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Cells contain multiple condensates which spontaneously form due to the heterotypic interactions
between their components. Although the proteins and disordered region sequences that are responsible for
condensate formation have been extensively studied, the rule of interactions between the components that
allow demixing, i.e., the coexistence of multiple condensates, is yet to be elucidated. Here, we construct an
effective theory of the interaction between heteropolymers by fitting it to the molecular dynamics
simulation results obtained for more than 200 sequences sampled from the disordered regions of human
proteins. We find that the sum of amino acid pair interactions across two heteropolymers predicts the Boyle
temperature qualitatively well, which can be quantitatively improved by the dimer pair approximation,
where we incorporate the effect of neighboring amino acids in the sequences. The improved theory,
combined with the finding of a metric that captures the effective interaction strength between distinct
sequences, allowed the selection of up to three disordered region sequences that demix with each other in
multicomponent simulations, as well as the generation of artificial sequences that demix with a given
sequence. The theory points to a generic sequence design strategy to demix or hypermix thanks to the low-
dimensional nature of the space of the interactions that we identify. As a consequence of the geometric
arguments in the space of interactions, we find that the number of distinct sequences that can demix with
each other is strongly constrained, irrespective of the choice of the coarse-grained model. Altogether, we
construct a theoretical basis for methods to estimate the effective interaction between heteropolymers,
which can be utilized in predicting phase separation properties as well as rules of assignment in the
localization and functions of disordered proteins.
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I. INTRODUCTION

Proteins play a pivotal role in the spontaneous formation
of membraneless organelles within cells, driving the con-
densation process through a series of intricate molecular
interactions [1–6]. Intrinsically disordered regions (IDRs),
characterized by the absence of canonical folded structures
within protein sequences [7,8], have emerged as key
mediators in orchestrating protein-protein and protein-
RNA interactions, ultimately leading to the formation of

these cellular condensates. Interestingly, while these
disordered regions lack well-defined structures, their
sequence-specific interactions can rule subcellular local-
izations and organelle functionality. An outstanding ques-
tion remains as to how the sequence-specific interactions,
limited in diversity by the possible interactions between
amino acid residues, can facilitate the coexistence of
multiple phases within a cell.
Efforts have focused on understanding how the forma-

tion of condensates is driven by IDR in sequence-
dependent manners. Researchers have identified specific
segments within IDRs, commonly referred to as “charge
blocks,” characterized by regions enriched in either pos-
itively or negatively charged amino acids [9,10]. Other
studies have emphasized the significance of the overall
amino acid composition, particularly the presence of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 031011 (2024)
Featured in Physics

2160-3308=24=14(3)=031011(26) 031011-1 Published by the American Physical Society

https://orcid.org/0000-0002-8108-1740
https://ror.org/01sjwvz98
https://ror.org/01sjwvz98
https://ror.org/01sjwvz98
https://ror.org/057zh3y96
https://ror.org/057zh3y96
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.031011&domain=pdf&date_stamp=2024-07-18
https://doi.org/10.1103/PhysRevX.14.031011
https://doi.org/10.1103/PhysRevX.14.031011
https://doi.org/10.1103/PhysRevX.14.031011
https://doi.org/10.1103/PhysRevX.14.031011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


charged and aromatic residues, in driving condensate
formation rather than relying on precise sequence infor-
mation [11]. Regular spacing between specific amino
acid residues, often termed “stickers” (e.g., aromatic
residues) [12], have been shown to play a role in facilitating
multivalent yet weak interactions between proteins, which
is crucial for the formation of condensates exhibiting
liquidlike properties, distinguishing them from protein
aggregates [13].
A simplified model of IDR chains has been introduced as

heteropolymers composed of monomers with bonds, where
specific interactions are assigned between the monomers,
representing amino acid residues, depending on their
chemical properties. In employing this scheme in molecular
dynamics (MD) simulations, the hydrophobicity scale
(HPS) model [14] uses the hydropathy parameter measured
from the all-atom force field [15] or tuned to fit with in vitro
experiments on single-chain properties [16]. Another form
of interaction has been introduced in the Mpipi model [17],
where the interactions involving aromatic residues have
been designed to account for the role they play in IDR
interactions [18]. Because of the cost effectiveness,
these models have been utilized in large-scale simulations
aiming to characterize the properties of IDRs in the
proteome [19,20] as well as in designing multiphase
condensates by combining with genetic algorithms [21,22].
While numerical simulations have provided valuable

insights into IDR condensation, challenges remain in
determining optimal interaction parameters, particularly
considering the significant differences between in vitro
and in vivo environments, due, for example, to the
crowdedness and nonequilibriumness of the intracellular
environment [23,24]. A theoretical framework for IDR
interactions that transcends specific models is essential to
understanding selective condensation patterns observed in
cells, represented by stress-responding bodies that incor-
porate only a certain set of molecules [25], the coordination
between transcription factors upon gene expression [26],
and the unmixing nature of membraneless organelles [27].
For an analytical approach toward estimating the

interactions between polypeptide chains, the direct cal-
culation of free energy in heteropolymer mixtures
has been undertaken using the random phase approxi-
mation (RPA), with a primary focus on the charged
residues and their long-range Coulomb interactions [28].
Another approach involves utilizing single-polymer
properties to predict polymer-polymer interactions; stud-
ies have demonstrated correlations between the critical
temperature and the Boyle temperature obtained from
coarse-grained simulations, with single-molecule com-
pactness [29] as well as the theta temperature [14]. These
findings highlight the utility of parameters derived from
individual sequences, such as κ [9], sequence charge [30],
and hydropathy [31] decorations. Although there have
been attempts to use these theories to predict and explain

multiphase coexistence [32,33], there remains a gap in the
theoretical framework that can incorporate both charge
and noncharge patterning to calculate interactions across
distinct heteropolymers. Considering the close-to-real
interactions across residues will be crucial in under-
standing sequence-dependent selective condensation pat-
terns observed in cells [34,35] as well as in designing
sequences or chemicals that will interact specifically with
condensates [36,37].
In this study, we take an empirical approach, employing

MD simulations to construct and identify an analytical
method that is useful in predicting interactions between
heteropolymers. Our findings indicate that the effective
interaction between polypeptides can be qualitatively
estimated by considering the sum of interactions between
monomers, with improvements achieved through the
inclusion of neighboring pair contributions. We demon-
strate the utility of this method in predicting demixing
and hypermixing phenomena in multicomponent simu-
lations and provide insights into generating multiple
coexisting phases.

II. THEORY OF IDR POLYMER INTERACTIONS
FIT BY SIMULATION

A coarse-grained polymer model treats an IDR as a chain
of N amino acid monomers, which involves monomer-
monomer interaction potentials UabðrÞ that depend on the
amino acid pair fa; bg [14,16,17]. For the HPS model, we
considerUabðrÞ ¼ UAH

ab ðrÞ þ UDH
ab ðrÞ, whereUAH

ab ðrÞ is the
pairwise potential of the Ashbaugh-Hatch form [38] and
UDH

ab ðrÞ is the electrostatic potential with the Debye-Hückel
screening:

UAH
ab ðrÞ≔

�
ULJðr;ϵ;σabÞþϵð1−λabÞ ðr≤21=6σabÞ;
λabULJðr;ϵ;σabÞ ðotherwiseÞ; ð1Þ

where ULJðr; ϵ; σÞ ≔ 4ϵ½ðσ=rÞ12 − ðσ=rÞ6� is the Lennard-
Jones potential and σab ≔ ðσa þ σbÞ=2 and λab ≔ ðλa þ
λbÞ=2 are the average size and hydrophobicity scale of
amino acid pair fa; bg, respectively. The electrostatic
potential is defined as

UDH
ab ðrÞ ≔

qaqbe2

4πε0εrr
e−r=D; ð2Þ

where qa is the integer charge (þ1 for a∈ fK;Rg, −1 for
a∈ fD;Eg, and 0 otherwise), e is the elementary charge, ε0
is the vacuum permittivity, εr is the relative permittivity,
D ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrkBT=ð2e2csÞ

p
is the Debye length, kB is the

Boltzmann constant, T is the temperature, and cs is the salt
ionic strength. It has been shown that tuning the parameters
(i.e., ϵ, fσag, and fλag) of this model can lead to
predictions in simulations of real experiments [16,19].
Hereafter, kB is set to unity.
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To predict how two polymer chains will interact, we can
calculate the quantity called the (second) virial coefficient

BðTÞ ¼ 2π

Z
∞

0

drr2
h
1 − e−UPMFðrÞ=T

i
; ð3Þ

which reflects their overall attraction or repulsion. Here,
UPMFðrÞ is the potential of mean force between two
polymers, which is formally derived from UabðrÞ as

e−UPMFðrÞ=T ¼
D
e−
P

1≤n;m≤N
Uanam ðjr1;n−r2;mjÞ=T

E
r
; ð4Þ

where r1;n (r2;m) is the coordinate of the nth (mth) amino
acid monomer that constitutes the first (second) polymer
and an (am) is the corresponding amino acid type. The
canonical average h� � �ir is taken with a fixed distance r
between the centers of mass of the two polymers.

A. Boyle temperature predicted
from amino acid composition

The Boyle temperature TB is defined as the zero point of
BðTÞ [39], which is the temperature where two polymer
chains, on average, neither attract nor repel each other. To
understand how the specific types and order of amino acids
influence the interactions between chains, we conduct MD
simulations using the parameter set given in Ref. [16]
(HPS-Tesei) for over 50 different IDR sequences with
N ¼ 50. To seek an effective theory that predicts the phase
separation properties of realistic protein sequences, we
select the disordered region sequences taken from the
human proteome [Fig. 1(a); see Appendix C for the
selection of IDR sequences and the method of calculation].
We also generate some of their variants: alphabetically
sorted and randomly shuffled sequences. In Fig. 1(b), we
show how TB changes with sorting (red dots) or shuffling
(yellow dots); sorting increases TB while shuffling typically
decreases TB, indicating that the effective interaction
between the polymers is significantly different even with
the same composition.
To begin explaining these simulation results, we use a

simplified model that focuses on pairwise interactions
between individual amino acids that appear when we
expand the exponential factor in Eq. (4) (Mayer f-function
expansion; see Appendix A):

BMPðTÞ ≔
XN
n¼1

XN
m¼1

vMP
anamðTÞ: ð5Þ

Here, n and m are the monomer indices along the polymer,
N is the polymer length, and vMP

ab ðTÞ is the virial coefficient
calculated at the monomer pair level:

vMP
ab ðTÞ ≔ 2π

Z
∞

0

drr2½1 − e−UabðrÞ=T �: ð6Þ

To explicitly see how BMPðTÞ depends on the amino acid
composition, we can write

BMPðTÞ ¼
X
a;b

NaNbvMP
ab ðTÞ; ð7Þ
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FIG. 1. Prediction of the Boyle temperature. (a) Examples of
the original, sorted, and shuffled polypeptide sequences. (b) The
Boyle temperatures for the sorted (red) and shuffled (yellow) IDR
sequences compared with the original sequences, obtained by
simulations of the HPS-Tesei model. (c),(d) The Boyle temper-
atures predicted by the (c) monomer pair or (d) dimer pair
approximation, TMP

B or TDP
B , respectively, for the original (black),

sorted (red), and shuffled (yellow) sequences compared with the
simulation result TB for the HPS-Tesei model. The thick gray line
is TMP

B ¼ TB or TDP
B ¼ TB, and the thin gray lines connect the

sorted or shuffled sequence to the corresponding original se-
quence. (e),(f) The predicted Boyle temperatures TRDP

B against the
observed TB when using the rescaled dimer pair approximation
with the rescaling parameter α ¼ 0.75 for the (e) HPS-Tesei and
(f) HPS-Dignon models.
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where Na is the total number of amino acids of type a
contained in a single IDR polymer.
This simplified value BMPðTÞ is easier to calculate than

the actual BðTÞ, because it ignores the details of how the
polymer chain is shaped in 3D space. Importantly, we
can show that the approximation BðTÞ ≃ BMPðTÞ
becomes valid when taking the limit where the bond
interaction within the polymer is very weak or the bond
length is much longer than the interaction range between
the monomers (see Appendix A for the details). BMP has
been used as one of the features to predict the properties of
polypeptides [40].
To test how Eq. (5) does well as an approximation, we

compare TB obtained from simulations (see Appendix G 2)
and TMP

B calculated as the zero point of BMPðTÞ for over
250 different IDR sequences with N ¼ 50, including
the sequences used in Fig. 1(b) (see Appendix C for the
selection of IDR sequences). As plotted in Fig. 1(c)
with black dots, TMP

B systematically underestimates TB.
Nevertheless, we find a positive correlation between TMP

B
and TB with the Pearson correlation coefficient rP ¼ 0.82
and Spearman’s rank correlation coefficient rS ¼ 0.81,
suggesting that BMPðTÞ qualitatively captures the compo-
sition dependence of TB.

