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We provide a simple algorithm for constructing Hamiltonian graph cycles (visiting every vertex exactly
once) on a set of arbitrarily large finite subgraphs of aperiodic two-dimensional Ammann-Beenker (AB)
tilings. Using this result, and the discrete scale symmetry of AB tilings, we find exact solutions to a range of
other problems which lie in the complexity class NP-complete for general graphs. These include the equal-
weight traveling salesperson problem, providing, for example, the most efficient route a scanning tunneling
microscope tip could take to image the atoms of physical quasicrystals with AB symmetries; the longest
path problem, whose solution demonstrates that collections of flexible molecules of any length can adsorb
onto AB quasicrystal surfaces at density one, with possible applications to catalysis; and the three-coloring
problem, giving ground states for the q-state Potts model (q ≥ 3) of magnetic interactions defined on the
planar dual to AB, which may provide useful models for protein folding.
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I. INTRODUCTION

Fractal geometric loop structures are ubiquitous in
physics, appearing often as the natural degrees of freedom
in models of critical phenomena. Examples include the
fluctuating domain walls of an Ising magnet, the compact
shapes of long polymer chains [1], or the space-time
trajectories of quantum particles. A special class of loops,
attracting much attention beyond physics, are the
Hamiltonian cycles. A Hamiltonian cycle of a graph is a
closed, self-avoiding loop that visits every vertex precisely
once. Study of these objects dates at least to the ninth
century A.D., when the Indian poet Rudrat

˙
a constructed a

poem based on a “knight’s tour” of the chessboard. Since
then they have appeared in a variety of applications in the
sciences and mathematics including protein folding [2,3],
traffic models, spin models in statistical mechanics [4,5],
and ice-type models of geometrically frustrated magnet-
ism [6,7].
Hamiltonian cycles have been used to model the

statistics of polymer melts [1,8–10]: For example, the
critical scaling exponents were calculated for polymer
chains in 2D using the self-avoiding walk on the

honeycomb lattice [11,12]. They have also played a key
role in the study of protein folding [1,2,13–16]. The shapes
(“conformational properties”) of proteins play a significant
role in their biological function. Proteins often adopt
remarkably compact and symmetrical structures compared
to the more general class of polymers [14]. A key question
is how to predict 3D conformational properties from the 1D
sequences of amino acids from which the proteins are built.
One route is to study “simple exact models” in which the
amino acids are represented by structureless units, each
occupying the vertex of a graph. Neighboring units in the
protein must be nearest neighbors on the graph. The graphs
are chosen to have specific geometrical embeddings,
typically periodic lattices. While not providing accurate
geometrical models, such approaches have the advantage
of being exactly solvable. They are also able to capture
“nonlocal” interactions, in which amino acids interact when
they are neighbors on the graph but not on the 1D chain
itself [1,9,13,17,18]. Remarkably, 2D graphs often give
qualitatively similar results to 3D graphs while affording a
significant computational advantage [14]. Simple exact
models have also been instrumental in the development
of polymer physics more generally [8,19–22].
The OðnÞ model in statistical physics, which describes

n-component spins interacting with their nearest lattice
neighbors with isotropic couplings [4,5], can be mapped
to a problem involving self-avoiding loops [17,23]. The
probability of a given loop configuration is weighted
according to two fugacities: x weighting the total perimeter
of the loops, and n the number of loops. The OðnÞ phase
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diagram encapsulates many well-known models in statis-
tical physics. For example, the ferromagnetic Ising model
arises for n ¼ 1, where the loops represent the domain
walls in the low temperature limit (thus the Ising spins are
defined on the planar dual lattice), while in the high
temperature limit the natural degrees of freedom are again
loops, though their expression in terms of the original spin
variables is less intuitive. The q-state Potts models can be
related to the n ¼ ffiffiffi

q
p

limit. As x → ∞ every lattice site is
visited by a loop and one arrives at the so-called “fully
packed loop” (FPL) models, which additionally model
crystal surface growth. In the x → ∞; n → 0 limit, the
system is forced into a single macroscopic loop traversing
every site of the system, which is a Hamiltonian cycle
[23,24]. Studying Hamiltonian cycles can thus lead to an
understanding of a variety of other models in a given
system, and for this reason a great deal of work has been
put into their study—primarily in the simplest context of
periodic regular lattices [5,9,11,17,18,24–37]. Given, how-
ever, that the complex fractal structures (e.g., polymer-
protein structures) these objects aim to model often lack

translational symmetry and favor disordered growth [38],
studies of Hamiltonian cycles in settings where transla-
tional symmetry is absent may unearth important clues
toward the universality of these results.
In this paper we present a simple algorithm for construct-

ing Hamiltonian cycles and fully packed loops on a set of
arbitrarily large finite subgraphs of infinite graphs which
do not admit periodic planar embeddings. Specifically, we
consider graphs formed from subsets of the edges and
vertices of Ammann-Beenker (AB) tilings (Fig. 1). These
are two-dimensional (2D) infinite aperiodic tilings [39–41]
built from two tiles, a square and a rhombus. They lack the
translational symmetry of periodic lattices but nevertheless
feature long-range order, evidenced by sharp spots in their
diffraction patterns [40,42,43]. The long-range order of AB
enables exact analytical results to be proven, while their
infinite extent allows consideration of the thermodynamic
limit of an infinite number of vertices, of interest in
condensed matter physics where physical quasicrystals are
known with the symmetries of AB [44,45]. Recent experi-
ments have demonstrated tunable quasicrystal geometries in

FIG. 1. A patch of AB tiling showing the eightfold symmetric regionW1, andW0 in gray.W1 is the twice inflation ofW0, formed from
the double-inflated tiles shown in Fig. 2; purple lines show the boundary of these tiles (and do not belong to the tiling itself). The thick
black edges form a Hamiltonian cycle on the set of vertices they visit; this set is termed U1.
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twisted trilayer graphene [46], while eightfold symmetric
structures have also been created in optical lattices [47,48].
Quasicrystals host a broad range of exciting physical
phenomena from exotic criticality [49–51] to charge order
[52,53] to topology [53–55], with the lack of periodicity
often leading to novel behaviors.
Efficient Hamiltonian cycle constructions exist for cer-

tain special classes of graph [56–58]. One example is
four-connected planar graphs, defined as requiring the
deletion of at least four vertices to disconnect them [59].
This result was recently employed in the elegant design of
“quasicrystal kirigami” [60] using a construction based on
Hamiltonian cycles defined on the planar dual to AB.
However, to our knowledge AB tilings themselves are not
covered by any such special case (they are three-
connected). The unexpectedness of (arbitrarily large finite
subgraphs of) AB tilings’ admittance of Hamiltonian cycles
can be seen by comparison to rhombic Penrose tilings,
which are in many ways similar to AB. These, too, are a set
of infinite 2D tilings built from two tile types (two shapes of
rhombus); they are again aperiodic but long-range ordered,
and the resulting graphs are bipartite, meaning the vertices
divide into two sets such that vertices in one set connect
only to vertices in the other—another property shared
with AB. Yet Penrose tilings cannot admit Hamiltonian
cycles, because they do not admit perfect dimer matchings
(sets of edges such that each vertex meets precisely one
edge) [61]. The latter is a necessary condition for the
former, since deleting every second edge along a
Hamiltonian cycle results in a perfect matching. It is
difficult to think of any special case which could cover
AB tilings which would not also cover Penrose tilings.
The difficulty of constructing Hamiltonian cycles in

arbitrary graphs can be made precise using the notion of
computational complexity. Given a graph, the question
of whether it admits a Hamiltonian cycle lies in the
complexity class “nondeterministic polynomial time com-
plete” (NPC) [62,63]. These problems are prohibitively
hard to solve—the fastest known exact algorithms scale
exponentially—but a given solution can be checked
quickly, in polynomial time (P). Completeness refers to
the fact that if a polynomial-time algorithm were found
which solved any NPC problem, all problems in the
broader class NP would similarly simplify. Loosely, all
problems in NP contain a bottleneck in NPC.
We do not purport to solve an NPC problem. Rather, we

show that AB is a previously unknown special case of the
Hamiltonian cycle problem which lies in P rather than
NPC. As such, it does not follow that all NP problems can
be solved in polynomial time on AB. However, we might
reasonably hope that our Hamiltonian cycles permit new
solutions to certain problems on AB, and indeed we find
that this is the case. Using both the Hamiltonian cycles and
the inherited discrete scale symmetry of AB tilings, we find
exact solutions on AB to a range of other nontrivial problems

