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We present a systematic framework to classify symmetry-enriched topological quantum spin liquids in
two spatial dimensions. This framework can deal with all topological quantum spin liquids, which may be
either Abelian or non-Abelian and chiral or nonchiral. It can systematically treat a general symmetry, which
may include both lattice symmetry and internal symmetry, may contain antiunitary symmetry, and may
permute anyons. The framework applies to all types of lattices and can systematically distinguish different
lattice systems with the same symmetry group using their quantum anomalies, which are sometimes known
as Lieb-Schultz-Mattis anomalies. We apply this framework to classify Uð1Þ2N chiral states and non-
Abelian IsingðνÞ states enriched by a p6 × SOð3Þ or p4 × SOð3Þ symmetry and ZN topological orders and
Uð1Þ2N × Uð1Þ−2N topological orders enriched by a p6m × SOð3Þ × ZT

2 , p4m × SOð3Þ × ZT
2 , p6m × ZT

2 ,
or p4m × ZT

2 symmetry, where p6, p4, p6m, and p4m are lattice symmetries while SO(3) and ZT
2 are spin

rotation and time-reversal symmetries, respectively. In particular, we identify symmetry-enriched
topological quantum spin liquids that are not easily captured by the usual parton-mean-field approach,
including examples with the familiar Z2 topological order.
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I. INTRODUCTION

Topological quantum spin liquids, which are more
formally referred to as bosonic topological orders, are
exotic gapped quantum phases of matter with long-range
entanglement beyond the phenomenon of spontaneous
symmetry breaking [1]. In two space dimensions, they
can host anyons, i.e., quasiparticle excitations that are
neither bosons nor fermions [2]. Besides being fundamen-
tally interesting, they are also potential platforms for fault-
tolerant quantum computation [3,4].
Roughly speaking, in the absence of symmetries, the

universal properties of a topological quantum spin liquid
are encoded in the properties of its anyons, such as their
fusion rules and statistics. We refer to these properties as
the topological properties of a topological quantum spin
liquid. In the presence of symmetries, there can be
interesting interplay between these topological properties
and the symmetries. In particular, even with fixed topo-
logical properties, there can be sharply distinct topological
quantum spin liquids that cannot evolve into each other
without breaking the symmetries or encountering a quan-
tum phase transition. These are known as different
symmetry-enriched topological quantum spin liquids.

The goal of this paper is to classify symmetry-enriched
topological quantum spin liquids in two space dimen-
sions. That is, given the topological and symmetry
properties, we would like to understand which sym-
metry-enriched topological quantum spin liquids are
possible. This problem is first of fundamental conceptual
interest, as understanding different types of quantum
matter is one of the central goals of condensed matter
physics. Moreover, although topological quantum spin
liquids have been identified in certain lattice models
and small-sized quantum simulators, its realization and
detection in macroscopic quantum materials remains
elusive [5]. The knowledge of which symmetry-enriched
topological quantum spin liquids are possible is helpful
for identifying the correct observable signatures of them,
thus paving the way to the realization and detection of
these interesting quantum phases in the future.
In the previous condensed matter literature, there are two

widely used approaches to classify symmetry-enriched
topological quantum spin liquids, and most of the other
approaches can be viewed as variations or generalizations
of them. The first approach is based on parton mean fields
and projective symmetry groups, which starts by represent-
ing the microscopic degrees of freedom (such as spins) via
certain fractional degrees of freedom and then studies the
possible projective representations of the symmetries car-
ried by these fractional degrees of freedom [6]. The
advantages of this approach include its simplicity and its
intimate connection to the microscopic degrees of freedom
of the system.
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However, this approach is not perfect. One of the main
disadvantages of this approach is that it is not easily
applicable to general topological quantum spin liquids.
For example, it is inconvenient to apply this approach to
classify symmetry-enriched ZN topological orders with
N > 2, because in this case the partons are interacting and a
noninteracting parton mean field is inadequate. Also, it is
often challenging to use this approach to study topological
quantum spin liquids where anyons are permuted in a
complicated manner by symmetries [7]. Moreover, even for
quantum spin liquids that are often assumed to be captured
by parton mean fields, some of their symmetry enrichment
patterns may not be captured by any parton mean field.
Reference [8] presented such a phenomenon for the gapless
Dirac spin liquid, and in Sec. VIII we find that this
phenomenon can occur even for the familiar Z2 topological
quantum spin liquid. Another disadvantage of this
approach is that the projective representations carried by
the fractional degrees of freedom may not be the same
as the symmetry properties of the physical anyons, which
sometimes require one more nontrivial step to obtain. For
examples, see Refs. [9,10].
The second approach is based on the categorical theo-

retic description of the topological quantum spin liquids
and studies how the category theory (i.e., a powerful
mathematical theory) corresponding to a topological quan-
tum spin liquid can be consistently extended to include a
symmetry group [7,11]. However, while this approach is
fully general, it also has its disadvantages. Unlike the first
approach, it has a relatively weaker connection with the
microscopic properties of the physical system, and it is
particularly inconvenient when applied to systems with
lattice symmetries, which are often physically important.
Specifically, within this approach all symmetry properties
of the physical system are assumed to be captured by its
symmetry group. However, such a description of the
symmetries is inadequate for many purposes. For example,
spin-1=2 systems defined on a triangular lattice, kagome
lattice, and honeycomb lattice can all have the same
symmetry group, say, the SO(3) spin rotational symmetry
and the p6m lattice symmetry. But they are physically
distinct, and any symmetry-enriched topological quantum
spin liquid that can emerge in one of these three systems
cannot emerge in the other two [8,12]. A physically
relevant classification of symmetry-enriched topological
quantum spin liquids should take into account this dis-
tinction, which reflects some microscopic symmetry prop-
erties beyond the symmetry group. In the above example,
these properties can be viewed as the lattice types.
In the present paper, we develop a framework to classify

symmetry-enriched topological quantum spin liquids, which
combines the advantages of the above two approaches
while avoiding their disadvantages. Specifically, we use
the language of category theory to directly describe the
topological properties of a topological quantum spin liquid

and the symmetry properties of the anyons, and we also
keep track of the robust microscopic symmetry-related
information of the physical system. Roughly speaking, this
information includes

(i) the symmetry group, say, the SO(3) spin rotational
symmetry and p6m lattice symmetry;

(ii) how the microscopic degrees of freedom trans-
form under the symmetry, say, whether they are
spin-1=2’s or spin-1’s;

(iii) the lattice type, say, whether the lattice is a triangu-
lar, kagome, or honeycomb lattice.

All three pieces of information above are taken into
account in the aforementioned first approach, but the second
approach usually considers only the first piece (see excep-
tions in Refs. [13–19] studying certain specific symmetry-
enriched quantum spin liquids, but the methods therein have
not been generalized to the generic case before). The reason
why the other two pieces of information are physically
relevant is because, as long as the symmetries are preserved,
they are robust properties of the system that cannot change
under perturbations [12]. Moreover, just like the symmetry
group, these two pieces of information are often relatively
easy to determine experimentally, and they are the basic
aspects of any theoretical model. We make these concepts
more precise in Sec. IV.
Ultimately, our framework takes as input (i) the topo-

logical properties of a topological quantum spin liquid and
(ii) a collection of the above symmetry-related properties
of a microscopic system and outputs which symmetry-
enriched topological quantum spin liquids are possible.
Each of these symmetry-enriched topological quantum
spin liquids is characterized by the symmetry properties
of its anyons. We apply this framework to classify various
symmetry-enriched topological quantum spin liquids. We
focus on examples with symmetry group G ¼ Gs ×Gint,
where Gs is certain lattice symmetry and Gint is an on-site
internal symmetry.
This framework relies on the state of the art in the studies

of the quantum anomalies of lattice systems and topological
quantum spin liquids. In particular, in Ref. [8], we and our
coauthors obtained the precise characterizations of the
full set of the quantum anomalies of a large class of lattice
systems, which exactly encode the aforementioned robust
microscopic symmetry-related information of the lattice
system. These quantum anomalies are sometimes referred
to as Lieb-Schultz-Mattis anomalies. Moreover, in
Ref. [20], we developed a systematic framework to calcu-
late the quantum anomaly of a generic symmetry-enriched
topological quantum spin liquid.
We remark that our philosophy of encoding the

robust microscopic symmetry-related information of a
physical system into its quantum anomaly and using
anomaly matching to classify quantum many-body states
is very general. Besides classifying symmetry-enriched
topological quantum spin liquids, it can also be used to
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classify other quantum states. In fact, we and our coauthors
have applied it to classify certain symmetry-enriched
gapless quantum spin liquids in Ref. [8]. Our anomaly-
based philosophy can be viewed as a generalization of the
theories of symmetry indicators or topological quantum
chemistry, which classify band structures [21–25]. In fact,
the robust microscopic symmetry-related information of a
physical system we take is identical to what those theories
take, but those theories apply only to weakly correlated
systems that can be described by band theory, while ours
applies to generic strongly correlated systems.

II. OUTLINE AND SUMMARY

The outline of the rest of the paper and summary of the
main results are as follows.

(i) In Sec. III, we briefly review how to describe a
symmetry-enriched topological quantum spin liquid
and its quantum anomaly. The description is based
on the category theory, but no previous knowledge
of category theory is required.

(ii) In Sec. IV, we discuss the symmetry properties of a
lattice system and how to encode them into the
quantum anomaly of a lattice system.

(iii) In Sec. V, we present our general framework to
classify symmetry-enriched topological quantum
spin liquid, which may be Abelian or non-Abelian
and chiral or nonchiral. This framework applies to
topological quantum spin liquids with any sym-
metry, which may contain both lattice symmetry and
internal symmetry, may contain antiunitary sym-
metry, and may permute anyons.

(iv) In Sec. VI, we apply the framework in Sec. V to
classify the Uð1Þ2N topological quantum spin liquid
enriched by a p6 × SOð3Þ or p4 × SOð3Þ symmetry,
where p6 and p4 are lattice symmetries and SO(3) is
the spin rotational symmetry. The results are sum-
marized in Table V.

(v) In Sec. VII, we apply our framework in Sec. V to
classify the non-Abelian IsingðνÞ topological
quantum spin liquid enriched by a p6 × SOð3Þ or
p4 × SOð3Þ symmetry.

(vi) In Sec. VIII, we apply our framework in Sec. V to
classify the ZN topological quantum spin liquids
enriched by one of these four symmetries: p6m×
SOð3Þ × ZT

2 , p4m × SOð3Þ × ZT
2 , p6m × ZT

2 , and
p4m × ZT

2 , where the p6m and p4m are lattice
symmetries and SO(3) and ZT

2 are on-site spin
rotational symmetry and time-reversal symmetry,
respectively. The results are summarized in Table X.
In particular, even for the simple case with N ¼ 2,
we find many states beyond the description based on
the usual parton mean field.

(vii) In Sec. IX, we apply our framework in Sec. V to
classify the Uð1Þ2N × Uð1Þ−2N topological quantum

spin liquids enriched by one of these four sym-
metries: p6m × SOð3Þ × ZT

2 , p4m × SOð3Þ × ZT
2 ,

p6m × ZT
2 , and p4m × ZT

2 . The results are summa-
rized in Table X.

(viii) We close our paper in Sec. X.
(ix) Various appendixes contain further details. In par-

ticular, Appendix A presents a formal treatment of
the connection between the data characterizing a
topological order enriched by reflection symmetry
and the data characterizing a topological order
enriched by time-reversal symmetry. Appendix E
presents the details of the symmetry fractionalization
classes of the symmetry-enriched Z2 topological
orders that are beyond the usual parton mean fields.

III. UNIVERSAL CHARACTERIZATION OF
SYMMETRY-ENRICHED TOPOLOGICAL

QUANTUM SPIN LIQUIDS

In this section, we review the universal characterization
of symmetry-enriched topological quantum spin liquids.
This characterization is divided into two parts. We first
specify the topological order corresponding to the
topological quantum spin liquid, which is reviewed in
Sec. III A. After this, assuming the symmetry is an internal
symmetry, we specify the global symmetry of the topo-
logical quantum spin liquid and how it acts on the
topological order, which is reviewed in Sec. III B. We
review the anomaly of a symmetry-enriched topological
order in Sec. III C. Finally, we review the crystalline
equivalence principle in Sec. III D, which allows us to
connect a topological order with lattice symmetry to one
with internal symmetry.

A. Topological order

The characteristic feature of a topological order is the
presence of anyons, pointlike excitations that can have self-
statistics other than bosonic or fermionic statistics, and
nontrivial mutual braiding statistics. When multiple anyons
are present, there may also be a protected degenerate state
space. It is believed that the category theory can universally
characterize all topological orders or the anyons therein.
In this subsection, we briefly review the concepts relevant
to this paper. Our review will be minimal and does not
assume any knowledge of the category theory itself. For
a more comprehensive review, see, e.g., Refs. [7,26,27] for
a more physics-oriented introduction or Refs. [28–31] for a
more mathematical treatment.
Anyons in a topological order are denoted by a; b; c;….

A single anyon cannot be converted into a different single
anyon via any local process. There is always a trivial anyon
in all topological orders, obtained by performing some
local operation on the ground state. Roughly speaking, in a
many-body system where a topological order emerges at
low energies, the quantum state is specified by two pieces
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of data: the global data characterizing the anyons, which
cannot be changed by any local process, and the local
data independent of the anyons, which can change by
local operations.
For the purpose of this paper, two important properties

of an anyon a are used: its quantum dimension da and
topological spin θa. Suppose n anyons a are created, and
the dimension of the degenerate state space scales as dna
when n is large. So the quantum dimension da effectively
measures how rich the internal degree of freedom the anyon
a carries. If da ¼ 1, then a is said to be an Abelian anyon.
Otherwise, it is a non-Abelian anyon. The topological spin
θa measures the self-statistics of a. For bosons and
fermions, the topological spin is �1. For a generic anyon,
the topological spin can take other values.
Two anyons a and b can fuse into other anyons,

expressed using the equation a × b ≅
P

c N
c
abc, where

Nc
ab are positive integers and c is said to be a fusion

outcome of a and b. Generically, a and bmay have multiple
fusion outcomes, and there may also be multiple different
ways to get each fusion outcome, which is why the right-
hand side of the fusion equation involves a summation and
Nc

ab can be larger than 1. Physically, fusion means that if we
perform measurements only far away from the anyons a
and b, we will think they look like the fusion outcome c.
Diagrammatically, we can use

to represent a fusion process or

to represent a splitting process, which can be viewed
as the reversed process of fusion. In the above, μ∈
f1; 2;…; Nc

abg, and the arrows can be viewed as the world
lines of the anyons. If the trivial anyon is in the fusion
product of two anyons, we say that these two anyons are
antiparticles of each other, and we denote the antiparticle
of a by ā.
When multiple anyons are present, we may imagine

fusing them in different orders. Similarly, when a given
anyon splits into multiple other anyons, it may also do so in
different orders. For example, the two sides of the follow-
ing equation represent two different orders of splitting an
anyon d into three anyons: a, b, and c. Generically, the
states obtained after these two processes are not identical,
but they can be related by the so-called F symbol, which is
a unitary matrix acting on the degenerate state space:

In this equation, e is a fusion outcome of a and b, where
α∈ f1;…Ne

abg, d is a fusion outcome of c and e, where
β∈ f1;…; Nd

ecg, f is a fusion outcome of b and c,
where μ∈ f1;…; Nf

bcg, and f and a also fuse into d,
where ν∈ f1;…; Nd

afg.
When anyons move around each other, the state may

acquire some nontrivial braiding phase factor, and it may
even be acted by a unitary matrix, in general. The statistics
and braiding properties of the anyons are encoded in the R
symbol, which is also a unitary matrix acting in the
degenerate state space and is defined via the following
diagram:

The topological spin can be expressed using the R
symbol via

The F and R symbols satisfy strong constraints and have
some “gauge” freedom; i.e., two sets of fF;Rg data related
by certain gauge transformations are physically equivalent.
We remark that the F and R symbols can all be defined
microscopically [32].

B. Global symmetry

In the presence of global symmetry, anyons can display
interesting phenomena including (i) anyon permutation
and (ii) symmetry fractionalization. We review the concepts
relevant to this paper below, and more comprehensive
reviews can be found in, e.g., Refs. [7,29,33]. In this
subsection and the next, we assume that all symmetries are
internal symmetries; i.e., they do not move the locations of
the degrees of freedom. We comment on how to deal with
the case with lattice symmetry in Sec. III D.
Before specifying any microscopic symmetry of inter-

est, it is useful to first discuss the abstract topological
symmetry group of a topological order, whose elements
can be viewed as invertible maps that take one anyon into
another, so that the fusion properties of the topological
order are invariant. For unitary (antiunitary) topological
symmetry action, the braiding properties, encoded in the
F and R symbols, are preserved (conjugated). Later in the
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paper, we see many examples of topological symmetries
of various topological orders.
Now we consider a microscopic symmetry described

by a group G. Suppose Rg is a symmetry action, where g
labels an element of G. This action can change anyons into
other types; for example, it change an anyon a into another
anyon ga. We use

ρg∶ a → ga ð1Þ
to represent the anyon permutation pattern. Mathematically,
we may say that ρg describes a group homomorphism
from G to the topological symmetry group of a topo-
logical order. From here, we see why the notion of
topological symmetry is important: It encodes all possible
anyon permutation patterns.
However, ρg by itself is insufficient to fully characterize

a symmetry-enriched topological order. Consider creating
three anyons a1, a2, and a3 from the ground states, such
that a1 × a2 → ā3; i.e., these three anyons can fuse into the
trivial anyon. After separating these anyons far away from
each other, there are generically Nā3

a1a2 degenerate such
states. What effect does Rg have when it acts on a state in
this degenerate space, denoted by jΨa1;a2;a3i?
Since the state of a topological order is specified by the

two pieces of information, the global one and the local one,
the symmetry localization ansatz states that [34]

RgjΨa1;a2;a3i ¼ Vð1Þ
g Vð2Þ

g Vð3Þ
g Ugðga1;g a2;g ā3ÞjΨga1;ga2;ga3i;

ð2Þ

where VðiÞ
g is a local unitary operation supported only

around the anyon ai, for i ¼ 1, 2, 3, and Ugðga1; ga2; gā3Þ
is a unitary matrix with rank Nā3

a1a2 , which acts on the
degenerate state space and describes the symmetry action
on the global part of the information contained in the state.
Notice that the state appearing on the right-hand side is
jΨga1;ga2;ga3i; i.e., generically, the anyons are permuted by
the symmetry.
It can be shown that the local operations V satisfy

ηaiðg;hÞVðiÞ
ghjΨa1;a2;a3i ¼ RgV

ðiÞ
h R−1

g VðiÞ
g jΨa1;a2;a3i ð3Þ

for a pair of group elements g and h. Here, ηaiðg;hÞ are
generically nontrivial phase factors, implying that the
anyons may carry fractional charge or projective quantum
number under the symmetry; i.e., there can be symmetry
fractionalization [35].
For a given topological order and a symmetry group G,

it turns out that the data fρg;Ugða; b; cÞ; ηaðg;hÞg
completely characterize how this topological order is
enriched by the symmetry G. We often call Ugða; b; cÞ
the U symbol and ηaðg;hÞ the η symbol. These data
fρg;Ugða; b; cÞ; ηaðg;hÞg also satisfy strong constraints

and have some “gauge” freedom; i.e., two sets of
fρg;Ugða; b; cÞ; ηaðg;hÞg data related by certain gauge
transformations are physically equivalent. These gauge
transformations are not explicitly used in this paper, but
they are summarized in, e.g., Ref. [20]. Moreover, even if
two sets of data fρg;Ugða; b; cÞ; ηaðg;hÞg are not related
by a gauge transformation, they still correspond to the
physical state if they are related to each other by anyon
relabeling that preserves the fusion and braiding properties
[7,34]; i.e., such relabeling is precisely a unitary element in
the topological symmetry group [36].
For a given anyon permutation pattern, one can show that

distinct symmetry fractionalization classes form a torsor
over H2

ρðG;AÞ. Namely, different possible symmetry frac-
tionalization classes can be related to each other by
elements ofH2

ρðG;AÞ, whereA is an Abelian group whose
group elements correspond to the Abelian anyons in this
topological order and the group multiplication corresponds
to the fusion of these Abelian anyons. The subscript ρ
represents the permutation action of G on these Abelian
anyons. In particular, given an element ½t�∈H2

ρðG;AÞ, we
can go from one symmetry fractionalization class with data
ηaðg;hÞ to another with data η̃aðg;hÞ given by

η̃aðg;hÞ ¼ ηaðg;hÞMa;tðg;hÞ; ð4Þ

where tðg;hÞ∈A is a representative 2-cocyle for the
cohomology class [t] and Ma;tðg;hÞ ¼ ½θa×tðg;hÞ=θaθtðg;hÞ�
is the braiding statistics between a and tðg;hÞ [37].
In the case where no anyon is permuted by any

symmetry, there is always a canonical notion of a trivial
symmetry fractionalization class, where ηaðg;hÞ ¼ 1 for
all anyon a and all g;h∈G. In this case, an element of
H2ðG;AÞ is sufficient to completely characterize the
symmetry fractionalization class.
Later in the paper, for a symmetry-enriched topological

order, we often just specify ρg, without explicitly specify-
ing the U and η symbols. However, we specify the U and η
symbols of the topological symmetry group of this topo-
logical order, which allows us to determine the U and η
symbols of the microscopic symmetry as follows.
Denote the microscopic symmetry group by G and the

topological symmetry group by G0; then, ρg defines a
group homomorphism φ∶G → G0. Denote the U and a set

of η symbols of G0 by Uð0Þ
g0 ða; b; cÞ and ηð0Þa ðg0;h0Þ,

respectively, for any g0;h0 ∈G0. These U and η symbols
are some data intrinsic to the topological order, independent
of the microscopic symmetry G, just like the F and R
symbols. The U and a set of η symbols of the microscopic
symmetry G can be written, respectively, as

Ugða; b; cÞ ¼ UφðgÞða; b; cÞ;
ηaðg;hÞ ¼ ηa½φðgÞ;φðhÞ� ð5Þ
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for any g;h∈G. Other symmetry fractionalization classes
corresponding to other sets of η symbols can be related to
this one via Eq. (4).

