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In thermal equilibrium the dynamics of phase transitions is largely controlled by fluctuation-dissipation
relations: On the one hand, friction suppresses fluctuations, while on the other hand, the thermal noise is
proportional to friction constants. Out of equilibrium, this balance dissolves and one can have situations
where friction vanishes due to antidamping in the presence of a finite noise level. We study a wide class
of OðNÞ field theories where this situation is realized at a phase transition, which we identify as a critical
exceptional point. In the ordered phase, antidamping induces a continuous limit cycle rotation of the order
parameter with an enhanced number of 2N − 3 Goldstone modes. Close to the critical exceptional point,
however, fluctuations diverge so strongly due to the suppression of friction that in dimensions d < 4 they
universally either destroy a preexisting static order or give rise to a fluctuation-induced first-order
transition. This is demonstrated within a full resummation of loop corrections via Dyson-Schwinger
equations for N ¼ 2, and a generalization for arbitrary N, which can be solved in the long wavelength limit.
We show that in order to realize this physics it is not necessary to drive a system far out of equilibrium:
Using the peculiar protection of Goldstone modes, the transition from an xy magnet to a ferrimagnet is
governed by an exceptional critical point once weakly perturbed away from thermal equilibrium.
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I. INTRODUCTION

The quest for universal structure in phases and phase
transitions far from equilibrium is a long-standing chal-
lenge and has acquired a lot of attention in the recent years.
Paradigmatic examples, which manifestly go beyond ther-
mal equilibrium [1,2], are provided by problems such as
interface growth, membering the Kardar-Parisi-Zhang
(KPZ) universality class [3–5], wetting transitions in the
directed percolation class [6,7], or self-organized criticality
[8,9]. In these systems, detailed balance is violated on the
microscopic scale, and this manifests itself in the macro-
scopic observables. An important arena where these phe-
nomena have been identified recently are instances of
driven and open quantum matter, including systems like
Rydberg gases in the dissipative regime [10,11] or exciton-
polariton systems [12]. The rapid experimental develop-
ments in these directions in turn inspire theory to identify
novel forms of nonequilibrium universality without

equilibrium counterparts [13–18]. Beyond such condensed
matter platforms, nonequilibrium dynamics occurs rather as
a rule than an exception in biological, economic, and even
social systems, which are only at the verge of being studied
from the stance of universality [19–26].
These systems share in common that their generators of

dynamics—be it quantum or classical—generically consist
of reversible and irreversible terms, which occur on equal
footing. This circumstance makes the generator non-
Hermitian, and in turn enables the existence of exceptional
points (EPs)—points in the space of tunable parameters
which show degeneracies in the excitation and damping
spectra [27,28]. These EPs have recently fueled an active
stream of research in condensed matter, atomic conden-
sates, and optics: On the one hand, they hold promises for
applications, such as sensing due to an enhanced response
to external perturbations in their vicinity [29–32]. At the
same time, they host conceptually new topological
phenomena, such as nodal topological phases with open
Fermi surfaces, or an anomalous bulk-boundary corre-
spondence [33–39].
All these intriguing phenomena appear on an effective

single-particle level, describing, for example, the linear
excitations above a more complex underlying nonlinear
dynamics. Taking such nonlinearity into account is then an
important step toward a more comprehensive many-body
theory of non-Hermitian systems: It offers the possibility to
describe qualitatively distinct stable phases in systems with
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many degrees of freedom. It also paves the way to describe
hallmark nonequilibrium phenomena such as pattern for-
mation [40]. Dynamical limit cycles provide one prominent
incarnation of this general phenomenology, which have
recently met great interest [41–53]. Experimental examples
range from the paradigmatic Van der Pol oscillator [54]
over recent realizations of driven collective spin ensembles
in quantum cavities [55,56] and driven magnonics [57,58]
to active matter systems [59–61].
These developments spark a fundamental question:

Which novel universal behaviors emerge when an excep-
tional point coincides with a critical point at a critical
exceptional point (CEP)? Universal critical behavior, in
and as well as out of equilibrium, is closely linked to
stochastic fluctuations that become macroscopically large
at a critical point, “washing out” all details of the micro-
scopic scales and depend only on symmetries and con-
servation laws. It is thus paramount to include these
fluctuations on a nonlinear level to determine the fate
of exceptional point criticality in terms of universality, a
task not undertaken up to now in d < 4. This final layer of
complexity beyond deterministic or linear approximations
is characteristic for a many-body problem.
In this work we use symmetry based effective field

theories—a framework successfully applied beyond
thermal equilibrium, predicting, for instance, the exper-
imentally observed KPZ scaling in driven-dissipative con-
densates [12,62] or ordering below two dimensions in
active matter theories of flocking [20,21] to name a few—to
address the interplay of exceptionality and critical fluctua-
tions. We show that paradigmatic OðNÞ models, which
have acted as workhorse theories for critical behavior at
thermodynamic equilibrium, host limit-cycle phases as well
as CEPs once suitably driven out of equilibrium. They thus
allow one to determine the universal phenomenology at
such points in the spirit of effective field theory. One main
result is, that even though the strongly enhanced Gaussian
fluctuations in the vicinity of a CEP suggest the absence
of any transition, there is a fluctuation-induced first-order
transition. The effect reveals itself only once going beyond
Gaussian approximations, i.e., once one includes non-
linearities and stochastic fluctuations. Only then, a full
picture of the transition emerges even on a qualitative level.
The symmetry based effective field theory approach also

highlights the mechanisms and minimal requirements for
the described phenomena. It allows us to show that limit-
cycle phases and CEP transitions as analyzed here can
emerge in very different physical systems, ranging from
previously discussed active matter setups over open quan-
tum systems to driven solid-state platforms. It thus con-
stitutes a bridge connecting these different areas of
nonequilibrium physics.
Furthermore, within our field theoretic model, we can

show how Goldstone modes arise as collective excitations
in the limit-cycle phase. Its dynamic nature lets them

oscillate at finite frequency while still having divergent
lifetimes. An enlarged number of Goldstone modes under-
pins that the rotating order can be characterized by
spontaneously broken symmetries.
In the following, we provide an overview of the setting,

and describe our key results, albeit in a slightly different
order than in the subsequent main part of the paper.

A. Key results and synopsis

Model. We study N-component order parameter models
with an OðNÞ symmetry in dþ 1 dimensions. We display
here a variant of the model which is incomplete and will be
extended below, but allows us to discuss all scales relevant
to the universal aspects of the problem:�
∂
2
t þð2γþuρ−Z∇2Þ∂tþrþλρ−v2∇2

�
ϕþξ¼0; ð1Þ

where ϕ is theN component vector field, ρ ¼ ϕTϕ, and ξ is
a Gaussian white noise with zero mean and variance D. It
has two important characteristics, the conspiracy of which
is at the root of exceptional critical points discussed below.
First, it stands in between equilibrium relativistic OðNÞ
models [63] and Hohenberg-Halperin models for equilib-
rium dynamical criticality [2]: It shares with the first class
an inertial, second-order time derivative term, and with
the second a damping, first-order time derivative term. The
inertial term is neglected near equilibrium critical points [2]
since it is irrelevant in the sense of the renormalization
group (RG), but will prove of key importance at a CEP.
As a second key ingredient, the model is driven out of
equilibrium. This is manifest by a coupling term u which
has no potential form and corresponds therefore to a
nonconservative damping force. Physically these result
from driving and/or coupling it to different baths which
are not in global thermal equilibrium with each other, and
technically by breaking the symmetry behind detailed
balance explicitly [64,65]. As a hallmark physical feature
compared to equilibrium OðNÞ models, we establish the
emergence of a “time crystalline” limit-cycle phase, see
Fig. 1 and the discussion below, where a long-range many-
body order parameter traces out a closed orbit. It is
described by a rotating field, ϕs ¼ ffiffiffiffiffi

ρ0
p ðcosEt; sinEt;

0;…ÞT , and occurs only in the presence of an effective
antidamping, δ≡ 2γ þ uρ0 < 0 within mean-field theory
[i.e., ignoring the noise terms in Eq. (1)]. In the same
approximation one finds for the order parameter amplitude
ρ0 ¼ ϕT

sϕs ¼ −2γ=u and E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − ð2γλ=uÞp

. Most impor-
tantly, the transition into this new phase proceeds via a CEP,
the nature of which we analyze in detail.
CEPs occur only out of equilibrium. We establish that

while EPs in general are not fundamentally tied to a system
being driven out of equilibrium, CEPs are. One simple
example of an equilibrium EP is provided by the damped
harmonic oscillator at the point where it transits from
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underdamped to overdamped dynamics, including in the
presence of noise fluctuations [66]. Such a transition does
not realize a critical point in the sense of divergent length-
and timescales—in fact, it is only detected in dynamical
observables like dynamical susceptibilities by the absence
of oscillations in the underdamped regime, but goes unseen
in any static observable. The impact of fluctuations near
such an equilibrium EP has recently been studied for a
damped, noisy anharmonic oscillator [67]. In contrast, in
Sec. IV D we will demonstrate that a CEP can be realized
only if thermal equilibrium conditions are broken explic-
itly. In fact, the phenomenology revealed in this work can
be traced back to a superthermal mode occupation near a
CEP [15], which is excluded at thermodynamic equilib-
rium, and so is intimately tied to the nonequilibrium nature
of the problem.
Microscopic origin: Physical realizations. The effective

field theory approach also allows us to identify possible
realizations. We show that strikingly nonthermal macro-
scopic behavior associated to CEPs and limit-cycle phases
is not limited to active matter [59], but can also emerge in
solid-state platforms only weakly driven out of equilibrium.
In particular, we demonstrate that a system with in-plane
ferromagnetic or antiferromagnetic order near a ferrimag-
netic instability at equilibrium maps to our model for
N ¼ 2, even when only weakly driven out of equilibrium
by, for example, terahertz radiation (see Sec. VII). Our
results for this system are summarized in Fig. 2.
The model Eq. (1) is best viewed in the spirit of an

effective field theory; see also Fig. 3: It results via coarse

graining from a more microscopic model with the same
symmetries, such as OðNÞ or spatial rotation symmetry,
and likewise broken detailed balance indicating nonequili-
brium conditions. This encompasses a large class of

(a) (b)

FIG. 1. (a) Mean-field phase diagram of the nonconservative OðNÞ model. For positive r and γ, the symmetric, disordered phase is
stable (light yellow). Upon tuning the gap r through zero, the model A transition (orange line A) into a statically ordered phase (green)
that breaks OðNÞ spontaneously to OðN − 1Þ occurs. A nonequilibrium dynamically ordered phase with a rotating order parameter
(blue) emerges for negative dampings. The phase transition between statically ordered and rotating phase (red line C) is described by a
critical exceptional point (CEP). The point in the middle of the phase diagram, at which all phase transition lines meet, forms a
multicritical exceptional point. (b) Schematic phase diagram beyond mean field (d < 4). The CEP line is replaced by a first-order phase
transition where the angular velocity E jumps from zero in the ordered phase to a finite value in the rotating phase. For initial values of δ
and γ closer to zero, the enhanced fluctuations destroy the order parameter before reaching the CEP. The symmetric phase has thus an
extended stability regime and the multicritical point moves.

FIG. 2. Schematic phase diagram of a driven ferrimagnet as
function of temperature and the power of an external driving
source, e.g., a laser or an oscillating magnetic field.We assume that
in equilibrium the system displays antiferromagnetic xy order for
T < TN and becomes a ferrimagnet for T < Tc < TN by devel-
oping an extra out-of-plane ferromagnetic component. Driving
induces in the ferrimagnetic phase a rotation of the xy order
parameter. The transition is governed by a critical exceptional point
with its characteristic first-order phase transition (red line). The
enhancement of fluctuations close to the CEP bends the transition
line between paramagnet and xy order down, culminating in a
multicritical point where all transition lines meet. For larger driving
strength also a direct transition from the paramagnetic into the
rotating ferrimagnetic phase will occur. Thus, all phases and phase
transitions of the effective model, Fig. 1(b), can be realized.
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physical setups. While we discuss the possible physical
implementation in a driven ferrimagnet in more detail, we
furthermore connect nonreciprocal phase transitions found
in driven-dissipative condensates [15,68] and active matter
scenarios [59] to our mesoscopic model, and show that their
universal phenomenology is described by our mechanism.
We then discuss possible realizations in certain microscopic
Lindblad quantum dynamics [49].
Extracting macrophysics: Evaluation strategy.

Specifically, close to a phase transition, one has to expect
a strong impact of fluctuations: Both a deterministic
approximation discarding noise and the neglect of inter-
action effects become invalid. To address these challenges,
we first map the mesoscopic Langevin model Eq. (1) to
an equivalent Martin-Siggia-Rose-Janssen-De Dominicis
(MSRJD) functional integral [69–71]. We then extract the
macroscopic physics of the interacting, fluctuating problem
by computing the effective action. The latter might be
thought of as an action with the same symmetries as the
mesoscopic model, but with the effects of fluctuations
included via the renormalization of its parameters, i.e., the
set of coupling constants. Beyond its practical value of
systematically accounting for fluctuation effects, it is a very
handy object, which leverages many properties usually
discussed for the bare (mesoscopic) action to the full theory
—this includes, for example, the exact counting of
Goldstone modes in the limit-cycle phase or the imple-
mentation of exceptional points as a property of the fully
renormalized single-particle retarded response. We will
thus put it to work to distill the principles and universal
mechanisms governing the macroscopic physics of non-
equilibrium OðNÞ models.
Limit-cycle phase.As indicated earlier, our model hosts a

limit-cycle phase where a long-range order parameter
dynamically traces out a closed orbit, a phenomenon
clearly ruled out by the laws of thermodynamics and thus
intrinsically nonequilibrium. We refer to it as the limit-
cycle or rotating phase. Phases in thermal equilibrium can
be classified by their symmetry—in the present case, there
is a disordered phase with full OðNÞ symmetry which is
spontaneously broken in the statically ordered phase to
OðN − 1Þ. The Goldstone theorem then predicts the emer-
gence of N − 1 soft, gapless modes, corresponding to the
broken symmetry generators.
We show that the nonthermal limit-cycle phase can be

classified by symmetry, as well. It constitutes a further
symmetry breaking of OðNÞ to OðN − 2Þ, rather than, for
instance, dynamically restoring a broken symmetry as
argued previously [59]. This is most clearly exemplified
by the emergence of 2N − 3 Goldstone modes in the limit-
cycle phase, due to the breaking of the same number of
generators by the spontaneous choice of a plane within
which the order parameter rotates. We show this explicitly
and nonperturbatively within the effective action frame-
work based on Ward identities. This result can thus be

considered an exact property of the fully fluctuating and
interacting problem.
For N > 2, there are 2ðN − 2Þ Goldstone modes that

differ from their overdamped equilibrium counterparts
which disperse as ω ∼ −iq2. While they still correspond
to excitations whose lifetime diverges for long wavelengths
q → 0 and are generated by broken symmetry generators,
they have a finite frequency corresponding exactly to the
frequency E of the limit cycle itself, i.e., ω ¼ −iZq2 � E.
The case N ¼ 2 is special, since the difference between

SO(2) and the required Oð2Þ ¼ SOð2Þ ⋉ Z2 symmetry
[semidirect product; the elements of SO(2) and Z2 do not
commute here] becomes crucially important [72]. The
symmetry that is broken when transiting from the statically
to the dynamically ordered phase is the discrete Z2;
physically, it corresponds to choice of direction in which
the angular limit cycle is traversed, with angular velocity
�E, respectively (for larger N, the sign of E is unphysical,
because limit cycles with opposite traversing directions can
be smoothly connected by a rotation). The requirement of
full O(2) symmetry rules out a KPZ nonlinearity within the
critical theory; we give more details in Sec. VI E.
Exceptional point phase transition. What is the fate of

universal fluctuations if an EP is tuned to criticality? The
mean-field phase diagram Fig. 1(a) displays three transition
lines A, B, C. The transition A between disordered and
statically ordered phase belongs to the model A universality
class of Hohenberg and Halperin et al. [73] and shows no
deviations from equilibrium models. The transition B
represents an instance of finite frequency criticality,
a scenario developed in Ref. [16], with a yet to be
determined and potentially nonequilibrium universality
class. The transition line C separating static and rotating
order is described by a critical exceptional point. Hence, we
focus on this transition line C. The effective damping
(δ ¼ 2γ − uρ0 in mean field) of the phase fluctuations is
tuned to zero at the transition, spoiling the canonical power
counting of model A. More precisely, approaching the
critical point, two poles of the Green’s function coalesce
and become gapless simultaneously—an exceptional point
is made to coincide with a critical point. This critical point
is reached via a single fine-tuning of parameters as visible
in the figure—this is assisted by the gapless Goldstone
modes as we elaborate in the main text; see also Ref. [59].
The fate of the CEP transition is then dominated by the

following two aspects.
(i) Nonanalytic spectral properties. The CEP is char-

acterized by a complex dispersion,

ω1;2ðqÞ ¼ −
i
2
ðZq2 þ δÞ � vjqj; ð2Þ

upon approaching the phase transition from the
statically ordered phase. The parameters of Eq. (1)
thus represent a diffusion coefficient Z and a
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propagation velocity v. The effective damping
rate δ acts as a gap measuring the distance from
the phase transition—criticality emerges as δ → 0.
Exceptionality is encoded in the coalescence of
modes at q ¼ 0. The scale v of dimension momen-
tum is associated to the characteristic nonanalytic
momentum dependence found near exceptional
points [32,39], and is of key importance for the
effects found below. It sets an obstruction to homo-
geneous scaling with a dynamical exponent z ¼ 2

with ω ∼ −iq2. Rather, here a mode with z ¼ 1
propagation behavior and z ¼ 2 dissipation
emerges, which reflects the equal importance of
the reversible ∂

2
t and the irreversible ∂t terms in

Eq. (1) near the exceptional critical point.
(ii) Superthermal mode occupation. A second character-

istic of the CEP is not visible in spectral properties
and in a deterministic approximation (zero noise
level D ¼ 0): The mode occupation at the CEP is
enhanced compared to thermal equilibrium [15].
This is measured by the critical equal-time correla-
tion function (or Keldysh Green’s function), which
is given by

hϕð−q; tÞϕðq; tÞi ¼ GKðq; t ¼ 0Þ ∼ D
q4

; ð3Þ

to be compared to a scaling ∼q−2 at equilibrium,
where it is fixed by the fluctuation-dissipation
theorem. These giant fluctuations occur because
the damping at q ¼ 0, which suppresses fluctua-
tions, is tuned to zero, while the noise level remains
finite. This is not possible in equilibrium where
fluctuation-dissipation theorems guarantee that
noise and dissipation are proportional to each other.

Aspects (i) and (ii) are both tied to exceptionality: (i) is a
spectral property, associated to the propagation velocity v,
and (ii) is a statistical effect, associated to the noise levelD.
Both effects have a drastic impact on the CEP transition,
which can go two ways in the fully interacting and
fluctuating system.

(I) The statistical effect of enhanced occupation (ii) due
to Gaussian fluctuations melts down preexisting
order in physical dimensions d < 4 before the
CEP is reached [15]. This mechanism bends the
model A transition line A as depicted in Fig. 1(b).
We show in Sec. VI that after the crucial step of
taking non-Gaussian fluctuations into account, there
is a second case.

(II) Interactions conspire with the nonanalytic spectral
properties (i) to render the CEP phase transition
into a fluctuation-induced first-order transition.
This occurs through a mechanism which is—albeit
in a physically rather different system—technically

reminiscent of Brazovskii’s seminal work [74] and
later RG analysis by Hohenberg and Swift [75].

Technically, the above conspiracy results in a breakdown
of canonical power counting and gradient expansions of the
effective action functional (see also Appendix F for details
on this breakdown). Interestingly, this leads to a suppres-
sion of two-loop effects at long wavelength. In turn, we can
utilize this insight to perform a full resummation of the
entire perturbative series in the vicinity of the CEP by
means of Dyson-Schwinger equations (DSEs). We exhibit
this mechanism in detail for the case N ¼ 2, and then
generalized to arbitrary N. This furthermore unravels that
the upper critical dimension, above which there is a second-
order CEP transition with correlation length exponent ν ¼ 1

2

described by the Gaussian fixed point (see Sec. V B 2),
is dc ¼ 4.
Below the upper critical dimension d < 4, there emerges

a new scale ρ0g, separating the symmetry restoring tran-
sition (I) and the interaction dominated fluctuation-induced
phase transition (II). It is composed of the amplitude of the
order parameter ρ0 and g, the effective nonconservative
interaction of the gapless phase fluctuations in the broken
phase, stemming from nonthermal nonlinearities like u
[cf. Eq. (1)] in the original model. For small ρ0g ≪ 1
there is symmetry restoration (I) while for ρ0g ≫ 1 the
fluctuation-induced first-order transition (II) takes place.
Combining these mechanisms, we are led to the phase
diagram displayed in Fig. 1(b). Both transitions A and C
meet at a multicritical point at a critical value
ðρ0gÞc ∼ Oð1Þ.

FIG. 3. Concept of the approach. We consider quantum or
classical problems which, on a microscopic level, feature an
OðNÞ symmetry and are driven out of equilibrium. After coarse
graining, in the presence of noise these reduce generically to
semiclassical noisy nonequilibrium OðNÞ models described by
a MSRJD action. Taking this mesoscopic action as a starting
point, we compute the effective action which includes fluctua-
tions, which is particularly important close to a critical point,
such as a CEP.
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The remainder of this article is structured as follows. In
Sec. II we introduce the model and discuss its mean-field
phase diagram. We introduce the field theoretic method-
ology, i.e., MSRJD path integrals, that we use for the
systematic study of fluctuations in these phases in Sec. III.
We proceed to discuss exceptional and critical exceptional
points and their properties including their incompatibility
with thermal equilibrium conditions in Sec. IV. We then
study the slow long wavelength dynamics of fluctuations in
the statically ordered and rotating phase, Sec. V. Here, we
show how the Goldstone theorem and the respective modes
play out in the dynamical rotating phase and study the
Gaussian fluctuations in all three phases. This allows us to
discuss the critical properties of the transitions on the
Gaussian level valid above the upper critical dimensions.
The impact of interactions beyond the Gaussian level at
the CEP transition is analyzed in Sec. VI, revealing the
symmetry restoration as well as the fluctuation-induced
first-order transition and the interaction scale ρ0g governing
the competition of both mechanisms. We then give three
examples for possible realization schemes including driven
magnetic systems in Sec. VII, and conclude afterward.