B. Improved prediction using dimer
pair approximation

The obvious shortcoming of BMPðTÞ is that it depends
on only the amino acid composition and, therefore, would
fail to capture the numerical and experimental results with
chains with the same compositions but with distinct
sequences. To incorporate the sequence dependence in
the calculation of the effective interactions, we consider the
sum of the virial coefficients for the pair of two neighboring
amino acids (i.e., heterodimers), instead of the monomer
pairs used in the simplest formula (5). We introduce

BDPðTÞ ≔
XN−1

n¼1

XN−1

m¼1

vDPdn;nþ1dm;mþ1
ðTÞ; ð8Þ

where the virial coefficient for a dimer pair fdn;nþ1; dm;mþ1g
is given as

vDPdn;nþ1dm;mþ1
ðTÞ ≔ 2π

Z
∞

0

drr2
h
1 − e

−UDP
dn;nþ1dm;mþ1

ðrÞ=Ti ð9Þ

and the dimer-dimer interaction is defined as

UDP
dn;nþ1dm;mþ1

≔Uanam þUanamþ1
þUanþ1am þUanþ1amþ1

: ð10Þ

In essence, the dimer pair approximation [Eq. (8)] is
nothing but the monomer pair approximation [Eq. (5)]
except that the monomers are substituted with dimers. The

intuition behind this procedure is that the effective bond
interaction range will be enlarged (close to being doubled)
while the interaction range is kept the same, which will
bring the situation closer to the range where the monomer
pair approximation is justified. This approximation is
distinct from calculating the next order of expansion of
the exponential factor in the virial coefficient. In fact,
calculating the next order in the Mayer f-function expan-
sion results in a useless approximation, as its temperature
dependence becomes nonmonotonic (see Appendix B).
An analogy can be found, however, in the calculation of
annealing temperatures of nucleic acid sequences, where
the interactions between the adjacent nucleotides are taken
into account to improve the accuracy [41].
In Fig. 1(d), we compare TB obtained from simulations

with TDP
B calculated as the zero point of BDPðTÞ. Although

TDP
B systematically overestimates TB for the original

sequences (black dots), we find a correlation between
TB and TDP

B with rP ¼ 0.94 and rS ¼ 0.94, which are
higher than the result obtained from the monomer pair
approximation. Importantly, as shown with red and yellow
dots in Fig. 1(d), the current formula qualitatively captures
the change upon ordering and shuffling the sequence, in
contrast to Eq. (5) [Fig. 1(c)].
To fine-tune the accuracy of our model from Fig. 1(d) by

removing the systematic deviation, we introduce a scaling
factor α that adjusts the strength of the interaction between
dimer pairs. In calculating the virial coefficient for a dimer
pair fdn;nþ1; dm;mþ1g, we use

URDP
dn;nþ1dm;mþ1

≔ αðUanam þUanamþ1
þ Uanþ1am þUanþ1amþ1

Þ;
ð11Þ

instead of Eq. (10), and write the corresponding effective
interaction and Boyle temperature as BRDPðTÞ and TRDP

B ,
respectively. Here, the parameter α can be interpreted as
tuning the dimer-dimer interaction potential that is over-
counted when calculating Eq. (10). In Fig. 1(e), we show
the comparison of TB and TRDP

B for α ¼ 0.75, which is
approximately optimized to reduce the mean square relative
error (MSRE) of TRDP

B for the original sequences (see
Appendix D for the details). We see a quantitative agree-
ment between TB and TRDP

B (MSRE ¼ 0.018) while retain-
ing a high correlation (rP ¼ 0.93 and rS ¼ 0.92).
To test whether this method of estimating TB is inde-

pendent of the detail of the coarse-grained model, we
change the parameters of the amino acid size and hydro-
phobicity scale (fσag and fλag) to values proposed in
Ref. [14] (HPS-Dignon). When we use a different set of
parameters to describe the interactions between amino
acids, the simulation results for TB change considerably
(Fig. 10 in Appendix G). Nevertheless, TB can be correctly
predicted by TRDP

B calculated with the same α (¼ 0.75)
[Fig. 1(f)]. This result indicates that the composition
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of dimers is an important element in predicting
Boyle temperatures for IDRs calculated by coarse-grained
simulations.
We also find that the simulation results go off from the

predictions by TRDP
B , especially for the sorted sequences.

This is likely due to the sorted sequences having longer
regions of the same amino acids, represented by extended
charged blocks. To see this, we test how the error in the
prediction of TB depends on representative features: charge
proportion, aromatic proportion, and sequence charge
decoration (SCD) [30], which quantifies the charge block-
iness. In Figs. 2(a)–2(f), we plot TMP

B or TRDP
B against the

observed TB for the HPS-Tesei model, where the brightness

indicates the value of each feature. The gray line is the

linear regression line, where we fit TB ¼ aTMPðRDPÞ
B þ b

with the parameters a and b. From Figs. 2(c) and 2(f), we
see that negatively large SCD indicates higher TB, which is
captured by the monomer pair or the rescaled dimer pair
approximation. This tendency suggests that polymers with
enhanced charge blocks (i.e., negatively large SCD) inter-
act more attractively with each other [30].
To examine whether the rescaled dimer pair approxima-

tion improves the prediction for sequences with a specific
feature, we plot the mean square deviation (MSD) of TB
from the linear regression line against the value of each
feature [Figs. 2(g)–2(i)]. We find that TRDP

B (red lines) is
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FIG. 2. Feature dependence of the predicted Boyle temperature. (a)–(f) Boyle temperature predicted by the (a)–(c) monomer pair and
(d)–(f) rescaled dimer pair approximations for the HPS-Tesei model [the same as black dots in Figs. 1(c) and 1(e), respectively], colored
with the feature of each sequence: (a),(d) charge proportion, (b),(e) aromatic proportion, or (c),(f) negative SCD. The gray line is the
linear regression line. (g)–(i) MSD of TB measured from the regression line as a function of each feature with binning for the monomer
pair (gray) and rescaled dimer pair (red) approximations. We plot the points with a count greater than 5 in each bin. The shadow suggests
the standard error. (j)–(l) Distribution of each feature for the IDR sequences used in simulations, compared with the distribution in the
IDRome database [19].
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typically improved from TMP
B (gray lines) regardless of

the feature type, suggesting that the rescaled dimer pair
approximation is useful for a broad spectrum of IDR
sequences. As shown in Figs. 2(j)–2(l), the feature dis-
tribution for the sequences used in this study is similar to
that for a large IDR database (IDRome [19]), indicating
that, within the distribution of natural IDR sequences, the
rescaled dimer pair approximation gives a reliable predic-
tion of TB. The accurate prediction of the property of
sequences, including those with a high fraction of charged
or aromatic residues or extended charged blocks, would
likely require taking into account the longer-range inter-
actions beyond the dimer pair approximation. Nevertheless,
we continue here with the dimer pair approximation, as it
captures the sequence-dependent property of a majority of
IDR sequences pooled from the human proteome.

C. Critical temperature estimated
from two-body interaction

In the simulations of IDR polymers [14], the Boyle
temperature TB has been found to be highly correlated
with the critical temperature for phase separation, Tc,
which suggests that Tc can be estimated from the effective
two-body interaction BðTÞ. To connect BðTÞ to Tc for
IDR polymers, we consider the Flory-Huggins (FH) free
energy [42]:

F ¼ TΩ½N−1ϕ lnϕþ ð1 − ϕÞ lnð1 − ϕÞ þ χðTÞϕ2�: ð12Þ

Here, Ω is the total number of sites in the lattice setup, N is
the polymer length, ϕ is the volume fraction of polymers,
and χðTÞ represents dimensionless interaction strength
between polymers.
Since the FH theory considers polymers in a lattice

system, the correspondence to the lattice-free polymer
models requires further specification. Assuming the corre-
spondence in the dilute regime where the two-body inter-
action is dominant, we obtain χðTÞ ¼ BðTÞ=ðN2l3Þ − 1=2.
Here, l is the lattice constant that needs to be specified
in comparing with the FH theory, which we here treat
as a fitting parameter that should be on the order of the
bond length in the simulated IDR polymers, lb ≔ 0.38 nm.
We further assume that χðTÞ has the form χðTÞ ¼
A0 − 1=2 − B0=T, where we subtract 1=2 for convenience,
which is often used [42] and has been verified in IDR
simulations [43]. This form can be derived when we assume
that the exclusive part of the interaction potential is diverging
and the attractive part is small [39,42].
Under this setup, we obtain

BðTÞ ¼ N2l3
�
A0 −

B0

T

�
; ð13Þ

which leads to TB ¼ B0=A0. According to the FH theory
[42], the critical temperature for phase separation, Tc, is

obtained as Tc ¼ B0=½A0 þ N−1=2 þ ð2NÞ−1�. Thus, fitting
the functional form of BðTÞ around TB for a given l, we can
find the optimal A0 and B0, from which we obtain the value
of Tc. Following this procedure, we obtain the estimated
critical temperature TRDP

c by assuming BðTÞ ≃ BRDPðTÞ
with α ¼ 0.75.
To compare TRDP

c with Tc from numerics, we run phase
separation simulations of IDR polymers using the inter-
action functions and parameters from Ref. [16] (HPS-Tesei)
(see Appendix G 1 for the details of the simulation).
In Fig. 3(a) (with blue circles), we compare Tc obtained
from numerical simulations and TRDP

c for a similar set of
IDRs as used in Figs. 1(c)–1(e) and find that the correlation
is high (rP ¼ 0.97 and rS ¼ 0.97). Here, we select l as
l ¼ 3lb by fitting so that the error between Tc and TRDP

c is
approximately minimized, as plotted in Fig. 3(c) (MSRE ¼
0.0052; see Appendix E for the detail). Furthermore, as
shown with orange squares in Fig. 3(a), we find that Tc and
TRDP
c obtained for distinct model parameters [14] (HPS-

