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A ubiquitous problem in quantum physics is to understand the ground-state properties of many-body
systems. Confronted with the fact that exact diagonalization quickly becomes impossible when increasing
the system size, variational approaches are typically employed as a scalable alternative: Energy is
minimized over a subset of all possible states and then different physical quantities are computed over the
solution state. Despite remarkable success, rigorously speaking, all that variational methods offer are upper
bounds on the ground-state energy. On the other hand, so-called relaxations of the ground-state problem
based on semidefinite programming represent a complementary approach, providing lower bounds to the
ground-state energy. However, in their current implementation, neither variational nor relaxation methods
offer provable bound on other observables in the ground state beyond the energy. In this work, we show that
the combination of the two classes of approaches can be used to derive certifiable bounds on the value of
any observable in the ground state, such as correlation functions of arbitrary order, structure factors, or
order parameters. We illustrate the power of this approach in paradigmatic examples of 1D and 2D spin-1=2
Heisenberg models. To improve the scalability of the method, we exploit the symmetries and sparsity of the
considered systems to reach sizes of hundreds of particles at much higher precision than previous works.
Our analysis therefore shows how to obtain certifiable bounds on many-body ground-state properties
beyond energy in a scalable way.

DOI: 10.1103/PhysRevX.14.031006 Subject Areas: Condensed Matter Physics,
Quantum Physics, Quantum Information

I. INTRODUCTION

The quantitative description of many-body quantum
systems is one of the most important challenges in physics.
A standard formulation of the problem consists of N
particles each described by a Hilbert space of dimension
d with interactions encapsulated by a HamiltonianH acting
on CdN . Typical questions of interest are the study of the

system Hamiltonian evolution, the computation of the
energy spectrum, or the characterization of thermal and
ground-state properties. A brute force approach to these
problems requires diagonalization of the Hamiltonian, or
more generally, dealing with matrices whose dimension,
equal to dN , grows exponentially with the number of
particles. It is therefore intractable beyond small clusters
of particles.
Among quantum many-body problems, the study of

ground states plays a central role due to its relevance for the
understanding of the low-energy phases in the system, and
in particular for the study of genuine quantum correlation
properties without a classical analog [1]. Formally, a
ground state jψGSi of a quantum Hamiltonian H is a state
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of minimal energy, that is, a minimizer to the following
problem:

EGS ¼ min
jψi∈CdN

hψ jHjψi: ð1Þ

As mentioned, if jψi is decomposed in some given basis of
the Hilbert space with an exponentially growing number of
parameters, the exact solution to this optimization problem
quickly becomes intractable when increasing the system
size. In fact, the very enumeration of the exact ground-state
coefficients in a given basis is out of reach.
To solve this issue, the standard approach consists of

finding approximations to the optimization that provide a
much better scaling in terms of computation. By far, the
most popular approach is given by variational methods [2].
There, the minimization in Eq. (1) is restricted to a subset of
ansatz states A for which the computation of the expect-
ation value hψ jHjψi and its minimization is scalable with
the number of particles:

EA ¼ min
jψi∈A

hψ jHjψi: ð2Þ

From an optimal solution state jψAi, one then com-
putes the value of some physically relevant observables
oA ¼ hψAjOjψAi. In these methods, the hope is that the set
of ansatz states A is suitably chosen so that the obtained
energy and state are close to the unknown exact values,
EA ∼ EGS and jψAi ∼ jψGSi, and so are other physically
relevant quantities, oA ∼ oGS ¼ hψGSjOjψGSi.
Despite remarkable success, variational methods suffer

two major limitations. First, they provide no mathematical
guarantee that the derived upper bound EA is close to the
exact ground-state energy EGS, although some physically
motivated criteria may be used, for instance, involving the
energy variance in the variational state [2]. Second, and
more problematically, even with a promise that EA is close
to EGS, there is absolutely no guarantee that the state jψAi
is close to the ground state jψGSi (unless one has more
information about the system of interest, such as its energy
gap). Hence, for observables other than the energy, it is not
known how the computed value oA relates to the actual
ground-state value oGS, and in particular, whether oA
represents a lower or upper bound to oGS. As it turns
out, oA may significantly differ from oGS, as for instance
strikingly observed in some fermionic Hubbard models [3].
These issues shall be discussed in more detail in the core of
the paper.
Complementary approaches to variational methods,

which are the focus of the present work, are so-called
relaxations of the ground-state problem. The general idea
is to minimize the energy over a set of parameters that
contains all the physically possible expectation values
hψ jHjψi, but also other values that are not allowed by
quantum mechanics. As for variational methods, the

optimization in the relaxation has a much better scaling
than exact diagonalization and can be computed for larger
system sizes. An example of this approach is given by the
semidefinite programming (SDP) relaxation to noncom-
mutative polynomial optimization problems, which have
been considered in many different ground-state problems,
see for instance Refs. [4–7], and formalized in Refs. [8,9];
see also Refs. [10,11]. This relaxation, also known as the
Navascués-Pironio-Acin (NPA) hierarchy, plays a funda-
mental role in this article and is detailed below. By
construction, as the minimization is performed over a set
of solutions that contains all the quantum physical values,
and also others that do not have a quantum realization, any
relaxation provides a lower bound of the exact ground-state
energy ER ≤ EGS. Relaxations can also provide estimates
oR to the expectation value of observables O in the ground
state, but in contrast to variational methods, one cannot
guarantee that these estimates are compatible with some
underlying quantum state. Furthermore, as for variational
methods, there is no a priori guarantee that these values are
close to those of the ground state, oR ∼ oGS, nor whether
they represent upper or lower bounds to the ground-state
values. In summary, combining the present techniques, all
that can be certified about ground states is that its energy
lies within the range EGS ∈ ½ER; EA�.
In this work, we show that the combination of variational

methods together with the NPA hierarchy is much richer
than previously envisioned, and allows for deriving certi-
fied lower and upper bounds, oLB and oUB, on the values of
arbitrary observables in the ground state, oGS ∈ ½oLB; oUB�.
We achieve this by assisting the noncommutative poly-
nomial relaxations with some available upper bound of the
ground-state energy as given by variational methods, an
approach also considered in Ref. [12]. This allows for
computing lower and upper bounds to any observable that
can be expressed as a polynomial in a family of basic
observables. Examples of these operators are correlation
functions of arbitrary order, and structure factors which
characterize long-range fluctuations in many-body sys-
tems. We apply this approach to several paradigmatic spin
models. We focus on Heisenberg models with local
interactions and translation symmetry in one and two
spatial dimensions, and exploit these properties to construct
SDP relaxations for systems of up to a hundred particles,
obtaining much better bounds to ground-state observables
than achieved in previous works. Our approach therefore
provides a scalable way to derive provable bounds on
ground-state properties, beyond the energy.
The structure of the article is as follows. In Sec. II we

introduce the quantum ground-state problem. We review
both variational methods and relaxations, with an emphasis
on SDP relaxations of noncommutative polynomial opti-
mization because of their central role in our analysis, and
see how they provide, respectively, upper and lower bounds
to the ground-state energy. In Sec. III we present our main
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idea and show how to derive certifiable bounds on the
ground-state value of any polynomial observable when
combining the two approaches. In Sec. IV we provide
several applications and illustrations of our construction.
We first introduce the general form of the considered
models and discuss how to exploit their symmetries and
the sparsity of the Hamiltonian to reach systems of
hundreds of particles. We then apply the method to
different Heisenberg models in one- and two-dimensional
lattices. In Sec. V we present several directions for future
work to improve the scalability and accuracy of the
obtained bounds, and we finally display our conclusions
in Sec. VI.

II. GROUND-STATE PROBLEM

We consider quantum systems composed of N particles,
whose interactions are described by a Hamiltonian oper-
ator. In what follows, and for simplicity, we are going to
focus our discussion on spin systems of finite dimension d
on a lattice. The techniques we discuss also apply beyond
this scenario, e.g., to fermions or boson models, once
one takes into account the respective commutation-type
properties of the creation and annihilation operators. We
consider systems with local interactions so that it is
possible to define a Hamiltonian for an arbitrary number
of particles HN given by a linear combination of different
tensor product terms hi acting on a subset of neighboring
particles, HN ¼ P

i aihi. One is then interested in deter-

mining the value oðNÞ
GS of relevant physical observables ON

in the ground state jψ ðNÞ
GS i, see also Eq. (1), namely,

oðNÞ
GS ¼ hψ ðNÞ

GS jON jψ ðNÞ
GS i. Often, one is also interested in

the thermodynamic limit of an infinite number of particles,
which are typically inferred using scaling considerations by

studying the dependence of oðNÞ
GS with N. In what follows,

we often remove the dependence on N to simplify the
notation.
Exactly solving the ground-state problem is computa-

tionally too costly already for systems of several tens of
particles, as the Hilbert-space dimension of the systems
(dN) grows exponentially with the number of particles.
Hence, one should abandon looking for an exact solution to
the problem and adopt approximations to it, such as
variational methods or relaxations, which offer a much
more favorable scaling with the number of particles N.

A. Variational methods

Variational methods restrict the ground-state optimiza-
tion to a subset of ansatz states A. It is then demanded that
the number of parameters needed to specify an ansatz state
jψAi scales polynomially with the number of particles N
and that the computation of expectation values of the
operators in the Hamiltonian hψAjhijψAi is efficient.
This allows for solving the energy minimization over

ansatz states, Eq. (2), for systems much larger than those
for which an exact diagonalization is possible.
Mean field is one of the simplest instances of a

variational method, where the set of ansatz states is defined
by product states. Here, the number of parameters scales
linearly with the system size Nd, and the mean value of the
local terms hi is easy to compute. The density-matrix
renormalization group (DMRG) approach has represented a
breakthrough in the design of variational methods, for it
often allows one to obtain good approximations to the
ground-state energy of gapped 1D systems [13,14]. It is
now well understood that the ansatz states relevant in
DMRG are the so-called matrix-product states (MPSs),
whose description requires Ndχ2 parameters [15–17].
Here χ is the so-called bond dimension that determines
the entanglement properties of the MPS. In fact, product
states, used in mean-field calculations, are MPSs of bond
dimension χ ¼ 1. It is known that DMRG works well for
1D systems because ground states of gapped 1D systems
with local interactions can be approximated by MPSs
of fixed bond dimension; that is, DMRG is optimizing
over a set of states that contain a very good approximation
to the unknown ground state [18]. Using insights from
entanglement theory, it was possible to generalize MPS to
other subsets of states, such as projected entangled pair
state (PEPS) [19] or multientanglement renormalization
ansatz [20–22], which may be viewed as special instances
of the more general set of tensor network states [18]. Other
popular variational states not based on tensor networks
include resonating valence bond states, introduced in the
context of quantum magnetism [23], neural network
quantum states [24], or correlated plaquette states [25–27].
It is not our purpose to review here all variational

methods; instead, we emphasize that despite all their
remarkable applications in the study of many-body quan-
tum systems, variational methods do have intrinsic limi-
tations. First of all, for many systems, it is not known
whether the actual ground state can be well approximated
by a state in the chosen set of ansatz states. For instance,
mean-field energy values can easily be computed for very
large sizes, but it is expected that ground states of generic
Hamiltonians are in fact entangled, so that all entanglement
properties—which sometimes form defining properties of
the phase as in topological quantum matter [28,29]—are
inaccessible by construction. Second, even when ansatz
states properly approximate the ground state, the minimi-
zation of the energy may remain hard. While an efficient
algorithm exists for ground states of 1D gapped local
Hamiltonians [30], it is expected that this is an exception.
For instance, ground states of 2D gapped systems are
known to be well approximated by PEPS, but the compu-
tation of expectation values of product operators with
PEPS, including even the norm of the state, is #P-hard
in the number of tensors defining the state [31]. Third, even
if the ground state can be approximated by a given ansatz
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state and the computation of the energy is scalable, its
minimization often presents many local minima and, there-
fore, one can never guarantee that a good approximation to
the ground state has been achieved, EA ∼ EGS. But most
importantly, the situation is even worse for other relevant
quantities computed from the ansatz state resulting from the
minimization, as it is completely unknown how they
compare to the actual values in the ground state. In fact,
there exist simple paradigmatic models displaying a very
complex low-energy landscape, with states very close in
energy to the ground state, but with significantly different
predictions for other quantities—the fermionic Hubbard
model being a prominent example [3].
In summary, variational methods have proven extremely

useful to analyze ground-state problems; yet strictly speak-
ing, all that can be certified is an upper bound of the
ground-state energy, EGS ≤ EA.