II. WARM-UP: NONEQUILIBRIUM OðNÞ MODELS
IN (0 + 1) DIMENSIONS

A. Model

We will study the phases and phase transitions of
(semi)classical OðNÞ order parameter fields ϕðx; tÞ∈RN

subject to a rotationally invariant stochastic Langevin time
evolution in dþ 1 dimensions. To describe its basic
physics, we first focus on the purely deterministic
(0þ 1)-dimensional case. This may be considered as a
mean-field theory for the order parameter of the full model,
where both the spatial degrees of freedom and the noise are
ignored. (Of course, both these ingredients neglected here
will be needed to describe the full nonthermal phase
diagram below.) More precisely, we consider an OðNÞ
symmetric ϕ4-type model, i.e., with up to cubic interaction
terms in the equation of motion,

ð∂2t þ 2γ∂t þ rÞϕþ λρϕþ uρ∂tϕþ u0ϕ∂tρ ¼ 0; ð4Þ

where ρ ¼ ϕTϕ. The first term amounts to an N-component
damped harmonic oscillator with damping γ and a “mass” r.
Overall stability is guaranteed if u > 0, λ > 0.
Let us then neglect the nonlinearities u and u0 for the

moment. In this case, the equation of motion describes the
motion of a particle with an inertial ∼∂2t and a damping ∼∂t
term in an anharmonic potential. For r > 0, λ > 0, the
stable state is described by ϕs ¼ 0, but when the mass r is
tuned through zero, the potential takes a sombrero shape,
and a finite expectation value with amplitude ρ0 ≡ ϕT

sϕs ¼
ð−r=λÞ becomes the stable solution. The direction of the
vector ϕs is chosen spontaneously. The ordering phase

transition of this model (once noise is included, and
in higher spatial dimension) is described by the model A
universality class of the Hohenberg-Halperin classification
[2]. In fact, dropping the inertial term from scratch (but
restoring noise and spatial dimensions), the model matches
model A for an N-component order parameter. More
generally, the inertial term is irrelevant in the sense of
the RG for this regime of parameters, and thus does not
affect the (mean-field) universal critical behavior.
Let us now restore the parameters u and u0. In contrast to

the interaction λ, these nonlinearities cannot be generated
by variation of a scalar potential (also referred to as
nonconservative for that reason), and typically do not play
a role in equilibrium systems [64]. They amount to non-
linear self-dampings of the field and constitute the simple-
most, i.e., lowest order in field amplitude and time
derivatives, nonconservative terms that are allowed by
symmetry. Similar to the ϕ4 potential allowing for negative
values of r, the presence of these couplings provides a
mechanism to shift the damping 2γ and tune it through
zero, to trigger a transition into a new, stable phase, where
the order parameter is rotating at a constant angular
velocity. No matter its precise origin, a negative damping
γ, i.e., antidamping or pumping, clearly reflects nonequili-
brium conditions and does not occur in equilibrium
dynamics. This rationalizes that the phase induced by an
antidamping defies thermal equilibrium, its nonequilibirum
nature being most clearly reflected by the fact that the
stable state is time dependent.

B. Phase diagram

To establish the phase diagram, we search for stable state
solutions of Eq. (4). As indicated above, in the nonthermal
antidamping regime, there is no stable steady (time-
independent) state, but a time-dependent limit cycle where
the order parameter rotation is stable. We will refer to this
as the rotating phase. We thus make the stable state ansatz,

ϕsðx; tÞ ¼
ffiffiffiffiffi
ρ0

p ðcosEt; sinEt; 0;…ÞT; ð5Þ

with ρ0 > 0; E∈R. For γ < 0, Eq. (4) has indeed a stable
solution with E ≠ 0 corresponding to the rotating phase. The
three phases (disordered, statically ordered, and dynamically
ordered or rotating) that we anticipated are captured by this
ansatz, with properties summarized in Table I.
The phase transition from the disordered phase ϕs ¼ 0

can be explained by the equilibrium ϕ4 theory.
Disregarding the nonthermal nonlinearities u and u0, the
theory is described by damped motion in a potential,

V ¼ r
2
ϕ2 þ λ

4
ϕ4; ð6Þ

which turns into the well-known sombrero hat if r < 0.
In that case, the disordered solution ϕs ¼ 0 is unstable;
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the system undergoes spontaneous symmetry breaking and
acquires a nonzero expectation value ϕ2

s ¼ −ðr=λÞ. The
existence of this stable solution requires the nonlinearity
∼λϕ4 with λ > 0, otherwise the instability at the origin
ϕ ¼ 0 cannot be cured.
In a similar manner, a finite u > 0 allows for a new

transition mechanism. A negative damping γ < 0, which
usually leads to unstable solutions and does not occur
in equilibrium, can now be compensated for by a finite
value ϕ2

s ¼ ρ0 such that 2γ þ uρ0 ≥ 0. Tuning through this
transition from the disordered phase, r > 0, the transition
occurs at γ ¼ 0. Afterward the field saturates to its stable
state with −2γ ¼ uρ0. In this case we have however
rþ λρ0 > 0 even if we neglect λ, which can be compen-
sated by a rotation with angular velocity:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ λρ0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r −

2λγ

u

r
: ð7Þ

Since r remains finite at this transition, the angular velocity
E jumps at the transition while the field amplitude is
continuous.
We can approach this phase also from the statically

ordered phase r < 0. Since there already exists a finite
amplitude ρ0 ¼ −ðr=λÞ in this phase, there is an effective
damping for small fluctuations δ ¼ 2γ þ uρ0. As soon as
this effective damping becomes negative, i.e., 2γ < uðr=λÞ,
the order parameter grows again and saturates at ρ0 ¼
ð−2γ=uÞ. The order parameter rotates at the frequency
Eq. (7) dictated by the effective mass E2 ¼ reff ¼
r − ð2λγ=uÞ. We see that the rotational frequency goes
to zero as one approaches the phase transition from the
rotating phase on the mean-field level. We thus consider the
angular velocity E as the order parameter of the transition
between the statically ordered and the rotating phase.

C. Relation to the Van der Pol oscillator

In the remainder of this work, we consider the case
N ≥ 2, as for N ¼ 1 the transition in a limit-cycle phase
does not occur through a CEP. For N ¼ 1 the mean-field
model reduces to the paradigmatic Van der Pol oscillator,

with u and u0 taking the same form then. The Van der Pol
oscillator is well known to support stable oscillations of the
amplitude ϕ for N ¼ 1 in the parameter region where the
mean-field phase diagram supports a rotating phase for
N > 2. In fact, the N ≥ 2 model can also support Van der
Pol oscillations of the amplitude, rather than the above
described angular rotations in this region. However, this
phase is destabilized by large enough values of u0. A more
detailed discussion of this phase and its stability can be
found in Appendix A. We concentrate on the parameter
regime where the stable limit cycle is due to rotation of the
angular (or phase) variables, to assess the phase transition
passing through a CEP.
In turn, this model also provides the setting to study

universal behavior at the phase transition of a generaliza-
tion of the Van der Pol oscillator to spatially extended fields
subject to stochastic noise.

III. FIELD THEORETIC SETUP
IN d + 1 DIMENSIONS

A. Langevin equation description

We now extend the (0þ 1)-dimensional model to d
spatial dimensions and, furthermore, we restore the
stochastic element in the dynamics. This enables us to
systematically analyze the impact of fluctuations in all three
phases and especially at the transitions. We thus consider a
temporally and spatially varying field ϕðx; tÞ∈RN , where
x is the d-dimensional spatial coordinate. Following the
paradigm of effective field theory, we write the lowest order
couplings allowed by symmetry as done above, as well as
the lowest order spatial derivatives to capture the long
wavelength dynamics. In addition to the OðNÞ symmetry of
the field, we assume rotational symmetry in space, and
arrive at�
∂
2
t þ ½2γ − Z∇2 þ uρðx; tÞ�∂t þ rþ λρðx; tÞ − v2∇2

þ u0∂tρðx; tÞ
�
ϕðx; tÞ þ ξðx; tÞ ¼ 0: ð8Þ

Z; v > 0 are phenomenological parameters determining
diffusion and coherent propagation of fluctuations in space

TABLE I. The three stable phases of the (0þ 1)-dimensional OðNÞ theory with nonconservative interactions. The amplitude in the
statically ordered phase is ρ0 ¼ −r

λ . In the rotating phase, the order parameter has an amplitude ρ0 ¼ − 2γ
u and rotates at angular velocity

E ¼ ffiffiffiffiffiffiffi
reff

p
with reff ¼ r − 2γλ

u . The transition between the statically ordered phase (r < 0) and the rotating phase occurs upon tuning the
effective damping δ ¼ 2γ − r

λ through zero.

Disordered phase Ordered, static phase Rotating phase

Expectation values ρ0 ¼ 0; E ¼ 0 ρ0 ≠ 0; E ¼ 0 ρ0 ≠ 0; E ≠ 0
Criterion r > 0, γ > 0 r < 0, δ ¼ 2γ þ u −r

λ > 0 δ < 0 and reff ¼ rþ λ −2γ
u > 0

Symmetry breaking
pattern

Disordered, all symmetries
remain intact

OðNÞ is broken down
to OðN − 1Þ

The field rotates at angular velocity E.
OðNÞ is broken down to OðN − 2Þ.
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in the various phases. ξðx; tÞ is a Gaussian white noise with
zero mean and variance

hξiðx; tÞξjðx0; t0Þi ¼ 2Dδðt − t0Þδðx − x0Þδij: ð9Þ

Let us elaborate here on the importance of noise, which is
ubiquitous and non-negligible in systems with many
microscopic (or mesoscopic) degrees of freedom. This
can be gleaned from an equilibrium situation, where we
have a fluctuation-dissipation relation (FDR) relating
the noise level D to the damping rate γ according to
D ¼ 4γkBT, kB the Boltzmann constant. Noise is non-
negligible when the typical frequency of the system, say r,
is on the same order as kBT [76]; because of the smallness
of the Boltzmann constant, this applies only to situations
with microscopic degrees of freedom as anticipated above.
In particular, for a vanishing mass scale (e.g., r → 0) as in
the presence of soft Goldstone modes or near a critical
point, noise always becomes important. Nonequilibrium
conditions are achieved by adding driving mechanisms, but
do not alter this picture qualitatively. Quantum fluctuations
might also be present, but are generically overwritten by
statistical (equilibrium or nonequilibrium) fluctuations
of the type described above in the low frequency, long
wavelength limit, which justifies the semiclassical limit
within which we study our OðNÞ models [65].
Within the effective field theory paradigm, we thus expect

this model to describe the low frequency, long wavelength
fluctuations of a system with the assumed symmetries. As
mentioned above, if one restricts to the dynamics of spatially
homogeneous field configurations and neglects the noise,
one recovers the (0þ 1)-dimensional model discussed prior.
Thus, the phase diagram in Fig. 1(a) is the mean-field phase
diagram of the dþ 1 model.

B. MSRJD representation and effective action

To study the impact of noise-induced fluctuations
systematically, we turn to the equivalent description of
the Langevin equation (8) in terms of a path integral
following the MSRJD construction [69–71]. A Langevin
equation,

L½ϕ�ϕðx; tÞ þ ξðx; tÞ ¼ 0; ð10Þ

with Gaussian white noise defined in Eq. (9) corresponds to
a path integral,

Z½j; j̃� ¼
Z

DϕDiϕ̃e−S½ϕ;ϕ̃�þ
R
X
j̃TϕþjT ϕ̃; ð11Þ

with the action

S½ϕ̃;ϕ� ¼
Z
X
ϕ̃TðXÞL½ϕ�ϕðXÞ −Dϕ̃TðXÞϕ̃ðXÞ: ð12Þ

ϕ is the N-component order parameter field also entering
the Langevin equation, and we introduced X ¼ ðx; tÞ to
streamline notation. ϕ̃ is an N-component auxiliary vari-
able, associated to the noise, often referred to as response
or quantum field. The path integral Z½j; j̃� generates the
noise averaged correlation and response functions of the
Langevin dynamics by taking derivatives with respect to
the source fields j; j̃, and evaluating at vanishing sources.
In particular, the (retarded) two-point response function and
correlation function are, again using a shorthand notation
Q ¼ ðq;ωÞ,

χRijðQ;Q0Þ ¼ δ2 lnZ

δj̃iðQÞδjjðQ0Þ

����
j¼j̃¼0

≡ GR
ijðQÞδðQþQ0Þ; ð13Þ

CijðQ;Q0Þ ¼ δ2 lnZ

δj̃iðQÞδj̃jðQ0Þ

����
j¼j̃¼0

≡GK
ijðQÞδðQþQ0Þ; ð14Þ

where we used time and space translation invariances.
The rotating phase has a time-dependent stable state which
generically breaks this structure, but we will see that in the
proper comoving frame it is recovered.
These objects represent the full two-point Green func-

tions of the theory, including all corrections due to
nonlinearities and noise. Absent spontaneous symmetry
breaking, they are ∝ δij by OðNÞ symmetry. The full Green
function in Fourier space GðQÞ is a 2 × 2 matrix in the
Nambu space Φ ¼ ðϕ; ϕ̃ÞT and has the form

GðQÞ ¼
�
GKðQÞ GRðQÞ
GAðQÞ 0

�
: ð15Þ

We introduce here a notation borrowed from Keldysh field
theory, with retarded (GR), advanced [GA ¼ ðGRÞ†], and
Keldysh (GK) component for the Green function. It high-
lights the connection to the Keldysh formalism for quantum
systems out of equilibrium, from which the MSRJD path
integral emerges as a semiclassical limit; see, e.g., Ref. [65]
for a review.
While the path integral for the dynamical partition

function, Eq. (11), encodes all information of the problem,
we transit here to another object—the effective action (see
Ref. [77] for an in-depth discussion of this object and
Refs. [64,65] for the nonequilibrium effective action).
It encodes the same information but organizes it in a
way that is beneficial for the analysis of the present
problem, both conceptually and in terms of practical
calculations. For example, it allows for a simple proof of
Goldstone’s theorem, and the construction of the associated
soft modes including in the rotating phase. It will also
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enable us to develop a quantitative potential picture for the
fluctuation-induced first-order transition.
The effective action functional is defined as the

Legendre transform of the generating functional for con-
nected correlation functions, W½j; j̃� ¼ lnZ½j; j̃�: Γ½φ; φ̃� ¼
supj;j̃½−W½j; j̃� þ RX jφ̃þ j̃φ�. Similarly to a classical
action, the effective action induces an equation of motion.
Its solution φs yields the physical field expectation value,
with φs ≠ 0 signaling macroscopic occupation or conden-
sation, while φ̃ ¼ 0 when evaluated at the physical point
due to probability conservation [76]. The full equation of
motion is given by

δΓ
δφ

����
φ¼hϕi;φ̃¼hϕ̃i

¼ δΓ
δφ̃

����
φ¼hϕi;φ̃¼hϕ̃i

¼ 0: ð16Þ

The effective action has an intuitive path integral repre-
sentation as

Γ½φ; φ̃� ¼ − ln
Z

DϕDiϕ̃e−S½ϕþφ;ϕ̃þφ̃�þδΓ
δφ̃ϕ̃þδΓ

δφϕ; ð17Þ

with j̃ ¼ ðδΓ=δφÞ, j ¼ ðδΓ=δφ̃Þ. Equation (17) states that
the effective action obtains from the bare action by
summing over all possible configurations of the Nambu
field Φ ¼ ðϕ; ϕ̃ÞT . Conversely, omitting fluctuations in a
mean-field approximation reproduces the bare action,
Γ½φ; φ̃� ¼ S½φ; φ̃�. The representation makes it transparent
that the effective action shares the symmetries of the bare
action absent sources.

The second derivative with respect to the Nambu field
(φðQÞ; φ̃ðQÞ)T around a time and space translation invari-
ant solution of the equations of motion satisfies

ðΓð2ÞðQ;Q0ÞÞ−1 ¼
�

0 ΓAðQÞ
ΓRðQÞ ΓKðQÞ

�−1
δðQþQ0Þ

¼
�
GKðQÞ GRðQÞ
GAðQÞ 0

�
δðQþQ0Þ; ð18Þ

and thus gives the full Green function of the theory in q,
ω space including the retarded and advanced responses
GR=AðQÞ ¼ ðΓR=AðQÞÞ−1 and the correlation function
GKðQÞ ¼ −GRðQÞΓKðQÞGAðQÞ [78].
Higher order field derivatives of Γ give the full one-

particle irreducible (1PI), or amputated, correlators. To
streamline equations in the remainder of the text, we
introduce the following notation for field derivatives of
the effective action evaluated on φ ¼ hϕi:

Γðm;nÞ
i1…inþm

ðX1;…; XnþmÞ

≡ δmþnΓ
δφ̃i1ðX1Þ…δφ̃imðXmÞδφimþ1

ðXmþ1Þ…δφinþm
ðXmþnÞ

:

ð19Þ

Following this construction, the bare MSRJD action
S½ϕ; ϕ̃� corresponding to our model (8) is given by

S½ϕ; ϕ̃� ¼ S0½ϕ; ϕ̃� þ Sint½ϕ; ϕ̃�; ð20Þ

S0½ϕ; ϕ̃� ¼
Z
X
ϕ̃ðXÞT�∂2t þ ð2γ − Z∇2Þ∂t þ r − v2∇2

�
ϕðXÞ −Dϕ̃ðXÞTϕ̃ðXÞ; ð21Þ

S0½ϕ; ϕ̃� ¼
1

2

Z
Q
(ϕð−QÞ; ϕ̃ð−QÞ)G−1

0

�
ϕðQÞ
ϕ̃ðQÞ

�
; ð22Þ

G−1
0 ¼

�
0 −ω2 þ iωð2γ þ Zq2Þ þ rþ v2q2

−ω2 − iωð2γ þ Zq2Þ þ rþ v2q2 −2D

�
; ð23Þ

Sint ¼
Z
X
λϕ̃ðXÞTϕðXÞρðXÞ þ uϕ̃ðXÞT∂tϕðXÞρðXÞ þ u0ϕ̃ðXÞTϕðXÞ∂tρðXÞ; ð24Þ

where G−1
0 is the bare inverse Green function. As mentioned

above, the effective action will share the symmetries of the
bare action, but encode the effects of fluctuations in terms
of renormalized parameters. In a gradient approximation,
the effective action maintains the functional form of the
microscopic action but with renormalized effective cou-
plings. We denote the renormalized versions of action

parameters with bars in the following; e.g., γ̄ denotes the
renormalized damping. Since the path integral cannot be
performed exactly in general, one has to resort to, e.g.,
perturbation theory, resummations, or renormalization
group techniques to derive corrections to the bare couplings
from the microscopic action S. In this way one could obtain
an improved phase diagram in terms of the renormalized
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and a priori unknown parameters of the effective action,
which includes noise and interaction effects. Here we do
not aim for precision estimates of the nonuniversal fluc-
tuation corrections to transition lines. We will rather focus
on universal aspects of the fluctuations corrections below.

IV. EXCEPTIONAL POINTS AND CRITICAL
EXCEPTIONAL POINTS

A. Modes, dispersions, and critical points

We now define the notion of an EP and a CEP within the
above formulation. Before doing so, we briefly fix some
further basic conventions and nomenclature for the remain-
der of this work. We can access the mode spectrum around
a given stable state φs by linearizing the coarse grained
equation of motion around its solution,X

j

ΓR
ijðq; tÞjφ¼φs

δφjðq; tÞ ¼ 0; ð25Þ

where we have assumed that the equation of motion is
Markovian, i.e., depends only on one time variable, as it is
the case for this work. The set of linearly independent
solutions ðδφαðq; tÞÞα¼1;… are the excitation modes. Put
differently, the modes span the kernel of the inverse Green
function in time and momentum space ΓRðq; tÞ. If ΓRðq; tÞ
is not explicitly time dependent but contains only time
derivative operators, the modes usually take the form
δφαðq; tÞ ¼ e−iωαðqÞtδφαðq; 0Þ, where ωαðqÞ are the mode
dispersions. The dispersions are also the roots of
detΓRðω;qÞ ¼ 0 and equivalently the poles of the retarded
Green function in frequency space. The real part of a
dispersion gives the frequency or inverse period at which
the corresponding mode oscillates, while the imaginary part
yields how fast the mode dissipates, i.e., its inverse lifetime.
See also Fig. 4 for an illustration.
For the solution φs to be stable, no dispersion can have a

positive imaginary part since this corresponds to an
exponentially growing fluctuation. Therefore, an instability
toward a new phase occurs if one tunes some parameter
such that a dispersion is at the verge of moving into the
upper complex half plane, i.e., when the imaginary part of
the dispersion goes to zero. The system reaches a critical
point and a continuous phase transition takes place,
indicated by a divergence of, e.g., the two-point correlation
function at equal time GKðq; t ¼ 0Þ. Typically, continuous
transitions occur for a vanishing dispersion ωðqÞ ¼ 0, but
an instability at finite frequency can however occur, too.
This corresponds, for example, to the cases I0 (qc ¼ 0) and
III0 (qc ≠ 0) in the classification of instabilities in noise-
less systems by Cross and Hohenberg [40].
In the simplest case of a single scalar field variable, the

linearized renormalized equation of motion at low frequen-
cies reduces to the damped harmonic oscillator,�

∂
2
t þ 2γ̄ðqÞ∂t þ r̄ðqÞ�δφðq; tÞ ¼ 0; ð26Þ

or, equivalently,

ΓRðq;ωÞ ¼ −ω2 − 2γ̄ðqÞωþ r̄ðqÞ: ð27Þ

The modes are

δφ1;2ðq; tÞ ¼ e−iω1;2ðqÞt; ð28Þ

with dispersions

ω1;2ðqÞ ¼ −iγ̄ðqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄ðqÞ − γ̄ðqÞ2

q
: ð29Þ

As an example at the mean-field level, we have rðqÞ ¼
v2q2 þ r and γðqÞ ¼ γ þ ðZ=2Þq2 using Eq. (23).
Stability, i.e., a finite lifetime for both modes, demands

that r > 0, γ > 0. If one tunes the mass term r to zero, one
dispersion becomes gaplessω1 ¼ 0while the other remains
decaying ω2 ¼ −2iγ̄ðqÞ. The first becomes unstable upon
tuning the mass r negative. In our case, we reach the critical
point describing the phase boundary A of the phase
diagram Fig. 1. Tuning the damping γ negative also induces
an instability. However, it does not proceed through a point
where the dispersions vanish in the complex plane, but both
dispersions maintain a finite real part ω1;2 ¼ � ffiffiffi

r
p

at γ ¼ 0.
It corresponds to the phase transition B in Fig. 1.

B. (Critical) exceptional point

We first consider the case of a single damped oscillator,
N ¼ 1. A special point occurs when there is a wave vector
q� at which γ̄2ðq�Þ ¼ r̄ðq�Þ and both formerly independent
modes coalesce. At this point a new linearly independent
solution emerges: δφEPðq�; tÞ ¼ te−iωðq�ÞtδφEPðq�; 0Þ.
This marks an exceptional point. The damped harmonic
oscillator’s EP separates a purely dissipative, overdamped
regime, where both dispersions are imaginary without a
real part, and an underdamped regime, where excitations
oscillate due to a finite real part of their dispersions.
Clearly, at an EP the square root appearing in Eq. (29)
vanishes and therefore the EP occurs at a nonanalyticity of
the dispersion relations.
Equivalently, it is also possible to rewrite Eq. (26)

as a first-order linear differential equation of the form
∂tδφ ¼ Mδφ. An exceptional point, i.e., a coalescence of
modes, is then defined as a point in parameter space where
the 2 × 2matrixM is not diagonalizable in internal indices,
making contact with the more usual definition of EP
[28,32,39] (see also Appendix B).
We say that there is a critical exceptional point if

the dispersion at which the EP occurs is gapless, i.e.,
when γ̄ðq�Þ ¼ r̄ðq�Þ ¼ 0. For q� ¼ 0, we then have, at
the CEP,

ΓRðq� ¼ 0;ωÞ ¼ −ω2; ð30Þ
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underlying the necessity to keep the second-order time
derivative. We emphasize again that a CEP is hence a
property of the full renormalized inverse retarded Green
function.
We now generalize the notion of a CEP to the dynamics

of N component fields. A full retarded Green function that
can be diagonalized in field space,

ΓR
ijðQÞ ¼ ΓR

i ðQÞδij; ð31Þ

where ΓR
i are of the form Eq. (27) therefore displays a CEP

if and only if the full diagonalized inverse Green function
has at least one element ΓR

i which verifies Eq. (30). We
show in Appendix B that the case of a CEP occurring
through a nondiagonalizable Green function can always
be mapped to this case in the vicinity of the CEP. Since the
dynamics is diagonal and thus decoupled, we now drop the
index i and concentrate on the pair of modes becoming
critical and exceptional simultaneously. In our case at mean

field, the inverse Green function is diagonal and all its
elements take the form

ΓRðq;ωÞ ¼ −ω2 − Ziωq2 þ vjqj; ð32Þ

and the dispersions at the CEP are

ω1;2ðqÞ ¼ −i
Z
2
q2 � vjqj: ð33Þ

Reaching a CEP generically requires two fine-tunings:
both γ̄ðq ¼ 0Þ and r̄ðq ¼ 0Þ have to be tuned to zero. We
will show however in Sec. III that the transition between
the static and the rotating phase constitutes a CEP. There is
only one fine-tuning necessary as the vanishing of r̄ðq ¼ 0Þ
for phase fluctuations in the static ordered phase is
guaranteed by Goldstone’s theorem. The idea to generate
CEPs with only one fine-tuning by considering systems
with a Goldstone mode was first put forward in
Refs. [15,59].