Dignon) are highly correlated (rP ¼ 0.95 and rS ¼ 0.92)
when using the same α ¼ 0.75 and l ¼ 3lb.
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FIG. 3. Prediction of the critical temperature for phase sepa-
ration. (a),(b) Predicted critical temperatures TRDP

c against Tc
observed in simulations for the HPS-Tesei (blue circles), HPS-
Dignon (orange squares), and Mpipi (green triangles) models.
The gray line is TRDP

c ¼ Tc. In (a), we use the lattice constant
parameter l=lb ¼ 3 for all the models. In (b), we take l=lb ¼ 3,
3.2, and 3.6 for the HPS-Tesei, HPS-Dignon, and Mpipi models,
respectively, so that the error of Tc is approximately minimized
(see Appendix E for the definition of the error). (c) Error of Tc
against l=lb for each model. (d) Spearman’s rank correlation
coefficient rS against l=lb for each model.
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Using the same procedure, we compare Tc and TRDP
c from the Mpipi model introduced in Ref. [17], which has the

residue-level interaction potential UabðrÞ ¼ UWF
ab ðrÞ þUDH

ab ðrÞ, where the pairwise potential UWF
ab ðrÞ is a type of Wang-

Frenkel potential defined by

UWF
ab ðrÞ ≔

�
ϵ̃ab½ðσ̃ab=rÞ2μab − 1�½ð3σ̃ab=rÞ2μab − 1�2 ðr ≤ 3σ̃abÞ;
0 ðotherwiseÞ: ð14Þ

We use the parameter values for fϵ̃abg, fσ̃abg, and fμabg
proposed in Ref. [17]. The electrostatic potential UDH

ab ðrÞ is
given by Eq. (2) as before but with different values of qa
(0.75 for a∈ fK;Rg, −0.75 for a∈ fD;Eg, 0.375 for
a ¼ H, and 0 otherwise) and fixed values of the Debye
length and relative permittivity (D ¼ 0.795 nm and
εr ¼ 80, respectively). This model has been shown to
quantitatively reproduce the experimental result of the
change in Tc for several variants of the low-complexity
domain of heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1) [17].
The comparison between the prediction and numerical

experiment is plotted with green triangles in Fig. 3(a),
showing a high correlation (rP ¼ 0.97 and rS ¼ 0.95) and a
good agreement even though the potential form is different
from the HPS model. Overall, the obtained results show
that BRDPðTÞ, using two parameters obtained from a single
model fitting (α ¼ 0.75 and l ¼ 3lb), is practically useful in
estimating Tc and TB even under the switching of residue-
level interaction rules.
For the HPS-Dignon and Mpipi models, we can tune the

parameter l=lb to minimize the error of Tc [Fig. 3(c)]
instead of using the same l ¼ 3lb as optimized for the HPS-
Tesei model. In Fig. 3(b), with the approximately optimized
l=lb for each model, we plot the predicted TRDP

c against Tc
from simulations, which suggests a better fit than the
prediction with l=lb ¼ 3 [Fig. 3(a)]. The appropriate lattice
constant parameter l is likely determined by the details of
the interaction potential; the Wang-Frenkel potential in the
Mpipi model has a slightly longer range compared with
the HPS models, although it is not enough to explain the
difference (the simple mean of σ̃ is 0.614 in Mpipi, whereas
the mean of σ is 0.588 in HPS). Nevertheless, the high
correlation is maintained for a wide range of l=lb
[Fig. 3(d)].

III. EFFECTIVE INTERACTION PARAMETER
ACROSS DISTINCT SEQUENCES

As the approximated virial coefficient [Eq. (8)] is useful
in predicting the Boyle and critical temperatures, we expect
that the virial coefficient can also account for two-body
interactions between distinct IDR polymers. To capture the
interactions between different polymer types (i and j), we
introduce a matrix that summarizes the pairwise inter-
actions between their dimer units:

BRDP
ij ðTÞ ≔

XNi−1

n¼1

XNj−1

m¼1

vRDP
din;nþ1

djm;mþ1

ðTÞ; ð15Þ

where Ni and Nj are the polymer lengths of components i
and j, respectively. Here, vRDP

din;nþ1
djm;mþ1

is the virial coefficient

for a dimer pair:

vRDP
din;nþ1

djm;mþ1

ðTÞ≔2π

Z
∞

0

drr2
�
1−e

−URDP

di
n;nþ1

dj
m;mþ1

ðrÞ=T�
; ð16Þ

with URDP
din;nþ1

djm;mþ1

being the rescaled dimer-dimer interaction:

URDP
din;nþ1

djm;mþ1

≔ αðUaina
j
m
þUaina

j
mþ1

þ Uainþ1
ajm

þUainþ1
ajmþ1

Þ;
ð17Þ

where ain is the amino acid type of the nth monomer in the
polymer labeled by i.
To understand if different polymer types will separate

into distinct phases, we introduce the effective interaction
parameter:

χ̃RDPij ðTÞ ≔ BRDP
ij ðTÞ
NiNjl3

−
1

2

�
BRDP
ii ðTÞ
Ni

2l3
þ BRDP

jj ðTÞ
Nj

2l3

�
; ð18Þ

which quantifies the intercomponent interaction strength
between components i and j relative to the intracomponent
interaction strength. Here, we assume the correspondence
between the interaction parameter and the virial coefficient,
χij ¼ Bij=ðNiNjl3Þ − 1=2, as used in the prediction of Tc

(see Sec. II C), and define the effective interaction param-
eter as χ̃ij ≔ χij − ðχii þ χjjÞ=2. If the effective interaction
parameter χ̃RDPij between two sequences is largely negative,
they are likely to attract each other. Conversely, a large
positive value indicates repulsion.
In Fig. 4(a), we plot the distribution of χ̃RDPij (¼ χ̃RDPji ) for

some pairs of distinct IDR sequences (i ≠ j). For the
temperature used in the evaluation of the interaction
parameter, we choose T ¼ minfTc;i; Tc;jg, where Tc;i is
the critical temperature obtained by single-component MD
simulations for sequence i. We find that most of the
effective interactions are negative and positive inter-
actions are rare, suggesting that randomly selected pairs
of IDRs tend to have a high affinity with each other. As
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we discuss in Sec. III D, the typicality of high affinity
across IDR sequences comes from the strong interaction
yielded by the charge difference. We observe that the
temperature dependence of χ̃RDPij ðTÞ is low (Fig. 19 in
Appendix G), making it a robust indicator of repulsive-
ness between the two polymers.
Another method called RPA also allows the calculation

of interactions between distinct polymers in a sequence-
dependent manner [33]. In RPA, where only Coulomb
interactions are typically considered, the interaction
strength between two different polymers depends only
on their individual self-interactions, irrespective of the
choice of the residue-level interaction potential. This results
in the χ parameter becoming a rank-one matrix [44],
satisfying the geometric mean rule, χ2ij ∼ χiiχjj [33]. It
then follows that χ̃ij ≔ χij − ðχii þ χjjÞ=2 is close to zero
for all pairs of sequences, unless one of the self-interaction
parameters is significantly larger than the other (e.g.,
χii ≫ χjj). In the case of χRDPij , on the other hand, the
geometric mean rule is clearly violated even without this
imbalance in the self-interactions, as shown in Fig. 18 in
Appendix G, indicating that the predicted interaction
strength is distinct from the RPA results. As we see in
Sec. III D, the χ parameters calculated for the monomer pair
and dimer pair approximations are also low rank, except

that there are at least several nonzero eigenvalues, which is
why the effective interaction parameter can deviate
from zero.

A. Predicting demixing and hypermixing
in two-component simulations

To see how χ̃RDPij relates to the behavior of condensates,
we conduct MD simulations of mixtures containing two
types of sequences. The simulation is conducted similarly
to the critical temperature estimation but with 200 mole-
cules each and for 500 ns. For the temperature, we choose
minfTc;i; Tc;jg rounded down to the nearest 10 K,
where Tc;i is the critical temperature obtained by single-
component MD simulations for a sequence i.
In Fig. 4(b), we show examples of snapshots for

equilibrated two-component polymers (green and
magenta). For a negatively large χ̃RDPij [¼ −0.56 nm3=l3,
bottom left in Fig. 4(b)], we find that polymers show
condensation with a highly uniform distribution of the two
components, which we call a hypermixed condensate,
suggesting that the intercomponent affinity exceeds the
intracomponent affinity. In contrast, for a positively large
χ̃RDPij [¼ 0.060 nm3=l3, top in Fig. 4(b)], the two compo-
nents are demixed; the two species form separate
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FIG. 4. Prediction of hypermixing and demixing for two-component IDR polymers. (a) The histogram of the effective intercomponent
interaction parameter χ̃RDPij , at T ¼ minfTc;i; Tc;jg. The inset is the enlarged view of the positive region of χ̃RDPij . (b) Snapshots of the
simulated two-component IDR sequences (green and magenta), which are sampled from the three regions of χ̃RDPij : χ̃RDPij l3 < −0.04 nm3

(bottom left), −0.04 nm3 < χ̃RDPij l3 < 0.04 nm3 (bottom right), and χ̃RDPij l3 > 0.04 nm3 (top). The sequences with their names are
shown above each configuration. The bottom left and top configurations show hypermixing (with Sdemix < 0.5) and demixing (with
Sdemix > 0.5), respectively. (c) The distribution of the demixing score Sdemix for the three regions of χ̃RDPij . The gray line suggests
Sdemix ¼ 0.5, which should be realized for a random mixture of the two components. The regions with Sdemix < 0.5 and Sdemix > 0.5
indicate hypermixing and demixing, respectively.
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condensates that do not mix. For an intermediate χ̃RDPij

[¼ −0.017 nm3=l3, bottom right in Fig. 4(b)], the two

components seem to be mixed randomly within a single

condensate.
To quantify the degree of separation between polymer

types, we develop the demixing score Sdemix, which
measures how often neighboring polymer chains belong
to the same type (see Appendix G 3). A demixing score
Sdemix of 0.5 indicates a well-mixed state where the two
polymer types are randomly distributed. A lower score
suggests they prefer to be near each other (hypermixing),
while a higher score indicates separation (demixing). This
is confirmed for each configuration in Fig. 4(b).
To examine the general predictability of demixing

by χ̃RDPij , we further perform multiple simulations and
calculate Sdemix for two-component polymer systems for
the HPS-Tesei [16] and HPS-Dignon [14] models. As
shown in Fig. 4(c), the distributions of Sdemix for negatively
large χ̃RDPij (< −0.04 nm3=l3), near-zero χ̃RDPij (∈ ½−0.04;
0.04� nm3=l3), and positively large χ̃RDPij (> 0.04 nm3=l3)
pairs are distinct, confirming that larger χ̃RDPij indicates
larger Sdemix, i.e., a higher tendency toward demixing.
Spearman’s rank correlation coefficient between Sdemix and
χ̃RDPij is rS ¼ 0.67. Although the correlation is lower than
χ̃RDPij , we find that χ̃MP

ij , the effective interaction parameter
calculated from the monomer pair approximation:

χ̃MP
ij ðTÞ ≔ BMP

ij ðTÞ
NiNjl3

−
1

2

�
BMP
ii ðTÞ
Ni

2l3
þ BMP

jj ðTÞ
Nj

2l3

�
; ð19Þ

also positively correlates with Sdemix (rS ¼ 0.52; see Fig. 20
in Appendix G). As we show in Sec. III C, χ̃MP

ij is useful in
practice when designing demixing sequences.
We note that other quantities have been introduced

to measure the extent of demixing, such as Sproj ≔
jρi;center − ρj;centerj in Ref. [21]. Here, ρi;center is the number
density of component i at the center of the condensate,
calculated using the number density projected onto the
z axis. As expected, the two scores, Sdemix and Sproj
correlate significantly when calculated for the configura-
tions obtained in the two-component simulations. We here
nevertheless continue using Sdemix over Sproj, since it can
discriminate hypermixing states from randomly mixed
states (see the region corresponding to Sdemix ≃ 0.5 and
below in Fig. 16 in Appendix G). There is also the
advantage that Sdemix does not rely on the projection of
the density to an axis; it can probe the segregation of
components even when the condensates have not reached a
one-dimensional profile, due, for example, to the aggregate
state [45] (see bottom right examples in Fig. 16). The
demixing score Sdemix can also be generalized to multi-
component cases, as we see later.