which are NPC in general graphs [63]. We present three
cases which have important applications to physics.
For example, by solving the equal-weight traveling

salesperson problem (Sec. IVA) on AB we provide a
maximally efficient route for a scanning tunneling micros-
copy (STM) tip to follow in order to scan every atom on the
surface of an AB quasicrystal in a given area. Given that a
state-of-the-art STM measurement might take on the order
of a month, such efficient routes are highly desirable. The
problem of finding them is not present in periodic crystals,
where efficient routes can be found by following crystal
symmetries.
By solving the longest path problem (Sec. IV B) on AB

we identify the longest possible path visiting every site
within a given region. This shows that long, flexible
molecules, such as polymers, can adsorb onto the surface
of AB quasicrystals with maximal efficiency. Moreover, by
breaking the longest path into smaller units, our solution
demonstrates that collections of flexible molecules of
arbitrary lengths can also adsorb at maximal packing
density. This has potential applications to catalysis, in
which the activation energy of a reaction between mole-
cules is lowered by having them adsorb onto a surface.
Quasicrystal surfaces are emerging as an interesting
material for adsorption because they provide different
local environments with a range of bond angles [64], in
contrast to the periodic surfaces of crystals. They have
potential applications in hydrogen adsorption and
storage [65,66], low friction machine parts, and nonstick
coatings [65,67].
The three-coloring problem asks whether it is possible to

color the tiles of a planar tiling with three colors such that
no two tiles sharing an edge share a color [68]. We solve
this problem on AB in Sec. IV C. The three colors can
represent the degrees of freedom in the three-state Potts
model of nearest-neighbor magnetic interactions. The
three-colored AB tiling thereby gives an unfrustrated
ground state for the antiferromagnetic q-state Potts model,
with spins defined on the faces of AB, for any q ≥ 3.
The Potts model was originally introduced to describe

interactions between magnetic ions [68,69], gaining rel-
evance to quasicrystals with the discovery of ordered
magnetic states in these materials [70–74]. More recently
it, too, has been used as a simple model of protein folding,
with Potts variables representing the q species of amino
acid comprising the protein chain [3,75,76]. The interaction
between amino acids can be either repulsive or attractive
depending on the solvent which surrounds the protein.
Compared to the typical approximation that the protein
folds on a square lattice [1,9,76], AB arguably defines a
better approximation to the real problem, in which the
amino acids have continuous spatial degrees of freedom.
This is because AB has a larger range of bond angles, better
approximating a continuous rotational symmetry than any
2D regular lattice.
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In Appendix B we solve a further three problems, on AB,
which are known to be NPC in general graphs: the
minimum dominating set problem (Sec. B 1), the domatic
number problem (Sec. B 2), and the induced path problem
(Sec. B 3). Doubtless many more examples can be found.
The fact that many NPC problems admit polynomial-time
solutions on AB suggests that the discrete scale symmetry
of quasiperiodic lattices may be as powerful a simplifying
factor as the discrete translational symmetry widely used to
obtain exact results on periodic lattices.
The remainder of this paper is organized as follows. We

introduce the necessary background on the AB tilings and
graph theory in Sec. II. In Sec. III we prove the existence of
Hamiltonian cycles on arbitrarily large finite subgraphs of
AB tilings. We prove along the way the possibility of fully
packed loops, and give details of our algorithm. In Sec. IV
we utilize the approach to present exact solutions, on the
same graphs, to three problems which are NPC for general
graphs: the equal-weight traveling salesperson problem
(Sec. IVA), the longest path problem (Sec. IV B), and the
three-coloring problem (Sec. IV C). We comment on the
applications for each. In Appendix B we provide exact
solutions to three other problems on these graphs: the
minimum dominating set problem (Appendix B 1), the
domatic number problem (Appendix B 2). and the induced
path problem (Appendix B 3). In Sec. V we place these
results in a broader context.

II. BACKGROUND

A. Ammann-Beenker tilings

The quasicrystal stuctures represented by the Ammann-
Beenker tilings lack the translation symmetry of periodic
graphs and, accordingly, mathematical results in the
thermodynamic limit are more challenging to obtain.
However, the translation symmetry of ordinary crystals
is replaced by a discrete scale symmetry which underlies
the unique features of quasicrystal systems.
We will first describe the construction of the AB tilings

in the thermodynamic limit [77], and then discuss the scale
symmetry of the tilings, which is central to our proof of
Hamiltonian cycles.
Each tiling is built from two basic building blocks, called

prototiles: a square tile and a rhombic tile with acute
angle π=4. Both tiles are taken to have unit edge length.
Starting from any “legal” patch of a few tiles [78], the tiling
is then built by repeatedly applying an “inflation rule” to
the tiles: Every tile is first “decomposed” into smaller
copies of the two tiles, as defined in Fig. 2, and then the
new edges are rescaled (inflated) by a factor of the silver
ratio, δS ¼ 1þ ffiffiffi

2
p

, so that the tiles have unit edge length
again. The edges and vertices of the tiling define a graph.
The graph is bipartite, meaning the vertices divide into two
subsets where edges of the graph only join members of one
subset to the other. Since the arguments presented in this

paper rely only on the connectivity of the graph, the
rescaling is not important for our purposes—hence,
inflation and decomposition are interchangeable in what
follows. Under inflation, the number of tiles grows expo-
nentially and the infinite tiling is recovered in the limit

T ¼ lim
n→∞

σnðT 0Þ; ð1Þ

where T is the infinite tiling, σ the inflation rule, and T 0 the
initial patch. We use “tiling” to mean the infinite tiling,
and “patch” when referring to any finite set of connected
tiles. The inverse process, termed “deflation,” equivalently
“composition” (followed by a rescaling), is uniquely
defined and follows from the inflation rules.
The set of Ammann-Beenker tilings that can be created

by inflation has infinite cardinality. There are two important
consequences that follow from the inflation structure [77]
which will be important later.
First, we take graph edges to be of unit length.
Definition II.1 (Linear repetitivity [77,79]). There is a

finite C > 0 such that, for any set of vertices V appearing
within a disk of radius r, every disk of radius Cr contains a
copy of V.
AB is linearly repetitive [77].
Definition II.2 (Local isomorphism [40]). Two tilings

are locally isomorphic if any finite patch appearing in one
appears in the other.
All AB tilings are locally isomorphic to one another

[40,77]. In this paper AB refers to the set of all AB tilings
unless otherwise stated. As a result of linear repetitivity and
local isomorphism, it should be understood that reference
to a vertex set V in a particular AB tiling is meant modulo
translations.
Within the locally isomorphic set we will not differ-

entiate between arbitrary rescalings of the tilings. As the
simplest example of this isomorphism, the set of edges and
tiles surrounding each vertex in the tiling belongs to one of

FIG. 2. The “inflation” rule σ, in which a tile is decomposed into
smaller tiles. Typically this would be followed by a rescaling
(inflation) of all lengths by a factor of the silver ratio δS ¼ 1þ ffiffiffi

2
p

,
although as we are only concerned with graph connectivity,
inflation and decomposition are equivalent. Vertices of once-
and twice-inflated tiles are shown in red and blue, respectively.
We denote the once-inflated tiles to be level L1=2 and the twice-
inflated tiles to be level L1.
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seven unique configurations, which we call “m-vertices”
(where m labels the vertex connectivity). In total the vertex
configurations for AB are given by the 3-, 4-, 5A-, 5B-,
6-, 7- and 8-vertices, with each configuration appearing
with a frequency given by a function of the silver ratio δS.
The 3-vertex, for example, occurs most frequently and
makes up a fraction δS − 2 (∼40%) of the AB vertices. The
two configurations with five edges are distinguished by
their behavior under inflation.
A special role is played by the 8-vertices of the tiling, as

every vertex configuration inflates to an 8-vertex under at
most two inflations [39]. This means that edges can be
drawn between 8-vertices of an AB tiling so as to generate
another AB tiling. Figure 1 highlights this symmetry.
Similarly, some of the 8-vertices of the original tiling sit
also at 8-vertices of the composed tiling, and therefore
logically form the four-times composed tiling. This hier-
archy continues and results in the discrete scale symmetry
exhibited by the AB tiling and several other aperiodic
tilings, in turn responsible for many of the remarkable
physical properties of quasicrystals.
We call an 8-vertex an 80-vertex if under twice deflation

it becomes any m-vertex with m ≠ 8 (most 8-vertices
of the AB tiling are of this type); similarly we call it an
81-vertex if it becomes an 80-vertex under twice deflation.
Generalizing, an 8n-vertex becomes an 80-vertex after 2n
deflations. The local empire of a vertex configuration is the
simply connected set of tiles that always appears around the
vertex configuration wherever it appears in the tiling [80].
The local empire of the 80-vertex, which we call W0, is
shown in Fig. 1 (also shown is the 81 empire, W1): It has a
discrete eightfold rotational symmetry (D8 in Schönflies
notation). The inflation rule maps 8n-vertices to 8nþ1-
vertices (applying the rule twice) while simultaneously
growing the size of the vertex’s local empire. The D8

symmetry is preserved under inflation. Therefore 8n-vertices
are accompanied byD8-symmetric local empiresWn having
a radius of symmetry growing approximately as Rn ∼ δ2nS .
Furthermore, the Wn empire contains all W0≤m≤n empires.
It follows from linear repetitivity that any finite set

of tiles (or vertices) in AB is contained in Wn for
sufficiently large n. On account of this, we will often
focus on the Wn to prove more general results. It will also
prove useful to define a modified version of the AB tiling
with all 8-vertices removed, dubbed the AB* tiling [39].
In Fig. 2 we denote the individual square and rhombus

