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A relevant problem in the theory of open quantum systems is the lack of complete positivity of
dynamical maps obtained after weak-coupling approximations, a famous example being the Redfield
master equation. A number of approaches exist to recover well-defined evolutions under additional
Markovian assumptions, but much less is known beyond this regime. Here, we propose a numerical method
to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary
original dynamical map. The idea is to replace its unphysical Choi operator with its closest physical one,
mimicking recent work on quantum process tomography. We also show that the regularized dynamics is
more accurate in terms of reproducing the exact dynamics, which allows us to heuristically push the
utilization of these master equations in moderate coupling regimes, where the loss of positivity can have a
relevant impact.

DOI: 10.1103/PhysRevX.14.031010 Subject Areas: Quantum Physics, Quantum Information,
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I. INTRODUCTION

Quantum master equations constitute one of the main
tools to describe quantum systems interacting with an
external environment [1]. In their most general form, they
appear as matrix convolutional differential equations,
which are almost impossible to solve due to the complex
dependence of their kernel on the microscopic details of the
system [1]. In order to obtain more manageable equations,
weak-coupling approximations are usually invoked.
However, it is well known that these manipulations can
lead to a mathematical and physical disappointment: In
general, the resulting evolutions violate the complete pos-
itivity requirement, which basically means that they do not
necessarily send quantum states into quantum states. The
most famous example of this phenomenon is given by the
Redfield equation [2–4], whose interplay between accuracy
and unphysical predictions is still debated today [5–10].

A number of approaches exist to “regularize” the Redfield
equation into a completely positive evolution [11–21], but
almost all of them require additional Markovian assump-
tions. Thus, they should be used only in those situations
where the coupling is sufficiently weak with respect to the
spectral width of the environment so that excitations injected
into the environment cannot be absorbed back into the
system. Much less is known in those cases where coupling
strength and spectral width are comparable in magnitude and
non-Markovian effects start to arise. In this regime, we do
not expect weak-coupling master equations to be extremely
accurate in terms of reproducing the exact dynamics [6],
but if a better approach to the problem is missing, it is still
relevant to have a well-defined master equation to work with.
In this paper, we propose a numerical approach, called

Choi-proximity regularization, that can be applied to
regularize any unphysical dynamical evolution. The idea
is to work on the corresponding Choi operator [22] and
project it onto the space of physical Choi states, which are
associated with proper trace-preserving completely positive
evolutions (see Fig. 1). The adoption of such a projection
was inspired by recent work in quantum process tomog-
raphy, where it is used to recover a proper quantum channel
from a set of measurements that can possibly produce an
unphysical Choi operator [23–25]. This method guarantees
that the obtained dynamics does not provide unphysical
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predictions while improving the accuracy (with respect to
the generally unknown exact solution) in those time regions
where the original map violates the requirements of
physical consistency. Moreover, no additional assumptions
are made on the parameters of the model, which means that
the result is still able to display eventual non-Markovian
features of the original evolution.
The paper is structured as follows. In Sec. II, we

set the stage by introducing the notation and giving
known facts about quantum channels, Choi operators,
and quantum master equations for open systems. In
Sec. III, we discuss the Choi-proximity regularization
procedure as a way to regularize any unphysical master
equation. Then, in Sec. IV, we give examples of
applications to an exactly solvable qubit system and
to a more complex spin-boson model. Finally, in Sec. V,
we draw our conclusions.

II. NOTATION AND BASIC FACTS

Let us start with a review of basic facts about quantum
channels, Choi operators, dynamical maps in open systems,
and quantum master equations. These concepts form the
necessary background for what is discussed in the rest of
the paper.

A. Quantum channels and Choi operators

Let us consider a quantum system S represented by a
complex Hilbert space H of finite dimension d < ∞. Let
LðHÞ be the vector space of linear operators of the form
X∶H → H, endowed with the Frobenius inner product
hX; Yi ≔ Tr½X†Y�. Two important subsets of LðHÞ are the
real vector space of Hermitian operators,

HermðHÞ ≔ fX∈LðHÞ∶X† ¼ Xg; ð1Þ

and the convex cone of positive-semidefinite operators,

PosðHÞ ≔ fA†A∶A∈LðHÞg ⊂ HermðHÞ: ð2Þ
Now, let TðHÞ be the vector space of linear super-

operators of the form Φ∶LðHÞ → LðHÞ. Such a map is
called Hermitian preserving when X∈HermðHÞ implies
ΦðXÞ∈HermðHÞ; completely positive when, for any
choice of an ancillary Hilbert space A and for any
choice of A∈PosðH ⊗ AÞ, one has ðΦ ⊗ 1LðHÞÞðAÞ∈
PosðH ⊗ AÞ, where 1X stands for the identity map on X ;
trace preserving when, for any choice of X∈LðHÞ, one has
Tr½ΦðXÞ� ¼ Tr½X�. Notice that a completely positive map is
automatically Hermitian preserving while the converse is
not true.
An important result is that there exists a bijection

between TðHÞ and a subset of LðH ⊗ HÞ. We can fix
an orthonormal basis feng of H so that fEnmg with
Enm ≔ ene

†
m defines an orthonormal basis of LðHÞ.

