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A topological “Thouless” pump represents the quantized motion of particles in response to a slow,
cyclic modulation of external control parameters. The Thouless pump, like the quantum Hall effect, is of
fundamental interest in physics, because it links physically measurable quantities, such as particle currents,
to geometric properties of the experimental system, which can be robust against perturbations and, thus,
technologically useful. So far, experiments probing the interplay between topology and interparticle
interactions have remained relatively scarce. Here, we observe a Thouless-type charge pump in which the
particle current and its directionality inherently rely on the presence of strong interactions. Experimentally,
we utilize a two-component Fermi gas in a dynamical superlattice which does not exhibit a sliding motion
and remains trivial in the single-particle regime. However, when tuning interparticle interactions from zero
to positive values, the system undergoes a transition from being stationary to drifting in one direction,
consistent with quantized pumping in the first cycle. Remarkably, the topology of the interacting pump
trajectory cannot be adiabatically connected to a noninteracting limit, highlighted by the fact that only one
atom is transferred per cycle. Our experiments suggest that Thouless charge pumps are promising platforms
to gain insights into interaction-driven topological transitions and topological quantum matter.
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I. INTRODUCTION

An adiabatic change of an energy landscape represents
one of the simplest strategies to induce controlled particle
motion. For example, a sliding potential minimum can carry
a trapped particle from one point to another, in both classical
and quantum mechanics. However, the wave nature of
quantum-mechanical states allows for additional physical
effects arising from a geometric phase change when the
Hamiltonian is time dependent [1]. A geometric or “Berry”
phase is not usually evident from the underlying potential
but requires knowledge of eigenstates and their geometric
structure. Thouless showed that in a periodic system the
geometric phase contributions after one adiabatic cycle sum
to integers which correspond to the singularities enclosed by
the pump trajectory [2]. Physically, these integers describe

the quantization of transported charge. This phenomenon,
known as Thouless charge pumping, is topologically pro-
tected against perturbations that are small compared to
the energy gap between ground and excited states [1,3,4].
Therefore, topological charge pumps may also become
technologically relevant as sources of quantized current [5].
An alternative (but equivalent) description of Thouless
pumping regards the time-periodic variation as a Floquet
drive [6] which gives rise to a synthetic dimension of photon
states. In this two-dimensional picture, the topological pump
represents a quantized bulk Hall drift.
While many aspects of topological band structures were

realized with optical lattices with engineered gauge poten-
tials [7–9], accessing the interacting regime still poses a
significant challenge. The reason is the unavoidable heating
in a driven many-body system [10,11] and the problem of
loading the bulk. Therefore, only a few experiments have
explored interacting topological quantum states in optical
lattices [12–14]. Experiments with Thouless pumps cir-
cumvent these experimental issues and, as we demonstrate
here, enable the study of interaction effects on the topology
of many-body systems. Theoretical papers have suggested
a variety of interaction-related effects in pumping [15–35].
So far, interactions did not play a major role in pumping
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experiments [36–46]. Recently, the effects of interactions
on pumping have been explored in two experimental
platforms, that is, in the mean-field regime [47,48] and
in a Fermi-Hubbard system [14]. In both cases, interactions
which exceeded the protecting energy gap caused a
suppression of the quantized pumping motion. However,
the question of whether interactions can cause or even
stabilize topological behavior has largely remained unan-
swered on the experimental level [49–60].
Here, we report on the experimental observation of

interaction-induced charge pumping using interacting fer-
mionic atoms in a dynamically modulated optical lattice.
The optical lattice realizes a Hubbard model with modu-
lated hopping matrix elements and on-site potentials. For
Hubbard interactions larger than a nonzero critical value,
the atoms exhibit a pumping motion, while they remain
stationary in the noninteracting limit. Our measurements
are consistent with a quantized displacement of the atomic
cloud in the first pump cycle, in quantitative agreement
with time-dependent matrix-product-state (MPS) simula-
tions [61,62]. Interestingly, the transferred charge per pump
cycle is half of its usual value in a noninteracting system,
as predicted in Ref. [52], and the pumping mechanism does
not have a classical counterpart. At very large interactions
and beyond a second critical interaction strength, the
pumped charge vanishes again. Crucially, the region with
pumping of one charge per cycle cannot be adiabatically
connected to the noninteracting limit. Our work establishes
an example of topological phase transitions controlled by
the interaction strength. Previously, topological transitions
were observed by tuning external parameters in noninter-
acting models, such as those which break inversion
symmetry in the Haldane model [7,9,63].
The pump involves the physics of the ionic Hubbard

model [64–69], which gives rise to the observed transitions.
Because of the inherent SU(2) symmetry in the spin sector,
this model possesses a Mott-insulating region with gapless
spin excitations. Since the pump realized in our experiment
traverses through this region, strictly speaking, there cannot
be adiabatic pumping and quantized pumping must even-
tually break down [26]. Notably, though, the experimental
data, as well as our numerical simulations for realistic
conditions, show that the transferred charge in the first
pump cycle remains robust and quantized. Moreover, an
analysis of correlations illustrates that initial spin excita-
tions are converted into defects in the charge sector with a
time delay and, therefore, do not affect the pumped charge
immediately, thus explaining the experimental observation.
Therefore, a Thouless pump in a two-component Rice-
Mele model with Hubbard interactions allows one to
systematically study the coupling between the spin and
charge sectors on experimentally and numerically acces-
sible timescales. Alternative approaches for interaction-
induced pumping, including Ref. [50], involve only
two particles and pumping of pairs, different from the

many-body situation considered here, where only one
particle is pumped per cycle.
Our work goes substantially beyond the existing experi-

ments on topology with interacting atoms in optical lattices
[12–14]. Most importantly, the interaction-induced pump-
ing is not adiabatically connected to the limit of vanishing
Hubbard interactions, thus studying physics beyond pre-
vious Thouless pump experiments [14].

II. INTERACTION-INDUCED CHARGE PUMP

The specific Hamiltonian studied in this work is the
Rice-Mele-Hubbard model

ĤðτÞ ¼ −
X
j;σ

½tþ ð−1ÞjδðτÞ��ĉ†jσ ĉjþ1σ þ H:c:
�

þ ΔðτÞ
X
j;σ

ð−1Þjĉ†jσ ĉjσ þ U
X
j

n̂j↑n̂j↓; ð1Þ

which is parametrized by the bond dimerization δðτÞ and the
sublattice site offset ΔðτÞ, which both depend on time τ
[Fig. 1(a)]. The fermionic annihilation and number oper-
ators for spin σ ∈ f↑;↓g on lattice site j are denoted by ĉjσ
and n̂jσ, respectively. Let us first consider the noninteracting
limit (U ¼ 0) in which the whole parameter space is
spanned by δ and Δ [Fig. 1(b)]. The relevant topological
invariant for charge pumping is the (charge-)Berry phase of
the lowest band which becomes singular at the origin of the
δ-Δ plane. At half filling, that is, two fermions per unit cell, a
trajectory enclosing the singularity pumps a total ofΔQ ¼ 2
charges to the neighboring unit cell per pump cycle (one
spin-↑ and one spin-↓). For trajectories that do not enclose
the singularity [Fig. 1(c)], the pumped charge is zero.
The Rice-Mele model at finite Hubbard U gives rise

to a rich many-body phase diagram at half filling
[26,52,64–67,70,71]. The phases are governed by the
competition and interplay of the parameters U, δ, and Δ.
In short, the Su-Schrieffer-Heeger lattice with Δ ¼ 0 leads
to a dimerized Mott insulator for U ≫ t [70], whereas the
ionic Hubbard model (δ ¼ 0) exhibits band insulating
(Δ≳ U=2 for U ≫ t) and Mott insulating (Δ≲ U=2)
phases, with a small dimerized intermediate phase around
Δ ∼U=2 [27,65,66]. Recent numerical calculations predict
a splitting of the noninteracting singularity at the origin
½ðδ;ΔÞ ¼ ð0; 0Þ� into two, for increasing values of Hubbard
U [52] (see also Refs. [72,73]). The new singularities each
exhibit a 2π winding of the (charge-)Berry phase and
should, thus, be amenable to topological charge pumping in
the interacting regime.
The key idea behind the interaction-induced pump

considered here is the following: We choose a pump
trajectory centered at a finite site offset Δ > 0, which does
not enclose the singularity for U ¼ 0. This trajectory is
topologically trivial in the noninteracting limit and transfers
ΔQ ¼ 0 charges per pump cycle as sketched in Fig. 1(c).
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Now, we successively tune the value of Hubbard U until
one of the two singularities (red dots in Fig. 1) moves
along the Δ axis into the pump trajectory, which, in turn,
becomes topologically nontrivial. Interestingly, the pumped
charge in this case is expected to be ΔQ ¼ 1, compared to
the usual ΔQ ¼ 2 in the “traditional” trajectory centered at
the origin.
We develop an intuition for the interaction-induced

