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We propose a new electrical breakdown mechanism for exciton insulators in the BCS limit, which differs
fundamentally from the Zener breakdown mechanism observed in traditional band insulators. Our new
mechanism results from the instability of the many-body ground state for exciton condensation, caused by
the strong competition between the polarization and condensation energies in the presence of an electric
field. We refer to this mechanism as “many-body breakdown.” To investigate this new mechanism, we
propose a BCS-type trial wave function under finite electric fields and use it to study the many-body
breakdown numerically. Our results reveal two different types of electric breakdown behavior. If the system
size is larger than a critical value, the Zener tunneling process is first turned on when an electrical field is
applied, but the excitonic gap remains until the field strength reaches the critical value of the many-body
breakdown, after which the excitonic gap disappears and the system becomes a highly conductive metallic
state. However, if the system size is much smaller than the critical value, the intermediate tunneling phase
disappears since the many-body breakdown happens before the onset of Zener tunneling. The sudden
disappearance of the local gap leads to an “off-on” feature in the current-voltage (/-V) curve, providing a

straightforward way to distinguish excitonic insulators from normal insulators.
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I. INTRODUCTION

The excitonic insulator (EI) is an insulating phase where
electron-hole pairs condensate [1-3]. Historically, exciton
condensation in solid-state systems has been predominantly
examined in three distinct types of systems. First, exciton
condensation states have been extensively studied in
semiconductors with optically pumped electrons and holes
[4-6], which is also called exciton-polariton. Although this
is essentially a nonequilibrium system, it can be treated as
an approximate equilibrium state for a brief period within
the lifetime of electrons and holes. The second type of
system comprises semimetal materials with equal-sized
electron and hole pockets [7-10]. The conservation of
electron and hole numbers is ensured by specific sym-
metries, such as translation symmetry for electron and hole
pockets located in different areas of the Brillouin zone or
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horizontal mirror symmetry for certain two-dimensional
materials. The third type of system includes quantum well
or double-layer systems separated by an insulating barrier
in the middle [11-17]. In these systems, the electrons and
holes can be separated on different layers with negligible
single-particle tunneling process between them and their
densities can be tuned precisely by two independent gates.

We will focus on the third kind of system, where many
interesting observations have been reported recently.
The real space separation of electrons and holes in these
systems provides not only the electrons and holes with a
sufficiently long lifetime but also new ways to detect
the exciton condensation states, such as perfect Coulomb
drag [18-20] and quantum capacitance [17] measurements.

The experimental setup of the double-layer systems, e.g.,
transition metal dichalcogenides (TMDs) bilayer separated
by hexagonal boron nitride (h-BN) or semiconductor
quantum well, is illustrated in Fig. 1(a), and the generic
model is written as [21-28]
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where cl'k, c;k are electron creation operators in the electron
and hole layer, respectively, and V is the area of the 2D
system. The single-particle Hamiltonian H(, describes the
electron and hole bands with quadratic dispersion near the
valley center with effective mass m, and m;,. The exciton
chemical potential y., = eV, — E is tuned by the voltage
difference V, between the electron and hole layer.
The interlayer and intralayer interaction are taken as the
Coulomb ones: V(r)=V,_y = e*/erand U(r) = Vyuy =
e?/eV/r* + d*> whose Fourier transformations are V(q) =
2re?Jeq, U(q) = V(q)e™9%. ¢ is the dielectric constant.

If the interlayer interaction is absent, the charged bilayer
would be expected to exhibit metallic behavior with the
coexistence of free electrons and holes. Because of
the charge conservations in each layer, the system has a
U(1) x U(1) symmetry. However, the attractive interaction
U(r) between electrons and holes will drive the system into
an exciton condensation state at the charge neutrality point
(CNP) which spontaneously breaks the electron-hole U(1)
symmetry and leaves only the total charge conservation. In
this context, we consider the terms “excitonic insulator”
and “exciton condensation” to be synonymous throughout
the paper. Furthermore, by tuning the particle-hole density
such exciton condensation state will experience a BEC to
BCS crossover as illustrated in Fig. 1(b).