Then, the map J∶TðHÞ → LðH ⊗ HÞ defined by

JðΦÞ ≔ 1

d

Xd
n;m¼1

ΦðEnmÞ ⊗ Enm ð3Þ

is a bijection, which is inverted by

ΦðXÞ ¼ dTr2½JðΦÞð1H ⊗ XTÞ�; X∈LðHÞ; ð4Þ
where Tr2 ≡ 1LðHÞ ⊗ Tr is the partial trace over the second
factor of the tensor product. The map J is known as Choi-
Jamiołkowski isomorphism, and JðΦÞ is the Choi operator
associated with Φ. It can be used to characterize the sets of
superoperators defined above [22].
Theorem 1. Φ∈TðHÞ is Hermitian preserving if and

only if JðΦÞ∈HermðH ⊗ HÞ, and it is completely positive
if and only if JðΦÞ∈PosðH ⊗ HÞ. Moreover, Φ is trace
preserving if and only if

Tr1JðΦÞ ¼ 1H
d

; ð5Þ

where Tr1 ≡ Tr ⊗ 1LðHÞ is the partial trace over the first
factor of the tensor product.
Particularly important in quantum physics are the CPT

maps or quantum channels, defined as those superoperators
that are both completely positive and trace preserving. It
can be argued that a physical evolution that sends quantum
states into quantum states must be represented by a
quantum channel [1]. We introduce the symbol JðHÞ
for the set of physical Choi operators, which are those
operators that are Choi operators associated with some
quantum channel acting on H. According to Theorem 1,

JðHÞ ¼
�
P∈PosðH ⊗ HÞ∶Tr1P ¼ 1H

d

�
; ð6Þ

FIG. 1. Choi-proximity regularization of a dynamical map Φt
obtained from an approximation of the exact dynamics Φex

t (see
Sec. II for the notations). In those time regions where the Choi
operator JðΦtÞ exits the space of physical Choi operators
(depicted as a colored oval), we project it back on such a space,
obtaining a CPT map Φ̃t. Thanks to the convexity of the physical
Choi space, the result is closer to the exact dynamics Φex

t .
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and it can be proved that JðHÞ is a closed and convex
subset of LðH ⊗ HÞ, being the intersection of the positive-
semidefinite cone with an affine subspace [22].

B. Open systems and dynamical maps

Suppose our system S is coupled to an environment E
so that the Hamiltonian of the total system Sþ E can be
written as

H ¼ HS ⊗ 1E þ 1S ⊗ HE þHI; ð7Þ
where H0 ≡HS ⊗ 1E þ 1S ⊗ HE contains free terms and
HI is an interaction term between S and E. Let ρðtÞ be the
density operator of S at time t, and assume that the initial
density operator at time t ¼ 0 of the total system Sþ E is
factorized as ρð0Þ ⊗ ρE, where ρE is the initial state of the
environment E. Then, the evolution of S can be formally
described by the following family fΦtgt≥0 of quantum
channels:

ρðtÞ ¼ Φt(ρð0Þ) ¼ TrE½Ut(ρð0Þ ⊗ ρE)U
†
t �; ð8Þ

where TrE is the partial trace over E and Ut is the unitary
time evolution operator of Sþ E.
An important property that dynamical maps Φt might

have that we will need later is completely positive divis-
ibility, often abbreviated as CP divisibility [26]. A family
fΦtgt≥0 of quantum channels is called CP divisible when,
for any t ≥ s, there exists a quantum channel Λt;s such that
Φt ¼ Λt;s∘Φs. This property is often taken as a synonym of
Markovianity (even though other points of view exist [27]).
If fΦtg is CP divisible, one has the Breuer-Laine-Piilo
(BLP) condition [28], which says that, given two density
operators ρ and σ,

d
dt

Dtðρ; σÞ ≤ 0; ∀ t ≥ 0; ð9Þ

where Dtðρ; σÞ is the Helstrom distinguishability measure
between the states ρ and σ [22] after time t has passed:

Dtðρ; σÞ ≔
1

2
kΦtðρÞ −ΦtðσÞk1; ð10Þ

with kXk1 ≔ Tr
ffiffiffiffiffiffiffiffiffi
X†X

p
being the trace norm. Violations

of the BLP condition provide a clear signature of non-
Markovianity. Note that if Φt is CPT, ΦtðρÞ and ΦtðσÞ
must both be density matrices: As a consequence,
0 ≤ Dtðρ; σÞ ≤ 1.

C. Quantum master equations

It is common to cast Eq. (8) as a convolutional master
equation of the Nakajima-Zwanzig form

∂tΦt ¼
Z

t

0

dsKt−s∘Φs; ð11Þ

or, in some cases, in the time-local form

∂tΦt ¼ Lt∘Φt: ð12Þ
In both cases, Kt−s and Lt consist in highly nontrivial
expressions in terms of microscopic properties of the
system, and approximations are needed in order to obtain
results in practical scenarios [1]. For example, it is common
to perform perturbative approximations in the “strength”
ofHI. To do so, it is convenient to introduce the interaction-
picture operators HIðtÞ ≔ eiH0tHIe−iH0t and ϱðtÞ ≔
eiHStρðtÞe−iHSt so that, under the standard assumption
TrE½HIðtÞρE� ¼ 0, the lowest-order expressions of
Eqs. (11) and (12) are given, respectively, by the Born
equation

d
dt

ϱðtÞ ¼ −
Z

t

0

dsTrE
�
HIðtÞ; ½HIðsÞ; ϱðsÞ ⊗ ρE�

� ð13Þ

and the Redfield equation [2,3]

d
dt

ϱðtÞ ¼ −
Z

t

0

dsTrE
�
HIðtÞ; ½HIðsÞ; ϱðtÞ ⊗ ρE�

�
: ð14Þ

Notice how the only difference is that, in the Redfield
equation, ϱðtÞ appears on the right-hand side instead
of ϱðsÞ. The term “Redfield equation” is also used in the
literature to indicate the variant of Eq. (14) in which t is
replaced by ∞ in the upper integration limit. Here, we use
the term time-dependent Redfield equation to indicate
Eq. (14) and the term time-independent Redfield equation
to indicate its variant with ∞ as the upper integration limit.
It is easy to verify that the dynamical maps Φt corre-

sponding to Eqs. (13) and (14) are Hermitian preserving
and trace preserving. However, it can be shown that they
are not completely positive [1,4].
In the following, it will be useful to note the standard

Kossakowski form of the Redfield equation [21]. Let fjkig
be the orthonormal basis of normalized eigenvectors of HS
so that HSjki ¼ ωkjki, and call Ekq ≔ jkihqj. Moreover,
suppose the interaction is of the formHI ¼

P
α Lα ⊗ Bα. It

is convenient to express the result in the Schrödinger
picture, where exponential factors of the form e�iωkt

disappear [1]. Then,

d
dt
ρðtÞ¼−i½HSþHLSðtÞ;ρðtÞ�

þ
X

k;q;n;m

χkq;nmðtÞ
�
EkqρðtÞE†

nm−
1

2
fE†

nmEkq;ρðtÞg
�
;