pump by adiabatically following the ground states in the
interacting Rice-Mele model. Let us start on the left of the
ðδ;ΔÞ plane [Fig. 1(f)], which is characterized by pre-
dominant singlet correlations along the strong bonds.
Following a hypothetical singlet pair [marked as (i) and
highlighted in orange] out of the full many-body ground
state, the two atoms are converted into a double occupancy
for large sublattice offsets [(ii), Δ > U=2]. Subsequently,
the double occupancy is converted back to a singlet (δ > 0),
albeit shifted by half a unit cell (iii). In the last section of the

pump trajectory, the pair of atoms remains in place, leading
to an overall shift of half a unit cell per pump cycle
(pumped charge ΔQ ¼ 1 per unit cell) while the local spin
and charge correlations adiabatically adjust, ensuring return
to the initial state [(iv) and (v)]. In comparison, a non-
interacting atom would only oscillate to and fro during this
process [(i)–(v)], leading to zero net current. Note that the
sketch describes an idealized adiabatic situation in which
the system remains in its instantaneous ground state at all
times. Specific aspects of the experiment and of the
concrete model can affect the adiabaticity, which we
address in Sec. V below.
Crucially, the lattice potential [schematics in Fig. 1(f)]

does not exhibit a sliding motion, which is used in the usual
Rice-Mele pump [18,38,39]. Instead, a “long” and a “short”
lattice are slowly oscillating with respect to one another.
Consequently, this interaction-induced pump does not have
a classical, noninteracting counterpart.

III. EXPERIMENTAL REALIZATION

We use fermionic 40K atoms in a dynamically controlled
optical lattice to realize the Hamiltonian in Eq. (1). Here,
atoms take the roles of pumped charges. The value of
average tunneling is t=h ¼ 368ð25Þ Hz, where h is
Planck’s constant; the Hubbard U is widely tunable via
a magnetic Feshbach resonance. The lattice laser setup,
derived from a single laser source at λ ¼ 1064 nm, is
described in detail in Appendix A. In short, a combination
of standing waves in the x, y, and z directions and a running
wave component along the pumping (x) direction super-
impose to form effectively one-dimensional tubes of super-
lattices (size of one unit cell≡ d ¼ λ). The relative phase φ
between interfering beams along x and z, as well as the
lattice depth VXint of the interfering x lattice, give inde-
pendent control over δ and Δ (see Appendix A). Prior to
pumping, we maximize the proportion of doubly occupied
unit cells, as described in Appendix A, and calibrate this
value to be 0.574(5), independent of the value of Hubbard
U, where the number in brackets denotes the standard
deviation. Subsequently, pumping is initiated by sinus-
oidally oscillating φ and VXint out of phase with respect to
one another, causing the long lattice (lattice spacing ¼ d)
to periodically move back and forth over the short lattice
(lattice spacing ¼ d=2). The trajectory starts at Δ ¼ 0 and
δ < 0, then crosses the vertical axis at the maximalΔ above
the singularity, passes below the singularity, and finally
returns to its initial position, as shown in Fig. 2(a). In order
to invert the pumping direction, denoted by negative time τ
in Fig. 2, we start on the opposite side of the vertical axis at
δ > 0 and again move upward to larger values of Δ. The
“boomerang” shape of the experimental pump trajectory is
a consequence of having only two modulation parameters
(similar to Ref. [39]). In addition to varying δ and Δ, the
change in lattice potential leads to a variation in average

FIG. 1. Topological pumping induced by Hubbard interactions
in a lattice without sliding motion. (a) Dynamically modulated
Rice-Mele-Hubbard model. The bond dimerization (δ) and the
site offset (Δ) are periodically modulated. (b) Pump trajectory
centered at Δ ¼ 0, leading to a pumped charge of ΔQ ¼ 2 for
spinful fermions at U ¼ 0. (c)–(e) Pump trajectories centered at
Δ > 0. (c) For vanishing interactions (U ¼ 0), the pumped
charge is zero. (d) A finite Hubbard U causes the splitting of
singularities to Δ≷0, which leads to interaction-induced topo-
logical pumping with ΔQ ¼ 1. (e) Once the Hubbard U is too
large, the pump is rendered topologically trivial. (f) Schematic
illustration of the interaction-induced pump on the microscopic
level. The red dot indicates the position of a single singularity at
finite Hubbard U.
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tunneling t by as much as 60%, but this variation does not
affect any conclusions, based on our observations.
In a first experiment, we measure the in situ center-of-

mass (c.m.) position of the atomic cloud in units of unit
cells (d) as a function of time τ. In order to quantify the
transferred charge per cycle for doubly occupied unit cells,
the center-of-mass displacement is divided by the inde-
pendently calibrated filling fraction 0.574(5) described
above. The pump period is fixed to T ¼ 23ℏ=t ¼ 10 ms,
chosen to be much longer than the maximal inverse single-
particle band gap 1=ð1.4 kHzÞ ¼ 0.7 ms. In the noninter-
acting limit, we find no significant displacement, and a
linear fit yields a slope of 0.08ð8Þd=T. This reflects the
topologically trivial nature of the pump trajectory for
U ¼ 0 [Fig. 2(b)]. The situation changes when performing
the same experiment at a Hubbard interaction of U=t ¼
9.2ð7Þ [Fig. 2(c)]. Here, we measure a slope of 0.50ð8Þd=T,
consistent with the expected value of ΔQ ¼ 1 pumped
charge per cycle and unit cell in a quantized, interaction-
induced Thouless pump. Compared to a usual “Rice-
Mele” pump with ΔQ ¼ 2 and a measured slope of 1d=T,
as observed in previous experiments [14,38,39] and
plotted as a dashed line, the interaction-induced pump
transfers only half the amount of charge. A third experi-
ment, this time at U=t ¼ 16.3ð1.1Þ, yields no significant
displacement [slope ¼ −0.05ð8Þd=T], since the singular-
ity has moved out of the pump trajectory [Fig. 2(d)].
These findings constitute the main qualitative result of
our experiments.

IV. STABILITY OF THE PUMP

A key aspect of our work is the ability to tune
interactions and other external parameters in a controlled
fashion. In a second set of experiments, we map out the
parameter regions in which interaction-induced pumping
occurs. Here, we vary the Hubbard U from 0 to 18t, fit

lines to the data such as Fig. 2, and plot the resulting
slopes in Fig. 3. From these data, we can identify three
distinct regimes. First, we find vanishing displacements
for interaction strengths up to U=t≲ 5 which matches the
topologically trivial “pump” with zero transferred charge.
Second, we observe displacements of roughly 0.5d=T for
intermediate interactions (6≲U=t≲ 11). The six data
points on the plateau average to 0.49ð3Þd=T (mean and
standard deviation), reflecting a large range of Hubbard U
for which interaction-induced pumping occurs, consistent
with the quantized value of ΔQ ≃ 1. Third, a reentrant
phase appears for U=t ≳ 14 when the interactions domi-
nate and the singularity exits the pump trajectory for
strong interactions. This interaction-induced transition
to a topologically trivial situation with ΔQ ¼ 0 (or even
into a nonadiabatic regime) also occurs for other
types of pumps [14], as well as interacting topological
insulators [55,74,75]. The observed transitions at
U=t ≃ 6 and U=t ≃ 13 roughly coincide with the extremal
Δ values within the pump trajectory, 2Δmin=t ¼ 5.6 and
2Δmax=t ¼ 12.8. The scatter in the experimental data is
due to drifts and shot-to-shot fluctuations of the atomic
cloud, as well as our finite imaging resolution. We
measure submicron movements on an atomic cloud using
an imaging system with a resolution of only 5 μm, while
the total cloud diameter is roughly 40 μm.
We compare the experimental data with numerical

simulations of a single, one-dimensional tube with 24
particles using MPS in Fig. 3. These theory calculations
are performed with the experimental parameters of the
time-dependent Hamiltonian [Eq. (1)] including the trap-
ping potential. The starting state is approximated by
disjoint singlet states on each dimer with no long-range
correlations, in order to take our loading protocol and finite
temperature into account (see Appendix B for details).
The results of the U scan are plotted as a line in Fig. 3 and
generally agree with experiment, in particular, regarding

