0.25
at the edges to break inversion symmetry. [69] The MFIM
has various limits of physical interest. When h ¼ 0, the
model can be mapped to a free fermion model through a

Jordan-Wigner transformation [70]; therefore, the model is
noninteracting and integrable. A finite value of h breaks
integrability. In addition, the model hosts two classical
integrable limits: (i) g ¼ 0 corresponds to the classical Ising
model (diagonal in the σz basis), and (ii) g ≫ 1 corresponds
to the classical paramagnet (diagonal in the σx basis).
The MFIM has been extensively studied numerically in

the context of thermalization and chaos [49,71,72], with
diagnostics ranging from eigenstate entanglement entropy
to level spacing ratio [71] to entanglement growth [49] and
operator spreading dynamics [72,73]. These numerical
studies have largely worked with two parameter choices
that have been identified as showing particularly strong
thermalizing behavior even at relatively small sizes: the
Banuls-Cirac-Hastings (BCH) parameters [48], g ¼ −1.05
and h ¼ 0.5; and the Kim-Huse (KH) parameters [49],
g ¼ ð ffiffiffi

5
p þ 5Þ=8 ≈ 0.9045 and h ¼ ð ffiffiffi

5
p þ 1Þ=4 ≈ 0.8090.

These choices have become standard in the literature, and
we will refer back to them once we discuss our numerical
results. In particular, we find that these points are not the
most chaotic with respect to the more resolved metric of
chaos we present, even as various other standard diagnos-
tics look chaotic at these parameter values.
In what follows, we focus on the distribution of

entanglement entropy of midspectrum eigenstates for a
half subsystem, f ¼ 1=2, centered in the middle of the
system. We use exact diagonalization to obtain the entire
spectrum for system sizes up to L ¼ 14 and fit the density
of states (DOS) to find the energy corresponding to the
peak of the DOS, i.e., to infinite temperature [since
TrðHÞ ¼ 0, the value of energy corresponding to infinite
temperature approaches zero with increasing size, but
finite-size systems can show small deviations within the
scale of energy fluctuations]. We then obtain the EE of
all eigenstates centered in a small energy window around
the peak energy and compute the mean and standard
deviation of the EE of these eigenstates, denoted μH
and σH, respectively. Here, the subscript H refers to
“Hamiltonian,” to be contrasted with Floquet unitaries
studied in the previous section, and is thus more descriptive
than the μE and σE symbols introduced in Sec. II, which
referred collectively to eigenstate distributions of either
Hamiltonian or Floquet systems.
The number of eigenstates within the energy window

centered at the DOS peak is chosen large enough to
minimize the uncertainty of μH and σH but small enough
to avoid systematic effects induced by finite-temperature
eigenstates. Here, we use windows with 100, 400, and 600
states for L ¼ 10, L ¼ 12, and L ¼ 14, respectively. For
larger system sizes (L ¼ 16), we do not diagonalize the full
spectrum but, instead, use the shift-invert method [58] to
find 2000 eigenstates closest to E ¼ 0. Our results are quite
robust to changes in the number of states chosen, and a
discussion on selecting a window size with an appropriate
number of states is presented in Appendix B.
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For comparison, we also show data for the level spacing
ratio [12] averaged over the same energy windows defined
above. The ratio factor is a commonly used diagnostic of
level repulsion and is defined using three consecutive
eigenstates, fEn−1; En; Enþ1g, as

0 ≤ rn ¼
minðΔEn;ΔEnþ1Þ
maxðΔEn;ΔEnþ1Þ

≤ 1; ð19Þ

with ΔEn ¼ En − En−1. Integrable systems exhibit uncor-
related level statistics described by a Poisson distribution
with average ratio factor hri ¼ 0.386 [10]. Chaotic systems
exhibit level repulsion described by Wigner-Dyson statis-
tics with an average ratio factor hri ¼ 0.536 [10].

C. First moment of the EE distribution

We begin our discussion by focusing only on the first
moment of the microcanonical EE distribution μH, and we
study its system-size dependence. Figure 3 shows μH as a
function of the transverse field g while keeping h fixed to
h ¼ 0.3. The choice of h ¼ 0.3 corresponds to a strongly
chaotic cut, as will become clear in the next subsection.
All curves are normalized by the theoretical value of the
first moment of the BD distribution, μBD, obtained from
Eq. (A5) of Appendix A and evaluated at half-filling
(maximum entropy), m ¼ 1=2, and equal bipartition,
f ¼ 1=2.

We find excellent agreement between the means μH and
μBD in a wide range of parameters centered around g ≈ 1.1.
In particular, for L ¼ 16, we find agreement between μH
and μBD up to the fifth significant digit. In addition, by
increasing the system size, we observe that μH approaches
μBD in an increasingly larger region of parameter space:
Although there are sizable deviations between μH and μBD
close to integrable limits (g ≪ 1 or g ≫ 1), they tend to
decrease with increasing system size. To leading order, this
behavior agrees with that observed using spectral metrics of
chaos: The MFIM exhibits chaotic behavior for all finite
values of g in the thermodynamic limit.
In contrast, we observe statistically significant deviations

between μH and the mean EE of pure random states without
any constraint μP (dotted lines) for all values in parameter
space and for all system sizes, consistent with recent
observations [34–36]. Such behavior is visible in the inset
of Fig. 3, which shows a zoomed version of the main panel
with μP, Eq. (A3), plotted with dotted lines. These results
provide strong numerical corroboration that, in contrast
to the Page distribution, the BD distribution is a better
reference RMT distribution for midspectrum eigenstates of
local Hamiltonians.
At the level of the first moments, the Hamiltonian results

are analogous to the FRC results: Pure random states (with
appropriate constraints) correctly describe the first moment
of the EE distribution of eigenstates in quantum chaotic
systems. In the following two subsections, we use the more
refined metric DKL, which compares differences on the
exponentially small scale set by σR and also incorporates
the effects of the second moment of the EE distributions.

