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Transportation and distribution networks are a class of spatial networks that have been of interest in
recent years. These networks are often characterized by the presence of complex structures such as central
loops paired with peripheral branches, which can appear both in natural and manmade systems, such as
subway and railway networks. In this study, we investigate the conditions for the emergence of these
nontrivial topological structures in the context of human transportation in cities. We propose a simple
model for spatial networks generation, where a network lattice acts as a planar substrate and edge speeds
define an effective temporal distance which we aim to optimize and quantifies the efficiency in exploring
the urban space. Complex network topologies can be recovered from the optimization of edges’ speeds and
we study how the interplay between a flow probability between two nodes in space and the associated travel
cost influences the resulting optimal network. In the perspective of urban transportation we simulate these
flows by means of human mobility models to obtain origin-destination matrices. We find that when using
simple lattices, the obtained optimal topologies transition from treelike structures to more regular networks,
depending on the spatial range of flows. Remarkably, we find that branches paired to large loops structures
appear as optimal structures when the network is optimized for an interplay between heterogeneous
mobility patterns of small range travels and longer-range ones typical of commuting. Moreover, when
congestion dynamics in traffic routing is considered, we study the emergence of additional edges from the
tree structure to mitigate temporal delays. Finally, we show that our framework is able to recover the
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statistical spatial properties of the Greater London area subway network.
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I. INTRODUCTION

Cities represent one of the most fascinating manmade
complex systems, exhibiting complex features ranging on
different scales: from their structure and dynamical behav-
ior, up to the scaling of socioeconomic factors with their
size [1-5]. These features represent a strong hint toward the
existence of universal underlying mechanics behind appa-
rently very different cities [6—8]. Out of these structural
properties, one of the most relevant, as it plays a funda-
mental role mediating the complex interplay between
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human dynamics [9,10] and mobility in urban context, is
transportation networks [11-15]. These networks are a
class of spatial networks whose properties have been
investigated in the literature during the past two decades
[14,16]. In particular, they have been studied under the lens
of optimality conditions and minimization of cost-based
functionals [16], in order to identify specific features
behind efficient networks. The concept of optimal networks
[2] and energylike minimization [17] has its natural under-
standing in the physics language. States of a system which
minimize a functional defining trade-off between system’s
observables (e.g., free energy) represent the most likely to
be observed states of many real world systems. While in
some complex systems, such as cities, these physical
variables cannot be derived from first principles, these
analogies and concepts can still offer a valid perspective
and provide an embedding of these systems in a space
where the interplay between their structure and dynamics
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can be unfolded and better understood. Simple laws have
been studied [16,18] to better understand the emergence of
hierarchy and the role of traffic in the network state.
Moreover, global and local optimization criteria lie in the
evolution of manmade systems where policymakers and
planners can adopt some of these criteria in their plans [14].

Transportation networks are often characterized by the
presence of complex structures [19-21] such as loops paired
with branches [22], which can appear both in natural [23] and
manmade systems [14], like railway and subway networks.
These structures represent the key topological elements
behind efficient public transportation systems [20]. In this
study we devise a theoretical framework in the domain of
network science, aimed to investigate optimal network
features with parsimonious modeling choices, rather than
directly inform urban planning. We first explore the tran-
sitions from tree networks to latticelike structures and
ultimately investigate the conditions for the emergence of
the aforementioned nontrivial structures [18,24] in the
context of human transportation in cities [25]. We aim to
reconstruct these topologies by means of an optimal con-
figuration [26,27] of the network state. Under the assumption
of a fixed total cost and a limited set of high-capacity
connections (e.g., a constraint in the expenditure available
on infrastructure), the optimal configuration is the assigna-
tion of connections’ speeds, or edges’ weights, such that the
joint amount of time required to travel between two nodes is
minimized for all pairs of nodes. Moreover, as these networks
represent the arteries in urban exploration and navigation via
public transportation, we study the role of flows between
node pairs [18,28] as a traffic that defines the importance of
specific network paths. We model the urban spatial features
which generate heterogeneous distributions of human mobil-
ity in space, biasing these optimal networks to converge
toward specific topological structures. In the context of spatial
network science, we aim to explore the minimum require-
ments and the conditions for these optimization processes to
reproduce the empirical structures aforementioned. Albeit
this theoretical abstraction allows us to embed mechanisms
such as human mobility [10] and congestion [29], more
complex elements such as mode choice, trip frequency, and
other fundamental aspects in urban planning [30] are not
considered. Thus, it provides insights from a network science
perspective applied to transportation in urban systems.