FIG. 2. Experimental observation of interaction-induced charge pumping. (a) shows a schematic representation of the experimental
pump trajectory (see Appendix A for details). The singularities are shown as red dots marked (b), (c), and (d), respectively, for increasing
values of Hubbard U, corresponding to the following subplots. (b)–(d) The scaled center-of-mass (c.m.) position is plotted as a function
of time τ for three different values of HubbardU (b)U ¼ 0, (c)U=t ¼ 9.2ð7Þ, and (d)U=t ¼ 16.3ð1.1Þ. The dashed line in (c) represents
a pumped charge of ΔQ ¼ 2, typical for the usual Rice-Mele pump [14,38,39]. Data points and error bars correspond to the mean and
standard error of 40 measurements, respectively.
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the width of the plateau of interaction-induced pumping as
a function of U=t. The measured full width at half
maximum of the plateau is 7.0ð5ÞU=t in the experiment,
in agreement with the theoretical value 7.2ð4ÞU=t (values
in brackets denote systematic uncertainties). While the
theory curve is slightly shifted to smaller values of U=t,
compared with the experimental data, this is not unex-
pected, as the theory takes into account only a single tube
and the experiment averages over a whole array of tubes
with different fillings. Smoothening of the topological
transitions is present in both theory and experiment, which
is a result of nonadiabatic effects. The presence of an
extended region with displacements of close to 0.5d=T in
both theory and experiment suggests that finite-entropy
effects are not crucially relevant within the first pump cycle
(see also Sec. V). As discussed in Appendix B 2 and in
Ref. [76], harmonic trapping affects the pumped charge
only at much later times.
An important control parameter for adiabatic pumping

is the duration of one pump cycle T, which is investigated
experimentally in the following. Keeping the interaction
strength [U=t ¼ 9.2ð7Þ] and all other experimental
parameters fixed, we vary the pump period T over 2
orders of magnitude from four to 120 tunneling

times (ℏ=t). The results are plotted in Fig. 4, and the
data suggest that for slow-enough pump periods the
measured slope converges toward the quantized value
of 0.5d=T (dashed line) and becomes largely independent
of T. The seven data points above T ¼ 20ℏ=t average to
0.48ð5Þd=T (mean and standard deviation). This obser-
vation supports the conclusion that robust interaction-
induced pumping occurs for a large range of parameters.
For fast pump periods below 20 tunneling times, the
interaction-induced displacement clearly breaks down
due to nonadiabatic effects.

V. DYNAMICS OF SPIN AND CHARGE
CORRELATIONS DURING PUMPING

So far, both the experimental data and the MPS
simulations demonstrate quantized pumping in the first
pump cycle for a range of finite interaction strengths,
neighbored by regions of no pumping at small and large
values of U=t, respectively. Since there are spin-gapless
excitations in the region of a nonzero pumped charge, in
principle, adiabaticity is not guaranteed. Therefore, ulti-
mately, excitations will be generated that will heat up the
system, preventing quantized pumping. We now utilize
numerical simulations to explain, on the one hand, why
the pumping is initially still robust, consistent with the
experimental data and, on the other hand, to develop a
microscopic picture of the nonadiabaticity in the pumping
process.
Useful quantities both to capture the nature of excitations

and to access heating effects are the charge and spin
correlations [defined by Eqs. (B5) and (B6)]. Deviations

FIG. 3. Scan of interaction-induced charge pumping as a
function of Hubbard U. Intermediate interactions lead to an
extended region of interaction-induced pumping with slopes
around 0.5d=T. The Thouless pump is rendered trivial for very
strong and very weak interactions, in agreement with theory.
Data points denote fitted slopes to time traces such as those
shown in Figs. 2(b)–2(d). Vertical error bars correspond to the
standard error of the fitted slopes, whereas horizontal error bars
describe the statistical experimental uncertainty in U=t. The
“gap” in the data points around U=t ≃ 6 is due to the use of
different hyperfine mixtures of 40K (Appendix A). The solid
line is a MPS calculation taking into account the experimental
trajectory, as well as the trapping potential. The shaded area
around the MPS calculation accounts for the 7% relative
statistical uncertainty in the experimental values of Δmax and
Δmin (Appendix B).

FIG. 4. Stability of interaction-induced pumping for different
pump periods T. For pump periods longer than 20 tunneling
times, the transferred charge per cycle becomes largely indepen-
dent of T, supporting the existence of stable interaction-induced
pumping. For shorter pump periods, the measured slopes are
reduced due to nonadiabatic effects. Data points and error bars are
analogous to Fig. 3.
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of these correlators from the ground-state values indicate
the presence of excitations and, thus, a finite amount
of excitation energy in the system. In a two-component
Fermi gas, charge and spin are the fundamental degrees of
freedom. In some one-dimensional systems, they are fully
decoupled due to spin-charge separation [77]; yet, this is
not the case, in general.
In our case, the ionic Hubbard model (δ ¼ 0) [64–67] is

of particular interest due to the presence of two subsequent
gap closings in its many-body spectrum. For concreteness,
let us fix the value of U=t and vary Δ. A gap related to
reordering of the charges vanishes only at the single critical
points Δ ¼ �Δc which determine the topology of the
charge sector ½Δc ∼U=2�. The spin gap vanishes for
−Δs ≤ Δ ≤ Δs, where Δc − Δs ≲ t [64–67], and we call
it a “spin-gapless line” in the following, denoted by an
orange line in Fig. 5(a). The parameter trajectory for the
interaction-induced pump crosses this line and spin exci-
tations can occur, in principle, at zero energy cost.
The schematics in Fig. 5(b) illustrate how spin and

charge dynamics can become intertwined during the
course of a pump cycle. While not the exact state
prepared in the experiment, it is instructive to consider
an antiferromagnetically ordered state at first [see case
(i) in Figs. 5(a) and 5(b)] and incur a spin excitation when
crossing the spin-gapless line for Δ < Δs (ii). The spin
excitation can take the form of a spin triplet or more
complex patterns; here, a spin flip from ↑ to ↓ is shown
for simplicity. In the subsequent half-cycle, two neigh-
boring spins have to form a double occupancy (Δ > Δc)
in order to ensure pumping. However, the spin-excited
pair precludes the formation of a double occupancy,
thereby preventing pumping (iii).
In the following, we investigate the mechanism

described above using numerical simulations of pumped
charge per unit cell QðτÞ and spin correlations, as well
as charge correlations as functions of time, shown in
Figs. 5(c)–5(e). Here, we choose an idealized system
consisting of ten lattice sites, antiperiodic boundary con-
ditions, and an elliptical pump trajectory in order to draw
generic, qualitative conclusions, leaving out some of the
specifics of our experimental system (see Appendix B).
We compare two distinct trajectories, both starting on the
left of the (δ, Δ) plane, as shown in Fig. 5(a). The “blue”
trajectory crosses the spin-gapless line at τ ¼ 3T=4, while
the “gray” one crosses the spin-gapless line at τ ¼ T=4.
In Figs. 5(c)–5(e), the blue trajectory is always plotted
forward in time (starting from τ ¼ 0), while the gray
trajectory is plotted backward in time (starting from
τ=T ¼ 1 and offset on the vertical axis) in order to simplify
the comparison. The blue trajectory clearly shows a
quantized response (black crosses) for one period, while
the pumped charge is visibly reduced during the second
period. The gray trajectory follows the blue trajectory for
half a period but departs afterward.

In order to understand the charge dynamics described
previously, we now consider the dynamics of spin and
charge correlations in Figs. 5(d) and 5(e). The spin
correlations visibly start to oscillate when crossing the
spin-gapless line after 3=4 (blue) and 1=4 (gray) of the
pump period (orange arrows). Indeed, the charge dynamics
remains smooth up until Δ ∼ Δc which happens after

FIG. 5. Dynamics of pumped charge, charge, and spin corre-
lations computed with time-dependent Lanczos. (a) Schematic of
pump trajectory. The charge- and spin-gap closings along the
ionic Hubbard axis (δ ¼ 0) are shown in red and orange,
respectively. The spin-gapless line extends from þΔs to −Δs.
(b) Flipping the spin of the rightmost atom (a simplified example
of a spin excitation) can prevent further pumping after one period.
The points in time are marked with (i), (ii), and (iii) in (a) and (b).
The sketch in (b) should be viewed as a conceptualized
illustration and does not necessarily represent a physical low-
energy excitation. (c)–(e) Dynamics of pumped charge, spin
correlator, and charge correlator, respectively, calculated with
Lanczos for L ¼ 10, T ¼ 100ℏ=t, δτ ¼ 0.1ℏ=t, and antiperiodic
boundary conditions (see Appendix B). The blue line corre-
sponds to counterclockwise pumping [blue arrows in (a) and (c)],
whereas the gray line corresponds to clockwise pumping (gray
arrows, plotted in reverse time −τ for comparison). The crosses in
(c) indicate quantized displacement. The orange arrows in
(d) denote the crossing of the spin-gapless line. The black arrows
in (e) denote the crossing of the Δ ¼ Δc line. All three gray
curves have been offset on the vertical axis for clarity.
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1 (blue) and 1=2 (gray) period, respectively (black arrows).
We can conclude that the spin excitations are converted
to charge excitations with a delay of a quarter period.
Interestingly, this effect is largely independent of system
size, as shown in Fig. 10. In summary, crossing the
spin-gapless line does not necessarily lead to an immediate
breakdown of pumping, but excitations first have to
spread to the charge sector in order to influence the
pumped charge.
The spin-gapless line plays an important role in deter-

mining the long-time behavior of the interaction-induced
charge pump [26]. In the experiment, we observe a
reduction of the pumped charge after the first cycle
(Fig. 8), which is indicative of a breakdown of pumping
after one cycle. Indeed, the interplay between spin and
charge degrees of freedom implies that the dynamics of the
second and subsequent pump cycles will become increas-
ingly dependent on the precise system parameters, such as
system size and pump trajectory. We investigate these
effects using numerical calculations in Fig. 11. The precise
values of the excitation gaps matter crucially, which can be
tuned by modifying the pump cycle and the driving
protocol. Altering the pump trajectory in the experiment
corresponds to including higher harmonics in the driving
waveform, which we plan to investigate in the future.
Similarly, the addition of an Ising-type interaction term
leads to an explicit opening of the spin gap in the Mott-
insulating regime of the ionic Hubbard model, which can
stabilize the pump over many cycles (Fig. 13). Ising
anisotropies have been realized with two-component
bosons [78].
An alternative approach involves the intermediate