D. Kullback-Liebler divergence and maximally
chaotic Hamiltonians

Having discussed the behavior of the first moment of the
microcanonical EE distribution relative to the BD distri-
bution, we now employ our more refined measure of
“distance between distributions” using the KL divergence.
As discussed in Sec. II, we only use the first two moments
to compute the KL divergence via Eq. (4).
Figure 4(a) shows the value of DKL as a function of

model parameters ðg; hÞ for L ¼ 14. A noticeable feature
of Fig. 4(a) is that, for most of the parameter space, the
eigenstate and RMT distributions exhibit relatively large
deviations from each other. Indeed, there is only a small
region of parameter space where the value of DKL is small
(i.e.,DKL ≲ 1). The minimum value forDKL is obtained for
ðg�; h�Þ ¼ ð1.10� 0.05; 0.30� 0.05Þ, which thus corre-
sponds to the MC parameters for this metric and this
family of MFIM Hamiltonians. The KL divergence
increases exponentially as ðg; hÞ are tuned away from
the MC parameters, Fig. 4(c). The MC parameters that
we find are relatively close to the BCH parameters in
Ref. [48] but far from the KH parameters in Ref. [49], even
though both sets of parameter choices are widely employed

FIG. 3. Finite-size scaling of the first moment μH of the
microcanonical entanglement entropy distribution of Hamilto-
nian eigenstates plotted as a function of the transverse field g in
the MFIM. Results are normalized with respect to the first
moment μBD of the BD distribution. Curves are plotted for
system sizes L ¼ 12, 14, and 16 and a longitudinal field h ¼ 0.3.
We see that the microcanonical mean converges to μBD. The inset
is a zoomed version of the main panel (see shaded region)
showing the approach to the BD distribution (dotted dashed lines)
and statistically significant deviations from the Page distribution
(dotted lines). The arrows indicate the standard deviation σBD of
the BD distribution for the different system sizes.
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in studies of chaos in the MFIM. Both parameter choices
are indicated in Fig. 4(a). In the next subsection and in
Appendix E, we show a more detailed comparison between
the MC parameters identified in this work and those
commonly used in the literature.
To contrast the behavior of DKL with other metrics of

chaos, in Fig. 4(b), we plot the average level spacing ratio
hri as a function of g and h. We find that hri is featureless

and saturates to the RMT value hri ≈ 0.54 in a very broad
region of parameter space, unlike DKL, which is only
minimized in a small region of parameter space around
ðg�; h�Þ ¼ ð1.1; 0.35Þ. Figure 4(c) shows two linecuts as a
function of g, at the h value corresponding to the MC and
KH points. We see that hri quickly saturates to the RMT
value away from the g ¼ 0, while DKL shows strong
variation in parameter space even for parameters for which
hri looks strongly chaotic. This finding is consistent with
the general picture discussed above, which argues that DKL
is a much more resolved metric of quantum chaos.
The enhanced proximity to RMT behavior in a small

pocket of parameter space is quite striking: It seems to
indicate that maximally chaotic local Hamiltonians—those
with microcanonical distributions of EE reproducing
the first and higher moments of pure random state
distributions—are not typical. Although our two-parameter
model exhibits agreement with RMT in a small region of
parameter space, a tantalizing possibility is that these small
regions shrink to a fine-tuned point when extending the
space of local Hamiltonian models to include a larger
number of parameters. This idea is reminiscent of inte-
grable models that are assumed to be fined-tuned points in
parameter space. It is also reminiscent of special classes of
Floquet models, namely, dual-unitary Floquet models, in
which the spectral form factor shows a Thouless time
equal to 1 and which are therefore considered maximally
chaotic from the lens of spectral statistics [13]. While our
analysis is restricted to the two-dimensional parameter
space of the MFIM, an interesting question for future
study is whether there exists a Hamiltonian with more
parameters (but still local) where the distance to RMT
behavior is provably minimal.
Finally, as commented above, we emphasize that these

results—the excellent agreement between the EE behavior
of eigenstates and constrained RMT ensembles in small
pockets of parameter space—are insensitive to the choice of
entanglement observable used. In Appendix F, we repro-
duce these results by using, instead, the second Renyi
entropy S2.

E. Higher moments of the EE distribution

We finish our discussion of Hamiltonian systems by
showing the full EE distribution of midspectrum eigen-
states for various representative parameter values and
parsing how different moments of the microcanonical
EE distribution contribute to DKL for different linecuts.
Figure 5 shows (a) jμH − μBDj=σBD and (b) σH=σBD − 1

for h ¼ ð1þ ffiffiffi
5

p
=4Þ ≈ 0.8090 (the Kim-Huse choice) and

as a function of g. Both ratios are normalized with σBD, as
they appear in the definition ofDKL. We observe substantial
variation in these ratios as a function of g, with both
quantities (and hence DKL) changing by orders of magni-
tude as g is tuned. The moments are closest to the BD
predictions near g ≈ 1.5. Interestingly, we observe a good