B. Relaxations

So-called relaxations of the ground-state problem re-
present a complementary approach to variational methods.
Quite generically, let us consider a given Hilbert space, and
a Hamiltonian of the form H ¼ P

n
i¼1 aihi with hi some

(possibly noncommuting) quantum observables, and ai
some coefficients. One may then consider the following
problem: What are the possible combinations of mean
values ðhh1i; hh2i;…; hhni) that are allowed by quantum
mechanics? The ground-state problem,

EGS ¼ min
fhhiigi ∈MQ

X
i

aihhii; ð3Þ

where

MQ ¼ ffhhiigi∶ ∃ jψi such that ∀ ihhii ¼ hψ jhijψig;

can then be seen as a special case of this general problem, in
which one searches for the minimal value EGS of the linear
combination

P
i aihhii: Geometrically speaking, one goes

as far as possible in the direction −a⃗ ¼ −ða1;…; anÞ while
remaining inside the allowed quantum region for
ðhh1i;…; hhniÞ [32]. The expectation values hhii are often
called moments and, therefore, MQ is the set of quantum
physical moments. For many-body problems, where the
Hilbert space dimension grows exponentially with the
system size, the characterization of the set MQ is generi-
cally very hard. Specifically, it contains as a special case the
so-called quantum marginal problem, which is quantum
Merlin Arthur hard [33].
In such hard instances, one can however approximate the

setMQ of physical moments from the outside; this may be
achieved, for instance, by deriving independent bounds on
the spectra of the operators hi. This is an example of a so-
called relaxation to the problem—one relaxes certain
constraints related, e.g., to the noncommutativity of the

observables. When performing such a relaxation, one
does not include all the constraints that stem from the
Hilbert space structure of the problem, and from the
algebraic relations between noncommuting observables.
One only takes into account a subset of all such con-
straints. One defines in this way a superset M ⊇ MQ of
moments compatible with such relaxed constraints. The set
M contains all quantum physical expectation values
hhii ¼ hψ jhijψi∈MQ, but also other values that cannot
be written in this form, and therefore do not have a quantum
realization.
By construction, when the minimization is performed

over the larger set of moments M ⊇ MQ, the obtained
energy ER cannot be larger than the actual quantum
ground-state value; hence, ER ≤ EGS.

1. Simple relaxation: Anderson’s bound

As the concept of relaxation is a central paradigm to this
work, let us illustrate some of the above-mentioned basic
aspects on a minimal example of three qubits, using a
framework initially introduced by Anderson in the con-
densed matter literature [34]. We consider the Hamiltonian
H¼ σ⃗1 · σ⃗2þ σ⃗2 · σ⃗3, namely, a so-called Heisenberg model
for three qubits, σ⃗i ¼ ðσxi ; σyi ; σzi Þ being the vector of Pauli
matrices (Heisenberg models in different geometries will be
the focus in Sec. IV). The Hamiltonian H is of the form
H ¼ h1 þ h2, and the operators h1 ¼ σ⃗1 · σ⃗2 and h2¼ σ⃗2 · σ⃗3
do not commute. Anderson’s bound states that EGS ≥
minhh1i þminhh2i, where the minhhii are independently
obtained by minimizing over quantum states for two qubits,
neglecting the constraints stemming from the appearance of
the same operators σ⃗2 in both h1 and h2 (or equivalently,
neglecting the fact that h1 and h2 do not commute).
Figure 1 shows the range of possible values for

ðhh1i; hh2iÞ over three-qubit quantum states: the quantum
set (in blue), as well as the outer approximation given by
Anderson’s relaxation, which amounts to bound hh1i and
hh2i independently [here, σ⃗1 · σ⃗2 ¼ 2S⃗2tot − 3 with the total
spin S⃗tot ¼ ðσ⃗1 þ σ⃗2Þ=2, such that S⃗2tot takes its minimal
value 0 in the singlet state ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

, and its
maximal value 2 in the triplet states (j↑↑i; ðj↑↓i þ
j↓↑iÞ= ffiffiffi

2
p

; j↓↓i); hence the bounds −3 ≤ hσ⃗1 · σ⃗2i ≤ 1,
and similarly for hσ⃗2 · σ⃗3i]. The Anderson’s bound then
gives ER ¼ −6 ≤ hHi (black dot), a value which is not
allowed in quantum mechanics, since there is no three-
qubit state such that hσ⃗1 · σ⃗2i ¼ hσ⃗2 · σ⃗3i ¼ −3. In fact, the
actual quantum bound is EGS ¼ −4 (blue dot). Instead,
optimizing over variational states, one would approxi-
mate the quantum set from the inside. For instance, in
mean field, one mimimizes the energy over product states
of the form jψi ¼ jψ1i ⊗ jψ2i ⊗ jψ3i, which obey
−1 ≤ hσ⃗i · σ⃗ji ≤ 1, and therefore one obtains the upper
bound hHimin ≤ EA ¼ −2 (open dot). As expected, one
has ER ≤ EGS ≤ EA.
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More generally, in order to obtain the Anderson lower
bound to the ground-state energy of a translationally
invariant N-particle model, one performs exact diagonal-
ization of the same model but on a smaller size K < N,
with open boundary conditions (OBCs). As the set of
moments compatible with an N-particle quantum state is
strictly included in the one compatible with a quantum state
of K < N particles, it follows that the Anderson bound is a
lower bound to the N-particle ground-state energy (see
Appendix A for further details).

2. Relaxations based on semidefinite programming

Relaxations of polynomial optimization problems based
on SDP provide another way to derive lower bounds
using a similar argument. Because of the central role they
play in our analysis, we first explain the main idea of the
construction and then provide more details about its
implementation, in particular, in the context of ground-
state problems. These relaxations apply to any optimization
problem of the form [9]

pmin ¼ min
fjψi;Xg

hψ jpðXÞjψi

such that gjðXÞ ≽ 0 j ¼ 1;…; m1;

hψ jhkðXÞjψi ≥ 0 k ¼ 1;…; m2: ð4Þ

Here, p, gj, and hk are polynomials defined over a set of n
operators X ¼ ðX1;…; XnÞ, ≽ refers to operator positivity,
and m1 and m2 denote the number of polynomial con-
straints of each type in Eq. (4). It is important to mention
that the minimization in Eq. (4) is over all possible tuples of

operators X satisfying the constraints; that is, it runs over all
possible Hilbert spaces in which these operators can be
defined. For simplicity in the notation, we restrict the
explanation to self-adjoint operators, although all that
follows also applies to general operators. The solution
to Eq. (4) may be hard. For instance, deciding whether
the solution to this optimization problem satisfies either
pmin < 0 or pmin > 1 is Turing undecidable [35].
In Refs. [8,9], it was shown how to construct an

infinite hierarchy, known as NPA, of monotonically
increasing lower bounds to the solution of the problem,
pð1Þ ≤ pð2Þ ≤ � � �≤ pð∞Þ ≤ pmin. Under some mild assump-
tions on the operators, that include the situation in which all
the operators Xi are bounded, the NPA hierarchy is
convergent; that is, pð∞Þ ¼ pmin. The main advantage of
the hierarchy is that the computation of each lower bound
defines an SDP instance and therefore can efficiently be
performed. However, the size of the operators involved in
each SDP step of the hierarchy is also monotonically
growing and, in the limit, involves operators of infinite
size. Interestingly, for some problems, convergence is
attained at a finite step in the hierarchy, while for others,
first steps of the NPA hierarchy provide a good enough
bound of the actual solution.
Because of the generality of the formalism, many

ground-state problems can be phrased in the language of
polynomial optimization. Fermionic Hamiltonians are
often given by polynomials of creation and annihilation
operators, which satisfy the anticommutation relations in
the form of other polynomials, hence defining an instance
of Eq. (4). For spin-1=2 systems, Hamiltonians are defined
by polynomials of Pauli matrices on each site. Pauli
matrices acting on the same site can be characterized by
their algebra while operators on different sites commute, all
these constraints having the form of polynomials [see
Eq. (8)]. Moreover, for the Pauli algebra, these constraints
impose that the solution Hilbert space of Eq. (4) is of finite
dimension, in particular, of dimension two. All these
ground-state problems define particular instances of the
general optimization in Eq. (4) where the polynomial to be
minimized is defined by the Hamiltonian, pðXÞ ¼ HðXÞ.
The NPA relaxation therefore provides a rather versatile
approach to derive an asymptotically convergent sequence
of lower bounds to the ground-state energy of many models
of interest, Eð1Þ ≤ Eð2Þ ≤ � � � ≤ Eð∞Þ ¼ EGS. In fact, as
already mentioned, it has already been applied to different
models, e.g., in the context of quantum chemistry [4,5],
many-body physics [6,7], or conformal bootstrap [36],
often before or without awareness of the general math-
ematical characterization of noncommutative polynomial
optimization presented in Refs. [8,9]. As it happens for
variational methods, relaxations also provide values for
other observables beyond energy oR, but again with no
control about whether they are close to or bound in any way
the value in the ground state. Therefore, when taken

FIG. 1. Relaxing the quantum ground-state problem with
Anderson’s bound: a three-qubit example (see text).
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together, all that relaxations and variational methods define
is an energy interval in which the searched ground-state
energy lies, ER ≤ EGS ≤ EA.
Before concluding this part, it is worth mentioning that

SDP relaxations of polynomial optimization problems have
a long tradition in the context of classical spin systems. In
this case, the mathematical framework is the one of
commutative polynomial optimization:

pmin ¼ min
x

pðxÞ
such that gjðxÞ ≥ 0; j ¼ 1;…; m; ð5Þ

where p and gj are again polynomials but now over
(classical, namely commuting) variables x ¼ ðx1;…; xnÞ
and one deals with standard positivity constraints. Many
classical spin systems have the form of polynomials over
spin variables σi such that σ2i ¼ 1, again a polynomial
constraint. A hierarchy of SDP relaxations of commutative
polynomial optimization problems was introduced in
Ref. [37] and, in fact, the formalism of Ref. [9] used in
this work can be understood as the extension of the
construction in Ref. [37] to the noncommutative case;
see Ref. [9].

III. CERTIFICATION OF GROUND-STATE
PROPERTIES

Variational methods and relaxations of polynomial
problems are often seen as two complementary approaches
that allow one to bound the ground-state energy from above
and below. The main point of our work is to show that their
combination is much richer than expected, as together they
can be used to derive certifiable bounds on any observable
of interest in the ground state.
The idea is quite simple and was also discussed in

Ref. [12]. As mentioned above, the ground-state energy
problem can be seen as an instance of polynomial opti-
mization because the Hamiltonian can be expressed as
polynomials of some operators Xi. For instance, for finite
dimensional systems, it is enough to take as Xi a basis for
the space of matrices at each site, say Pauli matrices for
qubit systems. But in fact, any observable of interest O can
be expressed as polynomial on these operators and bounds
on it can be derived through the NPA formalism by taking
pðXÞ ¼ OðXÞ. A direct application of the method would
provide rather trivial bounds, because the optimization is
not restricted to a region close to the ground state. To
enforce this, one can use the best upper bound EA to the
ground-state energy derived through variational methods,
as well as the best lower bound ER derived through
relaxations. This is because these two bounds also have
a polynomial form, hψ jEA −HðXÞjψi ≥ 0 and hψ jHðXÞ −
ERjψi ≥ 0 for the upper and lower bounds, and can be
added as additional constraints. The resulting optimization
reads, cf. Eq. (4),

oLB ¼ min
fjψi;Xg

hψ jOðXÞjψi

such that gjðXÞ≽ 0 j ¼ 1;…; m1;

hψ jhkðXÞjψ1i ≥ 0 k ¼ 1;…; m2;

hψ jEA −HðXÞjψi ≥ 0;

hψ jHðXÞ − ERjψi ≥ 0: ð6Þ

The different SDP relaxations of this minimization provide
a sequence of lower bounds to the actual value of the
observable in the ground state, oð1Þ ≤ � � � ≤ oð∞Þ ≤ oGS.
Note that in this case, the asymptotic value oð∞Þ is only
guaranteed to be equal to the actual ground-state value oGS
if EA ¼ EGS. Finally, upper bounds oUB can be derived just
by replacing the minimization in Eq. (6) by a maximization,
obtaining the announced certifiable bounds for any observ-
able in the ground state, oGS ∈ ½oLB; oUB�.
To illustrate the power of this method, we apply it in

what follows to several paradigmatic Heisenberg models
for spin-1=2 systems.