At variance with the recent works on network efficiency
and transportation topologies, we adopt some fundamentally
different modeling choices. We evaluate the efficiency in
terms of time necessary to explore the network, where edges’
weights w, actas travel speeds. We optimize these speedsina
continuous interval, instead of using a multilayer constraint
or specific topologies [27,31]. We also weight path travel
time by the traffic probability between nodes. In this work we
call the network G({w, }) “optimal” if the configuration of
speeds {w, } minimizes the flow-weighted temporal distance
[as defined in Eq. (2)]. Consequently, we regard the optimal
network G as “efficient” when it provides the fastest travel

time for the set of flows. We remark that definition of
optimality in applied transport planning may differ based on
the specific target [32].

The underlying network lattice (as represented in its
simplest form by the triangular lattice in the next sections)
acts as a planar substrate that allows the network to
evolve [31,33] and possibly exhibit the network topological
features typical to real world systems. On this framework,
we show how introducing simple probabilities biasing the
optimal efficiency between points in space forces a tran-
sition between a treelike topology and a network resem-
bling a simple lattice. Moreover, we also discuss in Sec. IV
the effect of introducing travelers’ behaviors in choosing
the route between origin and destination, following con-
cepts such as user equilibrium (UE) and congestion
dynamics [29,34-36]. We implement traffic routing under
these conditions in the optimization of the substrate’s
edges, highlighting a transition from the tree structure to
a multiple-pathways structure necessary to mitigate the
temporal delays introduced by congestion effects. We show
also that the modeling of flows resembling human mobility
patterns forces the emergence of preferential shared paths
in the planar substrate, whose complex topologies ulti-
mately show features observed in real systems. Features
such as a bimodality in the edges’ speeds distribution,
characteristic of multilayered transportation, and the central
core with loops paired with branches typical of subway
systems [20,22] are recovered. We finally show an appli-
cation of the model within the Greater London area (GLA),
finding similarities of the optimal model with its London
underground network.

II. FRAMEWORK FOR URBAN SPATIAL
STRUCTURE

We introduce here a general framework for spatial net-
works with the aim of recovering a simple model for urban
structures that encodes both transportation properties and
urban features such as population and density of points of
interest (POIs). To this aim, we begin from the definition of a
network substrate which acts as an effective discretization of
the spatial dimension. Its simplest form can be found in a
hexagonal two-dimensional tiling [37] and its planar dual,
the triangular lattice. More formally, in this network substrate
each tile in space is represented by a node, connected to its set
of neighboring nodes (see Fig. 1). The existence of a physical
edge between nodes and tiles i and j is encoded in the
adjacency matrix A where A;; =1 if the regions are
neighbors in the lattice. Distances and metrics are therefore
computed on top of this network substrate.

Nodes of this network can encode spatial features at the
urban scale, such as population or amenities’ density in a
given node. We therefore have a simple representation of an
urban spatial structure (see Fig. 1), and a network substrate
that can be optimized to generate planar transportation
networks which are optimized for flow efficiency based on
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FIG. 1. Spatial network model for urban structure. (a) Mapping
population distribution and urban transportation network to a
spatial network where nodes encode urban features. Example
with hexagonal tiling mapped to the triangular lattice. (b) Net-
work-based distance c,, versus Euclidean distance d;;; edges’
weights and speeds w, are depicted as widths. (c) Edges’” weights
of the lattice substrate are optimized via simulated annealing to
unravel spatial features of the optimal transportation network
which guarantees the highest flow efficiency evaluated as mini-
mum travel time.

the travel time [33]. The path-based temporal distance on top
of the transportation network acts as the fundamental metric
we aim to minimize. The rationale behind a network-based
distance is grounded on the assumption that in the context of
public transportation, urban systems are not navigated by
considering geographical distance but rather by evaluating
the travel time between departure and arrival. More specifi-
cally, multilayer transportation networks [11,21] are char-
acterized by layers having a hierarchical organization with
different characteristic speeds [38]. Thus, an effective tem-
poral distance becomes fundamental in determining acces-
sibility and efficiency in urban space exploration.