FIG. 4. Color maps of (a) the KL divergence and (b) the
average ratio factor hri computed for the MFIM with transverse
field g and longitudinal field h, for L ¼ 14. The DKL contour
plot shows that, within the parameter space of the MFIM
model, the parameter values near ðg�; h�Þ ¼ ð1.1� 0.05; 0.30�
0.05Þ are the most chaotic, with DKL steeply increasing away
from these values. Also indicated are the KH (square) and BCH
(star) parameters that have been widely used in studies of
thermalization, which show much larger values of DKL. In
contrast, panel (b) shows that the value of hri is saturated at the
RMT value, signals chaos in a broad region of parameter space
(including the BCH and KH parameters), and does not exhibit
the resolution observed in panel (a). (c) Horizontal linecuts of
DKL and hri across the MC and KH parameters; see horizontal
dotted-dashed and dotted lines, respectively, in panels (a) and
(b). The reference GOE and Poisson ratio factors are indicated
on the right vertical axis.
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collapse of both ratios as a function of L in the parameter
region 1≲ g≲ 2 centered around g ≈ 1.5. In other
words, in this regime, both the microcanonical and RMT
standard deviations scale similarly with system size,
σH ∼ σBD ∼

ffiffiffiffiffiffiffiffi
2−L

p
, but, similar to the Floquet case, σH

still has a systematically larger prefactor by about 20%.
Likewise, the difference between the means is exponen-
tially small in L, again with the same scaling as σBD. In this
chaotic (but not maximally chaotic) regime, the value of
DKL appears to converge with L to a fixed value.
On tuning g away from the chaotic region near g ≈ 1.5, we

observe a crossover in the functional dependence of σH with
L, which goes from displaying chaotic scaling [in particular,
σH decreasing exponentially with increasing system size
according to Eq. (16)] to near-integrable behavior (σH
decreasing polynomially with increasing system size).
Accordingly, the ratio σH=σBD increases exponentially
with L near integrability (g small). Similarly, the ratio
jμH − μBDj=σBD increases exponentially with L in the same
near-integrable regime, where the difference in microcanon-
ical and BD means is only polynomially converged.
Remarkably, we see that the sensitivity of the two ratios

shows deviations from RMTover a large range of g’s, with
the near-integrable scaling observed throughout the win-
dow 0 ≤ g≲ 0.8 and persisting all the way to g ∼ 0.8,
which is comparable to J. These more sensitive metrics
also reveal that the Kim-Huse parameter choice g ≈ 0.9
(marked by a square in Fig. 5) is surprisingly near the
crossover from the integrable to chaotic scaling in the
ratios, in contrast to measures like hriwhich look strongly
chaotic for the KH parameters.
We note that previous works have employed the cross-

over from power-law to exponential scaling of the fluctua-
tions of local operators as a way to distinguish chaotic from
integrable behavior [60]. This method was shown to be a
more sensitive probe of chaos as compared to spectral
metrics such as the ratio factor, in the sense of detecting
chaos before the ratio factor when tuning away from an
integrable point. In contrast, we use our ratios to detect
deviations from chaos even in regimes where hri looks
strongly thermal.
In Fig. 5(c), we show the full distribution of EE of

midspectrum eigenstates, appropriately shifted and rescaled,
for g ¼ 1.5, which is the most chaotic point with minimal
DKL along this linecut (denoted by a triangle in Fig. 5). The
rescaled distributions appear to be well converged with
system size. Compared to the FRC data in Fig. 2, we notice
that the mean also shows a sizable departure and is several
standard deviations away from σBD.
Indeed, in most of the parameter space away from the

MC point marked in Fig. 4, we notice that the main
contribution toDKL comes from the first moment, although

Dð1Þ
KL and Dð2Þ

KL closely track each other in their qualitative
behavior as a function of g. Given this observed departure
in the first moment, in Appendix D, we also present a
related diagnostic of chaos which is agnostic to the
reference RMT distribution and only looks at the (nor-
malized) fluctuations of EE: σH=

ffiffiffiffiffiffiffiffi
2−L

p
. This ratio is

expected to be system-size independent and minimized
for maximally chaotic systems while being exponentially
increasing for L for near-integrable systems. Figure 11
in Appendix D shows that this ratio yields a qualitatively
similar landscape of chaos in parameter space as DKL
in Fig. 4(a).
Next, in Fig. 6, we plot the same ratios as in Fig. 5 but for

a cut at h ¼ 0.3, which includes the maximally chaotic
point that minimizes DKL in the ðg; hÞ parameter space.
Again, in the near-integrable regimes (g ≈ 0 and g ≫ h),
the ratios involving both moments show an exponentially
increasing trend with L, for reasons identical to those
discussed above. There is, however, a notable difference
from Fig. 5 in the parameter regime near the MC point at
g ≈ 1.1. In particular, we find that both ratios show a sharp
change for the largest size (L ¼ 16), showing much better
convergence with the BD predictions at the MC point, and
the ratio involving the first moment shows a steep increase
away from the MC point, as shown in Fig. 6(a). In fact, we

FIG. 5. (a) Difference between the EE mean of midspectrum
eigenstates and μBD normalized with the EE standard deviation
of pure random states. (b) Ratio between the EE standard
deviation of midspectrum eigenstates and σBD as a function of
system size and transverse field g. Plots are shown for L ¼ 12,
14, and 16, and for h ¼ ð1þ ffiffiffi