C. Anomalies of symmetry-enriched topological orders

A symmetry-enriched topological order can have a
quantum anomaly. Roughly speaking, the anomaly char-
acterizes the interplay between locality and the symmetry
of the system. There are a few different definitions of
quantum anomaly that are believed to be equivalent. In
general, the anomaly can be viewed as an obstruction to
gauging the symmetry, an obstruction to having a sym-
metric short-range entangled ground state, an obstruction to
describing the system using a Hilbert space with a tensor
product structure and on-site symmetry actions, or the
boundary manifestation of a higher-dimensional bulk.
For a symmetry-enriched topological order, we can

characterize its anomaly via anomaly indicators, a set of
quantities expressed in terms of the data like fFabc

d ; Rab
c ; ρg;

Ugða; b; cÞ; ηaðg;hÞg. For example, consider a Z2 × Z2

symmetry. The anomalies of (2þ 1)-dimensional bosonic
systems with a Z2 × Z2 symmetry are classified by ðZ2Þ2.
Suppose the two generators of Z2 × Z2 are C1 and C2. The
two anomaly indicators can be given by I3ðC1; C2Þ and
I3ðC2; C1Þ, where

I3ðC1; C2Þ ¼
1

D2

X
a;b;x;u
μνμ̃ ν̃ ρσα
C1a¼a

a×b×
C1b→

C2a

db
θx
θa

�
Rb;C1b
u

�
ρσ

×
�
Fa;b;C1b

C2a

��
ðx;μ̃;ν̃Þðu;σ;αÞ

�
Fa;C1b;b

C2a

�
ðC1x;μ;νÞðu;ρ;αÞ

× U−1
C1
ða; b; xÞμ̃μU−1

C1
ðx; C1b; C2aÞν̃ν

×
1

ηbðC1; C1Þ
ηaðC2; C1Þ
ηaðC1; C2Þ

ð6Þ

and I3ðC2; C1Þ is obtained from the above equation by
swapping C1 ↔ C2 [20]. The reason for the subscript of I3

can be seen in Appendix D. The summation is over all
anyon types a and b satisfying C1a ¼ a and that C2a is a
fusion outcome of a × b ×C1 b, x also denotes anyon types,
and the Greek letters index different ways of getting a

particular fusion outcome (e.g., μ ¼ 1; 2;…; N
C2a
aC1b). Both

I3ðC1; C2Þ and I3ðC2; C1Þ are actually partition functions
of a 3þ 1-dimensional Z2 × Z2 symmetry-protected topo-
logical phase whose boundary is the relevant symmetry-
enriched topological order, as discussed in detail in
Ref. [20]. These two anomaly indicators take values in
�1, and each set of values of these anomaly indicators
specifies an element in the ðZ2Þ2 group, which classifies
these anomalies.
Later in the paper, we discuss systems with symmetries

different from Z2 × Z2, but it turns out that many anomaly

indicators for topological orders with those other sym-
metries can be expressed via I1;2.

D. Crystalline equivalence principle

In the above two subsections, our focus is topological
orders with purely internal symmetries. But, as mentioned
in the introduction, one of the main goals of this paper is to
classify topological quantum spin liquids enriched by a
general symmetry, which may contain both lattice sym-
metry and internal symmetry. The crystalline equivalence
principle [38,39] provides a convenient way to describe a
topological order with lattice symmetry (and possibly also
internal symmetry) using a topological order with a purely
internal symmetry.
More concretely, the crystalline equivalence principle

asserts that for each topological phase with a symmetry
group G, where G may contain both lattice symmetry and
internal symmetry, there is a corresponding topological
phase with only internal symmetries, where the symmetry
group is still G, and all orientation reversing symmetries in
the original topological phase should be viewed as anti-
unitary symmetries in the corresponding topological phase.
For example, Appendix A explains how to translate the
data characterizing a symmetry-enriched topological order
with reflection symmetry into the data for a time-reversal
symmetry-enriched topological order.
Strictly speaking, the above statement applies only to

bosonic systems, which is the focus of the present paper.
The fermionic version of this statement is still under
development (see Refs. [40–43] for recent progress).

IV. SYMMETRY PROPERTIES AND QUANTUM
ANOMALIES OF LATTICE SYSTEMS

In the introduction, we mentioned that the three pieces
of robust symmetry-related information of a lattice system
can be encoded in its quantum anomaly. In this section, we
make this notion more precise. Although this idea is
general, for concreteness, we focus on lattice spin systems
in two spatial dimensions with one of these six symmetry
groups: p6 × SOð3Þ, p4 × SOð3Þ, p6m × ZT

2 , p4m × ZT
2 ,

p6m × SOð3Þ × ZT
2 , and p4m × SOð3Þ × ZT

2 . Here, p6,
p4, p6m, and p4m are lattice symmetry groups, whose
definitions are explained in Figs. 1 and 2. These lattice
symmetries are assumed to only move the locations of the
microscopic degrees of freedom, without acting on their
internal states; i.e., there is no spin-orbit coupling. The SO(3)
and ZT

2 are on-site spin rotational symmetry and time-
reversal symmetry, respectively. These symmetry settings are
relevant to many theoretical, experimental, and numerical
studies, and the examples we consider in the later part of the
paper are also based on these symmetry settings.
Given such a symmetry group, different lattice systems

can be organized into the so-called lattice homotopy
classes [12,44]. Two lattice systems are in the same lattice
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homotopy class if and only if they can be deformed into
each other by these operations while preserving the lattice
symmetry: (i) moving the microscopic degrees of freedom,
(ii) identifying degrees of freedom with the same type of
projective representation under the on-site symmetry, and
(iii) adding or removing degrees of freedom with linear
representation (i.e., trivial projective representation) under
the on-site symmetry. Lattice systems within the same class
share the same robust symmetry-related properties, while
those in different classes have distinct symmetry properties
and cannot be smoothly connected without breaking the
symmetry. So the robust symmetry-related information of a
lattice system is the lattice homotopy class it belongs to,
while colloquially it is the three pieces of information
mentioned in the introduction.
To make the above discussion less abstract, consider

systems with p6 × SOð3Þ symmetry. From Fig. 1, there are

three types of high-symmetry points, forming a triangular,
honeycomb, and kagome lattice, respectively. The on-site
symmetry SO(3) has two types of projective representa-
tions: half-odd-integer spins and integer spins. According
to the above discussion, although spin-1=2 systems defined
on triangular, honeycomb, and kagome lattices have the
same symmetry group, they are in different lattice homo-
topy classes and have sharply distinct symmetry properties,
because they cannot be deformed into each other via the
above operations.
Below, we enumerate all lattice homotopy classes in our

symmetry settings. To this end, we first specify the types of
projective representations under the internal symmetries
we consider. As mentioned above, there are two types of
projective representations for the SO(3) symmetry. For
time-reversal symmetry ZT

2 , there are also two types of
projective representations: Kramers singlet and Kramers
doublet. For symmetry SOð3Þ × ZT

2 , there are actually four
types of projective representations: integer spin under
SO(3) while Kramers singlet under ZT

2 , half-odd-integer
spin under SO(3) while Kramers doublet under ZT

2 , half-
odd-integer spin under SO(3) while Kramers singlet under
ZT

2 , and integer spin under SO(3) while Kramers doublet
under ZT

2 . The first two types of projective representations
are more common in physical systems and theoretical
models than the last two, [45] so below we consider only
the first two. Therefore, for all three types of internal
symmetries we consider, i.e., SO(3), ZT

2 , and SOð3Þ × ZT
2 ,

there is a trivial projective representation and a nontrivial
one under consideration.
Then, for lattice systems with the symmetry group being

either p6 × SOð3Þ, p6m × ZT
2 , or p6m × SOð3Þ × ZT

2 ,
there are four different lattice homotopy classes [12].
(1) Class “0”.—A representative configuration: a

system with degrees of freedom carrying only the
trivial projective representation under the internal
symmetry.

(2) Class “a”.—A representative configuration: a sys-
tem with degrees of freedom carrying the nontrivial
projective representation under the internal sym-
metry, which locate at the triangular lattice sites
(type-a high-symmetry points in Fig. 1).

(3) Class “c”.—A representative configuration: a sys-
tem with degrees of freedom carrying the nontrivial
projective representation under the internal sym-
metry, which locate at the kagome lattice sites
(type-c high-symmetry points in Fig. 1).

(4) Class “aþ c”.—A representative configuration: a
system with degrees of freedom carrying the non-
trivial projective representation under the internal
symmetry, which locate at both the triangular and
kagome lattice sites (both type-a and type-c high-
symmetry points in Fig. 1).

Note that a system with degrees of freedom carrying
nontrivial projective representation that locate at the

FIG. 2. (a) shows the generators of the p4m group, including
translations T1 and T2, a fourfold rotation C4, and a mirror
reflection M. The two translation vectors have the same length,
and their angle is π=2. The reflection axis of M is parallel to the
translation vector of T2. The p4 symmetry is generated by T1, T2,
and C4. Namely, p4 has no M compared with p4m. In (b), the
square is a translation unit cell of either p4m or p4 lattice
symmetry. There are three high-symmetry points, labeled by a, b,
and c. Both type-a and type-b points form a square lattice, and
type-c points form a checkerboard lattice. The C4 rotation center
in (a) is taken to be at a type-a point.

FIG. 1. (a) shows the generators of the p6m group, including
translations T1 and T2, a sixfold rotation C6, and a mirror
reflection M. The two translation vectors have the same length,
and their angle is 2π=3. The reflection axis ofM bisects these two
translation vectors. The p6 symmetry is generated by T1, T2, and
C6. Namely, p6 has no M compared to p6m. In (b), the hexagon
is a translation unit cell of either p6m or p6 lattice symmetry.
There are three types of high-symmetry points, labeled by a, b,
and c, and they form the sites of the triangular, honeycomb, and
kagome lattices, respectively. The C6 rotation center in (a) is at a
type-a point.
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honeycomb lattice sites (type-b high-symmetry points)
is in class 0 [12].
For lattice systems with the symmetry group being either

p4 × SOð3Þ, p4m × ZT
2 , or p4m × SOð3Þ × ZT

2 , there are
eight different lattice homotopy classes. Using labels
similar to the above, these are classes “0,” “a,” “b,” “c,”
“aþ b,” “aþ c,” “bþ c,” and “aþ bþ c,” respectively,
where each label represents the type of the high-symmetry
points at which the degrees of freedom carrying the
nontrivial projective representation locate (0 means all
degrees of freedom carry the regular representation, i.e.,
the trivial projective representation). Note that type-a and
type-c high-symmetry points are physically distinct once
the C4 rotation center is specified, although they may look
identical at the first glance.
To turn the above picture into useful mathematical

formulations, Ref. [8] shows how to characterize each
lattice homotopy class using its quantum anomaly, which in
this context is also known as Lieb-Schultz-Mattis anomaly.
Different lattice homotopy classes have different anoma-
lies, and the lattice homotopy class 0 has a trivial anomaly.
In the context of topological orders, the anomalies can
be expressed via the anomaly indicators. For topological
quantum spin liquids with p6 × SOð3Þ symmetry, the
anomaly indicators are given in Appendix D:

I1 ¼ I3ðC2Uπ; C2U0
πÞ;

I2 ¼ I3ðT1C2Uπ; T1C2U0
πÞ; ð7Þ

where the expression of I3 is given by Eq. (6) and C2 is a
twofold rotation symmetry (i.e., C2 ≡ C3

6), while Uπ and
U0

π are π spin rotations around two orthogonal axes. We can
think of I1 and I2 as, respectively, detecting half-odd-integer
spins at type-a and type-c high-symmetry points, which
are, respectively, the twofold rotation centers of the C2 and
T1C2 symmetries. More generally, the values of these
anomaly indicators for the four lattice homotopy classes
enumerated above are shown in Table I.
For topological quantum spin liquids with p4 × SOð3Þ

symmetry, the anomaly indicators are

I1 ¼ I3ðC2Uπ; C2U0
πÞ;

I2 ¼ I3ðT1T2C2Uπ; T1T2C2U0
πÞ;

I3 ¼ I3ðT1C2Uπ; T1C2U0
πÞ; ð8Þ

where C2 is still a twofold rotational symmetry (but
C2 ¼ C2

4 in this case), while Uπ and U0
π are still π spin

rotations around two orthogonal axes. We can think of I1,
I2, and I3 as, respectively, detecting half-odd-integer spins
at type-a, type-b, and type-c high-symmetry point, which
are, respectively, the twofold rotation centers of the C2,
T1T2C2, and T1C2 symmetries. More generally, the values
of these anomaly indicators for the eight lattice homotopy
classes enumerated above are shown in Table II.
The anomaly indicators for the other symmetry groups

we consider [i.e., p6m×SOð3Þ×ZT
2 , p4m × SOð3Þ × ZT

2 ,
p6m × ZT

2 , and p4m × ZT
2 ] and their values in each lattice

homotopy class are more complicated, and they are
presented in Appendix D.
We remark that, strictly speaking, Eqs. (7) and (8) are

anomaly indicators of topological quantum spin liquids
with purely internal p6 × SOð3Þ or p4 × SOð3Þ symmetry,
but the crystalline equivalence principle discussed in Sec. V
still allows us to use them to classify symmetry-enriched
topological quantum spin liquids.
Moreover, it is straightforward to generalize the above

idea to other types of systems. For instance, to get the
anomaly of a system with spin-orbit coupling, whose
symmetry is just a subgroup of the symmetry of a system
without spin-orbit coupling, one can simply start from the
anomaly of a system without spin-orbit coupling and
restrict the symmetry to that subgroup.

V. FRAMEWORK OF CLASSIFICATION

Now we are ready to present our framework to classify
symmetry-enriched topological quantum spin liquids.
Our framework is based on the hypothesis of emergibility

[8,46]. Namely, suppose the anomaly of the lattice system is
ω; then, by tuning the parameters of this lattice system, a
quantum many-body state (or its low-energy effective
theory) with anomaly Ω can emerge at low energies if
and only if the anomaly-matching condition holds: ω ¼ Ω.
The “only if” part of this statement is established and

well known [47]. The “if” part is hypothetical, but there is
no known counterexample to it and it is supported by
multiple nontrivial examples [48–51]. So we assume this
hypothesis to be true and use it as our basis of analysis.
With this hypothesis, the framework to classify

symmetry-enriched topological quantum spin liquids, or,
equivalently, to obtain the possible symmetry-enriched

TABLE I. Values of the anomaly indicators for the four lattice
homotopy classes with symmetry group p6 × SOð3Þ.

0 a c aþ c

I1 1 −1 1 −1
I2 1 1 −1 −1

TABLE II. Values of the anomaly indicators for the eight lattice
homotopy classes with symmetry group p4 × SOð3Þ.

0 a b c aþ b aþ c bþ c aþ bþ c

I1 1 −1 1 1 −1 −1 1 −1
I2 1 1 −1 1 −1 1 −1 −1
I3 1 1 1 −1 1 −1 −1 −1
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topological quantum spin liquids that can emerge in the
lattice system of interest, is as follows.
(1) Given the symmetry group, which may contain both

lattice symmetry and internal symmetry, we first use
the crystalline equivalence principle in Sec. III D to
translate it into a purely internal symmetry.

(2) Based on the above internal symmetry and the
topological quantum spin liquid, we use the
method in Ref. [7] to obtain the classification of
the internal symmetry-enriched topological quantum
spin liquids.

(3) For each of the internal symmetry-enriched topo-
logical quantum spin liquids, we use the method in
Ref. [20] to obtain its anomaly Ω.

(4) As discussed in Sec. IV, the original lattice system
has its own quantum anomaly ω. We check if the
anomaly-matching condition ω ¼ Ω holds. If it does
(does not), then the corresponding symmetry-
enriched topological quantum spin liquid can (can-
not) emerge in this lattice system, according to the
hypothesis of emergibility.

If there is only an internal symmetry but no lattice
symmetry, then step 1 in the framework can be ignored. In
this case, sometimes one is interested in only anomaly-free
states; then, ω in step 4 should be the trivial anomaly. For
steps 3 and 4, in our context Ω (ω) can be represented by
the values of the anomaly indicators of the topological
quantum spin liquid (lattice system), so checking whether
ω ¼ Ω becomes checking whether the values of these
two sets of anomaly indicators match. For instance, as
discussed in Sec. IV, the anomaly ω for lattice systems with
p6 × SOð3Þ symmetry can be specified by the values of I1;2
defined in Eq. (7), and these values for different lattice
homotopy classes are given in Table I. The anomaly Ω or
the corresponding anomaly indicators I1;2 for a p6 × SOð3Þ
symmetric topological quantum spin liquid can be calcu-
lated using the results in Ref. [20], and we give detailed
analysis below [see Eqs. (30) and (33) for some of the final
results of the calculations].
We reiterate that the above framework can be straight-

forwardly generalized to classify quantum states other than
symmetry-enriched topological quantum spin liquids. For
example, it has been used to classify some gapless quantum
spin liquids in Ref. [8].
In the following sections, we apply the above framework

to obtain the classification of some representative two
dimensional symmetry-enriched topological quantum spin
liquids on various lattice systems.

VI. Uð1Þ2N TOPOLOGICAL ORDERS:
GENERALIZED ABELIAN CHIRAL SPIN LIQUIDS

Our first class of examples are topological quantum spin
liquids with Uð1Þ2N topological orders. These are Abelian
chiral states, where the N ¼ 1 case is the well-known
Kalmeyer-Laughlin state [52,53], the N ¼ 2 case is the

ν ¼ 2 state in Kitaev’s 16-fold way [26], and a general
Uð1Þ2N topological order can be obtained by putting bosons
into an interacting bosonic integer quantum Hall state with
Hall conductance 2N (in natural units) and coupling them
to a dynamical U(1) gauge field [10,54–56]. We classify
the Uð1Þ2N topological quantum spin liquid enriched by
p6 × SOð3Þ or p4 × SOð3Þ symmetry. As discussed in
Sec. III D, these symmetries can be viewed as purely
internal symmetries according to the crystalline equiva-
lence principle. Our results are summarized in Table V.
The topological properties of the Uð1Þ2N topological

order can be described by either the Laughlin-ð1=2NÞwave
function or a Chern-Simons theory with Lagrangian
L ¼ −ð2N=4πÞϵμνλAμ∂νAλ, with A a dynamical U(1) gauge
field. These states also allow a description using non-
interacting parton mean field. Specifically, one can con-
sider 2N species of fermionic partons with an SUð2NÞ
gauge structure. When all species are in a Chern band with
a unit Chern number, the resulting state is the Uð1Þ2N
topological order [57].
The above descriptions of these topological quantum spin

liquids all suffer from some disadvantages. Concretely, the
Laughlin wave function is a single specific state, and it
cannot describe different symmetry-enriched states. To
capture the symmetry actions in the Chern-Simons theory,
one needs to invoke the concept of 2-group symmetries [58],
which are not exact symmetries of the physical system. Also,
in the SUð2NÞ parton-mean-field description, the projective
quantum number of the fermionic partons is not exactly the
same as the symmetry fractionalization class of the anyons.
Below, we discuss the topological properties of these

states in the language of Sec. III, which does not suffer
from the above disadvantages, since it can describe general
symmetry-enriched Uð1Þ2N topological quantum spin
liquids directly in terms of the symmetry properties of
the anyons.
We label anyons inUð1Þ2N by (a), wherea is an element in

f0;…;2N−1g. These are all Abelian anyons with dðaÞ ¼ 1.
The fusion rule is given by addition modulo 2N, i.e.,

ðaÞ ⊗ ðbÞ ¼ ð½aþ b�2NÞ: ð9Þ
In this paper,we use the notation ½x�y to denote xmodulo y for
any integer x and positive integer y, and ½x�y takes values in
f0;…; y − 1g. The F symbols can be written as

FðaÞðbÞðcÞ ¼ eðiπ=2NÞaðbþc−½bþc�2NÞ; ð10Þ
and the R symbols are

RðaÞðbÞ ¼ eðiπ=2NÞab; ð11Þ
which yield the topological spins

θðaÞ ¼ eðiπ=2NÞa2 : ð12Þ
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The topological symmetry of Uð1Þ2N is complicated
for general N [59]. For N ¼ 1, there is no nontrivial
topological symmetry. For N ≥ 2, there is always a Z2

topological symmetry generated by the charge conjugation
symmetry C, such that anyon ðaÞ → ð½−a�2NÞ under C. For
this topological symmetry, we can take the U symbols as

UCfðaÞ; ðbÞ; ð½aþ b�2NÞg ¼
� ð−1Þa; b > 0;

1; b ¼ 0
ð13Þ

and a set of η symbols all equal to 1. From this set of η
symbols, we can obtain all other possible η symbols via
Eq. (4). When 2 ≤ N ≤ 5, this Z2 is the full topological
symmetry group. When N ≥ 6, there can be other topo-
logical symmetries [60]. In the later discussion, we con-
sider general N ≥ 2 but limit to the cases where the
microscopic symmetry can permute anyons only as charge
conjugation (i.e., we ignore anyon permutation patterns
other than C, if any). To read off the results for N ¼ 1 from
those for N ≥ 2, we just need to ignore the cases where the
microscopic symmetry permutes anyons.

A. Example: Z2 × SOð3Þ
To illustrate our calculation of the anomaly of the Uð1Þ2N

topological order with p6 × SOð3Þ or p4 × SOð3Þ sym-
metry, let us first discuss the example where the symmetry
is Z2 × SOð3Þ in detail. It turns out that the calculation
of the anomaly when the symmetry is p6 × SOð3Þ or
p4 × SOð3Þ can be reduced to this example, by restricting
p6 or p4 to its various Z2 subgroups.
The anomalies associated with the Z2 × SOð3Þ sym-

metry are classified by

H4½Z2 × SOð3Þ;Uð1Þ� ≅ Z2: ð14Þ

Hence, there is only one type of nontrivial anomaly,
which can be detected by the anomaly indicator
I ¼ I3ðC2Uπ; C2U0

πÞ, where C2 is the generator of Z2

while Uπ and U0
π are elements of SO(3), representing the π

rotations about two orthogonal axes.
The SO(3) symmetry cannot permute anyons, because

all elements of SO(3) are continuously connected to the
identity element. Hence, only the generator of Z2, denoted
by C2 here, can permute anyons by charge conjugation, and
there are two possibilities.