IV. APPLICATIONS AND RESULTS

We present several implementations of the method to
obtain certified bounds on ground-state observables for
various Heisenberg models in one and two spatial dimen-
sions [38]. Generic Heisenberg models are defined by
Hamiltonians of the form

H ¼ ð1=4Þ
X
i<j

Jij
X

a∈ fx;y;zg
σai σ

a
j ; ð7Þ

where i∈ f1; 2;…; Ng label the lattice sites, while the
couplings Jij implicitly define the lattice geometry and σai
are the Pauli matrices acting on site i. The 1=4 prefactor
follows standard condensed matter conventions, where
Hamiltonians are typically defined in terms of spin oper-
ators sai ¼ σai =2 instead of Pauli matrices. We shall con-
sider four different geometries.
(1) The Heisenberg model with first-neighbor inter-

actions on a 1D lattice, Jij ¼ δj;iþ1, with periodic
boundary conditions (PBCs); namely, we use the
convention that N þ 1≡ 1 for the i, j labels.

(2) A 1D lattice with first- and second-neighbor cou-
plings, Jij ¼ δj;iþ1 þ J2δj;iþ2, where the J2 term
induces geometric frustration.

(3) A 2D square lattice with first-neighbor couplings.
Here, lattice sites are labeled by i ¼ ðx; yÞ with
x; y∈ f1; 2;…; Lg (so that N ¼ L2), and couplings
are of the form Jðx;yÞ;ðx0;y0Þ ¼ δy0;yδx0;xþ1 þ
δx0;xδy0;yþ1. We take PBCs, namely, Lþ 1≡ 1 for
both x and y labels.

(4) A 2D square lattice with first- and second-neighbor
(frustration-inducing) couplings, where second
neighbors are along the diagonal of elementary
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square plaquettes, namely, extra couplings of the
form J2½δðx0;y0Þ;ðxþ1;yþ1Þ þ δðx0;y0Þ;ðxþ1;y−1Þ�.

In all cases, we obtain certified lower bounds on the
ground-state energy, as well as upper and lower bounds
on relevant observables in the ground state, typically on
spin-spin correlation functions.

A. Algorithmic considerations

We begin with discussing the concrete SDP algorithm
tailored to generic Heisenberg models [Eq. (7)]. In par-
ticular, we briefly discuss how to reduce the size of SDP
relaxations by exploiting algebraic structures of the model,
which is crucial in order to obtain the optimal results
given some computational resource. More details are given
in Appendix B.
The ground-state energy of the Heisenberg model is the

optimum of the following noncommutative polynomial
optimization problem:

min
fjψi;σai g

hψ jHðfσai gÞjψi

such that ðσai Þ2¼ 1; i¼ 1;…;N; a∈fx;y;zg;
σxi σ

y
i ¼ iσzi ; σyi σ

x
i ¼−iσzi ; i¼ 1;…;N;

σyi σ
z
i ¼ iσxi ; σziσ

y
i ¼−iσxi ; i¼ 1;…;N;

σziσ
x
i ¼ iσyi ; σxi σ

z
i ¼−iσyi ; i¼ 1;…;N;

σai σ
b
j ¼ σbjσ

a
i ; 1≤ i < j≤N; a;b∈fx;y;zg:

ð8Þ

Again, this is because the Hamiltonian can be expressed
as a polynomial over the Pauli matrices at each site,
fσai gi¼1;…;N;a∈ fx;y;zg, that is, as a linear combination of some

monomials over operators of the formvm¼σa1i1 …σ
apm
ipm

, where
pm is the degree of the monomial, having Hðfσai gÞ ¼P

m cmvm. As explained above, the problem can equivalently
be seen as a minimization of the linear function hHi¼P

mcmhvmi over the set of quantum (Pauli) moments
MQ ¼ ffhviigi∶ ∃ jψi such that ∀ ihvii ¼ hψ jvijψig.
Without entering into the details, the SDP relaxations of

Refs. [8,9] replace the set of quantum momentsMQ in the
optimization by larger moment sets M, hence providing
lower bounds of the ground-state energy in Eq. (8). This is
achieved by introducing the so-called moment matrices.
Specifically, suppose that B ¼ fvmgm is a (Pauli) mono-
mial list. For each quantum realization (namely, for any
given quantum state), the quantum moment matrix M
indexed by B is defined as ½M�vw ¼ hv†wi. The entries of
these quantum moment matrices satisfy a series of linear
relations resulting from the constraints in the optimization,
in our case coming from the Pauli algebra and the
commutation of operators acting at different sites. It is
rather easy to see that, for each choice of the monomial list
B, the corresponding quantum moment matrix is positive,

namely, M≽ 0. However, the opposite is not necessarily
true: There exist positive moment matrices satisfying the
linear relations associated to the constraints that do not have
a quantum realization. The different lists of monomials, and
corresponding moment matrices, define the different sets of
momentsM over which the relaxations are built. For that it
suffices to consider monomial lists such that the energy can
be expressed as a linear combination of the entries of the
corresponding moment matrix:

hHi ¼
X
m

cmum ¼ trðHMMÞ; ð9Þ

for a given matrix HM depending on the coefficients cm,
and on the considered relaxation. Then an SDP relaxation
to Eq. (8) is given by

min
fhv†wigv;w∈B

trðHMMÞ

such that M≽ 0;

M obeys some moment replacement rules:

ð10Þ

In particular, the equality constraints in Eq. (8) give
rise to corresponding replacement rules on monomials,
allowing one to reduce them to the normal form
NFðuÞ ≔ cσa1i1 σ

a2
i2
� � � σarir with c∈ f1;−1; i;−ig, 1 ≤ i1 <

i2 < � � � < ir ≤ N. It follows that the moment matrix M
satisfies the moment replacement rule: hui ¼ hNFðuÞi for
all entries hui of M. Note that Eq. (10) is a complex SDP.
To reformulate Eq. (10) as an SDP over real numbers, we
refer the reader to Ref. [39]. It can be seen that the more
monomials we include in B, the larger size M has and the
tighter lower bound Eq. (10) may provide.
Further symmetry considerations on the concrete con-

sidered models allow one to drastically reduce the size of
the moment matrixM as well as the number of independent
variables involved in Eq. (10). For instance, given the
symmetry of Heisenberg models under global rotations of
the spins, correlations in the ground state are of the form
ð1=4Þhσai σbj i ¼ δa;bCij. Another relevant symmetry is
translation invariance which implies that correlation func-
tions depend only on the relative position of the spins.
Details on the technical implementation of those and other
symmetries to reduce the computational complexity of the
SDP algorithm are given in Appendix B.

B. Heisenberg chain

The Heisenberg chain is defined by the Hamiltonian

H ¼ ð1=4Þ
XN
i¼1

X
a∈ fx;y;zg

σai σ
a
iþ1; ð11Þ
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where N þ 1≡ 1 in order to implement PBC. The ground
state is critical (namely, gapless in the thermodynamic
limit) and displays antiferromagnetic correlations decaying
as a power law with distance hsai saiþri ¼ ð1=4Þhσai σaiþri ¼
Cr ∼ ð−1Þr=rα with some exponent α [40].
Ground-state energy. The ground-state energy per spin

is given by ePBCðNÞ ¼ hHi=N ¼ 3C1. In Fig. 2, we plot the
best lower bound of ePBC as obtained by our SDP relaxation
for up to N ¼ 100 spins. As a comparison, we plot the
(quasi)exact energy as obtained by DMRG simulations. It
is also of interest to compare our SDP lower bound with the
Anderson bound, which is obtained by exact diagonaliza-
tion on a system with open boundary conditions,
eOBCðKÞ ≤ ePBCðNÞ for all N > K (see Appendix A for
details on the Anderson bound). In Fig. 2, the SDP bound is
seen to vastly outperform the Anderson bound (which is in
fact estimated with DMRG for the sake of illustration for up
to N ¼ 100, as beyond a few tens of qubits exact diago-
nalization is out of reach).
To build the moment matrix in the SDP construction, we

use all monomials of the form 1, σai , σ
a
i σ

b
iþj, σ

a
i σ

b
iþ1σ

c
iþ2,

σai σ
b
iþ1σ

c
iþ2σ

d
iþ3, with i∈ f1;…; Ng; j∈ f1; 2;…; rg and

a; b; c; d∈ fx; y; zg (all different monomials appearing
only once). For each size N, we have chosen r as large
as possible compatible with memory limitations, namely,
r ¼ ðN=2Þ for N ≤ 60, and r ¼ 20 for N ¼ 80, 100.
Furthermore for N ¼ 100 we discard all degree-four
monomials σai σ

b
iþ1σ

c
iþ2σ

d
iþ3 in order to allow for more

degree-two monomials. For the sake of completeness,
the data plotted in Fig. 2 are also reported in Table II.
Combining both the DMRG upper bound eDMRG and the
SDP lower bound eSDP allows us to sandwich the exact
ground-state energy with a relative accuracy that remains

below 10−3 up to N ¼ 100 spins. In contrast, previous
works have achieved no better than a few percent accuracy
for comparable system sizes [6,7,41]. The small energy gap
between the DMRG (variational upper bound) and the SDP
(certified lower bound) therefore certifies both the expected
good performance of DMRG to approximate the actual 1D
ground state and, in turn, also the good performance of the
implemented SDP relaxation.

C. Heisenberg chain with second-neighbor couplings

Our second application is the Heisenberg chain including
both first- and second-neighbor couplings, namely, the so-
called J1-J2 Heisenberg model:

H ¼ ð1=4Þ
XN
i¼1

X
a∈ fx;y;zg

½σai σaiþ1 þ J2σai σ
a
iþ2�; ð12Þ

with PBC (in our convention the first-neighbor coupling is
J1 ¼ 1). The J2 term induces geometric frustration, leading
to the sign problem in quantum Monte Carlo methods and
to a richer phase diagram. The model was investigated in
early days of DMRG simulations [42], and represents a
cornerstone in the study of quantum magnetism, motivating
the development of various variational wave functions. In
particular, it is predicted that for J2 < J2;c ¼ 0.241 167…,
the spin correlation length is infinite, and correlations decay
as a power law as in the J2 ¼ 0 limit [42]. For J2 > J2;c, a
gap opens and the system spontaneously forms dimers
among first neighbors. In particular, at J2 ¼ 0.5, the two
exact ground states are products of Bell pairs among first
neighbors [43]. For larger values of J2, more complex
correlation patterns emerge, with both long-range dimer-
dimer correlations and finite-range spiral spin correlations
[42]. Those predictions are based on DMRG (hence,
variational) numerical simulations. Here, in contrast, we
investigate the ability of SDP techniques to offer relevant
lower bounds to the ground-state energy, as well as certified
bounds on spin correlations in the ground state—something
that, to our knowledge, no other approach can provide. In
particular, we certify a change of sign for the second-
neighbor spin correlations for J2 > 0.5 (see Fig. 5).
Ground-state energy. In Fig. 3, we plot the best lower

bound of the ground-state energy for a system of size
N ¼ 40, as compared to the DMRG value (the data are
reported in Table III; see also Table IV for the lower bounds
computed for N ¼ 100). Our compromise for the choice of
monomials is different for small and large values of J2. For
J2 ≤ 1, the monomials are the same as for J2 ¼ 0; namely,

1; σai ; σ
a
i σ

b
iþj; σ

a
i σ

b
iþ1σ

c
iþ2; σ

a
i σ

b
iþ1σ

c
iþ2σ

d
iþ3;

with i∈f1;…;Ng, j∈f1;2;…; rg, and a;b;c;d∈fx;y;zg.
For J2 > 1, to better capture the effect of frustration, our
(heuristic yet efficient) choice is

FIG. 2. Ground-state energy per particle in the Heisenberg
chain (data in Table II in Appendix C). Upper and lower bounds
are derived, respectively, through DMRG and the implemented
SDP relaxation. For comparison, we show the expected Anderson
bound, that is, the lower bound one would obtain by exactly
solving the same system with OBC. This estimation is also
computed through DMRG, so that it is possible to plot system
sizes that are out of reach for exact diagonalization.
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1; σai ; σ
a
i σ

b
iþj; σ

a
i σ

b
iþ2σ

c
iþ4; σ

a
i σ

b
iþ1σ

c
iþ2σ

d
iþ3;

with i∈f1;…;Ng, j∈f1;2;…; rg, and a;b;c;d∈fx;y;zg.
As can be seen in Table III, for J2 ≲ 0.5 we obtain a

relative accuracy of 10−3, and for all values of J2 the
relative accuracy remains better than 0.016. As expected,
the largest gap appears at J2 ¼ 1.0, where the two
couplings become comparable and there is competition
between them.
Individual terms in the Hamiltonian. As mentioned, the

SDP approach allows one to obtain certified bounds on
relevant observables in the ground-state beyond the energy.
In order to do so, we constrain the energy to lie in between
the DMRG upper bound and the SDP lower bound. As a
first application, we compute bounds on the first-neighbor
spin correlations C1 (see Fig. 4), as well as the second-
neighbor spin correlation C2 (see Fig. 5), namely, both

individual terms composing the Hamiltonian. For the sake
of comparison, we also plot the results obtained through
DMRG calculations, which are expected to be very close to
the exact value. The derived lower and upper bounds certify
the following.