(third) phase in the ionic Hubbard model, called the
spontaneously dimerized insulator (SDI). The three phases
of the ionic Hubbard model for repulsive interactions are,
in ascending order of Δ, Mott insulator, SDI, and band
insulator. The transition from a Mott insulator to the SDI
is accompanied by a spin-gap opening. The transition
from the SDI to the band insulator is due to a crossing of
two ground states with different charge distributions.
Thus, adiabatic pumping could potentially be stabilized
by enlarging the SDI phase and avoiding the Mott
insulator altogether. It has been suggested that including
a density-dependent hopping term into the ionic Hubbard
model can enlarge the SDI phase [79,80]. A density-
dependent hopping can be engineered by near-resonant
Floquet modulation [81–84].
The considerations of this section explain why adiabatic

pumping is expected to break down after one pump cycle,
the reason being the coupling of the spin and charge
sectors. Two directions for future experiments emerge:
First, quantized pumping could be realized with a modified
Hamiltonian [e.g., without SU(2) symmetry], and, second,
the present setup is ideally suited so study the interplay of
charge and spin excitations in strongly correlated systems.

VI. OUTLOOK

In conclusion, we have experimentally demonstrated an
interaction-induced charge pump using ultracold fermions
in a dynamical superlattice. The observed transport is
consistent with quantized pumping within a range of
repulsive interactions, while it has no classical counterpart
and the pumped charge is zero below a critical Hubbard U.
Pumping of one charge per cycle is not possible for U ¼ 0;
therefore, the pumping protocol is not adiabatically con-
nected to the noninteracting limit. Our numerical simu-
lations unveil the mechanism for the breakdown of
adiabatic pumping, in which spin excitations are transferred
to the charge sector only later in the pump cycle.
These results open up multiple avenues for future

research into topological many-body systems. For example,
the presence of trapping potentials in the experiment
could lead to interaction-induced edge physics [76], pos-
sibly giving rise to novel topological boundary modes [85].
Novel cooling mechanisms in optical lattices may be
enabled via density redistribution [86], making use of
the inherent backaction between density and pump-induced
currents in the interaction-induced charge pump. In addi-
tion, the coupling mechanism between spin and charge
degrees of freedom could be harnessed to realize
singlet pumping, in view to realize measurement-based
quantum computation [87]. In general, our work estab-
lishes Thouless charge pumping as a promising system
to investigate interaction-driven physics in topological
systems and topological quantum matter. Having cross-
validated theory and experiment in the limit of one-
dimensional dynamics, the experimental platform can
be extended to two [88,89] and even three dimensions,
eventually addressing questions beyond the reach of
numerical simulations.
Source data is partially available at Ref. [90].
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APPENDIX A: EXPERIMENTAL DETAILS

1. Optical lattice setup

The optical lattice setup is sketched in Fig. 6. In short,
optical standing waves are formed in all three directions
(VX, VY , and VZ) via retroreflection. The light frequencies
of the standing waves VX, VY , and VZ are all detuned by
more than 50 MHz with respect to each other, ruling
out any interference on atomic timescales. In addition,
another beam VXint is superimposed along the x direction,
exactly copropagating with VX (emitted from the same
optical fiber). The light frequencies of VXint and VZ are
exactly the same, each defined by a Rhode-Schwarz (RS)
signal generator SMC100A, phase locked to a 10 MHz
reference clock. Therefore, an interference pattern is
formed in the xz plane, which depends on the phase
difference between VXint and VZ, their respective ampli-
tudes, and polarizations.
A quarter wave plate (λ=4) is used to imbalance (IXZ) the

incoming and retroreflected part of VXint, giving rise to a
directional motion of the lattice potential along x for a time-
varying superlattice phase φðτÞ [see also Eq. (A1) below].

2. Phase lock

In order to stabilize the superlattice phase φðτÞ, a
Michelson-like interferometer is used [Fig. 6(b)]. The
superlattice phase φðτÞ at the position of the atoms is
measured by superimposing the retroreflected part of VXint
with a short reference arm on a fast photodiode. The
measured voltage at the photodiode is filtered, mixed down
to dc, and fed into the frequency-modulation input of the
RS, effectively forming the integral part of a PI loop. The
proportional part (for small and fast changes of the phase) is
realized by an additional phase shifter at the output of the
RS. An arbitrary waveform generator (AWG, Keysight
33400B) controls the set point for the phase lock, enabling
essentially arbitrary control of φðτÞ in time. Contrary to our
previous work where a sawtooth wave was used [14], we
use a sinusoidal waveform in the AWG [Eq. (A3) below],
leading to a “rocking” interference pattern which oscillates

to and fro. A similar phase lock is used for VZ but without
the AWG and phase shifter.

3. Lattice parameters

The resulting time-dependent lattice potential is given by

Vðx; y; z; τÞ ¼ −VXIself cos2ðkxþ ϑ=2Þ
− VXintðτÞIself cos2ðkxÞ
− VY cos2ðkyÞ − VZ cos2ðkzÞ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VXintðτÞVZ

p
cosðkzÞ cos½kxþ φðτÞ�

− IXZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VXintðτÞVZ

p
cosðkzÞ cos½kx − φðτÞ�;

ðA1Þ

where k ¼ 2π=λ and λ ¼ 1064 nm. The constant lattice
depths ½VX; VY; VZ� used in this paper are given by
½8.02ð7Þ; 20.01ð3Þ; 17.1ð2Þ�ER, measured in units of recoil
energy ER ¼ h2=2mλ2, wherem the mass of the atoms. The
values in brackets denote the standard deviations of the
lattice depths over 5520 individual measurements. Contrary
to our previous work [14], the value of VXintðτÞ is time
dependent:

VXintðτÞ ¼ V0½1þ A × sinð2πτ=TÞ�: ðA2Þ

The average lattice depth is V0 ¼ 0.30ð2ÞER, and the
amplitude is A ¼ 0.68ð7Þ. Likewise, the superlattice phase
is time dependent:

φðτÞ ¼ π=2 × ½1þ cosð2πτ=TÞ�: ðA3Þ

The imbalance factors are Iself ¼1.00ð2Þ and IXZ¼0.79ð2Þ.
The time-dependent lattice parameters VXintðτÞ and φðτÞ

lead to a periodic variation of the Rice-Mele parameters δ
(dimerization), Δ (sublattice site offset), and t (average
tunneling), as plotted in Fig. 7(a). The resulting pump
trajectory is boomerang shaped [Fig. 7(b)]. In addition,
we plot the minimal single-particle band gap in Fig. 7(c).

FIG. 6. Experimental setup and phase lock. (a) Sketch of the optical lattice setup. The y direction is omitted for clarity. The laser beam
along x contains two distinct light frequencies. VXint and VZ (orange) describe an interference pattern in the xz plane, which is sensitive
to the superlattice phase φðτÞ. VX is detuned with respect to VXint by 384 MHz, leading to a positional offset of half a lattice site at the
position of the atoms, resulting from a 20 cm path difference between the atoms and the retro mirror. (b) Phase lock setup. The incoming
phases of both VXint and VZ are stabilized using a Michelson-like interferometer (only one interferometer is shown here, for clarity).
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The minimum band gap of 1.4 kHz can be used to estimate
an adiabatic timescale in the noninteracting limit. The time
dependence of the average hopping matrix element t causes
a slight shift of the critical Δc at a fixed value of U by an
amount which is smaller than t.
A large range of Hubbard U can be accessed by utilizing

the Feshbach resonances in the hyperfine ground-state
manifold F ¼ 9=2 of 40K. For small and intermediate values
of U<6t, we use the mixture mF¼f−9=2;−7=2g.
For stronger interactions (U > 7t), we use the mixture
mF ¼ f−9=2;−5=2g. In between the two ranges, there is
a small gap in the measured data points (Fig. 3). The
bracketed errors of the values of U=t are dominated by the
statistical uncertainty of 7% in the value of t.