5
p Þ=4 ≈ 0.8090. The number of

states used to compute the first two moments is discussed in the
main text. The vertical dashed line indicates the most chaotic
point (minimal DKL) along this linecut (g ≈ 1.5), while the
square symbol indicates the KH parameters. (c) Histogram of
midspectrum entanglement entropy for the most chaotic point
along this linecut, ðg; hÞ ¼ ð1.5; 0.8090…Þ, as a function of
system size. The reference standard normal distribution is
shown with dotted lines.
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also observe that, for a small range of parameters near
g ¼ 1.1, the microcanonical standard deviation is even
slightly smaller than the reference σBD, which is why we
plot the absolute value of the deviation of this ratio from 1
in Fig. 6(b). The full distribution of midspectrum eigen-
states for the MC parameters is shown in panel (c), showing
almost perfect agreement with the BD distribution at
L ¼ 16, even more so than the FRC data in Fig. 2, which
showed an observable difference in the second moment.
This near-perfect agreement with the BD distribution at

the MC point and the sharp change in behavior with L and g
near this point is quite surprising—a priori, one might
expect deviations from BD everywhere in parameter space
given that the Hamiltonian is local and only has two tuning
parameters. One might also expect a gentler change in
behavior in parameter space away from the MC point,
contrary to what is observed in Fig. 6(a). We defer a more
detailed analysis of the MC point and perturbations away
from it to future work.

V. DISCUSSION AND OUTLOOK

We introduce a framework that allows us to quantify
beyond-RMT correlations in quantum chaotic systems by

comparing the ensemble properties of eigenstates and those
of pure random states. In particular, our framework relies
on introducing a quantitative notion of distance using the
Kullback-Liebler divergence to compare the microcanon-
ical distribution of EE generated by eigenstates of local
Floquet or Hamiltonian systems and a reference random
distribution. This notion of distance serves as a much more
resolved measure of chaos than those conventionally used
in the literature, such as level spacing statistics, as it
compares higher moments of the microcanonical and
reference distributions on the exponentially small scale
set by σR. As a result, it not only distinguishes between
integrable and chaotic behavior but also furnishes a
continuous “ruler” that measures deviations from RMT
even as other spectral metrics such as the level spacing ratio
have saturated to their thermal values.
Besides introducing a new method for characterizing

thermalization, we emphasize several other ramifications of
our work. First, we show that the distribution of entangle-
ment entropy deviates from RMT predictions even in
paradigmatic models of strongly thermalizing dynamics,
namely, FRCs without any structure other than locality.
This case is primarily reflected in the ratio σU=σP > 1,
which is larger than 1 and stable with increasing system
size. An interesting direction for future work is to under-
stand how different physical effects stemming from locality
contribute to the increased standard deviation. For example,
prior works [18,39–44] have shown that the existence of a
light cone in the spreading of operators in local quantum
systems leads to beyond-RMT spectral correlations in the
eigenstate expectation values of local operators. It would be
fruitful to try to establish a quantitative connection between
these correlations and the increased standard deviation of
the microcanonical ensemble. Locality also implies that the
entangling properties of the local gates in the FRC (those
that straddle the entanglement cut) play an important role in
the eigenstate entanglement.
Second, our work provides evidence that a more suitable

reference distribution for comparing eigenstates of local
Hamiltonian systems is the Bianchi-Dona distribution
[which accounts for the presence of a Uð1Þ charge] as
opposed to the Page distribution, which has been the
standard reference distribution in almost all previous
works. In particular, building on Ref. [36], we argue that
local Hamiltonians with energy conservation effectively
have a local scalar charge that behaves similarly to theUð1Þ
charge for infinite-temperature eigenstates and for large
enough subsystems. An important direction for future work
is to better understand the effects of finite temperature,
locality, and symmetries (including multiple, possibly
noncommuting symmetries, or kinematic constraints like
dipole-moment conservation or Rydberg blockades) in
setting the appropriate reference RMT ensemble for
Floquet or Hamiltonian systems and to try to incorporate
the universal contributions of these features into the

FIG. 6. (a) Difference between the EE mean of midspectrum
eigenstates and μBD normalized by σBD, and (b) ratio between EE
standard deviations of midspectrum eigenstates and σBD as a
function of system size and transverse field g. Plots are shown for
L ¼ 12, 14, and 16, and for h ¼ 0.3. The number of states used to
compute the first two moments is discussed in the main text. The
vertical dashed line indicates the most chaotic point (minimal
DKL) along this linecut (g ¼ 1.08), which also coincides with the
most chaotic parameters in the 2D parameter space. (c) Histogram
of midspectrum EE for the most chaotic parameters as a function
of system size, showing an approach to RMT behavior. The
reference standard normal distribution is shown with dotted lines.
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reference distribution. Separate from the challenge of
finding an appropriate reference distribution, we showed
that the microcanonical fluctuations of EE (normalized byffiffiffiffiffiffiffiffi
2−L

p
) serve as an independent (and reference agnostic)

diagnostic of chaos, which qualitatively displays similar
behavior to DKL in parameter space and is minimized for
the most chaotic models.
Third, our results show a strong and surprising variation

of DKL in parameter space for the MFIM, showing strong
deviations away from RMT even for parameters that have
been previously identified as strongly chaotic and in
parameter regimes where other metrics have saturated to
chaotic values. Conversely, we observe that DKL is mini-
mized in small pockets of parameter space, suggesting that
there might be families of maximally chaotic Hamiltonians.
This case is somewhat reminiscent of “minimally chaotic”
(integrable) systems, which are known to be fine-tuned
points of measure zero in parameter space, or maximally
chaotic dual-unitary Floquet circuits. More detailed studies
about these maximally chaotic regions (or points) and
understanding their dynamical properties remain open
directions for future research.
Finally, our method relies on measuring the entangle-

