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Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents.
As originally conceived, flocking emerges through alignment interactions between the agents. Here, we
report that flocking can also emerge through interactions that turn agents away from each other. Combining
simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled
Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because
particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment
interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high
concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-
induced phase separation of active particles, here it combines with turn-away torques to produce flocking.
Therefore, our findings bridge the classes of aligning and nonaligning active matter. Our results could help
to reconcile the observations that cells can flock despite turning away from each other via contact inhibition
of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when
the orientational interactions would seem to prevent it.
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I. INTRODUCTION

Flocking—the self-organized collective motion of active
agents—is ubiquitous in nature [1]. It takes place in
many systems across scales, from bird flocks [2] to
bacterial colonies [3] and to cytoskeletal filaments driven
by molecular motors [4]. Understood as the emergence
of polar order in systems of self-propelled particles,
flocking is a landmark phenomenon that launched the field
of active matter [5,6]. As originally conceived in the Vicsek
model [5], flocking arises through alignment interactions
between the active agents, which align similarly to spins
in the XY model. Alignment-based flocking has been

experimentally realized using synthetic active colloids,
which feature alignment interactions of either hydrody-
namic, electric, or magnetic origin [7–9].
However, recent work showed that flocking can also

emerge without explicit alignment interactions [10–13].
Instead of aligning with neighbors, the agents can experience
a variety of alternative interactions [14–29], such as aligning
with their own velocity or force [13–15], colliding inelasti-
cally [16,17], or chasing others in their vision cone [20–22].
Such alternative interactions were inferred in schooling

fish [30,31], and they might be more widespread than
standard alignment interactions. For example, robots in a
swarm might benefit from collision-avoidance interactions
that reorient them away from collisions [25,32]. Similarly,
several types of motile cells undergo contact inhibition
of locomotion—a behavior whereby cells repolarize away
from cell-cell collisions [33–35]. Yet, cell layers and trains
have been observed to flock, both in simulations [36,37]
and in experiments [14,38–44]. How do cells flock despite
interacting via contact inhibition of locomotion? More
generally, what types of orientational interactions lead to
flocking?
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Here, we show that agents that turn away from each other
can collectively align and flock. This finding is surprising
because turn-away interactions are intuitively expected to
prevent and destroy orientational order. We show that this
mechanism of flocking requires the combination of turn-
away torques and repulsive forces between the particles.
Therefore, our findings bridge the classes of alignment-
based and repulsion-based phenomena in active matter,
represented by flocking [45] and motility-induced phase
separation [46], respectively. Our results expand the types
of interactions that can produce flocking, and they might
help to understand the physical origin of flocking in cell
collectives. More generally, our results demonstrate the
emergence of macroscopic polar order from microscopic
interactions that do not implement polar alignment.
Therefore, our findings strikingly showcase the disconnect
between the symmetries of microscopic interactions and
macroscopic order in active matter [23,47,48].

II. FLOCKING OF METAL-DIELECTRIC
JANUS COLLOIDS

We study a suspension of self-propelled Janus colloidal
particles [48–51]. The particles are 3-μm-diameter silica

spheres, coated with 35 nm of titanium and 20 nm of silicon
oxide on one hemisphere (Appendix A). These particles are
suspended in deionized water and placed between con-
ductive coverslips coated with indium tin oxide, separated
by a 120 μm spacer [Fig. 1(a) and Appendix A]. Particles
sediment to form a monolayer on the bottom coverslip.
To drive the particles, we apply a perpendicular ac voltage
of amplitude V0 ¼ 10 V and frequency ν ¼ 30 kHz. The
resulting electric field aligns the particle equator
perpendicular to the coverslips, and it polarizes the metal
and dielectric hemispheres differently [Fig. 1(b)]. This
difference induces (i) electrokinetic flows that produce
particle self-propulsion along a direction n̂ pointing from
the dielectric to the metallic hemisphere [52–54] and
(ii) electrostatic interparticle forces and torques [Fig. 1(b)].
Upon application of the electric field, the system remains

as an isotropic active gas at low area fractions and self-
propulsion speeds [Fig. 1(c) and Movie 1 [55] ]. In contrast,
at higher area fractions and speeds, the system develops
polar order and flocks [Fig. 1(d) and Movie 2 [55] ]. In this
regime, we observe spatiotemporal patterns including
vortices and large-scale polar bands characteristic of
flocking systems (Movies 3 and 4 [55]).

FlockingIsotropic

Top view

Torque

Repulsion
Electric dipoles

Self-propulsion speed �

A
re

a
 f
ra

c
ti
o
n

Simulations
BBGKY theory
Boltzmann theory

Isotropic

Flocking

Flocking

Is
o
tr

o
p
ic

��

(a)

(c) (d)

(e)

(b)

FIG. 1. Flocking ofmetal-dielectric Janus colloids. (a) Schematic of the experimental setup inwhich 3-μm-diameter particles are allowed to
sediment in water to the bottom of a sample cell across which ac electric fields are applied vertically. (b) Top view of two Janus particles in an
electric field E that induces dipoles of opposite orientation and different magnitude (orange) on the head and tail hemispheres. This leads to
particle self-propulsion along the direction n̂ (black) and to interparticle forces (purple) and torques (green). Torques rotate particles away from
the direction of the interparticle distance (dashed line). (c),(d) The system forms an isotropic gas at low area fraction and self-propulsion speed
(c), and it flocks at high area fraction and speed (d). (e) Phase diagram of the flocking transition. Points show the experimental data. The lines
indicate the phase boundaries thatwepredict via our simulations and two theory approaches.Theexperimental points are averages over time for
durations ranging from 25 to 656 s, recorded at either 10 or 20 frames per second, including between 317 and 13 115 frames. Error bars are s.d.
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We analyze different experimental realizations recorded
at either high or low magnification. In high-magnification
movies, we can track particle orientations n̂iðtÞ and
measure the time-averaged polar order parameter P ¼
ð1=NÞhjPN

i¼1 n̂iðtÞjit (Figs. S1 and S2 [55]). In low-
magnification movies, we cannot resolve single-particle
orientations, and we instead perform particle image veloc-
imetry to measure the flow field vðrÞ and obtain its
correlation length (Figs. S3 and S4 [55]). Based on these
measurements, we classify the state of each realization as
either isotropic or flocking (Appendix A). Figure 1(e)
shows that our experimental results are consistent with the
simulations and theories that we develop below.