(left) to be level L0 and the twice inflated square and
rhombus (right) to be level L1; this is because any vertex
inflates to an 8-vertex under two inflations but not one, and
the convention follows Ref. [39]. We therefore designate
the once-inflated tiles (middle) to be at level L1=2.

B. Graph terminology and conventions

A graph GðV; EÞ is a set of vertices V connected by a set
of edges E. We consider undirected graphs, in which no

distinction is drawn between the two directions of traversal
of an edge. We also consider only bipartite graphs, in which
the vertices divide into two sets such that edges only
connect one set to the other. The cardinality of a graph is the
cardinality of the set of vertices it contains (i.e., the number
of vertices in the graph). We denote this jGj [81–83].
We define a path to be a set of edges joining a sequence

of distinct vertices, and the length of the path to be the
number of edges it contains. Given a set of edges E0 ⊂ G it
may be possible to find an “alternating path,” which is a
path in G along which every second edge belongs to E0 but
all others do not [81]. We borrow this terminology from the
theory of dimer matchings, in which E0 is a set of edges
such that no two edges share a common vertex, although we
consider different structures for E0 here. An “augmenting
path” is an alternating path in which the first and last edges
are not in E0. In general, augmenting an alternating path
means to switch which edges along the path are in the set E0
and which are not.
In this paper, we consider graphs made from the vertices

and edges of Ammann-Beenker tilings. We will use the
shorthand G ¼ AB to denote the case that G is the graph
formed from any infinite Ammann-Beenker tiling. We will
sometimes refer to graphs formed from finite patches of
AB, which should be clear from the context.

III. CONSTRUCTIVE PROOF
OF HAMILTONIAN CYCLES

In this section we prove the following.
Theorem 1. Given an AB tiling and a finite set of vertices

V ⊂ AB there exists a set Un, where V ⊆ Un ⊂ AB, such
that Un contains a Hamiltonian cycle H.
Proof. In Sec. III A we identify a set of edges on the

twice-inflated AB tiles such that every 8n<0 vertex (that is,
every vertex which is not an 8-vertex) meets two such
edges. This constitutes a set of fully packed loops, visiting
every vertex precisely once, on AB*. We then focus on
finite tile sets generated by n twice inflations of the local
empire of the 80-vertex, denoted Wn. These regions have
D8 symmetry. Any finite set of vertices V ⊂ AB lies within
an infinite hierarchy of Wn for sufficiently large n, as
shown in Sec. II. In Sec. III B we identify a method of
reconnecting these fully packed loops so as to include into
the loops all 80-vertices within Wn, and then all 80<m<n
vertices where the 8m−1 vertices have already been
included. The result is fully packed loops on all vertices
within Wn except the central 8n vertex. Finally, we show
that a subset of these loops can be joined into a single loop
which additionally visits the central vertex. We denote the
set of vertices visited by this loop Un. As the patches Un
grow exponentially with n so as to cover arbitrarily
large areas of AB, it follows from linear repetitivity
(Definition II.1) that V ∈Un for sufficiently large n.
Since the cycle constructed on Un visits each of its

vertices precisely once, this proves Theorem 1. ▪
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The proof is constructive, returning H given V, and is
linear in the number of vertices in Un. We place a precise
bound on the necessary size of Un for any given V in
Sec. III C. Furthermore, the Hamiltonian cycle on Un visits
a simply connected set of vertices whose cardinality
increases exponentially with n, and which therefore admits
a straightforward approach to the thermodynamic limit. We
consider this limit, Un→∞ in Sec. III D.

A. Constructing fully packed loops on AB*

In Fig. 3 we show the twice inflations of the two
prototiles. We denote the smaller tiles as constituting
composition level zero L0, and the larger tiles L1. We
work exclusively with twice inflations, rather than single
inflations, as every vertex becomes an 8-vertex under twice
inflation, but some do not do so under a single inflation.
In Fig. 3 we highlight (thick black edges) a subset of L0

edges on each L1 tile. When the L1 tiles join into legitimate
AB patches, every vertex in L0 is visited by precisely two
thick edges, except those vertices sitting at the corners of
the L1 tiles (and vertices on the patch boundary, which are
not important when we take the thermodynamic limit since
we deal only with finite subgraphs interior to the region).
We call each of these edges an e0 edge. The corner vertices
of L1 tiles are exactly the 8-vertices of L0 (this follows from
the fact that every vertex becomes an 8-vertex under at most
two inflations). Therefore this choice causes every vertex of
AB* at L0 to be met by two e0 edges. Since every vertex
meets precisely two edges, the sets of edges must form
closed loops [84]. Therefore these loops constitute a set of
FPLs on AB* as required.
While it is possible to find other sets of edges with

these properties, we designate this choice the canonical
one. With it, all closed loops respect theD8 local symmetry
of AB and AB*.

B. Constructing fully packed loops
and Hamiltonian cycles on AB

We next seek to construct FPLs on AB rather than AB* by
adding the missing 8-vertices onto the loops. In Fig. 3 we
highlight in red an alternating path (with respect to e0 edges)
which connects nearest-neighbor vertices in L1. Augmenting
the red path (swapping which edges are covered by e0 edges)
has a number of effects. First, it places e0 edges touching the
two L0 8-vertices on which the alternating path terminates.
Second, it increases the total number of e0 edges by one.
Third, any vertex which was previously visited by a pair of
e0 edges is still visited by a pair of e0 edges.
While other such paths are possible, this canonical choice

has advantages when combined with the canonical choice of
e0 edges. First, it can be seen in Fig. 3 that exactly the same
shape of path can be used on any edge of either L1 tile to
cause the set of three effects just listed. Second, it does so
entirely within the tile itself, and so these augmentations can
be carried out without reference to neighboring L1 tiles. The
augmentation can be undone by augmenting along the same
path a second time, which turns out to be key.
The red alternating paths trace a route along L0 graph

edges which follows the L1 edges as closely as possible
while also alternating with reference to the e0 edge place-
ment. In a natural sense, then, the red path is the twice
inflation of an edge of an L1 tile. We therefore refer to the
red path as an e1 edge. In this way, e0 edges connect
8n<0-vertices (i.e., any vertices except 8-vertices at L0),
while e1 edges connect 80-vertices (8-vertices which can
survive precisely zero deflations while remaining 8-vertices).
Further inflations can be carried out by stitching e1 edges
together in exactly the sameway that e1 was formed from e0.
For example, e2 edges, connecting 81-vertices, can be built
from e1 edges, and can equivalently be thought of as built
frommore e0 edges. In general, 8n-vertices can be connected
by enþ1 edges. The first three levels are shown in Fig. 4.
In the limit n → ∞, en is a fractal: Under e0 → e1 the

initial side length of any prototile is divided into nine
segments each of length δ−2S . The same scaling occurs for
all subsequent inflations, and so the box counting dimen-
sion of e∞ is given as

dimðe∞Þ ¼ lim
n→∞

logð9nÞ
logðδ2nS Þ ¼

1

log3 ð1þ
ffiffiffi
2

p Þ ≈ 1.246: ð2Þ

This fits with the intuition that the curve is space filling.
To complete the proof of the existence of an FPL on AB

it remains to show that all 8-vertices can be placed onto
closed en loops for sufficiently large n. The canonical edge
covering places all 8n<0 vertices of AB onto e0 loops. To
add all 80-vertices onto loops, we place loops of e1 edges
according to the canonical edge placement. This place-
ment was defined at level L0, but note that the twice
(de)composition of any AB tiling is another AB tiling.
Therefore the placement is well defined at all levels.