ment patterns of typical quantum states of physical sys-
tems, posing interesting challenges in the experimental
implementation of our approach. Entanglement observ-
ables have traditionally been very hard to measure, as they
require performing quantum state tomography on subsys-
tem properties—a task that requires an exponentially large
amount of measurements on the number of subsystem
degrees of freedom. However, it has recently been noted
that one can bypass quantum state tomography and access
important properties of quantum states in an experimentally
efficient way. One such approach is the “randomized
measurement toolbox” [74], which gives access to proper-
ties such as the Renyi entropies [75,76], entanglement of
mixed states [77], Fisher information [78], fidelities [79],
the spectral form factor [80], and conservation laws [81],
among others. In addition, while preparing individual
eigenstates in experiments is extremely challenging, it is
plausible that one can effectively sample the microcanon-
ical ensemble from the late-time dynamics if the initial state
is properly chosen. In the context of Hamiltonian systems, a
suitable approach would be to use low-entanglement initial
states (i.e., states that are easy to prepare using a few local
operations) having small energy variance [82,83]. Using
these modern capabilities to find the best pathway to
diagnose and quantify quantum chaos in experiments is
an interesting direction for future work.
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APPENDIX A: MOMENTS OF THE
ENTANGLEMENT ENTROPY DISTRIBUTION

FOR PURE RANDOM STATES

1. Page distribution for pure random states

The distribution of entanglement entropy averaged over
pure random states was computed analytically in several
works [31,61,62]. A pure state jψi on the composite system
H ¼ HA ⊗ HB can be expanded as a linear combination

jψi ¼
XdA
i¼1

XdB
j¼1

Ci;jjii ⊗ jji; ðA1Þ

where dA (dB) is the Hilbert space dimension of system
A (B), and the coefficients Ci;j are the entries of a
rectangular dA × dB matrix C. The reduced density matrix
for such a state after tracing out the degrees of freedom in
system B is

ρA ¼
XdA
i;i0¼1

Wii0 jiihi0j; ðA2Þ

with Wii0 ¼
P

j CijC�
i0j ¼ ðCC†Þii0 . The entanglement

entropy SðρAÞ ¼
P

i λi ln λi for jΨi is determined from
the spectrum fλig of W. For random states, the coefficients
Ci;j are independently and identically distributed real
(GOE) or complex (GUE) Gaussian variables, following
the distributions PðCÞ ∝ expf−ðβ=2ÞTrðC†CÞg, where
β ¼ 1 for the GOE ensemble and β ¼ 2 for the GUE
ensemble. In such cases, the productW ¼ CC† is known as
a random Wishart matrix, and the joint probability dis-
tribution PðfλigÞ has been well characterized [84], which
allows one to compute all the moments of SA for real and
random state ensembles.
The statistical properties of complex random states,

which are descriptive of eigenstates of FRC or systems
with broken time-reversal symmetry (TRS), are better
understood than those of real random states, which are
descriptive of the eigenstates of the MFIM. We begin by
presenting the exact formulas for the mean and standard
deviation of the EE distribution for complex random states
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(β ¼ 2). Then, we discuss how the asymptotic values are
affected when the states are real (β ¼ 1).

a. Moments of the GUE (β= 2)

As shown in Ref. [31], the first moment of the distri-
bution PðSAÞ for complex random states in a qubit system
of size L is given by

μP ¼ ΨðdAdB þ 1Þ −ΨðdB þ 1Þ − ðdA − 1Þ
2dB

; ðA3Þ

where ΨðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the digamma function,
defined as the logarithmic derivative of the Gamma
function, and where dA ¼ 2LA and dB ¼ 2L−LA are the
dimensions of the subsystems A and B. This expression can
be evaluated exactly for all system and subsystem sizes.
The asymptotic form of Eq. (A3) in the limit of L → ∞
and f ¼ LA=L is written in Eq. (6) of the main text.
The variance of the entanglement entropy distribution
σ2P ¼ hS2Ai − hSAi2 is given by

σ2P ¼
dA þ dB
dAdB þ 1

Ψ0ðdB þ 1Þ − Ψ0ðdAdB þ 1Þ

−
ðdA − 1ÞðdA þ 2dB − 1Þ

4d2BðdAdB þ 1Þ : ðA4Þ

The asymptotic expression of Eq. (A4) in the limit of
L → ∞ and fixed f ¼ LA=L is given in Eq. (8) of the main
text. The numerical values for μP and σP for different
system sizes are shown in Table I.

b. Moments of the GOE (β= 1)

Systems with TRS have a smaller effective Hilbert space
dimension than those without TRS. Consequently, we
expect the average entropy for real random states to be
upper bounded by that of complex ones. While the exact
expressions for the means differ, it was shown in
Refs. [61,65,66] that they are asymptotically the same in
the thermodynamic limit. However, the standard deviation
acquires an additional

ffiffiffi
2

p
prefactor relative to the GUE

ensemble, σ2Pðβ ¼ 1Þ ∼ 2σ2Pðβ ¼ 2Þ, since the GUE ensem-
ble averages over both the real and complex parts. This

behavior is explicitly shown in Fig. 7, where the first two
moments of PRðSAÞ are computed numerically by generat-
ing 106 real random states and compared against the
asymptotic predictions, μP and

ffiffiffi
2

p
σP.