4. State preparation

In order to maximize the fraction of doubly occupied
unit cells, we perform the following loading procedure.
First, we sympathetically cool a balanced spin mixture of
40K atoms with 87Rb, yielding 60 000 (5000) atoms at a
temperature of 0.11 ð2ÞT=TF. Second, we tune the scatter-
ing length between the spins to strongly attractive values
and ramp up a deep checkerboard lattice within 200 ms,
resulting in a high double-occupancy fraction. Third, the
interactions are changed to the final value, and each lattice
site in the checkerboard is split into two along the x
direction. This loading procedure results in a filling fraction
of 0.574(5), which is 7 percentage points higher than in our
previous work [14]. Importantly, the population of triplet
states on each double well (as well as other states such as
↑↑) is negligible, since they are formed via splitting a
double occupancy.

5. Observations beyond one pump cycle

As described in the main text, we extract the scaled
center-of-mass position to measure the pumped charges.

In Fig. 8 below, we plot the measured dynamics beyond one
pump cycle. The outlier in Fig. 8(a) can be attributed to
slow drifts as well as statistical noise. Similar outliers are
responsible for the scatter in Fig. 3 in the main text.
Interaction-induced pumping is evident from Fig. 8(b), but
the slope does not persist beyond one pump cycle.

6. Stability of the center-of-mass position

Our experiment operates in a regime of relatively low
imaging resolution (point spread function of approximately
5 μm). Yet, we are able to discern the center-of-mass
position of the whole atomic cloud to within
0.1d ¼ 0.1 μm. This is possible simply by taking enough
averages. Figure 9(a) shows an integrated optical density,
demonstrating that the atomic cloud along x (i.e., along the
pumping direction) can be approximated by a Gaussian.
The center-of-mass position is then given by the center of
the Gaussian fit [line in Fig. 9(a)]. When averaging over
multiple realizations of the experiment, the standard error
[Fig. 9(b)] approaches the value 0.1d, sufficient to measure
interaction-induced pumping on the submicron level.

APPENDIX B: NUMERICAL SIMULATIONS

1. Real-time simulations

For the theory curve in Fig. 3, we use a variational
MPS method for ground-state calculations [61,62] and
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FIG. 7. Experimental pump trajectory. (a) Rice-Mele parame-
ters as a function of time. (b) The boomerang pump trajectory.
(c) The single-particle band gap varies during the course of a
pump cycle. Its minimum is 1.4 kHz. All energies are given in
kilohertz (×h).

FIG. 8. Measured center-of-mass displacements for two pump
cycles. The panels show different values of Hubbard U=t: (a) 0,
(b) 9.2(7), and (c) 16.3(1.1). The error bars are obtained in the
same way as in Fig. 2.

FIG. 9. Stability of center-of-mass position. (a) Exemplary
image of the atomic cloud, integrated along the y and z directions.
We use a two-dimensional Gaussian fit to extract the center-of-
mass position. (b) When averaging over multiple realizations of
the experiment, the standard error of the center-of-mass decreases
sufficiently to measure interaction-induced displacements below
one lattice site.
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time-evolving block decimation (TEBD) [91–93] for the
time evolution. The pumping is always started slowly via a
quadratic ramp up of the driving to minimize nonadiabatic
effects [94]. In order to make the initial state resemble
experimentally realistic conditions, we start with decoupled
dimer states. Concretely, we prepare each pair of two sites
(a dimer) in their ground state and then form a product of
such dimers.
Technically, we start from the ground state for the

decoupled Hamiltonian

Ĥ ¼
X

ði;jÞ∈DN

Ĥi;j: ðB1Þ

DN ¼ f…; ðc − 2; c − 1Þ; ðc; cþ 1Þ; ðcþ 2; cþ 3Þ;…g is
a set of uncoupled dimer sites centered around site c, such
that we fill N particles in total. Each initial dimer contains
two particles (one spin-up and one spin-down fermion). c is
chosen to be compatible with the dimerized ground state
of the whole system. We use an open system with size
L ¼ 49, a trap strength of V=t ¼ 0.034, and N ¼ 24
particles. For the ground-state search, we converge the
local density to a tolerance of 10−4. The time evolution is
carried out using TEBD with a time step of dτ ¼ 0.01=t
(where t is the average hopping rate) and an adaptive bond
dimension with a cutoff of 10−12. The pump cycle is
identical to the experimental one. In addition, the statistical
uncertainty of the experimental values of Δmax and Δmin is
taken into account by the shaded area, which represents a
scaling of the theory curve by �7% relative to the solid
line. The pumped charge is computed from the center-of-
mass displacement of the cloud.
For Fig. 5, we study a finite system with open-shell

boundary conditions (periodic boundary conditions for a
number of sites L multiple of 4 and antiperiodic for even L
not a multiple of 4) to allow for the resolution of gap
closings. We consider an elliptical pump cycle

ðΔ=t; δÞ ¼ ½Δc þ RΔ sinðθÞ; Rδ cosðθÞ�; ðB2Þ

with RΔ=t ¼ 2.10 and Rδ ¼ 0.88. The time evolution is
carried out with a time-dependent Lanczos method [95]
with a tolerance of 10−12 and a time step of dτ ¼ 0.01=t.
The initial state is chosen as the many-body ground state at
θ ¼ 0. The pumped charge is computed as the integral over
the local particle current over one period:

QðτÞ ¼
Z

T

0

dτ0hĴðτ0Þi; ðB3Þ

Ĵ ¼ i
2

X
j¼1;2;α¼↑;↓

ðtjĉ†j;αĉjþ1;α − H:c:Þ; ðB4Þ

with tjðτÞ ¼ tþ ð−1ÞjδðτÞ.

In order to explore the breakdown of quantized charge
pumping due to low-lying spin excitations, we calculate the
nearest-neighbor charge and spin correlators:

Cn̂ðtÞ ¼
1

L
hΨðtÞj

XL
j¼1

n̂jn̂jþ1jΨðtÞi; ðB5Þ

CŜðtÞ ¼
4

L
hΨðtÞj

XL
j¼1

ŜzjŜ
z
jþ1jΨðtÞi; ðB6Þ

where n̂j ¼ n̂↑;j þ n̂↓;j is the total particle number operator
and Ŝzj ¼ ðn̂↑;j − n̂↓;jÞ=2 is the total spin projection. jΨðtÞi
are the time-propagated states.
In the calculations for Fig. 5, we simplify the setup and

discard the trap, the variation of the hopping matrix element
t, and the shape of the pump cycle. As the initial state, we
choose the ground state at the start of the cycle. We verify
that this simplification does not affect the main qualitative
conclusions from Fig. 5.
We next discuss the individual effect of some of the

potential sources for nonadiabatic and nonquantized
pumping.

2. Effects of trap, particle number,
and state preparation

As the experiment works with a harmonic trap, there are
limitations concerning the maximum number of cycles that
can be carried out. At the latest, when the increase of the
on-site potential due to the trap overcomes the required
variation of potentials during the pump cycle, quantized
and unidirectional pumping will break down. However, this
happens much later than the first pump cycle [76].
Another possible source of imperfect pumping could be

the inhomogeneous distribution of particle numbers in the
various one-dimensional systems probed simultaneously
in our experiment. While it is impossible to simulate the
dynamics of the full distribution for an interacting system
with realistic particle numbers, we study the behavior when
increasing N at fixed trap strength for the initial state used
in the experiment. All other parameters are kept fixed and
correspond to the situation discussed in the main text in the
context of Fig. 3.
Our results are shown in Fig. 10. Clearly, regardless of

how many particles are placed into the trap (as long as we
do not reach the region of a steep potential increase), during
the first three-quarters of the pump cycle, the behavior is
largely independent thereof and the particle number affects
the pumped charge only mildly. After crossing the gapless
line, however, the pump efficiency depends on N, with
smaller N being detrimental to efficient pumping. Notably,
the pumped charge quickly becomes independent of
particle number for N ≳ 12, and the pumped charge
converges to a quantized value in the first pump cycle.
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Since particle numbers are much higher in most of the one-
dimensional systems realized in the experiment, we conclude
that variations in N can be excluded as a dominant source of
imperfect pumping on the timescales investigated.
Another potential source of imperfect pumping could

be initial-state-preparation defects, e.g., hole and doublon
defects as well as empty unit cells in the string of dimers.
Exemplary simulations show that every string of dimers
pumps independently on the relevant timescales, and,
hence, these defects are not expected to play a crucial role.