III. ACTIVE BROWNIAN PARTICLES WITH
TURN-AWAY INTERACTIONS

The observation of flocking is surprising, as the electro-
static interactions between the particles tend to repel them
and turn them away from each other [Fig. 1(b)]. To
investigate if and how these interactions give rise to
flocking, we use a two-dimensional microscopic model
based on the dipolar interactions between the hemispheres
of our particles [48]. Our model shows that two particles
interact via a repulsive force

Fij ¼
3

4πϵ

ðdh þ dtÞ2
r4ij

e−rij=λr̂ij; ð1Þ

where ϵ is the dielectric permittivity of the solvent, rij ¼
rj − ri is the distance vector, and dh > 0 and dt < 0 are the
effective dipole strengths of the head and tail hemispheres,
respectively [Fig. 1(b)]. The exponential factor accounts for
screening by the electrodes, separated by a distance
λ ¼ 120 μm. Moreover, because head dipoles are stronger
than tail dipoles (d2h > d2t ), particles interact via a torque

Γij ¼
3l
4πϵ

d2h − d2t
r4ij

e−rij=λn̂j × r̂ij; ð2Þ

where l ¼ 3R=8 is the distance by which the dipoles are
off-centered, with R ¼ 1.5 μm the particle radius.
The torque in Eq. (2) tends to turn a particle with

orientation n̂j away from the interparticle distance vector rij
[Fig. 1(b)]. These turn-away interactions are fundamentally
different from Vicsek-type alignment interactions: Whereas
alignment interactions couple the orientations of two
particles (Γij ∝ n̂i × n̂j), our turn-away interactions couple
the orientation of one particle to the position of the other
one (Γij ∝ n̂j × rij). As a result, turn-away torques are
intrinsically nonreciprocal: Γij ≠ −Γji.
We write Langevin equations for the translational and

rotational motion of particle i as

dri
dt

¼ v0n̂iðθiÞ þ
Fi

ξt
þ

ffiffiffiffiffiffiffiffi
2Dt

p
ηtiðtÞ; Fi ¼

X
j≠i

Fji; ð3aÞ

dθi
dt

¼ Γi

ξr
þ

ffiffiffiffiffiffiffiffi
2Dr

p
ηri ðtÞ; Γi ¼

X
j≠i

Γji · ẑ; ð3bÞ

where v0 is the self-propulsion speed, n̂i ¼ ðcos θi; sin θiÞ
is the orientation of particle i, ξt and ξr are the translational
and rotational friction coefficients, respectively, and ηtiðtÞ
and ηri ðtÞ are Gaussian white noises with strengths given by
the translational and rotational diffusivities Dt and Dr,
respectively. We perform Brownian dynamics simulations
of this model withN particles in a square box of side Lwith
periodic boundary conditions (Appendix A and parameter
values in Table I). We benchmark the simulations by
reproducing the phase separation reported in Ref. [48],
which is induced by torques that turn particles toward one
another, with d2t > d2h (Fig. S5 [55]).

(a)

(b) (c)

FIG. 2. Flocking in simulations of repulsive active Brownian
particles with turn-away torques. (a) Phase diagram showing
the flocking transition as either the area fraction or the self-
propulsion speed increases. The blue phase boundary is obtained
from the point of steepest ascent of the measured polar order
parameter P (Fig. S7 [55]). The green phase boundary is
predicted using BBGKY kinetic theory using the pair distribution
function measured in simulations [Figs. 4(b)–4(e)]. Stars indicate
the snapshots shown below. (b),(c) Snapshots showing the
isotropic phase (b) and the polar flocking phase (c). The evolution
toward the flocking state is shown in Fig. S8 and Movie 6 [55].
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For turn-away torques, with d2h > d2t , our simulations
with N ¼ 2500 show the emergence of global polar
order P as we increase either the self-propulsion speed
v0 or the global area fraction ϕ0 ¼ NπR2=L2 (Fig. 2 and
Movies 5 and 6 [55]). Global polar order also emerges in
larger simulations of up to N ¼ 70 225 (Fig. S6 [55]),
suggesting that the flocking transition survives in the
large-system limit. We conclude that active Brownian
particles can flock despite turning away from one another.
Moreover, the phase boundary obtained from simulations
[Fig. 2(a), blue line] is quantitatively close to the transition
that we observe in experiments [Fig. 1(e)].

IV. ACTIVE WIGNER CRYSTALS

As we increase the area fraction in simulations beyond
those in our experiments, flocks develop crystalline order
(Fig. 3). These states are reminiscent of flocking crystals
reported in previous simulations [56,57]. However,
whereas ordinary crystals form by attraction between the
particles, the force in our model is purely repulsive
[Eq. (1)]. Thus, the flocking crystals that we find are active
counterparts of Wigner crystals, which were originally
proposed to form through electrostatic repulsion in electron
gases [58]. In our system, the repulsion includes both the
electrostatic repulsive force in Eq. (1) as well as an effective
repulsion arising from the turn-away torques in Eq. (2) and
self-propulsion [36,59]. Therefore, turn-away torques pro-
mote the formation of active Wigner crystals.
In two dimensions, crystallization involves an intermedi-

ate hexatic phase with orientational order in the particle
positions [60]. We obtain the global hexatic order parameter

ψ6, which goes from 0 in the liquid phase to 1 for a
monodomain triangular lattice [Fig. 3(a) and Appendix A].
We then use orientational and positional correlations to
identify the transitions to the hexatic and crystalline phases
(Fig. S9 [55]), marked with dashed lines in Fig. 3(a).
Consistently with previous works [61,62], increasing activity
v0 in the crystalline phase [Figs. 3(d) and 3(e)] promotes the
formation of a single crystal spanning the entire system. The
polycrystalline states at low activity v0 [Fig. 3(d)] last for the
entire duration of our simulations.
Although they both depend on the turn-away torques,

the flocking and the crystallization transitions remain
separate. Below the crystallization threshold, we observe
fluid flocks [Figs. 3(a) and 3(b)]. Crystallization is, there-
fore, not required for flocking via turn-away torques. In
fact, as we increase the area fraction in larger systems with
N ¼ 40 000 particles, we observe flocks in the form of
well-known polar bands and uniform liquids [7,12,45]
before reaching hexatic states and active Wigner crystals
(Fig. S10 and Movies 7–11 [55]). Overall, crystallization is
not involved in the mechanism whereby particles with turn-
away interactions flock.

V. COARSE-GRAINING SHOWS THAT
CORRELATIONS ENABLE FLOCKING

To understand the emergence of polar order, we coarse-
grain the microscopic model [Eq. (3)]. To this end, we
write the Smoluchowski equation and break it into the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy to obtain an equation for the one-particle distribution
function, from which we obtain hydrodynamic equations

�

(a) (b) (c)

(d) (e)

FIG. 3. Active Wigner crystals. (a) At high area fraction, the system forms flocking Wigner crystals, which have high values of the
global hexatic order parameter ψ6. The hexatic and crystalline phases are identified from orientational and positional correlations
(Fig. S9 [55]), and phase boundaries (dashed lines) are guides to the eye. Stars indicate the snapshots shown in the other panels.
(b)–(e) Snapshots of fluid, hexatic, and crystalline flocks. Crystals are typically polycrystalline with grain boundaries at low activity (d)
and monocrystalline at higher activity (e). Color indicates the angle αi between the local hexatic order of each particle and its average
over the system (Appendix A).
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for the density and the polarity fields ρðr; tÞ and Pðr; tÞ
(Appendix B). For the polarity, we obtain

∂tP ¼ a½ρ�PþOð∇Þ: ð4Þ
Polar order emerges if a > 0. The coarse-graining yields

a½ρ� ¼ ρ

2πξr
τ0 −Dr; ð5Þ

where the first term is due to torques and the second term
represents the decay of polar order due to rotational
diffusion. The effect of the torques, expressing Eq. (2)
as Γij ¼ ΓðrÞn̂j × r̂ij with r ¼ jrijj, is embodied in the
coefficient τ0, which is given by (Appendix B)