Although excitonic insulators have been discussed in the
literature for over half a century, very few material systems
have been confirmed experimentally to exhibit such exotic
states. This is because the exciton condensation only breaks
the particle-hole U(1) symmetry, resulting in charge-neutral
superfluidity, which is very hard to detect directly through
experiments like perfect dragging. In this study, we propose
that the excitonic insulator in the BCS limit may possess a
unique breakdown mechanism, which can serve as a critical
“smoking gun” type of experimental evidence, helping to
distinguish an excitonic insulator from ordinary narrow-gap
semiconductors.

Recently, there have been experimental evidences show-
ing that the electrical breakdown behavior of an excitonic
insulator may largely deviate from the Zener breakdown of
normal band insulators [29], e.g., a much smaller critical
field strength and an apparent metal-insulator transition [the
R-T characteristics show an insulator (metal) feature before
(after) the breakdown]. These facts inspire us to investigate
the breakdown behaviors of excitonic insulators. The intrin-
sic breaking-down mechanism for band insulators is attrib-
uted to interband Zener tunneling [30-36]. In an infinite
system, the total energy becomes unbounded below when a
uniform electric field is applied, resulting in the absence of a
ground state. However, a finite system can still maintain an
insulating stationary state at low electric fields [37,38]. If we
take the rigid band assumption and include only the electric
field by a positional dependent chemical potential, the
single-particle Zener tunneling process can occur when
the in-plane bias voltage eFL becomes comparable to the
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FIG. 1. (a) Setup of the electron-hole bilayer system. The direct
gap between electron and hole bands can be tuned by a vertical
voltage V,. (b) At CNP, the interlayer Coulomb interaction
between electrons and holes will drive the system into an exciton
condensation state and the single-particle gap will be renormal-
ized into an excitonic gap. The electron band is coded by blue and
the hole band by orange, where they are mixed when exciton
condensation occurs. By increasing the electron and hole den-
sities, the exciton condensation state will experience a BEC to
BCS crossover. (c) If an in-plane electrical field F is applied, a
Zener tunneling current is expected to appear when the in-plane
voltage exceeds the band gap, i.e., eFF'L > A. For any energy-
allowed tunneling process, there exists a classically forbidden
region (from B to A) with width £ = A/eF where the wave
function decays. The correlation length of the gap & characterizes
the penetration depth of the wave function into the classically
forbidden region.

band gap A as shown in Fig. 1(c). This means the Zener
critical field is inversely proportional to the system size L.
To go beyond the rigid band picture, Souza et al. [38]
considered the polarization of the occupied bands and they
found the 1/L behavior of the Zener field still stands.

We would emphasize that this critical field strength
denotes the onset of Zener tunneling when a current
proportional to the tunneling probability starts to flow.
Under WKB approximation, the tunneling probability
could be expressed as e~/¢ [39-41], where & is the
correlation length determined by the gap A and the
tunneling length £ = A/eF is the width of the classically
forbidden region for the Zener tunneling process. For an
excitonic insulator in the BCS limit, ¢ = 4v;/7A is just the
coherence length of the exciton condensate (details can be
found in Appendix J). When the electric field reaches
A/eé, the tunneling current experiences a sharp increase
and the so-called Zener breakdown occurs. Thus, the
critical field for Zener breakdown could be roughly
estimated as F2 = A/eé.

As pointed out by Zener, the interband tunneling process
in normal insulator is just analogous to the autoionization
of free atoms by large electric fields [30] and the tunneling
probability e?/¢ = e=2/¢f¢ is similar to the ionization
probability of a bound s state with radius & and binding
energy A [42]. In excitonic insulators, the basic ingredients
are excitons instead of free atoms, and the Zener breakdown
picture will still stand, where the current generation stems
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from the field-induced ionization of an exciton to a pair of
quasielectron and quasihole. Additionally, there will be a
new type of electrical breakdown mechanism which orig-
inates from the loss of the stability of the electron-hole
pairing ground state due to the competition between
polarization and condensation energies; thus we refer to
this mechanism as “many-body breakdown.”

In this paper, we will show that the many-body break-
down could be interpreted as the collective mode softening
in EI whose threshold field strength is much smaller than
that of the Zener breakdown in the BCS limit, and the
system will encounter the many-body breakdown when
the Zener tunneling rate is tiny. Compared to the Zener
breakdown, which is due to the ionization probability of
each individual exciton, the many-body breakdown is a
collective ionization process, in which all the excitons of
the system ionize at the same time. Therefore, this unique
electric breakdown feature can be considered as an impor-
tant experimental signal for excitonic insulators, serving as
a smoking gun to identify their presence.