C. Superthermal mode occupation

The discussion of (critical) exceptional points above
makes it clear that these are spectral properties, related to
the retarded Green function. Now we study the conse-
quences of such points for the statistical properties, i.e.,
mode occupation numbers. These are encoded in the full
equal-time correlation function or Keldysh Green function.
The CEP is signaled by a vanishing of two coalescing
modes ω1;2ðqÞ as q → 0. Near the CEP, the Keldysh Green
function associated to the coalescing critical modes takes
the form

GKðQÞ ¼ 2D̄ðQÞ
jω − ω1ðqÞj2jω − ω2ðqÞj2

; ð34Þ

where D̄ðQÞ≡ΓKðQÞ is a generic frequency- and
momentum-dependent noise kernel of the respective field
direction.
To determine the physics at low frequencies and

momenta, we can restrict the discussion to D̄ðQ → 0Þ≡ D̄,
which absent fine-tuning is larger than zero, corresponding
to a generic Markovian noise level [79].
This general property of a CEP reproduces the structure

pointed out in Ref. [15]. There are two poles at ω ¼ 0 that
multiply, causing a significantly enhanced infrared diver-
gence of the correlation function, irrespective of the precise
forms of the dispersions. This can be easily seen by
inspecting the equal-time Keldysh Green function obtained
from Eq. (34),

GKðq; t ¼ 0Þ ∼ D̄
γ̄ðqÞr̄ðqÞ ; ð35Þ

since both γ and r go to zero precisely at the CEP.

FIG. 4. Position of the poles of the retarded response of a scalar
field in the complex plane. The dispersions are parametrized as
ω1;2 ¼ −ði=2Þð2γ þ Zq2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ v2q2 − ð2γ þ Zq2Þ2=2

p
, with

v ¼ Z ¼ 1. (a) Purely underdamped motion r ¼ 2γ, all poles
have a finite distance from the real and imaginary axis. (b) Under-
damped excitations exist, constituting a line of poles on the
imaginary axis. The gap between the real axis and the pole
spectrum remains finite, r ¼ 0.4γ. At large enough wave vectors,
there is an EP separating the underdamped from the overdamped
regime. It can be clearly detected by the pole lines with finite
real part terminating nonanalytically in the line of over-
damped excitations. (c) Gapless (critical) excitation spectrum,
2γ > 0; r ¼ 0. The line of underdamped poles touches the zero in
the complex plane. At finite damping, a gapless spectrum always
has an underdamped regime at low momenta. (d) CEP spectrum,
2γ ¼ r ¼ 0. The EP, where the underdamped motion terminates,
sits at the zero in the complex plane. At finite momenta, all
excitations are underdamped. Real and imaginary parts of the
dispersions scale differently with momentum.

UNIVERSAL PHENOMENOLOGY AT CRITICAL EXCEPTIONAL … PHYS. REV. X 14, 021052 (2024)

021052-11



With the mean-field dispersions Eq. (33), the equal-time
correlation function is given by

GKðq; t ¼ 0Þ ∼ D
q4

; ð36Þ

which has a significantly stronger infrared divergence as
in the vicinity of a usual (Gaussian) critical point where
GKðq; t ¼ 0Þ ∼ q−2, e.g., at the phase boundary A and B of
the phase diagram Fig. 1, where, respectively, r and γ are
fine-tuned to 0. In particular, it is superthermal: the
fluctuation-dissipation relation (see next section) implies
generally that GKðq; t ¼ 0Þ ∼ q−2. This is a hint that a CEP
is a genuine nonequilibrium feature.

D. CEP exists only out of equilibrium

Here we show that, indeed, a CEP cannot occur at
thermal equilibrium. In that circumstance, the full corre-
lation and response functions obey a fluctuation-dissipation
relation, which reads for the two-point functions (kB ¼ 1)

GKðQÞ ¼ 2T
iω

�
GRðQÞ −GAðQÞ�: ð37Þ

In thermal equilibrium with global detailed balance, FDRs
have to hold not only for the full, renormalized two-point
Green functions, but also for all higher n-point correlations
and responses as well. This leads to an infinite tower of
relations to be checked. This can however be elegantly
avoided, as the FDR can be understood as a consequence of
a symmetry of the MSRJD (or Schwinger-Keldysh) action
and effective action [65,71,80–85]. Rather than calculating
all full n-point functions, it is sufficient to check if the
MSRJD action has that symmetry to establish if the system
is in thermal equilibrium or not. For OðNÞ vector fields, this
thermal symmetry is given by

φðx; tÞ → φðx;−tÞ;
φ̃ðx; tÞ → φ̃ðx;−tÞ þ β∂tφðx;−tÞ: ð38Þ

There is one parameter in the transformation, which is
associated to the temperature β ¼ ð1=TÞ, shared by all
subsystems (all subsystems are in equilibrium with
each other, sometimes referred to as detailed balance).
Force terms ∼ϕ̃ðx; tÞF½ϕ� in the Lagrangian generate the
following additional contribution under the symmetry
operation Eq. (38):Z

t
ϕ̃ðx; tÞF½ϕ� →

Z
t
ϕ̃ðx; tÞF½ϕ� þ δS; ð39Þ

δS ¼
Z
t
β∂tϕðx; tÞF½ϕ�: ð40Þ

If now the forceF½ϕ� is conservative, i.e.,F½ϕ�¼−ðδV=δϕÞ,
we have

δS ¼
Z
t

dV½ϕ�
dt

¼ 0: ð41Þ

Thus, any conservative term is invariant under Eq. (38).
Nonconservative damping terms are allowed in equilibrium,
however, only if they comewith associated noise termswith a
strict relation for the coefficients, e.g., for the full momentum
dependence of the damping,

∼
Z
q;t

γ̄ðqÞφ̃ið∂tφi − Tφ̃iÞ; ð42Þ

∼
Z
q;t
ð2γ̄ þ Z̄q2 þ � � �Þφ̃ið∂tφi − Tφ̃iÞ; ð43Þ

so that the thermal symmetry is realized. The presence of the
thermal symmetry is then equivalent to the existence of a fixed
ratio between dissipative and fluctuating terms.
In other words, the quadratic part of the action Eq. (20) is

invariant under this transformation if the full renormalized
damping γ̄ðqÞ and the full renormalized noise level D̄ðqÞ
are proportional to each other with

T ¼ D̄ðqÞ
4γ̄ðqÞ ; ð44Þ

where in a state of true thermal equilibrium the temperature
is independent of the momentum q.
If the system is driven out of equilibrium on a more

microscopic level, such a fine-tuning of parameters is
unnatural. However, thermal symmetry (i.e., equilibrium)
can emerge under coarse graining at long wavelength, e.g.,
in the vicinity of phase transitions [64,86–88]. In particular,
the effective long wavelength description of the symmetric
phase, the static ordered phase, and the phase transition
between them are characterized by such an emergent
thermal behavior, as we will show in the next section.
This reasoning however breaks down as a matter of

principle as one tunes γ through zero entering the rotating
phase. Intuitively, this phase is clearly nonthermal, as it has
a time-dependent stable state and such a perpetuum mobile
cannot occur in equilibrium. This behavior should extend to
phase boundaries of the rotating phase, and therefore in
particular at a CEP.
More formally, for the damped harmonic oscillator

Eq. (27) with γ̄ðq ¼ 0Þ ≠ 0, it is always possible to realize
the thermal symmetry Eq. (38) with a temperature
T ¼ ½DðqÞ=4γðqÞ�. But, by definition of a CEP where
the full renormalized damping at zero momentum is tuned
to zero, γ̄ðq → 0Þ ∼ jqjα with α > 0, in the presence of a
finite noise level D̄ðq → 0Þ ∼ D̄, the dynamics has to break
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thermal equilibrium conditions. Indeed, Eq. (44) does not
hold and the form Eq. (42) is not realized.

V. STATICALLY AND ROTATING ORDERED
PHASES: GOLDSTONE MODES

AND LOW LYING EXCITATIONS

After having introduced the methodology, we now
include fluctuations around the mean-field phases dis-
cussed in Sec. II. We first analyze the symmetry breaking
patterns characterizing the three phases and show formally
how Goldstone modes follow from symmetry breaking in
the rotating phase. After assuming a certain form of the
stable state field expectation value—which differs in the
static and rotating phases—this discussion is exact. We
afterward discuss the spectrum of linearized fluctuations in
all three phases, and thereby access the Gaussian fixed
points describing the phase transitions. This discussion is
exact in the long wavelength limit above the upper critical
dimension, which we determine to be dc ¼ 4 in Sec. VI,
and forms the basis for the loop fluctuation analysis; see
also Sec. VI.

A. Symmetry breaking patterns
and Goldstone modes

We start our discussion of the phase diagram by
analyzing the symmetry properties of the three phases,
i.e., studying which part of the OðNÞ symmetry is broken
by the respective stable states. This leads to the emergence
ofN − 1Goldstone modes in the statically ordered phase as
usual, and 2N − 3 Goldstone modes in the rotating phase.
These statements are not confined to approximations but
rely on general exact properties of the effective action for
given symmetry breaking patterns.

1. Statically ordered phase

The equation of motion Eq. (8) and the effective action
Eq. (17) are invariant under global OðNÞ transformations of
the field. Here we stress that it is actually invariant under
rotations and reflections, i.e., OðNÞ ≅ SOðNÞ ⋉ Z2—the
product is semidirect since rotations and reflections gen-
erally do not commute. For N > 2 this difference is not
relevant for our purposes, it will however turn out to be of
crucial importance in the case N ¼ 2. In the disordered
phase the stable state order parameter φs ¼ 0 does not
transform under OðNÞ and therefore the full symmetry
group remains intact.
We now turn to the statically ordered sector, where we

can parametrize the noise averaged stable state order
parameter as

φs ¼
ffiffiffiffiffi
ρ0

p ð1; 0;…; 0ÞT ≡ ffiffiffiffiffi
ρ0

p
ê1: ð45Þ

The direction is picked spontaneously, and without loss
of generality we choose it to be aligned with the 1 axis.

The symmetry group SOðNÞ is generated by the skew
symmetric real N × N matrices Tij ¼ −Tji, which are
parametrized as ðTijÞnm ¼ δinδjm − δimδjn. Each of these
generates a rotation of the two components i; j ¼ 1;…; N
into each other. In other words, it generates rotations in
the plane spanned by êi; êj. There are ðN2Þ ¼ ½NðN − 1Þ=2�
such rotations or generators. The stable state breaks
the N − 1 generators that mix the first component with
any other; thus there are N − 1 Goldstone modes and
the remaining ðN − 1ÞðN − 2Þ=2 generators generate
SOðN − 1Þ. Note that the reflection symmetry of OðNÞ
remains intact as the stable state does not break, e.g.,
S ¼ diagð1;…; 1;−1Þ, and thus the full unbroken sym-
metry group is OðN − 1Þ. This is the usual symmetry
breaking pattern also encountered in model A of the
Hohenberg-Halperin classification. We briefly discuss
two special cases.
N ¼ 2. The stable state is a point on a circle. The

unbroken symmetry is Oð1Þ ¼ Z2, a reflection along the
axis defined by the order parameter. Therefore, the stati-
cally ordered state would not leave any symmetry intact, if
the original symmetry were SO(2) rather than O(2).
N ¼ 3. The stable state is a point on a sphere with fixed

radius. The unbroken subgroup O(2) are the rotations
around the axis defined by this point, while the two
Goldstone modes correspond to the two directions in which
one can move a point on a sphere.

2. Dynamically ordered rotating phase

We now turn to the rotating phase, where we parametrize
the stable state as

φs ¼
ffiffiffiffiffi
ρ0

p ðcosEt; sinEt;…; 0ÞT
≡ ffiffiffiffiffi

ρ0
p ðcosEtê1 þ sinEtê2Þ: ð46Þ

The order parameter now traces out a two-dimensional
plane, which again is picked spontaneously; we choose it to
be the 1-2 plane.
This stable state remains invariant under the rotations

of the third to Nth component into each other. Therefore,
there are ðN−2

2
Þ ¼ ½ðN − 2ÞðN − 3Þ=2� unbroken generators

constituting an unbroken OðN − 2Þ subgroup. For N > 2,
theZ2 parity part remains unbroken analogously to the case
discussed above [89].
The rotating stable state breaks the N − 2 generators that

rotate the second component into any higher component.
These lead to N − 2 new Goldstone modes. The previously
N − 1 broken generators, rotating the first component into
any other, remain broken by the rotating stable state and
also lead to gapless Goldstone modes. We therefore have
2N − 3 Goldstone modes in total in the rotating phase.
For N ¼ 2, the unbroken symmetry of the static phase is

the remnantZ2, which is broken in the rotating phase. Thus
the rotating phase is characterized by a symmetry breaking
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if the microscopic dynamics is fully O(2) symmetric; an
SO(2) invariance is not sufficient for the purpose. For
N ¼ 3, see Fig. 5.
The rotating order can also be viewed as resulting from a

combination of the spontaneous breaking of the internal
OðNÞ symmetry and the external symmetry of time trans-
lations: In the example above, the first produces Eq. (45),
and the second allows for a time-dependent generator
expðEtT12Þ, producing Eq. (46). We see here the reason
for the simplicity of the limit-cycle solutions: Time trans-
lation symmetry breaking enables dynamics on the degen-
erate manifold available due to the breaking of a continuous
internal symmetry. This activation mechanism for soft
modes should be very general for systems driven out of
equilibrium, where time translation symmetry breaking can
occur. At the same time, it rationalizes why the Van der Pol
limit cycle is more complicated: Time translation symmetry
is broken, but there is no continuous internal symmetry
which could be broken, and thus no Goldstone mode to be
activated by it.

3. Goldstone theorem for the rotating phase

Above we have counted the Goldstone modes via the
number of broken symmetry generators. Here we will show
more formally how these broken generators lead to gapless
Goldstone modes, specifically in the rotating phase, and
give them a geometric interpretation.
In spatially and temporally homogeneous states of

matter, Goldstone modes are signaled by poles of the
retarded Green function at zero momentum and frequency,
at the origin of the complex frequency plane, describing
spatially and temporally homogeneous, nondecaying
modes. Equivalently, they manifest in gapless zero modes

of Γð1;1Þ. In our rotating stable state, the Green function is
not diagonal in frequency space. We need to generalize this
criterion to finding the linearly independent elements of
the kernel of the derivative operator Γð1;1ÞðX0; XÞ that
do not decay over time, without fixing them to be fully
time independent. Indeed, we will find finite frequency
Goldstone modes that oscillate exactly at the frequency of
the limit cycle ω ¼ �E. To this end, we now assume that
the field expectation value takes the form of a rotating
configuration,

φ̃s ¼ 0; φs ¼
ffiffiffiffiffi
ρ0

p ðcosEtê1 þ sinEtê2Þ; ð47Þ

where ê1;…;N denote the basis vectors in field space. First,
we consider how a general field configuration transforms
under an infinitesimal OðNÞ rotation generated by T1;i by

an angle θð1Þi , for all i ¼ 3;…; N, which rotate out of the
ê1 − ê2 plane while leaving ê2 invariant. Their action on the
field expectation value is given by

φ → φþ θð1Þi φ1êi − θð1Þi φiê1; ð48Þ

φ̃ → φ̃þ θð1Þi φ̃1êi − θð1Þi φ̃iê1; ð49Þ

and shown in Fig. 6 for N ¼ 3. Since the effective action is
invariant under OðNÞ transformations, it follows for an
infinitesimal rotation that

(a) (b)

FIG. 5. Visualization of the symmetry pattern for the O(3) case.
The spontaneously formed static order corresponds to a point on a
sphere; see (a). The two Goldstone modes correspond to the two
directions into which one can move the point on the sphere. The
unbroken O(2) group corresponds to rotations along the axis
defined by the order parameter. In the rotating phase (b), the order
parameter rotates along a spontaneously picked grand circle of
the sphere. This breaks the previously unbroken O(2) symmetry
down to a Z2 reflection against the plane defined by the limit
cycle. The three Goldstone modes correspond to the two
directions in which the grand circle can be rotated on the sphere,
plus a shift of the along the circle.

(a) (b)

(c)

FIG. 6. Visualization of the action of the different broken
generators and the respective Goldstone modes for the case
OðN ¼ 3Þ. (a) The generator T1;2 shift the field along the limit
cycle. (b) and (c) show the angles in which the plane of the limit
cycle itself can be tilted. (b) corresponds to a cosEt wave around
the original solution, while (c) corresponds to a sinEt wave.
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Z
x;t

�
δΓ

δφiðx; tÞ
φ1ðx; tÞ þ

δΓ
δφ̃iðx; tÞ

φ̃1ðx; tÞ
�
êi

−
�

δΓ
δφ1ðx; tÞ

φiðx; tÞ þ
δΓ

δφ̃1ðx; tÞ
φ̃iðx; tÞ

�
ê1 ¼ 0;

∀ i ¼ 3;…; N: ð50Þ

If evaluated on the field expectation value, this equation
is trivially true since Γð0;1Þ ¼ Γð1;0Þ ¼ 0 precisely are the
equations of motion. Information about the spectral com-
ponent of the full Green function can however be gained
by taking another derivative with respect to φ̃jðx0; t0Þ
ðj ¼ 1;…; NÞ and evaluating on the equation of motion,
i.e., Γð0;1Þ ¼ 0;φi;0 ¼ 0;φ1;0 ¼ ffiffiffiffiffi

ρ0
p

cosEt afterward:

Z
x;t

Γð1;1Þ
ji ðx0;x; t0; tÞ cosEtêi ¼ 0: ð51Þ

We therefore have identified N − 2 spatially homo-
geneous linearly independent modes, one for every
i ¼ 3;…; N, that do not decay and are elements of the
kernel of the inverse Green function. The Goldstone modes
associated to the breaking of the generators T1;i with
i ¼ 3;…; N in the rotating phase are identified as cosine
waves. This corresponds to shifting the limit cycle as
depicted in Fig. 6(b). Taking a derivative with respect to φ
of Eq. (51) does not lead to another constraint, since
Γð0;2Þ ¼ 0 due to conservation of probability [65].
We now perform the analogous analysis for the broken

generators T2;i, i ¼ 3;…; N, which generate rotations out
of the ê1-ê2 plane while leaving ê1 invariant, and act on the
physical field expectation value as depicted in Fig. 6(c).

Such rotations by an angle θð2Þi transform the fields as

φ → φþ θð2Þi φ2êi − θð2Þi φiê2; ð52Þ

φ̃ → φ̃þ θð2Þi φ̃2êi − θð2Þi φ̃2ê1; ð53Þ

which leads, in the same manner as before, toZ
t;x

Γð1;1Þ
ji ðx0;x; t0; tÞ sinEtêi ¼ 0: ð54Þ

Therefore, the breaking of generators T2;i, i ¼ 3;…; N
leads to N − 2 linearly independent sine waves as
Goldstone modes. They correspond to the orbit of the
rotating field after the plane of the original limit cycle has
been rotated by the broken generators. This amounts to the
respective sine and cosine fluctuations around the original
limit cycle as visualized in Fig. 6. Because of the linear
independence of sine and cosine functions, we arrive at a
total of 2N − 4 Goldstone modes so far.
We are left with the last broken generator T1;2, which

generates rotations in the ê1 − ê2 plane, i.e., shifts along the

limit cycle; see Fig. 6(a). More precisely, such a rotation by

an angle θð2Þi transforms the fields as

φ → φþ θφ1ê2 − θφ2ê1; ð55Þ

φ̃ → φ̃þ θφ̃1ê2 − θφ̃2ê1; ð56Þ

and thus shifts the physical field expectation value along
its orbit:

φs → φs þ θð− sinEtê1 þ cosEtê2Þ: ð57Þ

This leads to

Z
x;t

Γð1;1Þðx0;x; t0; tÞ · ð− sinEtê1 þ cosEtê2Þ ¼ 0; ð58Þ

where Γð1;1Þ ¼ ðΓð1;1Þ
ij Þ is again an N × N matrix. This adds

another linearly independent, spatially homogenous, and
nondecaying mode to the kernel of Γð1;1Þ. This Goldstone
mode corresponds to a shift along a given limit cycle.
We thereby arrive at a total of 2N − 3 Goldstone modes

in the sense of excitations that do not decay. We remark that
this counting is nonperturbative and applies to the renor-
malized Green functions. It only depends on the fact that
OðNÞ is an actual symmetry, and that it is broken in the
form of Eq. (47). It applies in the entire rotating phase. We
will show explicitly how the Goldstone modes emerge in
the dynamics of linearized fluctuations in the various
phases, including the shift along the limit cycle in the
rotating phase in Sec. V B.
The case of N ¼ 2 is special in the sense that there is

only one Goldstone mode in both the rotating and the
ordered phase. Since the symmetry that is broken between
the ordered and rotating phase for N ¼ 2 is Z2 [O(2) is
broken to Z2 in the ordered phase already], no additional
Goldstone modes occur. This is confirmed by the counting
laid out above.
The discussion shows explicitly what we stated above:

Because of the emergence of the limit cycle, time trans-
lation invariance is spontaneously broken. However, a time
translation t → tþ Δt and a rotation generated by T1;2 by
the angle Δt · E are the same. The Goldstone mode
generated by T1;2 can equivalently be viewed as arising
from the breaking of time translation symmetry. Below we
will use this relation between time translations and internal
rotations to write the action in a comoving frame, where it
becomes time independent. The Goldstone modes then
can also be identified with poles of the retarded response in
frequency space, which lie at real frequencies ω ¼ �E
for the fluctuations orthogonal to the limit cycle and
at vanishing frequency for the fluctuations along the limit
cycle.
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B. Linear fluctuations

1. Spectra

After these exact considerations for the q ¼ 0 excitations
in the rotating phase, we now write the action of fluctuations
around their respective mean-field solutions φs which also
serve as a low frequency, long wavelength description of the
phases. That is, we expand the action to quadratic order:

S½ϕs þ Δϕ; ϕ̃� ≈
Z
x;t

(Δϕðx; tÞ; ϕ̃ðx; tÞ)G−1
0

�Δϕðx; tÞ
ϕ̃ðx; tÞ

�
:

ð59Þ

We note that, by reversing the MSRJD construction, this
corresponds to expanding the Langevin equation to linear
order around a respective mean-field solution. This allows us
to access the spectrum of dispersions ωiðqÞ, to derive
the inverse bare Green function G−1

0 of fluctuations in
the various phases, and to identify the CEPs and their
properties. In the static phase, we pass to a phase-amplitude
representation,

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 þ δρ

p
exp

 XN
i¼2

θiT1;i

!
ê1;

ϕ̃ ¼ ffiffiffiffiffi
ρ0

p
exp

 XN
i¼2

θiT1;i

!
χ̃; ð60Þ

where χ̃ ∈RN is parametrized as χ̃ ¼ ðδ̃ρ; θ̃2;…; θ̃NÞ, and
expand to quadratic order. The amplitude sector is

S0ρ ¼ ρ0

Z
x;t

ρ̃½∂2t þ ðδþ 2u0ρ0 − Z∇2Þ∂t
þ 2λρ0 − v2∇2�ρ −Dρ̃2; ð61Þ

with the relative amplitude fluctuation ρ ¼ ðδρ=2ρ0Þ while
the Gaussian fluctuations of the phases θ2;…; θN are
described by

S0θ ¼ ρ0

Z
x;t

θ̃i½∂2t þ ðδ − Z∇2Þ∂t − v2∇2�θi −Dθ̃2i : ð62Þ

The equal-time correlation function and the dispersion gaps
[i.e., Δ ¼ ω1;2ðq → 0Þ∈C] corresponding to this quadratic
action are displayed in the third row of Table II. This action
also serves as a starting point for an effective long wave-
length theory describing the transitions out of the statically
ordered phase. The same procedure can be carried out in the
rotating phase, where we parametrize the fluctuating field in
a comoving frame as

φ ¼ expðEtT1;2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 þ ρ

p
exp

 XN
i¼2

θiT1;i

!
ê1; ð63Þ

where E is the angular velocity of the limit cycle which we
choose, without loss of generality, to lie in the 1-2 plane as
before. Working in the comoving frame allows us to retrieve
an action which does not explicitly depend on time, and thus
to use frequency space conservation and define modes as in
Sec. IVA. The resulting quadratic action is block diagonal
with a diagonal part for the phase fluctuations orthogonal to
the limit cycle θ3;…;N :

S0⊥ ¼ ρ0

Z
x;t

θ̃ið∂2t − Z∇2
∂t − v2∇2 þ E2Þθi −Dθ̃2i : ð64Þ

Its form is in agreement with the prediction from Goldstone
theorem from Sec. VA 3.
The quadratic action for the phase fluctuations along the

limit cycle and the amplitude fluctuations is however not
diagonal. Its full form is given in Appendix C. An effective

TABLE II. Dispersion gaps and equal-time correlators from linearized fluctuations in the three phases. The gaps reveal the counting of
gapless modes. There are N − 1 gapless phase fluctuation modes in the statically ordered phase while the amplitude fluctuations remain
gapped in the entire phase, also at the transition into the limit cycle at δ → 0. In the rotating phase, after adiabatically eliminating the
amplitude fluctuations (see Appendix C), there is one gapless mode for phase fluctuations along the rotating limit cycle and 2ðN − 2Þ
modes that do not dissipate but oscillate at the frequency of the limit cycle for phase fluctuations perpendicular to the limit cycle, all in
agreement with the Goldstone theorem. The scaling behavior of the equal-time correlators is discussed in the main text.