τ0¼
Z

∞

0

rdr
Z

2π

0

dφ
Z

2π

0

dθsinθΓðrÞsinφgðr;φ;θÞ ð6Þ

in terms of the pair distribution function gðr;φ; θÞ in the
isotropic state [23]. This function encodes correlations, as it
gives the probability density of finding a pair of particles
at a distance r, with the second particle at a position and
orientation forming angles φ and θ with respect to the
orientation of the reference particle: n̂i · r̂ij ¼ cosφ and n̂i ·
n̂j ¼ cos θ [Fig. 4(a)].
Which properties must the pair distribution g have in

order to yield a nonzero τ0 that could produce flocking? To
prevent the angular integrals in Eq. (6) from vanishing by
symmetry [63], g has to fulfill the following conditions:

(i) gðr;−φ; θÞ ≠ gðr;φ; θÞ,
(ii) gðr;φ;−θÞ ≠ gðr;φ; θÞ,
(iii) gðr;φþ π; θÞ ≠ gðr;φ; θÞ, and
(iv) gðr;φ; θ þ πÞ ≠ gðr;φ; θÞ.

These conditions are necessary, but not sufficient, for
flocking.
To test whether these conditions are satisfied, we

measure gðr;φ; θÞ in our simulations (Appendix A). As
g is a function of three arguments, we plot gðr;φÞ and bin
the relative orientations in the four quadrants of the angle θ
[Figs. 4(b)–4(e)]. These plots show a clear asymmetry upon
changing the sign of the polar angle φ → −φ. There is
also a clear asymmetry upon the transformation θ → −θ,
which corresponds to exchanging the first quadrant with the
fourth [Figs. 4(b) and 4(e)] and the second with the third
[Figs. 4(c) and 4(d)]. Therefore, our system satisfies
conditions (i) and (ii). Furthermore, for a given quadrant
of θ, changing φ → φþ π corresponds to moving to the
diametrically opposed point, which yields a different value
of g. Respectively, changing θ → θ þ π corresponds to
exchanging the first quadrant with the third [Figs. 4(b)
and 4(d)] and the second with the fourth [Figs. 4(c)
and 4(e)], which again yields different values of g.
Therefore, our system also satisfies conditions (iii) and (iv).
These results show that the correlations in our system

fulfil the necessary requirements to yield flocking. We then
use the measured pair distribution to predict the flocking

transition. To this end, we introduce the measured gðr;φ; θÞ
into Eq. (6) to obtain the growth rate a of polar order
in Eq. (5) for different values of the area fraction ϕ0 and
self-propulsion speed v0 [Fig. 4(f)]. The change of sign of a
marks the predicted onset of flocking, shown as the green
line in Figs. 1(e) and 2(a), which agrees quite well with the
experimental results [Fig. 1(e)]. Our theory, therefore,
captures the flocking transition.
Once polar order has emerged, turn-away torques sta-

bilize it. In contrast to alignment interactions, turn-away
interactions hinder the formation of polar clusters, as
particles at the cluster edge turn away and move into
low-density areas. Therefore, turn-away interactions pro-
duce flocking states in which particles always have lateral
neighbors. As a result, if a particle deviates from the
flocking direction, it moves closer to a neighbor and
experiences a torque that restores its initial orientation
[Fig. 4(g)]. Flocking, therefore, represents a compromise
between turning away from left and right neighbors.

VI. FLOCKING EMERGES FROM TURN-AWAY
TORQUES AND REPULSION

Our findings so far indicate that, already in the isotropic
state, the system builds up correlations that enable the
emergence of polar order. Where do these correlations
come from? We argue that they arise from the combined
effects of turn-away torques and repulsion forces. Taking
Fig. 4(b) as an example, the peaks of g are found in regions
of low turn-away torque [as shown in Fig. 4(h)], where
particles tend to stay longer. In other quadrants, these low-
torque regions change precisely in the way required to
satisfy conditions (i) and (ii) (Fig. S11 [55]). Respectively,
the asymmetry between the front and the back peaks in
Fig. 4(b), required for condition (iii), is due to repulsion.
Whereas particles at the front are pushed forward and sped
up by repulsion, particles at the back are pushed back and
slowed down [Fig. 4(i)], which makes them stay longer.
Finally, condition (iv) is satisfied due to the difference in
relative velocity between the particles: The correlations
when two particles move in the same direction are different
than when they move in opposite directions. We conclude
that, together, turn-away torques and repulsion provide the
conditions for flocking.

VII. BOLTZMANN KINETIC THEORY PREDICTS
EFFECTIVE ALIGNMENT

To gain microscopic insight into how torques and
repulsion jointly produce flocking, we analyze binary
scattering events. We choose the axes so that the two
particles are separated along the ŷ axis [Fig. S12(a) [55] ].
Then, a scattering event between particles with orientations
θ1 and θ2 is characterized by the incoming half-angle
θ̄ ¼ argðeiθ1 þ eiθ2Þ and the angle difference θ ¼ θ2 − θ1
[Fig. S12(b) [55] ]. We first consider an event with θ̄ ¼ 0,
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and we analyze scattering with torques only [Fig. 5(a)]. If
particles come into the interaction range rint at an angle
difference θin, they turn away from each other and they exit
the interaction range with angle difference θout ¼ −θin
[Fig. 5(a)]. The momentum of the pair does not change.

Therefore, turn-away torques alone do not yield any
alignment during this scattering event.
Repulsion, however, pushes particles out of the inter-

action range before they have time to turn completely
[Fig. 5(b)]. Therefore, particles leave the scattering event

�

(a)

(b) (c) (h)

(d) (e) (i)

(f) (g)

FIG. 4. Correlations established by turn-away torques and repulsion enable the emergence of polar order. (a) Definitions of the arguments
r, φ, and θ of the pair distribution function. (b)–(e) Pair distribution function measured in simulations in the isotropic state, for ϕ0 ¼ 0.1 and
v0 ¼ 5 μm=s, built as histograms over 1000 independent configurations. The four panels show gðr;φÞ for particle pairs with relative
orientation θ in each of the four quadrants, as indicated. The white circumferences around the reference particle indicate the predicted
exclusion region, which we obtain as the distance r� at which repulsion overcomes the self-propulsion force: Fðr�Þ ¼ ξtv0, with Eq. (1)
expressed as Fij ¼ FðrÞr̂ij. (f) Growth rate calculated using Eq. (5) with Eq. (6) using the gðr;φ; θÞ measured in simulations. The black
crosses, obtained by extrapolation, indicate the onset of flocking, which determines the green phase boundary in Fig. 2(a). (g) Schematic
showing that torques stabilize the flocking state: Turning away from both the left and right neighbors keeps particles moving together. (h),
(i) Torque and force fields, respectively, exerted by the reference particle on a particle with relative orientation θ ¼ π=4, as indicated. This
orientation belongs to the first quadrant (b). Green arrows in (h) and purple arrows in (i), respectively, indicate the directions of the torque
and repulsive force on each of the probe particles, which explain the pair distribution in (b). The torque and force are plotted from Eq. (1)
and (1) and normalized by Γ0 ¼ 3lðd2h − d2t Þ=ð4πϵR4Þ and F0 ¼ 3ðdh þ dtÞ2=ð4πϵR4Þ.
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with a smaller angle difference than initially: jθoutj < jθinj.
The combined effects of turn-away torques and repulsion,
therefore, cause effective alignment, and, hence, they can
produce flocking.
To average over scattering events, we use Boltzmann’s