In this model, we denote e as an edge in the network and
w, as the associated edge’s weight which can be seen as the
connection’s speed in the transportation network. d, is
the Euclidean distance of edge e between the nodes it is
connecting; here, edge weights or speeds are visually

mapped as widths of the links. Information about edges’
distance in this framework can be relevant when general-
izing to the case of random spatial networks where edges
have different lengths. In the case of a general nonspatial
network, where there is no notion of spatial distances, the
model can be adapted by fixing d, = 1. Finally, we define
Qp,, as the set of paths connecting the two nodes. We then

maximize the efficiency of this underlying substrate. The
transportation efficiency between two nodes i — j is com-
puted as a cost in terms of time [39]. We first do not
consider the route assignment for each pair i — j dependent
on congestion dynamics [29] but rather on the “all-or-
nothing” paradigm, finding the shortest path. In Sec. IV we
also route traffic following user equilibrium [29,34] in the
optimization process and discuss the effect on simple
topologies. Therefore, we find the path (a set of connected
edges starting from source node i and ending in destination
node j) with the smallest cumulative time, independently
by the routing of other flows on the network. We consider
an edge e’s weight w, as a proxy of the edge’s travel speed.
Hence, given the edge’s length d,, we have that d,/w, is
the effective travel time on edge e. See Fig. 1 for a graphic
depiction. Here G({w, }) is used to indicate the network G
with configuration of edges’ travel speeds {w,}. We
therefore aim to find the assignment of speeds {w, } which
minimize the set of travel times {c;;} between pair of nodes
i — j, where each element Cij is defined as

eyt = min |3 %) (n

i eell;;

and in absence of further information, the optimization
procedure is the equivalent of minimizing the cumulative
travel times ) _;; ¢;;. Here we add anovel ingredient, in which
we couple the optimization of the network temporal distances
with a traffic flow or travel probability between pairs of
nodes. Operationally, when dealing with real world origin-
destination (OD) matrices, this probability can then be
mapped to a flow 7';; between two points. T';; may represent
the probability of a person fromnode i to travel tonode j, and
traffic resembling human mobility flows can be recovered
when information about populations in source and target
nodes is added. T';; effectively acts as arank in the importance
of a specific path in the network. As paths connecting
different pairs of nodes may share common edges of the
network substrate, complex topologies emerge from the
shared paths jointly optimizing the network efficiency.
The flow-weighted network effective travel time therefore
becomes

E(G({w.})) = ZZTU cij{we). (2)

i J#i

We also require that the total network infrastructure cost,
defined as the cumulative sum of edges’ weights per unit
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length multiplied by edge distance Cg = ), doWe,, is
conserved. Equation (2) can be seen as a generalization
of a standard optimization process, in the sense that
when T;; =1, V (i,j), the efficiency is optimized for
all possible trip pairs (i, j) with equal importance, where
treelike topologies often represent the optimal solution [14].
In Sec. IV we also discuss the case of routing traffic flows 7';;
following user equilibrium conditions and not just taking the
shortest path. This traffic assignment process allows us to
explore the effect of congestion dynamics in the generation of
optimal topologies on simple spatial networks.

Before tackling the problem of flows characterized by
human mobility patterns [10], we study a simpler definition
of T;;. This allows us to understand the role of distance d;;
in the optimization process, in the absence of other nodes’
features:

(3)

The coefficient f appearing in Eq. (3) is introduced as a
penalizing parameter and determines how relevant is the
pairwise distance d;; when computing probabilities. We can
understand it as the inverse of a characteristic traveling
distance for an agent on the network g~ (1/d,). While
several alternatives on the integration of distance in spatial-
dependent probabilities (such as power laws T';; ~ d,-_jy) can

Tij X e_/}dij.

be employed, we focus on the exponential dependence as it
represents the foundational result from the maximum
entropy derivation of gravity flows [40]. The introduction
of gravitylike flows will be discussed in Sec. V.

AVAN
/\ Spatial

L X e
Pi (HEX)

Source

(a)

network

In the following, we introduce the application of the
model on simple substrates to explore the role of f in
absence of spatial urban features.

III. OPTIMIZATION OF SIMPLE NETWORK
SUBSTRATES

In order to asses the role of the characteristic distance
parameter f in the emergence of specific topologies, we
compute networks statistics on a set of generative models
for both spatial and nonspatial networks. As hexagonal
tiling of space is preferable when an analysis includes
aspects of connectivity [37], the first model we study is a
triangular lattice. The reason behind this choice is that it
represents the planar dual [14,41] of the hexagonal lattice.
Therefore, as space is discretized in hexagonal tiles, the
spatial network connecting its centers is the triangular
lattice, which is isotropic and presents less equivalent
degenerate paths of a rectangular lattice. As a direct
reference to hexagonal tiling, we refer to this network as
HEX (see Fig. 2). We also extend the analysis to the case of
a random network model where nodes are not embedded in
a metric space. Specifically, we study an Erd6s-Rényi (ER)
network topology, where the definition of distance between
nodes L;; can be defined in terms of topological shortest
path distance [42].