FIG. 3. Twice inflations of each of the two AB prototiles. We
denote the smaller tiles composition-level zero L0 and the larger
tiles L1. The thick black edges visit all but the corner vertices. We
call these edges e0 edges. Since the 8-vertices at L0 corresponds
to the tile vertices at L1, the union of e0 constitutes fully packed
loops on AB* (AB without the 8-vertices). Augmenting the red
path (switching covered and noncovered edges) places loop ends
on the two corner vertices while still visiting the original vertices.
The red path can be thought of as the twice inflation of an L1

edge, and we term it e1. It has the same effect along any tile edge.
Augmenting cycles built from e1 then places all visited 8-vertices
onto the same loop.
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Placing an e1 edge means augmenting a path at L0.
Augmenting the closed loops of paths just defined places
all 80-vertices visited by that loop onto loops of e0 edges as
required. We then proceed by induction, adding 8n-vertices
by connecting them with loops of enþ1 edges. After n steps,
every vertex of order 8≤n is contained in a set of
fully packed loops defined on those vertices. By design,
placing the en edges does not cause problems with the
existing matching of en−1 edges. We refer the reader to
Fig. 5 for an illustration of the e1-loop structure (red),
which clearly mirrors the smaller e0-loop structure (black)
constructed in Sec. III A.
While e1 edges must follow the edges of L1 tiles, two

tiles meet along any edge. There is therefore a choice of two
orientations of each e1 owing to the choice of which of the
two tiles e1 lies within. Each e1 orientation can be chosen
freely with the statements in the previous paragraph
remaining true. However, we find that there is again a
natural choice. Define the orientation of e1 to be in the
direction indicated in Fig. 4. At L1, we choose the sequence
of e1 edges along a loop to point alternately into then out of
the loop on which it sits (this is implicit in the construction
of e2 and e3 in Fig. 4). Since AB is bipartite, all loops are of
even length, and there is never an inconsistency. When e2
edges are placed, these will cut through e1 loops. It is
always possible to choose the orientations so that wherever
e1 loops and e2 loops intersect, they do so along the length
of one e1 (recall that an e2 is built from multiple e1). Since
these two e1 overlap perfectly, augmenting them both
has no overall effect at L0. We can therefore delete both
e1. The effect is that the L2 loops no longer intersect the L1

loops: instead, they rewire separate L1 loops so as to
make them join together. Augmenting the L1 star rewires
all “cut” loops into one. By induction the rewiring works

at all levels. The process is shown in detail in Appendix A,
Figs. 11 and 12.
While it is already possible to reconnect many of these

loops together, thereby building Hamiltonian cycles on
subsets of the Wn vertices, the sets of vertices visited by
such cycles always encircle sets of vertices they do not
visit. To remedy this, it is necessary to break the D8

symmetry. To see that this is necessary, consider the
simplest D8 Hamiltonian cycle, which is a star visiting
the eight vertices adjacent to any 8-vertex, and the eight
vertices immediately beyond them. To include the central
8-vertex on a loop, one of the points of the star must turn
inward, breaking the symmetry.
In Fig. 5 we show a simple way to include the central

region. The outermost en loop encircling the 8n-vertex is the
2n-fold inflation of the smallest star loop. By folding in a
single corner of this inflated star, the loop now visits the
central 8n-vertex. In so doing, it connects every loop
contained within it (and all those it passes through) into a
single loop. The result is therefore a Hamiltonian cycle on
the simply connected set of vertices visited by this deformed
star. We denote this set Un to distinguish it from the
D8-symmetric set Wn. The cycle on U2 is shown in Fig. 6.
There is a topological reason this construction must

work. Every closed e0 loop bounds a D8-symmetric region
centered on an 8-vertex. Topologically we can imagine
deforming the e0 loops however we like, provided they
cross neither 8-vertices nor other loops. Figure 3 shows that
any path connecting two L1 corners (8-vertices) along an
L1 edge must cross exactly four e0 loops. One of these
loops closes around one of the 8-vertices, while the three
other loops close around the other 8-vertex (as well as other
8-vertices). This follows from Fig. 3, but a detailed proof
appears in Appendix D of Ref. [39]. The situation is shown
schematically in Fig. 7(a). Augmenting the red e1 path
along the L1 edge rewires the L0 loops according to
Fig. 7(b). The same rewiring occurs for the blue edge in
Fig. 7(c). While the augmentation illustrated in Fig. 7
leaves two string ends free, augmenting the closed L1 star
loop leads to a single closed loop at L0. All subsequent
levels of inflation Ln follow precisely the same pattern of
connectivity. Having e1 orientations (arrows in Fig. 7,
defined in Fig. 4) point alternately in and out of the loop
introduces a chirality that guarantees two facts. First,
whenever an enþ1 loop cuts through en loops, the en loops
merge. Second, the folded-corner outermost loop connects
all loops within it. While this might at first seem miracu-
lous, really it is no more complicated than the (folded)
16-vertex L0 star hitting all 16 vertices in U0: The Un
Hamiltonian cycle simply has n inflations (of both tiles and
loops) applied according to the rules of Fig. 3.

C. Bounding the size of Un

To see that any vertex set V must be contained within
someUn, recall linear repetitivity: Any V lying within a disk

FIG. 4. The red alternating path in Fig. 3 can be thought of as a
twice inflation of an e0 edge from which loops are constructed at
level zero (L0). It connects nearest neighbors in the L1 tiling
(8-vertices in the L0 tiling) while following an alternating path
in the canonical choice of e0 placements. We therefore denote
this path an e1 edge. Alternating paths connecting higher-order
8n vertices can be constructed by concatenating enþ1 edges in
the same way that e1 was formed from a concatenation of e0;
levels e2 and e3 are shown here. We define the orientation of en
according to the arrow.
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of radius r must appear within all disks of radius Cr. Hence,
any disk of radius Cr must contain all vertex configurations
that can be contained within a disk of radius r.
Figure 5 shows a green disk contained within U2. This is

the largest disk fitting within the blue loop. Larger disks fit
within U2, but the boundary of successive Un becomes
fractal, whereas the equivalent to the blue loop maintains its
shape at all levels of inflation, making the subsequent
statements simpler. Denoting the green chord lengths l2
(noting that these are edges of an L2 rhombus) the radius of

this disk is 2−1=4δ−1=2S l2. The largest equivalent disk in

region Un similarly has radius 2−1=4δ−1=2S ln. Denoting e0 to

be of unit length, the inflation rules of Fig. 2 imply that
ln ¼ δ2nS , and so Un contains a disk of radius 2−1=4δ2n−1=2S .
Hence, linear repetitivity implies that every Un contains
every vertex set contained within a disk of radius
2−1=4δ2n−1=2S =C. This radius grows exponentially and with-
out bound in n, and so any V is contained within Un for
sufficiently large n (indeed, it is contained within all Un≥M
for sufficiently large M).

D. Thermodynamic limit

On any Un we can construct a Hamiltonian cycle by the
method outlined in Sec. III C. Since for any finite vertex set

FIG. 5. The canonical placements of e0 edges (black) form e0 loops visiting every 8n<0-vertex (i.e., every vertex which is not an
8-vertex). The red lines form e1 loops, along which e1 edges from Fig. 4 can be placed adding all 80-vertices onto loops. Similarly, the
blue star forms an e2 loop, along which e2 edges from Fig. 4 can be placed adding 81-vertices onto loops (see Fig. 11). The central
8-vertex is now added onto loops by folding one corner of the blue star inward to break the eightfold symmetry. Here we have shown the
process explained in Sec. III B to order n ¼ 2, but it can be iterated to any order n. In green is the largest disk fitting within the blue loop;
the disk connects three 8-vertices with green chords.
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V we can find a Un such that V ⊆ Un, the Un admit a
natural extension to the thermodynamic limit of macro-
scopically large cycles Un→∞ (meaning arbitrarily large
finite patches). The algorithm is of linear complexity in the
number of vertices within Un.
The region U∞, without any surrounding tiles, can itself

be thought of as an infinite AB tiling, in the sense that it is
an infinite simply connected set of tiles generated by
repeated inflations of a legitimate AB patch (followed
by deletion of the surrounding tiles in W∞).
It should be noted that an AB tiling can have at most one

global center ofD8 symmetry (more than one would violate
the crystallographic restriction theorem [85]), and the set of
tilings with a global D8 center is measure zero in the set of

FIG. 6. The Hamiltonian cycle visiting all the vertices of a U2 region (the AB tiles themselves are omitted for clarity). The image is
obtained from Fig. 5 by placing e1 and e2 edges in alternate orientations along the red and blue loops, respectively, as shown in Fig. 11,
and augmenting. Note the present figure has been rotated through 1=16 of a turn relative to other figures to utilize the page efficiently.