1. No anyon permutation

The first possibility is that the action of C2 is trivial and
there is no anyon permutation. For the case withN ¼ 1, this
is the only possibility to be considered. Then, the symmetry
fractionalization classes are classified by

H2
ð1Þ½Z2 × SOð3Þ;Z2N � ¼ H2ðZ2;Z2NÞ ⊕ H2½SOð3Þ;Z2N �

¼ ðZ2Þ2: ð15Þ

Namely, there are two generators that generate four differ-
ent symmetry fractionalization classes. To understand
these symmetry fractionalization classes, we can directly
write down representative cochains of them. A represen-
tative cochain of the first generator, which we denote by
β̃ðxÞ and comes from H2ðZ2;Z2NÞ, is

β̃ðxÞðCi
2; C

j
2Þ ¼

iþ j − ½iþ j�2
2

¼ ij mod 2N; ð16Þ

with i; j∈ f0; 1g. The reason for the name of this generator
is explained in Appendix C. Physically, this generator
detects whether the anyon (1) carries a fractional charge
under the Z2 symmetry.
The second generator, which comes from H2½SOð3Þ;

Z2N �, detects whether the anyon (1) carries a half-odd-
integer spin under the SO(3) symmetry, and we denote it by
Nw2, for reasons explained in Appendix C. To have a
representative cochain ofNw2, it is convenient to consider a
Z2 × Z2 subgroup of SO(3) generated by Uπ and U0

π , and
an element in this subgroup can be written as Ui

πU0j
π ,

with i; j∈ f0; 1g. Then, restricting SO(3) to this Z2 × Z2

subgroup, the representative cochain of Nw2 is

ðNw2Þ
�
Ui1

π U0i2
π ; U

j1
π U0j2

π
�

¼ Nði1j1 þ i2j2 þ i1j2Þ mod 2N: ð17Þ

So the symmetry fractionalization classes can be
written as

w ¼ n1 · β̃ðxÞ þ n2 · Nw2 ð18Þ

and labeled as fn1; n2g with n1;2 ∈ f0; 1g. When the SO(3)
symmetry is restricted to its Z2 × Z2 subgroup generated
by Uπ and U0

π , a representative cochain can be taken as

w
�
Ci1
2 U

i2
π U0i3

π ; C
j1
2 U

j2
π U0j3

π
�

¼ n1i1j1 þ n2Nði2j2 þ i3j3 þ i2j3Þ mod 2N: ð19Þ

Combining the above equation and Eq. (4), we get

ηðaÞðC2Uπ; C2U0
πÞ ¼ ηðaÞðC2Uπ; C2UπÞ

¼ exp

�
iπ
N
aðn1 þ Nn2Þ

�
;

ηðaÞðC2U0
π; C2UπÞ ¼ exp

�
iπ
N
an1

�
: ð20Þ

Now we plug Eqs. (10), (11), (12), and (20) into Eq. (6)
(theU symbols therein can all be taken as 1 since there is no
anyon permutation) and get the anomaly indicator of the
state in symmetry fractionalization class fn1; n2g:

I3ðC2Uπ; C2U0
πÞ ¼ ð−1Þn1n2 : ð21Þ
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2. C2 acts as charge conjugation

The second possibility is that C2 acts by charge con-
jugation. This possibility occurs only if N ≥ 2. Then, the
symmetry fractionalization classes are classified by

H2
ð2Þ½Z2 × SOð3Þ;Z2N � ¼ ðZ2Þ2: ð22Þ

There are also two generators that generate four different
symmetry fractionalization classes, but these symmetry
fractionalization classes are different from those in
Sec. VI A 1. Explicitly, a representative cochain of the first
generator, which we denote by Nx2, is

ðNx2ÞðCi
2; C

j
2Þ ¼ Nij mod 2N; ð23Þ

with i; j∈ f0; 1g. The second generator also detects
whether the anyon (1) carries a half-odd-integer spin under
the SO(3) symmetry, and we also denote it by Nw2. The
representative cochain restricted to the Z2 × Z2 subgroup
generated by Uπ and U0

π is still given by Eq. (17).
So the symmetry fractionalization classes can be

written as

w ¼ n1 · Nx2 þ n2 · Nw2 ð24Þ

and also labeled as fn1; n2g with n1;2 ∈ f0; 1g. When the
SO(3) symmetry is restricted to its Z2 × Z2 subgroup
generated by Uπ and U0

π , a representative cochain can
be taken as

w
�
Ci1
2 U

i2
π U0i3

π ; C
j1
2 U

j2
π U0j3

π
�

¼ n1Ni1j1 þ n2Nði2j2 þ i3j3 þ i2j3Þ mod 2N: ð25Þ

Combining the above equation and Eq. (4), we get

ηðaÞðC2Uπ; C2U0
πÞ ¼ ηðaÞðC2Uπ; C2UπÞ

¼ exp ðiπaðn1 þ n2ÞÞ;
ηðaÞðC2U0

π; C2UπÞ ¼ exp ðiπan1Þ: ð26Þ

Now we plug Eqs. (10), (11), (12), (13), and (26) into
Eq. (6) and get the anomaly indicator of the state in
symmetry fractionalization class fn1; n2g:

I3ðC2Uπ; C2U0
πÞ ¼ ð−1Þðn1þ1Þn2N: ð27Þ

Hence, when N is even, the anomaly is always absent;
when N is odd, n1 ¼ 0, n2 ¼ 1 gives nonzero anomaly;
otherwise, the anomaly is absent.
With this warm-up, we are ready to classify Uð1Þ2N

topological quantum spin liquids enriched by p6 × SOð3Þ
or p4 × SOð3Þ symmetry using the framework in Sec. V.
The results are summarized in Table V.

B. p6 × SOð3Þ
The generator T1;2 and SO(3) cannot permute

anyons, [61] and only the generator C6 can permute anyons
by charge conjugation. Hence, there are two possibilities
regarding how p6 × SOð3Þ can permute anyons.
(1) Trivial C6 action: No anyon permutation.—In this

case, the possible symmetry fractionalization classes
are classified by

H2
ð1Þ½p6×SOð3Þ;Z2N �¼Z2N ⊕Zð2N;6Þ⊕Z2; ð28Þ

whose elements can be written as

w ¼ n1 · B̃
ð1Þ
xy þ n2 · B̃

ð1Þ
c2 þ n3 · Nw2 ð29Þ

and labeled by fn1;n2;n3g, with n1∈f0;…;2N−1g,
n2∈f0;…;ð2N;6Þ−1g, and n3 ∈ f0; 1g. Here, B̃ð1Þ

xy ,

B̃
ð1Þ
c2
, and Nw2 are generators of Z2N , Zð2N;6Þ, and

Z2, respectively (the representative cochains and the
reason for the names of these generators are given in

Appendix C). Physically, we can think of B̃
ð1Þ
xy ,

B̃
ð1Þ
c2 , and Nw2 as detecting whether the anyon

(1) carries projective representation under translation
symmetries C6 and SO(3), respectively [62]. For
each symmetry fractionalization class, the U and η
symbols can be obtained via Eqs. (4), (5), and (13).
Without considering anomaly matching, p6 ×

SOð3Þ symmetric Uð1Þ2N topological quantum spin
liquids are classified by fn1; n2; n3g, if no symmetry
permutes anyons. Recall that two symmetry frac-
tionalization classes related to each other by relab-
eling anyons are physically identical, so fn1; n2; n3g
and f½−n1�2N; ½−n2�ð2N;6Þ; n3g are identified.
As argued in the introduction and Sec. IV, in

systems with lattice symmetry, it is important to
consider anomaly matching for the classification
of symmetry-enriched topological quantum spin
liquids. The values of the anomaly indicators for
different lattice homotopy classes with p6 × SOð3Þ
symmetry are given in Table I. The anomaly indica-
tors for the Uð1Þ2N state in the symmetry fraction-
alization class fn1; n2; n3g can be calculated in a
way similar to Sec. VI A, which yields [63]

I1 ¼ ð−1Þn2n3 ; I2 ¼ ð−1Þðn1þn2Þn3 : ð30Þ

Therefore, by matching these anomaly indicators
with Table I, we arrive at the classification in Table III.

(2) Nontrivial C6 action: C6 as charge conjugation.—In
this case, the possible symmetry fractionalization
classes are given by

H2
ð2Þ½p6 × SOð3Þ;Z2N � ¼ ðZ2Þ3; ð31Þ
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whose elements can be written as

w ¼ n1 · NBxy þ n2 · NA2
c þ n3 · Nw2 ð32Þ

and labeled by fn1; n2; n3g with n1;2;3 ∈ f0; 1g.
Here, NBxy, NA2

c, and Nw2 are generators of the
three Z2 pieces, respectively (the representative
cochains and the reason for the names of these
generators are given in Appendix C). For each
symmetry fractionalization class, the U and η
symbols can be obtained via Eqs. (4), (5), and (13).
Similar to the previous case, without considering

anomaly matching, p6 × SOð3Þ symmetric Uð1Þ2N
topological quantum spin liquids are classified by
the above fn1; n2; n3g if C6 acts as charge con-
jugation. Calculating the anomaly indicators for
Uð1Þ2N with symmetry fractionalization class la-
beled by fn1; n2; n3g as before, we get

I1 ¼ ð−1Þðn2þ1Þn3N; I2 ¼ ð−1Þðn1þn2þ1Þn3N: ð33Þ

Therefore, by matching these anomaly indicators
with Table I, we arrive at the classification in
Table IV.

Summarizing all cases, the total number of different
p6 × SOð3Þ symmetry-enriched Uð1Þ2N topological quan-
tum spin liquids is summarized in Table V. Note that this
classification is complete for N ≤ 5 but incomplete for
N ≥ 6, because we have assumed that the only way the
symmetry can permute anyons is via charge conjugation,

TABLE III. Classification of symmetry-enriched Uð1Þ2N topo-
logical quantum spin liquids in lattice systems with p6 × SOð3Þ
symmetry, if no symmetry permutes anyons.

Lattice homotopy class Symmetry fractionalization class

0 fn1; n2; 0g, or fn1; n2; 1g
with n1;2 even

a fn1; n2; 1g with n1;2 odd
c fn1; n2; 1g with n1 odd, n2 even
aþ c fn1; n2; 1g with n1 even, n2 odd

TABLE IV. Classification of symmetry-enriched Uð1Þ2N topo-
logical quantum spin liquids in lattice systems with p6 × SOð3Þ
symmetry, if C6 acts as charge conjugation.

Lattice homotopy class Symmetry fractionalization class

0 fn1; n2; n3g for N even,
fn1; n2; 0g or f0; 1; 1g for N odd

a f1; 0; 1g for N odd
c f1; 1; 1g for N odd
aþ c f0; 0; 1g for N odd

TABLE V. Number of p6 × SOð3Þ and p4 × SOð3Þ symmetry-enriched Uð1Þ2N topological quantum spin liquids.
For the case with a p6 × SOð3Þ symmetry, each of the last two columns is written as a sum of two terms,
representing the number of states where no anyon is permuted by symmetries and where C6 acts as charge
conjugation, respectively. For the case with p4 × SOð3Þ symmetry, each of the last two columns is written as a sum
of four terms, representing the number of states where no anyon is permuted by symmetries, where C4 acts as charge
conjugation while T1;2 do not, where T1;2 act as charge conjugation while C4 does not, and where C4 and T1;2 all act
as charge conjugation, respectively. The details of the symmetry fractionalization class of each state can be found in
Tables III–IX.

Symmetry group Lattice homotopy class N ¼ 1 Odd N > 1 Even N

p6 × SOð3Þ 0 5
�
5½NðN;3Þþ1�

2

�
þ ð5Þ

�
5NðN;3Þ

2
þ 3

�
þ ð8Þ

a 1
�
NðN;3Þþ1

2

�
þ ð1Þ

�
NðN;3Þ

2

�
þ ð0Þ

c 1
�
NðN;3Þþ1

2

�
þ ð1Þ

�
NðN;3Þ

2

�
þ ð0Þ

aþ c 1
�
NðN;3Þþ1

2

�
þ ð1Þ

�
NðN;3Þ

2
þ 1

�
þ ð0Þ

p4 × SOð3Þ 0 9
�
9ðNþ1Þ

2

�
þ ð9Þ þ ð9Þ þ ð9Þ ð9N þ 6Þ þ ð12Þ þ ð20Þ þ ð20Þ

a 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð4Þ þ ð0Þ

b 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð0Þ þ ð4Þ

c 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðN þ 2Þ þ ð4Þ þ ð0Þ þ ð0Þ

aþ b 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð0Þ þ ð0Þ

aþ c 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð0Þ þ ð0Þ

bþ c 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð0Þ þ ð0Þ

aþ bþ c 1 ðNþ1
2
Þ þ ð1Þ þ ð1Þ þ ð1Þ ðNÞ þ ð0Þ þ ð0Þ þ ð0Þ
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while for N ≥ 6 a symmetry can, in principle, permute
anyons in other manners.

C. p4 × SOð3Þ
SO(3) cannot permute anyons, and both the generators

T1;2 and the generator C4 can permute anyons by charge
conjugation. Hence, there are four possibilities regarding
how p4 × SOð3Þ can permute anyons.
(1) Trivial T1;2 and C4 action.—In this case, the possible

symmetry fractionalization classes are given by

H2
ð1Þ½p4 × SOð3Þ;Z2N � ¼ Z2N ⊕ Zð2N;4Þ ⊕ ðZ2Þ2;

ð34Þ
whose elements can be labeled as

w ¼ n1 · B̃
ð1Þ
xy þ n2 · B̃

ð1Þ
c2

þ n3 · β̃ðAxþyÞ þ n4 · Nw2;

ð35Þ
with n1∈f0;…;2N−1g, n2 ∈ f0;…; ð2N; 4Þ − 1g,
and n3;4 ∈ f0; 1g. Here, B̃ð1Þ

xy , B̃
ð1Þ
c2
, β̃ðAxþyÞ, and

Nw2 are generators of Z2N , Zð2N;4Þ, and two Z2

pieces, respectively (the representative cochains and
the reason for the names of these generators are given
in Appendix C). For each symmetry fractionalization
class, the U and η symbols can be obtained via
Eqs. (4), (5), and (13).
Again, because symmetry fractionalization

classes related by relabeling anyons are physically
identical, different symmetry realizations on Uð1Þ2N
in this case are specified by fn1; n2; n3; n4g, where
fn1; n2; n3; n4g is identified with f½−n1�2N;
½−n2�ð2N;4Þ; n3; n4g. Calculating the anomaly indica-
tors for the Uð1Þ2N state with symmetry fractionali-
zation class labeled by fn1; n2; n3; n4g, we get

I1¼ð−1Þn2n4 ; I2¼ð−1Þðn1þn2Þn4 ; I3¼ð−1Þðn2þn3Þn4 :

ð36Þ

Therefore, by matching these anomaly indicators
with Table II, we arrive at the classification in
Table VI.

(2) Nontrivial C4 action, trivial T1;2 action.—In this
case, the possible symmetry fractionalization classes
are given by

H2
ð2Þ½p4 × SOð3Þ;Z2N � ¼ ðZ2Þ4: ð37Þ

We can write these elements as

w ¼ n1 · NBxy þ n2 · NBc2

þ n3 · β̃ðAxþyÞ þ n4 · Nw2; ð38Þ

with n1;2;3;4 ∈ f0; 1g. Here, NBxy, NBc2 , β̃ðAxþyÞ,
and Nw2 are generators of the four Z2 pieces,
respectively (the representative cochains and the
reason for the names of these generators are given
in Appendix C). For each symmetry fractionaliza-
tion class, the U and η symbols can be obtained via
Eqs. (4), (5), and (13).
Calculating the anomaly indicators for Uð1Þ2N

with symmetry fractionalization class labeled by
ðn1; n2; n3; n4Þ as before, we get

I1 ¼ ð−1Þn2n4N; I2 ¼ ð−1Þðn1þn2Þn4N;

I3 ¼ ð−1Þðn2Nþn3Þn4 : ð39Þ

Therefore, by matching these anomaly indicators
with Table II, we arrive at the classification in
Table VII.

(3) Nontrivial T1;2 action, trivial C4 action.—In this
case, the possible symmetry fractionalization classes
are given by

H2
ð3Þ½p4 × SOð3Þ;Z2N � ¼ Zð2N;4Þ ⊕ ðZ2Þ3: ð40Þ

TABLE VI. Classification of symmetry-enriched Uð1Þ2N topo-
logical quantum spin liquids in lattice systems with p4 × SOð3Þ
symmetry, if no symmetry permutes anyons.

Lattice homotopy class Symmetry fractionalization class

0 fn1; n2; n3; 0g, or fn1; n2; 0; 1g
with n1;2 even

a fn1; n2; 1; 1g with n1;2 odd
b fn1; n2; 0; 1g with n1 odd, n2 even
c fn1; n2; 1; 1g with n1;2 even
aþ b fn1; n2; 1; 1g with n1 even, n2 odd
aþ c fn1; n2; 0; 1g with n1;2 odd
bþ c fn1; n2; 1; 1g with n1 odd, n2 even
aþ bþ c fn1; n2; 0; 1g with n1 even, n2 odd

TABLE VII. Classification of symmetry-enriched Uð1Þ2N topo-
logical quantum spin liquids in lattice systems with p4 × SOð3Þ
symmetry, if C4 acts as charge conjugation.

Lattice homotopy
class Symmetry fractionalization class

0 fn1; n2; n3; 0g or fn1; n2; 0; 1g for N even,
fn1; n2; n3; 0g or f0; 0; 0; 1g for N odd

a f1; 1; 1; 1g for N odd
b f1; 0; 0; 1g for N odd
c fn1; n2; 1; 1g for N even,

f0; 0; 1; 1g for N odd
aþ b f0; 1; 1; 1g for N odd
aþ c f1; 1; 0; 1g for N odd
bþ c f1; 0; 1; 1g for N odd
aþ bþ c f0; 1; 0; 1g for N odd
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We can write these elements as

w ¼ n1 · B̃
ð3Þ
xy þ n2 · NBc2 þ n3 · NA2

xþy þ n4 · Nw2;

ð41Þ
with n1 ∈ f0;…; ð2N; 4Þ − 1g and n2;3;4 ∈ f0; 1g.
Here, B̃ð3Þ

xy , NBc2 , NA2
xþy, and Nw2 are generators

of the Zð2N;4Þ and the three Z2 pieces, respectively
(the representative cochains and the reason for the
names of these generators are given in Appendix C).
For each symmetry fractionalization class, theU and
η symbols can be obtained via Eqs. (4), (5), and (13).
Again, because symmetry fractionalization

classes related by relabeling anyons are physically
identical, different symmetry realizations on Uð1Þ2N
in this case are specified by fn1; n2; n3; n4g, where
fn1; n2; n3; n4g is identified with f½−n1�ð2N;4Þ;
n2; n3; n4g. Calculating the anomaly indicators for
Uð1Þ2N with symmetry fractionalization class la-
beled by ðn1; n2; n3; n4Þ as before, we get

I1 ¼ ð−1Þðn1þn2NÞn4 ; I2 ¼ ð−1Þn2n4N;
I3 ¼ ð−1Þðn2þn3þ1Þn4N: ð42Þ

Therefore, by matching these anomaly indicators
with Table II, we arrive at the classification in
Table VIII.

(4) Nontrivial T1;2 and C4 action.—In this case, the
possible symmetry fractionalization classes are
given by

H2
ð4Þ½p4 × SOð3Þ;Z2N � ¼ Zð2N;4Þ ⊕ ðZ2Þ3: ð43Þ

We can label these elements as

w ¼ n1 · B̃
ð4Þ
xy þ n2 · NBc2 þ n3 · NA2

xþy þ n4 · Nw2;

ð44Þ

with n1 ∈ f0;…; ð2N; 4Þ − 1g and n2;3;4 ∈ f0; 1g.
Here, B̃ð4Þ

xy , NBc2 ,
gA2
xþy, and Nw2 are generators

of the Zð2N;4Þ and the three Z2 pieces, respectively
(the representative cochains and the reason for the
names of these generators are given in Appendix C).
For each symmetry fractionalization class, theU and
η symbols can be obtained via Eqs. (4), (5), and (13).
Again, because symmetry fractionalization

classes related by relabeling anyons are physically
identical, different symmetry realizations on Uð1Þ2N
in this case are specified by fn1; n2; n3; n4g, where
fn1; n2; n3; n4g is identified with f½−n1�ð2N;4Þ;
n2; n3; n4g. Calculating the anomaly indicators for
Uð1Þ2N with symmetry fractionalization class la-
beled by ðn1; n2; n3; n4Þ as before, we get

I1 ¼ ð−1Þn2n4N; I2 ¼ ð−1Þðn1þn2NÞn4 ;

I3 ¼ ð−1Þðn2þn3þ1Þn4N: ð45Þ

Therefore, by matching these anomaly indicators
withTable II,we arrive at the classification inTable IX.

Summarizing all cases, the total number of different
p4 × SOð3Þ symmetry-enriched Uð1Þ2N topological quan-
tum spin liquids is summarized in Table V. Note that this
classification is complete for N ≤ 5 but incomplete for
N ≥ 6, because we have assumed that the only way the
symmetry can permute anyons is via charge conjugation,
while for N ≥ 6 a symmetry can, in principle, permute
anyons in other manners.

VII. ISINGðνÞ TOPOLOGICALORDERS: KITAEV’S
NON-ABELIAN CHIRAL SPIN LIQUIDS

Our next class of examples are non-Abelian chiral spin
liquid states, which we dub the “IsingðνÞ states,” with ν an
odd integer. Their topological properties are discussed in

TABLE VIII. Classification of symmetry-enriched Uð1Þ2N
topological quantum spin liquids in lattice systems with p4 ×
SOð3Þ symmetry, if translations act as charge conjugation.

Lattice homotopy
class Symmetry fractionalization class

0 fn1; n2; n3; 0g, f0; n2; n3; 1g,
or f2; n2; n3; 1g for N even,
fn1; n2; n3; 0g or f0; 0; 1; 1g for N odd

a f1; n2; n3; 1g for N even,
f1; 0; 1; 1g for N odd

b f1; 1; 0; 1g for N odd
c f0; 0; 0; 1g for N odd
aþ b f0; 1; 0; 1g for N odd
aþ c f1; 0; 0; 1g for N odd
bþ c f1; 1; 1; 1g for N odd
aþ bþ c f0; 1; 1; 1g for N odd

TABLE IX. Classification of symmetry-enriched Uð1Þ2N topo-
logical quantum spin liquids in lattice systems with p4 × SOð3Þ
symmetry, if translations and C4 both act as charge conjugation.

Lattice homotopy
class Symmetry fractionalization class

0 fn1; n2; n3; 0g, f0; n2; n3; 1g,
or f2; n2; n3; 1g for N even,
fn1; n2; n3; 0g or f0; 0; 1; 1g for N odd

a f1; 1; 0; 1g for N odd
b f1; n2; n3; 1g for N even,

f1; 0; 1; 1g for N odd
c f0; 0; 0; 1g for N odd
aþ b f0; 1; 0; 1g for N odd
aþ c f1; 1; 1; 1g for N odd
bþ c f1; 0; 0; 1g for N odd
aþ bþ c f0; 1; 1; 1g for N odd
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detail by Kitaev [26] and are reviewed below. The exactly
solvable model in Ref. [26] has triggered enormous interest
in realizing the Isingð1Þ state in real materials [64–66]. We
remark that usually these Kitaev quantum spin liquids are
discussed in the context of spin-orbit coupled systems, but
here we consider them in systems without spin-orbit
coupling for simplicity. In particular, we classify IsingðνÞ
states in lattice systems with p6 × SOð3Þ or p4 × SOð3Þ
symmetry.
The IsingðνÞ state has three anyons fI; σ;ψg, where the

trivial anyon here is denoted I and the nontrivial fusion
rules are given by

ψ × ψ ¼ I; σ × ψ ¼ σ; σ × σ ¼ I þ ψ : ð46Þ

The nontrivial F symbols are

Fψσψ
σ ¼ Fσψσ

ψ ¼ −1;

½Fσσσ
σ �ab ¼

ϰσffiffiffi
2

p


1 1

1 −1

�
ab
: ð47Þ

Here, the column and row labels of the matrix take values I
and ψ (in this order). All other F symbols are 1 if it is
compatible with the fusion rule and 0 if it is not. ϰσ ¼
ð−1Þðν2−1Þ=8 is the Frobenius-Schur indicator of σ.
The nontrivial R symbols are

Rψψ ¼ −1; Rψσ
σ ¼ Rσψ

σ ¼ ð−iÞν;
Rσσ
I ¼ ϰσe−iðπ=8Þν; Rσσ

ψ ¼ ϰσeið3π=8Þν: ð48Þ

The topological spins are θψ ¼ −1 and θσ ¼ eiðπ=8Þν, and
the chiral central charge c− ¼ ðν=2Þ.
The topological symmetry of IsingðνÞ is trivial, and no

symmetry of IsingðνÞ can permute anyons. The U symbol
and a set of η symbols can all be chosen to be 1.
The symmetry fractionalization classes of p6 × SOð3Þ

are classified by

H2½p6 × SOð3Þ;Z2� ≅ ðZ2Þ3: ð49Þ

We can label these elements as

w ¼ n1 · Bxy þ n2 · A2
c þ n3 · w2; ð50Þ

with n1;2;3 ∈ f0; 1g. The symmetry fractionalization classes
of p4 × SOð3Þ are given by

H2½p4 × SOð3Þ;Z2� ≅ ðZ2Þ4: ð51Þ

We can label these elements as

w ¼ n1 · Bxy þ n2 · Bc2 þ n3 · A2
xþy þ n4 · w2; ð52Þ

with n1;2;3;4 ∈ f0; 1g. The representative cochains of these
elements are presented in Appendix C. Physically, these
generators can be viewed as detecting whether the non-
Abelian anyon σ carries a projective quantum number
under these global symmetries. For each symmetry frac-
tionalization class, theU and η symbols can be obtained via
Eqs. (4) and (5).
The above discussion implies that, without considering

anomaly matching, there are in total 23 ¼ 8 different
p6 × SOð3Þ symmetric IsingðνÞ states and 24 ¼ 16 different
p4 × SOð3Þ symmetric IsingðνÞ states. Calculating the
anomaly indicators for the IsingðνÞ state in a way similar
to the calculation for the Uð1Þ2N state, we find that, for any
symmetry fractionalization class of either p6 × SOð3Þ or
p4 × SOð3Þ symmetry, all anomaly indicators always evalu-
ate to 1 and, hence, the anomaly is always absent. Therefore,
all p6 × SOð3Þ or p4 × SOð3Þ symmetry-enriched IsingðνÞ
topological quantum spin liquids can emerge in lattice
systems within lattice homotopy class 0 (including, for
example, honeycomb lattice spin-1=2 system or spin-1
system on any lattice) but no other lattice homotopy class
(including, for example, spin-1=2 system on triangular,
kagome, square, and checkerboard lattices). We notice that,
in most previous discussions of the Isingð1Þ state in spin-orbit
coupled systems, the underlying lattice systems indeed have
a trivial anomaly, since they can be obtained from the lattice
homotopy class 0 here by breaking certain symmetries.