Phase Fluctuation Dispersion gap Δ1;2 ¼ ω1;2ðq → 0Þ Equal-time correlation function

Symmetric φs ¼ 0 φ1;…;N Δ1;2 ¼ −iγ � ðr − γ2Þ1=2 → gapped GK
0;ij ∼

Dδij
ðZq2þ2γÞðv2q2þrÞ ∼ q0

Static order N − 1 phase fluctuations Δ1 ¼ −i v2δ q
2 → gapless

Δ2 ¼ −2iδ≡ −2ið2γ − r
λÞ → gapped

GK
0;ij ∼

Dδij
v2q2ðZq2þδÞ ∼ q−2

ρ0 ¼ − r
λ > 0; E ¼ 0 Amplitude fluctuations Δ1;2 ¼ −i δþu0ρ0

2
� ð8λρ0−ðδþu0ρ0Þ2Þ1=2

2
→ gapped GK

0;ρ ∼ D
ðZq2þδþu0ρ0Þðv2q2þ2λρ0Þ ∼ q0

Rotating order Phase fluctuations along
limit cycle

Δ1 ¼ −i v2jδjq
2 → gapless

Δ2 ¼ −2ijδj → gapped

GK
0 ∼ D

v2q2ðZq2þjδjÞ ∼ q−2

ρ0 ¼ − δ
u > 0,

E2 ¼ rþ λρ0 > 0

N − 2 phases perpendicular
to limit cycle

Δ1;2 ¼ −i Z
2
q2 � E → oscillating, no decay GK

ij ∼
Dδij

Zq2ðv2q2þE2Þ ∼ q−2
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theory for the phase fluctuations along the limit cycle θk
can however be obtained by performing the Gaussian
integration over the gapped amplitude fluctuations. It
yields, for small limit-cycle frequencies E,

S0k ¼ ρ0

Z
t;x

θ̃k½∂2t þ ðjδj − Z∇2Þ∂t − v2∇2�θk −Dθ̃2k: ð65Þ

The corresponding gaps and equal-time correlators for all
Goldstone modes are shown in the fourth row of Table II.
Once in the rotating frame, the Gaussian Green function

displays a pole at vanishing momenta and frequency
for the θk fluctuations like for a usual equilibrium
Goldstone mode.
The fact that the correlator diverges as q−2 in the entire

phase does not indicate an instability but is a hallmark of
the Goldstone nature of the phase fluctuations. Below the
lower critical dimension dl ¼ 2, this divergence leads to
infrared divergences of the loop corrections due to phase
fluctuations, destroying long-range order as a consequence
of the Mermin-Wagner theorem.
In the statically ordered as well as in the symmetric

phase, the Gaussian action satisfies the thermal symmetry
or equivalently the FDR with respective effective temper-
ature, T ¼ ðD=4γÞ and T ¼ ðD=2δÞ. The quadratic sector
is thermal in both phases, whereas nonconservative inter-
actions can induce nonthermal behavior only for large
fluctuations at finite frequencies or momenta. We thus face
a case of an approximate, emergent equilibrium behavior
despite the microscopic violation of equilibrium condi-
tions. In the rotating phase instead, the part of the action
describing the amplitude fluctuations and fluctuations of
the phase along the limit cycle is explicitly time dependent
if one does not go into the rotating frame, and not invariant
under the thermal symmetry Eq. (38). When N > 2, for the
fluctuations tilting the limit cycle, see Fig. 6, the damping
vanishes at zero momenta and the effective action cannot
be of the form Eq. (42). The thermal symmetry is broken.
The FDRs are not satisfied either by the Gaussian Green
functions. Thermal symmetry is violated even in the
quadratic sector and there is no effective thermal equilib-
rium emerging at long wavelengths. For N ¼ 2, the
quadratic sector of the phase fluctuations appears thermal
in the rotating frame. There is however a KPZ nonlinearity
breaking the thermal symmetry beyond the Gaussian level;
see Sec. VI E.

2. Phase transitions

In addition to the spectrum, we can discuss the universal
behavior at the phase transitions above their respective
upper critical dimensions dc, where the Gaussian approxi-
mation is exact.
The entire spectrum is gapped in the symmetric phase;

i.e., the poles of the dispersions are located in the lower
complex half plane with finite distance from the real axis.

Thus fluctuations decay exponentially with time, and the
correlator remains analytic for vanishing momenta. There
are two limiting cases where the bare correlator diverges
algebraically, marking critical points. Upon tuning the
mass term r to zero, one dispersion becomes gapless,
ω1ðqÞ ≈ −ði=γ2Þv2q2, and the equal-time correlator
diverges as q−2. Furthermore, the Gaussian exponent for
the divergence of the correlation length is ν ¼ 1

2
. At this

point the phase transition into the ordered phase occurs.
This transition is in fact the equilibrium model A transition
of the Halperin-Hohenberg classification [90] because the
additional microscopic breaking of equilibrium conditions
we add are all irrelevant. Indeed, the most relevant non-
linearity is the usual λϕ4 interaction which has mass
dimension ½λ� ¼ 4 − d (therefore, dc ¼ 4). Power counting
reveals that the inertial term ∂

2
t has dimension −2 and the

interactions u, u0 have ½u� ¼ ½u0� ¼ 2 − d at the Gaussian
fixed point. Being irrelevant for d > 2, their bare values
play no role both at the critical Gaussian fixed point above
dc and at the Wilson-Fisher fixed point below it. Model A
transition and exponents are thus recovered.
The bare correlator also displays an algebraic singularity

∼q−2 at the transition into the rotating phase at 2γ ¼ 0. At
this point, the imaginary part of the dispersions vanishes,
indicating an instability and a second-order phase transi-
tion. This occurs at a finite frequency � ffiffiffi

r
p

. This is an
example of a finite frequency critical point that can occur
outside of thermal equilibrium and is the generalization of
the IIIs scenario from Cross and Hohenberg [40] to noisy
dynamics. A finite frequency transition has, for instance,
been studied in Ref. [16]. This transition however does
not proceed via a CEP due to the finite mass ∼r at the
transition, and is not in the focus of this work. Its analysis
below the upper critical dimension (which is suggested to
be four by a simple analysis of the perturbative corrections)
remains open for future work.
The multicritical point r ¼ 2γ ¼ 0, where both transition

lines coincide, is a CEP as shown in Sec. IV B. This
multicritical point can only be reached upon double fine-
tuning and is not the focus of this work. A simple analysis
of the Gaussian theory and one-loop divergences suggests
an upper critical dimension dc ¼ 6 above which the
Gaussian fixed point is stable, but a detailed RG analysis
of its universal fluctuations is reserved for future work.
Using the phase-amplitude description of the broken

phases, we can approach the transition from the static into
the rotating phase. It occurs upon tuning the effective
damping,

δ ¼ 2γ −
ur
λ
; ð66Þ

through zero. This marks it as a CEP as defined in Sec. IVA,
since the modes becoming critical have no masslike con-
tribution to begin with due to their Goldstone nature.
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Furthermore, the amplitude fluctuations remain gapped
and damped. They can thus be discarded from an effective
long wavelength description. At the phase transition, there
is a “condensation” of ∂tθi ¼ E (i.e., the angular velocity
picks up a finite value), while the choice of the mode θi that
starts to rotate is made spontaneously. The equal-time
correlator of the phase fluctuations, shown in Table II.
displays an enhanced divergence ∼q−4, as expected in the
vicinity of a CEP.
This CEP transition does not fall into any known

universality class a priori. We thus first discuss the scaling
behavior of the linear fluctuations in the vicinity of the CEP
in more detail. This discussion is exact above the upper
critical dimension of the transition, which we determine
also to be dc ¼ 4 in Sec. VI. There, we will also analyze the
problem beyond Gaussian fluctuations.
In the following, v sets the highest momenta, i.e., we

work at q≲ v, where our effective field theory at low
momenta is valid. We are also close to the CEP; i.e., we
work with δ1=2 ≲ v, Z. In the opposite regime, we are deep
in one of the ordered phases and the formulas given in
Table II apply. In this regime for finite damping δ > 0, the
dispersions of the phase fluctuations are

ω1;2ðqÞ ¼ −
i
2
ðδþ Zq2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 −

δ2

4

r
: ð67Þ

There is thus a noncritical EP at a finite momentum scale
qEP ¼ ðδ=2v2Þ. It affects only the dynamics, separating
overdamped, purely dissipative modes from underdamped,
propagating modes. This translates to a length scale,

ξEP ∼ v=δ; ð68Þ

separating both regimes. In contrast to a critical length scale,
it does not signal the divergence of a correlation function.
The correlation function displays an enhanced divergence
∼q−4 as expected for a CEP. The additional divergence as
the damping gap δ is tuned to zero, is indeed not controlled
by ξEP, but by a divergent length scale

ξc ¼ δ−1=2; ð69Þ

indicating a critical exponent,

ν ¼ 1

2
; ð70Þ

for the mean-field transition.
This critical length scale diverges less quickly than the

exceptional length scale ξEP close to the transition, so that
the critical regime lies within in the underdamped regime.
The critical regime is therefor found for momenta satisfying

q ≫ δ1=2 ≫ qEP: ð71Þ

The different scales appearing at mean field are summa-
rized in Fig. 7.
At the CEP δ ¼ 0, however, the coexistence of dissipa-

tion and propagation persists down to vanishing momen-
tum, where

ω1;2 ¼ −
i
2
Zq2 � vjqj; ð72Þ

see Fig. 8. The linear scaling of the real part of the
dispersion in momentum space will manifest as spherical
propagation of excitations at constant velocity v, whereas
the dissipative part will lead to diffusive decay in real space

FIG. 7. Mean-field theory scales and regimes. The critical
regime, characterized by the q−4 divergence of GK , is left for
q < δ1=2, while the EP scale qEP separating overdamped and
underdamped dynamics appears at even smaller momentum
scales.

(a) (b)

(c) (d)

FIG. 8. The dispersions of the phase fluctuations close to the
critical exceptional point. Panels (a) and (c) show the imaginary
(dissipative) and real (propagating) part of the dispersion at a
finite damping with δ=v2 ¼ 1. The exceptional point separating
purely dissipative dynamics from underdamped motion is
clearly visible. At vanishing momenta one mode becomes
gapless marking its Goldstone nature, whereas the other mode
maintains a gap δ. As one approaches the CEP δ ¼ 0 shown in
(b) and (d), the egg-shaped structure in the dissipative part
shrinks to zero, both modes dissipate as ∼q2 and display a
linear scaling in their real parts, indicating propagation at a
constant velocity in real space.
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around the mean position jxj ¼ vt. This is also seen by
inspecting the correlation function in ðq; tÞ space:

GKðq; tÞ ∝ D
v2Zq4

exp ð− 1

2
Zq2tÞ cosðjvqtjÞ: ð73Þ

Hence, there is no unique dynamical z exponent: The
lifetime of a critical fluctuation scales as τd ∼ q−2 at the
CEP, and its oscillation period in momentum space as
τc ∼ q−1. These two scaling behaviors coexist, controlling
different properties of the dynamics of excitations, and
inhibit the existence of a homogeneous scaling solution
of the action and a true scale invariance of correlation
functions even at the Gaussian fixed point [91].

VI. BEYOND MEAN-FIELD EFFECTS AND
CEP FLUCTUATION-INDUCED FIRST-ORDER

PHASE TRANSITION

In this section, we analyze the phase transition between
the ordered and rotating phase below the upper critical
dimension dc ¼ 4 in detail. We first argue in Sec. VI A that
the enhanced fluctuations due to the CEP tend to restore the
symmetry, and we will show that it makes a continuous
transition between static and rotating phase impossible
below dc ¼ 4 for all N > 1.
We then perform a deeper analysis of the case of O(2).

We show how the inclusion of enhanced fluctuations in
the vicinity of the CEP give rise to a fluctuation-induced,
weakly first-order transition. We show that the CEP
induces a resonance condition on momenta, linked to
the presence of the additional exceptional momentum
scale qEP ¼ δ=v2, signaling the spectral position of the
EP as discussed in Sec. V B, and rendering the standard
derivative expansion impossible. In addition, we find that
this leads to a subdominant contribution of two-loop
corrections compared to their one-loop counterparts,
which on the level of the diagrammatics is reminiscent
of Brazovskii’s seminal work [74], and the later RG
analysis of Hohenberg and Swift [75]. The physical origin
is a different one, though. This allows for a resummation
of the perturbative series in the long wavelength limit,
or equivalently, renders the Dyson-Schwinger equation
one loop. We then discuss how this generalizes to the
N > 2 case.

A. Exceptional fluctuations

We now provide a simple argument stating that the
enhancement of fluctuations in the vicinity of a CEP
renders it impossible to reach below four dimensions if
interactions are not taken into account. We will see that
the fluctuations either restore the full symmetry before the
CEP is reached or render the transition between statically
ordered and rotating phase first order. We use the phase-
amplitude decomposition Eq. (60). As we have seen, the

phase fluctuations become critically exceptional at the
transition, and the static correlation function is

hθiðq; t0Þθjð−q; t0Þi ¼ GK
0;ijðq; t ¼ 0Þ∼ Dδij

ρ0v2q2ðZq2 þ δÞ ;

ð74Þ

see Table II. The CEP is reached as the damping δ → 0.
This implies in the Gaussian approximation

GK
θ;iiðq; t ¼ 0Þ⟶δ→0 1

q4
: ð75Þ

Thus, the Gaussian correlation function GK
0;iiðx ¼ 0; t ¼ 0Þ

develops an infrared divergence in d < 4 spatial dimen-
sions in the vicinity of the CEP, which is regularized by the
damping:

hθiðx0; t0Þθiðx0; t0Þi ¼ GK
0;iiðx ¼ 0; t ¼ 0Þ ¼ C

δðd−4Þ=2

ρ0
:

ð76Þ

Here C > 0 is a nonsingular constant that depends on the
dimension and the ultraviolet cutoff of the theory. Its exact
value is not important for our argument; we rely only on
the fact that it is positive and finite. We see that when
the damping vanishes, the Gaussian fluctuations of the
Goldstone modes diverge and would destroy any order.
Indeed, neglecting amplitude fluctuations,

hφðx0; t0Þi ¼ ffiffiffiffiffi
ρ0

p �
exp

�XN
i¼2

θiðx0; t0ÞT1;i

�	
ê1

¼ ffiffiffiffiffi
ρ0

p
exp ð2trhθiðx0; t0Þθjðx0; t0ÞiT1;iT1;jÞê1

¼ ffiffiffiffiffi
ρ0

p
exp

�
−2ðN − 1ÞCδðd−4Þ=2

ρ0

�
ê1 ⟶

δ→0
0;

ð77Þ

and the enhanced Gaussian fluctuations due to the CEP
alone destroy the order parameter before one can reach the
CEP at δ ¼ 0 below four dimensions. The order parameter
is suppressed when the argument of the exponential in
Eq. (77) is of order one, i.e., at a symmetry restoring scale,

δsym
Z

∼
�
v2Z
D

ρ0

�
2=ðd−4Þ

; ð78Þ

restoring all parameters previously absorbed in C. This
argument is reminiscent of the Mermin-Wagner theorem,
which prevents the existence of symmetry breaking in and
below two dimensions in the usual case. However, it
applies only to the critical point here, not to the entire
phase. On the other hand, the rotating phase exists and is
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not destroyed by fluctuations above two dimensions, as
revealed by the fluctuation analysis in Sec. V B.
This leaves three scenarios for the transition upon

including the effect of fluctuations and interactions.
(i) There is no direct transition between static and

rotating phases, but a fully symmetric, disordered
regime in between. This is the expectation solely
based on the exceptional Gaussian fluctuations.

(ii) There is a (weakly) first-order transition, induced by
interactions. A nontrivial scaling regime close to the
transition may still emerge in principle.

(iii) The phase transition is second order. This is possible
only if nonlinear effects reduce fluctuations by
generating a sufficiently large anomalous dimen-
sion. In equilibrium this happens, for example, for
the 2D Ising model, where the anomalous dimension
shifts the naive lower critical dimension from two
to one.

The third scenario will be ruled out by our analysis.
We will show that indeed a first-order transition occurs for
sufficiently large ρ0. For smaller ρ0 the interaction effects
do not have room to build, and as one approaches the CEP
the enhanced fluctuations push the system back in the
symmetric phase through the model A transition.
The same mechanism has to arise while approaching

the CEP line from the rotating phase, and the symmetry
restoring nature of the enhanced fluctuations will there-
fore strongly move the phase boundaries as sketched
in Fig. 1.

B. Phase fluctuations and potential picture

We now show how a first-order phase transition into the
rotating phase at finite δ can occur.
As we have seen in Sec. III, the amplitude fluctuations

around the stable state in the broken phase remain damped
and gapped in the vicinity of the CEP at δ ¼ 0, and can be
integrated out. For N ¼ 2, this yields the effective Gaussian
action for the phase field Eq. (62):

S0 ¼
Z
t;x

θ̃½∂2t þ ðδ − Z∇2Þ∂t − v2∇2�θ −Dθ̃2: ð79Þ

We rescaled the fields θ → θ=
ffiffiffiffiffi
ρ0

p
and θ̃ → θ̃=

ffiffiffiffiffi
ρ0

p
.

The symmetry Oð2Þ ≅ SOð2Þ ⋉ Z2 acts on the phase
field as

SOð2Þ∶ θ → θ þ α; Z2∶ ðθ; θ̃Þ → −ðθ; θ̃Þ: ð80Þ

This approach assumes that the fluctuations of the ampli-
tude modes are small δρ ≪ ρ0 and thus breaks down once
the renormalized amplitude becomes small. Approaching
the CEP below four dimensions, this will be the case if we

reach the scale δ ∼ ρðd−4Þ=20 , signaling that we instead reach
a regime where the symmetry gets restored as we have
shown above. In the following we work in a regime with

sufficiently large ρ0, assuming that the scale at which the
symmetry gets restored is not reached. This yields a
criterion, whether symmetry restoration occurs or the
scenario laid out below is realized.
We first discuss in greater detail how the transition is

explained from this action above the upper critical dimen-
sion, and develop an effective potential picture which will
turn out to be useful in the following. As discussed in
Sec. VA, when crossing the phase transition by tuning δ
through zero, the order parameter starts to rotate at a finite
angular velocity and the Z2 symmetry is spontaneously
broken. In terms of the phase variable, it corresponds to the
condensation of Π ¼ ∂tθ, which evolves in an effective
Ising-like potential,

VeffðΠÞ ¼
δ

2
Π2 þ g1

4!
Π4; ð81Þ

where the fourth-order term has been added to make the
mean-field theory well defined in the rotating phase
(δ < 0). In that phase, we obtain Π¼ ffiffiffiffiffi

ρ0
p

E¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6δ=g1

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
−λδ=u

p
. This is in agreement with the calculation done in

Sec. V B, obtained by assuming a finite rotation frequency
directly. Therefore, this potential picture works despite the
out-of-equilibrium nature of the problem. Beyond mean
field, we will get an effective equation of motion for the
dressed order parameter using the effective action formal-
ism [see Eq. (16)]. The potential picture will in turn remain
applicable.
Since a Z2 is broken spontaneously along the transition,

it is natural to compare it to the Ising universality class.
Indeed, on the mean-field level, the phase transition is
reminiscent to some extent to the usual Ising transition,
where the role of the Ising field is played by ∂tθ. This can be
rationalized by noting that the Ising model is recovered
when v ¼ 0. However, recall from Table II that v cannot be
set to zero in our model without inducing an instability, and
that our model is genuinely different from the Ising model.

C. Beyond Gaussian fluctuations

We now determine how interactions lead to a fluctuation-
induced first-order scenario below the upper critical dimen-
sion for sufficiently large ρ0. To this end, we approach
the CEP from the statically ordered phase. The broken
SO(2) symmetry, Eq. (80), ensures that the field θ can
only appear with derivatives, while invariance under Z2

excludes cubic—or higher odd powers—interactions; in
particular, it rules out the Kardar-Parisi-Zhang nonlinearity
θ̃ð∇θÞ2 and the cubic nonlinearity θ̃ð∂tθÞ2. The lowest order
local interaction terms that one can add to the quadratic
action within these bounds are

Sint ¼
g1
6

Z
x;t

θ̃ð∂tθÞ3 þ
g2
2

Z
x;t

θ̃∂tθð∇θÞ2: ð82Þ
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These are the most relevant allowed couplings in an RG
sense. The existence of two timescalings in the Gaussian
Green functions, as discussed in Sec. V B 2, renders a
simple power counting analysis at the Gaussian fixed point
impossible. Therefore, we will instead calculate the dia-
grams renormalizing the various couplings, and infer their
scaling dimensions from the associated infrared divergen-
ces. These two timescalings also suggest that, for nonstatic
quantities, not only δ but also the quantity δ=v2 shall
control the form of correlation functions. We will see that
this scale indeed explicitly appears in the renormalization
corrections beyond mean field.

1. Perturbative corrections

The diagrammatic rules associated to the four-point
vertices Eq. (82) and the perturbative corrections to two-
point functions (self-energies) up to two-loop order are
presented in Fig. 9. One-loop corrections to the four-point
functions are given in Fig. 10.
Interactions. We now discuss how the parameters of the

effective action are renormalized perturbatively, and how

they are impacted by the presence of the nonanalyticity of
the CEP in the spectrum. For this sake we first take a look at
the one-loop diagrams renormalizing the four-point vertices
displayed in Fig. 10, but the phenomenology will go
beyond this particular example. First, we consider the case
where g1 is renormalizing itself. The first diagram in Fig. 10
with g1 as vertices is equal to ω2ω3ω4I1l;I with

I1l;Iðp;ωpÞ¼
Z
q;ω

iðωþωpÞω2GRðqþp;ωþωpÞGKðq;ωÞ;

ð83Þ

where p ¼ p1 þ p2, ωp ¼ ω1 þ ω2, and
R
q;ω≡

R
dqdω=

ð2πÞðdþ1Þ. The two other diagrams are obtained by
permutation of momenta. We now are interested in the
infrared behavior of this loop as one tunes δ → 0, i.e.,
approaches the CEP. When δ=v2 becomes small, we find
that it diverges as

I1l;Iðp;ωpÞ ∼ δðd−4Þ=2; ð84Þ

for small dimensionless momenta p̃ ¼ ðp= ffiffiffi
δ

p Þ ≪ ffiffiffi
δ

p
=v,

but that this IR divergence is smaller for finite dimension-
less momenta,

I1l;Iðp;ωpÞ ∼ δðd−4Þ=2
�
δ

v2

�ðd−1Þ=4
hðp;ωpÞ; ð85Þ

with h some nonsingular scaling function, and therefore
become subleading. This implies a very sharp nonanalytic
behavior as shown in Fig. 11. This is due to the peculiar

FIG. 10. One-loop corrections to Γð13Þ renormalizing the
interactions, Pi ¼ ðpi;ωiÞ.