ð15Þ

where HLSðtÞ ¼
P

k;q;n;m ηkq;nmðtÞE†
nmEkq and

χkq;nmðtÞ¼
X
α;β

½Fαβðωkq;tÞþF�
βαðωnm;tÞ�Lβ;kqL�

α;nm; ð16Þ
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ηkq;nmðtÞ¼
X
α;β

Fαβðωkq;tÞ−F�
βαðωnm;tÞ

2i
Lβ;kqL�

α;nm: ð17Þ

Here, Lα;kq ≔ hkjLαjqi is the matrix element of the
system operator Lα, ωkq ≔ ωq − ωk is a Bohr transition
frequency, and

Fαβðω; tÞ ¼
Z

t

0

dτcαβðτÞeiωτ ð18Þ

with cαβðτÞ ≔ Tr½eiHEτB†
αe−iHEτBβρE� the environment cor-

relation function. The matrix χðtÞ is sometimes called the
Kossakowski matrix, associated with Eq. (15), and it
characterizes the nonunitary part of the evolution.
In the time-independent case, the well-known Lindblad

theorem [29,30] tells us that the positivity of χ is equivalent
to the complete positivity of the dynamics. In the more
difficult time-dependent scenario, the positivity condition
χðtÞ ≥ 0 is only sufficient to guarantee complete positivity
of Eq. (15) and CP divisibility. Based on this observation,
the following approach to regularize the Redfield equation
was proposed in Ref. [21]: Substitute χðtÞ with its closest
positive-semidefinite matrix of the same dimension at every
time point t.
In Appendix B, we show how to transform Eq. (15) into

a vector differential equation, which can then be solved
with standard routines. The transformation is carried out by
keeping, at every stage, explicit access to the Kossakowski
matrix χðtÞ, in order to easily allow the simultaneous study
of the Markovian regularization in Ref. [21]. To our
knowledge, this is not immediately possible with existing
Redfield solvers, such as the one contained in the PYTHON

library QuTiP [31].

III. CHOI-PROXIMITY REGULARIZATION

A. Projection onto the Choi space

Let Φ∈TðHÞ be a Hermitian-preserving map, with the
associated Choi operator P ≔ JðΦÞ. From Theorem 1,
we know that P is Hermitian, but, in general, it is not a
physical Choi operator. However, we can determine the
physical Choi operator P̃ that is “closest” to P in the
following sense:

P̃ ≔ argmin
X∈JðHÞ

kP − Xk; ð19Þ

where kXk2 ≔ hX;Xi is the Frobenius norm. Since JðHÞ
is a nonempty closed and convex set, a standard result in
convex analysis guarantees that the “projection” P ↦ P̃ is
well defined [32]. We argue that the map Φ̃ obtained from
P̃ using Eq. (4) could work as a minimally invasive CPT
substitute for the original mapΦ. Obviously, ifΦ is already
a quantum channel, then P̃ ¼ P and Φ̃ ¼ Φ; hence, no

modification is introduced. The choice of the Frobenius
norm over any other norm is mostly one of mathematical
convenience. However, it can be given physical signifi-
cance in terms of maximization of the likelihood function
in measurement experiments [33].
In general, it is not possible to obtain a closed-form

expression for Eq. (19), and one has to rely on numerical
approaches. In particular, Eq. (19) belongs to the family of
semidefinite least-squares problems, which form a particu-
larly interesting subclass of nonlinear convex programming
with a variety of applications in numerical linear algebra and
statistics [34–36]. In Appendix A, we give a brief survey of
the most popular approaches to solve Eq. (19), together with
a more detailed description of the method we chose here to
generate the results in Sec. IV. In the context of quantum
process tomography, these methods have successfully been
applied for Hilbert spaces with at most seven qubits
(d ¼ 27), obtaining results with high precision [25].

B. Application to dynamical maps

Suppose we have a set fΦtgt≥0 of Hermitian-preserving
dynamical maps, and consider the new set fΦ̃tgt≥0 of
quantum channels obtained by applying the procedure
described above for every time point t. The map Φ̃t can
then be seen as a minimally invasive regularized CPT
version of Φt.
To see how the maps Φt and Φ̃t differ, consider the Choi

representation:

ΔðtÞ ≔ JðΦ̃tÞ − JðΦtÞ: ð20Þ

The norm kΔðtÞk can be taken as a measure of “CPT
violation” of Φt and hence as a quantification of the
influence of the regularization procedure.
We can write

Φ̃tðρÞ ¼ dTr2½P̃ðtÞð1H ⊗ ρTÞ�
¼ ΦtðρÞ þ dTr2½ΔðtÞð1H ⊗ ρTÞ�: ð21Þ

Assuming ΔðtÞ to be differentiable [37], we can write
formal master equations for the regularized dynamics.
Specifically, if Φt satisfies the Nakajima-Zwanzig equa-
tion (11), we have

∂tΦ̃tðρÞ¼
Z

t

0

dsKt−sΦsðρÞþdTr2½∂tΔðtÞð1H⊗ρTÞ�: ð22Þ

This formula can be rewritten as a master equation for the
regularized dynamics Φ̃t only as

∂tΦ̃tðρÞ ¼
Z

t

0

dsKt−s
�
Φ̃sðρÞ − dTr2½ΔðsÞð1H ⊗ ρTÞ��

þ dTr2½∂tΔðtÞð1H ⊗ ρTÞ�: ð23Þ
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With similar steps, we can write a similar equation in the
case where Φt satisfies the time-local master equation in
Eq. (12):

∂tΦ̃tðρÞ ¼ Lt

�
Φ̃tðρÞ − dTr2½ΔðtÞð1H ⊗ ρTÞ��

þ dTr2½∂tΔðtÞð1H ⊗ ρTÞ�: ð24Þ

These are formal master equations obeyed by the regular-
ized dynamics. The most important fact we obtain from
these equations is that they contain a dependence on the
initial state ρ that was absent in the original evolution. Even
if the original generator does not depend on time, Lt ≡ L,
the presence of ΔðtÞ on the right-hand side of Eq. (24)
makes the regularized dynamics, in general, non-
Markovian. Note, however, that the “amount of non-
Markovianity” may still be different from the original
dynamics, and the appearance of ρ in Eqs. (23) and (24)
is taken here as a hint that non-Markovianity can be

observed, a fact that we will verify in Sec. IV through
examples.
Another important point is how the two maps Φt and Φ̃t

relate to the exact solution Φex
t of the open system setting.