II. POLARIZED MEAN-FIELD THEORY

The actual breakdown scenario in excitonic insulators is
complex since these two mechanisms could take effect
at the same time. To better understand the breakdown of
excitonic insulators, we will utilize a self-consistent mean-
field theory to analyze the interplay between Zener tunnel-
ing and the many-body breakdown.

Although an in-plane field breaks translation symmetry,
to describe an insulating ground state, we can always take a
trial state that keeps translation symmetry as long as the
field is adiabatically added (the proof is in Appendix A).
A trial Hartree-Fock (HF) ground state (GS) with trans-
lation symmetry at the CNP is |GS)
the valence band CZk = akczk + [J’kczk is a linear combi-
nation of the electron and hole band with con-
straints |a|? + > = 1.

Since we choose the exciton chemical potential y, as
the thermodynamic variable, we are using the grand
canonical ensemble for excitons. At zero temperature,
the relation between the grand potential and internal energy
is Eg(fex) = U — pex Nox. By using Dirac notation |vk) =
[ag, Bi]T, the grand potential density becomes a functional
) (see details in Appendix B),

= L ¢l [vac), where

eG[|vk): F pex]
1
= (GS|H|GS)
_ VZ 0 Posk +— VAk” Im; log(vk|vk + Ak)
O S Vaalle s

ss'k ko

where p=p —p® is the density matrix relative to the
initial uncharged state p?s, = 6,40,, and p is calculated
as pyyi = (Glelcu|G) = (|vk)(vk|),,. The grand poten-
tial density depends on u. from the single-particle
Hamiltonian:

hzkz/zme — Hex 0

ho =
0 —h*k2)2m,,

(3)
So the exciton density n., is calculated as

Nex = ﬂex &G = Vzpeek (4)

The four terms in Eq. (2) could be viewed as kinetic,
polarization, Hartree, and Fock energies separately. The
Hartree energy is just the charging energy of the two-layer
capacitor with the charge number density n.,. The relative
density matrix p is used in the Fock energy expression to
avoid the double counting problem [43]. The polarization
energy is in principle —eF'P, where P is electrical polari-
zation which is dependent on the occupied states. For
numerical convenience, a periodic boundary condition is
assumed, and the polarization is calculated with the help
of the expectation value of many-body position operators
defined on a ring geometry [44], which is just a discrete
form of Berry phase [45-47]:

P||vk)] = Imz log(vk|vk + Aky). (5)

This form of polarization energy functional has already
been used to calculate the electrical properties of insulators
in the literature [38,48,49]. On the other hand, for the open
boundary problem, the polarization energy functional should
be written in real space by Wannier functions [50,51]
which is much more complex technically. However, as long
as the system is large enough, the behaviors of the energy
functionals for different boundary condition are tested to
be identical for topological trivial systems with no edge
states [38,50].

The local minimum is found by requiring the first-order
derivative of &5 to be zero, i.e., deg/5(vk| = 0 (details
are presented in Appendix C.). This gives the mean-field
Hamiltonian )" = hQ + hf' + hl' + hY, where

dme’ngd
h(|vk)] = ——=(1 - p°), (6a)
1 ~
hfv/kﬂvkﬂ - _]_}ZVS’S(k _k/)pss’k” (6b)
k/
F clvk + ocAky) (vk|
K [ok); F] = 2% H He. (6
ik [[vk); F] 2Ak“; (k[ ok + oak]) +He.,  (6c)
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as well as the self-consistent equation,
WF[[ok): F|ok) = £,e]ok). (7)

The definition of the abbreviation ¢ in Eq. (6¢c) can be
found in Eq. (C10).

In the following, we will take length and energy units
as aj =eh*/m*e* and Ry* = e?/2eal;, where m* =
m,my/(m, + my,) is the reduced mass. Then the electrical
field strength unit is fixed as F* =Ry*/eaj and the
polarization unit is P* = e/aj. At zero temperature, the
only independent parameters in the mean-field problem are
d/ay, V/a%, F/F*, and p., /Ry* (or equivalently ne ay?).
Typical values of these parameters in a double-layer TMD
system, for example, MoSe,/WSe, separated by h-BN,
are m, ~m, & m = 0.4mgy, m* ~0.2mqy (m, is the bare
electron mass) [52], and ¢ =5 [53]. So the units are
calculated as ajz~13 nm, Ry*x108 meV, and
F*~ 83 x10° V/cm.