As a first benchmark we simplify flows as a spatial
probability 7';; = p;; that decays exponentially with dis-
tance and does not consider nodes features. The resulting
equation for p;; is

Nonspatial
network

®
o0
Spatial probability 1 '.'o:ﬂ.:.. o:|:|:|. 10
py(L, p) of targets oo Psj o
from sample source s (X eeeeses 0.0
elels 5000006
p=0.1 p=5.0

(b)
Optimized network
states G({w,})

FIG. 2. Optimization of synthetic networks. The role of f is studied for two network models: the triangular lattice (HEX) and the

nonspatial (ER) network. (a) Heat map of target nodes probabilities

p;j from source node (yellow) under two different § values: As the

penalty parameter grows, farther nodes are more penalized and flows tend to stay close to the source. (b) Samples of the associated
optimized network states: When flows are not affected by distances (f = 0.1), source nodes target all the other nodes in the network with
approximately equal probability, the optimal network converges to a treelike structure. With larger f (# = 5.0), trip probabilities are
more localized and the presence of loops appears in the optimal structure.
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FIG. 3. Loop dimension versus . Minimum cycle basis is used
as a network’s observable to study the appearance of loops. For
each point the median and its absolute deviation are shown.
(a) The average size (number of edges) of the loops that constitute
the cycle basis. (b) Cycle basis dimension as number of loops.
The topology that minimizes the flow-weighted travel time
ranges from a tree structure to a latticelike with small loops,
as the probability of long-range movement decreases (large j).
A transition in the cycle basis property is observed at  ~ 1.0 for
the triangular lattice under study, where the optimal network
results in an intermediate state with large loops.

e~ Pdij/{d)

- SN Pl ()

4)

Pij

where (d) = [1/N(N — 1)] > _..; d;; is the average distance
of points in the network and acts as a normalization factor
(Euclidean distance (r) in case of a spatial network or
topological (L) for the ER network).

Therefore, p;; encodes how much of the nearby space is
explored by a single source node. An illustration of the
spatial dependence of target probabilities and samples of
the resulting optimal topologies are presented in Fig. 2.

For a range of f values the optimization process is
performed on an ensemble of these models. To assess the
emergence of complex structures we observe the number of
loops that emerge in the optimal state. This measure is
relevant in the context of spatial networks, where loops
break the symmetry introduced by optimal structures such
as trees. We compute the minimum cycle basis set as a
metric to observe the emergence of loops [43]: i.e., the
minimum set of loops (where a single loop is encoded in a
set of edges that defines a closed path in the graph)
such that any other closed path in the network can be
reconstructed via combination of this cycle basis [43].
Specifically, we investigate the cycle basis dimension (the
number of loops that constitute this set) and the average

loop size, against a range of f# values. This metric allows us
to quantify the emergence of spatial topological features
that differentiate the optimal state from a tree structure.
Results for these synthetic systems are presented in Fig. 3.
Additional box plots are shown in Supplemental Material
(SM) Figs. 1 and 2 [44]. A treelike topology is recovered
when the flow probabilities are distributed uniformly across
all nodes in space [when f — 0 and distance is therefore
not a penalizing variable in Eq. (4)], while loops emerge
when farther targets become less likely to be explored and
the network is globally optimized for close-range trips.
Notably, in Fig. 3 around f= 1.0, we observe a sharp
transition in the average loop size in the HEX lattice under
analysis: Connections appear between neighboring nodes
which are far from the tree root as it becomes more efficient
to have a direct link. In this § regime the tree topology
does not guarantee the most efficient configuration for
peripheral nodes, which have their high probability targets
in their direct neighborhood [see Eq. (4)]. Thus, in the
optimization process edges appear between leaves nodes
which are in separated branches: This ultimately breaks the
tree structure and leads to the emergence of large-scale loops.
Eventually the most efficient network converges to a simpler
structure with small loops as the network is optimized for
nodes to target only direct neighbors in the lattice. Finally, in
SM Sec. II [44] we show an application of the case of a single
target node in the perimeter of the lattice, where the model
reproduces leaves venation patterns [14,45].