(a) (b)

(c) (d)

FIG. 9. Self-energies up to two-loop order. The first three
graphs correct the retarded part of the action Γð11Þ, and the last
one the noise term Γð20Þ. The solid line denotes the bare Keldysh
Green function GK , and the solid-to-dashed line the retarded
Green function GR. The four-point vertices can be either g1 or g2
defined in Eq. (82).

FIG. 11. I1l;Iðp̃ ¼ p=δ1=2;ωp ¼ 0Þ defined by Eq. (83) in
d ¼ 3 for v ¼ 0 (solid line) for v ¼ 1 and different values of
δ (dashed, dotted, and dash-dotted lines). For v ¼ 0, the rescaled
integral is independent of δ and diverges as δ−1=2. For v ≠ 0, this
divergence is found only for smaller and smaller p̃≲ δ1=2=v as
δ → 0, and the integral is more and more peaked around zero. For
δ → 0, I1l;I therefore becomes nonanalytic and is non-negligible
only at p̃ ¼ 0.
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form of the dispersions at the CEP which induces a
resonance condition in the integral to get the highest
divergence, as discussed below and in Appendix D where
Eqs. (84) and (85) are also proven.
Similar scaling shapes hold for all combinations of the

vertices g1;2. From Eq. (84) we can infer that the upper
critical dimension is dc ¼ 4. Above it, all interactions are
irrelevant and the Gaussian theory is exact asymptotically
at long wavelengths. Equation (85) implies that only loops

with transfer momentum p̃ ≪ ð ffiffiffi
δ

p
=vÞ⟶δ→0

0 contribute to
the renormalization of the vertices as we approach the CEP.
We can thus regard all finite transfer momenta to lead to
subleading contributions.
This means that divergences of vertex corrections

depend on the momentum configuration of the respective
vertex in a highly nonanalytic way and a derivative

expansion around p ¼ 0 is not possible. In particular,
we find that the two limits p̃ → 0 and δ → 0 cannot be
exchanged; see Fig. 11. This nonanalytic structure can be
related to the nonanalyticity of the exceptional point.
Intuitively, this is indicated by the EP momentum scale
qEP ¼ ðδ=vÞ already seen in the linear spectrum in Sec. V B
above which dimensionful transfer momenta p are cut off
(since the critical regime is described by q=

ffiffiffi
δ

p
∼ 1, we are

generally interested in momenta q ≫ qEP).
We now illuminate the origin of these different scalings,

which result from a resonance condition on the external
momentum. In a nutshell, after frequency integration,
rescaling of momenta by introducing q̃ ¼ q=δ1=2, and
for small values of δ, the diagram Fig. 9(c) at zero external
frequency reduces to

I1l;I ¼
δðd−4Þ=2

2

Z
q̃

f1ðq̃; p̃Þ þOðδÞ
v2
δ ðp̃2 þ 2p̃ · q̃Þ2Δðq̃2Þ þ f1ðp̃; q̃ÞΔðq̃2Þ½Δðq̃2Þ þ Δ(ðp̃þ q̃Þ2)� þOðδÞ : ð86Þ

In this expression, we use ΔðyÞ ¼ yþ 1 and f1ðq̃; p̃Þ ¼
ðp̃þ q̃Þ2Δðq̃2Þ þ q̃2Δ(ðp̃þ q̃Þ2). In the denominator, we
keep a higher order in terms of δ since it becomes the
dominant term in the expansion as soon as v2ðp2 þ 2p · qÞ
is small. This is always true for p ¼ 0, but occurs only for
special configuration of momenta when p ≠ 0. When this is
fulfilled the integrand behaves as δd=2−2 and only as δd=2−1

when it is not: There is a resonance condition to get
the highest divergence. Mathematically, the integrand
in Eq. (86) becomes nonanalytic and behaves as a Dirac
distribution in the δ=v2 → 0 limit to still give the stronger
divergence. This behavior can in turn be used to compute
the integrals; see Appendix D.
This is in sharp contrast with more standard

renormalization corrections, where the leading momentum-
dependent term scales accordingly to the momentum-
independent part, and where higher order terms in
momentum are negligible in the infrared in the spirit of
a gradient expansion. This expansion in momentum cannot
be used here because of the nonanalytic structure. Indeed,
we show in Appendix F that such an expansion generates
spurious divergences with arbitrarily high power in δ. This
also illustrates why standard power counting does not
work: The presence of the additional scale v2=δ allows
for a more complex scaling of integrals, which breaks the
generic scaling behavior.
Self-energies. This structure also strongly impacts the

perturbative corrections at higher loop orders. We now
discuss that matter for the two-point vertex Γð2Þ. Wewill see
that it makes sunset diagrams Figs. 9(c) and 9(d) less
divergent than the tadpoles diagram, Figs. 9(a) and 9(b).
We begin the analysis with the tadpole diagrams. They are

linear in the external frequency, and momentum indepen-
dent. They therefore renormalize only the momentum-
independent damping coefficient δ. The one-loop tadpole
gives

I1l ¼
Kd

2
ðg1 þ g2Þ

Z
dq

qd−1

q2 þ δ
; ð87Þ

where Kd ¼ Sd=ð2πdÞ with Sd the surface of the
d-dimensional sphere. In these expressions, new dimen-
sionless quantities have been introduced via the following
rescaling: δ → δZ, g1 → g1Z2=D, and g2 → g2Z2v2=D.
Performing the integral over momentum gives

δ ¼ δ0 − K0
d
g1 þ g2

2
δðd−2Þ=2; ð88Þ

with K0
d ¼ −Kdπ=½2 sinðπd=2Þ� > 0, and δ0 ¼ δþ ðg1þ

g2ÞKd=2
R
Λ
0 dq=q2. Here, Λ denotes the UV cutoff used

to regularize the loops. This is consistent with dc ¼ 4, since
the perturbative corrections in Eq. (88) to the damping
become non-negligible below four dimensions. The con-
tribution of the two-loop tadpole diagram Fig. 9(a) is
simply given by the square of Eq. (87) and behaves as δd−3.
We now turn our attention to the loop integrals of the

sunset diagrams Fig. 9(c) (for two g1 vertices going into the
loop, the same however holds for all vertex combinations)
at vanishing external momenta. It can be written as

I2l ¼ g21

Z
q;ω0

ω02GKðqÞI1l;Iðq;ωÞ: ð89Þ
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That is, the bubble diagram analyzed earlier reappears as a
subgraph of the sunset diagrams and their transfer momen-
tum is integrated over. Since the point of vanishing transfer
momentum at which the resonance occurs is a zero measure
set, only the subleading scaling of I1lðq;ωÞ contributes to
the sunset diagram. Thus the whole sunset diagram, even at
finite momentum or frequency, is subleading when com-
pared to the other terms in the renormalized two-point
function at small damping. Indeed, while I2l scales as δd−3

for δ=v2 ≫ 1 [like the tadpole diagram Fig. 9(b)], it is
suppressed in the critical regime δ=v2 ≪ 1, where

I2l ∼ δd−3
�
δ

v2

�ðd−1Þ=4
≪ δd−3: ð90Þ

Equation (90) is proven in Appendix D, and a similar result
is found for Fig. 9(d) with δd−3 replaced by δd−4. At finite
external momentum, the sunsets are even less divergent
since they display the same nonanalytic structure in their p
dependencies as the one found for the one-loop diagrams
(see Fig. 11). More details can be found in Appendix D.
This shows that the presence of the EP leads, for d > 1

and in particular for the dimensions of interest d ≥ 2, to
smaller infrared divergences in two-loop sunset diagrams,
which in turn indicates that they will contribute only
subdominantly in the critical regime and can be neglected.
Only one-loop contributions without transfer momentum
survive and the corrections to v, K, and D associated to
anomalous dimensions and z exponents all vanish.
Formally, this is a valid assumption if I2lðpÞ remains

very small compared to all terms in Eq. (88), i.e., to the
renormalized damping δ̄. Because I2l diverges when the
damping becomes small, this necessarily implies a con-
dition on the prefactor of the loop, i.e., on the interactions
g1 þ g2, which have to be sufficiently small. This condition
can only be self-consistently checked once we have
computed δ̄, and we therefore defer its discussion to
Sec. VI D.
In principle, one has to check that higher loop terms

for the self-energies and for interactions follow a similar
pattern and are also negligible. The discussed pattern
however extends to all diagrams in the perturbative series
that contain loops with more than one momentum. Thus,
only graphs with a one-loop structure, i.e., graphs that are
products of one-loop graphs, and without momentum
transfer survive when δ=v2 becomes small. Alternatively,
this is elegantly recovered in the DSE framework since the
full effective action can be computed solely from (dressed)
tadpole and sunset diagrams; see Appendix E.

2. Self-consistent equations and first-order
phase transition

Because of the emergent one-loop structure, with neg-
ligible higher loop effects, it is possible to resum the

entire perturbation series, or equivalently to solve the DSE;
see Appendix E. For the retarded two-point function,
the remaining diagrams (the so-called cactus diagrams)
form a geometric series which leads to the following self-
consistent Hartree equation:

δ̄ ¼ δ0 − K0
d
g1 þ g2

2
δ̄ðd−2Þ=2: ð91Þ

It is also found by using the renormalized damping in the
tadpole diagram Fig. 9(a).
For interactions, in order to represent the full renormal-

ized couplings, e.g., ḡ1ðp2;p3;p4Þ (frequency dependen-
cies are implicit), we have to take care of momentum
dependencies because of the nonanalytic structure dis-
cussed above. Note that there is no need to consider such
an ansatz in the frequency domain; see Appendix D. We
can, however, truncate the couplings to the most dominant
hot spot regions and do not need to consider the full
momentum dependencies of the vertices, since the renorm-
alization approximately does not depend on the value of
momenta but only on their configuration, when δ=v2 is
sufficiently small. To be specific, we need to introduce
three different couplings. The first one is

g1;a ¼ ḡ1ðp;−p;p0Þ; ð92Þ

with p ≠ p0 for which only the third diagram in Fig. 10
contributes,

g1;b ¼ ḡ1ðp;−p;pÞ; ð93Þ

for which the last two diagrams contribute, and

g1;c ¼ ḡ1ð0; 0; 0Þ; ð94Þ

for which all diagrams have to be taken into account. Other
generic configurations are not renormalized. This pattern
also occurs in Brazovskii’s phase-transition scenario as
discussed in Ref. [75].
These one-loop diagrams also generate a geometric

series which can be resummed. Alternatively, this can be
seen by using Dyson-Schwinger equations as done in
Appendix E, where more details and equations for all
couplings can be found. It yields, e.g., the following self-
consistent equations for the full macroscopic couplings:

g1;a ¼ g1 −
g1 þ g2

2
g1;a

Z
q

1

ðq2 þ δ̄Þ2 ; ð95aÞ

g1;b ¼ g1 − 2
g1 þ g2

2
g1;a

Z
q

1

ðq2 þ δ̄Þ2 ; ð95bÞ

g1;c ¼ g1 − 3
g1 þ g2

2
g1;a

Z
q

1

ðq2 þ δ̄Þ2 : ð95cÞ
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The integral that appears in Eqs. (95) can be calculated, and
the equations can be inverted to give

g1;a ¼
g1

1þ α2δ̄
ðd−4Þ=2 ; ð96aÞ

g1;b ¼ g1
1 − α2δ̄

ðd−4Þ=2

1þ α2δ̄
ðd−4Þ=2 ; ð96bÞ

g1;c ¼ g1
1 − 2α2δ̄

ðd−4Þ=2

1þ α2δ̄
ðd−4Þ=2 ; ð96cÞ

with α2 ¼ ðg1 þ g2ÞK0
dðd − 2Þ=2 > 0. We see that, while

the coupling g1;a at finite momenta is always positive, the
couplings g1;c with zero incoming momenta can be neg-
ative for sufficiently small δ̄. This therefore opens the route
to a fluctuation-induced first-order phase transition since a
potential with a negative quartic term typically displays a
first-order transition [77]. The fourth order is now momen-
tum dependent, and one has to specify which quartic
couplings should enter the effective potential Eq. (81)
for the order parameter E ¼ ∂tθ=

ffiffiffiffiffi
ρ0

p
and check if it is

negative. The condensation mechanism occurs at zero
momenta, and E is given by minimizing the effective
equation of motion Γð10Þ with a constant order parameter
∂tθðx; tÞ ¼ E. It translates, in momentum space, to

∂tθðp;ωÞ ¼ EΠðp;ωÞ ¼ ffiffiffiffiffi
ρ0

p
EδðpÞδðωÞ: ð97Þ

In the effective equation of motion for E, the fourth-order
term is proportional to ḡ1ð0; 0; 0Þ∂tθðp ¼ 0;ω ¼ 0Þ3 ¼
g1;cð ffiffiffiffiffi

ρ0
p

EÞ3. The coupling that fixes the limit-cycle rota-
tion frequency E is therefore g1;c defined in Eq. (94), which
can indeed turn negative because of Eq. (96c). This will
drive the first-order phase transition. The coupling g1;b can
also turn negative [see Eq. (96b)], which could indicate
some instability at finite momentum close to the transition.
However, it is larger than g1;c and turns negative for even
smaller damping, for which the first-order transition we
discussed has already taken place. It therefore does not alter
the first-order scenario we describe.
Now, to have a well-defined potential, we need to add a

sextic term in the potential, i.e., u1θ̃ð∂tθÞ5=5! in the action.
Exactly as for the quartic couplings, there are several hot
spot configurations of momenta for which only one-loop
diagrams contribute. One has to consider different cou-
plings associated to each of these hot spot regions. To
describe the effective potential, we however only need the
value of this coupling at zero external momenta:

u1;e ¼ ū1ð0; 0; 0; 0; 0Þ: ð98Þ

Being an irrelevant coupling, its value is entirely set by the
quartic couplings at small δ̄. Its renormalization is then

given by the one-loop diagram displayed in Fig. 12. The
resummed expression is obtained by using dressed propa-
gators and interactions. This leads to

u1;e ¼ 15g21
α3δ̄

ðd−6Þ=2

ð1þ α2δ̄
ðd−4Þ=2Þ3 ; ð99Þ

where α3 ¼ ðg1 þ g2ÞK0
dðd − 2Þð4 − dÞ=8.

We are now in the position to solve the resulting
equations and discuss in greater detail how the first-order
transition takes place.

D. Solution of self-consistent equations

The resulting system of equations constituted by
Eqs. (91), (96), and (99) is solved by extracting the damping
δ̄ from the first equation and inserting it into the others.
Asymptotically, the system does not reach any fixed

point, ruling out the second-order phase-transition scenario
(iii) of Sec. IV B. We find that the ð∂tθÞ4 coupling becomes
negative and the effective potential describes a first-order
transition for sufficiently small δ as shown in Fig. 13: New
minima appear for a finite ∂tθ ¼ E, and the order parameter
jumps from zero to a finite value. From Eq. (96c), the phase
transition happens approximately when the quartic term
becomes negative, i.e., at a first-order transition scale,

ðg1 þ g2Þδ̄ðd−4Þ=2FO ∼ 1; ð100Þ

giving

δ̄FO ∼ ðg1 þ g2Þ2=ð4−dÞ: ð101Þ

We are left to compare this scale for the onset of a first-
order transition to our previous result on the symmetry
restoration δsym via the suppression of ρ0. The system
displays a new scale (in terms of the original nonrescaled
variables),

δFO
δsym

¼ ρ0
Zðg1 þ v2g2Þ

v2
≡ ρ0g; ð102Þ

which sets whether there is symmetry restoration (ρ0g ≪ 1)
or a fluctuation-induced first-order transition (ρ0g ≫ 1)

FIG. 12. One-loop contribution to the six-point function Γð15Þ.
The diagrams obtained by permutation of external and internal
lines are not shown.
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separated by the multicritical point (ρ0g ∼ 1) where both
transition lines meet. The resulting qualitative phase dia-
gram is shown in Fig. 1. Furthermore, we remark that the
first-order transition scale δFO coincides with the Ginzburg
criterion where non-Gaussian fluctuations are expected to
play a role. (The Ginzburg criterion can be simply derived
by comparing one-loop contributions to the order param-
eter fluctuations to the bare one.) This means that in a
situation close to the weakly first-order situation, i.e.,
1 ≫ δ > δsym; δFO, one can observe the Gaussian scaling

behavior described in Sec. V B on length scales ξ <
ffiffiffiffiffiffiffiffi
Z=δ

p
,

but there is no intermediate regime where one can observe
interaction corrections to that scaling, including anomalous
dimensions, before reaching the regime of either symmetry
restoration or first-order transition. This is different from,
e.g., driven-dissipative condensates below the lower critical
dimension, where one can observe KPZ scaling at finite
length scales smaller than the length scales at which order
breaks down [12,65]. The different possible scenarios are
summarized in Fig. 14.
To get a complete picture describing all regimes, one

needs a method that can describe both the broken phase
within which the first-order transition occurs and the
regime in which the amplitude goes to zero. One possible
route would be to use the functional RG which is known to
describe both the phase transition and the broken phase in
equilibrium [92].
Validity. Let us finally assess the validity of the

assumptions made and discuss quantitatively under
which conditions the subleading corrections are negligible.
The sunset contribution Eq. (90) (using the renormalized
damping in the loop) to δ̄ can be neglected when it is small
compared to all terms in Eq. (91). The most stringent
condition is obtained by demanding it to be negligible

with respect to the zero-order term δ̄. It gives the following
condition:

ðg1 þ g2Þ2δ̄d−4δ̄ðd−1Þ=4 ≪ 1: ð103Þ

The one-loop diagrams with momentum transfer can be
neglected when Eq. (85) is much smaller than g1 þ g2, and
the sunset Fig. 9(d) can be neglected when it is much
smaller thanD, which both lead to the very same condition.
Equivalently, the condition Eq. (103) is recovered non-
perturbatively using DSE as discussed in Appendix E.
The condition Eq. (103) becomes, using Eq. (101),

ðg1 þ g2Þðd−1Þð4−dÞ=8 ≪ 1, which is satisfied in 2 < d < 4
for sufficiently small values of the bare coupling constants,
i.e., for a microscopic theory not too far away from the
Gaussian fixed point. In that case, δ̄ is generically small
close to the transition because of Eq. (91). The transition is
then weakly first order and the condition δ̄=v2 ≪ 1 is in
turn also not violated, and our calculation is fully justified
in this regime.
One can formally still try to solve the equations for even

smaller values of δ̄, i.e., deep in the ordered phase where the
true damping is instead defined at the nonzero minima. This
always gives a solution with δ̄ > 0, and the minimum at
∂tθ ¼ 0 does not disappear. Note that this issue also arises
in Brazovskii’s phase-transitions scenario [75]. However,
the condition Eq. (103) is not satisfied in this regime, and
the solution does not apply anymore. This regime is
anyway well described by the Gaussian theory for the
rotating phase done in Sec. V B.

FIG. 13. The effective potential as a function of Π ¼ ∂tθ
obtained by solving Eqs. (91), (96), and (99) becomes character-
istic of a first-order phase transition at a finite renormalized
damping δ̄. The results are presented for d ¼ 3, g1 ¼ g2 ¼ 10−1,
and v ¼ 1.

(a)

(b)

FIG. 14. Summary of scales for the two different scenarios
obtained while approaching the CEP. (a) The first-order scenario
occurs before reaching the point where the symmetry gets
restored since ρ−10 ≫ g, and the system ends up in the rotating
phase. (b) The symmetry gets restored at large distances, and the
system is in the disordered phase. In both cases the red dashed
area indicates the scale which is never reached because the other
scenario takes place first.
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E. Z2 symmetry breaking and SOð2Þ ≃ Uð1Þ case
Explicit Z2 breaking.We now discuss the case where the

symmetry is SO(2) or U(1) instead of the O(2) symmetry
discussed so far. In that case the Z2 symmetry is explicitly
broken, and a linear term ∂tθ ¼ μ0 þ � � � is allowed in
Eq. (79), together with the cubic nonlinearity θ̃ð∂tθÞ2 and
the Kardar-Parisi-Zhang nonlinearity θ̃∇θ · ∇θ. This indu-
ces an explicit rotation of the order parameter, and thus no
static phase. Since there is no unbroken internal symmetry
left that could be spontaneously broken, no second-order
phase transition can occur at the mean-field level, and
no CEP is found. This is equivalent to adding a magnetic
field μ0 in the Ising case: The effective potential for ∂tθ
generically does not display spontaneous symmetry break-
ing anymore, but rather describes a first-order phase
transition at the mean-field level already between phases
with different rotation speeds. There is thus no divergent
correlation length occurring, and there is no way to get the
enhancement of the fluctuations found at the CEP.
The CEP transition can still be reached by tuning only

one additional parameter: μ0 can be chosen such that there
is an emergent additional Z2 symmetry at the critical point,
where our model is then recovered. There is thus a first-
order phase transition line whose end point is exactly the
CEP described in this work. This is the transition discussed
in Ref. [15]. However, their study of fluctuations includes
the cubic and KPZ nonlinearity, while their values are zero
at the CEP because of the additional fine-tuning. It there-
fore does not describe the CEP transition of interest here.
All of this is analogous to the second-order transition found
at the end point of the liquid-gas transition that falls in the
Ising universality class with upper critical dimension
dc ¼ 4. It has an emergent Z2 symmetry at the transition,
and one does not consider the cubic nonlinearities.
Spontaneous Z2 breaking.Within the rotating phase, the

cubic and KPZ nonlinearities are also effectively present
because of the spontaneously brokenZ2 symmetry, or more
technically since ∂tθðq ¼ 0;ω ¼ 0Þ ¼ E has a nonzero
value. In particular, we expect the usual KPZ physics in the
rotating phase. It means that in d ¼ 2, the rotating phase
should instead realize KPZ physics at intermediate scale
only [62,65,93] while the nonrotating ordered phase should
correspond to the Berezinskii-Kosterlitz-Thouless quasi-
long-range ordered phase.