VIII. ZN TOPOLOGICAL ORDERS:
GENERALIZED TORIC CODES

In this section, we consider the ZN topological order,
which is the ZN generalization of the famous Z2 topo-
logical order [3,7,67–71]. The case with N ¼ 2 has been
studied extensively in many different types of lattice
systems. However, as mentioned in the introduction, when
N > 2, these states do not allow a description in terms of a
simple parton mean field (instead, the partons have to be
strongly interacting), and they are much less explored (see
examples in Refs. [72–77]). Our framework in Sec. V
allows us to classify a generalZN topological quantum spin
liquid enriched by a general symmetry. For concreteness,
the symmetry we consider below is one of these four:
p6m × SOð3Þ × ZT

2 , p4m × SOð3Þ × ZT
2 , p6m × ZT

2 , and
p4m × ZT

2 , where p6m and p4m are lattice symmetries,
while SO(3) and ZT

2 are on-site spin rotational symmetry
and time-reversal symmetry, respectively.
In the ZN topological order, there are N2 anyons in total,

which can be labeled by two integers as a ¼ ðae; amÞ, with
ae; am ∈ f0;…; N − 1g. Following the convention in the
Z2 toric code, we call the anyon labeled by (1,0) as e and
the anyon labeled by (0,1) as m. The fusion rules are
elementwise addition modulo N, i.e.,

ðae; amÞ × ðbe; bmÞ ¼ ð½ae þ be�N; ½am þ bm�NÞ: ð53Þ
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In a choice of gauge, the F symbols of this topological
order are all 1, and the R symbols are given by

Rab ¼ eið2π=NÞambe : ð54Þ

The topological symmetry group is complicated to
determine for generalN [59,78]. ForN ¼ 2, the topological
symmetry is Z2 × ZT

2 , generated by the unitary electric-
magnetic duality symmetry S that exchanges e and m, i.e.,
ðae; amÞ → ðam; aeÞ, and an antiunitary symmetry T which
exchanges e and m the same way as S. For this Z2 × ZT

2

symmetry, we can choose the U symbols as

Ugða; b; cÞ ¼
� ð−1Þambe ; g permutes anyons;

1; otherwise
ð55Þ

and a set of η symbols as

ηaðg;hÞ ¼
� ð−1Þaeam ; g;h permute anyons;

1; otherwise;
ð56Þ

with ðae; amÞ and ðbe; bmÞ the anyon labels of anyons a and
b, respectively.
For N ≥ 3, there is always a ZT

4⋊Z2 topological sym-
metry. The antiunitary ZT

4 is generated by an action
T∶ðae; amÞ → ðam; ½−ae�NÞ, and the unitary Z2 is gener-
ated by an action S∶ðae; amÞ → ðam; aeÞ. The two gen-
erators satisfy the relation

S2 ¼ 1; T4 ¼ 1; STS ¼ T−1: ð57Þ

For this ZT
4⋊Z2 symmetry, writing a group element as

g ¼ Tg1Sg2 , with g1 ∈ f0; 1; 2; 3g and g2 ∈ f0; 1g, we can
choose the U symbols as

Ugða; b; cÞ ¼
�
eð2πi=NÞambe ; g1 þ g2is odd;

1; otherwise
ð58Þ

and a set of η symbols as

ηaðg;hÞ¼
�
eð2πi=NÞaeam ; g1þg2;h1þh2 are odd;

1; otherwise:
ð59Þ

For certain N ≥ 3, there can be other topological
symmetries, in addition to the above Z4⋊ZT

2 symmetry.
For example, when N ¼ 5, the action ðae; amÞ → ð½3ae�5;
½3am�5Þ is an antiunitary topological symmetry. For sim-
plicity, below we focus on the cases where N ¼ 2, 3, 4.
The analysis of the classification is similar to the

previous cases. In the present case, we need to understand
the anomaly indicators of the p6m × SOð3Þ × ZT

2 ,
p4m × SOð3Þ × ZT

2 , p6m × ZT
2 , and p4m × ZT

2 sym-
metries. These anomaly indicators and their values for
different lattice homotopy classes can be found in

Appendix D. Carrying out the procedure listed in
Sec. V, we can obtain the classification. In Table X, we
list the number of different symmetry-enriched ZN topo-
logical quantum spin liquids in different lattice homotopy
classes under these symmetries. The precise symmetry
fractionalization classes in each case can be found in
Appendix C. We also upload codes using which one
can (i) see all symmetry fractionalization classes of the
symmetry-enriched states within each lattice homotopy
class and (ii) check which lattice homotopy class a given
symmetry-enriched state belongs to [79]. Below, we com-
ment on some of these results.
For the case with N ¼ 2 and the p6m × SOð3Þ × ZT

2

symmetry, the classification was carried out for spin-1=2
systems on a triangular, kagome, and honeycomb lattice
[14,15,80], which belongs to the lattice homotopy class a,
c, and 0, respectively. For lattice homotopy classes a and c,
our results agree with those in Refs. [14,15]. For the lattice
homotopy class 0, using the parton-mean-field approach
and assuming that one of e andm carries spin 1=2 under the
SO(3) symmetry, Ref. [80] found 128 different states. We
find 336 states in total, where 128 of them have one of e
and m carrying half-odd-integer spin, and in the other 208
states both e and m carry integer spin, nine of which also
have symmetries permuting e and m. For the case with
N ¼ 2 and the p4m × SOð3Þ × ZT

2 symmetry, Ref. [81]
found 64 states on the square lattice spin-1=2 system,
which belongs to our lattice homotopy class a, agreeing
with our results.
For the case with N ¼ 2 and the p4m × ZT

2 symmetry,
using the parton-mean-field approach, Ref. [82] found
64 states on the square lattice system with Kramers doublet
spins, which can all be obtained from the p4m × SOð3Þ ×
ZT

2 symmetric Z2 topological quantum spin liquids by
breaking the SO(3) symmetry. Suppose, in the p4m ×
SOð3Þ × ZT

2 symmetric version of these states, the anyon e
carries half-odd-integer spin under SO(3); then, projective
quantum numbers ofm are fixed for all these 64 states [14].
In particular, m experiences no nontrivial symmetry frac-
tionalization pattern that simultaneously involves the time-
reversal and lattice symmetries. The absence of such a
symmetry fractionalization pattern still holds in the 64
“within-parton” p4m × ZT

2 symmetric states obtained by
breaking SO(3). However, in addition to these 64 states, we
have found 117 − 64 ¼ 53 other states, with their sym-
metry fractionalization classes presented in Appendix E
(anyons are not permuted by symmetries in all these 117
states). A common property of these 53 states is the
presence of nontrivial symmetry fractionalization involving
both the lattice symmetry and time-reversal symmetry
for the anyon m; e.g., translation and time reversal may
not commute for m. Furthermore, for all 117 states, the
C2 ≡ C2

4 symmetry fractionalizes on the m anyon; i.e.,
effectively, C2

2 ¼ −1 for m. Usually, the interpretation of
this phenomenon is that there is a background e anyon at
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each square lattice site (the C4 center), and the mutual
braiding statistics between e and m yields C2

2 ¼ −1.
However, for 16 of the 53 “beyond-parton” states,
ðT1C2Þ2 ¼ ðT2C2Þ2 ¼ −1 for m, which seems to suggest
that there are also background e anyons at the twofold
rotation centers of T1C2 and T2C2, although microscopi-
cally there is no spin at those positions. So the analysis
based on anomaly matching suggests that the simple
picture where the fractionalization of rotational sym-
metries purely comes from background anyons is actually
incomplete.
The above example shows that, even for simple states

like the Z2 topological order, the parton-mean-field
approach may miss some of their symmetry enrichment
patterns, and our framework in Sec. V is more general. Note
that here by “parton mean field” we are referring to the
usual parton mean fields where the partons are noninter-
acting. If the partons are allowed to interact strongly, say,
if they form nontrivial interacting symmetry-protected
topological states under the projective symmetry group
of the partons, symmetry-enriched states not captured by

Ref. [82] may arise, but it is technically complicated to
study them. Also, by using parton constructions other than
the one in Ref. [82], one may also obtain states beyond
those in Ref. [82], but it is challenging to make this
approach systematic.
We also notice that the number of Z3 topological

quantum spin liquids is nonzero only in the lattice
homotopy class 0. This phenomenon is actually true for
general odd N. To see it, first notice all lattice homotopy
classes except 0 have some mixed anomalies between the
SO(3) symmetry and the lattice symmetry [8]. In order to
match this anomaly, it is impossible for both e and m to
carry integer spin. Suppose that e carries half-odd-integer
spin, and consider threading an SO(3) monopole through
the system. The monopole will be viewed as a π flux from
the perspective of e. Then, the local nature of the monopole
implies that it must trap an anyon that has π braiding
statistics with e. For odd N, no such anyon exists, which
leads to a contradiction. So ZN topological quantum spin
liquids with N odd cannot possibly arise in lattice homo-
topy class other than 0. Note that the above argument does

TABLE X. Number of various topological quantum spin liquids enriched by p6m × SOð3Þ × ZT
2 , p6m × ZT

2 ,
p4m × SOð3Þ × ZT

2 , or p4m × ZT
2 symmetry, where the third, fourth, and fifth columns represent Z2, Z3, and Z4

topological orders, respectively, while the last two columns represent the Uð1Þ2 × Uð1Þ−2 and Uð1Þ4 × Uð1Þ−4
topological orders, respectively. The details of the symmetry fractionalization classes of each state can be found in
Appendix C. For Z2 and Z4 topological orders, we also upload codes containing the symmetry fractionalization
class for each state in each lattice homotopy class [79]. For Z3, Uð1Þ2 × Uð1Þ−2, and Uð1Þ4 × Uð1Þ−4 topological
orders, all symmetry-enriched states are anomaly-free.

Symmetry group Lattice homotopy class Z2 Z3 Z4 Uð1Þ2 × Uð1Þ−2 Uð1Þ4 × Uð1Þ−4
p6m × SOð3Þ × ZT

2
0 336 8 16 453 32 144
a 8 0 70 0 0
c 8 0 70 0 0

aþ c 4 0 82 0 0

p6m × ZT
2

0 208 8 4725 16 72
a 13 0 61 0 0
c 13 0 61 0 0

aþ c 12 0 167 0 0

p4m × SOð3Þ × ZT
2

0 3653 9 886 740 128 1344
a 64 0 5008 0 0
b 64 0 5008 0 0
c 64 0 8872 0 0

aþ b 16 0 636 0 0
aþ c 16 0 656 0 0
bþ c 16 0 656 0 0

aþ bþ c 8 0 318 0 0

p4m × ZT
2

0 2629 9 280 852 64 672
a 117 0 3491 0 0
b 117 0 3491 0 0
c 193 0 12 449 0 0

aþ b 33 0 513 0 0
aþ c 34 0 610 0 0
bþ c 34 0 610 0 0

aþ bþ c 21 0 309 0 0
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not rely on the time-reversal symmetry, and it is valid no
matter how the symmetries permute anyons.
For ZN topological quantum spin liquids in systems

belonging to a lattice homotopy class other than 0, which
requires N to be even, anyons (1, 0) and ð0; N=2Þ cannot
simultaneously carry half-odd-integer spin; otherwise,
there would be a mixed anomaly between the SO(3) and
time-reversal symmetries [83].

IX. Uð1Þ2N × Uð1Þ− 2N TOPOLOGICAL ORDERS:
GENERALIZATIONS OF THE
DOUBLE-SEMION STATE

In this section, we consider the Uð1Þ2N × Uð1Þ−2N
topological order, which is the generalization of the
double-semion state, i.e., the case with N ¼ 1.
Effectively, this state can be obtained by stacking a
Uð1Þ2N state, which is discussed in Sec. VI, on its time-
reversal partner, the Uð1Þ−2N state. In addition, these states
can also be constructed via the twisted quantum double
models or the string-net models [84,85]. We would like to
classify the Uð1Þ2N × Uð1Þ−2N topological order enriched
by one of these four symmetries: p6m × SOð3Þ × ZT

2 ,
p4m × SOð3Þ × ZT

2 , p6m × ZT
2 , and p4m × ZT

2 .
In a Uð1Þ2N × Uð1Þ−2N topological quantum spin liquid,

there are 4N2 anyons in total, which can be labeled by two
integers as a ¼ ðas; asÞ, with as; as̄ ∈ f0;…; 2N − 1g.
Following the convention in the double-semion state, we
call the anyon labeled by (1, 0) as s and the anyon labeled
by (0, 1) as s̄ (note in this convention that s and s̄ are not
antiparticles of each other). The fusion rules are element-
wise addition modulo 2N, i.e.,

ðas; as̄Þ × ðbs; bs̄Þ ¼ ð½as þ bs�2N; ½as̄ þ bs̄�2NÞ: ð60Þ

In a choice of gauge, the F symbols of the theory are

Fabc ¼ exp

�
i
2π

N
ðasðbs þ cs − ½bs þ cs�2NÞ

− as̄ðbs̄ þ cs̄ − ½bs̄ þ cs̄�2NÞÞ
�

ð61Þ

and the R symbols are

Rab ¼ exp

�
i
2π

N
ðasbs − as̄bs̄Þ

�
: ð62Þ

The topological symmetry group is complicated to
determine for general N, just like the Uð1Þ2N state [59,78].
Here, we list the topological symmetry group for N ¼ 1, 2.
For N ¼ 1, the topological symmetry is ZT

2 , generated by S̃
exchanging s and s̄, i.e.,

ðas; as̄Þ → ðas̄; asÞ: ð63Þ

We can choose the U symbols and a set of η symbols all
equal to 1.
For N ¼ 2, the topological symmetry is ZT

4⋊ZT
2 ,

generated by an order 2 antiunitary symmetry S̃ which
exchanges s and s̄, S̃∶ðas; as̄Þ → ðas̄; asÞ, and another order
4 antiunitary symmetry T, which permutes anyons in the
following way T∶ðas; as̄Þ → ðas̄; ½−as�2NÞ. The two gen-
erators satisfy the relation

S̃2 ¼ 1; T4 ¼ 1; S̃TS̃ ¼ T−1: ð64Þ

An element in ZT
4⋊ZT

2 can be written as Tg1 S̃g2 , with
g1 ∈ f0;…; 3g and g2 ∈ f0; 1g. To define the U symbols,
first we define the following function:

Ũðas; bsÞ ¼
� ð−1Þas bs ≠ 0;

1 bs ¼ 0:
ð65Þ

Given an element g∈ZT
4⋊ZT

2 , the U symbols can be
chosen such that

Ugða; b; cÞ ¼

8>>><>>>:
1 g1 ¼ 0;

Ũðas̄; bs̄Þ g1 ¼ 1;

Ũðas; bsÞŨðas̄; bs̄Þ g1 ¼ 2;

Ũðas; bsÞ g1 ¼ 3:

ð66Þ

And a set of η symbols can be chosen to be all identity.
Carrying out the procedure in Sec. V in a manner similar

to the previous examples, we can obtain the classification
of Uð1Þ2 × Uð1Þ−2 and Uð1Þ4 × Uð1Þ−4 topological
quantum spin liquids enriched by p6m × SOð3Þ × ZT

2 ,
p4m × SOð3Þ × ZT

2 , p6m × ZT
2 , or p4m × ZT

2 symmetry.
The results are summarized in Table X.
We notice that, in all symmetry groups considered here,

Uð1Þ2 × Uð1Þ−2 and Uð1Þ4 × Uð1Þ−4 can arise only in
the lattice homotopy class 0. Reference [86] presented
a physical reason for this phenomenon. If we consider
only the symmetry group p6m × SOð3Þ × ZT

2 and
p4m × SOð3Þ × ZT

2 , the following simpler argument can
explain it. To be concrete, suppose the symmetry group is
p6m × SOð3Þ × ZT

2 , and a similar argument can be made if
the symmetry group is p4m × SOð3Þ × ZT

2 . Now suppose
breaking the symmetry to p6 × SOð3Þ. Then, the system
can be viewed as a p6 × SOð3Þ symmetric Uð1Þ2N state
on top of a p6 × SOð3Þ symmetric Uð1Þ−2N state, and
these two states must have opposite anomalies under
the p6 × SOð3Þ symmetry; otherwise, they cannot be
connected by time reversal to form the original p6m ×
SOð3Þ × ZT

2 symmetric state. Namely, after breaking
p6m × SOð3Þ × ZT

2 to p6 × SOð3Þ, there is no remaining
anomaly, and the state is in lattice homotopy class 0.
Now we ask which lattice homotopy class with a p6m ×
SOð3Þ × ZT

2 symmetry becomes the lattice homotopy
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class 0 with a p6 × SOð3Þ symmetry after this symmetry
breaking. From the representative configurations of all
lattice homotopy classes in Sec. IV, clearly only the lattice
homotopy class 0 does.

X. DISCUSSION

In this paper, we have presented a general framework in
Sec. V to classify symmetry-enriched topological quantum
spin liquids in two spatial dimensions. This framework
applies to all topological quantum spin liquids, which may
be Abelian or non-Abelian and chiral or nonchiral. The
symmetry we consider may include both lattice symmetry
and internal symmetry, may contain antiunitary symmetry,
and may permute anyons. We then apply this framework to
various examples in Secs. VI–IX. As argued in the
introduction, our framework combines the advantages of
the previous approaches in the literature while avoiding
their disadvantages. Indeed, we are able to identify sym-
metry-enriched topological quantum spin liquids that are
not easily captured by the usual parton-mean-field
approach (see examples in Sec. VIII), and we can system-
atically distinguish different lattice systems with the same
symmetry group using their quantum anomalies.
We finish this paper by discussing some open questions.
(i) In this paper, we characterize a topological quantum

spin liquid with a lattice symmetry by one with an
internal symmetry via the crystalline equivalence
principle in Sec. III D. However, it is more ideal to
have a theory that directly describes topological
quantum spin liquids with lattice symmetries.
Such a theory should be able to tell how an

arbitrary symmetry acts on a state obtained by
creating some anyons from the ground state and
putting them at arbitrary positions. The symmetry
action should be some analog of Eq. (2), but it is
subtle to understand what constraints the analogs of
Ugða; b; cÞ and ηaðg;hÞ should satisfy. So far, this
question has been answered if the lattice symmetry
contains only translation symmetry [13], but for
cases with point group symmetries it is answered in
a very specific case, where the lattice symmetry is
reflection, and the state contains only two anyons
that are (i) antiparticles of each other, (ii) transformed
into each other under the reflection symmetry, and
(iii) located at two reflection-related positions [87].
It is useful to have a complete theory that can answer
this question in full generality. Such a theory is also
helpful for the purpose of identifying observable
signatures of different symmetry-enriched topologi-
cal quantum spin liquids.

(ii) Strictly speaking, our classification is a classification
of different patterns of how symmetries permute
anyons and the symmetry fractionalization patterns.
In principle, one should further consider how the
classification is modified upon stacking an invertible

state on the topological quantum spin liquid with the
same symmetry. This question is subtle, because
some nontrivial invertible states can be trivialized
in the presence of a long-range entangled state
[7,83,88]. We leave this problem for future study.

(iii) In this paper, we focus on how symmetry permutes
anyons and the symmetry fractionalization classes,
which can be viewed as the bulk properties of
different symmetry-enriched topological quantum
spin liquids. It is also interesting to explore their
boundary properties in the future. In particular,
sometimes the symmetry enrichment pattern may
enforce the boundary of the topological quantum
spin liquid to be gapless, even if it is nonchiral
[89,90]. Similarly, it is intriguing to study the
properties of defects in different symmetry-enriched
topological quantum spin liquids and examine their
potential to perform quantum computation [7,91].

(iv) It is useful to find numerical algorithms to identify
the symmetry enrichment pattern of a topological
quantum spin liquid that emerges in a lattice model
that is not fine-tuned and find experimental methods
to detect the symmetry enrichment pattern in experi-
ments. Some previous proposals for various specific
cases include Refs. [92–96], but it is useful to find
algorithms and methods applicable to the general
setting.

(v) After classifying different symmetry-enriched topo-
logical quantum spin liquids and finding methods to
detect them numerically and experimentally, it is
important to construct explicit models that realize
these topological orders. For many topological orders
enriched by internal symmetries, Refs. [97–100]
construct their exactly solvable models with explicit
Hamiltonians and ground-state wave functions.
Moreover, there are many proposals for realizing
symmetry-protected and symmetry-enriched topo-
logical states with lattice symmetries in the literature,
including Refs. [42,44,101–106]. We anticipate that
we can combine the above constructions to obtain
exactly solvable models with concrete Hamiltonians
that realize the symmetry-enriched topological quan-
tum spin liquids discussed in this paper.

It will be also interesting to find quantum materials
and develop quantum simulators to realize these
different phases and explore interesting continuous
quantum phase transitions out of them, which are
beyond the conventional Landau-Ginzburg-Wilson-
Fisher paradigm.