Since the regularization is constructed as a projection onto
the physical Choi space, and since the Choi operator of the
exact solution is obviously physical, the regularized dynam-
ics Φ̃t is necessarily “closer” toΦex

t thanΦt. This finding is a
consequence of the convexity of JðHÞ, and it follows from
general results in convex analysis [32]. Given its importance
for our discussion, we reproduce a proof here.
Theorem 2. kJðΦtÞ − JðΦex

t Þk ≥ kJðΦ̃tÞ − JðΦex
t Þk.

Proof. First, note that since JðΦ̃tÞ and JðΦex
t Þ are in the

physical Choi space, αJðΦex
t Þ þ ð1 − αÞJðΦ̃tÞ is also in the

physical Choi space for any α∈ ½0; 1�. Such an operator
must necessarily be more distant from JðΦtÞ than JðΦ̃tÞ
since JðΦ̃tÞ is defined as a projection. Hence,

1

2
kJðΦtÞ − JðΦ̃tÞk2 ≤

1

2
kJðΦtÞ − ½αJðΦex

t Þ þ ð1 − αÞJðΦ̃tÞ�k2 ¼
1

2
k½JðΦtÞ − JðΦ̃tÞ� þ α½JðΦ̃tÞ − JðΦex

t Þ�k2

¼ 1

2
kJðΦtÞ − JðΦ̃tÞk2 þ

α2

2
kJðΦ̃tÞ − JðΦex

t Þk2 þ αhJðΦtÞ − JðΦ̃tÞ; JðΦ̃tÞ − JðΦex
t Þi: ð25Þ

This inequality can be rewritten as

hJðΦtÞ − JðΦ̃tÞ; JðΦ̃tÞ − JðΦex
t Þi þ

α

2
kJðΦ̃tÞ − JðΦex

t Þk2 ≥ 0: ð26Þ

Sending α → 0, we conclude that

hJðΦtÞ − JðΦ̃tÞ; JðΦ̃tÞ − JðΦex
t Þi ≥ 0; ð27Þ

which can be used to write

kJðΦtÞ− JðΦex
t Þk2 ¼ kJðΦtÞ− JðΦ̃tÞ þ JðΦ̃tÞ− JðΦex

t Þk2
¼ kJðΦtÞ− JðΦ̃tÞk2 þkJðΦ̃tÞ− JðΦex

t Þk2 þ 2hJðΦtÞ− JðΦ̃tÞ; JðΦ̃tÞ− JðΦex
t Þi ≥ kJðΦ̃tÞ− JðΦex

t Þk2:
ð28Þ

The statement of the theorem is obtained by taking the square root on both sides of this inequality. ▪

From a practical point of view, the construction of the
regularized dynamics fΦ̃tgt≥0 from a given dynamical map
fΦtgt≥0 can now be summarized as follows. At every time
step, the Choi operator JðΦtÞ is obtained through evolution
of the basis fEnmg. After diagonalization, one can check
if JðΦtÞ is physical or not, and in the latter case, the
projection (19) is performed. The result is JðΦ̃tÞ at all time
steps. At this point, the regularization is concluded:
The evolution of an arbitrary initial state ρ can be obtained
from JðΦ̃tÞ using Eq. (4). Note that this last step is very
inexpensive compared to the regularization task and can be
performed repeatedly for any desired initial state.

IV. EXAMPLES

In order to show the advantageous effects implied by the
Choi-proximity regularization, we test the method in two
simple scenarios: a qubit amplitude damping model and a
spin-boson model. For these systems, exact solutions are
available and can be used as benchmarks.

A. Qubit amplitude damping

Consider the case in which the system S is a qubit with
energy levels j0i, j1i, and Hamiltonian HS ¼ ωj1ih1j,
where ω > 0. The environment is a bath of harmonic
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oscillators, so HB ¼ P
k ϵkb

†
kbk, where bk; b

†
k are bosonic

creation and annihilation operators. The interaction is
assumed to be a rotating-wave bilinear,

HI ¼ j1ih0j ⊗ Bþ j0ih1j ⊗ B†; B ¼
X
k

gkbk; ð29Þ

where gk are some constants. It is easy to see that the
environment is described by a single correlation function,
which we assume, for simplicity, to be exponentially
decaying in time:

cðtÞ ¼ γμ

2
e−μjtje−iωt: ð30Þ

In frequency space, this function is equivalent to a
Lorentzian spectral density in resonance with the qubit
energy ω. The inverse of the fastest evolution time of the
system can be estimated as [15]

1

τSE
≔

Z
∞

0

jcðtÞjdt ¼ γ

2
; ð31Þ

while the environment correlation time is

τE ≔
R
∞
0 tjcðtÞjdtR∞
0 jcðtÞjdt ¼ 1

μ
: ð32Þ

One can then prove [1] that the accuracy of the
perturbative master equations above is controlled by the
dimensionless ratio

r ≔
τE
τSE

¼ γ

2μ
; ð33Þ

which is required to be sufficiently smaller than one for the
Born or Redfield equations to be accurate.
This case is probably the simplest nontrivial open

quantum setting that can be solved exactly. It is also
possible to analytically solve both the Born equation and
the Redfield equation [1]. All these solutions can be cast in
the following form:

ρ00ðtÞ ¼ ρ00ð0ÞAðtÞ þ 1 − AðtÞ; ð34aÞ

ρ01ðtÞ ¼ ρ01ð0ÞBðtÞeiωt; ð34bÞ

ρ11ðtÞ ¼ ρ11ð0ÞAðtÞ; ð34cÞ

where ρijðtÞ ¼ hijρðtÞjji for i; j∈ f0; 1g. Now, define the
following function:

Gðα; tÞ ≔ e−μt=2
�
cosh

	
αt
2



þ μ

α
sinh

	
αt
2


�
: ð35Þ

Then, the exact solution is characterized by

AðtÞ ¼ jGðα; tÞj2; BðtÞ ¼ Gðα; tÞ; ð36aÞ

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 2γμ

q
: ð36bÞ

Instead, for the Born equation (13), one obtains

AðtÞ ¼ Gðα0; tÞ; BðtÞ ¼ Gðα; tÞ; ð37aÞ

α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4γμ

q
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 2γμ

q
: ð37bÞ

Finally, for the time-dependent version of the Redfield
equation in Eq. (14), one finds

AðtÞ ¼ e−RðtÞ; BðtÞ ¼ e−RðtÞ=2; ð38aÞ

RðtÞ ¼ γ

	
tþ e−μt − 1

μ



: ð38bÞ

The time-independent variant is instead characterized by
RðtÞ ¼ γt. However, for the purpose of the present exam-
ple, we focus exclusively on the more complex time-
dependent scenario.
First, let us look at the Markovianity of these solutions.

Given two arbitrary qubit states ρ, σ, it is easy to calculate
that, under the evolution dictated by Eq. (34), their
distinguishability is

Dtðρ; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ11 − σ11j2A2ðtÞ þ jρ01 − σ01j2B2ðtÞ

q
: ð39Þ

If B2ðtÞ ¼ AðtÞ for all t ≥ 0 (which happens for the exact
solution and the Redfield equation), Eq. (34) describes a
qubit amplitude damping channel, and it is known that, in
this case, the BLP condition (9) provides a necessary and
sufficient condition for CP divisibility [39,40]. Thus,

Dtðρ; σÞ ¼ jρ11 − σ11jAðtÞ; ð40Þ

and CP divisibility is equivalent to dAðtÞ=dt ≤ 0 for all
t ≥ 0. Notice that

d
dt

e−RðtÞ ¼ −γe−RðtÞð1 − e−μtÞ ≤ 0: ð41Þ

Therefore, the Redfield solution is always Markovian.
Instead, for the exact solution, we have

d
dt

jGðα; tÞj2 ¼
	
1 −

μ2

α2



αe−μt=2 sinh

	
αt
2



Gðα; tÞ: ð42Þ

If μ ≥ 2γ (i.e., r ≤ 1=4), we have that α is a non-negative
real number that satisfies μ2=α2 ≥ 1, and Gðα; tÞ ≥ 0. This
finding implies that the above derivative is nonpositive and
the dynamics is Markovian. On the other hand, if μ < 2γ
(i.e., r > 1=4), then α is an imaginary number: The above
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derivative oscillates and can take positive values. Thus,
the dynamics is non-Markovian for a sufficiently small
spectral width.
If B2ðtÞ ≠ AðtÞ (which happens for the Born equation),

the BLP condition is only necessary for Markovianity.
Nevertheless, for initial states ρ, σ with equal coherences,
the distinguishability function Dtðρ; σÞ still acquires the
form in Eq. (40), so we can again focus our attention on
AðtÞ only. Now,

d
dt

Gðα0; tÞ ¼ 1

2

	
1 −

μ2

α02



e−μt=2 sinh

	
α0t
2



: ð43Þ

Again, if μ < 4γ (i.e., r > 1=8), this derivative oscillates
and can acquire positive values, which indicates that,
for a sufficiently small spectral width, the Born equation
is non-Markovian.
Obviously, we expect the Born and Redfield equations

to be inaccurate for small μ, but already at moderate
couplings (with r ∼ 1=4), the Redfield equation is com-
pletely unable to capture the true non-Markovian character
of the dynamics. The Born equation, instead, is able to
show this behavior.
Now, let us look at the CPT requirement. A straightfor-

ward computation shows that the Choi operator associated
with the dynamical map described by Eq. (34) is given by

PðtÞ ¼ 1

2

2
66664

1 0 0 BðtÞeiωt
0 1 − AðtÞ 0 0

0 0 0 0

BðtÞe−iωt 0 0 AðtÞ

3
77775; ð44Þ

which always satisfies Tr1PðtÞ ¼ 1=2, in accordance with
the fact that all the involved dynamical maps are trace
preserving. For what concerns its positivity, a straightfor-
ward computation reveals that the eigenvalues of PðtÞ are

0;
1−AðtÞ

2
;

1þAðtÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−AðtÞ�2þ4B2ðtÞ

p
4

: ð45Þ

Since AðtÞ ≤ 1, these eigenvalues are always non-negative
except (at most) the rightmost one with the minus sign,
which is easily seen to be non-negative if and only if
B2ðtÞ ≤ AðtÞ. This condition is always satisfied by the
exact solution (36) and the Redfield equation (38) but not
by the Born equation (37), which can then violate the
complete positivity requirement.
We can now summarize the situation as follows. The

Redfield equation is CPT but it does not capture the non-
Markovian features at moderate couplings. On the other
hand, the Born equation exhibits non-Markovian effects,
but, in general, it is not CPT. It is then reasonable to apply
the regularization procedure described in Sec. III to the
Born equation.