IV. TRAFFIC CONGESTION IN THE
GENERATION OF OPTIMAL TOPOLOGIES

In this section we discuss the outcome of routing traffic
T;; following concepts of user equilibrium (and not
following the all-or-nothing paradigm [34] of taking the
shortest path in time) during the process of annealing and
generation of the optimal configuration of network speeds
{w.}. We provide more detailed analytical derivations in
Sec. III in SM [44]. At variance with the “free-flow” [29]
time #, optimized in Eq. (1) where edge travel time was
to = d,/w,, we here assume that traffic routing generates a
delay in each edge travel time via congestion dynamics.
This is often modeled [34] via the Bureau of Public Roads

function:
T\
te—to-[l—Fa(—e) } (5)
Ce

where T, is the total traffic flow on edge e, c, the edge
capacity, and a, A parameters governing the nonlinearity of
congestion. OD traffic is then assigned on the network
following user equilibrium conditions given the network
configuration G({w,}) [29,34]. We first consider the
capacity as constant ¢, = 1.0.

We start by considering the benchmark network of
treelike topologies obtained by optimizing flows in
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FIG. 4. Transition between topologies under congestion dynamics and analytical dependency. We study the transition from tree
structure to multipathways topologies as optimal networks when traffic routing is affected by congestion mechanics. (a) Simple case
where the largest-load edge in a tree structure is compared in efficiency versus an n-pathways alternative (n = 2 here). (b) This allows an
analytical derivation [Eq. (8)] of function F whose sign determines which of the configurations is more favorable under different
parameters. A more detailed discussion is also present in SM Sec. III [44]. (c) Plot of the emergence of additional pathways encoded in
n > 1 from the G versus the value of F. Plotting the curves for different parameters and triangular lattice sizes s (see SM Sec. I1I)
against aT* shows the collapse of curves in a common transition. We plot analytical curves (4 = 2) for different n and highlight the
threshold aT? = 1.0 after which (A = 2,n > 1) > 0, therefore predicting the emergence of new edges from the tree structure encoded
in Ngees- (d) Resulting topologies in the case of s = 3, 4 = 2. Specifically for aT? < 1.0,>1.0,>1.0. We can appreciate the regimes in
which the tree structure transitions to a complete lattice. This is a consequence of F(n,a, T,, 4) that for large nonlinearity parameter 4
and relevance of congestion a favors large n and therefore the decomposition of traffic in as many pathways as possible in the lattice.

and in SM Sec. III we describe the full derivation. The
inequality can be ultimately rewritten as

Eq. (4) with # = 0. As the strength of congestion increases,
we expect the tree structure to transition to a structure
where multiple pathways between node pairs i — j emerge

to sustain the congestion as optimal features. We analyti- T, " 1

cally study the condition for the highest-load (7',) edge in W_e {(1 —n)+aT; (1 - ﬁ)] <0, (7)
the tree to be a more favorable structure than an n-edges

alternative structure. This happens when the efficiency T, Fln,a,T, ) <0 (8)
(traffic-weighted travel time) of a single edge with speed w, w, T te ) =5

carrying the maximum traffic 7, (n = 1) is lower than the
efficiency of the decomposition of traffic on a set of n edges
(NV,) given the congestion state [Eq. (8)]. We can decom-
pose Eq. (2), after the traffic assignment procedure, as a
sum of edges’ efficiencies E=> ,E, =>_ ,T, 1, (see

where we have condensed the inequality in the function
F(n,a,T,,4) whose sign determines whether it is more
favorable (F < 0) for a single edge to carry the traffic load
under the set of parameters. Instead, when F > 0, the

SM Sec. III [44]). This allows us to detach the study of
efficiency on a single edge of relevance (such as the largest
traffic edge in a tree network). We therefore study the
inequality:

Bl a] s ¥ B[22 00l ©
eeN,

where we force the constraints on w, and 7, to be
conserved quantities. This case is depicted in Fig. 4(a),