(a) (b) (c)

FIG. 7. The topology underlying the Hamiltonian cycle con-
struction. (a) Every 8-vertex (gray disks) separated from another
by an L1 edge (red or blue) is enclosed by e0 loops (black) as
shown (see Fig. 3). Other 8-vertices are omitted for clarity.
(b) [(c)] Augmenting the red [blue] e1 edge, with e1 orientation
indicated with arrows as in Fig. 4, rewires the loops as shown.
Hence, augmenting a loop of e1 edges results in a single L0 cycle
visiting the chosen 8-vertices. The argument holds at all levels of
inflation.
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all possible AB tilings [77]. However, our definition of the
thermodynamic limit does not rely on our tiling having a
global D8 center—it only needs to contain at least one
Un→∞, and all AB tilings contain infinitely many.

IV. SOLUTIONS TO OTHER NONTRIVIAL
PROBLEMS ON AB

The question of whether an arbitrary graph admits a
Hamiltonian cycle lies in the complexity class NPC.
Problems in NPC are decision problems, meaning they
are answered by either yes or no. The optimization version
of these problems—to provide a solution if one exists—is
instead typically in the class NP-hard (NPH). Finding a
Hamiltonian cycle on an arbitrary graph is NPH.
In this section we provide exact solutions on AB for

three problems made tractable due to discrete scale
symmetry and/or by our construction of Hamiltonian
cycles. In each case we state the decision problem and the
corresponding optimization problem. Our choice of
problems is motivated by the fact that on general graphs
these decision problems lie in the complexity class
NPC, and the corresponding optimization problems lie
in the complexity class NPH. By solving the problems on
AB we again show that this setting provides a special,
simpler case.

A. Equal-weight traveling salesperson problem

Problem statement [63,86]. Given a number of cities N,
unit distances between each pair of connected cities, and an
integer k, does there exist a route shorter than k which visits
every city exactly once and returns back to the original
city? The corresponding optimization problem is to find
such a route.
Solution on AB. If cities are the vertices of Un≥0, yes if

and only if k > jUnj.
Proof. From a graph theory perspective, we can consider

every city as a vertex and every direct route between a pair
of cities as a weighted edge, where the associated weight
denotes the distance between those cities. Finding the
shortest route which can be taken by the traveling sales-
person is equivalent to finding the lowest-weight
Hamiltonian cycle, where the weight of the cycle is the
sum of the weights of its edges. ▪
In this paper we have considered the unweighted AB

graph, equivalent to setting all edge weights to one. In
unweighted graphs the problem reduces to the equal-
weight traveling salesperson problem. After this simpli-
fication, the unweighted decision problem becomes
equivalent to the Hamiltonian cycle problem. Therefore
the Hamiltonian cycle constructed in Sec. III solves the
equal-weight traveling salesperson optimization problem
on Un.

1. Application: Scanning microscopy

One physical application of the traveling salesperson
problem is to find the most efficient route to scan an
atomically sized tip across a surface so as to visit every
atom. For example, scanning tunneling microscopy
involves applying a voltage between an atomically sharp
tip and the surface of a material. Electrons tunnel across the
gap between the tip and the sample, giving a current
proportional to the local density of states in the material
under the tip [87,88]. Magnetic force microscopy (MFM)
uses a magnetic tip to detect the change in the magnetic
field gradient [89,90]. The ultrahigh resolution nature of the
imaging means that state-of-the-art measurements might
take on the order of a month to scan a 100 × 100 nm2

square region of a surface [91]. While generally applied to
periodic crystalline surfaces, STM and MFM can in
principle be used to image the surfaces of aperiodic
quasicrystals, including those with the symmetries of AB
tilings [44]. Unlike in the crystalline case, the most efficient
route for the STM tip to visit each atom is not obvious in
these cases. Our solution to the travelling salesperson
problem optimization problem on AB provides a maxi-
mally efficient route for aperiodic quasicrystals with the
symmetries of AB tilings. While the surface would need to
be scanned once in order to establish the Un regions to
study, the purpose of STM and MFM would be to detect
changes in the material under changing conditions (say,
temperature or magnetic field), and the route provides
maximum efficiency upon multiple scans.

B. Longest path problem

Problem statement [63,92]. Given an unweighted graph
G and an integer k, does G contain a path of length at least
k? We emphasize that the path may not revisit vertices. The
corresponding optimization problem is to find a maximum
length path.
Solution. Yes, if G ¼ Un≥0 and k ≤ jUnj − 1.
Proof. A Hamiltonian path can be obtained by removing

any edge from a Hamiltonian cycle. The results of Sec. IVA
imply that there exists a path of length jUnj − 1 in any
region Un. ▪
Comment. Shorter paths can be found by deleting

further contiguous edges. Since any AB tiling contains
regions Un, for any n, it follows that the tiling contains
paths of any length.

1. Application: Adsorption

The “dimer model” in statistical physics seeks sets of
edges on a graph such that each vertex connects to precisely
one edge. It was originally motivated by understanding the
statistics and densities of efficient packings of short linear
molecules adsorbed onto the surfaces of crystals [93–95].
Noting again that certain physical quasicrystals have the
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symmetries of AB tilings on the atomic scale, the existence
of a longest path visiting every vertex shows that a long
flexible molecule such as a polymer could wind so as to
perfectly pack an appropriately chosen surface of such a
material. The path can be broken into segments of any
smaller length, showing that flexible molecules of arbitrary
length can pack perfectly onto the surface. Dimers are
returned as a special case.
Adsorption has major industrial applications. In cataly-

sis, for example, reacting molecules can find a reaction
pathway with a lower activation energy by first adsorbing
onto a surface. While efficient packings can be identified on
periodic crystals such as the square lattice, these feature a
limited range of nearest-neighbor bond angles (with only
right angles appearing in the square lattice). Realistic
molecules, which have some degree of flexibility, might
do better on quasicrystalline surfaces which necessarily
contain a range of bond angles (four in AB). Other uses
could include (hydro)carbon sequestration and storage, and
protein adsorption [93,95].

C. Three-coloring problem

Problem statement [63,96]. Can all the faces of a planar
graphG be colored such that no faces sharing an edge share
a color? The corresponding optimization problem is to find
such a three-coloring.
Solution. Yes, if G ⊆ AB.
Proof. We know that the AB tiling is a bipartite graph

which means that its vertices can be partitioned into
two disjoint sets such that none of the edges has vertices
belonging to the same set. We associate two opposite
bipartite “charges” to the vertices depending upon which of
these two mutually exclusive sets they belong to. ▪
We define two three-colored tiles, 1 and 2, as shown in

Figs. 8(a) and 8(b), and repeat them over the entire tiling in
the following manner.

(i) Place tile 1 over any 8-vertices having the same
bipartite charge.

(ii) Place the mirror image of tile 1 over any 8-vertices
having the opposite bipartite charge.

(iii) After that, place tile 2 or its mirror image such that
the three rhombuses around every ladder, shown in
Fig. 8(c), are the same color.

The consistent placement of these two tiles on the whole
tiling is ensured by the structure of the tiling itself. After
filling the whole AB tiling with these two tiles, all that
remain are ladders, as shown in Fig. 9, which can be
colored consistently on the basis of colors of their sur-
rounding rhombuses such that no two adjacent faces should
have a same color.
The three-coloring solution for the AB tiling is shown in

Fig. 13. Note that the three-colorings are not unique.
Comments. This proof does not rely directly on the

existence of Hamiltonian cycles. Rather, it relies on an
intermediate step in their construction (specifically, the
existence of fully packed loops on AB*; see Sec. III A), as
well as the discrete scale invariance of AB. This proof
demonstrates that the intermediate steps in our Hamiltonian
cycle construction can already unblock problems that lie in
the complexity class NP in general graphs, without nec-
essarily needing to appeal to the finished result.
As an historical note, the five-coloring theorem, which

states that any political map requires at most five colors in
order to avoid any neighboring countries being the same
color, was proven in the 19th century [97]. The equivalent
four-coloring theorem was an infamous case of a problem
which is easy to state but difficult to solve. The eventual
proof in 1976 was the first major use of theorem-proving
software, and no simple proof has been forthcoming [98].
The three-coloring problem is known to be NPC [63]
on general graphs. However, special cases can again be

FIG. 8. (a),(b) Tiles used for three-coloring of the AB tiling.
(c) The structure with three rhombuses present around every
ladder.