In order to compare the performances of the various
master equations, we need an accuracy measure (with
respect to the exact solution) that is independent of the
initial state of the dynamics. Here, we choose the quantity
considered in Ref. [21], referred to as the “Choi distance”
between an approximated dynamical map Φt and the exact
one Φex

t :

kJðΦtÞ − JðΦex
t Þk; ð46Þ

where the Choi operators are calculated using Eq. (44).
IfΦt is not CPT, by Theorem 2, we know that this distance
can always be lowered by taking the Choi-proximity
regularization of Φt.
In Fig. 2 (top row), we plot these quantities for the Born

equation, the Redfield equation, and the regularized version
of the Born equation. Here, we fix γ ¼ 1 and study what
happens for several values of μ. Obviously, a greater μ (and
hence a smaller r) leads to better accuracy for all master
equations, while the accuracy decreases when we approach
the non-Markovian regime for smaller values of μ.
However, notice that in all cases the regularized Born
equation outperforms the other two: For the Born equation,
this result is expected, but it is not obvious for the
Redfield case. Notice also that, for small enough μ, the
Born equation develops regions in which it is CPT:
Unfortunately, our regularization cannot do anything.
In Fig. 2 (bottom row), we also show the dynamics of

the distinguishability measure Dtðρ; σÞ in Eq. (10) when
ρ ¼ j0ih0j and σ ¼ j1ih1j. As before, γ ¼ 1 and several
values of μ are investigated. In the Markovian regime (large
values of μ), we see how the prediction of the regularized
Born equation is practically exact, while, at this level, some
deviations can be seen for the other two master equations.
When entering the non-Markovian regime with smaller
values of μ, we notice several things. The prediction of the
Redfield equation is always monotonic, as expected from
Eq. (41). The Born equation, instead, is capable of showing
nonmonotonic behavior, but it is quite different from the
exact one, as a consequence of the violation of r ≪ 1. The
regularized Born equation not only shows nonmonotonic
behavior as well, but it also remarkably follows the exact
solution in those time regions where the Born equation is
not CPT. Again, the regularization has no power in those
regions where the Born equation is already CPT. Finally,
notice that there is an intermediate situation (μ ¼ 2) where
the Born equation predicts non-Markovianity when the
exact solution does not: When activated, our regularization
is capable of correcting this behavior.

B. Spin-boson model

As a second example, we study the more complex spin-
boson model, which occupies a prominent role in the theory
of open quantum systems and constitutes a paradigmatic
playground to study many dissipative and decoherence
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mechanisms [1,41]. The system consists of a spin-1=2
particle with Hamiltonian

HS ¼
ε

2
σz þ

δ

2
σx; ð47Þ

where σx, σy, σz are the usual Pauli matrices, ε is the energy
gap between the ground state j0i and the excited state j1i,
and δ is a tunneling strength between such states. The
spin is coupled to an environment of bosonic oscillators
HE ¼ P

k ϵkb
†
kbk, as in Sec. IVA, and the interaction is

HI ¼ σz ⊗
X
k

gkðbk þ b†kÞ: ð48Þ

For simplicity, we assume again that the environment
is characterized by an exponential correlation function
[cf. Eq. (30)]

cðtÞ ¼ γμ

2
e−μjtje−iω0t; ð49Þ

where μ is the spectral width, γ is the coupling constant, and
ω0 is the resonance frequency.
There is no explicit exact solution for this model, even

though the system is small enough to allow for an easy
numerical approach through hierarchical equations of

motion (HEOM) [42]. In particular, we rely on the
corresponding functions provided by the PYTHON library
QuTip [31]: In the following, the result obtained with this
procedure will be referred to as the “exact solution.” The
Redfield equation associated with this problem (and its
regularizations) can also easily be solved using the vecto-
rization approach illustrated in Appendix B.
It is generally believed that CPT violations of the

Redfield equation tend to appear at short times and with at
least moderate coupling constants [6] (even though some
positivity-violation effects have been detected at long
times, too [8], and the onset of positivity violations is not
a mathematical guarantee of the complete breakdown of
the approximations used to derive the master equation).
In this regime, the accuracy with respect to the exact
solution is not expected to be good. Applying the Choi-
proximity regularization can slightly improve perfor-
mance, but we have another goal in this example: We
want to show how our procedure can give a well-defined
dynamics that retains the non-Markovian features of the
Redfield equation, contrary to other common regulariza-
tion schemes. For completeness, in Appendix C, we show
that, in the regime studied below (where positivity
violation occurs), the Redfield equation is indeed inac-
curate for the spin-boson model, in accordance with what
is discussed in Ref. [6].

FIG. 2. Plots obtained for the qubit system in Sec. IVAwith γ ¼ 1 and μ∈ f5; 2; 1g. Top row: dynamics of the Choi distance between
a certain evolution and the exact one [cf. Eq. (46)]. Middle row: dynamics of the distinguishability measure Dtðρ; σÞ in Eq. (10) with
ρ ¼ j0ih0j and σ ¼ j1ih1j. In this case, the y axis is plotted in logarithmic scale for better readability. Bottom row: CPT violation
parameter kΔðtÞk, with ΔðtÞ defined in Eq. (20). Note how the Choi-proximity regularization of the Born master equation (“Choi-Born”
in the legend) outperforms the other methods and, when it is activated, reproduces the Markovian and non-Markovian behaviors of the
exact dynamics.
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Let us first focus on the time-dependent Redfield
equation. In Fig. 3, we show the dynamics of the distin-
guishability measure Dtðρ; σÞ when ρ ¼ j0ih0j and
σ ¼ j1ih1j in a moderate coupling regime with γ ¼ 1.5
and μ ¼ 0.1, together with the CPT violation parameter
kΔðtÞk. In the distinguishability plot, we see that the
regularization does not make much of a difference with
respect to the original time-dependent Redfield evolution,
but the dynamics is now guaranteed to be physically well
defined. Notice how the time-dependent Redfield equation
violates positivity at short times with kΔðtÞk ∼ 10−3. The
moderate impact of the Choi-proximity regularization
allows the regularized equation to keep the nice features
of the Redfield equation, such as accounting for the non-
Markovianity of the model: Note how the oscillations in the
distinguishability measure are roughly positioned as in
the exact solution. In contrast, we also plot the prediction of
the time-dependent Redfield equation regularized by acting
on its Kossakowski matrix [21], as described at the end
of Sec. II C: In this case, a monotonic decrease is observed,
in accordance with the fact that we are imposing a
CP-divisibility requirement.
In Fig. 4, we show the same plot but starting from

the time-independent version of the Redfield equation.
Now, the positivity violation is also clearly visible in the
distinguishability plot, where Dtðρ; σÞ unphysically grows
beyond the value of one at short times. Correspondingly,
we find kΔðtÞk ∼ 10−1 in this time region. The Choi-
proximity regularization corrects this behavior and
reproduces non-Markovian oscillations, contrary to the
Kossakowski-regularized equation.