kinetic theory generalized for self-propelled particles [64].
This theory predicts that the growth rate of polar order, as
in Eq. (4), is given by a ¼ hp · δpiθ̄;θ −Dr, where the first
term is the average over scattering events of the dimension-
less momentum change δp in the forward direction, i.e.,
projected on the incoming momentum p ¼ n̂1 þ n̂2. In our
case, it is given by (Appendix C)

hp · δpiθ̄;θ ¼
ρv0rint
2π

Z
π

−π
dθj sin ðθ=2Þjhp · δpðθ̄; θÞiθ̄; ð7Þ

where rint ¼ λ is the interaction range. This forward
momentum change quantifies the effective alignment aris-
ing from scattering events. To obtain it, we numerically
integrate the equations of motion Eq. (3) without noise for
binary scattering events with different θ̄ (Appendix A). The
results show that having forward momentum gain requires
repulsion [Fig. 5(c)], which is, therefore, necessary for

flocking. Finally, we use the scattering statistics to predict
the growth rate a and, hence, the onset of flocking for a ¼ 0
[Fig. 5(d), red line]. These predictions, which include only
two-particle dynamics, are consistent with our many-
particle simulation results and with our experiments
[Fig. 1(e)]. Together, these results reveal the microscopic
mechanism responsible for flocking through combined
repulsion and turn-away torques.

VIII. DISCUSSION AND OUTLOOK

In summary, we discovered a mechanism that allows self-
propelled particles to flock by repelling and turning away
from each other. This finding sharply contrasts with the
mechanism of flocking in the paradigmatic Vicsek model,
which relies on explicit alignment interactions between the
active agents. In that case, flocking emerges purely from
torques; it does not require any central forces between the
agents. In contrast, we revealed a mechanism of flocking that
relies on both torques and repulsion, thus combining features
of aligning and nonaligning active matter.
Recentwork reported that flocking can arise from collision-

avoidance interactions, which align particles by turning them

(a) (b)

(c) (d)

� �

FIG. 5. Repulsion and turn-away torques produce effective alignment during scattering events. (a),(b) Schematics of a symmetric
scattering event, for which turn-away torques alone do not yield any alignment (a) whereas adding repulsion does (b). (c) Scattering
events produce a gain in forward momentum [Eq. (7)] only in the presence of enough repulsion. The repulsion strengthC is defined from
Eq. (1) by FðrÞ ¼ Ce−r=λ=r4 [see Eq. (A1) in Appendix A]. (d) Phase diagram of flocking predicted from the Boltzmann kinetic theory
[Eq. (7) and Appendix C]. The phase boundary is marked in red. The polarity P is obtained from Eq. (A4) (see Appendix A).
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away from a collision [23,25]. Our turn-away interactions,
however, can produce severe misalignment, as particles keep
turning away from each other even after they have avoided
collision, thus making flocking seemingly impossible. Our
results show that flocking emerges even in this case.
At high densities and speeds, alignment-based flocks

made of Quincke rollers were previously found to lose
polar order as they experience motility-induced phase
separation (MIPS) [65]. However, the turn-away torques
in our system hinder MIPS, as they reorient particles away
from clusters [24]. Therefore, flocks obtained through turn-
away interactions can achieve higher speeds and densities
without suffering phase separation and loss of collective
motion. This feature allows us to obtain flocks in the form
of dense liquids and Wigner crystals produced by particle
repulsion. Similar crystals, albeit without flocking, were
obtained recently in simulations of microswimmers with
chemorepulsive interactions [66].
Active particles often crystallize via either MIPS

[50,67–69] or hydrodynamic attraction [70–73] or by
approaching close packing [74–76], all of which produce
particle collisions and impair collective motion. Here,
Wigner crystallization keeps particles at a distance, which
avoids collisions and does not impair collective motion.
As an outlook, we speculate that flocking by turning

away might contribute to collective motion in cell pop-
ulations, possibly solving the apparent paradox that cells
can flock despite interacting via contact inhibition of
locomotion [36,37,77]. Interactions between cells are much
more complex than those between our active colloids. Yet,
as mesenchymal cells repolarize away from each other
upon collision, cell-cell scattering events could have out-
comes similar to those between our particles, with an
outgoing angle larger than zero but smaller in magnitude
than the incoming angle [Fig. 5(b)]. We look forward to
experimental tests of this idea in future work.
Finally, flocking by turning away might also provide a

strategy to engineer robust swarming in disordered envi-
ronments. We already saw hints of this robustness in our
experiments, in which flocks easily flow past stuck par-
ticles (Movies 2 and 4 [55]). If an agent gets stuck at an
obstacle, alignment interactions will produce accumulation
of followers behind it. Instead, turn-away interactions allow
followers to readily reorient away, which might yield
smoother and more efficient flocking through disordered
landscapes.
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APPENDIX A: METHODS

1. Particle synthesis

Following protocols described elsewhere [49], a sub-
monolayer of 3-μm-diameter silica particles (Tokuyama) is
prepared on a standard glass slide. Then, 35 nm of titanium
and then 20 nm of SiO2 are deposited vertically on the glass
slide using an electron-beam evaporator. The preparation
is then washed with isopropyl alcohol and deionized
water and then sonicated into deionized water to collect
the Janus particles.

2. Experimental setup

The particle suspensions are confined between two
coverslips (SPI Supplies) coated with indium tin oxide
to make them conductive and with 25 nm of silicon oxide to
prevent particles from sticking to them. The coverslips have
a 9 mm hole in the center, separated by a 120-μm-thick
spacer (GraceBio SecureSeal), where we place the suspen-
sion of Janus colloidal particles. An alternating voltage is
applied between the coverslips using a function generator
(Agilent 33522A). The sample cell is imaged with 5×, 40×,
and 64× air objectives on an inverted microscope (Axiovert
200). The observation areas are 1232 μm × 1640 μm,
154 μm × 205 μm, and 96 μm × 128 μm, respectively.
Microscopic images and videos are taken with a CMOS
camera (Edmund Optics 5012M GigE) with 20 ms time
resolution.