inequality is not satisfied and the n-pathways structure is
more efficient (lower traffic-weighted temporal cost 7,) and
multiple pathways emerge to alleviate the temporal delays
introduced by congestion on the single edge. In Fig. 4(b)
the values of F identify different regimes at varying the
nonlinearity in the congestion term given by parameter A.
Interestingly, the tree structure represents the optimal
G({w.}) even with 1 =1, a scenario where congestion
mechanics is present, but linearly dependent on 7,. For
A = 2 we observe a transition in the optimality of n pathways
as congestion intensity a increases. Moreover, when A = 3,
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in the range of a presented in Fig. 4 the n pathways is
instead the optimal topological feature. In Fig. 4(c) we
better investigate the transition by generating the optimal
network states on HEX lattices. We compute the number
of additional edges from the tree structure Negges =
Nedges(G) = Negoes(G") as a function of the congestion
parameters versus the rescaled control parameter aT? for
different network sizes (s) and 4, comparing with the change
in sign of the functional . We remark that albeit Eq. (8)
represents a simple approximation scenario, this functional
can approximate the transition for different network sizes and
of congestion parameters varying different orders of magni-
tudes. We observe the transition from treelike structure to a
complete lattice, also visible in the topologies [Fig. 4(d)].
Moreover, in SM Sec. III we show how the joint optimization
of edge speed w, and capacity (by modeling ¢, = w,) leads
to the tree being a stable structure in any congestion scenario
(F < 0) [44].

V. SPATIAL ATTRACTIVENESS AND FLOWS
MODELING HUMAN MOBILITY PATTERNS

In the context of urban systems, optimal transporta-
tion networks need to be devised to accommodate traffic
flows [28] toward specific areas of interest, e.g., due to high
commercial and business land use density. Hence we
extend the efficiency optimization framework in the case
where we have T;; flows that mimic human mobility
patterns on top of the urban networks, as the presence
of nodes with high attractiveness (POIs) biases the flows

toward them. In urban scenarios we adopt spatial-
interaction models to generate these flows. In these models,
flows are obtained via a gravitylike equation, T;; o
pip;exp (—pd;;) [10], which can be derived from first
principles via entropy maximization, thus representing the
most likely set of flows to be observed given the con-
straints. While several models [10] can be in principle
employed to model local mobility decisions [46] or
hierarchical mobility properties [47], recent works have
shown the validity of gravitylike models [48]. Moreover, in
the context of urban exploration, the gravity equation
can be mapped to a model for spatial interaction [40,49]
where nodes with a given attractiveness W; compete as
possible targets:

1

Normalization Z accounts for all possible trip alterna-
tives Y, Wyexp (—fd;). P; is the population density in
node i and W; encodes a suitable definition of benefit or
attractiveness of node j as a possible target [49]. T;; is
therefore the fraction of population in node i commuting
or traveling on average to node j. To better understand the
role of nodes’ attractiveness, we start with the simplest
assumption of equal population distribution on all nodes:
P; =1.0 V i; we will introduce more realistic population
distribution in the next section with the London case study.
We highlight that the purpose behind adopting these
mobility models is to capture the typical features observed

Optimal networks and edges weights distribution P(w,)

FIG. 5.
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Steiner tree
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node x

(b) Exponential
spatial
distribution ﬁ =30

Simple models of urban structure and attractiveness distributions under study (three-points and exponential decay). Spatial

distribution of POIs, where attractiveness W; is mapped with color intensity (yellow being higher). Optimized edges’ weights
distributions P({w,}) are characterized by the bimodal nature that reveals the multilayered structure of the optimal transportation
networks when close-range flows are paired with long-range traffic typical of commuting toward city centers [insets: P(7;) with peaks
on large flows due to POIs]. Gaussian Kernel density estimate (G-KDE) is shown in orange as a visual aid. (a) Three-points polycentric
distribution of POIs, resembling the Euclidean Steiner tree problem [51,52] for three points. The network is optimized with § = 0.1 and
p = 4.0, and shows the appearance of branches connecting the POIs paired to large loops in the periphery. (b) Optimal state and
distribution of speeds with exponential decay of W; from the center and an exemplifying result with # = 3.0. The optimal topology that
minimizes the flow-weighted travel time is characterized by a central loop paired with branches.
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in human mobility flows (such as the dependence on
distance and the existence of attractive sinks [50]) rather
than fit observed data.

We apply these models on the triangular lattice to unravel
the optimal topologies that emerge when T';; probabilities
are biased toward some nodes having high attractiveness
(simulating POIs), and we study two spatial configurations
for nodes’ W;. In the first configuration high W/ is assigned
to three nodes (POIs) placed at the vertices of an equilateral
triangle. We study the three-points distribution as it mimics
a prototypical polycentric distribution of city centers, and it
can be linked to the solution of the Euclidean Steiner tree
problem [51,52]. The Steiner tree is a class of problems
where given a set of N points in a plane the goal is to find
the set of lines connecting the points with minimum
cumulative length. In our case, the solution would lie in
the central node of the lattice being the Fermat point [52]
and the Steiner node, which connects the three vertices of
the high W; triangle, as illustrated in Fig. 5(a). The second
case is a distribution of W that decays exponentially from
the center, mimicking a more realistic spatial distribution
for a urban monocentric structure. The two spatial struc-
tures are depicted in Fig. 5.