(i) First-neighbor correlations remain antiferromag-
netic, C1 < 0, for all values of J2, as its upper
bound is always negative (see Fig. 4 and Table V).

(ii) At J2 ¼ 0.5, the second-neighbor correlations change
from ferromagnetic (C2 > 0) to antiferromagnetic
(C2 < 0) (see Fig. 5 and Table VI). This is a non-
trivial qualitative information, illustrating the com-
petition between the J1 term which favors staggered
correlations among first neighbors (namely,
C1 < 0 and C2 > 0) and the J2 term which favors
staggered correlations among second neighbours
(namely, C2 < 0).

These findings are fully compatible with the DMRG
results, but recall that the latter cannot provide any certif-
ication about these properties. This is our first illustration of
how physically relevant correlation properties in the ground
state can be certified using SDP relaxations.
Spin correlations. We then study the ability of the

SDP approach to bound the spin correlation function at
larger distance. In particular, as mentioned, for values of
J2 < J2;c, one expects that the system develops antiferro-
magnetic (that is, staggered) spin correlations which decay
as a power law with distance, as in the J2 ¼ 0 limit [42]. In
order to explore the potentiality of SDP relaxations to
capture such quasi-long-range order in the ground state, we
compute bounds on the spin-spin correlations as a function
of distance for a fixed system size of N ¼ 40. We consider
both J2 ¼ 0.2 < J2;c (Fig. 6 and Table VII) and J2 ¼ 1.0 >
J2;c (Fig. 7 and Table VIII). As can be seen, the SDP upper
and lower bounds tightly sandwich the DMRG value at
small distances, while they become looser at larger dis-
tances. Yet, one sees the following.

FIG. 3. Ground-state energy per particle in the J1-J2 Heisen-
berg chain (N ¼ 40; data in Table III). Upper and lower bounds
are derived, respectively, through DMRG and the implemented
SDP relaxation. Inset: the relative accuracy remains better than
0.016 for all values of J2.

FIG. 4. First-neighbor spin correlations in the J1-J2 Heisenberg
chain are certified to remain antiferromagnetic (hsx0sx1i ¼ C1 < 0)
for all values of J2 (N ¼ 40; data are given in Table V).

FIG. 5. Second-neighbor spin correlations in the J1-J2 Heisen-
berg chain are certified to change from ferromagnetic (C2 > 0) to
antiferromagnetic (C2 < 0) when crossing J2 ¼ 0.5 (N ¼ 40;
data are given Table VI).
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(i) For J2 ¼ 0.2, the SDP bounds are tight enough to
certify the staggered sign structure of the correlation
function up to the maximal distance i ¼ N=2 (see
Fig. 6 and Table VII). Indeed, both the lower and
upper bounds change sign with the distance.

(ii) For J1 ¼ 1.0, the SDP bounds certify instead a
qualitatively different spatial structure of spin cor-
relations at short distance, while they become much
looser at larger distance.

It is important to remark that we have not attempted here
to optimize the choice of monomials to best capture the
correlation function at large distance; instead we have kept
the same monomials as for tightly bounding the energy,
which especially constrain correlations at short distances.
One can expect to get tighter bounds by tailoring the
monomial list to the observable to be certified. We come
back to this point below.

D. Square-lattice Heisenberg model

We now move to the most challenging case of
two-dimensional systems. As above, we start with the
Heisenberg model, but now on a square lattice:

H ¼ ð1=4Þ
XL
i¼1

XL
j¼1

X
a∈ fx;y;zg

σaði;jÞ½σaðiþ1;jÞ þ σaði;jþ1Þ�; ð13Þ

where ði; jÞ label the position of the spins on a square lattice
with PBCs (Lþ 1≡ 1). In contrast to the 1D model, it is
expected that the square-lattice Heisenberg model sponta-
neously breaks the SU(2) symmetry in the thermodynamic
limit and displays true long-range antiferromagnetic
order in the ground state. In particular, this implies that
CðL=2; L=2Þ → cst > 0 for L → ∞, where we define
Cði; jÞ ¼ ð1=4Þhσxð0;0Þσxði;jÞi. As further discussed below,

while we do certify this property for L ≤ 8, we cannot
reliably extrapolate the obtained SDP bounds to the thermo-
dynamic limit.
Ground-state energy. We first use our SDP algorithm to

compute lower bounds on the ground-state energy, as done
for the previous models. Our choice of monomials is as
follows:

1; σaði;jÞ; σ
a
ði;jÞσ

b
ðiþr1;jþr2Þ;

σaði;jÞσ
b
ði;jþ1Þσ

c
ðiþ1;jþ1Þ; σ

a
ði;jÞσ

b
ði;jþ1Þσ

c
ði−1;jþ1Þ;

σaði;jÞσ
b
ðiþ1;jÞσ

c
ðiþ1;jþ1Þ; σ

a
ði;jÞσ

b
ði−1;jÞσ

c
ði−1;jþ1Þ;

σaði;jÞσ
b
ðiþ1;jÞσ

c
ðiþ2;jÞ; σ

a
ði;jÞσ

b
ði;jþ1Þσ

c
ði;jþ2Þ;

σaði;jÞσ
b
ðiþ1;jÞσ

c
ði;jþ1Þσ

d
ðiþ1;jþ1Þ;

with i; j∈ f1; 2;…; Lg, r1; r2 ∈ f−3;−2;…; 3g, and
a; b; c; d∈ fx; y; zg. For L ¼ 10, we discard all degree-
four monomials σaði;jÞσ

b
ðiþ1;jÞσ

c
ði;jþ1Þσ

d
ðiþ1;jþ1Þ. We consider

systems of linear size L ¼ 4, 6, 8, 10.
We compare the derived bounds to the quantum

Monte Carlo data from Ref. [44], which are expected to

FIG. 6. Spin-spin correlation in the J1-J2 Heisenberg chain for
J2 ¼ 0.2 and system size N ¼ 40 (data in Table VII). The
staggered sign structure is certified at all distances.

FIG. 7. Spin-spin correlation in the J1-J2 Heisenberg chain for
J2 ¼ 1.0 and system size N ¼ 40 (data in Table VIII). Note that
the bounds at i ¼ 19 show a remarkable and surprising improve-
ment. We have, however, verified that the obtained SDP solutions
define feasible points and hence provide valid lower and upper
bounds.

FIG. 8. Ground-state energy in the square-lattice Heisenberg
model, and comparison to quantum Monte Carlo method (data in
Table IX).
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be equal to the exact values (up to statistical error bars
which are negligible on the scale of our comparison) (see
Fig. 8 and Table IX). The energy gaps are now larger than
in the one-dimensional case, but the relative accuracy of the
SDP lower bound of the energy is still about 0.01 as
compared to the quantum Monte Carlo result.
Long-range order. We now focus on other ground-state

properties beyond energy and, in particular, on long-range
correlations. In order to investigate the possibility to certify
spontaneous symmetry breaking and the associated long-
range antiferromagnetic order in the ground state, we
compute bounds on the correlation at maximal distance
CðL=2; L=2Þ (see Fig. 9 and Table X). For all the computed
sizes, the lower bound on CðL=2; L=2Þ remains positive,
hence certifying the presence of long-range order on those
sizes. However, similarly to the case of the J1-J2 model at
J2 ¼ 0.2 (Sec. IV C), for increasing system size the SDP
bounds on CðL=2; L=2Þ become increasingly looser. It is
therefore not possible to argue thatCðL=2; L=2Þwill remain
positive for L > 8 (corresponding to 1=L < 0.125 on the
figure) from scaling arguments on the derived lower bounds.
Note again that, to derive these bounds on long-range

correlations, we have used the same monomial list as for
optimizing the ground-state energy. In future works one
may instead tailor the choice of the monomials to better
bound the correlation function at large distance, which can
be expected to offer some improvement.

E. J1-J2 square-lattice Heisenberg model

As a last example, we consider the J1-J2 Heisenberg
model on a square lattice:

H ¼ ð1=4Þ
XL
i¼1

XL
j¼1

X
a∈ fx;y;zg

σaði;jÞ½σaðiþ1;jÞ þ σaði;jþ1Þ

þ J2ðσaðiþ1;jþ1Þ þ σaðiþ1;j−1ÞÞ�; ð14Þ

with PBC. The J2 terms favors antiferromagnetic correla-
tions along the diagonals of the square lattice, which are
incompatible with the correlations favored by the first-
neighbor J1 ¼ 1 term and lead to frustration. As for the
J1-J2 Heisenberg chain, this model is not amenable to
quantum Monte Carlo methods due to the sign problem.
Several variational methods based on ansatz wave functions
have however been applied to this paradigmatic model of
frustrated quantum magnetism, sometimes obtaining con-
flicting results due to a complex energy landscape with
various ground-state candidates which are close in energy
yet with incompatible forms of order [45–50]. The emerg-
ing consensus regarding the nature of the ground state is
that increasing the ratio J2=J1, the ground states display
a long-range Néel order for J2=J1 ≲ 0.45, followed by a
spin liquid without any form of long-range order
(0.45≲ J2=J1 ≲ 0.55), then long-range dimer correlations
(0.55≲ J2=J1 ≲ 0.61), and finally long-range columnar
antiferromagnetic order for 0.61≲ J2=J1 [51–54] (the
precise boundaries of these phases remain debated). All
those results are established by variational methods on
different geometries.
Ground-state energy. Again,we first compute SDP lower

bounds on the energy, which complement variational meth-
ods. We present results for L ¼ 6, 8 in Appendix G 1 (see
Figs. 13 and 14), and for L ¼ 10 in Fig. 10 (data are,
respectively, given in Tables XI–XIII). We compare them
with state-of-the-art upper bounds obtained by DMRG [49]
and neural network (NN) wave functions [50] (very similar
upper bounds were recently obtained also by machine-
learning inspired variational states [52]). Note in particular
that sizeL ¼ 10 (namely,N ¼ 100 qubits) is not achievable
with exact methods, so that combining upper and lower
bounds become very relevant to constrain ground-state
properties. Combining variational upper bounds and SDP
lower bounds allows us to sandwich the true ground-state
energy with a few percent of relative accuracy (Table XIII).
Spin correlations. Finally, the SDP approach can also be

applied to deliver certified bounds on relevant observables

FIG. 9. Spin correlation at maximal distance in the square-
lattice Heisenberg model as compared to Monte Carlo compu-
tations (data in Table X).

FIG. 10. Energy lower bounds for the 2D J1-J2 Heisenberg
model on a square with L ¼ 10 (data in Table XIII).

CERTIFYING GROUND-STATE PROPERTIES OF MANY-BODY … PHYS. REV. X 14, 031006 (2024)

031006-11



in regimes inaccessible to exact numerical methods, such
as the J1-J2 model on a square lattice for L ¼ 10.
Constraining the energy to lie in between the maximal
lower bound (as obtained by the SDP) and the minimal
upper bound (as obtained using variational methods), we
obtain certified bounds on first- and second-neighbor
(diagonal) correlations in the exact ground state. The
monomial list that we use to bound both the energy and
spin correlations is the same as the one in Sec. IV D for the
square-lattice Heisenberg model.
The results are respectively displayed in Figs. 11 and 12

(data in Tables XIV and XV). We emphasize that this
frustrated model for N ¼ 100 spins is well beyond the
capabilities of known exact methods such as exact diag-
onalization, so that the certified bounds offered by the SDP
approach are especially insightful. We note in particular
that SDP bounds are sufficiently accurate to certify the
following.

(i) Correlations Cð0; 1Þ remain antiferromagnetic for all
studied values of J2, as the computed upper bound is
always negative.

(ii) Second-neighbor correlations experience a change
of sign while varying the J2=J1 ratio, a behavior
reminiscent of the 1D model studied in Sec. IV C.
The transition occurs for a value of J2 in the
range (0.45,0.6).