(vi) In this paper, our focus is topological quantum spin
liquids in two spatial dimensions. It is interesting to
generalize our work to other systems, such as
fermionic systems, systems in higher dimensions,
systems with spin-orbit coupling, gapless systems,
and fractonic systems.
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In particular, many interesting experimental sys-
tems feature spin-orbit couplings, and the general
framework in the present paper can be straightfor-
wardly extended to such systems. Because systems
with spin-orbit coupling can often be obtained by
breaking some symmetries in systems without spin-
orbit coupling, there can be two main differences
between these two types of systems. First, compared
to systems without spin-orbit coupling, the distinc-
tion between some quantum phases may disappear
in systems with spin-orbit coupling, since the latter
has a smaller symmetry compared to the former and
the relevant distinction may be well defined only in
the presence of a larger symmetry. Second, there can
be quantum phases that can be realized in systems
with spin-orbit coupling but not in systems without
spin-orbit coupling; i.e., they are incompatible with a
larger symmetry. These are both intriguing phenom-
ena that deserve future investigation.
Also, there are many experimental candidates

of (3þ 1)-dimensional symmetry-enriched gapless
U(1) quantum spin liquids in pyrochlores [107],
and their classification has been discussed within
the framework of projective symmetry groups
[108–113]. As discussed in the present paper, the
classification based on projective symmetry groups
may be incomplete. Using more general approaches,
U(1) quantum spin liquids with only internal sym-
metries have been classified [16,83,88,114], and
some examples of their lattice symmetry-enriched
versions have been constructed [115]. However,
a systematic classification of (3þ 1)-dimensional
U(1) quantum spin liquids enriched by both lattice
and internal symmetries is lacking, and it is inter-
esting to apply the idea in the present paper to those
settings in the future.

Codes for checking anomaly matching and details
of realizations for Z2 and Z4 topological order are
available [116].
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APPENDIX A: TRANSLATION BETWEEN THE
CHARACTERIZATION OF REFLECTION

SYMMETRY AND TIME-REVERSAL
SYMMETRY

It is a common folklore that “reflection symmetry ¼
time-reversal symmetry × charge conjugation.” However,
one precise formulation of the statement is based on the
CPT theorem, which is formulated in relativistic quantum
field theory and requires Lorentz symmetry as a premise
[117]. In the context of topological order, even though
Lorentz symmetry is not explicitly present, it is also widely
believed that the statement also holds true. However, the
precise correspondence between reflection symmetry and
time-reversal symmetry, especially the matching between
the data fρg;Ugða; b; cÞ; ηaðg;hÞg for these two sym-
metries, is little known in the literature. We summarize
this correspondence in this appendix.
For this purpose, we need more formal treatments of the

topological order in terms of a unitary modular tensor
category (UMTC), which go beyond what is reviewed in
Sec. III, and we refer the interested readers to Sec. II in
Ref. [20] for the basics. Following the convention of
Refs. [7,87,118], we model the time-reversal symmetry
action on the UMTC as a C-antilinear functor and the
(unitary) reflection symmetry action as an antimonoidal
functor (also see Ref. [27] for slightly different treatments).
Therefore, mathematically speaking, in this appendix we
establish a precise correspondence between the data of a
C-antilinear functor and the data of an antimonoidal
functor. We believe that such correspondence will imply
the correspondence of the data fρg;Ugða; b; cÞ; ηaðg;hÞg
for these two symmetries on the explicit wave functions of
the topological order, and we defer it to future study.
Throughout the appendix, we assume that the reflection

symmetry is unitary. We can also consider antiunitary
reflection symmetry, which in the crystalline equivalence
principle should correspond to a unitary symmetry which
does not reflect spacetime. Following the treatment in this
appendix, we can similarly establish a correspondence
between a C-linear functor for the unitary symmetry and a
C-antilinear antimonoidal functor for the antiunitary reflec-
tion symmetry. The details can be worked out by following
closely the treatment in this appendix, and we omit them.
Recall that anyon lines may be “bent” using the A and B

symbols, given diagrammatically by

ðA1Þ

ðA2Þ
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They can be expressed in terms of F symbols by

½Aab
c �μν ¼

ffiffiffiffiffiffiffiffiffiffi
dadb
dc

s
ϰ�a
h
Fāab
b

i�
1;ðc;μ;νÞ

; ðA3Þ

½Bab
c �μν ¼

ffiffiffiffiffiffiffiffiffiffi
dadb
dc

s h
Fabb̄
a

i
ðc;μ;νÞ;1

; ðA4Þ

where the phase ϰa is the Frobenius-Schur indicator

ϰa ¼ daFaāa
a11 : ðA5Þ

Let us start with a time-reversal symmetry T and
construct a unitary reflection symmetry R from T as
follows. The action of R on anyon a is

R∶a → T ā; ðA6Þ

and the action of R on the topological state ja; b; ciμ is

FRja; b; ciμ ≡
X
ν

URðRb;Ra;RcÞμνjRb;Ra;Rciν; ðA7Þ

whereURða; b; cÞ is an Nc
ab × Nc

ab matrix that is defined in
terms of matrix multiplication as follows:

URða; b; cÞ≡UT ðb̄; ā; c̄Þ�
�
Bb̄;ā
c̄

���
Ac̄;a
b̄

��
Bc;b̄
a

��
; ðA8Þ

and we suppress indices when Nc
ab > 1. Note that the

positions of Ra and Rb are flipped compared to a and b on
the two sides of Eq. (A7). Therefore, we call FR an
antimonoidal functor instead of a monoidal functor. The
extra factors take account of the “flipping” of anyons after
charge conjugation.
Now we explicitly check that various consistency con-

ditions for antimonoidal functors can indeed be satisfied.
To preserve the structure of braiding and fusion, under the
action of R, the F and R symbols should transform
according to

FR½Fabc
def� ¼ URðRb;Ra;ReÞURðRc;Re;RdÞ

�
F

RcRbRa
Rd

�
−1
ReRf

U−1
R ðRc;Rb;RfÞU−1

R ðRf;Ra;RdÞ ¼ Fabc
def;

FR½Rab
c � ¼ URðRa;Rb;RcÞ

�
R

RaRb
Rc

�
−1
URðRb;Ra;RcÞ−1 ¼ Rab

c : ðA9Þ

This is indeed satisfied if we let UR be the expression
in Eq. (A8), which can be proven by a straightforward
diagrammatic manipulation.
Under a vertex basis gauge transformation, Γab

c ∶Vab
c →

Vab
c , according to the right-hand side of Eq. (A8),

½URða; b; cÞ�μν transforms in the following way:

ŨRða; b; cÞμν ¼
X
μ0;ν0

h
Γ

R̄bR̄a
R̄c

i
μ;μ0

Ugða; b; cÞμ0ν0 ½ðΓab
c Þ−1�ν0ν;

ðA10Þ

with the shorthand R̄ ¼ R−1. This is indeed what we
expect from an antimonoidal functor. Here, we use the
gauge-fixing condition Γa1

a ¼ Γ1a
a ¼ Γāa

1 ¼ 1 regarding the
vertex basis gauge transformation. Under a symmetry
action gauge transformation, ½URða; b; cÞ�μν transforms
in the following way:

ŨRða; b; cÞμν ¼
γT ðāÞ�γT ðb̄Þ�

γT ðc̄Þ�
URða; b; cÞμν; ðA11Þ

which is also what we expect.
Finally, we should write down how the η symbols match.

This can be done by considering the consistency equation
between U symbols and η symbols. For example, suppose

g is some unitary symmetry that does not reverse orienta-
tion, and we have

κR;gða;b;cÞ≡URða;b;cÞ−1UgðR̄b;R̄a;R̄cÞ−1URgða;b;cÞ

¼ κT ;gðb̄;ā; c̄Þ� ¼
ηāðT ;gÞ�ηb̄ðT ;gÞ�

ηc̄ðT ;gÞ� : ðA12Þ

Hence, the correspondence between η symbols should be
given by the following equation:

ηaðR;gÞ ¼ ηāðT ;gÞ�: ðA13Þ

Following similar derivation, we have

ηaðg;RÞ ¼ ηāðg; T Þ�
Ugðā; a; 1Þ

; ðA14Þ

ηaðR1;R2Þ ¼ ηaðT 1; T 2ÞUT 1
ða; ā; 1Þ:

ðA15Þ

It is straightforward to check that the desired consistency
conditions for the η symbols of reflection symmetries are
also satisfied.
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APPENDIX B: WALLPAPER GROUP
SYMMETRIES: GROUP STRUCTURE

AND Z2 COHOMOLOGY

In this appendix, for the readers’ convenience, we collect
necessary information of the wallpaper group symmetries
appearing in this paper, p6, p6m, p4, and p4m, together
with its Z2 cohomology. This will be important in the
identification of symmetry fractionalization classes and the
calculation of anomaly matching. A complete list of the Z2

cohomology for all the 17 wallpaper group symmetries is
collected in Ref. [8].
The Z2 cohomology of wallpaper group symmetries is

presented in terms of its Z2 cohomology ring. The product
in the Z2 cohomology ring is understood as the cup
product. Namely, given ω∈HkðG;Z2Þ and η∈HnðG;Z2Þ,
we can define ω ∪ η∈HkþnðG;Z2Þ, which is abbreviated
to ωη in this paper, such that

ðω∪ηÞðg1;…;gkþnÞ¼ωðg1;…;gkÞ ·ηðgkþ1;…;glÞ: ðB1Þ

Here, · is simply the multiplication in Z2. By identifying a
set of generators A•, B•, etc., we can identify all elements
in the Z2 cohomology with the help of addition and cup
product.
We define a set of functions that take integers as their

arguments:

PðxÞ ¼
�
1; x is odd;

0; x is even;
PcðxÞ ¼ 1 − PðxÞ;

½x�a ¼ fy ¼ x ðmod aÞj0 ≤ y < ag;

PabðxÞ ¼
�
1; x ¼ b ðmod aÞ;
0; otherwise:

ðB2Þ

When writing down the cohomology corresponding
to the Lieb-Schultz-Mattis constraints, we also need
the cohomology of SO(3) and SOð3Þ × ZT

2 . We use
w2 ∈H2½SOð3Þ;Z2� to denote the second Stiefel-Whitney
class of SO(3) and t∈H1ðZ2;Z2Þ to denote the generator
for the Z2 cohomology of the time-reversal ZT

2 symmetry.

1. p6

This group is generated by T1, T2, and C6, two trans-
lations with translation vectors that have the same length
and an angle of 2π=3, and a sixfold rotational symmetry,
such that

C6
6 ¼ 1; C6T1C−1

6 ¼ T1T2;

C6T2C−1
6 ¼ T−1

1 ; T1T2 ¼ T2T1: ðB3Þ

An arbitrary element in p6 can be written as g ¼ Tx
1T

y
2C

c
6,

with x; y∈Z and c∈ f0; 1; 2; 3; 4; 5g.
The Z2 cohomology ring of p6 is

Z2½Ac;Bxy�=ðB2
xy ¼ BxyA2

cÞ: ðB4Þ

Here, H1ðp6;Z2Þ ¼ Z2, with generator ξ1 ¼ Ac, which
have a representative cochain:

ξ1ðgÞ ¼ c: ðB5Þ

H2ðp6;Z2Þ ¼ Z2
2, with generators λ1 ¼ Bxy and λ2 ¼ A2

c,
and we can choose the representative cochains to be

Bxyðg1; g2Þ ¼ P60ðc1Þy1x2 þ P61ðc1Þ
�
x2ðx2 − 1Þ

2
þ y1x2 − y2ðx2 þ y1Þ

�
þ P62ðc1Þ

�
y2ðy2 þ 1Þ

2
− x2 − y2ðx2 þ y1Þ

�
þ P63ðc1Þð−x2 þ y2 − y1x2Þ

þ P64ðc1Þ
�
x2ðx2 − 1Þ

2
þ y2 − y1x2 − y2ðx2 − y1Þ

�
þ P65ðc1Þ

�
y2ðy2 þ 1Þ

2
− y2ðx2 − y1Þ

�
; ðB6Þ

A2
cðg1; g2Þ ¼ c1c2: ðB7Þ

According to Ref. [8], the anomalies of p6 × SOð3Þ
symmetric lattice systems in lattice homotopy classes a, c,
and aþ c can be, respectively, written as

exp ðπiðBxy þ A2
cÞw2Þ; ðB8Þ

exp ðπiBxyw2Þ; ðB9Þ

exp ðπiA2
cw2Þ: ðB10Þ

2. p6m

This group is generated by T1, T2, C6, and M, where the
first three generators have the same properties as those in p6
and the last one is a mirror symmetry whose mirror axis
passes through theC6 center and bisects T1 and T2, such that

M2¼1; MC6M¼C−1
6 ; MT1M¼T2; MT2M¼T1;

C6
6¼1; C6T1C−1

6 ¼T1T2;

C6T2C−1
6 ¼T−1

1 ; T1T2¼T2T1: ðB11Þ
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An arbitrary element in p6m can be written as g ¼ Tx
1T

y
2C

c
6M

m, with x; y∈Z, c∈ f0; 1; 2; 3; 4; 5g, and m∈ f0; 1g.
The Z2 cohomology ring of p6m is

Z2½Ac; Am;Bxy�=ðB2
xy ¼ BxyðA2

c þ AcAmÞÞ: ðB12Þ

Here, H1ðp6m;Z2Þ ¼ Z2
2, with generators ξ1 ¼ Ac and ξ2 ¼ Am, which have representative cochains

ξ1ðgÞ ¼ c; ξ2ðgÞ ¼ m: ðB13Þ

H2ðp6m;Z2Þ ¼ Z4
2, with generators λ1 ¼ Bxy, λ2 ¼ A2

c, λ3 ¼ AcAm, and λ4 ¼ A2
m, and we can choose the representative

cochains to be

Bxyðg1; g2Þ ¼ P60ðc1Þ½Pcðm1Þy1x2 þm1y2ðx2 þ y1Þ�

þ P61ðc1Þ


Pcðm1Þ

�
x2ðx2 − 1Þ

2
þ y1x2 − y2ðx2 þ y1Þ

�
þm1

�
y2ðy2 − 1Þ

2
þ y1ð−x2 þ y2Þ

��
þ P62ðc1Þ



Pcðm1Þ

�
y2ðy2 þ 1Þ

2
− x2 − y2ðx2 þ y1Þ

�
þm1

�
x2ðx2 þ 1Þ

2
− y2 − y1x2

��
þ P63ðc1Þ½Pcðm1Þð−x2 þ y2 − y1x2Þ þm1ðx2 − y2 þ y2ðx2 − y1ÞÞ�

þ P64ðc1Þ


Pcðm1Þ

�
x2ðx2 − 1Þ

2
þ y2 − y1x2 − y2ðx2 − y1Þ

�
þm1

�
y2ðy2 − 1Þ

2
þ x2 þ y1ðx2 − y2Þ

��
þ P65ðc1Þ



Pcðm1Þ

�
y2ðy2 þ 1Þ

2
− y2ðx2 − y1Þ

�
þm1

�
x2ðx2 þ 1Þ

2
þ y1x2

��
; ðB14Þ

A2
cðg1;g2Þ¼c1c2; AcAmðg1;g2Þ¼m1c2;

A2
mðg1;g2Þ¼m1m2: ðB15Þ

According to Ref. [8], the anomalies of p6m × SOð3Þ ×
ZT

2 symmetric lattice systems in lattice homotopy classes a,
c, and aþ c can be, respectively, written as

exp ðπiðBxy þ A2
c þ AcAmÞðw2 þ t2ÞÞ; ðB16Þ

exp ðπiBxyðw2 þ t2ÞÞ; ðB17Þ

exp ðπiðA2
c þ AcAmÞðw2 þ t2ÞÞ: ðB18Þ

3. p4

This group is generated by T1, T2, and C4, two trans-
lations with perpendicular translation vectors that have
equal length, and a fourfold rotational symmetry, such that

C4
4 ¼ 1; C4T1C−1

4 ¼ T2;

C4T2C−1
4 ¼ T−1

1 ; T1T2 ¼ T2T1: ðB19Þ

An arbitrary element in p4 can be written as g ¼ Tx
1T

y
2C

c
4,

with x; y∈Z and c∈ f0; 1; 2; 3g.

The Z2 cohomology ring of p4 is

Z2½Ac;Axþy;Bc2 ;Bxy�=ðA2
c ¼ 0;AxþyAc ¼ 0;

BxyAxþy ¼ BxyAc;Bc2Axþy ¼ BxyAxþy þA3
xþy;

B2
xy ¼ BxyBc2Þ: ðB20Þ

Here, H1ðp4;Z2Þ ¼ Z2
2, with generators ξ1 ¼ Axþy and

ξ2 ¼ Ac, which have representative cochains

ξ1ðgÞ ¼ xþ y; ξ2ðgÞ ¼ c: ðB21Þ

H2ðp4;Z2Þ ¼ Z3
2, with generators λ1 ¼ Bxy, λ2 ¼ Bc2 , and

λ3 ¼ A2
xþy, and we can choose the representative cochains

to be

Bxyðg1; g2Þ ¼ Pcðc1Þy1x2 þ Pðc1Þy2ðy1 þ x2Þ; ðB22Þ

Bc2ðg1; g2Þ ¼
½c1�4 þ ½c2�4 − ½c1 þ c2�4

4
; ðB23Þ

A2
xþyðg1; g2Þ ¼ ðx1 þ y1Þðx2 þ y2Þ: ðB24Þ

According to Ref. [8], the anomalies of p4 × SOð3Þ
symmetric lattice systems in lattice homotopy classes a, b,
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c, aþ b, aþ c, bþ c, and aþ bþ c can be, respectively,
written as

exp ðπiðBxy þ Bc2 þ A2
xþyÞw2Þ; ðB25Þ

exp ðπiBxyw2Þ; ðB26Þ

exp ðπiA2
xþyw2Þ; ðB27Þ

exp ðπiðBc2 þ A2
xþyÞw2Þ; ðB28Þ

exp ðπiðBxy þ Bc2Þw2Þ; ðB29Þ

exp ðπiðBxy þ A2
xþyÞw2Þ; ðB30Þ

exp ðπiBc2w2Þ: ðB31Þ

4. p4m

This group is generated by T1, T2, C4, andM, where the
first three generators have the same properties as those in
p4 and the last generator M is a mirror symmetry that flips
the translation vector of T1, such that

M2¼1; MC4M¼C−1
4 ; MT1M¼T−1

1 ; MT2M¼T2;

C4
4¼1; C4T1C−1

4 ¼T2; C4T2C−1
4 ¼T−1

1 ; T1T2¼T2T1:

ðB32Þ

An arbitrary element in p4m can be written as g ¼
Tx
1T

y
2C

c
4M

m, with x; y∈Z, c∈ f0; 1; 2; 3g and m∈ f0; 1g.
The Z2 cohomology ring of p4m is

Z2½Ac; Axþy; Am;Bc2 ; Bxy�=ðAcðAc þ AmÞ ¼ 0;

AxþyAc ¼ 0;

BxyAxþy ¼ BxyðAc þ AmÞ;
Bc2Axþy ¼ BxyAxþy þ A3

xþy þ A2
xþyAm;

B2
xy ¼ BxyBc2Þ: ðB33Þ

Here, H1ðp4m;Z2Þ ¼ Z3
2, with generators ξ1 ¼ Axþy,

ξ2 ¼ Ac, and ξ3 ¼ Am, which have representative cochains

ξ1ðgÞ ¼ xþ y; ξ2ðgÞ ¼ c; ξ3ðgÞ ¼ m: ðB34Þ

H2ðp4m;Z2Þ ¼ Z6
2, with generators λ1 ¼ Bxy, λ2 ¼ Bc2 ,

λ3 ¼ A2
xþy, λ4 ¼ AxþyAm, λ5 ¼ A2

c, and λ6 ¼ A2
m, and we

can choose the representative cochains to be

Bxyðg1; g2Þ ¼ Pcðc1Þy1x2 þ Pðc1Þy2ðy1 þ x2Þ; ðB35Þ

Bc2ðg1;g2Þ¼
½c1�4þð−1Þm1 ½c2�4− ½c1þð−1Þm1c2�4

4
; ðB36Þ

A2
xþyðg1; g2Þ ¼ ðx1 þ y1Þðx2 þ y2Þ;

AxþyAmðg1; g2Þ ¼ m1ðx2 þ y2Þ; ðB37Þ

A2
cðg1; g2Þ ¼ c1c2; A2

mðg1; g2Þ ¼ m1m2: ðB38Þ

According to Ref. [8], the anomalies of p4m × SOð3Þ ×
ZT

2 symmetric lattice systems in lattice homotopy classes
a, b, c, aþ b, aþ c, bþ c, and aþ bþ c can be,
respectively, written as

exp ðπiðBxy þBc2 þAxþyðAxþy þAmÞÞðw2 þ t2ÞÞ; ðB39Þ

exp ðπiBxyðw2 þ t2ÞÞ; ðB40Þ

exp ðπiAxþyðAxþy þ AmÞðw2 þ t2ÞÞ; ðB41Þ

exp ðπiðBc2 þ AxþyðAxþy þ AmÞÞðw2 þ t2ÞÞ; ðB42Þ

exp ðπiðBxy þ Bc2Þðw2 þ t2ÞÞ; ðB43Þ

exp ðπiðBxy þ AxþyðAxþy þ AmÞÞðw2 þ t2ÞÞ; ðB44Þ

exp ðπiBc2ðw2 þ t2ÞÞ: ðB45Þ

APPENDIX C: DETAILS OF REALIZATIONS:
ANYON PERMUTATION PATTERNS AND

SYMMETRY FRACTIONALIZATION CLASSES

In this appendix, for the topological orders appearing in
this paper, we give the full details of all possible symmetry
fractionalization classes given different anyon permutation
patterns, including the explicit representative cochain for
each generator of the symmetry fractionalization classes.
For Z2 and Z4 topological orders, we also upload codes
using which one can (i) see all symmetry fractionalization
classes of the symmetry-enriched states within each lattice
homotopy class and (ii) check which lattice homotopy class
a given symmetry-enriched state belongs to [79]. As for Z3,
Uð1Þ2 × Uð1Þ−2 and Uð1Þ4 × Uð1Þ−4 topological orders, all
symmetry enrichment patterns lead to anomaly-free states.
As reviewed in Sec. III B, given a topological order and

how the symmetry G permutes the anyons of this topo-
logical order, all possible symmetry fractionalization
classes form a torsor over H2ðG;AÞ, where A is the group
formed by Abelian anyons in this topological order [to
simplify the notation, in this appendix we do not write
down the subscript ρ ofH2

ρðG;AÞ]. Given a reference set of
η symbols for G, which can be chosen to come from the
pullback of the η symbols of the topological symmetry
using Eq. (5), we can identify all other symmetry fraction-
alization classes from Eq. (4). Hence, all we need to do is to
identify all elements in H2ðG;AÞ. More precisely, we need
to write down the representative cochains of all generators
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of H2ðG;AÞ. It turns out that elements in H2ðG;AÞ can
usually be determined by its relation to H2ðG;Z2Þ and
H2ðG;ZÞ. The Z2 cohomology of the wallpaper group
symmetries involved in this paper has been collected in
Appendix B, and the Z2 cohomology of all wallpaper
group symmetries are worked out in Ref. [8]. Also, recall
that we use t to denote the generator of H1ðZT

2 ;Z2Þ, as in
Appendix B.
Now we explain some technical tricks to identify the

elements in H2ðG;AÞ. Let us specialize to the case where
A ¼ ZN (with a potential nontrivial G action on A).
Consider the projection map p from Z to ZN :

p∶ Z → ZN; ðC1Þ

which induces the map between Z cohomology and ZN
cohomology

p�∶ HkðG;ZÞ → HkðG;ZNÞ: ðC2Þ

Given an element ½ω�∈HkðG;ZÞ with some representative
cochain ω, the representative cochain of ½p�ðωÞ� is iden-
tically ω with the outcome understood as an element in ZN
instead of Z. We use ω̃ to label the obtained element
in HkðG;ZNÞ.
To identify an element in HkðG;ZÞ, usually it is helpful

to consider the Bochstein homomorphism [119] associated
to the short exact sequence 1 → Z → Z → Z2 → 1:

β∶ Hk−1ðG;Z2Þ → HkðG;ZÞ: ðC3Þ

In particular, for k¼2, consider an element ½x�∈H1ðG;Z2Þ
with representative cochain x, and the representative
cochain of ½βðxÞ� is given by

βðxÞðg;hÞ ¼ xðgÞ þ ð−1ÞqðgÞxðhÞ − xðghÞ
2

; ðC4Þ

where we demand that xðgÞ takes values only in f0; 1g and
qðgÞ denotes whether the g action on Z is trivial [qðgÞ ¼ 0
[or nontrivial [qðgÞ ¼ 1].
If N ¼ 2N0 is even, we can also consider the map i from

Z2 to Z2N0 defined by multiplication by N0, i.e.,

i∶ Z2 → Z2N0 : ðC5Þ

It induces themap fromZ2 cohomology toZ2N0 cohomology:

i�∶ HkðG;Z2Þ → HkðG;Z2N0 Þ: ðC6Þ

Utilizing the map i�, we can use elements in HkðG;Z2Þ to
identify elements in HkðG;Z2N0 Þ. In particular, given an
element ½ω�∈HkðG;Z2Þ with some representative cochain
ω, the representative cochain of ½i�ðωÞ� is simply N0ω.