2. Bianchi Dona for constrained random states

The presence of a Uð1Þ charge causes the reduced
density matrix in Eq. (A2) to become block diagonal in
the charge sectors. To analyze the statistical properties of
such systems, we present the exact formulas for the first
two moments of complex random states subject to an
additive constraint, which were first derived in Ref. [31].
To the best of our knowledge, there are no known analytic
results for constrained real states. However, based on
numerical experiments, we show below that the conclu-
sions of the unconstrained GOE ensemble translate to
the constrained Uð1Þ scenario; namely, fluctuations are
enhanced by a factor of

ffiffiffi
2

p
relative to the GUE ensemble,

whereas the means agree in the thermodynamic limit.

a. Constrained GUE ensemble (β= 2)

When the pure complex random states are constrained to
a given symmetry sector M, the first moment of the
distribution is given by [31]

μBDðMÞ¼
XM
MA¼0

dMA

dM
ðμPðMAÞþΨðdMþ1Þ−ΨðdMA

þ1ÞÞ;

ðA5Þ

TABLE I. Mean and standard deviation of the Page and Bianchi-
Dona distributions as a function of system size for random
complex states (β ¼ 2) and LA ¼ L=2. For the BD distribution,
we consider systems at half-filling, m ¼ M=L ¼ 1=2.

L μP σP μBD σBD

8 2.2749 0.0311 2.2062 0.0718
10 2.9663 0.0156 2.8866 0.0380
12 3.6590 0.0078 3.5745 0.0199
14 4.3521 0.0039 4.2652 0.0103
16 5.0452 0.0020 4.9569 0.0053

FIG. 7. (a) Numerical data for the mean entanglement entropy
of real random states constrained to the M ¼ L=2 symmetry
sector (blue dots) and real random states in the full Hilbert space
(red dots). The numerical data are obtained from 106 randomly
generated states. For comparison, the analytic Page and BD
means for the entanglement entropy distribution of random states
with and without constraints are shown with dotted-dashed lines.
(b) Numerical data for the standard deviations of the entangle-
ment entropy using the same randomly generated data as in panel
(a) (blue and red dots), compared against the analytic values of σP
and σBD inflated by

ffiffiffi
2

p
to account for the larger standard

deviation of real random states.
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where μPðMAÞ is the Page mean, Eqs. (A3), constrained
to the subspace HAðMAÞ ⊗ HBðM −MAÞ, which means
that the effective subsystem Hilbert space dimensions are
dA;MA

¼ ðLA
MA
Þ, dB;M−MA

¼ ð L−LA
M−MA

Þ, dMA
¼ dA;MA

dB;M−MA
,

and the total Hilbert space dimension is

P
MA

dA;MA
dB;M−MA

¼ dM ¼ ðLMÞ. The asymptotic form of
Eq. (A5) in L → ∞ for fixed f ¼ LA=L and m ¼ M=L is
given in Eq. (14) of the main text. The second moment of the
entanglement entropy distribution for random states con-
strained to the M-symmetry sector is given by

σ2BD¼
X
MA

dMA
ðdMA

þ1Þ
dMðdMþ1Þ ððσ2PðMAÞ−Ψ0ðdMþ2ÞþΨ0ðdMA

þ2ÞþðμPðMAÞþΨðdMþ2Þ−ΨðdMA
þ2ÞÞ2Þ

þ
X

M0
A≠MA

dMA
dM0

A

dMðdMþ1ÞððμPðM
0
AÞþΨðdMþ2Þ−ΨðdM0

A
þ1ÞÞðμPðMAÞþΨðdMþ2Þ−ΨðdMA

þ1ÞÞ−Ψ0ðdMþ2ÞÞ−μ2BD;

ðA6Þ

where σ2PðMAÞ is the Page variance, Eq. (A4), constrained
to the subspace HAðMAÞ ⊗ HBðM −MAÞ. The numerical
values of μBD and σBD for different system sizes are shown
in Table I.

b. Constrained GOE ensemble (β = 1)

Eigenstates of systems with TRS are real valued; thus, it
is necessary to extend Eqs. (A5) and (A6) for the case of
real random states. We are not aware of any analytical
results in this case. For this reason, we numerically
compute the distribution of entanglement entropies of real
random states constrained to theM ¼ L=2 symmetry sector
of a spin-1=2 chain. The moments are obtained by con-
sidering 106 samples for system sizes ranging from L ¼ 10
to L ¼ 16. As shown in Fig. 7, the mean of the EE
distribution agrees with the analytic expression derived for
complex states, whereas the standard deviation increases by
a factor of

ffiffiffi
2

p
. This behavior is analogous to the analytical

results obtained for unconstrained Haar random states.

APPENDIX B: WINDOW SIZE DEPENDENCE
OF THE EE MOMENTS

In the main text, we discussed the number of eigenstates
used to compute the microcanonical mean and standard
deviations for the Hamiltonian and Floquet models. Here,
we present numerical evidence that our results are not
sensitive to the choice of window size, as long as the
window is sufficiently large to obtain reliable estimates of
the moments and (for the Hamiltonian case) sufficiently
small to avoid the effects of lower-temperature eigenstates.

1. Floquet random circuits

In Fig. 8, we show data for the mean and standard
deviation of SA for eigenstates of the FRC on L ¼ 12 qubits
as a function of window size N. For a given circuit
realization, we divide the spectrum into groups of N states
closest in quasienergy. We compute the mean and standard
deviation in each window of size N, then average these

across the spectrum, and finally across circuit realizations.
The first moment is independent of N at this resolution; we
observe that only approximately 50 eigenstates of the FRC
are necessary for the ratios involving the first two moments
to converge. In our data, we use the full spectrum for
L ≤ 14 while we use windows of 50 states centered at
different quasienergies for L ¼ 16.