Theoretical and experimental analysis regarding the two-
component Flory-Huggins theory has pointed out that the
angle of the tie line can indicate whether two components
will mix or separate [46–49]. This scheme predicts that the
extent of demixing depends on the raw Bij or, specifically,
the angle of the tie line which can be approximated by the
angle θ̄ij ∈ ½−π=2; π=2Þ of the eigenvector (measured
from the first axis) for the smaller eigenvalue of the
2 × 2 matrix  

BiiðTÞ BijðTÞ
BjiðTÞ BjjðTÞ

!
; ð20Þ

when assuming equal density. To remove the arbitrariness
in choosing the first axis, we define an angle θij ≔
−sgnðθ̄ijÞ minfjθ̄ijj; π=2 − jθ̄ijjg (∈ ½−π=4; π=4�), which
is expected to be positive in the case of demixing and
negative in the case of mixing. We test how these quantities
correlate with the demixing score using the estimated
BRDPðTÞ and BMPðTÞ at T ¼ minfTc;i; Tc;jg and find that
the effective interaction parameters [Eqs. (18) and (19)]
perform better in terms of predicting demixing [Figs. 20(e)
and 20(f) in Appendix G].

B. Demixing more than two components

We then explore whether our method could predict the
separation of mixtures containing more than two types of
polymer (M > 2), where each pair of components i and j
has a positive value for χ̃ij (see Appendix G 3 for the
method to select the sequences).
For mixtures with three polymer types (M ¼ 3), we find

that some of the predicted set of sequences indeed undergo
demixing, as demonstrated in Figs. 5(a) and 5(b) for the
HPS-Tesei and HPS-Dignon models, respectively. The
extent of demixing is quantified by the demixing matrix
S whose components represent the fraction of edges within
the k-nearest-neighbor graph, which is normalized asP

1≤i;j≤M Sij ¼ 1. The demixing matrix is the generaliza-
tion of the demixing score, as it satisfies Sdemix ¼ TrS for
M ¼ 2 and should become Sij ¼ 1=M2 when the configu-
ration of polymers is random. As seen in the examples
[Figs. 5(a)–5(c)], the large positive values of χ̃RDPij for each
set of sequences lead to demixing matrix components that
are lower than random, 1=M2 ¼ 1=9, although mixed pairs
of polymers (>1=9) can appear in some cases [Fig. 5(c)].
Testing with 32 triplets for both the HPS-Tesei and
HPS-Dignon models, we find the trend that χ̃RDPij is
negatively correlated with Sdemix, more significantly com-
pared with χ̃MP

ij [Figs. 5(d) and 5(e)].
We further tested if we can achieve demixing of M ¼ 4

sequences using similar criteria for selecting sequences.
Unfortunately, we could not find a demixing quadruplet
within the set of IDRs that we tested; in all the 16 cases that
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we have tried, we obtained three phases with one including
two species of polymers [Fig. 5(f)]. This can be due to the
limitation of our IDR library, as we could not find
quadruplets of which all the pairs within it have large
positive values of χ̃RDPij , but can also be due to the
theoretical bound in the number of demixing components,
as we discuss in Sec. III E.

C. Generation of antagonistic sequence for demixing

We can use our approximation scheme to design new
polymer sequences that will repel and separate from a
specific given sequence. The results in Secs. III A and III B
suggest that χ̃MP

ij and χ̃RDPij can work as indicators of the
tendency toward demixing. Here, we use χ̃MP

ij for simplicity
as well as for interpretability, as it can be calculated solely
from the amino acid compositions.

For a given IDR sequence i, the aim is to generate a
second sequence j that demixes with it. To observe
demixing at the temperature regime comparable to the
condensing regime for sequence i, we maximize χ̃MP

ij ðTÞ
calculated at T ¼ Tc;i, the critical temperature for sequence
i, while constraining χMP

ii ðTc;iÞ ¼ χMP
jj ðTc;iÞ. Without the

constraint, we would typically obtain sequence j with
χ̃MP
ij ðTc;iÞ and χMP

jj ðTc;iÞ both being large, in which case
sequence j will not undergo phase separation at Tc;i. We
also set Nreplace, the total number of amino acid composi-
tional differences between sequences i and j.
We can represent each sequence as a vector, ni, where

each element ni;a corresponds to the proportion of a
specific amino acid type a contained in the sequence i,
and satisfying

P
a ni;a ¼ 1. Using this representation, the

effective interaction parameter can be expressed as
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FIG. 5. Prediction of demixing for three-component IDR polymers. (a)–(c) The upper panels show snapshots of the simulated three-
component IDR sequences. The sequences with their names are shown above each configuration. The left and middle cases show the
demixing of all the components, and the right case is where one of the components (magenta) is well separated from the other two. The
extent of separation is quantified in the bottom left panels of the demixing matrix elements, Sij. Compared to the random configuration
where Sij ¼ 1=9 (white), Sij < 1=9 (red) suggests that sequences i and j are spatially distant from each other (i.e., demixed if i ≠ j), and
Sij > 1=9 (blue) suggests that sequences i and j tend to be neighbors. The bottom right panels represent the effective intercomponent
interaction parameter χ̃RDPij (at T ¼ 300 K). Sequences with positively large χ̃RDPij (for i ≠ j), shown with red color, are expected to
undergo demixing and are used for simulations. (d),(e) The demixing score Sdemix against the effective intercomponent interaction
parameter at 300 K obtained by the (d) monomer pair or (e) rescaled dimer pair approximation for 32 sequence triplets in total using
the HPS-Tesei and HPS-Dignon models. The gray horizontal and vertical lines represent Sij ¼ 1=9 and χ̃MP

ij ¼ 0 (or χ̃RDPij ¼ 0),
respectively. Spearman’s rank correlation coefficient rS is shown in each panel. (f) Snapshot, Sij, and χ̃RDPij (at T ¼ 300 K) for four-
component IDR polymers.
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χ̃MP
ij ¼ −

1

2l3
ðni − njÞTvMPðni − njÞ: ð21Þ

Here, vMP is a 20 × 20 matrix with the elements defined by
Eq. (6). The formula (21) indicates that χ̃MP

ij depends only
on the difference in the amino acid fraction between the
sequences. The three constraints we impose are

Ni ¼ Nj ¼ N; ð22Þ

niTvMPni ¼ njTvMPnj; ð23Þ

and

X
a

jNi;a − Nj;aj ¼ 2Nreplace: ð24Þ

To maximize χ̃MP
ij ðTc;iÞ with respect to nj under the

constraints (22)–(24), we employ a PYTHON package for
optimization (scipy.optimize.differential_evolution [50])
using the default parameters, with N ¼ 50 and
Nreplace ¼ 25. We round decimals of the obtained elements
of Njnj and add or remove randomly chosen amino acids
so that the length of the sequence becomes 50. We generate
sequence j by randomly shuffling the order of amino acids
from this sequence.
In Figs. 6(a) and 6(b), we show simulation results of the

obtained sequences that indeed show demixing with the
given sequences. For 13 (16) pairs of given and generated
sequences with positively large χ̃MP

ij that are tested using the
HPS-Tesei (HPS-Dignon) model, we show the distribution
of the demixing score Sdemix in Fig. 6(c). The distribution
suggests that the proposed approach is useful in generating
the antagonistic sequence that will demix with a given
sequence; most of them have Sdemix > 0.5, and the majority
achieves Sdemix > 0.6.

D. Rules of demixing and hypermixing deduced from
the eigenspectrum of virial coefficient matrix

From the formula of χ̃MP
ij in Eq. (21), we can understand

what drives two sequences to mix or separate by analyzing
vMP and the differences in amino acid fraction between two
sequences, ni − nj. In Figs. 7(a) and 7(b), we show vMP

calculated at T ¼ 300 K and its eigenspectrum fλng20n¼1 for
the HPS-Tesei model, respectively. As expected, the
charged residues dominate the interactions, which is seen
as the largest eigenvalue λ20 and its corresponding eigen-
vector e20 [Fig. 7(c)], where en is the normalized eigen-
vector for the nth smallest eigenvalue λn. This explains why
many pairs tend to have low χ̃MP

ij (Fig. 17 in Appendix G) as
well as χ̃RDPij [Fig. 4(a)] and, therefore, tend to hypermix as
shown in the bottom left panel in Fig. 4(b); difference in
charge is itself already a strong driver of cocondensation.
On the other hand, demixing is rare, since ni − nj must

align closely with the few eigenvectors that correspond to
negative eigenvalues of vMP. For the HPS-Tesei model, e1
[Fig. 7(e)] indicates that demixing from a condensing
sequence i can be achieved by making sequence j by
exchanging charged residues (marked by the red and blue
shadows) with aromatic residues (marked by the green
shadow) from sequence i, or vice versa. This is a plausible
strategy given that charged residues and aromatic residues
are indeed both known to be abundant in proteins forming
condensates, and these condensates seem to attract distinct
components inside cells [51].
The second eigenvector e2 [Fig. 7(f)] indicates that

exchanging charged and aromatic residues with other
weaker interacting residues (A, Q, P, etc.) can also lead
to demixing. To examine if the demixing and hypermixing
pairs found in simulations respect these eigenvectors, we
compare ni − nj for the 62 sequence pairs used in plotting
Fig. 4(c) for the HPS-Tesei model. In Fig. 7(g), we plot Pn,
calculated by

Pn ≔ jen · ðni − njÞj=kni − njk; ð25Þ
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FIG. 6. Demixing of IDR polymers and the generated antagonistic polymers. (a),(b) Snapshots of the simulated IDR (green) and
antagonistic (magenta) sequences shown with the sequence and its name. (c) The distribution of the demixing score Sdemix for the pairs
of IDR and antagonistic sequences with positively large χ̃MP

ij . We test 13 sequence pairs (with mean χ̃MP
ij l3 ¼ 0.022 nm3) using the HPS-

Tesei model and 16 sequence pairs (with mean χ̃MP
ij l3 ¼ 0.024 nm3) using the HPS-Dignon model.
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as a heat map for hypermixed (Sdemix < 0.47), randomly
mixed (Sdemix ∈ ½0.47; 0.53�), and demixed (Sdemix > 0.53)
sequence pairs (see Fig. 21 for Pn and Sdemix for all the
sequence pairs). We find that most of the demixing
pairs [Sdemix > 0.53, right panel in Fig. 7(g)] have the
fraction difference vector that has large components of
not only e1, but also e2, highlighting the fact that both
directions, including their mixtures, can be practical ways
in achieving demixing.
The hypermixing pairs (Sdemix < 0.47) have large e20

[Fig. 7(c)] components as expected, whereas neutrally
interacting pairs (Sdemix ∈ ½0.47; 0.53�) have nonzero com-
ponents scattered within the eigenvectors corresponding to
close-to-zero eigenvalues [left panels in Fig. 7(g)]. Here,
none of the fraction difference vectors have a large e19
[Fig. 7(d)] component, since e19 is close to uniform, which
means that the difference vector is approximately orthogo-
nal to it by definition [i.e.,

P
aðni;a − nj;aÞ ¼ 0]. The

effective interaction parameter has the useful property that
it does not depend strongly on the temperature (Fig. 19 in
Appendix G); this can be explained by the weak temper-
ature dependence of the eigenspectrum as shown with
different marks in Fig. 7(b) except for the 19th eigenvalue,
which is irrelevant as explained.
We conduct the same eigenspectrum analysis on vMP

from the HPS-Dignon parameter set (Fig. 22 in
Appendix G) as well as the Mpipi model (Fig. 23 in

Appendix G). Apart from the difference in the charge of
histidine (0 in HPS-Tesei, þ0.5 in HPS-Dignon, and
þ0.375 in Mpipi), the situation is similar to the HPS-
Tesei model in the positive (hypermixing) eigenvectors. For
the negative (demixing) eigenvectors, the Mpipi model has
e1 and e2 that treat the combination of aromatic residues
and charged residues in a distinct manner, highlighting the
difference between arginine (R) and lysine (K) in terms of
the interaction with the aromatic residues (F, Y, and W).
Nevertheless, the prominent feature that there are at most
only two vectors that span the demixing space is shared
across the three models. Previous studies have also high-
lighted the limited number of ways that amino acids can
interact with each other [52,53].