Again, this type of certification is impossible with previous
approaches.

V. VENUES FOR IMPROVEMENTS

In the landscape of numerical methods to address the
quantum many-body problem, SDP-based approaches
are conceptually unique in that they are the only ones to
offer certified results, both on the energy of the ground
state and on its properties. While the bounds we obtained
for 1D systems are very accurate, they are looser for the
more challenging situation of 2D systems, yet promising.
Note also that in comparison with variational approaches,
SDP relaxations are still in their infancy. Considerable
improvement in the tightness of the delivered bounds can
be expected in future implementations, as it happened in the
classical context, where SDP techniques recently yielded
spectacularly high accurate results in bounding correlation
functions in two- and three-dimensional Ising models using
the bootstrap framework [55]. In fact, our work already
improves previous results using SDP relaxations in a many-
body context by at least an order of magnitude [6,7,41].
Our considered SDP hierarchies apply to any generic

polynomial optimization problem. However, tighter bounds
can be obtained by adapting the relaxation to the specific
model under study. While in our work we took advantage
of several aspect of the structure of the tackled problem, we
discuss in what follows several avenues that deserve further
investigation in future works.
Sparsity and symmetry. A systematic study of the

symmetries of the models would result in tighter bounds.
Our work already exploits the sparsity and some sym-
metries of the considered models to significantly improve
the scalability. However, we do not exhaust the structures of
the models yet. For instance, we do not perform block
diagonalization by exploiting permutation, mirror, or rota-
tion symmetries of the models. Also, we do not exploit the
fact that any entry of the moment matrix is either a real or a
pure imaginary number.
Choice of monomials. An optimization of the best choice

of monomials to the observable of interest would also result
in tighter bounds. In our work, we choose the monomials
based on the local operators appearing in the Hamiltonian.
We heuristically optimize the monomial choice to tighten
the bound on the ground-state energy. However, once the
bounds on the energy are obtained, one could have
modified the monomials in the SDP when studying other
quantities, such as long-range correlations. In fact, it is
reasonable to expect that there is a different optimal choice
of monomials for each observable. Preliminary numerical
studies suggest that the bounds on observables can be

FIG. 11. Bounds for the correlations Cð0; 1Þ of the 2D J1-J2
Heisenberg model on a square lattice of dimension L ¼ 10 (data
in Table XIV).

FIG. 12. Bounds for the correlations Cð1; 1Þ of the 2D J1-J2
Heisenberg model on a square lattice of dimension L ¼ 10 (data
in Table XV).
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significantly improved by tailoring the monomial choice.
We also note that machine learning can be employed to
optimize the choice of monomials, as done in Ref. [56].
Optimality constraints. The solution to optimization

problems have additional constraints that can be incorpo-
rated to the hierarchy. For instance, in many situations,
such as for energy minimization, the searched state
is an eigenstate of the polynomial to be optimized, the
Hamiltonian in our case. This can be used to enforce
additional polynomial constraints that are satisfied by the
ground state; e.g., h½H;O�iGS ¼ 0 for any operator O. In
this sense, recent works, Refs. [57,58], provide other
ground-state relaxations that exploit the optimality con-
straints. Interestingly, these constraints allow deriving
certifiable bounds on the value of any observable without
the need for upper bounds on the energy. Reference [58]
is in fact more general and shows how to extend the
Karush-Kuhn-Tucker optimality conditions, well known in
classical optimization, to the noncommuting case. It is also
reported in Ref. [59] that adding entropy constraints could
strengthen the SDP bounds on ground-state problems. Note
that as the SDP hieararchy, when increasing the relaxation
order, converges to the exact ground-state solution where
these constraints are automatically satisfied, such addi-
tional constraints are in principle not needed. However, in
practice, imposing them may significantly improve the
results at finite steps of the relaxation.
Variational information. A better use of all the infor-

mation available in the variational state, beyond energy
upper bound as considered here, may improve the bounds.
For instance, from the variational result and the fact that the
ground state is an eigenstate, one not only knows that
hHi ≤ EA, but also all its moments, that is, hHni ≤ En

A for
all n (for that one requires that the Hamiltonian is positive,
which can be enforced by using any ground-state energy
lower bound). These are polynomial constraints, and
hence can be implemented in SDP hierarchies. Other
information about the state resulting from the variational
method could also be used. A remarkable example is
provided in Ref. [60], where the tensor resulting from
DMRG optimizations is used to improve the lower bounds
on ground-state energies.
Dimension constraints. Adapting the method to take

advantage of the finite dimensionality of each system could
also result in tighter bounds. Here we have used the NPA
hierarchy for polynomial optimizations, where operators
are defined for arbitrary dimension, and combined it with
upper bounds from variational approaches. However,
most Hamiltonians are defined by polynomials of operators
acting over a given finite dimensional space. As explained,
while for the spin-1=2 models studied here the dimension
constraint is eventually recovered from convergence and
the Pauli relations; for practical purposes it may be
convenient to impose dimension constraints at each finite
step. There indeed exist SDP hierarchies that are tailored to

a given dimension, a remarkable example being the one
introduced in Ref. [60].
Numerical methods. On the numerical side, some of the

lower bounds based on a solution returned by an SDP
solver may come together with unsatisfying numerical
feasibility status. Therefore, another interesting research
direction is to obtain truly certified lower bounds based on
exact rational arithmetic. For this, one could design a
postprocessing method, relying on either rigorous interval
arithmetic or rounding-projection techniques, in the same
spirit as in Refs. [61,62]. On the other hand, the SDP in our
work involves complex numbers and we reformulate it as a
real SDP to feed an SDP solver designed only for real
numbers. However, SDP solvers natively supporting com-
plex numbers may handle it more efficiently. Also, the
SDPs arising from the NPA hierarchy possess some special
structures (e.g., low-rank optimal solutions, unit diagonal)
which could be exploited to design more efficient SDP
algorithms as in Ref. [63]. We can thus rely on a structure-
exploiting SDP solver to obtain tighter bounds and to
approach models of larger size in the future.
Investigating all these ideas would most probably lead to

significant improvement on the tightness of the SDPbounds,
especially in the most challenging case of 2D models. It is
worth mentioning that many of the previous ingredients and
constructions can often be arranged into a single SDP
relaxation that combines the benefits of each of them.
All the previous points have focused on methods and

ideas to improve the bounds. We would like to conclude
this section presenting a couple of applications of relax-
ations that go beyond what is studied here.
Thermodynamic limit. While our work has focused on

systems consisting of a finite number of particles, the
thermodynamic limit can also be tackledbySDP relaxations.
TheconstructionsofRefs. [57,58,60]mentionedaboveare in
factpresentedin this limit.Butourapproachcanalsobeeasily
adapted to this situation using similar arguments as in [60].
Remarkably, Ref. [59] goes beyond ground-state problems
and provides SDP relaxations converging to any finite
temperature equilibrium state in the thermodynamic limit,
hence obtaining bounds valid for any equilibrium state.
Spontaneous symmetry breaking from local observables

bounds. One could identify spontaneous symmetry break-
ing by looking at the bounds on local observables, instead
of long-range correlations as attempted in the present work.
For instance, in the considered Heisenberg models, one
could study lower and upper bounds on the local mag-
netization m ¼ hσzi i. In the absence of spontaneous sym-
metry breaking, m ¼ 0, while m ¼ �m0 signals the onset
of long-range order in the thermodynamic limit. We expect
that the latter case would manifest itself in the upper (lower)
bound saturating to m0 (−m0) while increasing the level of
the SDP hierarchy. Such behavior is indeed reported in a
recent and related study in the case of the transverse-field
Ising model [57]. Investigating the nature of the ground
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state of, e.g., the J1-J2 Heisenberg model in the highly
frustrated parameter regime (Sec. IV E) represents a very
exciting and relevant application of the SDP approach.

VI. CONCLUSION

In this work we have shown how SDP relaxations of
polynomial optimization problems when combined with
upper bounds obtained through variational methods can
provide certifiable bounds on ground-state properties
beyond energy. We have illustrated the potentialities of
the method in 1D and 2D Heisenberg models. The choice is
motivated by their rich phenomenology, the existence of
previous results to benchmark our results, and their sym-
metries, which allow us to reach large system sizes.
However, the method is general and can be applied to
essentially anymany-body Hamiltonian. In fact, the method
can be combined with any variational approach, including
upper bounds to ground-state energies obtained using
variational quantum hardware or simulators, to provide
certifiable bounds on any other observable of interest.
There are many natural continuations of our results that

are worth considering: (1) apply the introduced approach to
other relevant models in physics, for instance, fermions;
(2) validate the output of existing quantum simulators on
specific finite-size instances of quantum many-body prob-
lems; (3) establish phase diagrams of quantum many-body
Hamiltonians directly in the thermodynamic limit;
(4) improve the scalability of the method, especially by
making use of the physical properties of the considered
Hamiltonian model. While being at the moment more
limited in terms of scalability, it is our strong belief that
the considered techniques will play an important role in
complementing the results of variational methods and,
therefore, become a central tool to understand the physics
of interacting many-body quantum systems.

Our codes for reproducing the results are available
online [38].
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APPENDIX A: ANDERSON BOUND

In this appendix, we illustrate the concept of Anderson
bound to obtain lower bounds on ground-state energies. For
the sake of concreteness and simplicity, we consider a one-
dimensional model with translation invariance and PBC,
although the idea is straightforward to extend to other
cases. The Hamiltonian is of the formH ¼ P

N
i¼1 hi, with hi

acting in the neighborhood of site i. We then define the
restricted Hamiltonian HiðKÞ ¼

P
K
j¼i hj for K < N. We

may rewrite the full Hamiltonian as H ¼ K−1PN
i¼1HiðKÞ,

with the 1=K prefactor compensating for the fact that all
individual terms hi are repeated K times in the sum. The
Anderson bound is then obtained by noting that for any
state jψi, hψ jHiðKÞjψi cannot be smaller than the smallest
eigenvalue of HiðKÞ, namely, to the ground-state energy of
HiðKÞ. This holds in particular when jψi is the ground state
ofH. AsHiðKÞ describes the initial model on a cluster ofK
sites with OBC, we conclude that

EPBCðNÞ ≥ N
K
EOBCðKÞ; ðA1Þ

or equivalently,

ePBCðNÞ ≥ eOBCðKÞ: ðA2Þ

APPENDIX B: SDP REDUCTIONS BY
EXPLOITING STRUCTURE

In this appendix, we further discuss how to implement
symmetries of the problem in the SDP algorithm to reduce
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the number of free variables in the implementation. We start
by restating the main problem for completeness.
The ground-state energy of the Heisenberg model is the

optimum of the following noncommutative polynomial
optimization problem:

min
fjψi;σai g

hψ jHjψi

such that ðσai Þ2 ¼ 1; i¼ 1;…;N;a∈fx;y;zg;
σxi σ

y
i ¼ iσzi ; σyi σ

x
i ¼−iσzi ; i¼ 1;…;N;

σyi σ
z
i ¼ iσxi ; σziσ

y
i ¼−iσxi ; i¼ 1;…;N;

σziσ
x
i ¼ iσyi ; σxi σ

z
i ¼−iσyi ; i¼ 1;…;N;

σai σ
b
j ¼ σbjσ

a
i ; 1≤ i≠ j≤N;a;b∈fx;y;zg:

ðB1Þ
The NPA hierarchy [9] can be then applied to Eq. (B1)
yielding a nondecreasing sequence of lower bounds on the
ground-state energy. Specifically, suppose that Bd is a
monomial basis (i.e., a subset of monomials with respect to
the noncommutating variables fσai gi¼1;…;N;a∈ fx;y;zg) up to
degree d. Then the dth order moment relaxation of the NPA
hierarchy for Eq. (B1) is given by

min
fhv†wig

hHi

such that Md ≽ 0;

Md obeys some moment replacement rules;

ðB2Þ
where Md is the moment matrix indexed by Bd with
½Md�vw ¼ hv†wi. The decision variables of Eq. (B2) are the
moments hv†wi; v; w∈Bd. Note that the equality con-
straints in Eq. (B1) give rise to the following replacement
rules on monomials:

ðσai Þ2 ⟶ 1; i ¼ 1;…; N; a∈ fx; y; zg; ðB3aÞ

σxi σ
y
i ⟶ iσzi ; i ¼ 1;…; N; ðB3bÞ

σyi σ
x
i ⟶ −iσzi ; i ¼ 1;…; N; ðB3cÞ

σyi σ
z
i ⟶ iσxi ; i ¼ 1;…; N; ðB3dÞ

σziσ
y
i ⟶ −iσxi ; i ¼ 1;…; N; ðB3eÞ

σziσ
x
i ⟶ iσyi ; i ¼ 1;…; N; ðB3fÞ

σxi σ
z
i ⟶ −iσyi ; i ¼ 1;…; N; ðB3gÞ

σai σ
b
j ⟶ σbjσ

a
i ; 1 ≤ i ≠ j ≤ N; a; b∈ fx; y; zg: ðB3hÞ

For any monomial u, by applying the above replacement

rules, we can reduce it to the normal form NFðuÞ ≔ cσa1i1 ×
σa2i2 � � � σ

ar
ir
, with c∈f1;−1; i;−ig, 1≤ i1<i2< �� �<ir≤N.