2. Mixed-field Ising model

When computing the microcanonical mean and variance
of the distribution PHðSAÞ for midspectrum energy density
E eigenstates, it is necessary to use a finite window ΔE to
take samples of SA. In general, if ΔE is too small, then a
statistically small number of states will be available for
sampling, thus resulting in large error bars. On the other
hand, if ΔE is too large, then low entanglement eigenstates
will skew the distribution and increase its variance.
Similarly to the FRC case, we argue that, because of
typicality, only a few eigenstates are necessary to quantify
the mean and standard deviation of the distribution. Here,
we numerically show that this is the case. In particular, we
show that the value of the standard deviation of SA for
midspectrum eigenstates does not vary appreciably when
the window size is reasonably small; thus, the results

FIG. 8. Average (a) mean and (b) standard deviation of the EE
as a function of window size. For each value of N, we average
over different centers for the window and over 100 circuit
realizations. The vertical dotted lines indicate the window of
50 eigenstates used in the data of the main text.
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discussed in the main text are quite insensitive to the choice
of energy window width.
In Fig. 9(a), we show the distribution of entanglement

entropy computed for the MFIM with the MC parameters
g ¼ 1.08 and h ¼ 0.3 for L ¼ 14. We compute the mean
and variance of the distribution of SA computed for
midspectrum eigenstates and using a variable window
ΔE ranging from ΔE ¼ 10−2 (approximately the typical
eigenstate-to-eigenstate energy difference) to ΔE ¼ 10
(approximately half the bandwidth of the system). We find
that the mean and variance of the distribution do not vary
significantly if ΔE≲ 2. In the main text, we employ a total
of 600 eigenstates for L ¼ 14 (see vertical dotted lines),
which is a tiny fraction of the total number of states
214 ¼ 16384. We repeat the same analysis for all system
sizes to define the width of the windows used in the main
text for all system sizes L.

APPENDIX C: FLUCTUATIONS OF EE AS A
FUNCTION OF FRC GATE RANGE AND PERIOD

In Fig. 2 of the main text, we found deviations from
RMT in the second moment of the EE distribution of
eigenstates that persist with increasing L. These differences
were attributed to locality, the only feature present in the
FRC. We now generalize the FRC model discussed in
Sec. III by relaxing the constraint of locality in order to
observe the convergence to RMT. This observation will be
achieved (a) by increasing the range of the local gates
and (b) by increasing the number of periods of the FRC. As

such, the circuit structure will be labeled by two param-
eters: the range r and the period T, discussed in turn below.
We consider brickwork circuits with staggered layers of

range-r unitary gates acting on a periodic one-dimensional
spin-1=2 chain of length L. The range r is the number
of contiguous qubits each individual gate acts on, so
Uj;jþ1;…;jþðr−1Þ acts on sites ðj; jþ 1;…; jþ r − 1Þ.
Thus, r ¼ 2 denotes nearest-neighbor gates while r ¼ 3
is a three-site gate including both nearest and next-nearest
neighbor interactions. The matrix Uj;jþ1;…;jþðr−1Þ is a
random UðnÞ matrix, with n ¼ 2r.
The generalized circuit architecture has a periodic

brickwork layout with variable period T ∈Z. The circuit
implements discrete time evolution, and advancing by
one unit of time comprises the application of a “layer”
comprised of r staggered sublayers. Each sublayer is
displaced by one lattice site with respect to the prior
sublayer. For example, for the r ¼ 2 considered in the
main text, advancing by one unit of time entails applying
one layer of even and odd gates:

Uðtþ 1; tÞ ¼
Y
j

U2jþ1;2jþ2ðtÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

UoddðtÞ≡U1ðtÞ

Y
i

U2i;2iþ1ðtÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
UevenðtÞ≡U0ðtÞ

: ðC1Þ

Likewise, r ¼ 3 requires applying three staggered sub-
layers of gates starting from the (0, 1, 2), (1, 2, 3), and
(2, 3, 4) bonds, respectively:

Uðtþ 1; tÞ ¼
Y
k

U3kþ2;3kþ3;3kþ4ðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U2ðtÞ

Y
j

U3jþ1;3jþ2;3jþ3ðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U1ðtÞ

×
Y
i

U3i;3iþ1;3iþ2ðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

U0ðtÞ

: ðC2Þ

More generally, for range r gates,

Uðtþ 1; tÞ ¼
Yr−1
α¼0

UαðtÞ;

UαðtÞ ¼
Y
j

Urjþα;rjþαþ1;…;rjþαþr−1: ðC3Þ

In cases where L is not divisible by r, we act with an identity
matrix on the remaining sites. For a circuit with periodicity
T, the gates in the first T layers are chosen independently,
and layers repeat after T time steps: Uðtþ T þ 1;
tþ TÞ ¼ Uðtþ 1; tÞ. The generalized Floquet unitary is
defined as the time-evolution operator for period T:

UGðr; TÞ ¼
YT−1
t¼0

Uðtþ 1; tÞ; ðC4Þ

and Uðt ¼ nT; 0Þ ¼ UGðr; TÞn.

FIG. 9. (a) Eigenstate entanglement entropy of the MFIM for
model parameters g ¼ 1.08, h ¼ 0.3, and L ¼ 14. The parameter
ΔE quantifies the energy window from which the variance of SA is
computed. (b)Mean and (c) standard deviation of the entanglement
entropy distribution as a function of the energy window width ΔE.
The ΔE corresponding to a window of 600 eigenstates used in the
main text is shown with vertical dotted lines.
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Figure 10 shows that the second moment of the EE
distribution of eigenstates, σU, converges towards the RMT
value σP both by increasing the period of the FRC (varying
T while fixing r ¼ 2) or by increasing the range of the gates
(varying r while fixing T ¼ 2). These results corroborate
the expectation that reducing locality increases conver-
gence to RMT. However, it is striking that just increasing
the gate range from r ¼ 2 to r ¼ 3 is already enough to
remove most of the observed difference in standard
deviation, suggesting that other (more sensitive) metrics
might be needed to probe deviations from RMT.