V. CONCLUSIONS

In this work, we proposed a numerical approach that
takes any Hermitian-preserving quantum evolution and
transforms it into the closest trace-preserving and com-
pletely positive one, based on a projection operation in the
Choi space. By construction, it is sufficient to perform this
regularization only once to be able to evolve an arbitrary
initial state. Moreover, given the strong link with quantum
process tomography tasks, any future improvement in
computational complexity in that field is likely to auto-
matically provide an improvement for our regularization,
too. We put forward evidence that this procedure improves
the accuracy of the original map, avoids unphysical
predictions, and retains eventual non-Markovian features.
We also provided the formal expressions of paradigmatic
master equations that result from the Choi-proximity
regularization procedure.
Here, for simplicity, we only showed examples using

Redfield and Born equations, but this method can also be
used for higher-order master equations and, in general,
whenever there is reason to believe that complete positivity
or trace preservation could be violated in some time region
of the evolution at hand. The method could also be applied
outside the standard open-quantum-systems setting, for
example, in the description of driven quantum systems or
disorder-averaged quantum evolutions, where Redfield-like
equations are known to occur; see, e.g., Refs. [43,44] and
references therein.
At this level, the procedure is intended to be mainly

practical, and it is expected to be useful mainly to avoid
false predictions of positivity violation. No clear physical
insight was provided about the regularized dynamics, and
it is still an open problem to understand what the impli-
cations of the Choi-proximity regularization are, e.g., on

FIG. 3. Dynamics of the distinguishability measure Dtðρ; σÞ of
the spin-boson model, with ρ ¼ j0ih0j and σ ¼ j1ih1j. At the
bottom, we show the CPT violation parameter kΔðtÞk
[cf. Eq. (20)]. The parameters of the model are ε ¼ 1, δ ¼ 0.7
for the system and γ ¼ 1.5; μ ¼ 0.1;ω0 ¼ 1 for the interaction.

FIG. 4. Same as Fig. 3 but using a Redfield equation with a
time-independent generator [see discussion below Eq. (14)].
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the thermodynamics of the system and the steady-state
manifold structure. Our intuition is that CPT restoration
effectively puts back some non-Markovian effects that are
neglected during the derivation of the master equations
under analysis, an interpretation sustained by the appear-
ance of an explicit dependence on the initial state in the
modified master equations.
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APPENDIX A: ALGORITHM FOR CHOI-SPACE
PROJECTION

In this appendix, we discuss how to algorithmically solve
the semidefinite least-squares problem (19) of projecting a
Hermitian operator in HermðH ⊗ HÞ onto the physical
Choi space JðHÞ (see Sec. III A).
A natural approach to tackle these kinds of problems is to

cast them as standard semidefinite programs, for which
general-purpose algorithms exist [45]. However, if one
recognizes thatJðHÞ is the intersection of two convex sets,
tailored approaches can be devised [36]. In the context of
quantum process tomography, this idea was explored and
improved in Ref. [25] for the specific problem in Eq. (19),
where a so-called hyperplane intersection projection algo-
rithm was devised.
Here, we arbitrarily choose to use an alternative

approach based on Lagrangian duality [32]. Specifically,
we make use of the following result, which is an adaptation
of what was originally proved in Ref. [35] in the context of
generic semidefinite least-squares problems.
Theorem 3. Problem (19) is solved by

P̃ ¼ ΠðPþ 1H ⊗ ȲÞ; ðA1Þ

where

Π∶ A →
Aþ

ffiffiffiffiffiffiffiffiffi
A†A

p

2
ðA2Þ

is the projector onto PosðH ⊗ HÞ and Ȳ is the solution of
the following unconstrained optimization problem:

Ȳ ¼ argmin
Y ∈HermðHÞ

θðYÞ; ðA3Þ

where

θðYÞ ¼ 1

2
kΠðPþ 1H ⊗ YÞk2 − TrY ðA4Þ

is a convex differentiable function whose gradient with
respect to Y is the following Lipschitz-continuous function:

∇θðYÞ ¼ Tr1½ΠðPþ 1H ⊗ YÞ� − 1H
d

: ðA5Þ

Notice that the action ofΠ on a Hermitian operator A can
easily be evaluated once we have a spectral decomposition
of A: Simply put to zero all the negative eigenvalues while
leaving eigenvectors alone. More explicitly,

Π(UdiagðλÞU†) ¼ Udiagðmaxfλ; 0gÞU†; ðA6Þ

where λ is the vector of eigenvalues, diagðxÞ is the diagonal
matrix having the entries of the vector x on the diagonal,
and maxfλ; 0g is the vector having as entries maxfλi; 0g for
the λi component of λ.
The advantage offered by Theorem 3 is that now we can

focus on solving the unconstrained problem (A3) using a
nonlinear convex optimizer, such as accelerated gradient
descent or quasi-Newton techniques [45]. Here, we choose
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
provided by the routine optimize.minimize of the
PYTHON library SCIPY [46]. Moreover, we only need to
track d2 real parameters in the Y space instead of d4 in X
space. This can be particularly relevant when working with
high-dimensional systems. Note, however, that the com-
putational cost of the procedure is still dominated by the Π
operation, which requires a diagonalization of a d2 × d2

matrix and approximately scales as Oðd6Þ [47].
Up to now, it is unclear how this dual approach relates to

the more recent hyperplane intersection projection algo-
rithm, even though preliminary results can already be found
in Ref. [25], where it is shown that the dual approach is still
competitive as a state-of-the-art method for solving (19).