It follows that the moment matrix Md satisfies the moment
replacement rule: hui ¼ hNFðuÞi for all entries hui of Md.

1. Sparsity

In order to exploit the sparsity of the Heisenberg model,
for each degree d, we pick monomials that are supported on
contiguous sites. Specifically, for the 1D Heisenberg
model, we let

Pd ≔ fσa1i σa2iþ1…σadiþd−1ji∈ f1;…; Ng;
aj ∈ fx; y; zg; j ¼ 1;…; dg:

Then at relaxation order d, we use the sparse monomial
basis Bd ¼∪d

i¼0 Pi instead of the full monomial basis.
Moreover, to capture long-range correlations, we also
include the monomials of form σai σ

b
iþj with j ¼ 2;…; r

and a; b∈ fx; y; zg in the monomial basis Bd. For the 2D
Heisenberg model, we use the following sparse monomial
basis (d ≔ 4):

Bd ¼ f1; σaði;jÞ; σaði;jÞσbðiþr1;jþr2Þ; σ
a
ði;jÞσ

b
ði;jþ1Þσ

c
ðiþ1;jþ1Þ;

σaði;jÞσ
b
ði;jþ1Þσ

c
ði−1;jþ1Þ; σ

a
ði;jÞσ

b
ðiþ1;jÞσ

c
ðiþ1;jþ1Þ;

σaði;jÞσ
b
ði−1;jÞσ

c
ði−1;jþ1Þ; σ

a
ði;jÞσ

b
ðiþ1;jÞσ

c
ðiþ2;jÞ;

σaði;jÞσ
b
ði;jþ1Þσ

c
ði;jþ2Þ; σ

a
ði;jÞσ

b
ðiþ1;jÞσ

c
ði;jþ1Þσ

d
ðiþ1;jþ1Þ

ji; j∈ f1; 2;…; Lg; r1; r2 ∈ f−3;−2;…; 3g;
a; b; c; d∈ fx; y; zgg:

The resulting SDP relaxations are more efficient to solve
but possibly lead to more conservative lower bounds. We
emphasize that similar reduction of the monomial basis
already appeared in the related literature. In the context of
quantum information theory, we refer to Ref. [64] where
the authors obtain upper bounds on maximal violations of
Bell inequalities after random selection of a subset of
monomials with given degrees. For general (non)commu-
tative polynomial optimization problems, one can exploit
either correlative sparsity [65,66], occurring when there are
few correlations between the variables of the input problem,
or term sparsity [67,68], occurring when there are a small
number of terms involved in the input problem by com-
parison with the fully dense case. The interested reader is
referred to Ref. [69] for a recent monograph on this topic.

2. Symmetry

a. Sign symmetry of the model

We can observe that the feasible set of Eq. (B1) is
invariant under the substitution of two of the three
variables, e.g., σxi and σyi of a given site into their opposite,
e.g., −σxi and −σyi . In order for any objective functions of
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the form Eq. (7) to also be invariant, we need to consider
the same substitutions for all the sites. There are therefore
three substitutions:

sxy∶ ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ð−σxi ;−σyi ; σzi ÞNi¼1; ðB4aÞ

syz∶ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ðσxi ;−σyi ;−σzi ÞNi¼1; ðB4bÞ

szx∶ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ð−σxi ; σyi ;−σzi ÞNi¼1: ðB4cÞ

Note that szx is the composition of sxy and syz, so we only
need to consider the invariance under two of the three
substitutions.
For each monomial m, sxyðmÞ [syzðmÞ] is either m

or −m. Similarly to Sec. III.C of Ref. [70], for each
monomial m, we consider its signature as the vector
½sxyðmÞ=m; syzðmÞ=m�∈ f−1; 1g2. Suppose that the mono-
mial basis Bd is arranged such that each of the four groups
of monomials with the same signature appear contiguously.
Note that a product of two monomials is invariant under the
sign symmetries if and only if it is the product of two
monomials of the same signature. The moments of sym-
metric monomials therefore form a block diagonal structure
of four blocks in the moment matrix. Thus, we can reduce
the large positive semidefinite matrix Md into four smaller
positive semidefinite submatrices as shown in Theorem 4 of

Ref. [70] in the commutative case, each indexed by
monomials with the same signature. For the 1D model
and d ¼ 4, the partition of monomials is given in Table I.
The 2D case is similar.

b. Sign symmetry of the Hamiltonian

The Hamiltonian H in Eq. (B1) may have more sign
symmetries. For example, consider the Heisenberg model,
where theHamiltonianH is invariant under the substitutions:

ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ð−σxi ; σyi ; σzi ÞNi¼1; ðB5aÞ

ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ðσxi ;−σyi ; σzi ÞNi¼1; ðB5bÞ

ðσxi ; σyi ; σzi ÞNi¼1 ⟶ ðσxi ; σyi ;−σzi ÞNi¼1: ðB5cÞ

Besides the zero entries given in Appendix B 2 a, these
additional sign symmetries of the Hamiltonian yield extra
zero entries of the moment matrix: hui ¼ 0 if NFðuÞ is
variant under the transformations Eq. (B5).
Note that symmetry reduction usually applies to any

convex problem with symmetric objective and symmetric
feasible set. In this case, the symmetry of the feasible set is
not apparent because the replacement rules are not sym-
metric; e.g., replacing σxi σ

y
i by iσzi is not symmetric under

any of the substitutions (B5). We can show the symmetry of
the set of sums of Hermitian squares using (1) their
connection with the set of strictly positive Hermitian
elements over the quotient ring (detailed below) and
(2) the fact that the Hamiltonian is invariant under the
substitutions Eq. (B5).
Indeed, let us denote the noncommutative polynomial ring

by Chfσxi ; σyi ; σzigNi¼1i and the ideal generated by the
equality constraints of Eq. (B1) by I. Define the set
Ω ≔ fNFðuÞjuis a monomial in fσxi ; σyi ; σzigNi¼1g. Then
the optimization problem Eq. (B1) is equivalent to the
unconstrained optimization problem, minfjψi;σai ghψ jHjψi,
considered in the quotient ring Chfσxi ; σyi ; σzigNi¼1i=
I ≅ ChΩi. Let us denote by S the group of additional sign
symmetries given by Eq. (B5) and by ΣS the set of sums of
Hermitian squares of ChΩi, that are invariant under S after
conversion to normal form, i.e., elements of the form
h ¼ P

j p
†
jpj, pj ∈ChΩi, such that s½NFðhÞ� ¼ NFðhÞ

for any s∈ S. Then one can show that any strictly positive
Hermitian element ofChΩi that is invariant underS lies inΣS
by Ref. [10], the proof being very similar to the one of
Proposition3.1ofRef. [71].Here “strict positivity” should be
understood as strict positivity over all possible evaluations in
Hilbert spaces, as detailed, e.g., in Sec. 2.2 of Ref. [71]. By
duality one considers optimization over linear functionals
non-negative onΣS, which leads to an equivalent formulation
of the above unconstrained optimization problem:

TABLE I. Monomials indexing the sign symmetry blocks when
d ¼ 4.

Signature Monomials

(1, 1) 1; σai σ
a
iþj; σ

a
i σ

b
iþ1σ

c
iþ2; σ

a
i σ

a
iþ1σ

a
iþ2σ

a
iþ3,

σai σ
a
iþ1σ

b
iþ2σ

b
iþ3; σ

a
i σ

b
iþ1σ

a
iþ2σ

b
iþ3,σ

a
i σ

b
iþ1σ

b
iþ2σ

a
iþ3,

a ≠ b ≠ c∈ fx; y; zg; i ¼ 1;…; N; j ¼ 1;…; r

ð1;−1Þ σzi ; σ
a
i σ

b
iþj; σ

z
iσ

z
iþ1σ

z
iþ2; σ

z
iσ

a
iþ1σ

a
iþ2,

σai σ
z
iþ1σ

a
iþ2; σ

a
i σ

a
iþ1σ

z
iþ2; σ

z
iσ

z
iþ1σ

a
iþ2σ

b
iþ3,

σziσ
a
iþ1σ

z
iþ2σ

b
iþ3; σ

z
iσ

a
iþ1σ

b
iþ2σ

z
iþ3,σ

a
i σ

z
iþ1σ

z
iþ2σ

b
iþ3,

σai σ
z
iþ1σ

b
iþ2σ

z
iþ3; σ

a
i σ

b
iþ1σ

z
iþ2σ

z
iþ3,σ

a
i σ

b
iþ1σ

b
iþ2σ

b
iþ3,

σbi σ
a
iþ1σ

b
iþ2σ

b
iþ3; σ

b
i σ

b
iþ1σ

a
iþ2σ

b
iþ3,σ

b
i σ

b
iþ1σ

b
iþ2σ

a
iþ3,

a ≠ b∈ fx; yg; i ¼ 1;…; N; j ¼ 1;…; r

ð−1; 1Þ σxi ; σ
a
i σ

b
iþj; σ

x
i σ

x
iþ1σ

x
iþ2; σ

x
i σ

a
iþ1σ

a
iþ2,

σai σ
x
iþ1σ

a
iþ2; σ

a
i σ

a
iþ1σ

x
iþ2; σ

x
i σ

x
iþ1σ

a
iþ2σ

b
iþ3,

σxi σ
a
iþ1σ

x
iþ2σ

b
iþ3; σ

x
i σ

a
iþ1σ

b
iþ2σ

x
iþ3,σ

a
i σ

x
iþ1σ

x
iþ2σ

b
iþ3,

σai σ
x
iþ1σ

b
iþ2σ

x
iþ3; σ

a
i σ

b
iþ1σ

x
iþ2σ

x
iþ3,σ

a
i σ

b
iþ1σ

b
iþ2σ

b
iþ3,

σbi σ
a
iþ1σ

b
iþ2σ

b
iþ3; σ

b
i σ

b
iþ1σ

a
iþ2σ

b
iþ3,σ

b
i σ

b
iþ1σ

b
iþ2σ

a
iþ3,

a ≠ b∈ fy; zg; i ¼ 1;…; N; j ¼ 1;…; r

ð−1;−1Þ σyi ; σ
a
i σ

b
iþj; σ

y
i σ

y
iþ1σ

y
iþ2; σ

y
i σ

a
iþ1σ

a
iþ2,

σai σ
y
iþ1σ

a
iþ2; σ

a
i σ

a
iþ1σ

y
iþ2; σ

y
i σ

y
iþ1σ

a
iþ2σ

b
iþ3,

σyi σ
a
iþ1σ

y
iþ2σ

b
iþ3; σ

y
i σ

a
iþ1σ

b
iþ2σ

y
iþ3,σ

a
i σ

y
iþ1σ

y
iþ2σ

b
iþ3,

σai σ
y
iþ1σ

b
iþ2σ

y
iþ3; σ

a
i σ

b
iþ1σ

y
iþ2σ

y
iþ3,σ

a
i σ

b
iþ1σ

b
iþ2σ

b
iþ3,

σbi σ
a
iþ1σ

b
iþ2σ

b
iþ3; σ

b
i σ

b
iþ1σ

a
iþ2σ

b
iþ3,σ

b
i σ

b
iþ1σ

b
iþ2σ

a
iþ3,

a ≠ b∈ fx; zg; i ¼ 1;…; N; j ¼ 1;…; r
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min
linear l∶ChΩi→C

lðHÞ

such that lðqÞ ≥ 0 ∀ q∈ΣS;

lðp†Þ ¼ lðpÞ� ∀ p∈ChΩi;
lð1Þ ¼ 1: ðB6Þ

From any l feasible for the above problem (B6), let us
define the linear functional lS∶ ChΩi → C by lSðpÞ ¼
1=jSjPs∈ S l(sðpÞ) for all p∈ChΩi. Then it is clear that
lSðHÞ ¼ lðHÞ sinceH is invariant under the action of S. In
addition, lSð1Þ ¼ 1, lSðp†Þ ¼ lðpÞ� for all p∈ChΩi and
lSðqÞ ≥ 0 for all q∈ΣS. To prove the latter fact, we used
the fact that one has sðqÞ ¼ q for any s∈ S and any q∈ΣS
written in normal form. Overall this shows that lS is
feasible for Eq. (B6) and yields the same objective value as
the one with l.
To conclude, at each relaxation Eq. (B2) we can restrict

ourselves to optimizing over linear functionals vanishing on
variant elements ofChΩi under the transformations Eq. (B5).
This boils down to setting every entry of the Hermitian
momentmatrixM¼½lðv†wÞ�v;w∈Ω fromEq. (B2) to hui ¼ 0

if NFðuÞ is variant under the transformations Eq. (B5).