III. CRITICAL FIELDS

In the phase diagram depicted in Figs. 2(a) and 2(b),
the abscissas represent the system size aj/L, and exciton
density ne.ajy> separately, and the vertical axis is the
in-plane electric field strength F'/F*. The zero-field band
gap A°/Ry (black line, left-hand axis) and the correlation
length &/aj of the gap (purple line, right-hand axis)
estimated by Eq. (J22) are also plotted as functions
of system size and exciton density separately in
Figs. 2(c) and 2(d).

In the calculation, the interlayer distance is set as
d = 1.875a}. The momentum space summation in Eq. (2)
is restricted in the region |k, | <k.~27a;™". The
numerical results are nearly independent of the cutoff &,
when k. > kp since the BCS-type condensation occurs
only in a small range around ky = \/4zn., < 1.3a3~". The
size of the system is defined by the spacing of k mesh as
L =2r/Ak, so the varying of system size is realized by
using different sizes of k mesh. The electrical field is
applied in the x direction, and the length of the system
perpendicular to it is fixed at L, = 27rNky /2k, = 94aj
(N K = 80) for numerical convenience. In Figs. 2(a)

and 2(c), the exciton density is fixed at n., ~ 0.068a}7>
and the number of k points in the x direction is taken as
Ny, = 40M [M is an integer and some used N are marked
by red texts above the bottom axis in Fig. 2(c)]. On the
contrary, in Figs. 2(b) and 2(d), the system size is fixed
(k mesh is fixed at 120 x 80) and the exciton density varies.

As is shown in Figs. 2(c) and 2(d), the correlation length
of the gap & [evaluated by Eq. (J22)] is about 4ay within
the range of the parameters we consider. The correlation
length £ is much smaller than the system size L, along the
direction of the electrical field, which means tunneling
current at the onset of Zener tunneling I e l+/¢ is
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FIG. 2. (a)Phase diagram as a function of the in-plane electrical

field F and system size 1/L,. (b) Phase diagram as a function of
the in-plane electrical field F' and exciton density 7.,. The critical
field F?' for many-body breakdown (solid blue lines) firstly
divides the entire region into a locally gapped phase and a
metallic phase. The onset filed for Zener tunneling F3 ., (dashed
orange lines) further separates the locally gapped phase into an
excitonic insulating phase and tunneling phase. (c),(d) Zero-field
band gap A® (black lines, left-hand axis) and the correlation
length & (purple lines, right-hand axis) as functions of system size
and exciton density. The red labels above the bottom axis of
(c) mark the number of k points used for the corresponding
system size.

negligible. Additionally, the fact that L, > ¢£ also indicates
that the assumption of the translation symmetry and
periodic boundary condition are reasonable.

To overcome the Zener instability of the energy func-
tional for the electrical field in the range A/eL, ~ A/eé,
the polarization Hamiltonian h,f and the polarization energy
are always evaluated on the coarse 40 x 80 mesh. For an
original 40M x 80 k mesh, this is equivalent to dividing the
system into M copies with size L, = Ly = 47aj. Thus the
Zener tunneling process whose tunneling length # satisfies
MLy > ¢ > Ly> ¢ is ignored. This approximation is
reasonable since the tunneling probability e~*/¢ for such
process is smaller than e %0/¢~1073. Although this
approximation method was first developed to calculate
the higher-order susceptibilities in the zero-field limit [38],
this does not mean that the finite field solution has no
physical meanings. Souza et al. [54] rederived the effective
Hamiltonian for polarization Eq. (6¢) from the time-
dependent dynamics of density matrix, and the solution
from the minimization of the energy functional was found
to be a resonance state with very long lifetime in the
thermodynamic limit.

The blue lines in Figs. 2(a) and 2(b) represent the critical
field F!" accounting for the many-body breakdown of the
excitonic gap, which divides the entire region into a
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metallic phase and a locally gapped phase. In the metallic
phase, the self-consistent equations have no solutions
with excitonic order parameter, while in the locally gapped
phase, such solutions always exist. By solving eFL, =
A(F) ~ Ag (L, = 2r/ Ak, is the system size assumed in the
calculation which is inverse proportional to the k-mesh
spacing), the onset field for Zener tunneling F(,. is
obtained and plotted by the orange lines and further
separates the locally gapped phase into an excitonic
insulating phase and a tunneling phase. In the excitonic
insulating phase, the system is fully gapped, and no
current flows. In the tunneling phase, an exponentially
small Zener tunneling current appears while the system is
still locally gapped. In the metallic phase, the excitonic
gap is destroyed, the system becomes highly conductive,
and the resistivity-temperature (R-7) curve becomes
typical metallic.