E. Maximum number of demixing sequences

Seeing that the number of demixing vectors is limited (in
fact, only two), we wondered how demixing of more than
two components can be achieved. In the three-component
simulations (Fig. 5), the chosen pairs have large values of e1
and e2 components in the difference vectors fni − njg
[Fig. 8(a)]. For the mixtures where the three polymer
types separate well, their corresponding points projected on
the space spanned by e1 and e2 form a larger triangle
[Figs. 8(a)–8(c)]. This indicates that, within this two-
dimensional space, the difference vectors can utilize the

0.6

0.4

0.2

0.0

0.2

0.4

0.6

ACD E FGH IK LMN PQR S T V WYACD E FGH IK LMN PQR S T V WY
0.6

0.4

0.2

0.0

0.2

0.4

0.6

ACD E FGH IK LMN PQR S T V WY
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6

ACD E FGH IK LMN PQR S T V WY1 5 10 15 20
2

0

2

4

6

8

10

1 10 20
10 8

10 4

100
ACD E FGH IK LMN PQR S T V WY

A

C

D
E

F

G

H

I

K

L
M

N

P

Q

R

S
T

V

W
Y

200K
300K
400K

1 5 10 15 20

1 5 10 15 20

1 5 10 15 20

(a)

(e) (f) (g)

(c) (d)(b) Eigenspectrum of HPS-Tesei

0.0

0.2

-0.2

0.4

-0.4

0.0

0.1

0.2

0.3

0.4

+
–

F

WW
Y

F WY
D
E

K
R

D E KR

F WYD E KR

FM WYD E KR FM WYD E KR

FM WYD E KR

Two-component simulation:

FIG. 7. Molecular insights for the mechanism of demixing and hypermixing. (a) Virial coefficient matrix calculated at 300 K in the
monomer pair approximation using the HPS-Tesei parameters. (b) Eigenspectrum of the virial coefficient matrix. The inset shows the
absolute values of the eigenvalues with logscale. (c) Eigenvector with the largest eigenvalue. (d) Eigenvector with the second largest
eigenvalue. (e) Eigenvector with the most negative eigenvalue. (f) Eigenvector with the second most negative eigenvalue. For all the
plots of eigenvectors, the component for amino acid D is taken as positive. (g) Eigendecomposition of the amino acid fraction difference
vector ni − nj for the pairs tested in the two-component simulation (Fig. 4). The three panels represent the hypermixing (Sdemix < 0.47),
random (Sdemix ∈ ½0.47; 0.53�), and demixing (Sdemix > 0.53) pairs.
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combination of distinct directions to achieve demixing of
more than two components.
For multiple polymer types to separate, the effective

interaction parameter χ̃MP
ij between each pair must be suffi-

ciently large to drive them apart. To see if there is a theoretical
maximum in the number of components that are demixed,
here we seek a geometrical representation of the problem.
By introducing ñi;n ≔

ffiffiffiffiffiffiffijλnj
p

en · ni, the effective inter-
action parameter can be approximated by

χ̃MP
ij ≃

1

2l3
X
n¼1;2

ðñi;n− ñj;nÞ2−
1

2l3
X

n¼19;20

ðñi;n− ñj;nÞ2; ð26Þ

since λ1 and λ2 are negative, λ19 and λ20 are positive, and
λn ≃ 0 for all other n [Fig. 7(b)]. Seeing this representation,
we observe that χ̃MP

ij can become large by setting the
Euclidian distance between the sequences large in the
demixing space (spanned by e1 and e2) while minimizing
the Euclidian distance in the hypermixing space (spanned
by e19 and e20).

Any fraction vector can be written as ni ¼
P

a ni;aea,
where ea is the single amino acid vector with the compo-
nent at amino acid a being one and all other components
zero and ni;a ≥ 0. The projection ñi;n is written as
ñi;n ¼

P
a ni;aẽa;n, where ẽa;n ≔

ffiffiffiffiffiffiffijλnj
p

en · ea is the pro-
jection of the single amino acid vector. The point ðñi;1; ñi;2Þ
is then restricted within the convex hull that is formed by
the 20 points of projections fðẽa;1; ẽa;2Þga in the demixing
space [Fig. 8(d), dotted line]. We find that the top right
region in this convex hull is spanned by the charged
residues, the left region is dominated by the aromatic
residues, and the bottom region is dominated by the others
including proline and glutamine.
A further constraint is set by restricting ñi;19 and ñi;20 to

be all the same across sequences to make the second term in
Eq. (26) to be minimal. The possible region within the
demixing plane that the sequences can take is then
calculated by first obtaining the convex hull formed by
20 points fðẽa;1; ẽa;2; ẽa;19; ẽa;20Þga in the four-dimensional
space and obtaining the cross section with ñi;19 ¼ const and
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FIG. 8. Region spanned by the sequence vectors in the demixing plane. (a) Projection of the difference vectors of the pairs of fractions
in the tested triplets in the two-dimensional space spanned by e1 and e2 (demixing plane) for the HPS-Tesei model (see Fig. 7).
We translate the position of each triangle for comparison. (b),(c) Examples of (b) high demixing score and (c) relatively low demixing
score with the corresponding triangles. (d) Projection of the single amino acid vectors onto the demixing plane with the axes rescaled
by the eigenvalues. The region surrounded by the dotted line is the convex hull calculated from the 20 single amino acid vectors,
which corresponds to the region explorable by all the sequences. The region defined by the bold line is obtained by enforcing
ñi;19 ¼ 0.24

ffiffiffiffiffiffi
λ19

p ¼ 0.46 nm3=2ð¼ constÞ and ñi;20 ¼ 0. The value for ñi;19 is selected to roughly maximize the area of the space after
the restriction. The triangle corresponding to the sequence triplet in (b) is shown to confirm that it fits within this region. (e) The possible
combination of sequences that can be packed within the restricted space in the demixing plane when setting the minimum distance
between the points as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ̃MP

minl
3

p
with χ̃MP

minl
3 ¼ 0.008 nm3. This number M ¼ 6 seems to be the maximum for this condition. (f) The

same restricted space in the demixing plane with circles representing Tc ≈ const, as suggested by the temperature written near each
circle. Here, the relation between Tc and χMP

ii is estimated by linear fitting (see Appendix F). (g) If enforcing the condition that all M
sequences should be sitting inside the restricted space, separated by at least

ffiffiffiffiffiffiffiffiffiffiffi
0.016

p
nm3=2 from each other, and should be sitting

between two circles that correspond to Tc ≈ 220 K and Tc ≈ 240 K, then M ¼ 3 is the maximum; without the constraint on the upper
limit of Tc, M ¼ 4 is the maximum (e.g., a sequence corresponding to the blue point is allowed).
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ñi;20 ¼ const (see Appendix H for details). The resulting
region is shown as the bold line region in Fig. 8(d), where
we take ñi;19 ¼ 0.24

ffiffiffiffiffiffi
λ19

p ¼ 0.46 nm3=2 and ñi;20 ¼ 0 [i.e.,
restriction to almost charge neutral sequences as seen from
e20 in Fig. 7(c)].
Finding multiple polymer types that demix with each

other is then equivalent to placing points within a confined
area, ensuring that they are sufficiently far apart from each
other. If the minimum value required for χ̃MP

ij to demix is
χ̃MP
min, we need to place points keeping the distance of at leastffiffiffiffiffiffiffiffiffiffiffi
2χ̃MP

min

p
in the metric of the rescaled projection, according

to Eq. (26). In Fig. 8(e), we plot nonoverlapping circles
with diameter

ffiffiffiffiffiffiffiffiffiffiffi
2χ̃MP

min

p
within the restricted space corre-

sponding to χ̃MP
minl

3 ¼ 0.008 nm3. This figure suggests that
M ¼ 6 is the maximum number of points that can be taken
this way.
We can, in principle, take the points (i.e., sequences)

in the upper right area in Fig. 8(e) [i.e., sequences with
a high percentage of charged amino acids; see also
Fig. 8(d)]. However, those points will be away from the
origin [i.e., (0, 0) in the demixing plane], meaning that the
diagonal element of χMP,

χMP
ii ≃ −

1

l3
X
n¼1;2

ñ2i;n þ
1

l3
X

n¼19;20

ñ2i;n −
1

2
; ð27Þ

would become smaller due to the first term and, therefore,
have a higher critical temperature Tc;i. In Fig. 8(f), we
show concentric circles in the demixing space that
approximately correspond to fixed critical temperatures
(see Appendix F for the derivation). When restricting the
critical temperature for each sequence to be similar to
each other, we should place all the points between two
circles that represent the upper and lower limits of Tc;i.
For example, if we assume 220 K ≤ Tc;i ≤ 240 K, we
find that M ¼ 3 is the maximum number for demixing
under this restriction [three brown dots in Fig. 8(g)];
without the upper limit of Tc;i, M ¼ 4 is the maximum
[additional blue dot in Fig. 8(g)].
In summary, we have found that there is a limitation in

the number of demixable components when assuming the
following points. The first assumption is that the effective
interaction parameter calculated from the monomer pair
approximation has to be larger than a certain value for the
two sequences to demix with each other. This is based on
the positive correlation between the effective interaction
parameter and the demixing score that we have observed
(Figs. 4 and 20 in Appendix G). Seeing that not all triplet
simulations that we tested underwent demixing, this
assumption is likely a required condition rather than
a sufficient condition, meaning that the real restriction
should be even stronger. The second assumption is that the
components of the hypermixing dimensions (e19 and e20) in
the difference vector (ni − nj) must be suppressed to zero to

bring the effective interaction parameter large. This seems
unavoidable, since a small proportion of these components
will bring the effective interaction parameter significantly
lower; it is seen that the e19 and e20 components are indeed
small for the pairs with high demixing scores [Fig. 7(g)].
The third assumption is to restrict the set of sequences to
those that have sufficient self-interactions, which can
undergo phase separation at realistic temperatures. Since
all sequences will ultimately undergo condensate formation
for a low enough temperature, it is unnatural to allow
arbitrary levels of self-interactions. Where to set this
minimum critical temperature is arbitrary [see the example
case depicted in Fig. 8(g)]. Nevertheless, we still have the
limitation of six sequences as the maximum number of
demixable elements, even without the restriction on the
critical temperature [Fig. 8(e)].
The limitations on the number of demixing compo-

nents seem to be a general principle, holding true even
when we use different models or consider the rescaled
dimer pair approximation. Writing the amino acid dimer
fraction of sequence i as nDi , where the element nDi;d is the
number of amino acid dimers of type d (∈ fAA;AC;
AD;…;YW;YYg) contained in sequence i, we can
express χ̃RDPij as

χ̃RDPij ¼ −
1

2l3
ðnDj − nDi ÞTvRDPðnDj − nDi Þ: ð28Þ

Here, vRDP is a 400 × 400 matrix with the elements
constructed using Eq. (16). The number of dimensions
of the demixing space, which is the number of eigen-
vectors of vRDP with negative eigenvalues, is no more
than two for the HPS-Tesei, HPS-Dignon, and Mpipi
models (Fig. 24 in Appendix G), indicating that the
restriction in placing points in the demixing space is
similar even for the rescaled dimer pair approxima-
tion model.