For clarity purposes, later we omit the bracket and use
N0ω to label the obtained element in HkðG;Z2N0 Þ.
The symmetry group G we consider usually takes the

form G1 ×G2. In this situation, we can specify an element
in the cohomology of G by specifying an element in the
cohomology of G1 or G2. Namely, we can consider the
projection

f∶ G → G1: ðC7Þ
It induces the map from the cohomology of G1 to the
cohomology of G:

f�∶ HkðG1;AÞ → HkðG;AÞ: ðC8Þ
Hence, given an element ½ω�∈HkðG1;AÞ with some
representative cochain ω, we can use it to specify ½f�ω�.
Writing an element in g∈G as g1g2 with g1 ∈G1 and
g2 ∈G2, the representative cochain of ½f�ω� can be iden-
tified as

f�ωðg; h;…Þ ¼ ωðg1; h1;…Þ: ðC9Þ
In this appendix, to simplify the notation, we do not

explicitly write down the f� symbol in the front and
use the cohomology and cochain of a subgroup to
implicitly refer to the cohomology and cochain of the
total group. For example, we may specify an element
½ω1�∈HkðG1;AÞ and an element ½ω2�∈HkðG2;AÞ; then,
an element in HkðG;AÞ written as ω1 þ ω2 really means
½f�1ω1� þ ½f�2ω2�, where f1;2∶ G → G1;2 is the projection
from G to G1;2.
It turns out that the above is enough to determine almost

all symmetry fractionalization classes of our interest.
In this paper, for chiral topological orders, the symmetry

groups we consider are p6 × SOð3Þ and p4 × SOð3Þ.
For nonchiral topological orders, we explicitly discuss
the symmetry fractionalization classes for p6m × SOð3Þ ×
ZT

2 and p4m × SOð3Þ × ZT
2 in this appendix, and we can

simply ignore all terms involving w2 to get the correspond-
ing symmetry fractionalization classes for p6m × ZT

2 and
p4m × ZT

2 , where w2 is defined later and detects whether
certain anyon carries an half-odd-integer spin under SO(3).

1. Uð1Þ2N
In this case, we have A ¼ Z2N . The topological sym-

metry of Uð1Þ2N is complicated for general N. For N ¼ 1,
there is no nontrivial topological symmetry. For N ≥ 2,
there is always a Z2 subgroup of topological symmetry
generated by the charge conjugation symmetry C such that
anyon ðaÞ → ð½−a�2NÞ under C. For this topological sym-
metry, we can take

UCfðaÞ; ðbÞ; ð½aþ b�2NÞg ¼
� ð−1Þa b > 0

1 b ¼ 0
ðC10Þ
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and a set of η symbols equal to 1. When 2 ≤ N ≤ 5, this is
the whole topological symmetry group. In the latter
discussion, we consider general N ≥ 2 but limit to the
cases where G can act only as charge conjugation. For
N ¼ 1, we just need to ignore the cases where G can
permute anyons nontrivially.
We start with explaining the symmetry fractionalization

classes of the warm-up example in Sec. VI A, Z2 × SOð3Þ.
Denote the generator of the Z2 group as C2. Depending
on whether C2 permutes anyons or not, we have two
possibilities.
(1) Trivial C2 action.—The possible symmetry fraction-

alization classes are given by

H2½Z2 × SOð3Þ;Z2N � ¼ Z2 ⊕ Z2: ðC11Þ

We denote the generator of the first Z2 piece by
β̃ðxÞ, where x∈H1ðZ2;Z2Þ is the nontrivial gen-
erator and the tilde is because it comes from the
image of p�∶H2½Z2×SOð3Þ;Z�→H2½Z2×SOð3Þ;
Z2N �, with trivial Z2 × SOð3Þ action on Z. We can
explicitly write down the representative cochain of
β̃ðxÞ according to Eq. (C4):

β̃ðxÞðCi
2; C

j
2Þ ¼

iþ j − ½iþ j�2
2

¼ ij; ðC12Þ

where i; j∈ f0; 1g.
We denote the generator of the secondZ2 piece by

Nw2, where w2 ∈H2½SOð3Þ;Z2� is the second Stie-
fel-Whitney class and the N in the front is because it
comes from the image of i�∶H2½Z2 × SOð3Þ;Z2� →
H2½Z2 × SOð3Þ;Z2N �. The explicit representative
cochain of w2 when restricted to the subgroup
generated by the π rotations about two orthogonal

axes is

w2ðUi1
π U

0i2
π ;Uj1

π U
0j2
π Þ¼Nði1j1þ i2j2þ i1j2Þ mod 2:

ðC13Þ

(2) Nontrivial C2 action.—The possible symmetry frac-
tionalization classes are given by

H2½Z2 × SOð3Þ;Z2N � ¼ Z2 ⊕ Z2: ðC14Þ

We denote the generator of the two Z2 pieces by
Nx2 and Nw2, because both come from the image
of i�∶H2½Z2 × SOð3Þ;Z2� → H2½Z2 × SOð3Þ;Z2N �.
In particular, the representative cochain of
x2 ∈H2½Z2 × SOð3Þ;Z2� is still

x2ðCi
2; C

j
2Þ ¼

iþ j − ½iþ j�2
2

¼ ij; ðC15Þ

and the representative cochain of Nx2 ∈H2½Z2 ×
SOð3Þ;Z2N � is simply multiplication of Eq. (C15)
by N.

For p6 × SOð3Þ, there are two possible anyon permu-
tation patterns, determined by whether C6 permutes anyons
or not. The classification of symmetry fractionalization
classes and the generators for the two possibilities are listed
in Table XI. The generators with tilde come from the image
of p�∶H2½p6 × SOð3Þ;Z� → H2½p6 × SOð3Þ;Z2N �, with
different actions of p6 × SOð3Þ on Z. Now we present
the information about H2ðp6;ZÞ and the generators for
completeness.
(1) Trivial action on Z.—

H2ðp6;ZÞ ¼ Z ⊕ Z6: ðC16Þ

TABLE XI. All possible symmetry fractionalization classes of G ¼ p6 × SOð3Þ and G ¼ p4 × SOð3Þ for Uð1Þ2N, given all possible
anyon permutation patterns. All generators with a tilde come from H2ðG;ZÞ via Eq. (C2), and all generators with N in the front come
fromH2ðG;Z2Þ via Eq. (C6). When counting the number of realizations in each case, overcounts due to the equivalence from relabeling
anyons have been taken care of. To simplify the notation, in this table sometimes a single symbol can have different meanings. For

example, B̃ð1Þ
xy for p6 × SOð3Þ is different from B̃

ð1Þ
xy for p4 × SOð3Þ, and their precise meanings and expressions can be found in the

discussion regarding the p6 × SOð3Þ and p4 × SOð3Þ symmetries in this appendix.

Symmetry group Action H2ðG;AÞ Realizations Generators

p6 × SOð3Þ Trivial Z2N ⊕ Zð2N;6Þ ⊕ ðZ2Þ 4½NðN; 3Þ þ 1� B̃
ð1Þ
xy , B̃

ð1Þ
c2
, Nw2

C6∶ðaÞ → ð½−a�2NÞ ðZ2Þ3 8 NBxy, NA2
c, Nw2

p4 × SOð3Þ Trivial Z2N ⊕ Zð2N;4Þ ⊕ ðZ2Þ2 8½NðN; 2Þ þ 1� B̃
ð1Þ
xy , B̃

ð1Þ
c2
, β̃ðAxþyÞ, Nw2

C4∶ðaÞ → ð½−a�2NÞ ðZ2Þ4 16 NBxy, NBc2 , β̃ðAxþyÞ, Nw2

T1;2∶ðaÞ → ð½−a�2NÞ Zð2N;4Þ ⊕ ðZ2Þ3 8½ðN; 2Þ þ 1� B̃
ð3Þ
xy , NBc2 , NA2

xþy, Nw2

T1;2; C4∶ðaÞ → ð½−a�2NÞ Zð2N;4Þ ⊕ ðZ2Þ3 8½ðN; 2Þ þ 1� B̃
ð4Þ
xy , NBc2 , NA2

xþy, Nw2
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We denote the generator of the Z piece and the Z6 piece by B
ð1Þ
xy and B

ð1Þ
c2 , respectively, which have representative

cochains

B
ð1Þ
xy ðg1; g2Þ ¼ P60ðc1Þy1x2 þ P61ðc1Þ

�
x2ðx2 − 1Þ

2
þ y1x2 − y2ðx2 þ y1Þ

�
þ P62ðc1Þ

�
y2ðy2 þ 1Þ

2
− x2 − y2ðx2 þ y1Þ

�
þ P63ðc1Þð−x2 þ y2 − y1x2Þ

þ P64ðc1Þ
�
x2ðx2 − 1Þ

2
þ y2 − y1x2 − y2ðx2 − y1Þ

�
þ P65ðc1Þ

�
y2ðy2 þ 1Þ

2
− y2ðx2 − y1Þ

�
; ðC17Þ

B
ð1Þ
c2 ðg1; g2Þ ¼

½c1�6 þ ½c2�6 − ½c1 þ c2�6
6

: ðC18Þ

The representative cochain of Bð1Þ
xy has identically the same expression as Eq. (B6). Note that if we think of the

expression as a representative cochain of Z2 cohomology, it does not matter whether we have a þ sign or − sign in
front of an integer, because we care about only the mod 2 value of the expression. However, we carefully choose the
sign in Eq. (B6) or (C17) such that the expression is a Z cochain as well. Hence, we immediately see that the Z2

reduction of Bð1Þ
xy is Bxy in Eq. (B6). Likewise, the Z2 reduction of Bð1Þ

c2
is A2

c in Eq. (B7).
(2) C6 acts nontrivially on Z.—

H2ðp6;ZÞ ¼ 0: ðC19Þ

For p4 × SOð3Þ, there are four possible anyon permutation patterns, determined by whether C4 and T1;2 permute anyons
or not. The classification of symmetry fractionalization classes and the generators are listed in Table XI. Here, we present
the information about H2ðp4;ZÞ and the generators.
(1) Trivial action on Z.—

H2ðp4;ZÞ ¼ Z ⊕ Z4 ⊕ Z2: ðC20Þ

We denote the generators of the Z, Z4, and Z2 piece by B
ð1Þ
xy , B

ð1Þ
c2
, and βð1ÞðAxþyÞ, respectively, which have

representative cochains

B
ð1Þ
xy ðg1; g2Þ ¼ P40ðc1Þy1x2 − P41ðc1Þy2ðx2 þ y1Þ − P42ðc1Þy1x2 þ P43ðc1Þy2ðy1 − x2Þ; ðC21Þ

B
ð1Þ
c2
ðg1; g2Þ ¼

½c1�4 þ ½c2�4 − ½c1 þ c2�4
4

; ðC22Þ

βð1ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
: ðC23Þ

(2) C4 acts nontrivially on Z.—

H2ðp6;ZÞ ¼ Z2: ðC24Þ

We denote the generator by βð2ÞðAxþyÞ, which has a representative cochain

βð2ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ð−1Þc1 ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
: ðC25Þ

(3) T1;2 act nontrivially on Z.—

H2ðp6;ZÞ ¼ Z4: ðC26Þ
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We denote the generator by B
ð3Þ
xy , which has a

representative cochain

B
ð3Þ
xy ðg1; g2Þ ¼ ð−1Þx̃1 ½Pcðc1ÞPðỹ1ÞPðx̃2Þ

þ Pðc1ÞPðỹ1 þ x̃2ÞPðỹ2Þ�
with x̃ ¼ xþ P41ðcÞ þ P42ðcÞ;

ỹ ¼ yþ P42ðcÞ þ P43ðcÞ: ðC27Þ

Note that the Z2 reduction of B
ð3Þ
xy is actually

Bxy þ Bc2 þ A2
xþy.

(4) Both T1;2 and C4 act nontrivially on Z.—

H2ðp6;ZÞ ¼ Z4: ðC28Þ

We denote the generator by B
ð4Þ
xy , which has a

representative cochain

B
ð4Þ
xy ðg1; g2Þ ¼ ð−1Þx1 ½Pcðc1ÞPðy1ÞPðx2Þ

þ Pðc1ÞPðy1 þ x2ÞPðy2Þ�: ðC29Þ

2. IsingðνÞ

In this case, we have A ¼ Z2, with no nontrivial
topological symmetry. The classification of symmetry
fractionalization classes and the generators are listed in
Table XII.

3. Z2 topological order

In this case, we have A ¼ ðZ2Þ2. The topological
symmetry is Z2 × ZT

2 . The unitary generator of the topo-
logical symmetry is the unitary electric-magnetic duality
symmetry S that exchanges e and m, i.e.,

S∶ðae; amÞ → ðam; aeÞ; ðC30Þ

while the antiunitary generator is simply the antiunitary
electric-magnetic duality symmetry that permutes anyons
in the same way as S. We can choose the U symbol such
that

Ugða; b; cÞ ¼
� ð−1Þambe g permutes anyons;

1 otherwise:
ðC31Þ

And a set of η symbols can be chosen such that

ηaðg1;g2Þ ¼
� ð−1Þaeam g1;g2 permute anyons;

1 otherwise:
ðC32Þ

The classification of symmetry fractionalization classes
and the generators are listed in Table XII. In the following,
we explicitly comment on the cases involving symmetries
that permute e and m.
Given a group G with some element that permutes e and

m, we have the following short exact sequence:

1 → G̃ → G → Z2 → 1; ðC33Þ

where G̃ is the subgroup ofG that does not permute anyons.
From the Serre spectral sequence [119], we immediately
see that

HkðG;Z2 ⊕ Z2Þ ≅ HkðG̃;Z2Þ: ðC34Þ

Specifically, given an element ½ω̃�∈H2ðG̃;Z2Þ with a
representative cochain ω, we can write down the repre-
sentative cochain ω∈H2ðG̃;Z2 ⊕ Z2Þ as follows. First,
choose an element not in G̃ such that x2 ¼ 1. Then, every
g∈G can be decomposed as g ¼ g̃xi; i∈ f0; 1g, where
i ¼ 0 if g is an element inG and i ¼ 1 otherwise and g̃ is an
element in G̃. Then we can write down the representative
cochain wðg1; g2Þ of G from the representative cochain w̃
of G̃, i.e.,

ωðg1; g2Þ ¼ ðw̃ðg̃1; xi1 g̃2xi11 Þ; w̃ðxg̃1x; xxi1 g̃2xxi1ÞÞ: ðC35Þ

We can think of the second term as the representative
cochain obtained from the conjugation action of x on w̃. It
is straightforward to check that w satisfies the cocycle
equation and, thus, is the desired representative cochain.
Therefore, for each case where some symmetry actions
permute anyons, to identify the symmetry fractionalization
classes, we need to identify G̃ that does not permute anyons.
By simply calculating the cohomology of G̃, we can identify
all the possible symmetry fractionalization classes.
Still, usually there can be some simplification, because

sometimes we can identify ω and write down its represen-
tative cochain directly in terms of the Z2 cohomology of G.
When this happens, to keep notations consistent, we still
labelω using theZ2 cohomology ofG. When we have to use
the cohomology of G̃, we use A or B to emphasize that it
refers to an element in the cohomology of the subgroup G̃.
When the time-reversal symmetry T permutes anyons,

no matter how other symmetries act on anyons, G̃ will
be isomorphic to p6m × SOð3Þ or p4m × SOð3Þ [120].

TABLE XII. All possible symmetry fractionalization classes
of p6 × SOð3Þ and p4 × SOð3Þ for IsingðνÞ, where ν is an odd
integer.

Symmetry
group Action H2ðG;AÞ Realizations Generators

p6 × SOð3Þ Trivial ðZ2Þ3 8 Bxy, A2
c, w2

p4 × SOð3Þ Trivial ðZ2Þ4 16 Bxy, Bc2 , A
2
xþy, w2
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The symmetry fractionalization classes can be identified
accordingly.
When the time-reversal symmetry does not permute

anyons, G̃ will be the product of a subgroup G̃s of p6m
or p4m and SOð3Þ × ZT

2 . For the cases involving p6m, we
have the following three possibilities:
(1) M∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p6, gener-

ated by T1, T2, and C6.
(2) C6∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p31m, gen-

erated by T1, T2, C2
6, and M.

(3) C6;M∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p3m1,
generated by T1, T2, C2

6, and C3
6M.

In these cases, it turns out that we can write down the
representative cochains directly in terms of the represen-
tative cochains of the Z2 cohomology of p6m, and this is
what we present in Table XIII.
For the cases involving p4m, we have the following

seven possibilities. In these cases, the explicit representa-
tive cochains may not come from the representative
cochains of the Z2 cohomology of p4m, and we really
need the expressions of the representative cochains for each
G̃s. The Z2 cohomology of these G̃s and the representative
cochains of their generators can all be found in Appendix E
in Ref. [8], and we follow the notation there, except we
change, e.g., Ax to Ax and use a wide tilde to emphasize that
we are referring to the cochain and cohomology of a
subgroup.
(1) M∶ðae;amÞ→ ðam;aeÞ.—Then G̃s ¼ p4, generated

by T1, T2, and C4.
(2) C4∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ pmm, gener-

ated by T1, T2, C2
4, and M. Now we have ten

elements in the cohomology that are “asymmetric,”
and we can write down the representative cochains
of them with the help of the representative cochains
of pmm and Eq. (C35).

(3) C4;M∶ðae;amÞ→ ðam;aeÞ.—Then G̃s ¼ cmm, gen-
erated by T1, T2, C2

4, and C3
4M. Now we have four

elements in the cohomology that are asymmetric.
(4) T1;2∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p4m, gen-

erated by T1T2, T−1
1 T2, C4, and C4M. Now we have

six elements in the cohomology that are asymmetric.
(5) T1;2;M∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p4g,

generated by T1T2, T−1
1 T2, C4, and T2M.

(6) T1;2; C4∶ðae; amÞ → ðam; aeÞ.—Then G̃s ¼ p4g,
generated by T1T2, T−1

1 T2, T1C4, and T1T2M.
(7) T1;2;C4;M∶ðae;amÞ→ ðam;aeÞ.—Then G̃s ¼ p4m,

generated by T1T2, T−1
1 T2, T1C4, and T1T2C4M.

Now we have six elements in the cohomology that
are asymmetric.