3. Image analysis

Image processing is performed using MATLAB with
home-developed codes.
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4. Experimental data analysis

Here, we describe the analysis methods that we use to
identify flocking in the experimental movies. We analyze
experimental movies obtained with three different magni-
fications: 64×, 40×, and 5×.
For 64× and 40× magnifications, we can track particle

orientations n̂iðtÞ and obtain the polar order parameter
PðtÞ ¼ ð1=NÞjPN

i¼1 n̂iðtÞj (Fig. S1 [55]). We classify as
flocking the experimental realizations for which the time-
averaged polar order parameter is hPðtÞit ≥ 0.5.
For 5× magnification, we cannot resolve single-particle

orientations n̂iðtÞ, and, hence, we can study polar order
only indirectly through the flow field vðr; tÞ, which we
measure using particle image velocimetry. Analyzing
high-magnification videos, we find that the polar order
parameter obtained from particle orientations, PnðtÞ ¼
PðtÞ ¼ ð1=NÞjPN

i¼1 n̂iðtÞj, strongly correlates with that
obtained from the particle velocity axes v̂iðtÞ as PvðtÞ ¼
ð1=NÞjPN

i¼1 v̂iðtÞj (Fig. S2 [55]). Hence, the velocity field
approximates well the polarity field, and we, therefore,
use it to characterize polar order in low-magnification
movies.
To do this, we obtain the spatial correlation function of

the velocity field,Cðr; tÞ ¼ hvðr; tÞ · vð0; tÞi. We then fit to
it an exponential decay Cðr; tÞ ∼ e−r=ξðtÞ, from which we
extract the velocity correlation length ξðtÞ (Fig. S3 [55]).
We expect flocking states to have a correlation length
substantially larger than the average interparticle distance
hri ¼ ffiffiffiffiffiffiffiffi

1=ρ
p ¼ R

ffiffiffiffiffiffiffiffiffiffi
π=ϕ0

p
. We classify as flocking the

experimental realizations for which the time-averaged
correlation length is larger than 10 times the average
interparticle distance: hξðtÞit ≥ 10hrir;t (Fig. S4 [55]).
This threshold seems to be a good compromise between
requiring relatively long-ranged correlations and account-
ing for the finite size of the polar domains throughout our
experiments. In most movies that visually exhibit some

polar order, the polar domains are not much bigger than this
threshold size. Therefore, the threshold cannot be increased
much further. At the same time, setting a lower threshold
would classify as flocking some experimental realizations
in which polar order is visually nonexistent or only very
short-ranged.

5. Simulation scheme

We implement Brownian dynamics simulations of
Eq. (3) with Eqs. (1) and (2). We place the particles in a
square box of side L with periodic boundary conditions.
We use simulation units and parameter values estimated
from our experiments as indicated in Table I. We use an
explicit Euler-Mayurama method for the time evolution
with time step Δt ¼ 10−4, and the simulations are per-
formed for Nsteps ¼ 1.4 × 106 steps, corresponding to a
simulation duration T ≈ 934 s.
We benchmark our simulations by reproducing the

results of Ref. [48] using N ¼ 1024 particles with turn-
toward torques (Fig. S5 [55]). For turn-away torques, we
perform simulations with N ¼ 2500 particles. We show
nonuniform flocking states in larger systems using
simulations with N ¼ 40 000 particles (Fig. S10 [55]). In
this case, we use a cell-list algorithm to track particle
neighbors. In our simulations, we vary the area fraction
ϕ0 ¼ Nπσ2=ð4L2Þ and the self-propulsion speed v0 in the
ranges ϕ0 ∈ ½0.02; 1.30� and v0 ∈ ½0; 60� μm=s.

6. Quantification of hexatic order

To quantify hexatic order [60], we measure the local
hexatic order of particle i defined as ψ6;i ¼ ð1=Ni

nnÞPNi
nn

j¼1 e
6iθij , where θij is the angle of the segment connect-

ing particles i and j with respect to the x̂ axis and Ni
nn is

the number of nearest neighbors of particle i found
through Voronoi tessellation. From it, we obtain the global

TABLE I. Parameter estimates. Parameter values as obtained in Ref. [48], except switching the head and tail
dipole magnitudes. We define our simulation units based on the four first entries of this table, which we use to define
the scales of length, time, energy, and electric charge, respectively.

Description and symbol Estimate Value in simulation units

Particle diameter σ ¼ 2R 3 μm 1
Rotational diffusion coefficient Dr 0.15 s−1 1
Thermal energy kBT 4.11 × 10−21 J 1
Dielectric permittivity of the solvent ϵ 6.95 × 10−10 C2=ðNm2Þ 1
Translational diffusion coefficient Dt 0.16 μm2=s 0.11
Translational drag coefficient ξt 25 mPa s μm 9
Rotational drag coefficient ξr 75 mPa s μm3 3
Electrostatic screening length λ 120 μm 40
Dipole shift distance l 0.56 μm 0.19
Electric field amplitude E0 83 V/mm 179
Head dipole magnitude jdhj 9.76 × 10−22 Cm 112
Tail dipole magnitude jdtj 4.64 × 10−22 Cm 53
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hexatic order ψ6 ¼ ð1=NÞjPN
i¼1 ψ6;ij, which is a scalar

order parameter that we show in Fig. 3(a). We also obtain
the hexatic angle αi of each particle, which we show to
visualize ordered domains in Figs. 3(b)–3(e). This angle
indicates the projection of the local hexatic order ψ6;i

onto its average Ψ6 ¼ ð1=NÞPN
i¼1 ψ6;i, obtained from

the scalar product of these two complex numbers:
ψ6;iΨ6 ¼ jψ6;ijjΨ6j cos αi.

7. Pair distribution function

To numerically obtain the pair distribution function
gðr;φ; θÞ, we build a histogram of the number of particles
Nlðr;φ; θÞ at distance r, positional angle ϕ, and relative
orientation θ [Fig. 4(a)]. We normalize the count to obtain
gðr;φ; θÞ ¼ 2πNlðr;φ; θÞ=½AðrÞNtrunρΔθ�, where AðrÞ ¼
rΔrΔφ is the area of the annular segment of radial width
Δr and angular width Δφ, ρ is the number density, trun is
the number of snapshots, and Δθ is the size of the relative-
orientation bins [78]. The histogram is built over 1000
independent realizations, with a total of 93289 snapshots.
We choose bins of π=180 for φ, 0.1 for r, and π=2 for θ, as
shown in Figs. 4(b)–4(e).

8. Scattering simulations

We initialize binary scattering events by placing the two
particles at a distance jr12j ¼ rint, when they enter the
interaction range [Figs. 5(a) and 5(b)]. We choose the axes
so that the two particles are initially separated along the
ŷ axis [Fig. S12(a) [55] ]. The direction of the interparticle
distance vector, in general, varies throughout the scattering
event [Fig. S12(a) [55] ]. For convenience, in these sim-
ulations we describe the particle orientations via the angles
θ1 and θ2 measured with respect to the axis perpendicular to
the interparticle distance vector [Fig. S12(a) [55] ]. Based
on these angles, the initial configuration is characterized by
the incoming half-angle θ̄ ¼ argðeiθ1 þ eiθ2Þ and the angle
difference θ ¼ θ2 − θ1 [Fig. S12(b) [55] ].
To simulate binary scattering events, we rewrite Eq. (3)

without noise in terms of the angles θ1 and θ2 and the
interparticle distance r ¼ jr12j as

ṙ ¼ C
r4
e−r=λ − v0ðsin θ1 − sin θ2Þ; ðA1aÞ

θ̇1 ¼ −
1

r4
e−r=λ cos θ1 −

v0
r
ðcos θ1 − cos θ2Þ; ðA1bÞ

θ̇2 ¼
1

r4
e−r=λ cos θ2 −

v0
r
ðcos θ1 − cos θ2Þ; ðA1cÞ

where C is a parameter that captures the repulsion strength
in Eq. (1) relative to that of torques in Eq. (2). The second
term in Eqs. (A1b) and (A1c) is the geometric contribution
that accounts for the variation of the interparticle distance
vector r12 as particles move.