To illustrate how the critical field F7* for the many-body
breakdown is extracted, let us investigate the effect of
electrical field on some physical quantities. Assume we are
in the region of insulating state, so the local minimum
|vk; F) of the energy functional Eq. (2) could be found by
our self-consistent procedure. The self-consistent equation
at the mean-field solution reads h)F[|vk; F); F]|ik; F) =
Eirlik; F), where |ck;F),|vk;F) are conduction and
valence bands with band energies & p > &4 . Then the
mean-field gap is just defined as A(F) =min(& =& r)-
Additionally, the polarization density is obtained from
Eq. (5) as P(F) = P||vk; F)] and the electrical susceptibil-
ity could also be defined as y(F) = oP(F)/oF.

On a 120 x 80 k mesh with exciton density n., ~
0.068a§‘2 [dashed gray line in Figs. 2(a) and 2(b)].
Some physical quantities are plotted in Fig. 3 as functions
of field strength. Figure 3(a) shows the mean-field band
structure at zero field and the critical field strength. The
results indicate that the electrical field has little effect
on the band structure and as a result the mean-field gap
barely changes with the increase of the field strength, as is
shown in Fig. 3(b). To determine the boundary of the
locally gapped phase, the polarization P and susceptibil-
ity y are plotted in Figs. 3(c) and 3(d). When approaching
the critical field strength F, y~! continuously goes to 0,
which means the electrical susceptibility y diverges
and the system will transition into a metallic phase.
Additionally, the momentum space distributions of the
interband coherence AMF at F =0 and F = F, are also
shown in Fig. 4. With the increase of electric field
strength, the amplitude slightly shrinks while the phase
varies dramatically.

IV. FLUCTUATIONS AND COLLECTIVE MODES

In addition to the nonanalytic behaviors of macroscopic
physical quantities, the breakdown phase transition could
also be understood by examining the stability of the local
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FIG. 3. (a) Mean-field band structure at zero field (blue solid line)

and critical field strength (red dotted line). We can see that the
electrical field has little effect on the mean-field band structure.
(b) Mean-field gap as a function of electrical field strength. When
reaching the critical field strength F?', the mean-field gap goes to
zero discontinuously. (c) Electrical field induced polarization P as a
function of field strength F. Nonanalytic behavior appears when
reaching the critical field strength. (d) To see the nonanalytic
behavior clearly, inverse of the susceptibility y ! is plotted. y~! goes
to zero means y diverges and the system turns into a metallic state.
These data are generated on a 120 x 80 k mesh with exciton density
Nex ~ 0.068a 2 [along the dashed gray line in Figs. 2(a) and 2(b)].

minimum to fluctuations. At the local minimum, the trial
HF state with fluctuations could be written as [55]

vk F) = (|ok: F) 2l 1) /U [, (8)

0.15
[ 0.10 =
& %ﬁ
<
0.05
0.00
/4
i
L o €
< o
(0]
-2 Z MF —Fm MF —n/4
F=0,arg(h¥F) F=FZ, arg(hgy)
-2 0 2 -2 0 2
kxaB* kxag
FIG. 4. (a),(b) Amplitude and (c),(d) phase distributions of the

exciton order parameter (interband coherence 4,,") in momentum
space at ' = 0 and F = F". These data are also generated on a
120 x 80 k mesh with exciton density n, =~ 0.068a}~>.