F. OðN > 2Þ case
We now turn to the generic OðNÞ case. We first discuss

the corresponding action and the additional interactions
that arise between Goldstone modes for N > 2 that add
some complexity. We then explain how we can generalize
the previous results for the first-order scenario even in the
presence of these new interactions.
The model one obtains after phase-amplitude decom-

position and integration of the amplitude mode defines

what is often referred to as nonlinear σ model (NLσM). The
Gaussian part of the action in the static phase is given by

S0¼
Z
x;t
π̃ · ½∂2t þð−KΔþδÞ∂t−v2Δ�π−Dπ̃ · π̃; ð104Þ

where π ¼ ðθ2;…; θNÞ. Beyond mean field, we need to
consider the generalization of Eq. (82):

Sint ¼
g1
6

Z
x;t

π̃ · ∂tπð∂tπÞ2 þ
g2
2
π̃ · ∂tπð∇πÞ2: ð105Þ

However, contrary to the O(2) case, there are higher
order terms that do not only involve derivative terms for
N > 2 as usual for NLσM [63]. This is due to the fact
that the OðNÞ symmetry does not act anymore as a shift
symmetry for the Goldstone modes when N > 2 [94]. For
example, the term ϕ̃T

∂tϕ leads, following the procedure
explained in Sec. V B, to

ϕ̃T
∂tϕ¼ π̃ ·∂tπþ

ρ−10
6

½ðπ ·πÞπ̃−ðπ̃ ·πÞπ� ·∂tπþ���; ð106Þ

where the neglected terms are irrelevant. A similar pattern
arises for every operator present in Eqs. (104) and (105).
The coefficients of these new operators are not independent
of the one in Eqs. (104) and (105) because they are
generated by the same operator. This originates from the
underlying OðNÞ symmetry of the model and therefore
remains true even beyond mean field. It is then common to
refer to ρ−10 as a coupling constant in the NLσM. The new
operators then lead to a nontrivial (self-)renormalization
of the amplitude which is absent in the O(2) case.
Within the statically ordered phase, the renormalized
amplitude is finite, and at sufficiently small scale, the
higher order terms can be neglected and the action reduces
to its Gaussian part. Indeed, for large ρ0, only fluctuations
with jπj ≲ 1 contribute to the functional integral and higher
order terms become negligible since they comewith powers
of ρ−10 [63,95].
We are now ready to discuss the situation when

approaching the CEP. From previous sections, we expect
g1 and g2 but also ρ−10 to have dimension 4 − d. This can be
checked diagrammatically. Mean-field results can then be
used above four dimension sufficiently deep in the ordered
phase [96], and we start by discussing it since it will be
useful below. It turns out that we can generalize the
potential picture developed for the O(2) case. Omitting
the additional terms coming from Eq. (106), we again have
a potential of the form

VN;eff ½ρπ ¼ ð∂tπÞ2� ¼
δ

2
ρπ þ

g1
4!

ρ2π: ð107Þ

This potential is simply the generalization of Eq. (81). It
would display the typical spontaneous symmetry breaking
of OðN − 1Þ down to OðN − 2Þ. Here, we have additional
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terms of the form Eq. (106) that prevent our model from
reducing to the equilibrium OðNÞ case for ∂tπ even
when v ¼ 0. However, they are present to ensure that
the OðNÞ symmetry is intact, and they fix the value of the
amplitude. We can therefore expect that they do not play
any role when it comes to the rotational angular velocity.
Indeed, our potential picture reproduces the calculation
done by expanding directly around the rotating frame:
Once E is determined by minimizing Eq. (107) with
π0 ¼ ð ffiffiffiffiffi

ρ0
p

Et; 0;…; 0Þ, these additional terms lead to
time-dependent terms that can be eliminated by going into
the rotating frame. This then gives back the mean-field
expression Eq. (7) for E. In addition, one can also study the
fluctuations around the rotating order by writing the field as
π ¼ ð ffiffiffiffiffi

ρ0
p

Etþ θk; θ⊥Þ, with θk the longitudinal mode and
θ⊥ ∈RN−2 the transverse modes of the broken OðN − 1Þ
symmetry. Their respective action matches Eqs. (65)
and (64) obtained directly from the expansion around
the rotating phase. This fully justifies our assertion that
the potential picture works also in the OðNÞ case. We
therefore again rely on it also beyond mean field, as we
discuss now.
Below four dimensions, g1, g2, and also ρ−10 become

relevant. They have the same dimension around the
Gaussian fixed point and therefore grow at the same rate
next to it. We can use the same strategy as in the O(2) case:
We expect the g1 and g2 couplings to again favor the first-
order phase transition. Sufficiently deep in the ordered
phase at the bare scale, we can therefore neglect the
restoring effect linked to ρ−10 since its contribution to loops
will become non-negligible only at larger scale. In that
case, we get the generalizations to OðN − 1Þ field of the
different diagrams discussed in Sec. VI C. This only adds
N-dependent prefactors in front of the loop integrals but
leaves the integrals involved unchanged, and therefore their
momentum structures and divergences.
The self-consistent equations are therefore similar to the

O(2) case. The same mechanism for first-order transition
applies again because the structure pointed out for the
quartic couplings g1;c which led to this scenario for O(2)
also arises. Explicitly, we find (see Appendix E) that

g1;c¼g1
ð9−4α2δ̄

ðd−4Þ=2½α2δ̄ðd−4Þ=2ðN0 þ2Þþ3Þ�
ð2α2þ3Þ½α2δ̄ðd−4Þ=2ðN0 þ2Þþ3� ; ð108Þ

with N0 ¼ N − 1. We can conclude that g1;c turns negative
when

δ̄ ¼
�

2α22ðN0 þ 2Þ
3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ N0p
− 1Þ

�
2=ð4−dÞ

; ð109Þ

i.e., at the same scale we have in the O(2) case, given by
Eq. (101), up to an N-dependent factor.

In the opposite limit, the ρ−10 coupling grows first and we
approach the point where the symmetry gets restored first.
In a generic situation, the NLσMwill break down again. We
reach the same conclusion as for the O(2) case, and also
obtain the qualitative phase diagram Fig. 1. However,
contrary to the O(2) case, the NLσM is expected to describe
the complete phase diagram whenever the Goldstone
fluctuations dominate the amplitude fluctuations, e.g., in
a large N expansion. The full phase diagram could be
obtained from a renormalization group analysis, which is
left for future work.

VII. POSSIBLE REALIZATION SCHEMES

We now provide physical schemes that can realize the
effective field theory described above. For N ¼ 2, we put
forward a model for a driven easy plane ferrimagnet that
realizes our model Eq. (8). For larger N, we construct a
Lindblad evolution that realizes our model in a semi-
classical approximation. Furthermore, we demonstrate
that the universal phenomena of so-called nonreciprocal
phase transitions [15,59] are also captured by our model.
Altogether this opens up a route to driven-dissipative
(quantum) systems that realize the phenomenology pre-
sented above.

A. Driven magnets close to thermal equilibrium

Most solid-state systems are characterized by fast relax-
ation rates, which makes it difficult to drive them far out of
thermal equilibrium. The phase diagram of Fig. 1 suggests
that to reach the exceptional critical point deep in the
ordered phase (r < 0), one needs a large negative damping
γ ∼ −jrj. In contrast, in the following, wewill show that it is
possible to reach this exceptional critical line in a weakly
driven magnet.

1. Rotating order and CEP transition
in the driven ferrimagnet

To that end, we consider an equilibrium spin system on a
cubic lattice. The system is assumed to have an anisotropy
breaking the SO(3) spin symmetry down to U(1) rotations
within an easy xy plane and aZ2 reflection symmetry along
the z axis. We assume the system spontaneously orders
in the easy plane for equilibrium temperatures T < TN
constituting an xy (anti)ferromagnet. Furthermore, it can
undergo a ferrimagnetic Ising-like transition below a
temperature Tc < TN where an out-of-plane magnetization
along the z axis develops. Instances of systems showing
such type of phase transitions are, for example, found in
Refs. [97–99]. In the vicinity of this phase transition the
slow, long wavelength dynamics is captured by the U(1)
Goldstone mode of the order in the xy plane, θ, and an Ising
variable mz describing the ferrimagnetic order parameter.
We thus construct the effective dynamics for these degrees
of freedom. Since there is no conserved charge, there are no
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hydrodynamic modes that need to be considered on top of
them. The symmetries act as

Uð1Þ∶ θ → θ þ α;

Z2∶ θ → −θ; mz → −mz: ð110Þ

Since the reflection and U(1) rotation do not commute, the
symmetry group of this system is Uð1Þ ⋉ Z2 ≅ Oð2Þ. We
now drive the system out of thermal equilibrium by
applying a rapidly oscillating magnetic field with amplitude
B0. Since the drive is very fast, the effective dynamics
of θ and mz is still Markovian and the drive effectively
couples the Ising and the Goldstone mode. The O(2)
symmetry of the system, the absence of conserved
currents, and the Markovianity of the longtime dynamics
indicate that its coarse grained dynamics will be
described by the OðN ¼ 2Þ model discussed above. We
derive the effective dynamics of the spatially averaged
collective Goldstone and Ising modes hθi; hmi explicitly
from a microscopic model in Sec. VII A 2. Since the
correlation length ξ is orders of magnitude larger than the
microscopic lattice spacing, ξ ≫ a, the spatial fluctua-
tions of the dynamics can be treated in a continuum limit
with emergent rotational symmetry in space, as usual for
the effective dynamics close to a critical point. We thus
model the spatial fluctuations beyond the effective single
mode with phenomenological constants Kθ; K0; Km at
order ∇2. This procedure yields the following effective
dynamics

αθ∂tθ ¼ αθγzmz þ Kθ∇2θ − ∂tmz þ ξθ;

αm∂tmz ¼ −
δV
δmz

þ ∂tθ þ K0∇2θ þ ξm; ð111Þ

where αθ;mz
stem from the Gilbert damping of the original

spin system. ξθ, ξm are respective Gaussian white noises
which close to equilibrium are set by temperature and
αθ;mz

. V is an Ising potential for the ferrimagnetic order
parameter, which can be parametrized as

V ¼
Z
x;t

1

2
½rm2

z þ Kmð∇mzÞ2� þ
λ

4!
m4

z ; ð112Þ

with r ¼ T − Tc the distance from the equilibrium ferri-
magnetic transition. The effect of the drive are non-
vanishing values of K0 and jγj ∝ B2

0 which do not exist in
equilibrium. We give a microscopic derivation of these
dynamics below. Evidently, the presence of a finite γ
indicates that a buildup of ferrimagnetic order hmzi ≠ 0
immediately induces a finite angular velocity for the xy
order causing it to rotate in the easy plane. For length- and
timescales above ðαθγÞ−1 the effect of ξθ in the first
equation gets suppressed, and we can use this first
equation of motion to eliminate mz and plug it into the

second to indeed reproduce the nonlinear σ model for the
N ¼ 2 CEP discussed in Sec. VI:

½∂2t þ ðδ − Z∇2Þ∂t − v2∇2�θ þ g
6
ð∂tθÞ3 þ ξ ¼ 0: ð113Þ

Since the spin damping coefficients αm;θ are typically
very small, we can restrict ourselves to leading order
contributions in these. We then have δ ¼ ½γzαθðr − γzÞ=r�,
and thus there is a transition into a rotating phase
occurring at r ¼ γz rendered first order by CEP fluctua-
tions as discussed above for all finite drivings γz. In
the vicinity of the transition, r ≈ γz, the remaining
parameters are Z¼ðKθ=αθÞ, v2¼KθγzþK0αθγz≈Kθγz,
g ¼ ðαθλ=γ2zÞ, ξ ¼ ðγz=αθÞξm. In these units, we have
ρ0 ¼ 1, and thereby, by the criterion found in the field
theoretic analysis Eq. (102), there is a first-order phase
transition between xy order and rotating ferrimagnet if

λα2θ
γz

≫ 1; ð114Þ

and the xy order is destroyed in the opposite limit.
Finally, we remark on the connection to the equilibrium

case γz; K0 → 0, where there is an Ising transition into a
static ferrimagnet. At the Ising fixed point, however, the
nonequilibrium coupling γz is relevant, so that once it is
allowed via the breaking of equilibrium conditions in terms
of the drive, it will flow to a value ofOð1Þ under the RG for
sufficiently large system sizes. In that sense the equilibrium
transition constitutes a multicritical point which will not
impact the transition phenomenology once one drives the
system out of equilibrium.
Our results are summarized in the phase diagram

sketched in Fig. 2, which explores the phases as function
of temperature T and driving power PD. Here T is the
equilibrium temperature of the undriven system which in
experiments is set by phonon or electron baths and their
coupling to a cryostat. The phase diagram is based on the
assumption that, in equilibrium, PD ¼ 0, the system under-
goes a sequence of two phase transitions upon lowering T,
first into an xy ordered phase and then into the ferrimag-
netic phase as discussed above. Driving the system has,
first, the effect that the effective temperature and thus the
fluctuations grow linearly in the driving power PD for small
PD. Importantly, the coupling γz linear in PD emerges in the
effective field theory, Eq. (111), which is highly relevant in
the renormalization group sense. Because of γz, the static
ferrimagnetic order is transformed into a rotating ferrimag-
net for arbitarily small PD as discussed above. Arbitrarily
small, but finite driving also destabilizes the second-order
phase transition and one obtains instead a weak fluctuation-
induced first-order transition characteristic of the CEP as
for small γz, the condition of Eq. (114) is always obeyed. At
larger driving, γz ∼ α2θλ, the line of first-order transition
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ends when the xy order is destroyed by the strong
fluctuations arising from the superthermal mode occupa-
tion in the vicinity of the CEP. We therefore expect, as
sketched in Fig. 2, that the long-ranged xy order melts most
easily just above the transition temperature Tc. In the
figure, we also took into account that a finite PD always
leads to a net heating of the system proportional to PD; thus
all transition lines bend to the left in Fig. 2.
Let us finally compare the symmetry Uð1Þ ⋉ Z2,

Eq. (110), to the symmetry Uð1Þ × Z2, realized by replac-
ing the second line of that equation by mz → −mz, while
leaving θ invariant. In this case, on the right-hand side of
the first line of Eq. (111), a field-independent constant (as
well as a KPZ nonlinearity) is also symmetry allowed,
and will be generically nonvanishing once the drive is
switched on. The system is thus always in a rotating
phase for finite drive, and no phase transition of the above
type would be realized. In other words, time translation
invariance is broken explicitly, as opposed to spontane-
ously as in our case.

2. Microscopic derivation

In the following, we provide a microscopic theory to
show how a rotation of Goldstone modes is induced
at a ferrimagnetic transition if the system is driven out
of thermal equilibrium by an oscillating magnetic field
BzðtÞ. We consider classical spins Si, jSij ¼ 1, on a three-
dimensional cubic lattice with

H ¼ J
X
hi;ji

Sxi S
x
j þ Syi S

y
j − ΔSzi S

z
j

þ
X
i

δ2S
z
i
2 þ δ4S

z
i
4 − giBzðtÞSzi : ð115Þ

The model is invariant under global spin rotations around
the z axis and we assume J;Δ; δ4 > 0. The sign in front of
Δ is chosen to obtain a ferrimagnet. At T ¼ 0, Bz ¼ 0, the
system orders antiferromagnetically in the xy plane for
δ2 > zJðΔ − 1Þ (z ¼ 6 is the number of nearest neighbors),
but the spins tilt out of the plane for δ2 < zJðΔ − 1Þ
developing a uniform out-of-plane magnetization. By
tuning δ2, one can thus describe the transition from an
xy antiferromagnet to a ferrimagnet.
The dynamics of the system is obtained from

the Langevin (or, equivalently, Landau-Lifshitz-Gilbert)
equation

∂tSi ¼ −Si ×

�
∂H
∂Si

þ α∂tSi þ ξiðtÞ
�
; ð116Þ

where the Gilbert damping α allows for a relaxation of the
magnetization.
To obtain an equation for the time dependence of the

angle θ parametrizing the Goldstone mode, Eq. (111), and
thus for γz, it is most convenient [100] to compute first the

time dependence of the relevant conservation laws, i.e.,
of the total magnetization Mz ¼

P
i S

z
i . Because of the

damping terms, the magnetizationMz is not conserved and
one obtains

∂Mz

∂t
¼ −α

X
i

ðSi × ∂tSiÞz ¼ −α
X
i

ð1 − Szi
2Þ∂tθi; ð117Þ

where θi is the angle describing the in-plane orientation of
Si and we ignored contributions from ξiðtÞ which at low
temperature will only give rise to small corrections to the
value of γz. Next, we average Eq. (117) over time in the
presence of an oscillating magnetic field BzðtÞ. The time
average of ∂tMz vanishes, ∂tMz ¼ 0, as it is a total
derivative of a bounded quantity. In contrast, ∂tθi can be
finite, as the angle is not bounded and can have a net growth
in each oscillation period T, ∂tθi ¼ ½θiðtþ TÞ − θiðtÞ�=T.
Thus, we obtain a remarkably simple equation for the
average angle θ ¼ hθii ¼ ð1=NÞPi θi, which is indepen-
dent of the friction constant α,

∂tθ ¼ hSzi 2∂tθii; ð118Þ

where h� � �i denotes the average over different sites i.
Assuming that our system is weakly driven out of thermal
equilibrium by a small, time-dependent field BzðtÞ, we
evaluate Eq. (118) in second-order perturbation theory and
linear in the uniform magnetization mz ¼ hSzi i. Comparing
to Eq. (111), we find

γz ¼ 2hSzi∂tθiic; ð119Þ

where we omitted corrections from hSzi 2i ∂thθii as they are
of higher order in eithermz or Bz. Equation (119) should be
evaluated at the critical point, i.e., for δ2 ¼ zJðΔ − 1Þ. The
contribution to second order in BzðtÞ can be obtained by
evaluating both Szi and ∂tθi to first order, and we find for an
oscillating field of the form BzðtÞ ¼ B0 cosðωtÞ

γz ≈
B2
0ðgA − gBÞ2zJω2

2½ω2ð1þ α2Þ − 4ðzJÞ2Δ�2 þ α28ðzJÞ2ω2ðΔþ 1Þ2 ;

ð120Þ

where gA, gB are the g factors on the two sublattices.
In Fig. 15 the precession rate ∂tθ obtained from a

noiseless solution, ξiðtÞ ¼ 0, of the equation of motions,
Eq. (116), is shown in comparison to the analytical results.
In the noiseless case (or, equivalently, in a T ¼ 0 mean-
field theory) one can use translational symmetry and
simulate only the equation of motion of two spins, one
on each sublattice of the antiferromagnet. Close to the
phase transition and for small amplitudes of the oscillating
fields, excellent agreement of numerics and analytics is
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obtained. The frequency dependence of γz is shown in
Fig. 16. The analytical result fits the numerical result for all
frequencies. For ω ≈ 2zJ

ffiffiffiffi
Δ

p
, the oscillating field reso-

nantly couples to a magnon mode, giving rise to a
pronounced peak in γz as a function of ω.
Our analytical and numerical results confirm that a

rotation of the Goldstone mode (and thus also a critical
exceptional point) can be induced by driving the system
only weakly away from thermal equilibrium. In our specific
(noiseless) model, we used an oscillating magnetic field
and different g factors on the two sublattices to induce a
nonequilibrium state. General symmetry arguments sug-
gest, however, that the coupling γz defined in Eq. (111) is
always finite when the system is not in thermal equilibrium.
For example, one could instead use a laser tuned to an
electronic resonance. In this case an absorbed photon will

trigger a complex cascade of electronic, spin, and phonon
excitations which are difficult to describe quantitatively.
We expect, however, that their net effect can be absorbed in
an effective parameter γz which describes that the spins will
start to precess in the ferrimagnetic phase.
The combination of the results presented above shows

that the microscopic model defined by Eq. (115) with the
equation of motion Eq. (116) provides a direct realization
of the effective field theory as given by Eq. (111). First,
in the absence of noise, there is a second-order phase
transitions from an xy-ordered phase into the ferrimagnetic
phase with finite magnetization and a rotating order
parameter, as shown in Fig. 15. This justifies a
Ginzburg-Landau expansion around this transition point,
Eq. (111). Second, we have shown both numerically and
analytically that the precession of θ is described by the γz
term in Eq. (111), which is calculated analytically in
Eq. (119). Third, the remaining derivative terms follow
in a straightforward way from the equation of motion,
Eq. (116), with αθ;αm ∼ α. Only the K0 term was not
explicitly derived by us but its presence follows from
symmetry arguments and the discussion below Eq. (113)
shows that our results remain valid for K0 ¼ 0. Finally, the
presence of noise terms in Eq. (111) is in equilibrium
enforced by fluctuation-dissipation theorems. Thus, only
the precise amplitude of the noise may be affected by the
nonequilibrium terms. This concludes the microscopic
derivation of Eq. (111).

B. Implementation via driven-dissipative bosons

The model Eq. (8) can also emerge as a semiclassical
limit of driven-dissipative bosons subject to Lindbladian
time evolution. We consider the dynamics of N spatially
extended bosonic fields with creation operators a†i ðx; tÞ
which is symmetric under OðNÞ rotations of the bosonic
fields. Based on symmetry, it is to be expected that the
universal phenomenology of the vector valued expectation
value of these bosons after coarse graining is captured by
the model Eq. (8). We now give an explicit example for
Lindblad jump operators together with an OðNÞ symmetric
Hamiltonian time evolution, where the coarse graining
procedure to obtain Eq. (8) can be done analytically. This
has to be understood as a proof of principle, that given the
right symmetries Eq. (8) emerges as an effective theory and
is expected to happen for different microscopic setups
where the coarse graining is not straightforward, as well. To
generate the nonlinear dampings, two-body or higher order
loss terms are necessary while the negative damping
or pumping required for the rotating phase can be obtained
by an effective single-particle pump. This is somewhat
similar to the single bosonic field case discussed in
Refs. [65,101,102] which has an additional U(1) symmetry
of the complex phase of the mode operators not present in
our case.

FIG. 16. Coupling γz defined in Eq. (111) as function of the
driving frequency ω [points: numerics for B0 ¼ 0.25J; line:
analytical result, Eq. (120)]. The parameters are α ¼ 0.2, gA ¼ 1,
gB ¼ 2, Δ ¼ 0.9, δ2 ¼ −0.66J, δ4 ¼ 6J.

FIG. 15. Average precession rate ∂tθ as function of the
anisotropy δ2 for the model defined in Eqs. (115) and (116).
For sufficiently large δ, the magnet develops an out-of-plane
magnetization and, simultaneously, the spins start to rotate. Solid
lines: mean-field numerics (i.e., for a noiseless model) for three
different amplitudes B0 of the oscillating field; dashed line:
analytical result valid close to the phase transition for small B0

using Eqs. (111) and (120) and the mean-field order parameter
jmzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½−δ2 − zJð1 − ΔÞ=δ4�
p

. The parameters are BzðtÞ ¼
B0 cosðωtÞ, ω¼7.2J, α¼0.2, gA ¼ 1, gB¼2, Δ¼0.9, δ4¼6J.
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We consider a Lindbladian time evolution for the density
matrix ρ̂:

∂tρ̂ ¼ −i½Ĥ; ρ̂� þ
X
α

γα

�Z
x
L̂αðxÞρ̂L̂†

αðxÞ

−
1

2
fL̂†

αðxÞL̂αðxÞ; ρ̂g
�
: ð121Þ

The Hamiltonian is split into a quadratic and an interacting
part Ĥ ¼ Ĥ0 þ Ĥint, with

Ĥ0 ¼
XN
i¼1

Z
q
rcðqÞâ†i ðqÞâiðqÞ; ð122Þ

and we add a generic OðNÞ symmetric ϕ4 interaction,

Ĥint ¼ λc
X
ij

Z
x
ϕ̂iðxÞ2ϕ̂jðxÞ2; ð123Þ

with canonical field variable ϕ̂j ¼ ði= ffiffiffi
2

p Þðâj − â†jÞ. We

consider local single-particle pump and loss L̂1ðxÞ ¼ â†i ðxÞ
and L̂2ðxÞ ¼ âiðxÞ with respective rates γ1 ≡ γin; γ2 ≡ γout,
where the identical rates for all i ¼ 1;…; N ensure a weak
OðNÞ symmetry. Furthermore, we include OðNÞ symmetric
two-body pump and loss processes L̂3ðxÞ¼

P
i ϕ̂iðxÞâiðxÞ

and L̂4ðxÞ ¼
P

i ϕ̂iðxÞâ†i ðxÞ with rates γ3 ≡ λd, γ4 ≡ λp
similar to the case of the single mode quantum Van der Pol
oscillator [49]. We now perform the following steps: pass to
the equivalent Keldysh path integral description of the
Lindbladian time evolution, introduce the canonical field
momentum π̂jðt;xÞ ¼ ð1= ffiffiffi

2
p Þ½âjðt;xÞ þ â†jðt;xÞ�, and

take the semiclassical limit to obtain an MSRJD action;
see Ref. [65] for a review. Since the conjugate momentum
appears only quadratically, we can perform the Gaussian
integration over it, analogously to passing from a
Hamiltonian path integral to a Lagrangian in equilibrium
(quantum) field theory. Neglecting irrelevant terms that
are higher order in field amplitudes or derivatives acting
on noise fields, we arrive at the MSRJD action Eq. (20)
with the couplings γ¼ γout−γin, r ¼ γ2 þ r2c; u ¼ 2λp, u0 ¼
3λd−λp, λ¼ λcþð3λdþλpÞγ, D¼ 1

2
ðγinþγoutÞðr2cþ2γ2Þ.