We then sample the initial angles θ1ðt¼0Þ and θ2ðt ¼ 0Þ
from the interval ½−π; π� in steps of 2π=100. For each
scattering configuration, we numerically evolve the dis-
tance and orientations of the particles according to Eq. (A1)
until the distance r reaches rint again and the particles point
away from each other, so that they leave the interaction
range. For each of these evolutions, we measure the
momentum change δp ¼ n̂01 þ n̂02 − n̂1 − n̂2, where primes
indicate the final state, and we use it to numerically perform
the integral in Eq. (7) to obtain the average forward
momentum change hp · δpiθ̄;θ.
From this quantity, we calculate the growth rate of the

polarity, given by a ¼ hp · δpiθ̄;θ −Dr. When a < 0, the
isotropic state is linearly stable, and the polarity vanishes,
P ¼ 0. When a > 0, the isotropic state is linearly unstable,
and it gives rise to flocking. To calculate the steady-state
polarity of the flocking state, shown in Fig. 5(d), we expand
the polarity equation to third order as

∂tP ¼ aP − bP3; ðA2Þ

and we calculate the prefactor of the third-order term,
which is given by [64]

b ¼ hð1=2 − cos θÞp · δpiθ̄;θ: ðA3Þ

We obtain b > 0. Therefore, in the range of parameters
that we explore, the system undergoes a second-order
transition [64]. Finally, we obtain the steady-state polarity as

P ¼
ffiffiffiffiffiffiffiffi
a=b

p
: ðA4Þ

To show that repulsion is required for flocking via turn-
away interactions, we vary the repulsion strength C in
Eq. (A1a) from 0 up to the value obtained from the
experimental estimates in Table I. We then calculate
hp · δpiθ̄;θ for each value of C [Fig. 5(c)].

APPENDIX B: COARSE-GRAINING:
FROM THE MICROSCOPIC MODEL TO A

HYDRODYNAMIC DESCRIPTION

Here, we provide a systematic coarse-graining of the
microscopic equations of motion [Eq. (3)] to derive the
growth rate of the polarity field P [Eqs. (4)–(6)], which
determines the onset of flocking. To this end, we combine
and adapt the derivations in Refs. [23,48].
We start with the Smoluchowski equation, which gov-

erns the evolution of the full N-particle distribution
function of the system ΨNðr1; n̂1;…; rN; n̂N ; tÞ. We then
break it into the BBGKY hierarchy of equations for the
1; 2; 3;…-particle distribution functions. We truncate the
hierarchy at the two-particle order, with pair correlations
encoded in integrals known as the collective force and
torque. We then perform a gradient expansion of these

DAS, CIARCHI, ZHOU, YAN, ZHANG, and ALERT PHYS. REV. X 14, 031008 (2024)

031008-10



integrals, which thereby become local terms in the hydro-
dynamic equations. Finally, we obtain the hydrodynamic
equations by defining continuum fields like the density
and the polarity fields as moments of the one-particle
distribution function Ψ1ðr1; n̂1; tÞ.

1. Smoluchowski equation and the BBGKY hierarchy

The behavior of the system encoded in the set of coupled
Langevin equations Eq. (3) can be equivalently described
by the Smoluchowski equation for the N-particle distribu-
tion function ΨNðr1; n̂1;…; rN; n̂N ; tÞ, which is the prob-
ability density of finding the N particles at positions
r1;…; rN with orientations n̂1;…; n̂N at time t:

∂tΨN ¼ −
XN
i¼1

½∇i · Jt;i þ n̂i × ∂n̂i · Jr;i�: ðB1Þ

Here, n̂ × ∂n̂ is the rotation operator, and Jt and Jr are the
translational and rotational probability currents, respec-
tively, given by

Jt;i ¼
�
v0n̂i þ

Fi

ξt

�
ΨN −Dt∇iΨN; ðB2aÞ

Jr;i ¼
Γi

ξr
ΨN −Drn̂i × ∂n̂iΨN: ðB2bÞ

Hereafter, we describe the two-dimensional particle ori-
entation n̂i in terms of the angle θi: n̂i ¼ ðcos θi; sin θiÞT .
Integrating over the positions and orientations of all

particles but one, we obtain an equation for the one-particle
distribution function Ψ1ðr1; θ1; tÞ:

∂tΨ1 ¼ −∇1 · ½ðv0n̂1 −Dt∇1ÞΨ1� − ∇1 ·
Fint

ξt

− ∂θ1

ẑ · Γint

ξr
þDr∂

2
θ1
Ψ1: ðB3Þ

Here, Fint and Γint are the collective force and torque,
respectively, which encode the effects of interactions on
particle 1. For pairwise interactions, the collective force
and torque can be expressed in terms of the two-particle
distribution function Ψ2ðr1; θ1; r2; θ2; tÞ as
Fintðr1; θ1; tÞ

¼ −
Z

d2r0dθ0Fðjr0 − r1jÞ
r0 − r1
jr0 − r1j

Ψ2ðr1; θ1; r0; θ0; tÞ;

ðB4aÞ
Γintðr1; θ1; tÞ

¼
Z

d2r0dθ0Γðjr0 − r1jÞn̂1 ×
r0 − r1
jr0 − r1j

Ψ2ðr1; θ1; r0; θ0; tÞ:

ðB4bÞ

Here,

FðrÞ ¼ 3ðdh þ dtÞ2
4πϵ

e−r=λ

r4
; ðB5aÞ

ΓðrÞ ¼ 3lðd2h − d2t Þ
4πϵ

e−r=λ

r4
ðB5bÞ

are the scalar magnitudes of the interaction force and torque
in Eqs. (1) and (2).
With the collective force and torque given by Eq. (B4),

Eq. (B3) is an integro-differential equation for Ψ1 that
involves Ψ2. Therefore, Eq. (B3) is the first equation in
the BBGKY hierarchy. To truncate the hierarchy, we
decompose Ψ2 as

Ψ2ðr1;θ1;r0;θ0;tÞ¼Ψ1ðr0;θ0;tÞgðr0;θ0jr1;θ1;tÞΨ1ðr1;θ1;tÞ:
ðB6Þ

Here, Ψ2ðr1; θ1; r0; θ0; tÞ is the density of particle pairs
with one particle at position r1 with orientation θ1 and
another particle at position r0 with orientation θ0 at time t.
Respectively, g is the dimensionless pair distribution
function that encodes the conditional probability of finding
a particle at position r0 and orientation θ0 given that another
particle is at position r1 with orientation θ1. Introducing this
decomposition into Eq. (B3) allows us to express it as a
closed equation for Ψ1, hence closing the hierarchy. This
closure goes beyond the molecular chaos approximation, as
it keeps information about pair correlations in the pair
distribution function g.
In homogeneous steady states, the probability distribu-

tions are time independent, and the pair correlations do not
depend on the coordinates of a given particle but only on
the relative coordinates of particle pairs. Hence, we express
g in terms of the distance jr0 − r1j between particles, the
angle φ formed between the interparticle distance vector
r0 − r1 and the orientation vector n̂1 of particle 1, defined by
n̂1 · ðr0 − r1Þ ¼ jr0 − r1j cosφ, and the relative orientation
θ0 − θ1. Therefore, in homogeneous steady states like the
isotropic state of the Janus particle system that we analyze,
we have

gðr0; θ0jr1; θ1; tÞ ¼ gðjr0 − r1j;φ; θ0 − θ1Þ: ðB7Þ

With this decomposition, the collective force and torque
[Eq. (B4)] are expressed, respectively, as