MF
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where the fluctuation variables z; = x; + iy, are arbi-
trary complex-valued functions. As derived in
Appendix E, when the gauge of the mean-field con-
duction and valence band wave functions are taken as
Eq. (E1), the real and imaginary parts of the fluctuation
variables z; are directly related to the density and phase
fluctuations of the EI order parameter p,;. Then the
grand potential becomes a functional of xg,yy, i.e.,
Eglxg, yis F] = Eg[|v'k; F); F], and up to the second
order of the fluctuation variables x; and y,, the grand
potential could be approximated as

EG ~ EGHUk, F>]

b3kl + e+ 2] O
kK'

where the specific expression of the kernel matrix Ky
can be found in Appendix D. In the absence of electrical
field, the cross term KX is exactly zero, which recovers
the expression in Wu et al. [24]. However, when the
electrical field is added, the density and phase fluctua-
tions will be coupled together and Ky is not zero.
Stability of the mean-field ground state against fluctua-
tions requires the eigenvalues of the Hessian matrix,

, (10)

H= [(]dX))T )

to be non-negative, where the eigenvalues and fluctuation
eigenmodes are defined by the eigenvalue equation,

x,l
"1, (11)

Xt
1 2
Vi

e

kK

and the superscript 4 in z; = x} + iy} means it is the
fluctuation eigenmode with respect to the eigenvalue A.
For convenience, the eigenmodes in the following text are

normalized by z; — z}/1/> x |z4|*. Still along the dashed

gray line in Figs. 2(a) and 2(b), the stability of the ground
state is analyzed, and the results are shown in Fig. 5.
In Fig. 5(a), we plot the smallest few eigenvalues Aq_4
of the Hessian matrix Eq. (10) as functions of field strength.
By taking the trial HF state as |[v'k; F;6,) o |vk; F) +
Hlizi"|ck; F), the grand potential difference between the

trial state and the HF ground state along the directions z,’i" in
the variational parameter space is evaluated as

AEG(F.0,,) = Egl|v'k; F;0,,)] — Egl|lvk; F)].  (12)

Using the lowest three eigenmodes zi(’"'z, for example,
the grand potential difference as a function of
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6), (direction of zf‘j) 0,, (direction of z"kz)
FIG. 5. (a) The smallest five eigenvalues of the Hessian matrix

Eq. (10) as a function of the electric field. (b)—(d) Grand potential
difference Eq. (12) as a function of the electric field and
excitation amplitudes along the directions zio“ in the variational
parameter space. The excitation amplitudes are used as the
horizontal axes while different field strengths are represented
by different color lines. These data are also generated along the

dashed gray line in Figs. 2(a) and 2(b).

the electric field F and excitation amplitudes 6, is
plotted in Figs. 5(b)-5(d). In these plots, the horizontal
axes are the amplitudes of those eigenmodes, while differ-
ent electric field strengths are represented by different
color lines.

There is a consistent zero mode A for any electric field
strength, as shown in Fig. 5(a). However, the behavior of

the energy functional along the direction zi“ in Fig. 5(b)
indicates that it is not a “breaking-down mode” because the
high-order derivatives of the energy functional along
this direction are always positive. Such a zero mode is
exactly the Goldstone mode related to phase fluctuation
of the exciton condensate and accounts for the exciton
superfluidity (see details in Appendix F). The real

breaking-down direction in parameter space is zi‘ as shown
in Fig. 5(c). When the electric field is small, all eigenvalues
of the Hessian matrix (except the Goldstone mode 4;)
satisfy 4 > 4; > 0, which means the solution is indeed a
local minimum. As the electric field approaches the critical
field strength F!”, the eigenvalue of the breakdown mode 4,
approaches 0 and the excitonic insulator ground state
becomes unstable as the local minimum turns into a saddle

point. Further investigations on the breakdown mode z,ﬂ{' in
Appendix G reveal that it accounts for the polarization
fluctuation 6P, which couples with the electrical field in
the x direction.

To find the collective modes, we also need to include
the fluctuation dynamics. In Appendix H, the dynamics
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equation of fluctuation variable z;, is derived from the time-
dependent HF equation as

o= 0 [Kighwe + K] (13a)
k/
o= XK+ K] (13w

k'

which is consistent with the previous study by Wu et al. [24].
After the Fourier transformation to the frequency domain,
the collective modes should be obtained by solving the
generalized eigenvalue problem:

:ia){o IHX"]. (14)
1 0 ]|y

As proved in Appendix H, the eigenvalues w are either zero
or appear in pairs as ), which are the excitation energies of
the collective modes.