FIG. 9. A small patch of AB tiling three-colored using tile 1
and tile 2 (both outlined in gold) as mentioned in Sec. IV C. The
only remaining portions of the tiling are segments of ladders
which can be three-colored consistently on the basis of their
surrounding tiles.
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solved. A polynomial-time algorithm for generating a
three-coloring of the rhombic Penrose tiling was deduced
in 2000 [99], following its conjectured existence by Conway.
The proof in fact covers all tilings of the plane by rhombuses,
and therefore includes AB tilings. Our own solution to the
three-coloring problem on AB tilings takes a different
approach, and generates different three-colorings.

1. Application: The Potts model and protein folding

The q-state Potts model, q∈N, is a generalization of the
Ising model to spins σi which can take one of q values [69].
It is defined by the Hamiltonian,

H ¼ −J
X

hiji
δσi;σj ; ð3Þ

where the sum is over nearest neighbors and δ is the
Kronecker delta [69]. We can define the Potts model on the
AB tiling by placing one spin on the center of each face of
the tiling, with the four nearest neighbors defined to be the
spins situated on the faces reached by crossing one edge.
The Potts model has a broad range of applications in

statistical physics and beyond. It shows first and second
order phase transitions, and infinite order BKT transitions,
under different conditions of J and q. It is used to study the
random cluster model [100], percolation problems [101],
and the Tutte and chromatic polynomials [102]. Its physical
applications include quark confinement [103], interfaces,
grain growth, and foams [101], and morphogenesis in
biological systems [104]. While most extensively studied
on periodic lattices, there is some work on the Potts model
in Penrose tilings; This model appears to show the universal
behavior present in the periodic cases [105,106].
For J > 0, the model has a ferromagnetic ground state

with all spins aligned along one of their q directions. The
behavior for J < 0 is more complex. For q ¼ 2, the model
is the Ising model; since a two-coloring of the faces of AB
is impossible (ruled out by the existence of three-vertices),
the antiferromagnetic ground state must be geometrically
frustrated, meaning the connectivity of sites causes spins to
be unable to simultaneously minimize their energies.
However, the existence of a face-three-coloring proves

that for q ≥ 3 the J < 0 state is again unfrustrated. Three-
colorings give the possible ground states of q ¼ 3, and a
subset of ground states for q ≥ 4.
The relationship between the Potts model and the

process of protein folding has been widely studied in
the field of polymer physics and computational biology
[75,76,107]. The q-state Potts model has been used to
model the thermodynamics of protein folding [108]. In this
scenario the lattice is thought of as a solvent in which the
protein exists. A protein is a chain of amino acids [13].
When dissolved it may achieve a stable configuration,
typically remarkably compact, which enables its biological
functions [14]. The folding process depends on the pairwise

interactions between amino acids, set by the interaction
with the solvent [1,13,75]. If the interactions between
similar amino acids are attractive, they cluster together
to form a compact folded structure. If these interactions are
repulsive, similar amino acids try to spread out over the
solvent sites, resulting in a protein which is folded, but not
compactly [76]. For modeling proteins, the Hamiltonian in
Eq. (3) represents interacting amino acids fσig. For J < 0
similar amino acids will have repulsive interactions in a
solvent according to Eq. (3). For J < 0 and protein chains
consisting of only three different types of amino acids
(each corresponding to a color), our three-coloring of AB
also predicts one of the stable, minimum energy configu-
rations in which the protein can fold such that each of the
three types of amino acid sits on the center of a tile of
corresponding color.
It seems reasonable to suppose that folding of long

protein chains might be better modeled by approximating
the solvent with a quasicrystalline surface rather than a
simple periodic lattice. This is because quasicrystals
provide an aperiodic surface with range of bond angles,
unlike regular lattices which have restricted freedom. For
instance, square and hexagonal lattices have only one bond
angle each (90° and 120°, respectively), and one vertex
type, whereas AB has three bond angles of 45°, 90°, and
135°, and a wide range of different local environments
branching out from seven vertex types. The eightfold
rotational symmetry of patches of AB is of a higher degree
than is possible in any crystal (six being the maximum
degree permitted by crystallographic restriction), addition-
ally making AB a closer approximation to the continuous
rotational symmetry of space.

V. CONCLUSIONS

We provided exact solutions to a range of problems on
aperiodic long-range ordered Ammann-Beenker tilings,
with a further three problems solved in Appendix B.
There are undoubtedly many more nontrivial problems
like these which can be solved on AB tilings by taking
advantage of its discrete scale invariance.
To our knowledge only one of the problems we solved

was covered by an existing result: The three-color problem
was covered by a solution to the three-color problem
for Penrose tilings which applied to all tilings of rhombuses
[99]. It is reasonable to ask whether this previously known
result might similarly have been used to solve a range
of other problems on AB, in the same way we exploited
solutions to the Hamiltonian cycle problem. While we
cannot rule this out, three-colorings do not obviously seem
to provide an organizing principle for the tiling in the way
that our hierarchically constructed loops do.
Our construction relies on the fact that AB tilings are

long-range ordered, allowing exact results to be proven
in contrast to random structures. It is natural to wonder
whether any of our results apply more generally in other
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quasicrystals. Deleting every second edge along a
Hamiltonian cycle creates a perfect dimer matching (divi-
sion of the vertices into unique neighboring pairs).
The existence of such a matching on a graph is therefore
a necessary condition for the existence of Hamiltonian
cycles. It is not a sufficient condition, as there exist efficient
methods, such as the polynomial-time Hopcroft-Karp
algorithm, for finding perfect matchings [109]. Seeking
quasicrystals which admit perfect matchings might be a
good starting point for finding other quasicrystals which
admit Hamiltonian cycles. As a preliminary check, using
the Hopcroft-Karp algorithm we found the minimum
densities of unmatched vertices on large finite patches of
quasiperiodic tilings generated using the de Bruijn grid
method, with rotational symmetries from sevenfold up to
20-fold [110]. We found finite densities in each case,
suggesting AB may be unique among the de Bruijn tilings in
admitting perfect matchings or Hamiltonian cycles [111].
On the other hand, a preliminary check of the recently
discovered “Hat” [112] and “Spectre” [113] aperiodic
monotiles (single tiles which tile only aperiodically) suggest
that these also admit perfect dimer matchings, even if
vertices are added so as to make the graphs bipartite;
however, the structure of these matchings seems to indicate
that a continuation to fully packed loops is not possible.
All of these examples consider the simplest case in

which the vertices and edges of the graph are those of the
corresponding tiling. Figure 10(a) shows a Penrose tiling
(gray lines) decorated with graph vertices (gray disks) and
edges (black) such that the graph admits fully packed loops
(purple) by construction. Identical Penrose rhombuses
are decorated identically, so that this graph has the full
symmetry of the tiling. In Fig. 10(b) we have augmented
the alternating cycle surrounding any red cross. The result
is a cycle (red) visiting every vertex on any Penrose tile
adjoining a cross. Hence, this is a Hamiltonian cycle on an
appropriate subgraph. The construction (based on a dimer

construction in Ref. [61]) closely mirrors that for AB
tilings: establishing fully packed loops (in this case by
construction), before connecting the loops together.
Using similar approaches we might reasonably expect our
results to generalize to a much broader class of structures.
Our Hamiltonian cycle construction included a proof of

the existence of fully packed loops on arbitrarily large finite
subgraphs of AB, in which every vertex is visited by a loop,
but these need no longer be the same loop [114]. The FPL
model is important for understanding the ground states of
frustrated magnetic materials such as the spin ices [7].
Famously, loops played a key role in Onsager’s exact
solution to the Ising model in the square lattice, one of the
most important results in statistical physics [115,116]. If all
loops could be enumerated systematically, this would
suggest the Ising model with spins defined on the faces
of AB might be exactly solvable. We note that all possible
dimer matchings were exactly enumerated on a modifica-
tion of AB in which all the 8-vertices were removed, giving
the partition function to the dimer problem [39]. The
possible loop configurations can similarly be enumerated
in that context.
There is a deep connection between loop and dimer

models, and quantum electronic tight-binding models
defined on the same graphs. For example, Lieb’s theorem
states that if a bipartite graph has an excess of vertices
belonging to one bipartite sublattice, the corresponding
tight-binding model must have at least the same number of
localized electronic zero modes making up a zero-energy
flat band [117]. These zero modes are topologically
protected in the sense that they survive changes to the
hopping strengths provided these strengths remain nonzero.
Even if a bipartite graph has an overall balance of sublattice
vertices, it can have locally defective regions in which
zero modes are similarly localized [118]. This occurs, for
example, in the rhombic P3 Penrose tiling, which has an
overall balance between biparite sublattices, but local
imbalances lead to a finite density of localized electronic
zero modes in its tight-binding and Hubbard models
[119–121], which can be exactly calculated using
dimers [61]. Even if the bipartite sublattices balance locally,
as in the AB tiling [39], it could still in principle be the case
that the graph connectivity localizes electrons to certain
regions. Recent work has identified such zero modes in the
Hubbard model on AB [122]. Many, but not all, of these
appear to fit a loop-based structure first identified
in Penrose tilings [119] and subsequently more general
graphs [123]. The same structures have recently been
identified in the Hat aperiodic monotiles [124]. A deeper
connection between the graph connectivities leading to
electronic zero modes and the loops we identify here is an
interesting avenue for further work.
Hamiltonian cycles and other loop models have been

widely used for modeling protein folding, by approximat-
ing the molecules as living on the sites of a periodic