Fintðr1; θ1Þ ¼ −Ψ1ðr1; θ1Þ
Z

d2r0dθ0Fðjr0 − r1jÞ

×
r0 − r1
jr0 − r1j

Ψ1ðr0; θ0Þgðjr0 − r1j;φ; θ0 − θ1Þ;

ðB8aÞ
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Γintðr1; θ1Þ ¼ Ψ1ðr1; θ1Þ
Z

d2r0dθ0Γðjr0 − r1jÞn̂1

×
r0 − r1
jr0 − r1j

Ψ1ðr0; θ0Þgðjr0 − r1j;φ; θ0 − θ1Þ:

ðB8bÞ

2. Gradient expansion

The collective force and torque in Eq. (B8) depend non-
locally on the one-particle distribution function Ψ1ðr0; θ0Þ.
To derive local hydrodynamic equations, we perform a
gradient expansion around r1:

Ψ1ðr0; θ0Þ ≈Ψ1ðr1; θ0Þ þ ∇r0Ψ1ðr1; θ0Þ · ðr0 − r1Þ: ðB9Þ

We also expand in angular Fourier modes:

Ψ1ðr0; θ0Þ ¼
1

2π

X∞
k¼0

e−ikθ
0Ψ̃1;kðr0Þ: ðB10Þ

Thus, to lowest order in the gradient expansion, we have

Ψ1ðr0; θ0Þ ≈
1

2π

X∞
k¼0

e−ikθ
0Ψ̃1;kðr1Þ: ðB11Þ

Introducing Eq. (B11) into Eq. (B8b) and changing the
integration variables to the relative coordinates r≡ r0 − r1,
with polar coordinates ðr;φÞ, and θ≡ θ0 − θ1, we obtain
the lowest-order contribution to the collective torque:

Γð0Þ
int ðr1; θ1Þ ¼ Ψ1ðr1; θ1Þ

Z
∞

0

drrΓðrÞ
Z

2π

0

dφ sinφẑ

×
Z

dθgðr;φ; θÞ 1

2π

X∞
k¼0

e−ikðθþθ1ÞΨ̃1;kðr1Þ

¼ Ψ1ðr1; θ1Þ
1

2π

X∞
k¼0

e−ikθ1
Z

∞

0

drrΓðrÞ

×
Z

2π

0

dφ sinφẑ
Z

dθgðr;φ; θÞe−ikθΨ̃1;kðr1Þ:

ðB12Þ

Here, we use that n̂1 × r̂ ¼ sinφẑ. Gathering all the
integrals into a coefficient, we rewrite the collective
torque as

Γð0Þ
int ðr1;θ1Þ¼Ψ1ðr1;θ1Þ

1

2π

X∞
k¼0

e−ikθ1Ψ̃1;kðr1Þτ0;kẑ; ðB13Þ

where we define the coefficient

τ0;k ¼
Z

∞

0

drrΓðrÞ
Z

2π

0

dφ sinφ
Z

2π

0

dθgðr;φ; θÞe−ikθ:

ðB14Þ

As shown in Figs. 4(b)–4(e), the pair distribution g is
invariant upon simultaneous inversion of the angles φ and
θ: gðr;φ; θÞ ¼ gðr;−φ;−θÞ. This symmetry implies that
the real part of Eq. (B14) vanishes, and, hence, only the
imaginary part survives:

τ0;k ¼ −i
Z

∞

0

drrΓðrÞ
Z

2π

0

dφ sinφ

×
Z

2π

0

dθgðr;φ; θÞ sinðkθÞ: ðB15Þ

To complete the gradient expansion, we express Eq. (B3)
only to lowest order in gradients:

∂tΨ1 ¼ −∂θ
ẑ · Γð0Þ

int

ξr
þDr∂

2
θΨ1 þOð∇Þ: ðB16Þ

Here, for simplicity, we drop the subindex that was labeling
particle number 1. We do this hereafter.

3. Hydrodynamic fields and polarity growth rate

The results obtained above allow us to calculate the
growth rate a of the polarity field P, namely, the coefficient
of the lowest-order term in the hydrodynamic equation for
P [Eq. (4)]. To this end, we define the hydrodynamic fields,
which are the angular moments of the one-particle dis-
tribution Ψ1. The two lowest-order moments correspond to
the density and the polarity fields:

ρðr; tÞ ¼
Z

Ψ1ðr; θ; tÞdθ; ðB17aÞ

Pðr; tÞ ¼
Z

n̂ðθÞΨ1ðr; θ; tÞdθ: ðB17bÞ

In two dimensions, given that n̂ðθÞ ¼ ðcos θ; sin θÞT , these
fields can be expressed in terms of the angular Fourier
components of Ψ1. Based on the Fourier expansion in
Eq. (B10), the components are given by

Ψ̃1;kðr; tÞ ¼
Z

2π

0

dθeikθΨ1ðr; θ; tÞ: ðB18Þ

Thus, the density and polarity fields are given by the zeroth
and first components as, respectively,

ρðr; tÞ ¼ Ψ̃1;0ðr; tÞ; ðB19aÞ

Pðr; tÞ ¼
�
Re Ψ̃1;1ðr; tÞ
Im Ψ̃1;1ðr; tÞ

�
: ðB19bÞ
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To obtain an equation for the angular Fourier moments
Ψ1;kðr; tÞ, we project Eq. (B16) according to the integral in
Eq. (B18). Using integration by parts, we obtain

∂tΨ̃1;k ¼
ik

2πξr

X∞
m¼0

Ψ̃1;mτ0;mΨ̃1;k−m −Drk2Ψ̃1;k; ðB20Þ

where we use Eq. (B13) and with τ0;m given in Eq. (B15).
The equation for the polarity field P then follows from the
k ¼ 1 component. Among the terms in the sum over m, we
keep only the lowest-order terms m ¼ 0 and m ¼ 1. Given
that τ0;0 ¼ 0, we arrive at

∂tΨ̃1;1 ¼
i

2πξr
Ψ̃1;1τ0;1Ψ̃1;0 −DrΨ̃1;1: ðB21Þ

Hence, using Eq. (B19), the equation for the polarity reads

∂tP ¼ ρ

2πξr
τ0P −DrPþOð∇Þ; ðB22Þ

where we define τ0 ≡ iτ0;1, whose explicit expression is
given in Eq. (6). Comparing to Eq. (4), this result provides
the growth rate of the polarity field, which is given by
Eq. (5) as a functional of the density field ρ.