In general, the fluctuation eigenmodes solved by
Eq. (11) are not necessarily identical with the collective
modes solved by Eq. (14). But the fluctuation eigenmode
with eigenvalue 4 = 0 is always a collective mode with zero
excitation energy @ = 0. This means that when the eigen-
value 4; in Fig. 5(a) becomes zero when approaching the
critical field F7', there must exist another collective mode
with zero excitation energy in addition to the Goldstone
mode. In Fig. 6(a), the collective modes spectra in the long
wavelength limit (zero momentum excitations) are plotted
as functions of exciton density at zero electrical field.
Because of the rotational symmetry, the collective modes
could be labeled by their angular momentums. In Fig. 6(a),
the s-wave collective mode with zero angular momentum is
indicated by the blue line with cross markers, which is
exactly the zero-energy Goldstone mode. Additionally, the
two degenerated p-wave collective modes with angular
momentum /, = %1 are indicated by the orange line with
dot markers. In Fig. 6(b), the same quantities are plotted as
functions of electrical field strength at a fixed exciton
density n., ~0.068a372 Since the electrical field breaks
the rotational symmetry, the degeneracy of the two p-wave
collective modes is lifted. And the p, mode which couples
directly with the electrical field in x direction gradually
softens when approaching the critical field strength.

In the zero-field limit, due to the angular momentum
conservation, only the p-wave modes with angular momen-
tum /, = +1 indicated by the orange lines in Fig. 6 can
couple with the electrical field directly. Additionally, the
softened p, mode is highly related to the breakdown mode

@
!

X
ka{ ¢
% Vi

’

z,i' in Fig. 5, which is proven in Appendix G to be the
polarization fluctuation 6P, arisen from the relative motion
of electrons and holes. As the Goldstone mode can be
viewed as the analogy to the acoustical phonon mode of

I I N S N N - |
e-h continuum
wS
wh=

0.02 0.04 0.06 0.08 0.10 0.12

T T T T T
e-h continuum
w* i

: Lo ] WPx
. L ] wPr L
0.0 T T T T T
0 1 2 3 4
FIF* x1073
FIG. 6. (a) Collective modes spectra in the long wavelength

limit (zero momentum excitations) as functions of the excitation
density at zero electrical field. The black solid line represents the
mean-field gap, which marks the boundary between collective
modes and quasiparticle electron-hole continuum. Because of the
rotational symmetry, the collective modes could be labeled by
their angular momentum. The s-wave collective mode with zero
angular momentum is indicated by the blue line with cross
markers. The two degenerated p-wave collective modes with
angular momentum /, = %1 are indicated by the orange line with
dot markers. Collective modes with higher angular momentums
are not explicitly marked. (b) At n., ~ 0.068a§‘2, the collective
modes spectra are also plotted as functions of the electrical field.
Since the electrical field in x direction breaks the rotational
symmetry, the two degenerated p-wave collective modes split
into the p, and p, modes.

ionic crystals, the breakdown mode is then similar to the
optical modes.

Because of inversion symmetry, the excitation energy of
the breakdown mode w”+ should be an even function of
the electrical field strength F. Near zero-field strength, the
excitation energy could be approximated by

a)”*(F)za)g‘—n—zon, (15)
where wf* is the excitation energy at zero field and 5y =
—0%wPx(F)|r_ is the polarizability. Then the condition of
the many-body breakdown is just w”+ ~ 0, which means the
critical field is approximately +/2awy," /1,. Detailed analyses
in Appendix I give a more accurate estimation of the critical

field as
FI' 2 ool /210, (16)

which is only related to the zero-field excitation energy w;,"
and its polarizability #,. Near zero field, the polarizability
of the breakdown mode is calculated and plotted in Fig. 7(a)
as a function of exciton density. In Fig. 7(b), the critical
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x1072
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FIG. 7. (a) Zero-field polarizability of the breakdown mode.

(b) The blue dots are the critical field calculated from the self-
consistent procedure, while the blue line is estimated from the
zero-field quantities by Eq. (16), which show good agreement.

fields for the many-body breakdown calculated from the
self-consistent procedure are also compared with the esti-
mated values by Eq. (16), which show good agreement.
Such a many-body breakdown mechanism is completely
different from traditional Zener tunneling and the correspond-
ing critical field strength can be much weaker than the one for
Zener tunneling, as discussed in the following section.

V. DISCUSSION

With the increase in exciton density, the zero-field
excitation energy of the breakdown mode decreases as
shown in Fig. 6(a), while the polarizability grows expo-
nentially as shown in Fig. 6(b). Thus the critical field for the
many-body breakdown also decreases dramatically accord-
ing to the estimation formula Eq. (16). This is reasonable
since with the increase in exciton density, the binding
between electron and hole becomes weaker and the
excitonic insulator will turn into a quantum electron-hole
plasma state [56-61].