4. ZN topological order (N ≥ 3)

In this case, we have A ¼ ðZNÞ2. The topological
symmetry of ZN is complicated for general N. For
N ≥ 3, there is always a subgroup ZT

4⋊Z2. The unitary

Z2 is generated by the electric-magnetic duality symmetry
S that exchanges e and m, i.e.,

S∶ðae; amÞ → ðam; aeÞ; ðC36Þ

and the antiunitary generator T of ZT
4 permutes anyons in

the following way:

T∶ðae; amÞ → ðam; ½−ae�NÞ: ðC37Þ

The two generators satisfy the relation

S2 ¼ 1; T4 ¼ 1; STS ¼ T−1: ðC38Þ

An element in g∈ZT
4⋊Z2 can be labeled by ðg1; g2Þwith

g1 ∈ f0;…; 3g; g2 ∈ f0; 1g, which corresponds to the
element Tg1Sg2 . Given such element g, the U symbols
can be chosen such that

Ugða; b; cÞ ¼
�
eið2π=NÞambe g1 þ g2 ≡ 1 mod 2;

1 g1 þ g2 ≡ 0 mod 2:
ðC39Þ

A specific choice of η symbols can be chosen such that

ηaðg;hÞ ¼
�
eið2π=NÞambe g1 þ g2 ≡ h1 þ h2 ≡ 1 mod 2;

1 otherwise:

ðC40Þ

For N ¼ 3, 4, this is the full topological symmetry group.
To determine the anyon permutation patterns of p6m ×

SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 , we just need to
specify how the generators of the symmetry groups
permute anyons. Because T 2 ¼ 1, T can act on anyons
in two ways: Either T ∶ðae; amÞ → ð½−ae�N; amÞ or
T ∶ðae; amÞ → ðae; ½−am�NÞ. Because these two cases are
related by relabeling anyons using the electric-magnetic
duality S, we can specialize to the cases T ∶ðae; amÞ →
ðae; ½−am�NÞ, and we need only to consider how p6m
or p4m permutes anyons. For p6m × SOð3Þ × ZT

2 , there
are four possible anyon permutation patterns, while for
p4m × SOð3Þ × ZT

2 , there are eight possible anyon permu-
tation patterns. The corresponding classification of sym-
metry fractionalization classes and the generators for
N ¼ 3, 4 are listed in Tables XIV and XV, respectively.
Specifically, since the symmetries cannot permute e and m,
H2ðG;ZN × ZNÞ simply becomes the direct sum of two
H2ðG;ZNÞ pieces, with the actions on two ZN pieces
corresponding to symmetry actions on e or m, respectively.
As discussed at the beginning of the appendix, H2ðG;ZNÞ
can all be obtained from the Z cohomology or Z2

cohomology of the symmetry groups. In particular, to
obtain the full data of symmetry fractionalization classes,
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TABLE XIII. All possible symmetry fractionalization classes of p6m × SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 for the Z2 topological
order. When counting the number of realizations in each case, overcounts due to the equivalence from relabeling anyons have been taken
care of. Removing all generators involving w2, we obtain the symmetry fractionalization classes of p6m × ZT

2 and p4m × ZT
2 for the Z2

topological order. In the codes [79], the anyon permutation patterns are indexed according to the order of this table. For example, for
symmetry group p6m × SOð3Þ × ZT

2 , anyon permutation pattern 2 represents T ∶ðae; amÞ → ðam; aeÞ, and anyon permutation pattern 4
represents C6; T ∶ðae; amÞ → ðam; aeÞ.
Symmetry group Action H2ðG;AÞ Realizations Generators

p6m × SOð3Þ × ZT
2

Trivial ðZ2Þ16 32 896 ðBxy; 0Þ, ðA2
c; 0Þ, ðAcAm; 0Þ, ðA2

m; 0Þ, ðAct; 0Þ, ðAmt; 0Þ, ðt2; 0Þ,
ðw2; 0Þ, ð0; BxyÞ, ð0; A2

cÞ, ð0; AcAmÞ, ð0; A2
mÞ, ð0; ActÞ, ð0; AmtÞ,

ð0; t2Þ,ð0; w2Þ
T ∶ðae; amÞ → ðam; aeÞ ðZ2Þ5 32 ðBxy; BxyÞ, ðA2

c; A2
cÞ, ðAcAm; AcAmÞ, ðA2

m; A2
mÞ, ðw2; w2Þ

M; T ∶ðae; amÞ → ðam; aeÞ
C6; T ∶ðae; amÞ → ðam; aeÞ
C6;M; T ∶ðae; amÞ → ðam; aeÞ
M∶ðae; amÞ → ðam; aeÞ ðZ2Þ5 32 ðBxy; BxyÞ, ðA2

c; A2
cÞ, ðAct; ActÞ, ðt2; t2Þ, ðw2; w2Þ

C6∶ðae; amÞ → ðam; aeÞ ðZ2Þ5 32 ðBxy; BxyÞ, ðA2
m; A2

mÞ, ðAmt; AmtÞ, ðt2; t2Þ, ðw2; w2Þ
C6;M∶ðae; amÞ → ðam; aeÞ

p4m × SOð3Þ × ZT
2 Trivial ðZ2Þ22 2 098 176 ðBxy; 0Þ, ðBc2 ; 0Þ, ðA2

xþy; 0Þ, ðAxþyAm; 0Þ, ðA2
c; 0Þ, ðA2

m; 0Þ,
ðAxþyt; 0Þ, ðAct; 0Þ, ðAmt; 0Þ, ðt2; 0Þ, ðw2; 0Þ, ð0; BxyÞ, ð0; Bc2 Þ,
ð0; A2

xþyÞ, ð0; AxþyAmÞ, ð0; A2
cÞ, ð0; A2

mÞ, ð0; AxþytÞ, ð0; ActÞ,
ð0; AmtÞ, ð0; t2Þ, ð0; w2Þ

T ∶ðae; amÞ → ðam; aeÞ ðZ2Þ7 128 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðA2
xþy; A

2
xþyÞ, ðAxþyAm; AxþyAmÞ,

ðA2
c; A2

cÞ, ðA2
m; A2

mÞ, ðw2; w2ÞM; T ∶ðae; amÞ → ðam; aeÞ
C4; T ∶ðae; amÞ → ðam; aeÞ
C4;M; T ∶ðae; amÞ → ðam; aeÞ
T1;2; T ∶ðae; amÞ → ðam; aeÞ
T1;2;M; T ∶ðae; amÞ → ðam; aeÞ
T1;2; C4; T ∶ðae; amÞ → ðam; aeÞ
T1;2; C4;M; T ∶ðae; amÞ → ðam; aeÞ
M∶ðae; amÞ → ðam; aeÞ ðZ2Þ7 128 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðA2

xþy; A
2
xþyÞ, ðAxþyt; AxþytÞ, ðAct; ActÞ,

ðt2; t2Þ, ðw2; w2Þ
C4∶ðae; amÞ → ðam; aeÞ ðZ2Þ14 8448 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðt2; t2Þ, ðw2; w2Þ, ðAxAm f;AyAmÞÞ,

ðAcAm; gðAcþAmÞAmÞ, ðAxAc;Ay
fðAc þ AmÞÞ, ðAx gt;AytÞ,

ðAct; gðAcþAmÞtÞ, ðAyAm f;AxAmÞ, ððAc þ Am
gÞAm;AcAmÞ,

ðAyðAc þ fAmÞ;AxAcÞ, ðAy gt;AxtÞ, ððAc þ fAmÞt;ActÞ
C4;M∶ðae; amÞ → ðam; aeÞ ðZ2Þ10 640 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðA2

xþy; A
2
xþyÞ, ðAxþyt; AxþytÞ, ðt2; t2Þ,

ðw2; w2Þ, ðA2
c;

gA2
cþA2

mÞ, ðAct; ðgAcþAmÞtÞ, ðA2
c þ fA2

m;A2
cÞ,

ððAc þ fAmÞt;ActÞ
T1;2∶ðae; amÞ → ðam; aeÞ ðZ2Þ11 1152 ðBc2 ; Bc2 Þ, ðA2

m; A2
mÞ, ðAmt; AmtÞ, ðt2; t2Þ, ðw2; w2Þ,

ðBxy;Bxy þ Bc2 þ gAxþyðAxþy þ AmÞÞ,
ðA2

xþy;
gA2
xþy þ A2

c þ A2
mÞ,ðAxþyt; ðgAxþy þ Ac þ AmÞtÞ,

ðBxy þ Bc2 þ gAxþyðAxþy þ AmÞ;BxyÞ, ðA2
xþy þ gA2

cþA2
m;A2

xþyÞ,
ððAxþy þ Ac

gþAmÞt;AxþytÞ
T1;2;M∶ðae; amÞ → ðam; aeÞ ðZ2Þ7 128 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðA2

m; A2
mÞ, ðAct; ActÞ, ðAmt; AmtÞ,

ðt2; t2Þ, ðw2; w2Þ
T1;2; C4∶ðae; amÞ → ðam; aeÞ ðZ2Þ7 128 ðBxy; BxyÞ, ðBc2 ; Bc2 Þ, ðA2

m; A2
mÞ ðAct; ActÞ, ðAmt; AmtÞ, ðt2; t2Þ,

ðw2; w2Þ
T1;2; C4;M∶ðae; amÞ → ðam; aeÞ ðZ2Þ11 1152 ðBc2 ; Bc2 Þ, ðA2

m; A2
mÞ, ðAmt; AmtÞ, ðt2; t2Þ, ðw2; w2Þ,

ðBxy;Bxy þ Bc2 þ gAxþyðAxþy þ AmÞÞ,
ðA2

xþy;
gA2
xþy þ A2

c þ A2
mÞ,ðAxþyt; gðAxþy þ Ac þ AmÞtÞ,

ðBxy þ Bc2 þ gAxþyðAxþy þ AmÞ;BxyÞ, ðA2
xþy þ gA2

cþA2
m;A2

xþyÞ,
ððAxþy þ Ac gþAmÞt;AxþytÞ
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TABLE XIV. All possible symmetry fractionalization classes of p6m × SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 for Z3 topological
order, when the action of T is specified by T ∶ðae; amÞ → ðae; ½−am�3Þ. The cases where the action of T is T ∶ðae; amÞ → ð½−ae�3; amÞ
can easily obtained by duality. When counting the number of realizations in each case, overcounts due to the equivalence from relabeling
anyons have been taken care of.

Symmetry group Action H2ðG;AÞ Realizations Generators

p6m × SOð3Þ × ZT
2

M∶ðae; amÞ → ðae; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ ðZ3Þ2 5 ðB̃ð2Þ

xy ; 0Þ, ðB̃ð2Þ
c2
; 0Þ

C6∶ðae; amÞ → ð½−ae�N; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ðae; ½−am�3Þ
C6∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ

p4m × SOð3Þ × ZT
2

M∶ðae; amÞ → ðae; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ Z3 2 ðB̃ð2Þ

xy ; 0Þ
C4∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ðae; ½−am�3Þ
C4∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ
T1;2∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ðae; ½−am�3Þ
T1;2∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ
T1;2; C4∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ðae; ½−am�3Þ
T1;2; C4∶ðae; amÞ → ð½−ae�3; ½−am�3Þ Z1 1 (0,0)
M∶ðae; amÞ → ð½−ae�3; amÞ

TABLE XV. All possible symmetry fractionalization classes of p6m × SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 for Z4 topological order,
when the action of T is specified by T ∶ðae; amÞ → ðae; ½−am�4Þ. The cases where the action of T is T ∶ðae; amÞ → ð½−ae�4; amÞ is
related to these cases by relabeling, hence, are not distinct physical realizations. When counting the number of realizations in each case,
overcounts due to the equivalence from relabeling anyons have been taken care of. Removing all generators involving w2, we obtain the
symmetry fractionalization classes of p6m × ZT

2 and p4m × ZT
2 for the Z4 topological order. In the codes [79], the anyon permutation

patterns are indexed according to the order of this table. For example, for symmetry group p6m × SOð3Þ × ZT
2 , anyon permutation

pattern 1 represents M∶ðae; amÞ → ðae; ½−am�4Þ, and anyon permutation pattern 2 represents M∶ðae; amÞ → ð½−ae�4; amÞ.
Symmetry group Action H2ðG;AÞ Realizations Generators

p6m × SOð3Þ × ZT
2 M∶ðae; amÞ → ðae; ½−am�4Þ ðZ2Þ16 216 ð2Bxy; 0Þ, ðβ̃ðAcÞ; 0Þ, ð2AcAm; 0Þ, ðβ̃ðAmÞ; 0Þ,

ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2A2

cÞ, ð0; 2AcAmÞ, ð0; 2A2
mÞ,

ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
M∶ðae; amÞ → ð½−ae�4; amÞ Z4 ⊕ ðZ2Þ15 3 × 215 ðB̃ð2Þ

xy ; 0Þ, ðB̃ð2Þ
c2
; 0Þ, ð2AcAm; 0Þ, ð2A2

m; 0Þ,
ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2A2

cÞ, ð0; 2AcAmÞ, ð0; 2A2
mÞ,

ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
C6∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ðae; ½−am�4Þ

ðZ2Þ16 216 ð2Bxy; 0Þ, ð2A2
c; 0Þ, ð2AcAm; 0Þ, ðβ̃ðAmÞ; 0Þ,

ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2A2

cÞ, ð0; 2AcAmÞ, ð0; 2A2
mÞ,

ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
C6∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ð½−ae�4; amÞ

ðZ2Þ16 216 ð2Bxy; 0Þ, ð2A2
c; 0Þ, ðβ̃ðAmÞ; 0Þ, ð2A2

m; 0Þ,
ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2A2

cÞ, ð0; 2AcAmÞ, ð0; 2A2
mÞ,

ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
(Table continued)
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TABLE XV. (Continued)

Symmetry group Action H2ðG;AÞ Realizations Generators

p4m × SOð3Þ × ZT
2 M∶ðae; amÞ → ðae; ½−am�4Þ ðZ2Þ22 222 ð2Bxy; 0Þ, ð2Bc2 ; 0Þ, ðβ̃ðAxþyÞ; 0Þ, ð2AxþyAm; 0Þ,

ðβ̃ðAcÞ; 0Þ, ðβ̃ðAmÞ; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
M∶ðae; amÞ → ð½−ae�4; amÞ ðZ4Þ2 ⊕ ðZ2Þ20 10 × 220 ðB̃ð2Þ

xy ; 0Þ, ðB̃ð2Þ
c2
; 0Þ, ðβ̃ðAxþyÞ; 0Þ, ð2AxþyAm; 0Þ,

ð2A2
c; 0Þ, ð2A2

m; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
C4∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ðae; ½−am�4Þ

ðZ2Þ22 222 ð2Bxy; 0Þ, ð2Bc2 ; 0Þ, ðβ̃ðAxþyÞ; 0Þ, ð2AxþyAm; 0Þ,
ðβ̃ðAmÞ; 0Þ, ð2A2

m; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
C4∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ð½−ae�4; amÞ

ðZ2Þ22 222 ð2Bxy; 0Þ, ð2Bc2 ; 0Þ, ðβ̃ðAxþyÞ; 0Þ, ð2AxþyAm; 0Þ,
ðβ̃ðAmÞ; 0Þ, ð2A2

m; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
T1;2∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ðae; ½−am�4Þ

ðZ2Þ22 222 ð2Bxy; 0Þ, ð2Bc2 ; 0Þ, ð2A2
xþy; 0Þ, ð2AxþyAm; 0Þ,

ðβ̃ðAcÞ; 0Þ, ðβ̃ðAmÞ; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
T1;2∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ð½−ae�4; amÞ

Z4 ⊕ ðZ2Þ21 3 × 221 ðB̃ð6Þ
xy ; 0Þ, ð2Bc2 ; 0Þ, ð2A2

xþy; 0Þ, ðβ̃ðAmÞ; 0Þ, ð2A2
c; 0Þ,

ð2A2
m; 0Þ,

ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
T1;2; C4∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ðae; ½−am�4Þ

Z4 ⊕ ðZ2Þ21 3 × 221 ðB̃ð7Þ
xy ; 0Þ, ð2Bc2 ; 0Þ, ð2A2

xþy; 0Þ, ð2AxþyAm; 0Þ,
ð2A2

c; 0Þ, ðβ̃ðAmÞ; 0Þ,
ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
T1;2; C4∶ðae; amÞ → ð½−ae�4; ½−am�4Þ
M∶ðae; amÞ → ð½−ae�4; amÞ

ðZ2Þ22 222 ð2Bxy; 0Þ, ð2Bc2 ; 0Þ, ð2A2
xþy; 0Þ, ðβ̃ðAmÞ; 0Þ, ðβ̃ðAcÞ; 0Þ,

ð2A2
m; 0Þ,

ð2Axþyt; 0Þ, ð2Act; 0Þ, ð2Amt; 0Þ, ðβ̃ðtÞ; 0Þ, ð2w2; 0Þ,
ð0; 2BxyÞ, ð0; 2Bc2 Þ, ð0; 2A2

xþyÞ, ð0; 2AxþyAmÞ,
ð0; 2A2

cÞ, ð0; 2A2
mÞ,

ð0; β̃ðAxþyÞÞ, ð0; β̃ðAcÞÞ, ð0; β̃ðAmÞÞ, ð0; 2t2Þ, ð0; 2w2Þ
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we need the cohomology and representative cochains of H2ðp6m;ZÞ and H2ðp4m;ZÞ with all possible actions on Z,
which we present here for completeness.
For p6m, we have
(1) Trivial action on Z.—

H2ðp6m;ZÞ ¼ ðZ2Þ2: ðC41Þ

We denote the generators of the two Z2 pieces by βð1ÞðAcÞ and βð1ÞðAmÞ, respectively, which have representative
cochains

βð1ÞðAcÞðg1; g2Þ ¼
½c1�2 þ ½c2�2 − ½c1 þ c2�2

2
; ðC42Þ

βð1ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ½m2�2 − ½m1 þm2�2

2
: ðC43Þ

(2) M acts nontrivially on Z.—

H2ðp6m;ZÞ ¼ Z ⊕ Z6: ðC44Þ

We denote the generators of the Z piece and the Z6 piece byB
ð2Þ
xy andBð2Þ

c2
, respectively, which have representative

cochains

B
ð2Þ
xy ðg1; g2Þ ¼ P60ðc1Þ½Pcðm1Þy1x2 þm1y2ðx2 þ y1Þ�

þ P61ðc1Þ


Pcðm1Þ

�
x2ðx2 − 1Þ

2
þ y1x2 − y2ðx2 þ y1Þ

�
þm1

�
y2ðy2 − 1Þ

2
þ y1ð−x2 þ y2Þ

��
þ P62ðc1Þ



Pcðm1Þ

�
y2ðy2 þ 1Þ

2
− x2 − y2ðx2 þ y1Þ

�
þm1

�
x2ðx2 þ 1Þ

2
− y2 − y1x2

��
þ P63ðc1Þ½Pcðm1Þð−x2 þ y2 − y1x2Þ þm1ðx2 − y2 þ y2ðx2 − y1Þ�

þ P64ðc1Þ


Pcðm1Þ

�
x2ðx2 − 1Þ

2
þ y2 − y1x2 − y2ðx2 − y1Þ

�
þm1

�
y2ðy2 − 1Þ

2
þ x2 þ y1ðx2 − y2Þ

��
þ P65ðc1Þ



Pcðm1Þ

�
y2ðy2 þ 1Þ

2
− y2ðx2 − y1Þ

�
þm1

�
x2ðx2 þ 1Þ

2
þ y1x2

��
; ðC45Þ

B
ð2Þ
c2
ðg1; g2Þ ¼

½c1�6 þ ð−1Þm1 ½c2�6 − ½c1 þ ð−1Þm1c2�6
6

: ðC46Þ

Note that the Z2 reduction of Bð2Þ
c2

is actually A2
c þ AcAm.

(3) C6 acts nontrivially on Z.—

H2ðp6m;ZÞ ¼ Z2: ðC47Þ

We denote the generator by βð3ÞðAmÞ, which has a representative cochain

βð3ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þc1 ½m2�2 − ½m1 þm2�2

2
: ðC48Þ

(4) Both C6 and M act nontrivially on Z.—

H2ðp6m;ZÞ ¼ Z2: ðC49Þ

CLASSIFICATION OF SYMMETRY-ENRICHED TOPOLOGICAL … PHYS. REV. X 14, 021053 (2024)

021053-33



We denote the generator by βð4ÞðAmÞ, which has a representative cochain

βð4ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þc1þm1 ½m2�2 − ½m1 þm2�2

2
: ðC50Þ

For p4m, we have
(1) Trivial action on Z.—

H2ðp4m;ZÞ ¼ ðZ2Þ3: ðC51Þ

We denote the generators of the three Z2 pieces by βð1ÞðAxþyÞ, βð1ÞðAcÞ, and βð1ÞðAmÞ, respectively, which have
representative cochains

βð1ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
; ðC52Þ

βð1ÞðAcÞðg1; g2Þ ¼
½c1�2 þ ½c2�2 − ½c1 þ ð−1Þm1c2�2

2
; ðC53Þ

βð1ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ½m2�2 − ½m1 þm2�2

2
: ðC54Þ

(2) M acts nontrivially on Z.—

H2ðp4m;ZÞ ¼ Z ⊕ Z4 ⊕ Z2: ðC55Þ

We denote the generators of the Z, Z4, and Z2 piece by B
ð2Þ
xy , B

ð2Þ
c2
, and βð2ÞðAxþyÞ, respectively, which have

representative cochains

B
ð2Þ
xy ðg1; g2Þ ¼ ½P40ðc1Þ − P42ðc1Þ�ð−1Þm1y1x2 − P41ðc1Þy2½y1 þ ð−1Þm1x2� þ P43ðc1Þy2½y1 − ð−1Þm1x2�; ðC56Þ

B
ð2Þ
c2
ðg1; g2Þ ¼

½c1�4 þ ð−1Þm1 ½c2�4 − ½c1 þ ð−1Þm1c2�4
4

; ðC57Þ

βð2ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ð−1Þm1 ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
: ðC58Þ

(3) C4 acts nontrivially on Z.—

H2ðp4m;ZÞ ¼ ðZ2Þ2: ðC59Þ

We denote the generators of the two Z2 pieces by βð3ÞðAxþyÞ and βð3ÞðAmÞ, respectively, which have representative
cochains

βð3ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ð−1Þc1 ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
; ðC60Þ

βð3ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þc1 ½m2�2 − ½m1 þm2�2

2
: ðC61Þ

(4) Both C4 and M act nontrivially on Z.—

H2ðp4m;ZÞ ¼ ðZ2Þ2: ðC62Þ
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We denote the generators of the two Z2 pieces by βð4ÞðAxþyÞ and βð4ÞðAmÞ, respectively, which have representative
cochains

βð4ÞðAxþyÞðg1; g2Þ ¼
½x1 þ y1�2 þ ð−1Þc1þm1 ½x2 þ y2�2 − ½x1 þ x2 þ y1 þ y2�2

2
; ðC63Þ

βð4ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þc1þm1 ½m2�2 − ½m1 þm2�2

2
: ðC64Þ

(5) T1;2 acts nontrivially on Z.—

H2ðp4m;ZÞ ¼ ðZ2Þ2: ðC65Þ

We denote the generator of the two Z2 pieces by βð5ÞðAcÞ and βð5ÞðAmÞ, respectively, which have representative
cochains

βð5ÞðAcÞðg1; g2Þ ¼
½c1�2 þ ð−1Þx1þy1 ½c2�2 − ½c1 þ ð−1Þm1c2�2

2
; ðC66Þ

βð5ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þx1þy1 ½m2�2 − ½m1 þm2�2

2
: ðC67Þ

(6) Both T1;2 and M act nontrivially on Z.—

H2ðp4m;ZÞ ¼ Z4 ⊕ Z2: ðC68Þ

We denote the generators of the Z4 and Z2 piece by B
ð6Þ
xy and βð6ÞðAcÞ, respectively, which have representative

cochains

B
ð6Þ
xy ðg1;g2Þ¼ð−1Þx̃1 ½Pcðc1ÞPðỹ1ÞPðx̃2ÞþPðc1ÞPðỹ1þ x̃2ÞPðỹ2Þ�

with x̃¼xþP41ðcÞþPcðmÞP42ðcÞþPðmÞP40ðcÞ; ỹ¼yþP42ðcÞþPcðmÞP43ðcÞþPðmÞP41ðcÞ; ðC69Þ

βð6ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þx1þy1þm1 ½m2�2 − ½m1 þm2�2

2
: ðC70Þ

Note that the Z2 reduction of Bð7Þ
xy is actually Bxy þ Bc2 þ AxþyðAxþy þ AmÞ.

(7) Both T1;2 and C4 act nontrivially on Z.—

H2ðp4m;ZÞ ¼ Z4 ⊕ Z2: ðC71Þ

We denote the generators of the Z4 and Z2 pieces by βð7ÞðAxþyÞ and βð7ÞðAmÞ, respectively, which have
representative cochains

B
ð7Þ
xy ðg1; g2Þ ¼ ð−1Þx1 ½Pcðc1ÞPðy1ÞPðx2Þ þ Pðc1ÞPðy1 þ x2ÞPðy2Þ�; ðC72Þ

βð7ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þx1þy1þc1 ½m2�2 − ½m1 þm2�2

2
: ðC73Þ

(8) All of T1;2, C4, and M act nontrivially on Z.—

H2ðp4m;ZÞ ¼ ðZ2Þ2: ðC74Þ
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We denote the generators of the two Z2 pieces by βð8ÞðAcÞ and βð8ÞðAmÞ, respectively, which have representative
cochains

βð8ÞðAcÞðg1; g2Þ ¼
½c1�2 þ ð−1Þx1þy1þc1þm1 ½c2�2 − ½c1 þ ð−1Þm1c2�2

2
; ðC75Þ

βð8ÞðAmÞðg1; g2Þ ¼
½m1�2 þ ð−1Þx1þy1þc1þm1 ½m2�2 − ½m1 þm2�2

2
: ðC76Þ

5. Uð1Þ2 × Uð1Þ− 2 (double semion)

In this case, we have A ¼ ðZ2Þ2. The topological
symmetry group is ZT

2 , generated by S̃ exchanging s
and s̄, i.e.,

S̃∶ ðas; as̄Þ → ðas̄; asÞ: ðC77Þ

We can choose the U symbols and a set of η symbols all
equal to 1. Therefore, the anyon permutation patterns are
completely fixed. The classification of symmetry fraction-
alization patterns and the generators are listed in Table XVI.
It turns out that all symmetry fractionalization classes lead
to anomaly-free states.