IV. DISCUSSION AND CONCLUSION

Here, we have shown that the prediction of heteropol-
ymer interactions including demixing upon condensation is
possible for the coarse-grained models of disordered region
sequences. The method we propose allows the estimation
of the Boyle temperature, critical temperature, and the
selection of IDR sequences that will demix or hypermix, as
well as the generation of antagonistic (demixing) compo-
nents for a given sequence.
We have shown how the monomer pair approximation

captures the basic properties of the interactions but can be
improved quantitatively by the dimer pair approximation.
This indicates that the essential interaction range is slightly
beyond a monomer, which is plausible given that the bond
length (lb ¼ 0.38 nm) is comparable to the range of
residue-level interactions (σ ∼ 0.6 nm). To our knowledge,
the dimer pair approximation, although intuitive, is novel in
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that it cannot be reduced to known expansion schemes such
as the cluster expansion [54] or the expansion proposed by
Zimm [55]. The same approximation should work in other
biomolecules, for example, when considering interactions
between proteins and RNAs, where coarse-grained simu-
lations have already been conducted [17,22].
Studies on the phase separation behavior of multi-

component systems have used random matrix as the
complex interaction between biomolecules [46,56,57].
Real interactions between biomolecules and especially
IDRs should be more restricted compared with a random
matrix, since the possible interaction types between amino
acids are limited [44]. As we have seen, there are only two
effective directions that lead to demixing in terms of the
difference in the amino acid components, according to the
three simulation models that we have tested. Nevertheless,
we found that demixing more than two sequences is
possible by appropriately choosing the right directions in
the residue difference vector space. We could not, however,
demix more than three distinct sequences in our simula-
tions, consistent with the bound due to the restricted space
in the demixing plane. It will be interesting to see how
increasing more components, such as RNAs and phospho-
rylation of the residues, can rescue the situation in order to
explain the nature of the intracellular environment, where
there seem to be more than three distinct phases coexisting
within just the nucleus.
The prediction of the interactions especially across distinct

heteropolymers clearly has room for improvement, as they
are still far from perfectly predicting demixing even for the
MD simulation results. This is likely due to the difficulty in
approximating the interaction strength of sequences with
large charge blocks, which tended to appear frequently in
the demixing candidates. We also note that our framework
is assuming phase separation and does not predict aggregates
[45] in the current form. Nevertheless, we consider it
important to have an analytical model in these calculations,
as it allows us to construct insights into the rules of
demixing. In particular, the geometrical argument we pro-
posed in Sec. III E was applicable due to the quadratic form
of the effective interaction parameter [Eqs. (21) and (28)].
It should be useful to consider improved approximation
methods that still satisfy this form.
Given the recent intensive studies of protein demixing

[58,59], a crucial step based on our formulation is the
experimental validation of the sequences predicted to
undergo demixing. Details on the residue-level interactions
in simulation models, however, matter when comparing with
the experimental results. An interesting approach would be
to assess the validity of a microscopic model without relying
on MD simulations, which should be beneficial when results
of experiments are provided from different conditions
including from in vivo. For example, from a large dataset
of sequence-to-sequence level interactions in cells, we
should be able to restrict and fit the parameters and

functional forms of the microscopic model to consistently
explain the data by employing optimization methods.

See Ref. [60] for the functions and example code to
calculate the estimates of virial coefficients, Boyle temper-
atures, and critical temperatures for a given sequence.
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APPENDIX A: MONOMER PAIR
APPROXIMATION

The virial coefficient between two heteropolymers
[Eq. (3)] can be expressed as

BðTÞ ¼ V
2

h
1 −

D
e−
P

n;m
Uanam ðjr1;n−r2;mjÞ=T

Ei
; ðA1Þ

where V is the total volume of the system, r1;n (r2;m) is
the coordinate of the nth (mth) amino acid monomer that
constitutes the first (second) polymer, and an (am) is the
corresponding amino acid type. The canonical average
h� � �i is defined as

h� � �i ≔ 1

Z

Z �Y
n;m

d3r1;nd3r2;m

�
ð� � �Þ

× e−½Hintraðfr1;ngÞþHintraðfr2;mgÞ�=T; ðA2Þ

where Z≔
R ðQn;md

3r1;nd3r2;mÞe−½Hintraðfr1;ngÞþHintraðfr2;mgÞ�=T .
Here, Hintraðfr1ð2Þ;nðmÞgÞ is the intrapolymer Hamiltonian
for the first (second) polymer, which consists of the bond
interactions between neighboring monomers and the intra-
polymer interactions [i.e., Uanan0 ðjr1;n − r1;n0 jÞ for the first
polymer].
We introduce the Mayer f function [42] between amino

acids a and b as

fabðrÞ ≔ e−UabðrÞ=T − 1: ðA3Þ

Then, we can expand Eq. (A1) by the power of fab as
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BðTÞ¼−
V
2

X
n;m

hfanamðjr1;n−r2;mjÞi

−
V
4

X
ðn;mÞ≠ðn0 ;m0Þ
n;m;n0 ;m0

hfanamðjr1;n−r2;mjÞfan0am0 ðjr1;n0 −r2;m0 jÞi

þOðf3Þ; ðA4Þ

where Oðf3Þ represents the third- and higher-order terms
of fab.
The first-order terms in Eq. (A4) are reduced to

BMPðTÞ ¼ −
X
n;m

2π

Z
∞

0

drr2fanamðrÞ; ðA5Þ

which is equivalent to Eq. (5). Let us introduce the
maximum range of the monomer-monomer interaction,
R. Given that fabðrÞ ≃ 0 unless r < R since UabðrÞ ≃ 0 for
r > R, BMPðTÞ is on the order of R3.
The monomer pair approximation [BðTÞ ≃ BMPðTÞ as

considered in Sec. II A] should be valid in the following
limiting cases. The first case is when the bond is rigid, and
R is much smaller than the bond length lb (i.e., R=lb ≪ 1).
The second case is when the bond is thermally fluctuating
with a typical length l0 larger than the natural length, and R
is much smaller than l0 (i.e., R=l0 ≪ 1).
For the first case, focusing on the second-order terms in

Eq. (A4) for n < n0 and m < m0, we consider the integrals
regarding the monomer positions fr1;n00 gn0n00¼n and
fr2;m00gm0

m00¼m in hfanamðjr1;n − r2;mjÞfan0am0 ðjr1;n0 − r2;m0 jÞi.
We see that hfanamðjr1;n − r2;mjÞfan0am0 ðjr1;n0 − r2;m0 jÞi ≃ 0

unless both the pairs ðn;mÞ and ðn0; m0Þ are spatially close
within the distance R. Because of this spatial constraint and
the constant bond length, if fr1;n00gn0n00¼n and r2;m are fixed,
the integration by fr2;m00gm0

m00¼mþ1
involves a factor on the

order of ðR=lbÞ2 or higher, compared to the corresponding
integration in partition function Z. After the integration by
fr1;n00 gn0n00¼nþ1

, the remaining integrals regarding fr1;n; r2;mg
involve a factor on the order of R3=V compared to the
counterpart in Z. Similar arguments are applied to the cases
with n ≥ n0 or m ≥ m0. Overall, the second-order terms in
Eq. (A4) should be on the order of ðR=lbÞ2R3. In the same
way, the higher-order termsOðf3Þ should be on the order of
ðR=lbÞ4R3 or higher. Thus, in the limit of R=lb → 0, we
obtain BðTÞ → BMPðTÞ.
For the second case, with the same setup for the

monomer coordinates as in the first case, if fr1;n00gn0n00¼n

and r2;m are fixed, the integration by fr2;m00 gm0
m00¼mþ1

involves a factor on the order of ðR=l0Þ3 or higher,
compared to the counterpart in Z. The remaining integrals
involve a factor on the order of R3=V compared to the
counterpart in Z. Thus, in a similar way to the first case,
the second- or higher-order terms in Eq. (A4) should be on
the order of ðR=l0Þ3R3 or higher, respectively, leading to

BðTÞ → BMPðTÞ for R=l0 → 0. In the weak bond limit
where monomers can freely move as a gas, l0 is regarded
as V1=3, and BðTÞ → BMPðTÞ for large systems with
R=V1=3 ≪ 1.

APPENDIX B: CORRECTION TO MONOMER
PAIR APPROXIMATION

As an approximation scheme to correct the monomer
pair approximation (Appendix A), we consider the method
proposed in Ref. [55] to calculate the second-order term in
Eq. (A4). To use this method, we neglect the intrapolymer
interactions and replace the bond Hamiltonian (with the
natural length lb and the spring constant k)

Hbond ≔
k
2

XN−1

n¼1

ðjrnþ1 − rnj − lbÞ2 ðB1Þ

by

H0
bond ≔

3T
2lb2

XN−1

n¼1

jrnþ1 − rnj2: ðB2Þ

The coefficient of H0
bond is chosen such that

hjrnþ1 − rnj2i ¼ lb2 in equilibrium for a single polymer.
Using Z

d3rnþ1e−ajrnþ1−rnj2−bjrnþ2−rnþ1j2

¼ π3=2

ðaþ bÞ3=2 e
−abjrnþ2−rnj2=ðaþbÞ ðB3Þ

repeatedly (a, b > 0), we can obtain

hfanamðjr1;n − r2;mjÞfan0am0 ðjr1;n0 − r2;m0 jÞi

¼ 1

V

�
3

2πlb2

�
3 1

jn0 − nj3=2jm0 −mj3=2
Z

d3r̄1d3r̄2d3r̄3

× fanamðjr̄2jÞfan0am0 ðjr̄3 − r̄1jÞ
× e−3jr̄1j2=ð2lb2jn0−njÞ−3jr̄3−r̄2j2=ð2lb2jm0−mjÞ; ðB4Þ

where r̄1 ≔ r1;n0 − r1;n, r̄2 ≔ r2;m − r1;n, r̄3 ≔ r2;m0 − r1;n,
and we assume n ≠ n0 andm ≠ m0. Then we replace r̄3 − r̄2
by r̄1 (i.e., r2;m0 − r2;m by r1;n0 − r1;n) in the exponential
factor in Eq. (B4), which is justified when the monomer
interaction range is much shorter than lb, similarly to the
condition where the monomer pair approximation is valid.
With this replacement, we can perform the integration by r̄3
in Eq. (B4), which leads to

hfanamðjr1;n − r2;mjÞfan0am0 ðjr1;n0 − r2;m0 jÞi

¼ 4

V

�
3

2πlb2

�
3=2 vMP

anamv
MP
an0am0

ðjn0 − nj þ jm0 −mjÞ3=2 ; ðB5Þ

where vMP
ab ¼ −2π

R
drr2fabðrÞ [Eq. (6)].
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Using Eq. (B5) in the second-order terms of Eq. (A4) and
neglecting the n ¼ n0 or m ¼ m0 terms, we obtain an
approximation BðTÞ ≈ BMPþZðTÞ that corrects the mono-
mer pair approximation as

BMPþZ≔BMP−
�

3

2πlb2

�
3=2 X

n;m;n0 ;m0
ðn≠n0 ;m≠m0Þ

vMP
anamv

MP
an0am0

ðjn0−njþjm0−mjÞ3=2 :

ðB6Þ

In Fig. 9, we plot the temperature dependence of BMPþZ,
compared with that of BMP for example sequences. We find
that BMPþZðTÞ shows a nonmonotonic temperature depend-
ence and is spuriously negative for high temperatures due
to the quadratic contribution of vMP in Eq. (B6). This result
indicates that Eq. (A4) is not useful as an expansion
scheme; we must take in multiple higher-order terms in
f in order to recover even the monotonic T dependence of
BðTÞ. We, therefore, consider the dimer pair approximation
as an alternative proxy to estimate the temperature depend-
ence of the virial coefficient (Sec. II B).

APPENDIX C: SELECTION OF DISORDERED
REGION SEQUENCES FOR SIMULATION

We aim to use disordered region sequences from a
wide variety of proteins with identified spatial clustering
inside cells. To this end, we took data from the Human Cell
Map [61] which provides a list of 4145 human proteins
clustered into 20 compartments (“MMF localization”)
based on proximity labels by biotinylation in HEK293
cells. We took between 2 and 39 proteins from each
compartment that have long IDR regions (i.e., pLDDT
score from ALPHAFOLD2 [62,63] lower than 0.7 for at least
50 consecutive residues) and selected 270 amino acid
sequences of length 50 from these regions. The list of
the selected sequences is presented in Supplemental
Tables 1 (for the HPS-Tesei model) and 2 (for the HPS-
Dignon model) [64].