(a) (b)

FIG. 10. (a) A Penrose tiling (gray lines) decorated by graph
edges (black) and vertices (gray disks) so as to admit fully packed
loops (purple) by construction. (b) Augmenting the alternating
cycle surrounding each red cross leads to a cycle (red) which
visits every graph vertex on any Penrose tile touching a cross.
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lattice [1,9,76]. This simplification has allowed the tools
of statistical physics to be brought to bear on complex
problems [1,15,16]. Quasicrystals may well serve as better
models for such studies in which space is approximated
with a discrete structure. Quasicrystals are able to feature
higher degrees of rotational symmetry than crystals, pro-
viding a better approximation to the continuous rotational
symmetry of real space [43]. They feature a wider range of
nearest-neighbor bond angles, and the variety of structures
at greater numbers of neighbors increases rapidly.
Quasicrystals also lack discrete translational symmetry, a
feature of lattices which could cause them to poorly
approximate continuous space, although quasicrystals such
as AB do feature a discrete scale invariance which might
lead to similar shortcomings. Random graphs also have
these benefits, but they lack the long-range order of
quasicrystals required to obtain exact results such as those
we have presented here.
In the context of NPC problems, exact solutions to

Hamiltonian cycles are useful because they serve as
benchmarking measures for new algorithms [125–127].
While the difficulty of NPC means no known algorithm is
capable of deterministically solving all instances in poly-
nomial time, several algorithms display a high success rate
on many graphs [125,128,129]. Finding and classifying
Hamiltonian cycle instances which prove “hard” for these
algorithms has immediate practical applications and can
provide key insight into the full NPC problem. A future
goal would be to see how these modern Hamiltonian cycle
algorithms perform when applied to AB regions admitting
Hamiltonian cycles. Since AB sits at the borderline
between regular and random graphs, it contains structures
not present in either. Additionally, our Hamiltonian cycle
construction is highly nonlocal, leveraging our understand-
ing of the discrete scale symmetry of the tiling. Thus, it may
prove a difficult test case: In that scenario, understanding
which structures of AB prove hard for solvers would be a
worthwhile challenge. We provided our U1 and U2 graphs
to the developers of the state-of-the-art “snakes and ladders
heuristic” (SLH) Hamiltonian cycle algorithm [125], who
ran a preliminary test in this direction [130]. U1 contains
464 vertices and U2 contains 14 992 vertices. The SLH
algorithm found a Hamiltonian cycle on U1 in modest time
(∼1 s) but failed to find cycles on U2 before exceeding the
allotted memory. Given the large size of U2, however, this
is not conclusive evidence that AB is hard to solve. A next
step would be a more thorough analysis, possibly identify-
ing Hamiltonian cycle regions of more reasonable size for
benchmarking purposes.
Another interesting direction might be to consider

directed or weighted extensions of the graphs. Directed
graphs can model non-Hermitian systems with gain and
loss [131]; weighted graphs could model, for example,
the traveling salesperson problem in which cities are
connected by different distances. Finding a shortest route

through a weighted graph is still an NPC problem, and the
route would be selected from among the unweighted
Hamiltonian cycles.
Our solution to the longest path problem shows that sets

of flexible molecules of arbitrary lengths (not necessarily
the same) can pack perfectly onto AB quasicrystals if they
register to the atomic positions. This suggests applications
to adsorption, which is relevant, for instance, to carbon
capture [132] and catalysis: Two molecules might find a
lower-energy route to reacting if they first bond to an
appropriate surface before being released after reaction.
Physical quasicrystals with three-dimensional point
groups—“icosahedral” quasicrystals (iQCs)—are known
to have properties which make them potentially advanta-
geous as adsorbing substrates. Being brittle, they are
readily broken into particles tens of nanometres in dia-
meter, maximizing their surface area to volume ratio (a key
consideration in industrial catalysis). They are stable
at high temperatures, facilitating increased rates of reac-
tions [133]. And, as discussed above, their surface atoms,
lacking periodic arrangements, permit a wider range of
bond angles. On the other hand, iQCs have been found to
have high surface reactivities, which is unfavorable for
catalysis because adsorbing molecules will tend to bond to
the iQC substrate rather than to one another [134,135].
They also have low densities of states at the Fermi level
compared to metals, which is unfavorable [53]. However,
iQC nanoparticles have been successfully coated with
atomic monolayers which then adopt their quasicrystallin-
ity [136,137]; these monolayers include silver, a widely
used and efficient catalyst with none of the quasicrystals’
shortcomings [138]. Investigating the use of quasicrystals
for such applications would therefore seem a profitable
direction for future experiments.
The surfaces of iQCs have not been seen to feature the

symmetries of AB; rather, they form a class of structures
which includes Penrose tilings [134,135]. Further work is
therefore needed to establish the possible packing densities
of realistic iQC surfaces. Alternatively, the results pre-
sented here could potentially be put to use in the known
two-dimensional “axial” quasicrystals which feature the
symmetries of AB [44,45,139].
While AB tilings might have appeared to be an unlikely

place to seek exact results to seemingly intractable prob-
lems, owing to their lack of periodicity, their long-range
order makes such results obtainable. While periodic lattices
feature a discrete translational symmetry which simplifies
many problems (essentially enabling fields such as
condensed matter physics, Floquet theory, and lattice
QCD), quasicrystal lattices such as AB feature instead a
discrete scale invariance. While less familiar, we would
argue that this is just as powerful a simplifying factor. For
example, the study of the electronic theory of solids is made
possible by Bloch’s theorem, which allows the electronic
wave function to be calculated in infinite periodic lattices.
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An equivalent to Bloch’s theorem can be formulated for
systems with discrete scale invariance [see, e.g., Eq. (1.4) in
Ref. [140]], suggesting a comparable simplification in
seemingly complex problems. To take another example,
conformal theories, describing, for example, critical states
at phase transitions, feature both continuous scale and
continuous translation invariance. Our work opens the
possibility of studying the breakdown of conformal sym-
metry into discrete scale invariance rather than the more
familiar discrete translational invariance [50,141]. For
example, we have established the possibility of studying
fully packed loops on AB tilings; in periodic settings these
admit conformal field theory descriptions [24]. The results
presented here provide a key example of the simplifying
power of discrete scale invariance.
Broadly, we might expect that many problems for which

crystals are special cases might now find quasicrystals to
also be special cases, albeit of a fundamentally differ-
ent form.
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APPENDIX A: DETAILED FIGURES