c. Translation symmetry

The translation symmetry of Eq. (B1) comes from the
fact that the Hamiltonian H is invariant under any trans-
lation of sites, which implies

hυðuÞi ¼ hui; ðB7Þ

where υ∶i ⟶ iþ k denotes a translation of sites with
k∈ f1;…; Lg (L ≔ N for the 1D Heisenberg model with
N sites). This together with the PBC imposes a block
structure on the moment matrix Md where each block is a
circulant matrix of sizeL as long as the monomial basisBd is
appropriately sorted [7]. For example, consider in the 1D
Heisenbergmodel the submatrixT of themomentmatrixMd

indexed by fσxi gNi¼1. The translation symmetry implies
Ti;j ¼ Tj;i ¼ hσxi σxji ¼ hσx1σxj−iþ1i. Therefore, T is a sym-
metric circulant matrix. Any circulant matrix of size L
can be diagonalized by a discrete Fourier transform
P∈CL×L with

Pi;j ¼
1ffiffiffiffi
L

p e−2πiði−1Þðj−1Þ=L; i; j ¼ 1;…; L: ðB8Þ

By virtue of this fact, we are able to further block diagonalize
each block of the moment matrix Md provided in
Appendix B 2 a.
Specifically, suppose that the monomial basis Bd is

arranged such that monomials of the same type with
varying site label i appear contiguously for i ¼ 1;…; L
(e.g., σx1σ

x
2; σ

x
2σ

x
3;…; σxLσ

x
1). Then the block of Md corre-

sponding to the signature (1,1) is of the block form:

G ≔

2
666666664

1 c⊺1 c⊺2 � � � c⊺t
c1 G1;1 G1;2 � � � G1;t

c2 G2;1 G2;2 � � � G2;t

..

. ..
. ..

. . .
. ..

.

ct Gt;1 Gt;2 � � � Gt;t

3
777777775
; ðB9Þ

where cj ≔ ðcj;…; cjÞ∈RL and each Gj;k is a circulant
matrix. Let UG ¼ diagð1; P;…; PÞ∈Cð1þLtÞ×ð1þLtÞ. We
have G ¼ UGDGU

†
G, where

DG ≔

2
666666664

1 d⊺
1 d⊺

2 � � � d⊺
t

d1 D1;1
G D1;2

G � � � D1;t
G

d2 D2;1
G D2;2

G � � � D2;t
G

..

. ..
. ..

. . .
. ..

.

dt Dt;1
G Dt;2

G � � � Dt;t
G

3
777777775
; ðB10Þ

with dj ≔ ðcj
ffiffiffiffi
L

p
; 0;…; 0Þ∈RL and diagonal matrices

Dj;k
G . Moreover, the other three blocks of Md respectively

corresponding to the signatures ð1;−1Þ; ð−1; 1Þ; ð−1;−1Þ
are of the block form:

H ≔

2
666664

H1;1 H1;2 � � � H1;s

H2;1 H2;2 � � � H2;s

..

. ..
. . .

. ..
.

Hs;1 Hs;2 � � � Hs;s

3
777775
; ðB11Þ

where each Hj;k is a circulant matrix. Let UH ¼
diagðP;…; PÞ∈CðLsÞ×ðLsÞ. We have H ¼ UHDHU

†
H,

where

DH ≔

2
666664

D1;1
H D1;2

H � � � D1;s
H

D2;1
H D2;2

H � � � D2;s
H

..

. ..
. . .

. ..
.

Ds;1
H Ds;2

H � � � Ds;s
H

3
777775
; ðB12Þ

with diagonal matrices Dj;k
H . By reordering rows and

columns, both DG and DH have a block-diagonal form.
Hence, the positive semidefiniteness of G and H can be
imposed by requiring that each diagonal block of DG and
DH is positive semidefinite.
Note that similar block-diagonalization techniques have

also been obtained in the commutative polynomial opti-
mization setting; see Ref. [72] for more details.

d. Permutation symmetry

The permutation symmetry of Eq. (B1) comes from
the fact that the Hamiltonian H is invariant under any
permutation of fx; y; zg, which yields the following
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moment replacement rule on the moment matrix Md (by a
similar proof as in Appendix B 2 b):

hτðσa1i1 σ
a2
i2
…σarir Þi ¼ hσa1i1 σ

a2
i2
…σarir i; ðB13Þ

where 1 ≤ i1 < i2 < � � � < ir ≤ N, a1;…; ar ∈ fx; y; zg,
and τ denotes any permutation of fx; y; zg.

e. Mirror symmetry

For a model supported on a 2D square lattice, there may
exist an additional symmetry. Let us consider, for instance,
the 2D Heisenberg model,

H ¼
X

a¼x;y;z

XL
i¼1

XL
j¼1

σaði;jÞðσaðiþ1;jÞ þ σaði;jþ1ÞÞ; ðB14Þ

supported on an N ¼ L × L square lattice. The mirror
symmetry of this 2D Heisenberg model means that the
Hamiltonian H is invariant under the transformation
ω∶ði; jÞ ⟶ ðj; iÞ, which yields the following moment
replacement rule on the moment matrix Md:

hωðuÞi ¼ hui: ðB15Þ

To summarize, for the 1D Heisenberg model, the
SDP Eq. (B2) with d ¼ 4 after reductions involves one
positive semidefinite block of size 3rþ 28, N − 1 positive
semidefinite blocks of size 3rþ 27, and 3N positive
semidefinite blocks of size 2rþ 28; for the 2D
Heisenberg model, the SDP Eq. (B2) with d ¼ 4 after
reductions involves one positive semidefinite block of size
129Lþ 1, L − 1 positive semidefinite blocks of size 129L,
and 3L positive semidefinite blocks of size 111L.

APPENDIX C: IMPROVING SDP BOUNDS
BY IMPOSING AN EXTRA
POSITIVITY CONSTRAINT

The bound given by the SDP relaxation for a fixed
relaxation order can be improved by imposing an extra
positivity constraint, namely that the k-body reduced density
matrix ρ½k� is positive. This constraint can be written as

ρ½k� ¼
1

2k

X
a1;…;ak

hσa11 σa22 …σakk iσa11 σa22 …σakk ≽ 0; ðC1Þ

where ai ∈ f0; x; y; zg, i ¼ 1;…; k (with σ0i ¼ 1). As
Eq. (C1) is linear in the moments, we can add it to the
constraints of Eq. (10). In general, one expects that the larger
k, the tighter the resulting bound. However, as ρ½k� is a matrix
of size 2k × 2k, a large k also leads to an SDP of large size. In
practice we notice that k ¼ 8 achieves a good balance
between the computational cost and the improvement of
bounds.

APPENDIX D: HEISENBERG CHAIN

In Table II, we provide the numerical data corresponding
to Fig. 2 in the main text (Sec. IV B), namely the ground-
state energy in the Heisenberg chain with PBC evaluated
through both DMRG and SDP approaches.

APPENDIX E: HEISENBERG CHAIN
WITH SECOND-NEIGHBOR COUPLINGS

In this appendix, we provide numerical data related to the
J1-J2 Heisenberg chain (Sec. IV C in the main text). We
provide SDP and DMRG data for the ground-state energy
for N ¼ 40 spins as a function of J2 (Table III,

TABLE II. Heisenberg chain energy in a system of N spins. r
denotes the maximal distance between spins for two-body terms
in the monomial list (see main text, Sec. IV B). Note that the
relative accuracy (third column) is below 10−3 for all sizes.

N EDMRG ESDP
EDMRG−ESDP

jEDMRGj r

6 −0.467 129 −0.467 129 0.000 000 3
10 −0.451 545 −0.451 545 0.000 000 5
14 −0.447 396 −0.447 403 0.000 015 7
18 −0.445 708 −0.445 734 0.000 059 9
22 −0.444 858 −0.444 898 0.000 090 11
26 −0.444 371 −0.444 433 0.000 141 13
30 −0.444 065 −0.444 151 0.000 193 15
34 −0.443 862 −0.443 964 0.000 231 17
38 −0.443 719 −0.443 833 0.000 257 19
42 −0.443 615 −0.443 737 0.000 275 21
46 −0.443 537 −0.443 666 0.000 290 23
50 −0.443 477 −0.443 610 0.000 300 26
60 −0.443 376 −0.443 517 0.000 318 30
80 −0.443 276 −0.443 538 0.000 591 20
100 −0.443 229 −0.443 593 0.000 820 20

TABLE III. Ground-state energy in the Heisenberg chain with
second-neighbour (J2) for N ¼ 40 spins, as evaluated by SDP
and DMRG methods.

J2 EDMRG ESDP
EDMRG−ESDP

jEDMRGj d

0.1 −0.425 81 −0.425 85 0.000 11 4
0.2 −0.408 92 −0.408 93 0.000 02 4
0.24117 −0.402 33 −0.402 34 0.000 02 4
0.3 −0.393 42 −0.393 46 0.000 12 4
0.4 −0.380 55 −0.380 92 0.000 98 4
0.5 −0.375 00 −0.375 00 0.000 00 4
0.6 −0.380 81 −0.381 67 0.002 26 4
0.7 −0.397 21 −0.399 52 0.005 82 4
0.8 −0.421 77 −0.426 13 0.010 35 4
0.9 −0.452 06 −0.458 39 0.014 01 4
1.0 −0.486 57 −0.494 46 0.016 20 4
1.5 −0.685 70 −0.695 70 0.014 58 4
2.0 −0.902 42 −0.910 10 0.008 52 4
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corresponding to Fig. 3 in the main text)), as well as SDP
data for N ¼ 100 spins (Table IV). In both tables, the last
column indicates the degree d of the monomials to
construct the moment matrix, as explained in Appendix B.
We also provide numerical data for the spin-spin

correlations in a system with N ¼ 40 spins with PBC.

TABLE IV. Ground-state energy lower bound in the Heisenberg
chain with second neighbor (J2) for N ¼ 100 spins, as evaluated
by the SDP algorithm.

J2 ESDP r d

0.1 −0.425 583 85 20 3
0.2 −0.408 618 48 20 3
0.241 17 −0.402 051 47 20 3
0.3 −0.393 260 97 20 3
0.4 −0.380 887 78 20 3
0.5 −0.375 000 00 20 3
0.6 −0.382 159 31 20 3
0.7 −0.400 393 65 20 3
0.8 −0.427 074 45 20 3
0.9 −0.459 233 92 20 3
1.0 −0.495 250 52 20 3
1.5 −0.696 306 83 20 3
2.0 −0.911 913 91 20 3

TABLE V. Heisenberg chain with second-neighbor couplings.
Spin-spin correlation at first neighbor (N ¼ 40).