We find that due to nodes in the network biasing the
flows T;, as it can be seen in the insets of Fig. 5(a), the
traffic flows get divided into two types: a close-range paired
to a long-range set of flows, due to POI polarization. We
show in Fig. 5 optimal solutions for values of § = 0.1, 4.0.
Interestingly, optimal solutions are characterized by three
central lines branching from the center (which therefore
acts as Steiner node) and connecting the three nodes with
high attractiveness, therefore resembling the solution of
the Steiner tree problem. Moreover, in the case of more

Census data

(a)

Greater
London area
+
Metro network

POI Distribution
(©osM)

localized flows (f = 4.0) these lines are also paired with
large-scale loops connecting farther nodes. We also find
that the heterogeneity of T';; flows forces the appearance of
a second mode in the distribution of speeds w, (see Fig. 5).
The two peaks in the optimal P(w,) can be interpreted as
two different levels of speed, which suggests that the entire
process can be decomposed in two distinct mechanisms
which can be mapped as a bilayer network: one layer at
high speeds with long-range or commuting trajectories and
the other one at lower w, with short-range paths. This also
suggests a possible extension of the model to multilayer
networks.

VI. GREATER LONDON AREA: GENERATIVE
MODEL FOR THE SUBWAY SYSTEM

We extend in this section the application of the model by
integrating data from a real urban structure. Specifically,
we model the urban structure of Greater London area on top
of our framework and apply the efficiency optimization
process with the aim of understanding if the temporal
efficiency optimization of the spatial substrate paired with
gravitylike flows is sufficient to yield a transportation
network with similar topological features (such as a central
core paired with peripheral branches [22]) as the London
subway system. To extend the model to real urban scena-
rios, we first obtain the distribution of amenities [53] from
OpenStreetMap [54] and we use this density of points in
space as a proxy to estimate the attractiveness W; of a tile.
Census data for Greater London area yards from 2014 is
used to recover population density P;. These densities are
then mapped to Uber’s H3 tiling to recover the spatial
discretization in hexagonal tiles, such that we can have

Efficiency optimized
Network state on GLA
Structure

Network optimization (C)
under realistic fluxes

(b)

OD fluxes

FIG. 6. Optimal network model on the Greater London area structure. Application of the efficiency optimization with flows resembling
human mobility on the urban structure of the Greater London area. (a) Urban structure data are recovered from census and OpenStreetMap
(OSM), and population and POI densities are mapped to the H3 tiling [55]. (b) Data is mapped to the triangular lattice, with nodes having
features which allow the calculation of gravitylike flows [10,40]; a sample OD matrix is shown where T;; are computed with
p = 0.35. (c) Optimal network state for the London model, where only edges and nodes corresponding to the second mode are shown (see
SM Sec. III [44]). The network is characterized by a central core structure with loops paired with peripheral branches.
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10* P
——- Power law r? R

GLA Tube e
—e— Model g

Power law r¥ ,

FIG. 7. Scaling properties of GLA Tube stations. Profile of the
number of stations (nodes in the optimal discretized network, see
SM Sec. IV [44], reproducing GLA underground) versus the
distance from the barycenter. The scaling of N(r) profile of the
model is compared with the real network system. Scaling
properties predicted in Ref. [22] are verified, finding the two
different scaling regimes separated at (r/r¢) ~ 1 for core paired
with branches systems, where r is the core radius (characterized
by r? scaling), and N is the number of stations in the core. The
scaling exponent y = 0.947 £ 0.002 is obtained as a linear fit of
the integral curve [22] for r > r¢ (see SM Sec. V for more
details).

direct mapping to the nodes on a triangular lattice, as in the
examples discussed in previous sections. We thus have the
ingredients to finally simulate the spatial interaction flows
T;; in Eq. (9). In Fig. 6 the integration of urban data
describing London’s urban structure in the model is
explained and we provide a depiction of the OD matrix
that arises from the spatial interaction model. With the aim
of reproducing real features, we impose an upper limit on
w,, so that the distribution of weights or speeds is bounded
during the optimization process: w, € (0, w*). This better
simulates the upper bound in speed of real multilayer
systems. Further explanation of data recovery and integra-
tion in the model is provided in SM Sec. IV [44]. We find
(see SM Fig. 13) that {w, } distribution displays a bimodal
shape, and this allows the analysis of the generated network
in a subgraph defined by the set of high speed edges. In
Fig. 6(c), we show a sample result for f = 0.35 of this
subgraph. The characterization of the network into a central
core paired with peripheral branches as the optimal state
can be visually observed.