APPENDIX B: VECTORIZATION OF THE
REDFIELD EQUATION

In this appendix, we discuss how to vectorize the
Kossakowski form of the Redfield equation (15) in order
to allow for an easy numerical evaluation of its solutionwhile
keeping, at every stage, explicit access to the Kossakowski
matrix χðtÞ. We start by noticing that E†

nmEkq ¼ δknEmq, and
therefore, we have HS þHLSðtÞ ¼

P
k;q hkqðtÞEkq, with

hkqðtÞ ¼ δkqωk þ
X
l

ηlq;lkðtÞ; ðB1Þ
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where we also used the fact that HS ¼
P

k ωkEkk. With the
same reasoning, we can write

X
k;q;n;m

χkq;nmðtÞfE†
nmEkq; ρg ¼

X
k;q

χ̃kqðtÞfEkq; ρg; ðB2Þ

where

χ̃kqðtÞ ¼
X
l

χlq;lk: ðB3Þ

We arrive at

d
dt

ρðtÞ ¼
X

k;q;n;m

χkq;nmðtÞEkqρðtÞE†
nm

−
X
k;q

	
ihkqðtÞ½Ekq; ρðtÞ� þ

1

2
χ̃kqðtÞfEkq; ρðtÞg



:

ðB4Þ

After expanding the commutator and anticommutator, this
formula can be rewritten as

d
dt

ρðtÞ ¼
X

k;q;n;m

χkq;nmðtÞEkqρðtÞE†
nm

þ
X
k;q

(ϕkqðtÞEkqρðtÞ þ ϕ�
qkðtÞρðtÞEkq); ðB5Þ

where, for convenience, we introduce

ϕkqðtÞ ≔ −ihkqðtÞ −
1

2
χ̃kqðtÞ: ðB6Þ

Now, we introduce the row-major vectorization operator
vec∶LðHÞ → H ⊗ H defined by vecðene†mÞ ¼ en ⊗ em on
any orthonormal basis feng of H. More explicitly, if
A∈LðHÞ is given in matrix form, vecðAÞ is the vector
obtained by transposing the rows of A and stacking them
on top of one another. For any A;B; X∈LðHÞ, it can be
proved that

vecðAXBÞ ¼ ðA ⊗ BTÞvecðXÞ: ðB7Þ

Using this relation together with rðtÞ ≔ vec(ρðtÞ),
Eq. (B4) becomes the vectorized equation

d
dt

rðtÞ ¼ LðtÞrðtÞ; ðB8Þ

where

LðtÞ ¼ XðtÞ þ ϕðtÞ ⊗ 1þ 1 ⊗ ϕ�ðtÞ; ðB9Þ

and we introduced the matrix XðtÞ whose elements are
deduced from the Kossakowski matrix as follows:

hk; njXðtÞjq;mi ¼ χkq;nmðtÞ; ðB10Þ

where jk; ni≡ jki ⊗ jni.
Similar expressions were found in Ref. [21] for a

particular model, while these are generalized to any
Redfield equation. Equation (B8) can be solved with any
ordinary differential equation solver: For example, the
results of this paper are obtained using the routine inte-
grate.solve_ivp in the PYTHON library SCIPY [46],
which, by default, uses an explicit Runge-Kutta method of
order 5(4). The state matrix ρðtÞ in the canonical basis
fEkqg can then be found from rðtÞ by inverting the
vectorization mapping.

APPENDIX C: INACCURACY OF THE
REDFIELD EQUATION FOR THE SPIN-BOSON

MODEL WITH MODERATE COUPLING

Complementing the discussion of Sec. IV B, in this
appendix, we show that the Redfield equation for the spin-
boson model is inaccurate for moderate couplings (where
positivity violation occurs), confirming the findings of
Ref. [6]. Specifically, we report in Fig. 5 the Choi distance
(46) from the time-independent Redfield equation and the
exact solution, using the same parameters as in Fig. 4. It is
evident that this distance is sensibly different from zero
in all time regions, being of order 1. We also show the
performance after a Choi-proximity regularization is
applied: An improvement is indeed found (as predicted
by Theorem 2), but it is not dramatic. The same is true when
using the time-dependent version of the Redfield equation,
as also shown in Fig. 5.

FIG. 5. Choi distance between the exact solution of the
spin-boson model in Sec. IV B and various master equations:
“Redfield” means the time-independent Redfield equation,
“Choi-Redfield” means its Choi-proximity regularization, while
“t-Choi-Redfield” stands for the regularized time-dependent
Redfield equation. The parameters are the same as in Fig. 4.

RECOVERING COMPLETE POSITIVITY OF NON-MARKOVIAN … PHYS. REV. X 14, 031010 (2024)

031010-11



[1] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, New York,
2002).

[2] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105,
1206 (1957).

[3] A. G. Redfield, The theory of relaxation processes, in
Advances in Magnetic Resonance (Academic Press,
New York, 1965).

[4] R. Dümcke and H. Spohn, The proper form of the generator
in the weak coupling limit, Z. Phys. B 34, 419 (1979).

[5] A.Purkayastha,A.Dhar, andM.Kulkarni,Out-of-equilibrium
open quantum systems: A comparison of approximate
quantum master equations approaches with exact results,
Phys. Rev. A 93, 062114 (2016).

[6] R. Hartmann and W. T. Strunz, Accuracy assessment of
perturbative master equations: Embracing nonpositivity,
Phys. Rev. A 101, 012103 (2020).

[7] A. Soret, V. Cavina, and M. Esposito, Thermodynamic
consistency of quantum master equations, Phys. Rev. A 106,
062209 (2022).

[8] F. Benatti, D. Chruściński, and R. Floreanini, Local gen-
eration of entanglement with Redfield dynamics, Open Syst.
Inf. Dyn. 29, 2250001 (2022).

[9] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha,
Fundamental limitations in Lindblad descriptions of sys-
tems weakly coupled to baths, Phys. Rev. A 105, 032208
(2022).

[10] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha,
Searching for Lindbladians obeying local conservation
laws and showing thermalization, Phys. Rev. A 107,
062216 (2023).

[11] G. Schaller and T. Brandes, Preservation of positivity by
dynamical coarse graining, Phys. Rev. A 78, 022106
(2008).

[12] G. Kiršanskas, M. Franckié, and A. Wacker, Phenomeno-
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