J2
SDP lower
bound Cð1ÞDMRG

SDP upper
bound

0.1 −0.147 860 74 −0.147743 032 5 −0.147 657 20
0.2 −0.147 292 08 −0.147 169 525 −0.147 060 27
0.241167 −0.146 861 85 −0.146 720 017 5 −0.146 553 61
0.3 −0.146 033 55 −0.145 677 69 −0.145 031 39
0.4 −0.143 040 80 −0.140 743 37 −0.137 195 01
0.5 −0.125 863 17 −0.125 −0.124 123 05
0.6 −0.111 026 47 −0.106 575 027 −0.093 217 50
0.7 −0.094 752 76 −0.083701 096 8 −0.065 118 61
0.8 −0.081 217 43 −0.066257 223 4 −0.044 257 10
0.9 −0.070 476 91 −0.053950 187 2 −0.030 555 34
1.0 −0.06230067 −0.0413538 −0.022 839 13
1.5 −0.036 873 37 −0.015 151 81 −0.007 626 55
2.0 −0.024 562 16 −0.009 162 19 −0.004 774 22

TABLE VII. Lower and upper SDP bounds for the spin-spin
correlator at distance i in the Heisenberg chain with second-
neighbor couplings (J2 ¼ 0.2 and size N ¼ 40).

i SDP lower bound CðiÞDMRG SDP upper bound

1 −0.147 292 08 −0.147 169 53 −0.147 060 27
2 0.053 771 70 0.054 320 06 0.054 935 36
3 −0.042 237 42 −0.04150683 −0.04071656
4 0.026 979 55 0.027 881 65 0.028 752 45
5 − 0.026 082 22 −0.025 068 05 −0.023 910 77
6 0.018 280 35 0.019 605 74 0.020 977 05
7 −0.020 147 18 −0.018 374 02 −0.016 678 32
8 0.013 391 07 0.015 425 62 0.017 602 83
9 −0.017 487 01 −0.014 807 68 −0.012 353 76
10 0.010 148 56 0.012 973 3 0.015 979 31
11 −0.016 103 59 −0.012 669 06 −0.009 493 48
12 0.007 922 42 0.011 427 96 0.015 138 87
13 −0.015 407 11 −0.011 315 5 −0.007 485 12
14 0.006 278 37 0.010 431 21 0.014 763 72
15 −0.015 136 36 −0.010 455 −0.005 994 21
16 0.005 043 68 0.009 806 07 0.014 713 82
17 −0.015 180 12 −0.009 941 31 −0.004 902 70
18 0.004 146 41 0.009 460 65 0.014 911 81
19 −0.015 477 75 −0.009 700 28 −0.004 130 67
20 0.003 587 67 0.009 350 02 0.015 257 90

TABLE VI. Heisenberg chain with second-neighbor couplings.
Spin-spin correlation at second neighbor (N ¼ 40).

J2
SDP lower
bound Cð2ÞDMRG

SDP upper
bound

0.1 0.057 212 13 0.058 070 785 0.059 257 62
0.2 0.053 771 70 0.054 320 062 5 0.054 935 36
0.241 167 0.051 596 93 0.052 288 322 5 0.052 879 70
0.3 0.046 303 29 0.048 461 692 5 0.049 650 45
0.4 0.025 863 65 0.034 734 385 0.040 480 43
0.5 −0.001 754 65 0 0.001 730 68
0.6 −0.056 197 97 −0.038 166 275 2 − 0.026 515 73
0.7 − 0.096 119 90 −0.069 720 390 4 −0.053 784 31
0.8 − 0.120 415 65 −0.092 982 735 7 −0.074 215 26
0.9 − 0.133 478 97 −0.107 586 145 −0.089 121 91
1.0 −0.139 351 93 −0.120 836 76 −0.099 890 24
1.5 −0.147 294 11 −0.142 249 63 −0.127 796 54
2.0 −0.148 014 55 −0.145 787 53 −0.138 121 59
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In Table V we display SDP bounds on the first-neighbor
correlation Cð1Þ ¼ ð1=4Þhσxi σxiþ1i sandwiching the DMRG
value (Fig. 4 in the main text).
In Table VI we display similarly SDP bounds on the

second-neighbor correlation Cð2Þ ¼ ð1=4Þhσxi σxiþ2i sand-
wiching the DMRG value (Fig. 5 in the main text).

We then provide the numerical data for the spin-spin
correlation as a function of distance, for both J2 ¼ 0.2
(Table VII and Fig. 6) and J2 ¼ 1.0 (Table VIII and Fig. 7).

APPENDIX F: SQUARE-LATTICE HEISENBERG
MODEL

In this appendix, we provide numerical data on the
square-lattice Heisenberg model with PBC. We compare
the SDP bounds with quantum Monte Carlo results of
Ref. [44]. In Table IX we provide data for the ground-state
energy as a function of the system size (N ¼ L × L with
L ¼ 4, 6, 8, 10, Fig. 8).
In Table X we provide data on the spin correlation

CðL=2; L=2Þ, namely, at maximal distance along the
diagonal of the square lattice (Fig. 9). It is expected that
this correlation remains nonzero in the thermodynamic
limit, corresponding to antiferromagnetic long-range order
in the ground state.

TABLE VIII. Lower and upper SDP bounds for the spin-spin
correlator at distance i in the Heisenberg chain with second-
neighbor couplings (J2 ¼ 1.0 and size N ¼ 40).

i SDP lower bound CðiÞDMRG SDP upper bound

1 −0.062 300 67 −0.041 353 8 −0.022 839 13
2 −0.139 351 93 −0.120 836 76 −0.099 890 24
3 0.018 848 23 0.033 117 09 0.0542 14 66
4 0.009 716 64 0.036 230 02 0.0575 10 94
5 −0.060 319 66 −0.026 703 36 −0.006 828 32
6 −0.053 381 24 −0.019 550 47 0.016 610 07
7 −0.003 905 55 0.018 607 28 0.051 693 53
8 −0.041 114 49 0.006 248 08 0.039 928 40
9 −0.056 813 56 −0.013 215 54 0.021 037 63
10 −0.043 285 85 −0.001 980 39 0.044 309 16
11 −0.033 717 14 0.009 059 63 0.049 366 74
12 −0.046 685 99 −0.001 764 14 0.039 434 88
13 −0.052 425 24 −0.005 963 66 0.039 493 83
14 −0.044 968 86 0.002 724 44 0.038 520 69
15 −0.049 450 07 0.003 891 08 0.041 930 50
16 −0.050 420 92 −0.003 989 12 0.040 596 03
17 −0.042 316 503 −0.002 020 86 0.038 868 68
18 −0.053 580 65 0.003 957 04 0.050 372 95
19 −0.024 050 42 0.00 0760 97 0.020 543 56
20 −0.068 857 91 −0.004 452 11 0.054 991 98

TABLE IX. SDP lower bound on the energy of the square-
lattice Heisenberg model as compared to quantum Monte Carlo
results.

L ESDP EMC
EMC−ESDP

jEMC j
4 −0.703 050 78 −0.701 777 7 0.001 814 1
6 −0.683 171 81 −0.678 873 4 0.006 331 7
8 −0.679 670 80 −0.673 487 5 0.009 181 0
10 −0.680 030 93 −0.671 549 4 0.012 629 8

TABLE X. SDP lower and upper bound for the spin correla-
tions at maximum distance in the square-lattice Heisenberg
model, sandwiching quantum Monte Carlo results.

L SDP lower Bound CðL=2; L=2ÞMC SDP upper bound

4 0.052 276 66 0.059 872 0.065 192 77
6 0.026 268 31 0.050 856 0.063 145 57
8 0.001 999 76 0.045 867 0.070 060 21

TABLE XI. Ground-state energy for the square-lattice J1-J2
Heisenberg model (L ¼ 6). Last column: relative difference
between the best variational upper bound and the SDP lower
bound.

J2 ESDP ENN Eexact
Eexact−ESDP

jEexactj
0.2 −0.604 468 54 −0.598 95 −0.599 046 0.009 05
0.4 −0.537 631 82 −0.529 36 −0.529 745 0.014 89
0.45 −0.524 799 52 −0.514 52 0.019 98
0.5 −0.51495867 −0.50185 −0.503810 0.022 13
0.55 −0.509 998 11 −0.490 67 −0.495 178 0.029 93
0.6 −0.513 398 92 −0.490 23 −0.493 239 0.040 87
0.8 −0.606 977 86 −0.585 90 −0.586 487 0.034 95
1.0 −0.735178 35 −0.713 51 −0.714 360 0.029 14

FIG. 13. Energy lower bounds for the 2D J1-J2 Heisenberg
model on a square with L ¼ 6 (data in Table XI).
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APPENDIX G: SQUARE-LATTICE J1-J2
HEISENBERG MODEL

In this appendix, we provide numeral data regarding the
J1-J2 Heisenberg model on a square lattice (size N ¼
L × L and PBC), as discussed in Sec. IV E in the main text.

1. Ground-state energy

We first present data for the ground-state energy, as
compared with various variational methods employed in
previous works in the literature.

TABLE XIII. Energy lower bound (SDP) and upper bounds
(NN and DMRG) for the square-lattice J1-J2 Heisenberg model
(L ¼ 10). Last column: relative difference between the best
variational upper bound and the SDP lower bound.

J2 ESDP ENN EDMRG
Evar−ESDP

jEvar j
0.2 −0.603 083 01 −0.592 75 0.017 43
0.4 −0.537 471 36 −0.523 71 −0.5253 0.023 17
0.45 −0.524 642 06 −0.509 05 −0.5110 0.026 70
0.5 −0.514 628 02 −0.495 16 −0.4988 0.031 73
0.55 −0.509 309 24 −0.482 77 −0.4880 0.043 67
0.6 −0.511 360 63 −0.476 04 0.074 20
0.8 −0.599 452 83 −0.573 83 0.044 65
1.0 −0.724 752 48 −0.696 36 0.040 77

TABLE XII. Energy lower bounds for the square-lattice J1-J2
Heisenberg model (L ¼ 8). Last column: relative difference
between the best variational upper bound and the SDP lower
bound.

J2 ESDP EVMC EDMRG
Evar−ESDP

jEvar j
0.2 −0.602 842 36
0.4 −0.536 822 83 − 0.525 56 − 0.5262 0.020 19
0.45 −0.523 911 12 −0.511 40 −0.5116 0.024 06
0.5 −0.513 989 56 −0.499 06 −0.4992 0.029 63
0.55 −0.508 991 92 −0.488 94 −0.4891 0.040 67
0.6 −0.511 828 20
0.8 −0.602 211 75
1.0 −0.72821272

FIG. 14. Energy lower bounds for the square-lattice J1-J2
Heisenberg model with L ¼ 8 (data in Table XII).

TABLE XIV. Bounds for the correlations Cð0; 1Þ of the square-
lattice J1-J2 Heisenberg model (L ¼ 10).

J2 minCð0; 1Þ maxCð0; 1Þ
0.2 −0.11333849 −0.10800495
0.4 −0.113 248 85 −0.093 950 90
0.45 −0.112 967 74 −0.084 868 04
0.5 −0.112 498 60 −0.069 102 28
0.55 −0.111 752 23 −0.043 795 25
0.6 −0.109 790 21 −0.017 890 49
0.8 −0.050 652 73 −0.003 912 76
1.0 −0.031 566 33 −0.000 559 23

TABLE XV. Bounds for the correlations Cð1; 1Þ of the square-
lattice J1-J2 Heisenberg model (L ¼ 10).

J2 minCð0; 1Þ maxCð0; 1Þ
0.2 0.046 066 43 0.070 957 33
0.4 0.016 664 75 0.064 909 64
0.45 0.000 058 61 0.062 502 39
0.5 −0.026 848 76 0.059 943 87
0.55 −0.066 666 21 0.056 891 95
0.6 −0.109 790 21 −0.017 890 49
0.8 −0.050 652 73 −0.003 912 76
1.0 −0.031 566 33 −0.000 559 23
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In Table XI we present data for L ¼ 6. We compare the
SDP lower bound with neural network (NN) ansatz wave
functions [50] and exact results [73]. The same data are
plotted in Fig. 13.
In Table XII we present data for L ¼ 8. We compare the

SDP lower bound with variational Monte Carlo (VMC)
methods on ansatz wave functions and DMRG computa-
tions [49]. The same data are plotted in Fig. 14.
In Table XIII we provide numerical data for Fig. 10 in the

main text, namely, ground-state energy for L ¼ 10 for SDP,
NN, and DMRG methods.

2. First- and second-neighbor spin-spin correlations

We finally provide SDP bounds for first- and second-
neighbor spin-spin correlations as a function of the second-
neighbor coupling J2, for a system of size L ¼ 10. Data are
displayed in Table XIV (corresponding to Fig. 11 in the
main text) and Table XV (corresponding to Fig. 12 in the
main text), respectively.

APPENDIX H: IMPLEMENTATION DETAILS

All experiments were performed with one CPU core and
128G memory. In practice, we solve the dual problem of
the SDP Eq. (B2) (i.e., the sum-of-Hermitian-squares
problem) since it contains fewer linear constraints and so
can be solved more efficiently. We rely on the Julia package
QMBCertify to create the optimization model and employ
Mosek 10.0 as an underlying SDP solver. For the 1D model
withN ¼ 40, 100, it takes around 3.3 and 12 h to generate a
data point, respectively; for the 2D model model with
L ¼ 6, 8, 10, it takes around 1.8, 9.7, and 21 h to generate a
data point, respectively.
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