The model’s subgraph of high speed edges is compared
to the real tube network in the Greater London area [21] to
assess the similarities between the optimal structure and the
real subway system. We quantify this similarity by means
of spatial scaling laws [22]; these are convenient to high-
light the recovery of the central core structure characterized
by loops, paired with quasimonodimensional lines branch-
ing from the core. We investigate the distribution of nodes

stations using the profile function N(r) that quantifies
the total number of stations at a distance r from the
network barycenter, computed as the average location of
all station nodes [22]. Results of this scaling analysis for the
real and simulated networks are presented in Fig. 7. The
two scaling regimes indicate the separation of core and
branches: the scaling of 72 in the core center and a second
trend due to monodimensional branches for » > r-, where
rc is the radius of the core structure. The second trend
can be computed analytically via an integral curve for
N(r > r¢) which can be approximated by a power law r”
(y = 0.947 4+ 0.002; see SM Sec. V [44]), as in Ref. [22].
The curve of N(r) is consistent with the real network and
confirms scaling laws prediction from Ref. [22].

VII. DISCUSSION

Starting from simple conditions on temporal efficiency
on a spatial network substrate, we show that network
optimization paired with flows weighting the importance of
specific connections in space can reproduce complex
networks features from manmade transportation networks.
Specifically, we devise a framework for spatial networks
where nodes can encode features of urban systems and can
ultimately lead to the study of optimal topologies in real
scenarios. A key novelty lies in the optimization process
happening on a spatial substrate, such that edges’ speeds of
the resulting optimal network are optimized to improve the
efficiency of the shared space by all nodes in the network.
We show how distance-based probabilities of moving from
one point to another in space force a transition between a
treelike and a latticelike topology in the optimal network.
Functional dependencies other than exponential decays,
such as a power-law decay, may represent future modeling
pursuits.

We then investigate the effect of traffic routing during the
optimization process following user equilibrium principles,
to capture realistic travel behaviors and congestion effects.
We introduce this modeling element to analyze how it
affects the optimal network structures emerging in simple
triangular lattices, providing an analytical derivation of the
transition from tree structures to n multiple pathways
alternative.

Fixing certain target points in space with a higher
attractiveness for flows can reproduce theoretical results
such as the Steiner tree solution or leaves venation patterns.
We also show that extending these probabilities using urban
spatial information and flows with patterns typical of
mobility in cities forces the emergence of shared prefer-
ential paths that are organized as complex topologies,
resulting from flow-weighted optimization of network
time efficiency, which ultimately exhibits the character-
istics seen in real systems. We recover features such as a
bimodality in the speed distribution of the edges of the
network, characteristic of multilayer transportation. Or we
observe the appearance of a central core with loops coupled

021050-9



SEBASTIANO BONTORIN et al.

PHYS. REV. X 14, 021050 (2024)

to branches typical of underground systems, as in the case
of the London underground system. We find that branches
paired to large loops structures appear as optimal structures
when the network is optimized for an interplay of traffic
flows mixed between small range travels and longer-range
ones typical of commuting. Finally, extension of this
modeling to other cities represents possible future research.
We emphasize that this framework is not primarily intended
for a direct urban planning application, but rather represents
a network science investigation of optimal transportation
networks, encompassing typical urban features. However,
this novel framework for the optimization of spatial net-
works in urban contexts may show further extensions to
better accommodate concepts of multilayer network and
other aspects in urban planning research. Moreover, it has
the potential to be adjusted to provide guidance on the
optimal expansion of an existing transit network. It could
be extended also to the case of intercities transportation,
where specific nodes in the network substrate represent
cities. To conclude, in this work the problem is addressed in
a theoretical way with the aim of reproducing and under-
standing some features observed in real spatial networks,
but future works can exploit this framework as a basis to
understand how to generate optimal transportation net-
works in an urban planning scenario.

The data used in this work are publicly available from the
original references. The code to perform the analysis is
available upon request. OpenStreetMap data is available
under Open Database License.
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