In this appendix we include detailed figures to accom-
pany the proof sections in the main text. Figures 11 and 12
show intermediate steps for obtaining the Hamiltonian
cycle in Fig. 6. In Fig. 11, black e0 edges form loops
visiting every 8n<0-vertex (i.e., every vertex which is not an
8-vertex). We placed red e1 edges along the e1 loops (red
loops in Fig. 5) to add 80-vertices onto the loops. After this
we also placed blue e2 edges along the e2 loop (blue loop in
Fig. 5), with one corner folded, to add the central vertex and
81-vertices onto the loops. Note that some parts of the blue
e2 edges overlap with the red e1 edges. Noting that
augmentation of a set of edges is reversed by a second
augmentation of the same set of edges, in Fig. 12 these
overlapping e2 edges and e1 edges will augment to leave
the L0 tiling unchanged. Hence we can remove these
overlapping edges completely. This results in a rewiring
of e1 loops and the e2 loop into a single loop as shown.
Augmenting this single loop, consisting of the remaining
red and blue edges, will give us the Hamiltonian cycle
shown in Fig. 6.
Figure 13 is a bigger version of Fig. 9, showing a

solution for the three-coloring problem on a large patch of
AB tiling resulting by placing tile 1 and tile 2 shown in
Fig. 8, and coloring the remaining ladders consistently on
the basis of colors of their surrounding rhombuses such that
no two adjacent faces share a color.
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FIG. 11. The canonical placement of e0 edges (black) forms loops visiting every 8n<0-vertex (i.e., every vertex which is not an
8-vertex). Now e1 edges (red) are placed along the e1 loops (see Fig. 5) to add 80-vertices onto the loops. Further e2 edges (blue) are
placed along the e2 loop, with one corner folded, to add the central vertex and 81-vertices onto the loops. Note that some blue e2 edges
overlap with the red e1 edges. This process can be iterated to any order.
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FIG. 12. The overlapping e2 edges and e1 edges as shown in Fig. 11 will augment to leave the L0 tiling unchanged. Hence we can
remove these overlapping e2 edges and e1 edges completely. This results in the rewiring of e1 loops and the e2 loop into a single loop as
shown here. Finally augmenting this single loop, consisting of the remaining red and blue edges, will give the Hamiltonian cycle shown
in Fig. 6.
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APPENDIX B: SOLUTIONS TO OTHER
NONTRIVIAL PROBLEMS ON AB

1. Minimum dominating set problem

A dominating setD of a graphG is a subset of the vertices
ofG such that all the vertices not inD are adjacent to at least
one vertex in D. The minimum dominating set (MDS) is a
dominating set containing the fewest possible vertices; its
cardinality is called the domination number, γðGÞ.
Problem statement [63]. Given a graph G and integer k,

is the domination number γðGÞ ≤ k? The corresponding
optimization problem is to find the MDS.

Solution. If G is built from N copies of L1=2 tiles, yes if
and only if N ≤ k.
Proof. Figure 2 shows the single-inflation rules for the

rhombus and square, level L1=2. The set of red vertices
forms an MDS for all vertices within each L1=2 tile. Since
these inflated tiles cover the entire tiling (owing to discrete
scale symmetry), the union of minimum dominating sets of
all these inflated tiles must be a dominating set for any
patch of the AB tiling, or the tiling itself in the thermo-
dynamic limit. That this is actually an MDS can be seen
from the fact that there is no redundancy in the placement
of the red vertices in Fig. 2: No red vertex has another red as

FIG. 13. The three-colored AB tiling using tile 1 and tile 2 (both outlined in gold) as mentioned in Sec. IV C.
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a neighbor, which implies that the set constitutes an MDS
for the whole AB tiling. A larger region of the MDS is
shown in Fig. 14. Note that the MDS is not unique. ▪
Comment. The proof relies only on the discrete scale

symmetry of AB tilings, without reference to the
Hamiltonian cycle construction.

2. Domatic number problem

The domatic number dðGÞ for any given graph G with a
set of vertices V is the maximum number of disjoint
dominating sets into which V can be partitioned.
Problem statement [63,142]. For a given graph G and

integer 3 ≤ k ≤ δðGÞ þ 1, where δðGÞ is the minimum
degree ofG, doesG have a domatic number dðGÞ ≥ k? The
corresponding optimization problem is to find the corre-
sponding dominating sets.
Solution. If G ¼ Un>0, yes if k ¼ 3.
Proof. We will prove the result by using our Hamiltonian

cycles to explicitly construct a partition of Un>0 into three
disjoint dominating sets. ▪
To see that the domatic number cannot be greater than

δþ 1, consider the set NðvÞ composed of a vertex v along
with its δ neighbors, such that jNðvÞj ¼ δþ 1; then each
dominating set Di contains at least one vertex in NðvÞ, and
each vertex in NðvÞ is contained in at most one Di. Thus
d ≤ δþ 1. The case k ¼ 2 also trivially holds for any graph
with no isolated vertices. Hence, finding k ¼ 3 disjoint
dominating sets is the first nontrivial instance of the
problem, which is NPC on general graphs.

Before proving our statement for AB, we first anticipate
the result by giving a simple proof that any Hamiltonian
graph G of size jGj ¼ 3n, for n integer, admits k ¼ 3
disjoint dominating sets. We have not seen this statement
made elsewhere. To see that it is true, we begin by labeling
the three sets by the colors red, blue, and yellow, denoted R,
B, Y. Starting from an arbitrary vertex v1 ofG, color v1 red.
Then, proceeding along the Hamiltonian cycle, color each
vertex cyclically according to the three colors. Thus, v2 is
colored B, v3 is colored Y, v4 is colored R, and so on. The
constraint jVj ¼ 3n ensures that the final vertex v3n,
neighboring v0, is colored Y. In this way the cyclic
structure of the coloring holds. Since (i) the Hamiltonian
cycle visits every vertex and (ii) every vertex of a given
color neighbors at least one vertex of each of the two
remaining colors, we have constructed three disjoint
dominating sets for k ¼ 3.
The extension to theG ¼ Un>0 regions of AB, which we

have proven admit Hamiltonian cycles, is similarly simple.
The cyclic coloring along the Hamiltonian cycle proceeds
exactly as above. However, we do not have jUnj ¼ 3n (for
example, jU1j ¼ 464j). Nevertheless, in Fig. 15 we show a
suitable starting vertex of the Hamiltonian cycle (red star)
such that the final vertex of the cycle (white star) neighbors
one vertex of each color. The pictured section of the
Hamiltonian cycle appears as the central region of the
U1 cycle shown in Fig. 1, and every Hamiltonian cycle

FIG. 14. A portion of AB tiling showing the minimum
dominating set vertices (red), which as proved in Sec. B 1 are
also vertices of single inflated tiles.

FIG. 15. Hamiltonian cycle structure (black edges), with
vertices colored cyclically by the three colors R, B, Y, starting
from the red star and proceeding clockwise around the cycle. The
coloring scheme ensures that every vertex of a given color is
neighbor to at least one vertex of each of the other colors; the final
vertex in the cycle to be colored (white star) neighbors at least
one vertex of each color, by construction. This proves that
Hamiltonian subgraphs of AB have a domatic number d ≥ 3.
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constructed on Un>0 according to our method follows an
identical path at its center. Therefore, every vertex of a
given color neighbors at least one vertex of each of the two
remaining colors, and we have proven the case k ¼ 3 for
Un>0. Note thatU0 is too small for this method to hold, and
has d ¼ 2.
Comments. Given that the minimum connectivity of AB

is δ ¼ 3, the problem statement requests proof that the
domatic number of Un>0 is either d ¼ 3 or d ¼ 4. We have
constructed a d ¼ 3 partitioning using our Hamiltonian
cycle construction. This solves the domatic number prob-
lem, which is NPC on general graphs.
The question of whether there exists a d ¼ 4 partition

remains open. We have been able to find such partitions of
large regions of AB. We have not found any noticeable
decrease in the freedom to continue the patterns as they
grow. On the basis of these observations, we conjecture that
a d ¼ 4 partition is possible for arbitrarily largeWn regions.
If true, this would render these arbitrarily large finite
patches of AB tilings rare examples of “domatically full”
graphs [143] with dðGÞ ¼ δðGÞ þ 1.

3. Induced path problem

An induced path in an undirected graph G is a sequence
of vertices such that a pair of vertices is adjacent in the
sequence if and only if the vertices have an edge in G. An
induced cycle is an induced path which closes.

Problem statement [63,144]. For a graph G and a
positive integer k, does G contain an induced cycle of
length at least k? The corresponding optimization problem
is to find an induced cycle of length k.
Solution. Yes, if G ¼ AB.
Proof. In this case it is convenient to consider the

D8-symmetric regions Wn. Figure 16 shows the loops of
the FPL on AB* constructed in Sec. III A. We see that any
nonadjacent vertices on these loops do not have an edge in
G, while any adjacent vertices do. Hence, these loops are
induced cycles. The longest such loop in Wn is of length
8ð9n þ 1Þ (this can be proven using the inflation rules of
Fig. 2). Since any AB tiling containsW∞, the answer to the
problem is “yes” for any k, finite or infinite. ▪
Comments. On general graphs the problem remains NPC

if an induced path is sought rather than an induced cycle.
That problem can also be solved on AB, by deleting any
pair of consecutive edges along the cycle. Longer induced
cycles than those we consider can be found in Wn, but the
problem statement does not require them.
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