APPENDIX D: FLUCTUATIONS OF EE AS A
FUNCTION OF HAMILTONIAN MODEL

PARAMETERS

Since in most of the parameter space away from the
MC point the main contribution to DKL comes from the
first moment, which refers to the choice of the BD
distribution, we now also present an alternate but related
diagnostic of chaos that is agnostic to the reference RMT
distribution and only looks at the (normalized) fluctua-
tions of EE: σH=

ffiffiffiffiffiffiffiffi
2−L

p
. This ratio is expected to be

system-size independent and minimized for maximally
chaotic systems while being exponentially increasing for
L for near-integrable systems. In this way, maximally
chaotic Hamiltonians can be identified by minimizing the
value of σH, even if the correct reference distribution is
unknown. In Fig. 11, we show the normalized standard
deviation of the microcanonical fluctuations of EE of
eigenstates as a function of ðg; hÞ. Similarly to Fig. 4(a)
of the main text, which accounts for both moments of the
EE distribution, we find that σH reaches a global mini-
mum at the MC parameters and shows qualitatively
similar behavior as DKL away from the MC point. The
color map appears more noisy than Fig. 4(a) because
second moments have larger statistical fluctuations than
first moments.

APPENDIX E: DISTRIBUTION OF EE FOR
SOME STANDARD PARAMETER VALUES

OF THE MFIM

The MFIM is a paradigmatic model of a strongly
quantum chaotic system and has been routinely used in
the study of quantum thermalization. In particular, there
are several standard sets of model parameters that are
believed to be strongly chaotic. In this appendix, we
compare the distribution of entanglement entropy for the
most chaotic point found in the main text and previously
used parameters in the literature. Figure 12(a) shows
histograms for the entanglement entropy of midspectrum
eigenstates for (i) the MC parameters of Fig. 4, ðg; hÞ ¼
ð1.08; 0.30Þ (blue bars), (ii) the BCH model [48] (green
bars), ðg; hÞ ¼ ð1.05;−0.5Þ, and (iii) the Kim-Huse model,
ðg;hÞ¼ðð ffiffiffi

5
p þ5Þ=8;ð ffiffiffi

5
p þ1Þ=4Þ≈ð0.9045;0.8090Þ [49]

(red bars). We find that the BCH parameters agree
reasonably well with the BD distribution, whereas the
KH parameter strongly deviates by more than 2 standard
deviations.
A more refined look into the distribution of entanglement

entropy normalized with the BD distribution is shown in
Figs. 12(b) and 12(c). We observe that, within the scale of
σBD, eigenstates in the BCH model agree well with RMT
behavior: The means of the EE distributions differ by
Δμ ∼ σBD. In contrast, for the KH parameters, we observe
large deviations between the EE distribution of eigenstates
and random states: In this case, the means differ by
Δμ ∼ 5σBD, and the standard deviation is around 5 times
larger.

APPENDIX F: QUANTIFYING QUANTUM
CHAOS THROUGH THE SECOND

RENYI ENTROPY

In the main text, we used the von Neumann entangle-
ment entropy SA of quantum state ensembles (eigenstates
and constrained RMT ensembles) to quantify quantum

FIG. 10. Convergence of the EE standard deviation of FRC
eigenstates, σU, to the RMT prediction as a function of gate range
r for fixed circuit depth T (squares), and as a function of circuit
depth T for a fixed gate range (circles). Here, we use a system of
L ¼ 16 qubits.

FIG. 11. Color maps of midspectrum entanglement entropy
fluctuations normalized with σBD, computed for the MFIM with
transverse field g and longitudinal field h, for L ¼ 14. We note
that the color map agrees qualitatively with the conclusions
obtained form DKL in Fig. 4(a) of the main text.
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chaos. We also argued that the choice of entanglement
observable is not particularly important for the purposes of
our work. To show that this is the case, we compute DKL

using the second Renyi entropy, S2 ¼ − log ðTr½ρ2A�Þ of the
quantum state ensembles, rather than SA.
To generate the reference distribution of constrained

random states, we first sample over N ¼ 104 pure random
states constrained to the largest (midspectrum) symmetry
sector of the Uð1Þ charge and then use these samples to
compute the moments of the second Renyi entropy. In
the case of the microcanonical eigenstate ensemble, the
moments of S2 are computed using eigenstates of the
MFIM. We use the same number of eigenstates that was
used in the main text. We then define the modified metric of
distance between ensembles using

D̃KLðPE; PRÞ ¼
Z

dS2PEðS2Þ log
PEðS2Þ
PRðS2Þ

: ðF1Þ

Figure 13 shows the value of D̃KL as a function of
transverse field at the MC linecut (h ¼ 0.3) and for L ¼ 14.
We find that the behavior of D̃KL agrees remarkably well
with that obtained using the von Neumann EE that was
discussed in the main text; see Fig. 4(c). In particular,
the entanglement behavior (as measured through S2) of the
microcanonical ensemble of eigenstates agrees with the
constrained RMT ensemble in fine-tuned regions of param-
eter space around g ¼ 1.05 and h ¼ 0.3. This finding
shows that our conclusions are insensitive to the entangle-
ment observable of choice.
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