3. Role of the pump cycle

For a strictly adiabatic situation, the choice of the pump
cycle does not matter. In our situation, where a spin-gapless
region inevitably exists in the thermodynamic limit, a
dependence on details of the pump cycle is, in principle,
expected. Moreover, the experiment operates at a finite
entropy density.
For a finite-size system, there is, strictly speaking, no

gapless continuum of spin excitations yet; hence, the
minimum finite-size gap along the pump cycle should
matter. To address this point, we compare the boomerang-
shape pump cycle used in the experiment (including the
actual variation of the average hopping matrix element) to
an elliptical cycle as used for Fig. 5 where we keep the
average hopping matrix element constant, both with
N ¼ 10 particles. These simulations are carried out for a
closed system using the time-dependent Lanczos technique
for a slow pumping protocol. We remove the trap to single
out the effect of the minimum gap.
The results presented in Fig. 11 illustrate that, during the

first pump cycle, there is no significant difference between
the two pump paths. Beyond that, the behavior is strongly
path dependent, but not quantized in either case, yet
somewhat larger for the elliptical cycle. This is reflected
in the minimum gaps along the two cycles, which are
ΔEexp ¼ 0.04t and ΔEellip ¼ 0.18t, respectively.
One may further wonder about the effect of total particle

number at fixed filling. For the elliptical cycle with

N ¼ L ¼ 6 and 10, the respective minimum gaps
are ΔEL¼6 ¼ 0.28t and ΔEL¼10 ¼ 0.18t, respectively.
Consistently, the pump efficiency for L ¼ 10 is much
worse than for L ¼ 6 (results not shown).

4. Effect of dimer initial state instead of ground state

In the experiment, the loading scheme leads to an initial
state that can be approximated by a product of dimers, each
with two particles and in their ground state. We compare
pumping starting from either this state or the ground state,
from the same point in the pump cycle. The results of time-
dependent Lanczos calculations are shown in Fig. 12. The
difference in the pumped charge is initially small yet
increases significantly once the minimum gap is crossed.
The comparison between the two different pump cycles—
experimental versus elliptical one—shows that the former
leads to smaller differences in the first pump cycle, because
the starting point has a larger value of δ and, therefore, a
stronger dimerization.

5. Improving the robustness of the interaction-induced
pump via opening the spin gap

As already discussed in Ref. [52], the SU(2) symmetry
of the ionic Hubbard model can be lifted by various

FIG. 10. Pumping for different particle numbers. TEBD cal-
culation for a harmonically trapped system with initial strings of
dimer states with different particle numbers N ¼ 2, 6, 12, and 24.
The pump charge is calculated via the center-of-mass displace-
ment. Calculated for the experimental pump cycle with L ¼ 49,
U=t ¼ 8, T ¼ 23.3ℏ=t, dτ ¼ 0.1ℏ=t, and V0=t ¼ 0.034.

FIG. 11. Pumping with different trajectories and system sizes.
Time-dependent Lanczos calculation of the pumped charge
QðτÞ in an open-shell antiperiodic system, started from the
ground state. Experimentally realized pump-cycle (“exp”) and
elliptical pump cycle (“ellip”) L¼10. U=t ¼ 10, dτ ¼ 0.01ℏ=t,
and T ¼ 100ℏ=t.

FIG. 12. Starting from the ground state versus dimer state.
Difference of the pumped charge between a pump starting from
the ground state (Qgs) and one starting from the dimer state (Qdim)
for the experimental and the elliptical pump cycle, L ¼ 6,
U=t ¼ 10, dτ ¼ 0.01ℏ=t, and T ¼ 100ℏ=t.

INTERACTIONS ENABLE THOULESS PUMPING … PHYS. REV. X 14, 021049 (2024)

021049-11



perturbations which at the same time gap out the spin
sector. This leads to robust quantized pumping over
many cycles.
We here demonstrate that this prediction remains valid

also for the experimental pump cycle, by adding an Ising
interaction to the Hamiltonian (other examples were
studied in Ref. [52]):

ĤZ ¼ J
XL
j¼1

ŜzjŜ
z
jþ1: ðB7Þ

The comparison between a simulation with and without this
Ising term is shown in Fig. 13. The results establish that
opening the spin gap significantly stabilizes the pump,
leading to robust pumping for many pump cycles compared
to the bare Rice-Mele-Hubbard model.
In summary, quantized pumping could be achieved by

lifting the spin gap, which requires experimental changes
such as utilizing a different atomic species [78].
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[13] J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt, C.
Repellin, N. Goldman, and M. Greiner, Realization of a
fractional quantum Hall state with ultracold atoms, Nature
(London) 619, 495 (2023).

[14] A.-S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S.
Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger,
Quantization and its breakdown in a Hubbard–Thouless
pump, Nat. Phys. 19, 1471 (2023).

[15] Q. Niu and D. J. Thouless, Quantised adiabatic charge
transport in the presence of substrate disorder and many-
body interaction, J. Phys. A 17, 2453 (1984).

[16] E. Berg, M. Levin, and E. Altman, Quantized pumping and
topology of the phase diagram for a system of interacting
bosons, Phys. Rev. Lett. 106, 110405 (2011).

[17] Y. Qian, M. Gong, and C. Zhang, Quantum transport
of bosonic cold atoms in double-well optical lattices,
Phys. Rev. A 84, 013608 (2011).

[18] L. Wang, M. Troyer, and X. Dai, Topological charge
pumping in a one-dimensional optical lattice, Phys. Rev.
Lett. 111, 026802 (2013).

[19] F. Grusdt and M. Höning, Realization of fractional Chern
insulators in the thin-torus limit with ultracold bosons,
Phys. Rev. A 90, 053623 (2014).

[20] T.-S. Zeng, W. Zhu, and D. N. Sheng, Fractional charge
pumping of interacting bosons in one-dimensional super-
lattice, Phys. Rev. B 94, 235139 (2016).

[21] J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan,
D. Jaksch, and D. G. Angelakis, Topological pumping of
photons in nonlinear resonator arrays, Phys. Rev. Lett. 117,
213603 (2016).

[22] R. Li and M. Fleischhauer, Finite-size corrections to
quantized particle transport in topological charge pumps,
Phys. Rev. B 96, 085444 (2017).

[23] Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Multiparticle
Wannier states and Thouless pumping of interacting
bosons, Phys. Rev. A 95, 063630 (2017).

FIG. 13. Pumping with an additional interaction term. Time-
dependent Lanczos calculation of the pumped charge QðτÞ from
the ground state in an open-shell antiperiodic system for the
experimentally realized pump cycle, L ¼ 10, U=t ¼ 10, dτ ¼
0.01ℏ=t, T ¼ 100ℏ=t, and two different Ising-coupling strengths
(J ¼ 0 and J ¼ 2t).

KONRAD VIEBAHN et al. PHYS. REV. X 14, 021049 (2024)

021049-12

https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/RevModPhys.85.1421
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/s41467-019-09668-y
https://doi.org/10.1103/PhysRevLett.119.200402
https://doi.org/10.1103/PhysRevX.11.011057
https://doi.org/10.1126/science.add1969
https://doi.org/10.1038/s41586-023-06122-4
https://doi.org/10.1038/s41586-023-06122-4
https://doi.org/10.1038/s41567-023-02145-w
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1103/PhysRevLett.106.110405
https://doi.org/10.1103/PhysRevA.84.013608
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1103/PhysRevA.90.053623
https://doi.org/10.1103/PhysRevB.94.235139
https://doi.org/10.1103/PhysRevLett.117.213603
https://doi.org/10.1103/PhysRevLett.117.213603
https://doi.org/10.1103/PhysRevB.96.085444
https://doi.org/10.1103/PhysRevA.95.063630


[24] L. Taddia, E. Cornfeld, D. Rossini, L. Mazza, E. Sela, and
R. Fazio, Topological fractional pumping with alkaline-
earth-like atoms in synthetic lattices, Phys. Rev. Lett. 118,
230402 (2017).

[25] N. H. Lindner, E. Berg, and M. S. Rudner, Universal chiral
quasisteady states in periodically driven many-body sys-
tems, Phys. Rev. X 7, 011018 (2017).

[26] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami,
Breakdown of topological Thouless pumping in the strongly
interacting regime, Phys. Rev. B 98, 115147 (2018).

[27] L. Stenzel, A. L. C. Hayward, C. Hubig, U. Schollwöck, and
F. Heidrich-Meisner, Quantum phases and topological
properties of interacting fermions in one-dimensional
superlattices, Phys. Rev. A 99, 053614 (2019).

[28] T. Haug, R. Dumke, L.-C. Kwek, and L. Amico, Topologi-
cal pumping in Aharonov–Bohm rings, Commun. Phys. 2,
127 (2019).

[29] R. Unanyan, M. Kiefer-Emmanouilidis, and M.
Fleischhauer, Finite-temperature topological invariant for
interacting systems, Phys. Rev. Lett. 125, 215701 (2020).