The choice of interaction and Lindblad operators,
involving ϕ operators, while giving simple expressions
for the parameters of Eq. (20), is somewhat artificial.
However, the calculation can be done analogously when
including squeezing terms ∼câiâi þ H:c: that break the
bosonic U(1) symmetry to Z2 on the quadratic level,
and again one arrives at our effective model description:
By symmetry, we expect the same effective long wave-
length model to emerge when breaking a microscopic
Uð1Þ × OðNÞ → Z2 × OðNÞ.

C. Two nonreciprocally coupled fields

Our model also describes the universal phenomenology
of two nonreciprocally coupled N-component order param-
eters ϕ1;2 ∈RN in d spatial dimensions as it may occur in
active matter scenarios. The respective case for d ¼ N ¼ 2
has been discussed in Ref. [59]. The (anti)flocking phase
found there corresponds to the ordered phase of our model,
the chiral rotating phase to the rotating phase, the so-called
SWAP phase to Van der Pol oscillations, and the
chiralþ SWAP phase to a possible mixture of rotation
and Van der Pol oscillation.
Suppressing spatial gradients of the fields which are

easily restored, the linearized dynamics of the order
parameters are given by

∂tϕa ¼ Kabϕb þ ξa; ð124Þ

where a, b ¼ 1, 2 indexes the two order parameters, but
not their components in RN . ξa is a Gaussian white noise.
The linear dynamics is nonreciprocal in the sense that
Kab ≠ Kba. We parametrize it as

K ¼
�−m1 g1

g2 −m2

�
: ð125Þ

Nonreciprocity implies that at least one of the off-diagonal
couplings is nonzero, and without loss of generality
we choose it to be g1. One can promote this model to
include nonlinearities by letting the parameters Ka;b; g1;2
depend on the OðNÞ invariant amplitudes ρ1;2¼ϕT

1;2 ·ϕ1;2.
Analogously one can extend to rotationally symmetric
dynamics in d spatial dimensions by including ∇2 depend-
encies. The model Eq. (125) can be brought into the form of
the nonconservative OðNÞ Eq. (8) model discussed above
by using g1 ≠ 0 to solve for ϕ2:

ϕ2 ¼ g−11
�ð∂t þm1Þϕ1 − ξ1

�
: ð126Þ

Plugging this into the equation of motion for ϕ2 yields

ð∂2t þ 2γ∂t þ rÞϕðx; tÞ þ ξðx; tÞ ¼ 0; ð127Þ

with

2γ ¼ m1m2; ð128Þ

r ¼ m1m2 − g1g2; ð129Þ

ξ ¼ g1ξ1 þ ðg1m2 þ ∂tÞξ2: ð130Þ

It is a straightforward calculation to see that the non-
linearities considered in Eq. (8) are generated by respective
nonlinearities in Eq. (125). In the presence of nonreciproc-
ities with sgnðg1Þ ≠ sgnðg2Þ, we can tune the damping γ

UNIVERSAL PHENOMENOLOGY AT CRITICAL EXCEPTIONAL … PHYS. REV. X 14, 021052 (2024)

021052-31



and the mass r to zero independently of each other and
therefore reach the rotating phase, the statically ordered
phase, as well as the CEP separating them. This would not
be possible if either g1 or g2 vanished.
We briefly remark that the reduction to our model can

also be done after, for instance, adopting an effective
description in the ordered phase for the nonreciprocally
coupled fields and then passing to a Lagrangian descrip-
tion. In that case one first arrives at the effective theory
Eq. (111) which can be completely mapped to our field
theory as was demonstrated also in the implementation via
a ferrimagnet. In this context, Eq. (111) also corresponds to
the theory describing the second-order phase transition
found in driven-dissipative condensates [15] where the
O(2) symmetry is emergent. This scenario is also captured
by our mechanism; see Sec. VI E.

VIII. CONCLUSIONS

We have developed the theory and phenomenology of
the phase diagram and the exceptional critical points for
OðNÞ models driven out of equilibrium. Beyond previous
approaches on the level of deterministic nonlinear dynam-
ics, as a main conceptual and computational step we have
systematically incorporated the effects of stochastic fluc-
tuations. A main insight is that the key properties of a
critical exceptional point together imply that the phase
transition is rendered weakly first order below the upper
critical dimension, once fluctuations and interactions are
properly taken into account.
We have also shown that exceptional critical points can be

realized without any further fine-tuning in magnetic systems,
by irradiating a system which in thermal equilibrium dis-
plays a certain sequence of phase transitions. As an example,
we considered the transition from an xy magnet to a
ferrimagnet in the presence of an oscillating magnetic field.
Such systems are in the “domain of attraction” of our OðNÞ
models, and map to these in the long wavelength limit.
Although our analysis has focused on the concrete case

of OðNÞ models, the phenomenology unraveled here
should be universal, and describe more generally the
behavior near critical exceptional points: It is driven by
the key features of a CEP, nonanalytic spectral properties,
and enhanced infrared occupation, which together with
sufficiently strong interactions drive our scenario. The
OðNÞ symmetry instead is not prominently involved in
this line of reasoning; it rather plays the role of a
paradigmatic symmetry class for analyzing critical behav-
ior in a definite setting. One interesting candidate for the
realization of our general scenario is given by the separatrix
defining the watershed for the domain of attraction of
equilibrium and nonequilibrium fixed points in coupled
Ising models in Ref. [14] (and, possibly, their generaliza-
tions to larger symmetry groups).
From the viewpoint of OðNÞmodels, our nonequilibrium

extension fuses the relativistic OðNÞ model with inertial

time derivative term with the dynamical models of
Hohenberg and Halperin for equilibrium dynamical criti-
cality. It offers a surprisingly simple phase diagram with an
analytically accessible limit-cycle phase for the angular
variable, related to spontaneous time translation symmetry
breaking—finding structure and simplicity out of equilib-
rium might be more valuable than complex phenomeno-
logy in the long run. So far we have focused our in-depth
analysis on the line of CEPs only, but many interesting
aspects still await exploration. Among them, adding and
exploring the axis which brings us to d-dimensional, OðNÞ
symmetric generalizations of the Van der Pol oscillator,
hosting a phase transition to a limit cycle for the amplitude
variable. Within the angular limit-cycle phase, it will be
interesting to study the interplay of gapless modes and
fluctuations, for example, determining the connection to the
KPZ equation and possible larger symmetry group variants
of it. Furthermore, the multicritical point at the center of the
phase diagram, and the direct transition from the disordered
into the limit-cycle phase, host (critical) behavior which
manifestly deviates from the one studied here, based on a
counting analysis for the leading infrared divergences. In
particular, the phase diagram with its multicritical point
in the center shares its shape with scenarios of Lifshitz
criticality [103]. There, the leading derivative term ∼∇2 is
fine-tuned to zero and replaced by a leading ∇4 term, in
some analogy to our fine-tuning of the damping term ∼∂t to
zero at the CEP, being replaced by a leading inertial term
∼∂2t . Both the universal behavior at the multicritical point as
well as at the direct transition from the disordered phase
into the limit cycle are promising questions for future work.
In the context of experimental realizations, it will be
interesting to investigate the role of disorder. Many of
these questions crystallized in our concrete model should
occur more broadly in fluctuating nonequilibrium systems.
The present nonequilibrium OðNÞ models might serve as a
paradigm for the study of such phenomena, as did their
equilibrium counterparts.
One additional question that results naturally from our

analysis concerns criticality of fermions. At equilibrium,
fermion criticality can occur in quantum phase transitions
only, connected to the fact that there is an infrared
suppression of fermion occupation at finite temperature
instead of an enhancement, opposite to the bosonic case—
there is no classical fermion criticality. However, as we
have seen here, CEPs provide a way to enhance the infrared
behavior, possibly in a way that compensates for a noise-
induced suppression of occupation—and thus give rise to a
scenario of nonequilibrium fermion criticality.
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APPENDIX A: AMPLITUDE OSCILLATIONS

Van der Pol oscillations and competing order. As stated
in the main text, the mean-field equation (4) can be solved
for all N and γ < 0 by

ϕ ¼ ðϕVdPðtÞ; 0…0Þ; ðA1Þ

where ϕVdPðtÞ is the solution of the one-dimensional Van
der Pol equation. Its closed form is not known but it has
been proven to be a periodic function and thus to describe a
limit cycle. In the corresponding phase, the amplitude of
the order parameter is oscillating along a given direction.
The OðNÞ symmetry is broken to OðN − 1Þ, exactly as
in the statically ordered phase, but the Goldstone theorem
discussed in Sec. VA 3 applied to this phase leads to a
nondecaying Goldstone mode associated to the sponta-
neous breaking of time translation invariance, without it
being also associated to the breaking of OðNÞ.
For N ¼ 1, this is the only available phase, but for

N > 2, it competes with the rotating phase. These two
phases can only be stable in the yellow region in Fig. 1, and
only one of them is stable, at least at the mean-field level.
We investigate it analytically below and we also verified
this numerically by solving Eq. (4). We find that for
sufficiently high value of the ratio u0=u > ðu0=uÞc ¼
fðρ0; EÞ, the rotating phase is stable and the oscillating
phase unstable, the reverse being true below the critical
ratio. To gain analytical insight, the linear analysis around
this phase is more complicated because there is no analog
of the rotating frame which allowed us to get an autono-
mous linearized equation as in the rotating phase. One
solution could be to do a Floquet analysis of the Van der
Pol oscillator.
However, we can use the stability analysis done below in

Appendix C for the rotating phase to get the boundary at
which it becomes unstable in a regime of parameter where
the static phase is also unstable. The Van der Pol oscillating
phase shall then be the stable one. As discussed in Sec. IV, a
solution is unstable as soon as one of the modes has a
dispersion with a positive imaginary part. The (mean-field)
modes can be extracted from the phase-amplitude decom-
position in the rotating phase done in Appendix C before
integrating out the amplitude. From Eq. (C3), we can
analytically extract the dispersions of the modes involving
the amplitude fluctuations. There is indeed a mode that
becomes unstable, for values of the parameters which agree
with numerical simulations. The exact expression of this
dispersion is rather complicated but simplifies in some
limits. In particular, deep in the rotating phase, i.e., at large
E, the threshold is found to be u0 > u=2. It confirms that u
tends to stabilize the SWAP phase and u0 the rotating phase.

On the contrary, for E → 0, the rotating phase is stable for
any positive value of u0.
Phase transition. The phase transition from the disordered

phase to the oscillating phase has the same pattern as the
transition from the disordered to the rotating phase: the
damping term goes to zero and the dispersions at the critical
point have a finite real part, ω1;2 ¼ � ffiffiffi

r
p

.
However, the transition from the statically ordered to the

oscillating phase does not occur via a CEP. Indeed, the
linearized equation of motions in the static phase are given
by, see Sec. V B,

∂
2
t δρþðδþ2u0ρ0−Z∇2Þ∂tδρþ2λρ0−v2∇2Þδρ¼0; ðA2Þ

for the amplitude, and

∂
2
t θi þ ðδ − Z∇2Þ∂t − v2∇2Þθi ¼ 0; ðA3Þ

for the Goldstone modes. When u0 > 0, upon tuning δ to
zero, the damping of the amplitude mode remains positive,
while the Goldstone modes become unstable and start to
rotate in order to compensate for the negative damping.
However, when u0 < 0, the first instability occurs for
the amplitude mode, which starts to display Van der Pol
oscillation. At the critical point, u0ρ0 þ δ ¼ 0, the disper-
sions of the amplitude modes are

ω1;2 ¼ �
ffiffiffiffiffiffiffiffiffi
2λρ0

p
; ðA4Þ

indicating that this transition is similar to the direct
transition from the disordered phase at the mean-field
level. Note that we recover the fact that close to transition
between the static and time-dependent orders, the sign of u0
sets the stable phase.

APPENDIX B: CRITICAL EXCEPTIONAL
POINTS OF N-COMPONENT FIELDS

We now elaborate on how any CEP occurring in noisy
Markovian dynamics of a vector valued field can be
mapped to the damped harmonic oscillator case discussed
in the main text.
We first note that we can always map a system of N

differential equations of second order in time derivatives
into a set of 2N first-order differential equations by
introducing π ¼ ∂tϕ as an independent variable. In physics
terminology we pass from a Lagrangian to a Hamiltonian
representation. Using this, the (diagonal) linearized equa-
tion of motion or inverse Green function ΓRðq; tÞ of the
N-component damped harmonic oscillator discussed in the
main text, see Sec. IV B, can always be written as

½∂t1þMðqÞ�δΦ ¼ 0; ðB1Þ

where Φ is a 2N component vector and 1 and MðqÞ are
2N × 2N matrices. The eigenvalues of MðqÞ are the
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dispersions iωαðqÞ and the corresponding eigenvectors the
2N linearly independent modes. In this representation an
EP, where two modes coalesce, occurs if and only if MðqÞ
is not diagonalizable at q�, and therefore has at least one
2 × 2 Jordan block:

Mðq�Þ ¼
�
iωEP 1

0 iωEP

�
: ðB2Þ

The dynamics of excitations close to a CEP at q� ¼ 0 is
governed by an inverse Green function that is block
diagonal with blocks that are at most of size 2 × 2 and
with at least one block taking the form



∂t12 þ

�
iω1ðqÞ 1

0 ω2ðqÞ

��
δΦCEP ¼ 0; ðB3Þ

where δΦCEP are the fluctuations contributing to the
CEP and ω1ðq ¼ 0Þ ¼ ω2ðq ¼ 0Þ ¼ 0. This structure also
implies the superthermal mode occupation in the presence
of generic Markovian noise as shown in Ref. [15].
Reciprocally, by reverting this procedure, any system

that has a CEP arising from the structure Eq. (B3) can
generically be brought back to the form of a damped
harmonic oscillator with a diagonalizable inverse Green
function even in presence of noise, as done explicitly for
the two examples in the implementation section Sec. VII of
the main text.

APPENDIX C: PHASE-AMPLITUDE
REPRESENTATION

In this appendix, we give detailed derivations of the
action describing the fluctuations around the static and
rotating orders obtained by writing the fields in a phase-
amplitude decomposition,

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 þ δρ

p
expðET1;2tÞ exp

 XN
i¼2

θiT1;i

!
ê1;

ϕ̃ ¼ ffiffiffiffiffi
ρ0

p
expðET1;2tÞ exp

 XN
i¼2

θiT1;i

!
χ̃; ðC1Þ

where χ̃ ∈RN is parametrized as χ̃ ¼ ðδ̃ρ; θ̃2;…; θ̃NÞ. The
static ordered phase is included as a special case E ¼ 0. For
simplicity, we drop summation indices in the following,
and use T⃗ ¼ θiT1;i. The derivative terms like ϕ̃T

∂tϕ

generate terms expð−T⃗Þ∂t expðT⃗Þ and higher orders in
derivatives, which have to be evaluated using the infini-
tesimal form of the Baker-Campbell-Hausdorff formula.
Since we are only interested in the quadratic action at this
point, one can however truncate to

expð−T⃗Þ∂nt expðT⃗Þ ¼
X
i

ð∂nt θiÞT1;i þOðθ2Þ; ðC2Þ

and equivalently for the gradient terms. In the case of the
statically ordered phase we thus arrive at the quadratic
action displayed in the main text in Sec. V B. In the rotating
phase, i.e., at finite angular velocity E, we immediately
arrive at the quadratic action for the perpendicular phase
fluctuations S0⊥ that is given in the main text. The parallel
(θ) and amplitude (ρ ¼ ðδρ=2ρ0Þ) fluctuations however
mix on the quadratic level:

S0ρθ ¼ ρ0

Z
X
ρ̃½∂2t þ ð2u0ρ0 − Z∇2Þ∂t − v2∇2�ρ

þ θ̃½∂2t − Z∇2
∂t − ðv2 þ ZEÞ∇2�θ − 2Eρ̃∂tθ

þ θ̃ð2uρ0Eþ 2E∂tÞρ − 2Dðθ̃2 þ ρ̃Þ2: ðC3Þ

This action clearly violates the thermal symmetry con-
ditions since the couplings between phase and amplitude
are not symmetric. We can access the dynamics of the
slow phase fluctuations alone by performing the Gaussian
integration over the gapped amplitude field on the level
of the path integral. This yields the following effective
Gaussian action for the phase field (after proper rescaling of
the field),

S0k ¼ ρ0

Z
X
θ̃½∂2t þ ðδ̄ − Z̄∇2Þ∂t − v̄2∇2�θ − 2Dθ̃2; ðC4Þ

where the shifted couplings close to the transition, i.e., for
small angular velocities E, are

δ̄¼jδjþOðE2Þ; Z̄¼ZþOðEÞ; v̄2¼v2þOðEÞ: ðC5Þ

This procedure of integrating out the amplitude mode
(i.e., passing to a NLσM) can be carried beyond the
quadratic level to derive the nonlinearities for the interact-
ing theory. For the case N ¼ 2, this can be done without
any truncation in θ, while forN > 2, a truncation in θi leads
to terms of the form Eq. (106) discussed in the main text.
The precise coefficients obtained through this procedure
do not really matter as they will not remain intact in the
RG flow once one starts coarse graining the dynamics.
The important point is that with the rescaled fields used
in Eq. (82), there is always a contribution of order one
in a ρ−10 expansion that therefore does not vanish in the
large ρ0 limit.

APPENDIX D: EXPLICIT LOOP CALCULATIONS

In this appendix, we compute the integrals arising from
loop corrections which are given in the main text. We start
by the two-loop sunset diagram because there is no
momentum running through the loop which simplifies
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the analysis and then discuss the one-loop integral with
momentum transfer.

1. Two-loop sunset

Let us prove Eq. (90) which gives the correction to δ
induced by g1 and comes from the diagram Fig. 9(c). In
the following, all integrals are considered to be suitably
regularized in the UV when divergent. It reads

I2l¼
Z
Q1;Q2

ω2
1G

KðQ1Þω2
2G

KðQ2Þiðω1þω2ÞGRðQ1þQ2Þ:

ðD1Þ

The frequency integrals can be performed, and after
rescaling of momenta q1;2 → q1;2δ1=2, we obtain

I2l¼
δd−3

4

Z
q1;q2

f1ðq1;q2ÞþOðδÞ
v2
δ ½ðq1 ·q2Þ2−ðq1q2Þ2�2þf2ðq1;q2ÞfΔðq1

2ÞþΔðq2
2ÞþΔ½ðq1þq2Þ2�gþOðδÞ

1

Δðq1
2ÞΔðq2

2Þ: ðD2Þ

In this expression, we defined f1 and f2, two functions
independent of v whose precise forms are not important
for the argument. The only property we will use is that
f1ðq1;q2Þ ¼ f2ðq1;q2Þ when q1 and q2 are aligned. We
neglected the subleading terms in δ which do not contribute
to the leading infrared divergence. However, as discussed in
the main text for the one-loop integral Eq. (86), we keep a
higher order term in the denominator because the leading
term can in fact become small under certain conditions.
This is the case for every momentum if δ=v2 is large. In this
regime, the integral reduces to

I2l ¼
δd−3

2

Z
q1;q2

1

Δðq1
2Þ þ Δðq2

2Þ þ Δ½ðq1 þ q2Þ2�
×

1

Δðq1
2ÞΔðq2

2Þ ; ðD3Þ

and behaves as δd−3, i.e., exactly as the tadpole diagram
Fig. 9(b). Now, approaching the CEP where δ=v2 becomes
small, the first term in the denominator of Eq. (D2)
dominates for generic momenta, but still vanishes when
q1 and q2 are aligned. The integrand thus behaves as δd−3

when the momenta are almost aligned, But only as δd−2

when they are not, giving a subleading contribution to
the integral. We thus have a resonance condition to get
the highest divergence. This is shown in Fig. 17(a).
Formally, the denominator of the integrand in Eq. (D5)
behaves as a Dirac distribution. To make it apparent, we
rewrite the integral over q2 using hyperspherical coordi-
nates around q1,

I2l ∼
δ→0

δd−3

4

Z
q1

Z
qd−12 dq2dΩ

q2
d−1

1

Δðq21ÞΔðq22Þ
Isub; ðD4Þ

(a) (b)

FIG. 17. (a) The integrand of Eq. (D2), denoted AðxÞ, is plotted as a function of x ¼ cosðθÞ where θ is the angle between p1 and p2,
p̃1 ¼ 1=2, p̃2 ¼ 1, v ¼ 1, and different values of δ. At small δ, it becomes sharply peaked around x ¼ �1, reflecting the resonance
condition. (b) I2l=δd−3, plotted in d ¼ 2, 3 is a function of δ=v2 only. At large δ=v2 ≪ 1 the integral behaves as δd−3 but gets suppressed
by an additional power law when the ratio δ=v2 is small. The power law behaviors (indicated by the dashed lines) agree quantitatively
with Eq. (D9).
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where

Isub ¼
Z

dθ
sinðθÞd−2f1½q1; q2; cosðθÞ�

v2
δ ðq1q2Þ2½cosðθÞ2 − 1�2 þ f2½q1; q2; cosðθÞ�fΔðq21Þ þ Δðq22Þ þ Δ½ðq1 þ q2Þ2�g

; ðD5Þ

where θ is the angle between q1 and q2.
This last integral Eq. (D5) can be brought to the

following form,

Isub ¼ η2
Z

dθ sinðθÞd−2 a½cosðθÞ�
½cosðθÞ2 − 1�2 þ η2b½cosðθÞ�2 ;

ðD6Þ

with η ¼
ffiffiffiffiffiffiffiffiffiffi
δ=v2

p
and a, b smooth nonvanishing functions

around�1. We dropped all the dependencies in momentum
for the sake of clarity. Using x ¼ cosðθÞ, the fraction in
Eq. (D6) is of the form

FðxÞ ¼ 1

ðx2 − 1Þ2 þ η2bðxÞ2

¼ Im

�
1

ðx2 − 1Þ − iηbðxÞ
�

¼ 1

2
Im

�
1

x − 1 − iη
2
bðxÞ −

1

xþ 1þ iη
2
bðxÞ

�
; ðD7Þ

⟶
η→0

π

2
½δðx − 1Þ þ δðxþ 1Þ�: ðD8Þ

It indeed behaves as a Dirac distribution, reflecting the
resonance condition. At small but finite η, the Dirac
distributions are slightly extended, and while performing
the integral in Eq. (D5) we can use that η2FðxÞ is essentially
equal to one for j cosðθÞ � 1j < η and zero otherwise. It
means that only small deviations of cosðθÞ around �1 of
order η contribute to the integral, i.e., only small deviations
of θ of order

ffiffiffi
η

p
around zero and π, and we can keep only

the leading terms in a series expansion around these points
for the other terms. Integration then yields

Isub∼
Z ffiffi

η
p

0

dθθd−2að1Þþ
Z

π

π− ffiffiηp dθðπ−θÞd−2að−1Þ; ðD9Þ

∼Cηðd−1Þ=2 ¼ C

�
δ

v2

�ðd−1Þ=4
; ðD10Þ

where C is a multiplicative constant, proving Eq. (90),
I2l ∼ δd−3ðδ=v2Þðd−1Þ=4 since the remaining integrals are
free of any parameters. We emphasize that the additional

variable δ=v2 enters the corrections, reflecting the absence
of a full scaling solution at the CEP. This is confirmed
by numerical integration over the momenta presented
in Fig. 17(b) in two and three dimensions: I2l=δd−3 is
indeed a function of δ=v2 only, and the power law
behaviors found at small δ agree quantitatively with the
analytical results.
The same structure arises for the other sunset integrals

[e.g., with g2 instead of g1 as vertices or the sunset obtained
from Fig. 9(d)], and they can be computed using the same
procedure.
It is also instructive to rephrase this discussion using

ðq; tÞ variables in the loops. The corresponding expressions
are obtained by Fourier transform with respect to time to
their ðq;ωÞ counterparts. The integral I2l becomes

I2l ¼
Z
t

Z
q1

GK
Dðq1; tÞ

Z
q2

GK
Dðq2; tÞGR

Dðq1 þ q2; tÞ

× cosðvjq1jtÞ cosðvjq2jtÞ cosðvjq1 þ q2jtÞ; ðD11Þ

where we denote GR
Dðq;tÞ¼ΘðtÞexp½−Δðq2Þt� and

GK
Dðq;tÞ¼ exp½−Δðq2Þjtj�=Δðq2Þ, purely dissipative

Green’s functions which are also those that appear in
model A. Absent the oscillating terms associated to v,
this integral scales as δd−3 and displays a typical z ¼ 2
behavior. Now, the oscillating terms (seen as perturbation
of this scenario) oscillate faster and faster at finite t in the
scaling regime where we choose t ∼ q−2. In the spirit of a
rotating wave approximation (RWA), we can keep only the
nonoscillating terms. Since the oscillating terms are of the
form exp½ivtð�jq1 þ q2j � jq1j � jq2jÞ�, we recover our
resonance condition, q1 and q2 have to be aligned to yield a
significant contribution.