APPENDIX D: SELECTION OF α

We define the MSRE between TRDP
B calculated using

Eq. (11) and TB obtained by simulations:

MSREðTBÞ ≔
1

Nseq

XNseq

i¼1

�
TRDP
B;i − TB;i

TB;i

�
2

; ðD1Þ

where the subscript i of TRDP
B;i and TB;i is the label for the

polymer sequence and Nseq is the total number of examined
sequences.
In Fig. 11(a), we show MSREðTBÞ as a function of the

rescaling parameter α, which is obtained for Nseq ¼ 275

using the HPS model with the parameter values proposed
in Ref. [16] (see Sec. II). MSREðTBÞ is minimized at
α ¼ 0.75, which is used in Figs. 1(e) and 1(f). In Fig. 11(b),
we show the α dependence of the Pearson correlation
coefficient rP and Spearman’s rank correlation coefficient
rS for the same dataset as used in Fig. 11(a). We find that rP
and rS are still high (rP ¼ 0.926 and rS ¼ 0.919) when
tuning α to 0.75.
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FIG. 10. Comparison of the Boyle temperatures between the
HPS-Tesei and HPS-Dignon models. For 217 IDR sequences,
we plot TB obtained by simulations of each model. The gray
line is TBðHPS-TeseiÞ ¼ TBðHPS-DignonÞ.
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FIG. 11. The error and correlation for the Boyle temperature
with the rescaled dimer pair approximation. (a) The MSRE
between TRDP

B and TB as a function of the rescaling parameter α.
(b) The corresponding Pearson correlation coefficient rP (blue)
and Spearman’s rank correlation coefficient rS (orange).
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FIG. 9. Comparison of virial coefficients calculated by the
monomer pair approximation and the method proposed in
Ref. [55]. (a),(b) As examples, we plot the temperature depend-
ence of BMP (black solid line) and BMPþZ (red dashed line) for 50
repeats of (a) G and (b) Y, using the HPS-Tesei model.
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APPENDIX E: SELECTION OF l

Similar to Eq. (D1), we define the MSRE between TRDP
c

calculated theoretically and Tc obtained by simulations:

MSREðTcÞ ≔
1

Nseq

XNseq

i¼1

�
TRDP
c;i − Tc;i

Tc;i

�
2

: ðE1Þ

In Fig. 3(c), we show the l=lb dependence of MSREðTcÞ
as the error of the Tc prediction for each model for the same
dataset as used in Figs. 3(a) and 3(b). Specifically, we use
α ¼ 0.75 for all models and take Nseq ¼ 233, 154, and 73
for the HPS-Tesei, HPS-Dignon, and Mpipi models,
respectively. For the HPS-Tesei, HPS-Dignon, and Mpipi
models, the errors are minimized at l=lb values of approx-
imately 3.0, 3.2, and 3.6, respectively, based on tests
performed at increments of 0.2.

APPENDIX F: ESTIMATION OF THE RELATION
BETWEEN Tc;i AND χMP

ii

To connect the value of χMP
ii at T ¼ 300 K with Tc;i in

numerics, we calculate χMP
ii in the HPS-Tesei model for the

same sequence set as used in Fig. 3. In Fig. 12, we plot χMP
ii

against Tc;i from simulations (black dots), showing neg-
ative correlation (rP ¼ −0.78 and rS ¼ −0.82). By linear
fitting (red line), we calculate the typical value of χMP

ii
for a given Tc;i. For Tc;i ¼ 210, 220, 230, and 240 K, we
obtain χMP

ii , which is transformed into circles in the
demixing plane [Fig. 8(f)] using Eq. (27) with fixed
ñi;19 ¼ 0.46 nm3=2 and ñi;20 ¼ 0.

APPENDIX G: SIMULATION

We use GENESIS2.0.0 [65–67] to conduct MD simulations
of the coarse-grained polypeptide chains. We use the
Langevin thermostat with a friction coefficient of 0.01 ps−1,
with 0.01 ps time steps. The parameters fqag, fσag,

and fλag for the HPS models that we use are presented
in Supplemental Tables 3 (for the HPS-Tesei model)
and 4 (for the HPS-Dignon model) [64]. The parameters
for the Mpipi model we use are presented in Supplemental
Tables 5 and 6 [64]. For simulation as well as in theoreti-
cal calculations, we take ϵ ¼ 0.8368 kJ=mol, εr ¼
ð249.4 − 0.788T þ 7.2 × 10−4T2Þð1 − 0.2551cs þ 5.151×
10−2cs2 − 6.889 × 10−3cs3Þ for TðKÞ and csðmol=lÞ, fol-
lowing Ref. [65], and set cs ¼ 0.15 mol=l. For visualization,
we used napari [68] in PYTHON.
For the Mpipi simulations, we used the LAMMPS

code provided in Ref. [17] but with 65 distinct IDR
sequences taken from the IDRome [19] that have the
length of 135 residues.

1. Critical temperature

To predict the critical temperature of phase separation, Tc,
we conduct numerical simulations at various temperatures.

a. HPS-Tesei and HPS-Dignon model simulation
using GENESIS

For the HPS-Tesei and HPS-Dignon model simulations,
we use the periodic boundary condition with 18 nm ×
18 nm × 200 nm containing N molecules. As the initial
condition, we first conduct a simulation of a single chain at
150 K for 10 ns (106 steps) and copy that configuration N
times within a small region inside the box, utilizing
duplication_generator.jl provided in GENESIS.
We conduct a binary search scheme at 10 K resolution

between 0 and 630 K to run the simulations at appropriate
temperatures. We first conduct simulations at T0 ¼ 320 K
for 200 ns (2 × 107 steps). The density profile is obtained
by first projecting the distribution of the molecules to the
z axis. The density of the high-density region ρHðtÞ is
calculated as the peak value of the z profile, and the density
of the low-density region ρLðtÞ as the density at the
position 100 nm away from the position that was used
to calculate ρHðtÞ. Both of these densities are calculated
for the whole time course for each time point t. Looking at
ΔρðtÞ ≔ ρHðtÞ − ρLðtÞ and its mean value for a set time
interval fΔρðt0; t1Þ ≔P

t0≤t<t1 ΔρðtÞ=ðt1 − t0Þ, we decide
to increase the temperature in the next simulation when

fΔρðtm; teÞfΔρð0; tiÞ > 0.7 and min
t≥tm

ΔρðtÞ > 100 ðG1Þ

and decrease the temperature otherwise. The condition (G1)
is set empirically with ti ¼ 10 ns and tm ¼ 150 ns to
capture whether the equilibrated state is phase separated
or not within the finite time of the simulation. After deciding
to raise (or lower) the temperature for the simulation, we
select the midpoint between the most recently simulated
temperature and the nearest larger (or smaller) value with a
maximum of 630 K (or the minimum of 10 K) and simulate

100 200 300

0.4

0.3

0.2

0.1

FIG. 12. The diagonal interaction parameter χMP
ii at T ¼ 300 K

against Tc;i in numerics for the HPS-Tesei model. The red line is
the result of linear fitting, which we use to convert the distance in
Fig. 8 to Tc. We take l=lb ¼ 3, to determine the values of χMP

ii in
this plot, but the radii of circles plotted in Fig. 8(f) do not depend
on this choice.
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another 200 ns (2 × 107 steps) after repreparing the initial
condition described above. Following this procedure, the
simulation stops after running for six distinct temperatures
[e.g., 320, 160, 240, 200, 220, and 210 K in the case of
Q9ULK5_0_50, as shown in Fig. 13(a)].
After gathering all the simulation results for the six

rounds, we fit the density difference to

fΔρðtm; teÞ ¼ AðTc − TÞβ ðG2Þ

with β ¼ 0.326 using the recent result of the three-
dimensional Ising critical exponent [69] [see Fig. 13(b)
for the example case of Q9ULK5_0_50]. We obtain the
goodness of fit measured by the reduced χ2 and the
monotonicity of the plot by calculating Spearman’s rank
correlation coefficient (rS) between fΔρðtm; teÞ and T. On
top of the filtering we apply in calculating TB (see next
section), we filter out the data of the sequences that had
reduced χ2 > 20 or the error of fit in Tc that are larger than
50 K considering that the Tc fits cannot be reliable in
those cases.

b. Mpipi model simulation using LAMMPS

For the Mpipi model simulations, we use the initial
condition profile as well as the parameters for the time

evolution as provided in the code from Ref. [17]. The
periodic boundary condition is set as 10 nm × 10 nm ×
44 nm containing 63 molecules, and the simulations are
run up to 40 ns after 5 ns of equilibration. To calculate Tc,
we first estimate its value using the rescaled dimer pair
approximation, using l=lb ¼ 3.0. Then, we take up to 12
points around this value with at least 10 K intervals
between them and calculate the projected density in the
z axis after the simulation to obtain the density difference
and fit using Eq. (G2) as in the case of the HPS-Tesei
and HPS-Dignon model simulations. We check the validity
of this approach by comparing it to the values of Tc
provided in Ref. [17] for the variants of hnRNPA1
sequences (Fig. 14).

2. Calculating BðTÞ
We employ umbrella sampling with exchange

Monte Carlo simulation to obtain BðTÞ using two chains
of the same species. To determine the range of temperatures
to conduct the simulation, we assume that TB should be
roughly between Tc and 2Tc and select T ¼ ð1þ 0.12nÞT̃c
for n ¼ 0; 1;…; 10.
For the exchange Monte Carlo simulation with umbrella

sampling, we apply the harmonic biasing potential to the
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FIG. 13. Tc and TB calculated from MD simulation of the HPS-
Tesei model for an example sequence Q9ULK5_0_50. (a) Density
difference between the high-density region and the low-density
region as a function of time for simulations at different temper-
atures. (b) Density difference fit with fΔρ¼AðTc−TÞβθðTc−TÞ
with β ¼ 0.326 and θð·Þ being the step function. (c) g̃ðrÞ for
various temperatures obtained by umbrella sampling and replica
exchange. (d) BðTÞ calculated from g̃ðrÞ according to Eq. (G3),
fit with BðTÞ ¼ A0ð1 − T=TBÞ.
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FIG. 14. Comparison of Tc for the variants of hnRNPA1
sequences between Ref. [17] and our simulations.
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FIG. 15. Time evolution of the demixing score Sdemix in MD
simulations. (a) For different sequences, we plot Sdemix as a
function of time for the HPS-Tesei model. The colors correspond
to χ̃RDPij l3<−0.04 nm3 (blue), −0.04 nm3 < χ̃RDPij l3 < 0.04 nm3

(orange), and χ̃RDPij l3 > 0.04 nm3 (green). (b) The corresponding
plot for the HPS-Dignon model.
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center of mass distance between the two proteins with a
spring constant of 0.1 kcal/(mol Å2). We choose 20 values
for d0, the center of the distance in the umbrella sampling,
as d0 ¼ 0; 4; 8;…; 60; 68; 76; 84; 92; 100 Å. The simula-
tion is conducted in 25 nm × 25 nm × 25 nm periodic
boundary boxes, with the exchange period set as 1 ns
(105 steps) and the total run of 100 ns (107 steps).
Trajectory extraction and the weighted histogram
analysis method are conducted using the pipelines in
GENESIS [65]. From the obtained potential of mean force
(PMF) between 0 Å ≤ r < Nmax Å with Nmax ¼ 118 at
δr ¼ 1 Å resolution, we calculate BðTÞ by the integral up
to 70 Å:

BðTÞ ¼ 2πδr
X

0≤i<NB

½1 − g̃ðriÞ�r2i ; ðG3Þ

with ri ¼ iδr and NB ¼ 70. For g̃ðrÞ, we first obtain gðrÞ
from the PMF using the temperature of each simulation

and normalize it as g̃ðrÞ ≔ gðrÞ=PNB≤i<Nmax
gðriÞ=

ðNmax − NBÞ [see Fig. 13(c) for the example case of
Q9ULK5_0_50].
We numerically obtain the Boyle temperature TB by

fitting BðTÞ to A0ð1 − T=TBÞ [see Fig. 13(d) for the
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FIG. 16. Comparison of the demixing score Sdemix and another indicator of demixing Sproj (e.g., Ref. [21]). We plot the value for each
sequence pair, tested with the HPS-Tesei model (circles) and HPS-Dignon model (crosses). The brightness indicates the number density
at the angular mean position, which should be high for phase-separated condensates and low when there are multiple regions of high-
density regions, which is typical in the presence of aggregatelike structures. We also show typical configurations of the sequence pair
mixtures.
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FIG. 18. Comparison between the off-diagonal interaction
parameter and the geometric mean of the diagonal interaction

parameters. (a),(b) We compare jχMP
ij j and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχMP

ii χMP
jj j

q
at T ¼

minfTc;i; Tc;jg obtained by the monomer pair approximation for
the (a) HPS-Tesei and (b) HPS-Dignon models. The gray line is

jχMP
ij j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, and each inset is an enlarged view. (c),(d)

The corresponding plots with the rescaled dimer pair approxi-
mation. We take l=lb ¼ 3 for all the results here.
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FIG. 17. Histogram of the effective intercomponent interaction
parameter calculated by the monomer pair approximation, χ̃MP

ij , at
T ¼ minfTc;i; Tc;jg. The inset is the enlarged view of the positive
region of χ̃MP

ij . See Fig. 4 for the counterpart when using the
rescaled dimer pair approximation.
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example case of Q9ULK5_0_50]. To see the goodness of
fit, we calculate the coefficient of determination (R2) and
the error for TB due to the curve fitting. We exclude the
data for sequences where R2 is smaller than 0.6 or the
error of TB is larger than 50 K considering that those
values are unreliable.
We provide the result of the TB and Tc obtained from the

MD simulation as Supplemental Tables 1 (for the HPS-
Tesei model) and 2 (for the HPS-Dignon model) [64].

3. Multicomponent demixing

We conduct the M-component simulations by using the
same boundary condition and similar slab initial condition
for the Tc estimation but with 200 molecules each.
For the two-component simulations, we take the pairs

of sequences with a difference in Tc (estimated from
simulation) smaller than 60 K and select the pairs that
had the largest (>0.04 nm3), midranged (between −0.04
and 0.04 nm3), and negative values (<−0.04 nm3) of
χ̃ijðTÞl3. Simulations are conducted for 500 ns for each
pair. For the temperature in the simulation, we choose
T ¼ bminfTc;i; Tc;jg=10c × 10 K, where Tc;i is the critical
temperature obtained by single-component MD simula-
tions for a sequence i. We choose this sequence-dependent
temperature setting for the multicomponent simulation to
avoid the potential artifact that can arise when fixing a
temperature; since the range of critical temperatures is

wide, setting a fixed temperature across simulations causes
certain sequences to be deep in the phase-separated regime
whereas other sequences to be marginal or even nonphase
separating.
For the demixing matrix S, we first calculate the mean

position of each polymer (indexed by n, n0) and construct a
k-nearest-neighbor (k-NN) graph with k ¼ 8 and a cutoff
distance 3 nm while taking into account the periodic
boundary condition. We then symmetrize the graph by
taking the union of k-NN graph, where we denote the
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FIG. 19. Temperature dependence of the effective intercompo-
nent interaction parameters calculated by the monomer and
rescaled dimer pair approximations. (a) For 62 sequence pairs
used for Fig. 4(c), we plot the temperature dependence of χ̃MP

ij ðTÞ
and χ̃RDPij ðTÞ obtained for the HPS-Tesei model, with the overall
(upper) and enlarged (lower) views. (b) For 94 sequence pairs
used for Fig. 4(c), we plot the counterpart of (a) for the HPS-
Dignon model.
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obtained adjacency (symmetric) matrix as s with compo-
nents snn0 . The components of the demixing matrix ð1 ≤
i; j ≤ MÞ is then

Sij ¼
P

n∈ i

P
n0 ∈ j snn0P

n;n0snn0
; ðG4Þ

where n∈ i means that molecule n is species i.
The demixing score Sdemix ≔ TrS used to quantify the
extent of demixing in the M ¼ 2 component case is
Sdemix ¼ S11 þ S22, which is the fraction of edges in the
union symmetrized k-NN graph that connects the same
species of molecules over the total edges.
For the case of M ¼ 2, we compare the demixing score

Sdemix with Sproj ≔ jρi;center − ρj;centerj (see Fig. 16), where
ρi;center is the number density of component i at the center
of the condensate. The center of the condensate is calcu-
lated as the angular mean position of the density profile,
where we use the sum of the z-projected number den-
sities, ρi þ ρj.
We show in Fig. 15 how Sdemix equilibrates quickly

within around 100 ns in simulation. The values used in
Figs. 4 and 6 for the two-component simulations are the
time average between 300 and 500 ns. For Fig. 4(c), we use

the data of sequence pairs with the mean polymer-polymer
distance for either type of sequence shorter than 2.65 nm to
exclude the case with no or weak phase separation.
For the M ¼ 3 component simulation with both

HPS-Tesei and HPS-Dignon, we select the sets of three
sequences that have either all the pairs satisfying
χ̃MP
ij ðminfTi

c; T
j
cgÞ > 0.0044 nm3=l3 or all the pairs sat-

isfying χ̃RDPij ðminfTi
c; T

j
cgÞ > 0.018 nm3=l3. These posi-

tive lower bounds on the effective interaction parameters
are set to narrow down the candidate sets to the order
of tens and finally select the top eight candidate triplets
in terms of the values of χ̃MP

ij ðminfTi
c; T

j
cgÞl3 and

χ̃RDPij ðminfTi
c; T

j
cgÞl3 for both HPS-Tesei and HPS-

Dignon, resulting in 32 sets in total. The simulations are
conducted for at least 150 ns and up to 500 ns at the
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FIG. 21. Full result on the eigendecomposition of the amino
acid fraction difference vector nj − ni for the pairs tested in the
two-component simulation (Fig. 4).
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FIG. 22. (a) Virial coefficient matrix calculated at 300 K in the
monomer pair approximation using the HPS-Dignon parameters.
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shows the absolute values of the eigenvalues with logscale.
(c) Eigenvector with the largest eigenvalue. (d) Eigenvector with
the second largest eigenvalue. (e) Eigenvector with the most
negative eigenvalue. (f) Eigenvector with the second most
negative eigenvalue. For all the plots of eigenvectors, the
component for amino acid D is taken as positive.

KYOSUKE ADACHI and KYOGO KAWAGUCHI PHYS. REV. X 14, 031011 (2024)

031011-22



temperature corresponding to the lowest critical temper-
ature in the set, and the demixing matrix S is calculated as
the time average of simulations after 150 ns.
For the M ¼ 4 component simulation with HPS-Tesei,

we select the sets of four sequences that have either all the
pairs satisfying χ̃MP

ij ðminfTi
c; T

j
cgÞ > 0.0022 nm3=l3 or all

the pairs satisfying χ̃RDPij ðminfTi
c; T

j
cgÞ > 0.0112 nm3=l3.

For HPS-Dignon, we select the sets of four sequences
that have either all the pairs contained satisfying
χ̃MP
ij ðminfTi

c; T
j
cgÞ > 0.0024 nm3=l3 or all the pairs con-

tained satisfying χ̃RDPij ðminfTi
c; T

j
cgÞ > 0.014 nm3=l3.

These positive lower bounds on the effective interaction
parameters are set to narrow down the candidate sets to the
order of five to ten and finally select the top four candidate
triplets in terms of the values of χ̃MP

ij ðminfTi
c; T

j
cgÞl3

and χ̃RDPij ðminfTi
c; T

j
cgÞl3 for both HPS-Tesei and HPS-

Dignon, resulting in 16 sets in total. The simulations are
conducted for 500 ns at the temperature corresponding to
the lowest critical temperature in the set, and the demixing
matrix S is calculated as the time average of simulations
after 300 ns.

APPENDIX H: PROJECTION AND RESTRICTION
OF THE SEQUENCE VECTORS

To obtain the region for ðñi;1; ñi;2Þ where ñi;19 and ñi;20
are constants (a and b, respectively) [bold line region in
Fig. 8(d)], we first calculate the convex hull formed by 20
points fðẽa;1; ẽa;2; ẽa;19; ẽa;20Þga in the four-dimensional
space. In the following, we explain the remaining pro-
cedure to find the cross section of this convex hull and the
three-dimensional hyperplanes, ñi;19 ¼ a and ñi;20 ¼ b. For
simplicity, we rewrite the four-dimensional coordinate
ðñi;1; ñi;2; ñi;19; ñi;20Þ as ðx; y; z; wÞ.
The obtained convex hull K is a four-dimensional

polytope with three-dimensional faces that are represented
by triangulation as a union of three-dimensional simplices
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dd̄
¼ vRDP

d̄d
for d ≠ d̄, where the dimer d̄ is the reverse of d [e.g.,

d̄ ¼ ðF;AÞ for d ¼ ðA;FÞ].
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(i.e., tetrahedra) fSlgl, each of which consists of four
vertices fvl;1;vl;2;vl;3;vl;4g. Each vertex is a point in the
four-dimensional space, e.g., vl;1 ¼ ðvl;1x ; vl;1y ; vl;1z ; vl;1w Þ.
There are four two-dimensional faces (i.e., triangles)
fFl;mg4m¼1 of each simplex Sl, and a point on the
face Fl;m can be expressed as ð1 − sl;m − tl;mÞvl;mþ
sl;mvl;mþ1 þ tl;mvl;mþ2, where vl;5 ≔ vl;1, vl;6 ≔ vl;2,
and ðsl;m; tl;mÞ is the barycentric coordinate that should
satisfy sl;m; tl;m ≥ 0 and sl;m þ tl;m ≤ 1.
To calculate the coordinate of a possible intersection of

the face Fl;m and the two hyperplanes, z ¼ a and w ¼ b,
we solve ðxl;m; yl;m; a; bÞ ¼ ð1 − sl;m − tl;mÞvl;m þ
sl;mvl;mþ1 þ tl;mvl;mþ2 for the four variables fxl;m; yl;m;
sl;m; tl;mg. We can explicitly solve the equations as

�
sl;m

tl;m

�
¼
 
vl;mþ1
z − vl;mz vl;mþ2

z − vl;mz

vl;mþ1
w − vl;mw vl;mþ2

w − vl;mw

!−1�
a − vl;mz

b − vl;mw

�
ðH1Þ

and then 
xl;m

yl;m

!
¼
 
ð1−sl;m− tl;mÞvl;mx þsl;mvl;mþ1

x þ tl;mvl;mþ2
x

ð1−sl;m− tl;mÞvl;my þsl;mvl;mþ1
y þ tl;mvl;mþ2

y

!
:

ðH2Þ

If and only if the solution satisfies sl;m; tl;m ≥ 0 and
sl;m þ tl;m ≤ 1, the face Fl;m has the intersection
ul;m ≔ ðxl;m; yl;m; a; bÞ. Repeating this procedure for all l
and m, we can obtain all the intersections, ful;mgl;m.
Finally, we can obtain the cross section of the convex
hull K and the hyperplanes z ¼ a and w ¼ b as the convex
hull formed by ful;mgl;m. For the numerical calculation
of the convex hull, we use a PYTHON package
(scipy.spatial.ConvexHull [50]).
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