[30] S. Greschner, S. Mondal, and T. Mishra, Topological charge
pumping of bound bosonic pairs, Phys. Rev. A 101, 053630
(2020).

[31] Y.-L. Chen, G.-Q. Zhang, D.-W. Zhang, and S.-L. Zhu,
Simulating bosonic Chern insulators in one-dimensional
optical superlattices, Phys. Rev. A 101, 013627 (2020).

[32] Q. Fu, P. Wang, Y. V. Kartashov, V. V. Konotop, and F. Ye,
Nonlinear Thouless pumping: Solitons and transport break-
down, Phys. Rev. Lett. 128, 154101 (2022).

[33] N. Mostaan, F. Grusdt, and N. Goldman, Quantized topo-
logical pumping of solitons in nonlinear photonics and
ultracold atomic mixtures, Nat. Commun. 13, 5997 (2022).

[34] R. Gawatz, A. C. Balram, E. Berg, N. H. Lindner, and M. S.
Rudner, Prethermalization and entanglement dynamics in
interacting topological pumps, Phys. Rev. B 105, 195118
(2022).

[35] B. Andrews, T. Neupert, and G. Möller, Stability, phase
transitions, and numerical breakdown of fractional Chern
insulators in higher Chern bands of the Hofstadter model,
Phys. Rev. B 104, 125107 (2021).

[36] R. Citro and M. Aidelsburger, Thouless pumping and
topology, Nat. Rev. Phys. 5, 87 (2023).

[37] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Topological states and adiabatic pumping in
quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).

[38] M. Lohse, C. Schweizer, O. Zilberberg,M.Aidelsburger, and
I. Bloch, A Thouless quantum pump with ultracold bosonic
atoms in an optical superlattice, Nat. Phys. 12, 350 (2016).

[39] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.
Wang, M. Troyer, and Y. Takahashi, Topological Thouless
pumping of ultracold fermions, Nat. Phys. 12, 296 (2016).

[40] Y. Ke, X. Qin, F. Mei, H. Zhong, Y. S. Kivshar, and C. Lee,
Topological phase transitions and Thouless pumping of
light in photonic waveguide arrays, Laser Photonics Rev.
10, 995 (2016).

[41] H.-I. Lu, M. Schemmer, L. M. Aycock, D. Genkina, S.
Sugawa, and I. B. Spielman, Geometrical pumping with a
Bose-Einstein condensate, Phys. Rev. Lett. 116, 200402
(2016).

[42] W. Ma, L. Zhou, Q. Zhang, M. Li, C. Cheng, J. Geng, X.
Rong, F. Shi, J. Gong, and J. Du, Experimental observation
of a generalized Thouless pump with a single spin, Phys.
Rev. Lett. 120, 120501 (2018).

[43] A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C.
Rechtsman, Thouless pumping in disordered photonic
systems, Light Sci. Appl. 9, 178 (2020).

[44] S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and
Y. Takahashi, Competition and interplay between topology
and quasi-periodic disorder in Thouless pumping of ultra-
cold atoms, Nat. Phys. 17, 844 (2021).

[45] J. Minguzzi, Z. Zhu, K. Sandholzer, A.-S. Walter, K.
Viebahn, and T. Esslinger, Topological pumping in a
Floquet-Bloch band, Phys. Rev. Lett. 129, 053201 (2022).

[46] Z.-C. Xiang, K. Huang, Y.-R. Zhang, T. Liu, Y.-H. Shi,
C.-L. Deng, T. Liu, H. Li, G.-H. Liang, Z.-Y. Mei, H. Yu,
G. Xue, Y. Tian, X. Song, Z.-B. Liu, K. Xu, D. Zheng, F.
Nori, and H. Fan, Simulating Chern insulators on a super-
conducting quantum processor, Nat. Commun. 14, 5433
(2023).

[47] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quan-
tized nonlinear Thouless pumping, Nature (London) 596, 63
(2021).

[48] M. Jürgensen, S. Mukherjee, C. Jörg, and M. C. Rechtsman,
Quantized fractional Thouless pumping of solitons, Nat.
Phys. 19, 420 (2023).

[49] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological
Kondo insulators, Annu. Rev. Condens. Matter Phys. 7, 249
(2016).

[50] L. Lin, Y. Ke, and C. Lee, Interaction-induced topological
bound states and Thouless pumping in a one-dimensional
optical lattice, Phys. Rev. A 101, 023620 (2020).

[51] Y. Kuno and Y. Hatsugai, Interaction-induced topological
charge pump, Phys. Rev. Res. 2, 042024(R) (2020).

[52] E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Splitting
of topological charge pumping in an interacting two-
component fermionic Rice-Mele Hubbard model, Phys.
Rev. B 106, 045141 (2022).

[53] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Interaction-
induced criticality in Z 2 topological insulators, Phys. Rev.
Lett. 105, 036803 (2010).

[54] L. Wang, X. Dai, and X. C. Xie, Interaction-induced
topological phase transition in the Bernevig-Hughes-Zhang
model, Europhys. Lett. 98, 57001 (2012).

[55] J. C. Budich, B. Trauzettel, and G. Sangiovanni, Fluc-
tuation-driven topological Hund insulators, Phys. Rev. B
87, 235104 (2013).

[56] P. Kumar, T. Mertz, and W. Hofstetter, Interaction-induced
topological and magnetic phases in the Hofstadter-
Hubbard model, Phys. Rev. B 94, 115161 (2016).

[57] G. Salerno, G. Palumbo, N. Goldman, and M. Di Liberto,
Interaction-induced lattices for bound states: Designing
flat bands, quantized pumps, and higher-order topological
insulators for doublons, Phys. Rev. Res. 2, 013348 (2020).

[58] J.-H. Zheng, B. Irsigler, L. Jiang, C. Weitenberg, and W.
Hofstetter, Measuring an interaction-induced topological
phase transition via the single-particle density matrix,
Phys. Rev. A 101, 013631 (2020).

[59] J. Herbrych, M. Środa, G. Alvarez, M. Mierzejewski, and E.
Dagotto, Interaction-induced topological phase transition

INTERACTIONS ENABLE THOULESS PUMPING … PHYS. REV. X 14, 021049 (2024)

021049-13

https://doi.org/10.1103/PhysRevLett.118.230402
https://doi.org/10.1103/PhysRevLett.118.230402
https://doi.org/10.1103/PhysRevX.7.011018
https://doi.org/10.1103/PhysRevB.98.115147
https://doi.org/10.1103/PhysRevA.99.053614
https://doi.org/10.1038/s42005-019-0229-2
https://doi.org/10.1038/s42005-019-0229-2
https://doi.org/10.1103/PhysRevLett.125.215701
https://doi.org/10.1103/PhysRevA.101.053630
https://doi.org/10.1103/PhysRevA.101.053630
https://doi.org/10.1103/PhysRevA.101.013627
https://doi.org/10.1103/PhysRevLett.128.154101
https://doi.org/10.1038/s41467-022-33478-4
https://doi.org/10.1103/PhysRevB.105.195118
https://doi.org/10.1103/PhysRevB.105.195118
https://doi.org/10.1103/PhysRevB.104.125107
https://doi.org/10.1038/s42254-022-00545-0
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1002/lpor.201600119
https://doi.org/10.1002/lpor.201600119
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.1103/PhysRevLett.116.200402
https://doi.org/10.1103/PhysRevLett.120.120501
https://doi.org/10.1103/PhysRevLett.120.120501
https://doi.org/10.1038/s41377-020-00408-2
https://doi.org/10.1038/s41567-021-01229-9
https://doi.org/10.1103/PhysRevLett.129.053201
https://doi.org/10.1038/s41467-023-41230-9
https://doi.org/10.1038/s41467-023-41230-9
https://doi.org/10.1038/s41586-021-03688-9
https://doi.org/10.1038/s41586-021-03688-9
https://doi.org/10.1038/s41567-022-01871-x
https://doi.org/10.1038/s41567-022-01871-x
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1103/PhysRevA.101.023620
https://doi.org/10.1103/PhysRevResearch.2.042024
https://doi.org/10.1103/PhysRevB.106.045141
https://doi.org/10.1103/PhysRevB.106.045141
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1209/0295-5075/98/57001
https://doi.org/10.1103/PhysRevB.87.235104
https://doi.org/10.1103/PhysRevB.87.235104
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevResearch.2.013348
https://doi.org/10.1103/PhysRevA.101.013631


and Majorana edge states in low-dimensional orbital-
selective Mott insulators, Nat. Commun. 12, 2955 (2021).

[60] S. S. Luntama, P. Törmä, and J. L. Lado, Interaction-induced
topological superconductivity in antiferromagnet-supercon-
ductor junctions, Phys. Rev. Res. 3, L012021 (2021).