2. One-loop integral

We now discuss Eqs. (84) and (85), involved in the
corrections of the quartic interactions coming from the
diagrams displayed in Fig. 10. The calculation is closely
related to the one done for the sunset integral above, and
a similar resonance conditions arises. The diagrams read,
with ωp the frequency and p the momentum entering
the loop,
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I1l;Iðp;ωpÞ ¼
Z
q;ω

iðωþ ωpÞω2GRðqþ p;ωþ ωpÞGKðq;ωÞ

¼
Z
q;t

GK
Dðq; tÞGR

Dðqþ p; tÞ cosðvjqjtÞ cosðvjqþ pjtÞ expðiωptÞ; ðD12Þ

respectively, in q, ω and q, t variables.

Before discussing the finite momentum case, we note that
for p ¼ 0, after performing the integral over the frequency
and rescaling of momentum q → qδ1=2, the integral
reduces to

I1l;Iðp ¼ 0Þ ∼ δðd−4Þ=2
Z
q

1

Δðq2Þ½−iω̃e þ Δðq2Þ� ; ðD13Þ

in the scaling regime where ω̃p ¼ ωp=δ ∼ 1. We also again
use ΔðyÞ ¼ yþ 1. This is in line with formula (84).
Now at finite momentum, there are several resonances

that can arise depending on the precise value of the external
frequency and momentum. The first resonance is found for
frequencies close to ωp ∼�vjpj, and exactly corresponds
to the resonance we have in the sunset integral: p and q
have to be aligned. Intuitively, this can be understood from
the RWA argument we developed above: The oscillating
terms in Eq. (D12) are, when ωp ¼ �vjpj, of the form

exp½ivtð�jqþ pj � jqj � ωeÞ�
¼ exp½ivtð�jqþ pj � jqj � vjpjÞ� ðD14Þ

which is the same form we got for the sunset diagram.
They are not oscillating again exactly when p and q
are aligned. This peculiar resonance directly originates
from the nonvanishing real part of the relation disper-
sions at the CEP, and it can be checked explicitly that the
highest divergences of the Gaussian Green’s functions
in ðq;ωÞ coming from Eq. (62) are obtained exactly for
ω ¼ �vjqj. In a sense, while the divergence occurs
through the imaginary part of the dispersion relations,
the real part acts to some extent like a finite frequency
scale (because it goes infinitely slower to zero for small
momenta) around which the divergences occur. This is
technically very reminiscent of the role of a finite
momentum scale in the Brazvoskii’s scenario [74] where
it is also the reason why loops with momentum transfer
are negligible.
To make the link with the sunset diagram explicit, the

integral with ωe ¼ �vjpj can be written as

I1l;Iðp;ωp ¼ �vjpjÞ ∼ δðd−4Þ=2
Z
q̃

πjp̃jðp̃ · q̃þ q̃2Þ þOðδÞ
i vffiffi

δ
p ½ðp̃ · q̃Þ2 − p̃2q̃2� þ jp̃jðp̃ · q̃þ q̃2ÞfΔðq̃2Þ þ Δ½ðp̃þ q̃Þ2�g þOðδÞ

1

Δðq̃2Þ : ðD15Þ

Its real part is exactly the integral over q2 in Eq. (D2),
with p playing the role of q1. This renders the intuition
developed around Eq. (89) rigorous, and we can thus use
the analysis done in the previous section. Again, we have to
keep a higher order term in the denominator because
its contribution can dominate the integral in some cases.
When approaching the CEP, δ is small with respect to v2.
In that case, the second term dominates only when
v2=δ½ðp̃ · q̃Þ2 − p̃2q̃2�2 is sufficiently small. It is again true
for every momenta q when p̃2v2=δ is small, i.e., for small
dimensionless momentum p̃ ≪ δ1=2=v, and the integral
behaves as δðd−4Þ=2, proving Eq. (84). But for a finite
dimensionless momentum p̃ ∼ 1, the resonance condition
appears, and the integrand in Eq. (D15) behaves again as a
Dirac distribution: The highest divergence is found when q
and p are aligned, as in the sunset integral. This allows us to
perform the integral, and using the result of the previous
section, it leads to Eq. (85).

Interestingly, there is another type of resonance. In
particular, at zero frequency and finite dimensionless
momentum, see Eq. (86) where we got a different reso-
nance condition, the highest divergence is found when
v2ðp2 þ 2p · qÞ is small. This resonance condition also
shows up as very sharp and nonanalytic behavior which
allows us to get the scaling of the integral with δ in a similar
fashion. We find, for some p̃ not too large, a slightly
different behavior, I1l;I ∼ δðd−4Þ=2ðδ=v2Þ1=2 when δ is small.
We can expect the frequency and momentum contributing
the most to the loops to sit on the highest divergences
and thus to involve the first scaling Eq. (85). Anyway, this
cannot change the conclusions of the main text because
both behaviors lead to smaller divergences at finite
momentum for any frequency, no matter the precise power
law we get.
To conclude, we found that for a finite frequency but at

zero momentum, the loop is given by Eq. (D13), and thus
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assume a usual scaling form with frequency ω̃ ¼ ω=δ.
Therefore, we do not need to use specific frequency
dependencies of the different couplings as we do for the
momentum dependencies.

APPENDIX E: DYSON-SCHWINGER EQUATIONS

1. N = 2 case

The DSEs constitute an exact hierarchy of equations
between the 1PI vertices. It emerges as consequence of the
shift invariance of the effective action. It is discussed for
the usual ϕ4 case, e.g., in Ref. [104], but the method can be
applied directly within the MSRJD framework. The effec-
tive action can be written using the shift invariance with
respect to both fields, see Eq. (17),

Γ½ϑ; ϑ̃� ¼
Z

Diθ̃Dθe−S½ϑþθ;ϑ̃þθ̃�þðδΓ=δϑÞθþðδΓ=δϑ̃Þθ̃: ðE1Þ

The DSE can be obtained by taking functional
derivatives with respect to the fields of this equation. To
simplify notation in the following, we use the Nambu fields
Θ ¼ ðϑ; ϑ̃Þ and introduce

ΓðnÞ
I1…In

½Θ� ¼ δnΓ
δΘinðXnÞ…δΘi1ðX1Þ

½Θ�; ðE2Þ

with Ij a superindex including internal and external indices,
Ij ¼ fij; Xjg. Functional derivatives with brackets, e.g.,

ΓðnÞ
I1…In

½Θ�, denote functional derivatives before any evalu-
ation on the equation of motion. The formalism can be
readily extended to an N-component field by including the
resulting indices within the internal indices.
Since the action does not contain any term independent

of θ̃ which would break conservation of probability, we

define the master DSE by taking a derivative with respect to
the response field which yields

Γð10Þ½ϑ̃; ϑ;X1� ¼ hSð10Þ½ϑ̃þ θ̃; ϑþ θ;X1�i: ðE3Þ

This equation tells us that the dressed equation of motion
is given by the expectation value of the bare equation of
motion. In the following wework with the bare action given
by Eqs. (79) and (82),

S ¼
Z
x;t

θ̃½∂2t þ ð−K∇2 þ δÞ∂t − v2∇2�θ −Dθ̃2

þ g1
6
θ̃ð∂tθÞ3 þ

g2
2
θ̃∂tθð∇θÞ2; ðE4Þ

which describes the fluctuations of the Goldstone mode
for N ¼ 2. It is a fourth-order polynomial, so a series
expansion in the fluctuating fields θ and θ̃ stops at finite
order and gives

Γð1Þ
I1

¼ Sð1ÞI1
þ 1

2
Sð3ÞI1

G −
1

6
Sð4ÞI1

GGGΓð3Þ; ðE5Þ

where sums over indices and Θ dependencies are implicit.
This master DSE gives relations between the full 1PI

vertices and involves the renormalized propagator,
making it a nonperturbative method. By taking additional
functional derivatives with respect to the fields, one can
generate equations for higher order vertices. Approaching
the transition from the phase where h∂tθi ¼ 0, i.e., the static
ordered phase in our case, we can concentrate on the 1PI
vertices evaluated at Θ ¼ 0. If a series expansion around
ϑ̃ ¼ 0 and ϑ ¼ 0 is valid, this also describes the broken
phase. We expect it to be the case close to the first-order
phase transition. Note that this is also the case in Brazovskii

(a)

(c)

(b)

FIG. 18. Diagrammatic representation of the DSE. The solid and solid-to-dashed lines correspond respectively to the full Keldysh
and retarded Green functions. The vertices correspond also to the full vertices Γð13Þ and Γð15Þ, except for those that are represented
with a square box, which correspond to the bare vertices Sð13Þ. Diagrams obtained by permutations of external θ legs (solid line legs)
are not shown.
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scenario where the calculations done around zero and around a finite order parameter agree well [75]. For the retarded
inverse Green function, we get

Γð1;1ÞðP;Θ ¼ 0Þ ¼ Sð1;1ÞðPÞ þ 1

2

Z
Q
Sð12ÞðP;−P;QÞGRðQÞ − 1

2

Z
Q1;Q2

Sð13Þ½P;Q1; Q2;−ðPþQ1 þQ2Þ�

×GKðQ1ÞGKðQ2ÞGRðQ1 þQ2 þ PÞΓð13Þ½−Q1;−Q2; ðPþQ1 þQ2Þ;−P�; ðE6Þ

where we neglected contribution coming from four-point
vertices that are higher order in ϑ̃. They are irrelevant at
the Gaussian CEP for all dimensions of interest 2 < d < 4
and only lead to subleading divergences in the following.
More generally, all couplings that are irrelevant at the
Gaussian CEP fixed point induce smaller loop divergences
(it is even the way we define an operator to be irrelevant
at the Gaussian fixed point because of the absence of a
full scaling solution). Since the DSE will become one-loop
exact in the regime we are interested in, any irrelevant
operator brings subleading divergences in the DSE.
Diagrammatically, Eq. (E6) can be represented by Fig. 18(a).
In the DSE framework, the renormalized effective action

is obtained only from dressed tadpole and sunset diagrams.

The main difference with the two-loop expression obtained
from Fig. 9 is that the sunset involves the full fourth-point
vertex Γð13Þ instead of Sð13Þ, and we have to specify the
form of the vertices used to solve the DSE. As discussed
in the main text, the effective action can be parametrized
using effective couplings g1 and g2 that become momentum
dependent upon including interactions because of the
structure of the loops as discussed in the main text. To
be specific, the renormalization depends on the number of
pair of momenta that sum to zero, but not on the precise
values of these momenta. Based on these considerations,
the four-point vertices can be parametrized as

Γð13Þð−p2;p1;−p1;p2;ω4;ω1;ω2;ω3Þ ¼ iω1ω2ω3g1;a − iω3p2
1g2;a − iðω1 − ω2Þp1 · p2g2;b;

Γð13Þð−p2; 0; 0;p2;ω4;ω1;ω2;ω3Þ ¼ iω1ω2ω3g1;a;

Γð13Þð−p1;p1;−p1;p1;ω4;ω1;ω2;ω3Þ ¼ iω1ω2ω3g1;b − iðω1 − ω2 þ ω3Þp2
1g2;c;

Γð13Þð0; 0; 0; 0;ω4;ω1;ω2;ω3Þ ¼ iω1ω2ω3g1;c; ðE7Þ

where p1 and p2 are different finite momenta p1;2 ∼
ffiffiffi
δ

p
and

ω4 ¼ −ðω1 þ ω2 þ ω3Þ. All other configurations do not
get renormalized.
Anticipating that all couplings will only decrease or stay

constant (which can be checked a posteriori), the condition
for neglecting the two-loop contributions is therefore
given by replacing Γð13Þ by Sð13Þ in Eq. (E6). The loop
diagrams are then computed exactly as in Sec. VI C and
Appendix D. The condition Eq. (103) is thus recovered

nonperturbatively, only by considering the sunset topology.
When it is fulfilled, the DSE have only one-loop contri-
butions which simplify them considerably, and they can be
solved. In particular, from Eq. (E6), the renormalized
damping δ̄ satisfies the self-consistent equation (91).
The DSE for the four-point vertex Γð13Þ is represented

diagrammatically in Fig. 18(b). We neglected two-loop
contributions and the effect of all irrelevant vertices. The
corresponding equation is

Γð13ÞðP4;P1;P2;P3Þ¼Sð13ÞðP4;P1;P2;P3Þ−
Z
Q
GKðQÞGRðQþP1þP2ÞΓð13Þ½−ðQþP1þP2Þ;Q;P1;P2�þperm; ðE8Þ

where P4 ¼ −ðP1 þ P2 þ P3Þ and where the permutations apply on the set P1, P2, and P3. When the condition Eq. (103) is
met, the loop on the right-hand side is subleading and negligible whenever there is a running momentum going into
the loop. Injecting the forms Eq. (E7) into Eq. (E8) then allows us to get equations for the different couplings. In particular,
we get back Eqs. (95a) and (95c). The resulting equations form a linear system that can be inverted. The complete
solution reads

g1;a ¼
g1

1þ α2δ̄
ðd−4Þ=2 ; g1;b ¼ g1

1 − α2δ̄
ðd−4Þ=2

1þ α2δ̄
ðd−4Þ=2 ; g1;c ¼ g1

1 − 2α2δ̄
ðd−4Þ=2

1þ α2δ̄
ðd−4Þ=2 ; ðE9Þ

UNIVERSAL PHENOMENOLOGY AT CRITICAL EXCEPTIONAL … PHYS. REV. X 14, 021052 (2024)

021052-39



g2;a ¼
g2

1þ α2δ̄
ðd−4Þ=2 ; g2;b ¼

g2
1þ αdδ̄

ðd−4Þ=2 ;

g2;c ¼
4

3

g2
1þ αdδ̄

ðd−4Þ=2 þ
2

3

g2
1þ α2δ̄

ðd−4Þ=2 − g2; ðE10Þ

with α2¼ðg1þg2ÞK0
dð2−dÞ=2 and αd ¼ g2K0

dð2 − dÞ=d.
The possibility of a negative quartic coupling (which

induces the first-order transition) is cured by taking into
account the renormalized six-point vertex Γð15Þ. Being
irrelevant, its value is set by the four-point vertex Γð13Þ.
Again, its renormalization depends on the configuration of
incoming momenta. There are five different configurations
which get renormalized differently. We however need only
this vertex for vanishing momenta,

Γð15Þ
�
p1 ¼ 0;…;p5 ¼ 0;−

X
i

ωi;ω1;…;ω5


¼ iω1ω2ω3ω4ω5u1;e; ðE11Þ

with

u1;e ¼ 15ðg1 þ g2Þg21;a
Z
q

1

ðq2 þ δ̄Þ3

−
5

2
u1;eðg1 þ g2Þ

Z
q

1

ðq2 þ δ̄Þ2 ; ðE12Þ

found using the DSE diagrammatically represented in
Fig. 18(c). It leads immediately to Eq. (99).

2. N > 2 case

For N > 2, the DSEs discussed above can be directly
used in the N-component case by adding the OðNÞ indices
in the internal indices. As discussed in Sec. VI F, in the
regime where the bare condensate is large, the action is
simply the generalization of Eq. (E4) to a vector field
π ∈RN−1 with an OðN − 1Þ symmetry. It is given by

S0 ¼
Z
x;t

π̃ · ½∂2t þ ð−KΔþ δÞ∂t − v2Δ�π −Dπ̃ · π̃

þ g1
6

Z
x;t

π̃ · ∂tπð∂tπÞ2 þ
g2
2
π̃ · ∂tπð∇πÞ2: ðE13Þ

The loops that appear in the perturbative expansion or
in the DSEs (Fig. 18) and their scaling properties are
therefore the same. The additional OðNÞ structure changes
only the prefactors (sometimes called symmetry factors) of
the loops which becomeN dependent. The OðNÞ symmetry
factors are the standard OðNÞ ones and can be found in,
e.g., Ref. [105].
We now show that the quartic coupling controlling the

value of the order parameter, i.e., the generalization of g1;c,
also becomes negative and that there is again a first-order

phase transition. We will therefore concentrate on the
renormalization of g1, which at the bare level generates
the following vertex:

δΓð4Þ

δπ̃aðP4ÞδπbðP1ÞδπcðP2ÞδπdðP3Þ
¼ iω1ω2ω3Γ0ð13Þ

abcdðP4; P1; P2; P3Þ
¼ iω1ω2ω3g1Tabcd; ðE14Þ

where we define

Tabcd ¼
1

3
ðδabδcd þ δacδbd þ δadδbcÞ; ðE15Þ

and Γ0ð13Þ which denotes the part of Γð13Þ encoding the
renormalization of g1.
We first look at the set of momenta which corresponds to

what we called the g1;a coupling above. In perturbation
theory, the diagrams Fig. 10 lead to

Γ0ð13Þ
abcdð−p1;p1;−p2;p2;ω4;ω1;ω2;ω3Þ

¼ g1Tabcd − α2δ̄
ðd−4Þ=2 g

2
1

9
½ðN0 þ 4Þδabδcd

þ 2δacδbd þ 2δadδbc�; ðE16Þ

where N0 ¼ N − 1. However, the different Kronecker delta
functions get different coefficients because only one dia-
gram among the three of Fig. 10 contributes. We thus see
that the ansatz done for the vertex using g1;a in Eq. (E7) is
not sufficient to self-consistently solve the DSE.We need to
parametrize it as

Γ0ð13Þ
abcdð−p1;p1;−p2;p2;ω4;ω1;ω2;ω3Þ
¼ ðgs1;aδabδcd þ gt1;aδacδbd þ gu1;aδadδbcÞ: ðE17Þ

The DSE then gives

gs1;a ¼ g1
1þ α2

2ðN0þ2Þ
9

δ̄ðd−4Þ=2

ð1þ α2
2
3
δ̄ðd−4Þ=2Þð1þ α2

N0þ2
3

δ̄ðd−4Þ=2Þ ;

gt1;a ¼ gu1;a ¼
g1

1þ α2
2
3
δ̄ðd−4Þ=2

: ðE18Þ

Using again the DSE for the four-point function at zero
momenta we find

Γð13Þð0;0;0;0;ω4;ω1;ω2;ω3Þ

≡g1;cTabcd¼
�
g1−α2δ̄

ðd−4Þ=2 ðNþ4Þgs1;aþ4gt1;a
9

�
Tabcd;

ðE19Þ
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where we define g1;c, underlying the fact that we do not need
an extra parameter in that case. This gives, using Eq. (E18),

g1;c¼g1
ð9−4α2δ̄

ðd−4Þ=2½α2δ̄ðd−4Þ=2ðN0 þ2Þþ3Þ�
ð2α2þ3Þ½α2δ̄ðd−4Þ=2ðN0 þ2Þþ3� : ðE20Þ

For N ¼ 2, we recover the same result we got for g1;c in
Eq. (E9). We indeed see that the coupling g1;c turns negative
for sufficiently small damping for all N. By inspecting
Eq. (E12), we see that the sextic coupling u1;e is clearly
positive no matter the precise N factor of the loops, and we
therefore find the same first-order scenario.

APPENDIX F: SCALING AND THE BREAKDOWN
OF THE GRADIENT EXPANSION

We now elaborate in a bit more detail how the scaling
of various operators is inferred in the vicinity of the CEP
given that canonical power counting does not work due to
the breakdown of gradient expansions and the different
scaling of coherent period and lifetime of excitations,

ωCEPðqÞ ¼ −iKq2 � vjqj: ðF1Þ

The scaling is then fixed by finding an ansatz that renders
the dimensionfull RG β functions dimensionless. It is on
first sight possible to make a homogeneous scaling ansatz
for the effective action of the phase fluctuations by
choosing a dynamical critical exponent zs ¼ 1 and thus
being forced to have ½K� ¼ −1, i.e., (dangerously) irrel-
evant. This however yields Green functions that diverge for
all momenta at the Gaussian fixed point.
One therefore has to analyze the divergences of loop

contributions to infer the scaling dimensions of various
couplings. Because of the breakdown of the derivative
expansion it is not possible to infer the scaling of
momentum-dependent operators by taking momentum
derivatives of loops renormalizing, for instance, the self-
energy.
We demonstrate this explicitly for the case where one

allows a cubic interaction ∼λθ̃ð∂tθÞ2 breaking O(2) to
SO(2) as in Ref. [15] for comparison. Note that this
coupling is absent at a fixed point with (emergent) O(2)
symmetry. This is analogous to the Z2 symmetric end point
of the liquid-gas transition described by the Ising univer-
sality class. Regardless, the loop integral through which
such a coupling renormalizes the damping (i.e., the part of
the self-energy linear in frequencies) is exactly the loop
analyzed in the main text which renormalizes interactions,
cf. Fig. 10. The following result about the breakdown of
the gradient expansion thus also immediately applies to
the couplings discussed in the main text. At vanishing
momenta, it implies a scaling dimension 6 − d for this
cubic coupling, like for the ϕ3 coupling in the Ising case.
However, as discussed, the infrared divergence of the loop

is lowered at finite transfer momenta and there is no
convergent derivative expansion of this loop close to the
fixed point.
If one takes momentum derivatives of this loop, as one

would in a derivative expansion of the self-energy correc-
tions, one generates spurious singularities as the depend-
ence on dimensionless momenta becomes nonanalytic at
p̃ ¼ 0; see Appendix D 2. Now trying to enforce a scaling
form for such an expansion of the self-energy, as it usually
emerges in equilibrium critical phenomena, leads to oper-
ators with apparently larger and larger upper critical
dimensions. This is an artifact of the breakdown of the
derivative expansion due to the nonanalyticity of the CEP.
Explicitly, such an expansion to fourth order in dimen-

sionless momenta p̃ yields

∂ωΓð2Þ ¼ k2
�
Zp̃2 þ δ

k2
þ α01λ

2kd−6 þ α02λ
2kd−8p̃2

þ α03λ
2kd−10p̃4 þOðp̃4Þ

�
: ðF2Þ

Cutting this expansion at order p̃2 would imply that there is
an operator

ffiffiffiffiffi
α02

p
λ with dimension ½ ffiffiffiffiffi

α02
p

λ� ¼ ½ð8 − dÞ=2�
inferring an upper critical dimension dc ¼ 8 [15]. Going to
order p̃4 one would then however diagnose dc ¼ 10 from
the operator

ffiffiffiffiffi
α03

p
λ. Clearly arbitrarily large upper critical

dimensions are generated within such an expansion, dem-
onstrating again that a standard derivative expansion is
inapplicable in this case.
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