APPENDIX C: BOLTZMANN KINETIC THEORY

In this section, we provide details of the Boltzmann
kinetic theory that we use to predict the onset of flocking
from binary scattering events (Fig. 5). We follow Ref. [64],
and we summarize the key steps of the derivation here for
reference. We start from the Boltzmann equation for the
evolution of the one-particle orientation distribution fðθ1; tÞ,
where θ1 is the particle orientation angle. This distribution
relates to the full one-particle distribution Ψ1ðr1; θ1; tÞ in
Appendix B as fðθ1; tÞ ¼

R
d2r1Ψ1ðr1; θ1; tÞ. The orienta-

tion distribution evolves as

∂tfðθ1; tÞ ¼ Iscatt½f; f� þ Idiff ½f�; ðC1Þ

where Iscatt½f; f� and Idiff ½f� are functionals representing the
changes in particle orientation due to binary scattering events
and rotational diffusion, respectively.
We then use Eq. (C1) to derive the dynamics of the

global polarity PðtÞ ¼ R
n̂1ðθ1Þfðθ1; tÞdθ1, with n̂1 the

particle orientation vector [64]. A scattering event changes
the polarity by an amount δp, which depends on the
geometry of the scattering event parametrized by the
incoming angle difference θ ¼ θ2 − θ1 and half-angle
θ̄ ¼ arg ðeiθ1 þ eiθ2Þ (Fig. S12 [55]). Respectively, in a
rotational diffusion event, a particle changes its orientation
by a random angle ηwith probabilityPηðηÞ, which produces
a polarity change δpdiffðθ1; ηÞ ¼ Rηn̂1ðθ1Þ − n̂1ðθ1Þ, with

Rη being the corresponding rotation matrix. Then, the
equation for the polarity reads

dP
dt

¼ γΦscatt
f ½δpðθ̄; θÞ� þ γdiffΦdiff

f ½δpdiffðθ1; ηÞ�; ðC2Þ

where γ and γdiff are characteristic rates of the scattering and
diffusion processes, respectively, and the corresponding
functionals are given by

Φscatt
f ½…� ¼

Z
2π

0

dθ̄
Z

2π

0

dθKðθÞfðθ1; tÞfðθ2; tÞð…Þ;

ðC3aÞ

Φdiff
f ½…� ¼

Z
2π

0

dθ1

Z
dηPηðηÞfðθ1; tÞð…Þ: ðC3bÞ

Here, we take the molecular chaos hypothesis, which
assumes that the distributions of two particles before a
scattering event are independent. Hence, the two distribution
functions f in the scattering functional factorized as seen in
Eq. (C3a). The additional factor KðθÞ in Eq. (C3a) is the
form factor of a scattering event with angle difference θ.
For particles that undergo scattering events at a fixed
impact parameter, like in our case, the form factor is
KðθÞ ¼ j sinðθ=2Þj, which can be obtained from the
Boltzmann cylinder construction [64,79].
To obtain an equation for the polar order P ¼ jPj,

we project Eq. (C2) along the polarity direction P̂, which
yields [64]

dP
dt

¼ ρv0rintΦscatt
f ½ðp̂ · δpÞ cos θ̄� −DrP: ðC4Þ

Here, we use that the characteristic scattering rate γ in
Eq. (C2) is given by γ ¼ ρv0rint for a gas of self-propelled
particles with speed v0, concentration ρ, and interaction
range rint, which acts as the impact parameter [see
Appendix A and Fig. S12(a) [55] ]. The second term in
Eq. (C4) is obtained by explicit integration of the diffusion
functional. It describes the loss of polar order, with a
coefficient that we identify with the rotational diffusivity
Dr of the particles. The explicit integration gives Dr in
terms of the rate γdiff in Eq. (C2) and the angular noise
distribution PηðηÞ:

Dr ¼ γdiff

�
1 −

Z
dηPηðηÞ cos η

�
: ðC5Þ

To evaluate the scattering functional, we need to know
the orientation distribution fðθ1; tÞ. To this end, we take an
ansatz of the form fðθ1; tÞ ¼ fPðtÞðθ1Þ, and we assume that
the distribution of orientations in the isotropic phase is
uniform up to the constraint

����
Z

2π

0

n̂1ðθ1ÞfPðθ1Þdθ1
���� ¼ P: ðC6Þ

FLOCKING BY TURNING AWAY PHYS. REV. X 14, 031008 (2024)

031008-13



The distribution that satisfies these conditions is known as
the von Mises distribution, and it is given by [64]

fPðθ1Þ ¼
eκðθ1Þ cos θ1

2πI0½κðPÞ�
; ðC7Þ

with κðPÞ determined from

I1½κðPÞ�
I0½κðPÞ�

¼ P; ðC8Þ

where In are the modified Bessel functions of the first kind
and of order n.
We then use this distribution in the scattering functional

in Eq. (C4) and expand around the isotropic state to derive
the equation for the polar order to linear order. The von
Mises distribution expands into

fPðθ1Þ ≈
1

2π
ð1þ 2P cos θ1Þ: ðC9Þ

Introducing all the results above into Eq. (C4), we obtain

dP
dt

≈ aP; ðC10Þ

with

a ¼ ρv0rint
ð2πÞ2

Z
2π

0

dθ̄
Z

2π

0

dθj sinðθ=2Þjp · δpðθ̄; θÞ −Dr

¼ ρv0rint
2π

Z
π

−π
dθj sin ðθ=2Þjhp · δpðθ̄; θÞiθ̄ −Dr: ðC11Þ

The first term is the change in polar order due to scattering
events as provided in Eq. (7) in the main text.
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Ladoux, and Raphaël Voituriez, Clustering and ordering
in cell assemblies with generic asymmetric aligning inter-
actions, Phys. Rev. Res. 6, 023022 (2024).

[78] Michael P. Allen and Dominic J. Tildesley, Computer
Simulation of Liquids, 2nd ed. (Oxford University Press,
New York, 2017).

[79] Mehran Kardar, Statistical Physics of Particles (Cambridge
University Press, Cambridge, England, 2007).

DAS, CIARCHI, ZHOU, YAN, ZHANG, and ALERT PHYS. REV. X 14, 031008 (2024)

031008-16

https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1039/D2SM00256F
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1039/C6SM00031B
https://doi.org/10.1039/C6SM00031B
https://doi.org/10.1038/s41467-019-11362-y
https://doi.org/10.1063/5.0123680
https://doi.org/10.1088/1742-5468/2015/10/P10017
https://doi.org/10.1088/1742-5468/2015/10/P10017
https://doi.org/10.1103/PhysRevX.9.031043
https://doi.org/10.1103/PhysRevX.9.031043
https://doi.org/10.1038/s41467-024-46520-4
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.126.188002
https://doi.org/10.1103/PhysRevLett.126.188002
https://doi.org/10.1103/PhysRevLett.117.228002
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1038/s41567-021-01429-3
https://doi.org/10.1038/s41567-021-01429-3
https://doi.org/10.1038/s41586-022-04889-6
https://doi.org/10.1103/PhysRevLett.108.168301
https://doi.org/10.1103/PhysRevLett.112.168301
https://doi.org/10.1103/PhysRevLett.117.098004
https://doi.org/10.1103/PhysRevResearch.6.023022