[61] U. Schollwöck, The density-matrix renormalization group,
Rev. Mod. Phys. 77, 259 (2005).

[62] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[63] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D.
Liberto, N. Goldman, I. Bloch, and M. Aidelsburger,
Realization of an anomalous Floquet topological system
with ultracold atoms, Nat. Phys. 16, 1058 (2020).

[64] M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, From
band insulator to Mott insulator in one dimension, Phys.
Rev. Lett. 83, 2014 (1999).

[65] M. E. Torio, A. A. Aligia, and H. A. Ceccatto, Phase
diagram of the Hubbard chain with two atoms per cell,
Phys. Rev. B 64, 121105(R) (2001).

[66] S. R. Manmana, V. Meden, R. M. Noack, and K.
Schönhammer, Quantum critical behavior of the one-
dimensional ionic Hubbard model, Phys. Rev. B 70,
155115 (2004).

[67] M. E. Torio, A. A. Aligia, G. I. Japaridze, and B. Normand,
Quantum phase diagram of the generalized ionic Hubbard
model for AB n chains, Phys. Rev. B 73, 115109 (2006).

[68] D. Pertot, A. Sheikhan, E. Cocchi, L. A. Miller, J. E. Bohn,
M. Koschorreck, M. Köhl, and C. Kollath, Relaxation
dynamics of a Fermi gas in an optical superlattice, Phys.
Rev. Lett. 113, 170403 (2014).

[69] M. Messer, R. Desbuquois, T. Uehlinger, G. Jotzu, S. Huber,
D. Greif, and T. Esslinger, Exploring competing density
order in the ionic Hubbard model with ultracold fermions,
Phys. Rev. Lett. 115, 115303 (2015).

[70] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie,
Topological invariants and interacting one-dimensional
fermionic systems, Phys. Rev. B 86, 205119 (2012).

[71] A. A. Aligia, Topological invariants based on generalized
position operators and application to the interacting Rice-
Mele model, Phys. Rev. B 107, 075153 (2023).

[72] Qi Zhou, Interaction effects on monopoles, Conference
Presentation at Tsinghua University, Beijing (2017).

[73] Yangqian Yan and Qi Zhou, Yang monopoles and emergent
three-dimensional topological defects in interacting bosons,
Phys. Rev. Lett. 120, 235302 (2018).

[74] D. Pesin and L. Balents, Mott physics and band topology in
materials with strong spin-orbit interaction, Nat. Phys. 6,
376 (2010).

[75] T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P.
Törmä, Topological phase transitions in the repulsively
interacting Haldane-Hubbard model, Phys. Rev. Lett. 116,
225305 (2016).

[76] Z. Zhu, M. Gächter, A.-S. Walter, K. Viebahn, and T.
Esslinger, Reversal of quantized Hall drifts at noninteract-
ing and interacting topological boundaries, Science 384,
317 (2024).

[77] T. Giamarchi, Quantum Physics in One Dimension,
International Series of Monographs on Physics Vol. 121
(Clarendon, Oxford, 2004).

[78] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W.W. Ho, E.
Demler, and W. Ketterle, Spin transport in a tunable
Heisenberg model realized with ultracold atoms, Nature
(London) 588, 403 (2020).

[79] P. Roura-Bas and A. A. Aligia, Phase diagram of the ionic
Hubbard model with density-dependent hopping, Phys. Rev.
B 108, 115132 (2023).

[80] O. A.Moreno Segura, K. Hallberg, and A. A. Aligia,Charge
and spin gaps in the ionic Hubbard model with density-
dependent hopping, Phys. Rev. B 108, 195135 (2023).

[81] R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, and M.
Greiner, Photon-assisted tunneling in a biased strongly
correlated Bose gas, Phys. Rev. Lett. 107, 095301 (2011).

[82] F. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-C.
Nägerl, Floquet engineering of correlated tunneling in the
Bose-Hubbard model with ultracold atoms, Phys. Rev. Lett.
116, 205301 (2016).

[83] F. Görg, M. Messer, K. Sandholzer, G. Jotzu, R.
Desbuquois, and T. Esslinger, Enhancement and sign
change of magnetic correlations in a driven quantum
many-body system, Nature (London) 553, 481 (2018).

[84] M. Messer, K. Sandholzer, F. Görg, J. Minguzzi, R.
Desbuquois, and T. Esslinger, Floquet dynamics in driven
Fermi-Hubbard systems, Phys. Rev. Lett. 121, 233603
(2018).

[85] S. Rachel, Interacting topological insulators: A review,
Rep. Prog. Phys. 81, 116501 (2018).

[86] C. S. Chiu, G. Ji, A. Mazurenko, D. Greif, and M. Greiner,
Quantum state engineering of a Hubbard system with
ultracold fermions, Phys. Rev. Lett. 120, 243201 (2018).

[87] K. K. Das, S. Kim, and A. Mizel, Controlled flow of spin-
entangled electrons via adiabatic quantum pumping, Phys.
Rev. Lett. 97, 096602 (2006).

[88] Q. Fu, P. Wang, Y. V. Kartashov, V. V. Konotop, and F. Ye,
Two-dimensional nonlinear Thouless pumping of matter
waves, Phys. Rev. Lett. 129, 183901 (2022).

[89] A. Padhan, S. Mondal, S. Vishveshwara, and T. Mishra,
Interacting bosons on a Su-Schrieffer-Heeger ladder:
Topological phases and Thouless pumping, Phys. Rev. B
109, 085120 (2024).

[90] K. Viebahn, A.-S. Walter, E. Bertok, Z. Zhu, M. Gächter,
A. A. Aligia, F. Heidrich-Meisner, and T. Esslinger, Dataset
for “Interactions enable Thouless pumping in a nonsliding
lattice”, ETH Research Collection (2024), 10.3929/ethz-b-
000677657.

[91] G. Vidal, Efficient simulation of one-dimensional quantum
many-body systems, Phys. Rev. Lett. 93, 040502 (2004).

[92] S. R. White and A. E. Feiguin, Real-time evolution using the
density matrix renormalization group, Phys. Rev. Lett. 93,
076401 (2004).

[93] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, Time-
dependent density-matrix renormalization-group using
adaptive effective Hilbert spaces, J. Stat. Mech. (2004)
P04005.

[94] L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro,
Nonadiabatic breaking of topological pumping, Phys. Rev.
Lett. 120, 106601 (2018).

[95] S. R. Manmana, A. Muramatsu, and R. M. Noack, Time
evolution of one-dimensional quantum many-body systems,
AIP Conf. Proc. 789, 269 (2005).

KONRAD VIEBAHN et al. PHYS. REV. X 14, 021049 (2024)

021049-14

https://doi.org/10.1038/s41467-021-23261-2
https://doi.org/10.1103/PhysRevResearch.3.L012021
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1038/s41567-020-0949-y
https://doi.org/10.1103/PhysRevLett.83.2014
https://doi.org/10.1103/PhysRevLett.83.2014
https://doi.org/10.1103/PhysRevB.64.121105
https://doi.org/10.1103/PhysRevB.70.155115
https://doi.org/10.1103/PhysRevB.70.155115
https://doi.org/10.1103/PhysRevB.73.115109
https://doi.org/10.1103/PhysRevLett.113.170403
https://doi.org/10.1103/PhysRevLett.113.170403
https://doi.org/10.1103/PhysRevLett.115.115303
https://doi.org/10.1103/PhysRevB.86.205119
https://doi.org/10.1103/PhysRevB.107.075153
https://doi.org/10.1103/PhysRevLett.120.235302
https://doi.org/10.1038/nphys1606
https://doi.org/10.1038/nphys1606
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1126/science.adg3848
https://doi.org/10.1126/science.adg3848
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevB.108.115132
https://doi.org/10.1103/PhysRevB.108.115132
https://doi.org/10.1103/PhysRevB.108.195135
https://doi.org/10.1103/PhysRevLett.107.095301
https://doi.org/10.1103/PhysRevLett.116.205301
https://doi.org/10.1103/PhysRevLett.116.205301
https://doi.org/10.1038/nature25135
https://doi.org/10.1103/PhysRevLett.121.233603
https://doi.org/10.1103/PhysRevLett.121.233603
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1103/PhysRevLett.120.243201
https://doi.org/10.1103/PhysRevLett.97.096602
https://doi.org/10.1103/PhysRevLett.97.096602
https://doi.org/10.1103/PhysRevLett.129.183901
https://doi.org/10.1103/PhysRevB.109.085120
https://doi.org/10.1103/PhysRevB.109.085120
https://doi.org/10.3929/ethz-b-000677657
https://doi.org/10.3929/ethz-b-000677657
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevLett.120.106601
https://doi.org/10.1103/PhysRevLett.120.106601
https://doi.org/10.1063/1.2080353