6. Uð1Þ4 × Uð1Þ− 4
In this case, we have A ¼ ðZ4Þ2. For N ¼ 2, the

topological symmetry is ZT
4 ⋊ZT

2 , generated by an order
2 antiunitary symmetry S̃ which exchanges s and s̄, i.e.,

S̃∶ ðas; as̄Þ → ðas̄; asÞ; ðC78Þ

and another order 4 antiunitary symmetry T, which
permutes anyons in the following way:

T∶ ðas; as̄Þ → ðas̄; ½−as�2NÞ: ðC79Þ

The two generators satisfy the relation

S̃2 ¼ 1; T4 ¼ 1; S̃TS̃ ¼ T−1: ðC80Þ

An element in ZT
4 ⋊ZT

2 can be written as Tg1 S̃g2 , with
g1 ∈ f0;…; 3g and g2 ∈ f0; 1g. To define the U symbols,
first we define the following function:

Ũðas; bsÞ ¼
� ð−1Þas bs ≠ 0;

1 bs ¼ 0:
ðC81Þ

Given an element g∈ZT
4 ⋊ZT

2 , the U symbols can be
chosen such that

Ugða; b; cÞ ¼

8>>>><>>>>:
1 g1 ¼ 0;

Ũðas̄; bs̄Þ g1 ¼ 1;

Ũðas; bsÞŨðas̄; bs̄Þ g1 ¼ 2;

Ũðas; bsÞ g1 ¼ 3:

ðC82Þ

And a set of η symbols can be chosen to be all identity.
Because T 2 ¼ 1, T can act on anyons in two ways:

Either T ∶ðas; as̄Þ → ðas̄; asÞ or T ∶ðas; as̄Þ → ð½−as̄�4;
½−as�4Þ. Because these two cases are related by relabeling
anyons using TS̃, we can specialize to the cases
T ∶ðas; as̄Þ → ðas̄; asÞ, and we need only to consider
how p6m or p4m permutes anyons. For the p6m ×
SOð3Þ × ZT

2 case, there are four possible anyon permuta-
tion patterns, while for the p4m × SOð3Þ × ZT

2 case, there
are eight possible anyon permutation patterns.
The corresponding classification of symmetry fraction-

alization classes and the generators are listed in Table XVII.
Specifically, since T permutes s and s̄,H2½p6m × SOð3Þ ×
ZT

2 ;Z4 ⊕ Z4� or H2½p6m × SOð3Þ × ZT
2 ;Z4 ⊕ Z4� is iso-

morphic toH2½p6m×SOð3Þ;Z4� orH2½p4m × SOð3Þ;Z4�,
respectively, with the Z4 corresponding to the diagonal
(0,0), (1,1), (2,2), (3,3) anyons. As discussed at the
beginning of the appendix, H2ðG;Z4Þ can all be obtained
from the Z cohomology or Z2 cohomology of the sym-
metry groups, and we list the Z cohomology of p6m or

TABLE XVI. All possible symmetry fractionalization classes of p6m × SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 for Uð1Þ2 × Uð1Þ−2
(double semion theory).

Symmetry group Action H2ðG;AÞ Realizations Generators

p6m × SOð3Þ × ZT
2

M; T ∶ðas; as̄Þ → ðas̄; asÞ ðZ2Þ5 32 ðBxy; BxyÞ, ðA2
c; A2

cÞ,
ðAcAm; AcAmÞ, ðA2

m; A2
mÞ, ðw2; w2Þ

p4m × SOð3Þ × ZT
2

M; T ∶ðas; as̄Þ → ðas̄; asÞ ðZ2Þ7 128 ðBxy; BxyÞ, ðBc2 ; Bc2Þ, ðA2
xþy; A

2
xþyÞ,

ðAxþyAm; AxþyAmÞ, ðA2
c; A2

cÞ, ðA2
m; A2

mÞ, ðw2; w2Þ
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p4m in Appendix C 4. It turns out that all symmetry
fractionalization classes lead to anomaly-free states.

APPENDIX D: ANOMALY INDICATORS

In this appendix, we first write down the anomaly
indicators for ZT

2 , ZT
2 × ZT

2 , Z2 × Z2, and SOð3Þ × ZT
2

symmetries, where ZT
2 denotes an antiunitary order 2

symmetry group. These anomaly indicators are all derived
in Ref. [20] (also see Refs. [87,121] for the ZT

2 symmetry).
As explained in Ref. [20] in detail (see Sec. VI therein), the
anomaly indicators of many other groups, including

p6 × SOð3Þ, p4 × SOð3Þ, p6m × SOð3Þ × ZT
2 , p4m×

SOð3Þ × ZT
2 , p6m × ZT

2 , and p4m × ZT
2 , can be obtained

by restricting these groups to some of their ZT
2 , Z

T
2 × ZT

2 ,
and Z2 × Z2 subgroups. So we can use the known anomaly
indicators in Ref. [20] to write down all anomaly indicators
for all symmetry groups appearing in this paper and identify
the anomaly accordingly. These anomaly indicators are also
recorded in this appendix. Using the expressions of the
anomaly of each lattice homotopy class for these symmetries
in Ref. [8], which are written in terms of group cohomology,
we can further obtain the values of the anomaly indicators for
each lattice homotopy class of these symmetries.

TABLE XVII. All possible symmetry fractionalization classes of p6m × SOð3Þ × ZT
2 and p4m × SOð3Þ × ZT

2 for Uð1Þ4 × Uð1Þ−4,
when the action of T is specified by T ∶ðas; as̄Þ → ðas̄; asÞ. The cases where the action of T is T ∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ is related
to these cases by relabeling, hence, are not distinct physical realizations. When counting the number of realizations in each case,
overcounts due to the equivalence from relabeling anyons have been taken care of.

Symmetry group Action H2ðG;AÞ Realizations Generators

p6m × SOð3Þ × ZT
2

M∶ðas; as̄Þ → ðas̄; asÞ ðZ2Þ5 32 ð2Bxy; 2BxyÞ, ðβ̃ðAcÞ; β̃ðAcÞÞ,
ð2AcAm; 2AcAmÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ,
ð2w2; 2w2Þ

M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ Z4 ⊕ ðZ2Þ4 48 ðB̃ð2Þ
xy ; B̃

ð2Þ
xy Þ, ðB̃ð2Þ

c2 ; B̃
ð2Þ
c2 Þ,

ð2AcAm; 2AcAmÞ, ð2A2
m; 2A2

mÞ, ð2w2; 2w2Þ
C6∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ðas̄; asÞ

ðZ2Þ5 32 ð2Bxy; 2BxyÞ, ð2A2
c; 2A2

cÞ,
ð2AcAm; 2AcAmÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ,
ð2w2; 2w2Þ

C6∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ

ðZ2Þ5 32 ð2Bxy; 2BxyÞ, ð2A2
c; 2A2

cÞ,
ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2A2

m; 2A2
mÞ, ð2w2; 2w2Þ

p4m × SOð3Þ × ZT
2

M∶ðas; as̄Þ → ðas̄; asÞ ðZ2Þ7 128 ð2Bxy; 2BxyÞ, ð2Bc2 ; 2Bc2Þ,
ðβ̃ðAxþyÞ; β̃ðAxþyÞÞ, ð2AxþyAm; 2AxþyAmÞ,
ðβ̃ðAcÞ; β̃ðAcÞÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2w2; 2w2Þ

M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ ðZ4Þ2 ⊕ ðZ2Þ5 320 ðB̃ð2Þ
xy ; B̃

ð2Þ
xy Þ, ðB̃ð2Þ

c2
; B̃ð2Þ

c2
Þ,

ðβ̃ðAxþyÞ; β̃ðAxþyÞÞ, ð2AxþyAm; 2AxþyAmÞ,
ð2A2

c; 2A2
cÞ, ð2A2

m; 2A2
mÞ, ð2w2; 2w2Þ

C4∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ðas̄; asÞ

ðZ2Þ7 128 ð2Bxy; 2BxyÞ, ð2Bc2 ; 2Bc2Þ,
ðβ̃ðAxþyÞ; β̃ðAxþyÞÞ, ð2AxþyAm; 2AxþyAmÞ,
ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2A2

m; 2A2
mÞ, ð2w2; 2w2Þ

C4∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ

ðZ2Þ7 128 ð2Bxy; 2BxyÞ, ð2Bc2 ; 2Bc2Þ,
ðβ̃ðAxþyÞ; β̃ðAxþyÞÞ, ð2AxþyAm; 2AxþyAmÞ,
ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2A2

m; 2A2
mÞ, ð2w2; 2w2Þ

T1;2∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ðas̄; asÞ

ðZ2Þ7 128 ð2Bxy; 2BxyÞ, ð2Bc2 ; 2Bc2Þ,
ð2A2

xþy; 2A
2
xþyÞ, ð2AxþyAm; 2AxþyAmÞ,

ðβ̃ðAcÞ; β̃ðAcÞÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2w2; 2w2Þ
T1;2∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ

Z4 ⊕ ðZ2Þ6 192 ðB̃ð6Þ
xy ; B̃

ð6Þ
xy Þ, ð2Bc2 ; 2Bc2Þ,

ð2A2
xþy; 2A

2
xþyÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ,

ð2A2
c; 2A2

cÞ, ð2A2
m; 2A2

mÞ, ð2w2; 2w2Þ
T1;2; C4∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ðas̄; asÞ

Z4 ⊕ ðZ2Þ6 192 ðB̃ð7Þ
xy ; B̃

ð7Þ
xy Þ, ð2Bc2 ; 2Bc2Þ,

ð2A2
xþy; 2A

2
xþyÞ, ð2AxþyAm; 2AxþyAmÞ,

ð2A2
c; 2A2

cÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ, ð2w2; 2w2Þ
T1;2; C4∶ðas; as̄Þ → ð½−as�4; ½−as̄�4Þ
M∶ðas; as̄Þ → ð½−as̄�4; ½−as�4Þ

ðZ2Þ7 128 ð2Bxy; 2BxyÞ, ð2Bc2 ; 2Bc2Þ,
ð2A2

xþy; 2A
2
xþyÞ, ðβ̃ðAmÞ; β̃ðAmÞÞ,

ðβ̃ðAcÞ; β̃ðAcÞÞ, ð2A2
m; 2A2

mÞ, ð2w2; 2w2Þ
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(i) ZT
2 .—The anomalies for the group ZT

2 in ð2þ 1ÞD are classified by Z2 ⊕ Z2, and the two Z2 factors correspond to
the “in-cohomology” and “beyond-cohomology” piece of the anomaly, respectively. The anomaly indicator for the
beyond-cohomology piece is given by

I0 ¼
1

D

X
a

d2aθa: ðD1Þ

This is also related to the chiral central charge c− by the formula I0 ¼ exp ½2πiðc−=8Þ�. The anomaly indicator for
the in-cohomology piece is given by

I1ðT Þ ¼ 1

D

X
T a

a¼a

daθa × ηaðT ;T Þ; ðD2Þ

where T is the generator of the ZT
2 symmetry.

(ii) ZT
2 × ZT

2 .—The anomalies for the group ZT
2 × ZT

2 in ð2þ 1ÞD are classified by ðZ2Þ4. Suppose the two antiunitary
generators of ZT

2 × ZT
2 are T 1 and T 2. The four anomaly indicators can be given by I0, I1ðT 1Þ, I1ðT 2Þ, and

I2ðT 1; T 2Þ ¼
1

D3

X
a;b;c;x;y;u;v

μxνxμyνy μ̃x ν̃x μ̃y ν̃y ρσταβγδ
T 1 a×T 2 c×c→a
T 1 c×c×b→T 2 b

dcdv
θv
θaθb

�
R

T 1c;T 2c
u

�
ρσ

�
Fa;T 1T 2c;T 2y
v

��
ðT 1x;μ̃x;αÞðb;μ̃y;τÞ

�
F

T 2c;T 1c;y
T 2y

��
ðu;ρ;βÞðT 2b;μy;ν̃yÞ

×
�
F

T 1x;T 1c;T 2c
x

��
ðT 1a;ṽx;μxÞðu;σ;γÞ

�
F

T 1x;u;y
v

��
ðx;γ;δÞðT 2y;β;αÞ

ðFx;c;b
v Þ�ða;νx;τÞðy;νy;δÞ

×U−1
T 1
ðT 1a;T 2 c; xÞμxμ̃xU−1

T 1
ðx; c; aÞνxν̃xU−1

T 2
ðT 1c; y;T 2 bÞ�μyμ̃yU−1

T 2
ðc; b; yÞ�νyν̃y

× ηaðT 1; T 1ÞηbðT 2; T 2Þ
ηcðT 2; T 1Þ
ηcðT 1; T 2Þ

: ðD3Þ

(iii) Z2 × Z2.—The anomalies for the group Z2 × Z2 in ð2þ 1ÞD are classified by ðZ2Þ2. Suppose the two generators of
Z2 × Z2 are C1 and C2. The two anomaly indicators can be given by I3ðC1; C2Þ and I3ðC2; C1Þ, where

I3ðC1; C2Þ ¼
1

D2

X
a;b;x;u
μνμ̃ ν̃ ρσα
C1a¼a

a×b×C1 b→C2 a

db
θx
θa

�
Rb;C1b
u

�
ρσ

�
Fa;b;C1b

C2a

��
ðx;μ̃;ν̃Þðu;σ;αÞ

�
Fa;C1b;b

C2a

�
ðC1x;μ;νÞðu;ρ;αÞ

×U−1
C1
ða; b; xÞμ̃μU−1

C1
ðx; C1b; C2aÞν̃ν ×

1

ηbðC1; C1Þ
ηaðC2; C1Þ
ηaðC1; C2Þ

: ðD4Þ

(iv) SOð3Þ × ZT
2 .—The anomalies for the group

SOð3Þ × ZT
2 ≡ SOð3Þ × ZT

2 in ð2þ 1ÞD are classi-
fied by ðZ2Þ4. Suppose that the generator of ZT

2 is T ,
and let Uπ be a π rotation in SO(3). The four
anomaly indicators can be given by I0, IðT Þ,
IðT UπÞ, and

I4 ¼
1

D

X
a

d2aθaei2πqa ; ðD5Þ

where qa ∈ f0; 1
2
g denotes whether anyon a carries

linear representation (qa ¼ 0) or spinor representa-
tion (qa ¼ 1

2
) under SO(3) symmetry.

From these known anomaly indicators, we can
construct the anomaly indicators of the symmetry
groups appearing in this paper by restricting to
subgroups. We need to find a complete list of
subgroups such that all nontrivial elements are
nonzero after restricting to at least one such sub-
group. If the condition is satisfied, we indeed find a
complete set of anomaly indicators.

(v) p6 × SOð3Þ.—The anomalies for the group p6 ×
SOð3Þ in ð2þ 1ÞD are classified by ðZ2Þ2. The two
anomaly indicators can be given by

I1 ¼ I3ðC2Uπ; C2U0
πÞ;

I2 ¼ I3ðT1C2Uπ; T1C2U0
πÞ: ðD6Þ
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The values of these anomaly indicators in each lattice homotopy class with p6 × SOð3Þ symmetry are given in
Table I.

(vi) p4 × SOð3Þ.—The anomalies for the group p4 × SOð3Þ in ð2þ 1ÞD are classified by ðZ2Þ3. The three anomaly
indicators can be given by

I1 ¼ I3ðC2Uπ; C2U0
πÞ; I2 ¼ I3ðT1T2C2Uπ; T1T2C2U0

πÞ; I3 ¼ I3ðT1C2Uπ; T1C2U0
πÞ: ðD7Þ

The values of these anomaly indicators in each lattice homotopy class with p6 × SOð3Þ symmetry are given in
Table II.

(vii) p6m × SOð3Þ × ZT
2 and p6m × ZT

2 .—The anomalies for the group p6m × SOð3Þ × ZT
2 in ð2þ 1ÞD are classified by

ðZ2Þ22. The complete list of anomaly indicators can be given by

I0 ¼ I0;

I1 ¼ I1ðT Þ; I2 ¼ I1ðMÞ; I3 ¼ I1ðC2T Þ; I4 ¼ I1ðC2MÞ;
I5 ¼ I2ðT ; C2T Þ; I6 ¼ I2ðT ;MÞ; I7 ¼ I2ðC2T ;MÞ; I8 ¼ I2ðC2T ; C2MÞ; I9 ¼ I2ðM;C2MÞ;
I10 ¼ I1ðT1T2C2T Þ; I11 ¼ I2ðM;T1T2C2T Þ; I12 ¼ I1ðT ; T1T2C2T Þ; I13 ¼ I1ðM;T1T2C2MÞ;
I14 ¼ I1ðT UπÞ; I15 ¼ I1ðMUπÞ; I16 ¼ I1ðC2T UπÞ; I17 ¼ I1ðC2MUπÞ;
I18 ¼ I1ðT1T2C2T UπÞ; I19 ¼ I4; I20 ¼ I3ðC2Uπ; U0

πÞ; I21 ¼ I3ðMT Uπ; U0
πÞ: ðD8Þ

The values of these anomaly indicators in each lattice homotopy class with p6m × SOð3Þ × ZT
2 symmetry are

given in Table XVIII.
The anomalies for the group p6m × ZT

2 in ð2þ 1ÞD are classified by ðZ2Þ14. The complete set of anomaly
indicators for p6m × ZT

2 can be obtained by simply ignoring all anomaly indicators involving Uπ; i.e., this set
consists of I0–I13. The values of these anomaly indicators in each lattice homotopy class with p6m × ZT

2 symmetry
are also given by Table XVIII (after removing I14–I21).

(viii) p4m × SOð3Þ × ZT
2 and p4m × ZT

2 .—The anomalies for the group p4m × SOð3Þ × ZT
2 in ð2þ 1ÞD are classified by

ðZ2Þ31. The complete list of anomaly indicators can be given by

I0 ¼ I0;

I1 ¼ I1ðT Þ; I2 ¼ I1ðMÞ; I3 ¼ I1ðC2T ÞI4 ¼ I1ðC4MÞ;
I5 ¼ I2ðT ; C2T Þ; I6 ¼ I2ðT ;MÞ; I7 ¼ I2ðT ; C4MÞ; I8 ¼ I2ðC2T ;MÞ; I9 ¼ I2ðC2T ; C4MÞ;
I10 ¼ I1ðT1MÞ; I11 ¼ I1ðT1C2T Þ; I12 ¼ I1ðT1T2C2T Þ;
I13 ¼ I2ðT ; T1MÞ; I14 ¼ I2ðT ; T1C2T Þ; I15 ¼ I2ðT ; T1T2C2T Þ;
I16 ¼ I2ðT2C2T ;MÞ; I17 ¼ I2ðM;T2C2MÞ; I18 ¼ I2ðT1T−1

2 C2T ; C4MÞ; I19 ¼ I2ðT1T2C2T ; T1MÞ;
I20 ¼ I4; I21 ¼ I1ðT UπÞ; I22 ¼ I1ðMUπÞ; I23 ¼ I1ðC2T UπÞ; I24 ¼ I1ðC4MUπÞ;
I25 ¼ I1ðT1MUπÞ; I26 ¼ I1ðT1C2T UπÞ; I27 ¼ I1ðT1T2C2T UπÞ;
I28 ¼ I3ðC4MT Uπ; U0

πÞ; I29 ¼ I3ðMT Uπ; U0
πÞ; I30 ¼ I3ðT1MT Uπ; U0

πÞ: ðD9Þ

The values of these anomaly indicators in each lattice homotopy class with p4m × SOð3Þ × ZT
2 symmetry are

given in Table XIX.
The anomalies for the group p4m × ZT

2 in ð2þ 1ÞD are classified by ðZ2Þ20. The complete set of anomaly
indicators for p4m × ZT

2 can be obtained by simply ignoring all anomaly indicators involving Uπ; i.e., this set
consists of I0–I19. The values of these anomaly indicators in each lattice homotopy class with p4m × ZT

2 symmetry
can be obtained from Table XIX (after removing I20–I30).
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APPENDIX E: SYMMETRY
FRACTIONALIZATION CLASSES OF THE
“BEYOND-PARTON” Z2 TOPOLOGICAL

QUANTUM SPIN LIQUIDS

In Sec. VIII, we have found 117 different p4m × ZT
2

symmetry-enriched Z2 topological quantum spin liquids in
lattice homotopy class a, where 64 of them were identified
using the parton-mean-field approach [82], while the other
53 are beyond the usual parton mean field. It turns out that
there is no anyon permutation for any of these 117 states.
In this appendix, we present the details of the symmetry
fractionalization class of each of these 53 “beyond-parton”
states, summarized in Table XX.
According to Table XIII, without anyon permutation the

symmetry fractionalization classes are classified by ðZ2Þ20,
which can be viewed as ten different quantum numbers for
each of e and m. These quantum numbers are recorded in
Table XX for each of the 53 states. Their physical meanings
are clear. For example, the column for ðC2Þ2 being 1 (−1)
for an anyon means this anyon carries trivial (nontrivial)
projective quantum number under C2, which roughly
speaking says that C2

2 ¼ −1 for this anyon. Similarly,
T1T T−1

1 T −1 being 1 (−1) for an anyon means that the
translation T1 and time reversal T commute (anticommute)
for this anyon.
From Table XX we can see that, in all these 53 states, the

anyon e is a Kramers doublet under the time-reversal
symmetry, while the anyon m is a Kramers singlet.

TABLE XIX. Values of the anomaly indicators for the eight
lattice homotopy classes with symmetry group p4m × SOð3Þ×
ZT

2 . The anomaly indicators not listed in the table are all 1 for all
lattice homotopy classes.

0 a b c aþ b aþ c bþ c aþ bþ c

I3 1 −1 1 1 −1 −1 1 −1
I5 1 −1 1 1 −1 −1 1 −1
I11 1 1 1 −1 1 −1 −1 −1
I12 1 1 −1 1 −1 1 −1 −1
I14 1 1 1 −1 1 −1 −1 −1
I15 1 1 −1 1 −1 1 −1 −1

TABLE XVIII. Values of the anomaly indicators for the
four lattice homotopy classes with symmetry group
p6m × SOð3Þ × ZT

2 . The anomaly indicators not listed in the
table are all 1 for all lattice homotopy classes.

0 a c aþ c

I3 1 −1 1 −1
I5 1 −1 1 −1
I10 1 1 −1 −1
I12 1 1 −1 −1
I20 1 −1 1 −1
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Furthermore, for the anyon m there is always some non-
trivial symmetry fractionalization simultaneously involving
the lattice and time-reversal symmetries. For example,
translation and time reversal may not commute on m. In
contrast, in all 64 states identified using the parton-mean-
field approach in Ref. [82], m experiences no symmetry
fractionalization that involves both lattice and time-reversal
symmetries. Moreover, we remark that, for all 117 states,
the C2 ≡ C2

4 symmetry fractionalizes on the m anyon, i.e.,
effectively C2

2 ¼ −1 for m. Usually, the interpretation of
this phenomenon is that there is a background e anyon at
each square lattice site (the C4 center), and the mutual
braiding statistics between e and m yields C2

2 ¼ −1.
However, for 16 of the 53 beyond-parton states, ðT1C2Þ2 ¼
ðT2C2Þ2 ¼ −1 for m, which seems to suggest that there are
also background e anyons at the twofold rotation centers of
T1C2 and T2C2, although microscopically there is no spin
at those positions. So the analysis based on anomaly
matching suggests that the simple picture where the
fractionalization of rotational symmetries purely comes
from background anyons is actually incomplete.
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