From the physical picture of Zener tunneling, the
tunneling current exists only when the gate voltage is
larger than the single-particle gap. Assume the distance
between electrodes is L, then at the critical field of many-
body breakdown F!', the gate voltage is eF!'' L. Comparing
the critical voltage eF7'L with the single-particle gap A
gives a critical value for the electrodes distance:

L, ~AJeF™. (17)

Below the critical distance L., there will be no Zener
tunneling even when the many-body breakdown occurs,
which also indicates that the many-body breakdown
mechanism is distinct from the Zener tunneling and break-
down physics. The ratio /L. ~ F™ /F% roughly measures
the relative magnitudes between the critical fields of many-
body breakdown and Zener breakdown. In Fig. 8(a), L. and
£ are plotted as functions of exciton density. The ratio /L.
decreases with the increase of exciton density and in the
region included in Fig. 8(a) £/L,~ 10"'-1072, which
means the critical field strength for the many-body break-
down is about 10 to 100 times smaller than Zener

@ (b)
e ~ | == L~(ev-n3re-at
102 { e ) T e |
© Nexds * = 0.068 0 A eFmL> A
:l 101 .
(©
------ Le without tunneling | — | =— Im~eV
100 4 — ¢ with tunneling
0.10 0.15 0 eFML<A A
Nex@p 2 eV
FIG. 8. (a) The critical length L. where the onset field for Zener

tunneling F%,., equals the critical field F?' for the many-body
breakdown is plotted as a function of exciton density by the
dotted blue line, which separates the n., — L plane into two
regions, i.e., the green region where the many-body breakdown
occurs without Zener tunneling and the orange region where
Zener tunneling current appears before the many-body break-
down. The correlation length of the excitonic gap £ given by
Eq. (J22) is also plotted by the purple line for reference. And we
only focus on the case with L > £. The two dashed gray lines
mark the paths along which Fig. 2 is generated. (b),(c) I-V
characteristics for the excitonic insulator in the two regions in (a).

breakdown. Such a small field is expected to serve as a
smoking gun to identify the excitonic gap in the BCS limit.

To study the many-body breakdown, the most ideal case
is to avoid the Zener tunneling effect by reducing the
electrode distance. In the green colored region in Fig. 8(a),
where L. > L > £, the excitonic gap is disrupted before the
onset of interband Zener tunneling. For small field strength,
the system is purely insulating at zero temperature and no
current flows. As the electrical field increases, the BCS-
type exciton condensation wave function will lose stability
and exhibit a typical first-order transition feature. After this
transition, the system becomes gapless and highly con-
ductive, and a quasilinear metallic current /,, eV will
flow in the system. Thus a discontinuous switching
phenomenon is expected in the I-V characteristic as shown
in Fig. 8(c).

However, most experimental setups fall into the orange
colored region where L > L. > £, and a tunneling current
will first appear when the in-plane bias voltage exceeds the
band gap. For voltage in the range A < eV < eF'L, this
current is in the form of

I,(eV =eFL) ~ (eV — A)3/2e~(&/V)(L/E) - (18)

The exponential factor e~2L/¢V¢ is the WKB tunneling
probability and the power term (eV — A)*/? arises from the
density of states of the tunneling channels in 2D systems
(details can be found in Appendix J). The tunneling current
persists until the field strength reaches the critical field of
many-body breakdown, after which the excitonic gap dis-
appears and a metallic current /,, « eV appears replacing the
Zener tunneling current /,. However, even at the critical field
F"", the tunneling current /,(F = F"") o e~</¢ in the BCS
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limit is still exponentially small as the critical length L, is
nearly 2 orders larger than correlation length &, as is shown
in Fig. 8(a). This means the discontinuity of the -V curve
like Fig. 8(b) is still observable.

In addition to the smaller value of critical field strength in
the BCS limit, from the discussions above we conclude that
the discontinuity of the /-V characteristic at nearly zero
temperature is also an important feature of the many-body
breakdown since the tunneling current increase smoothly in
the Zener breakdown picture. This discontinuity arises from
the gap closing, and the induced metal-insulator transition
could be identified by investigating the R-T characteristic;
i.e., before and after the many-body breakdown, the R-T
characteristics should behave like a semiconductor and a
metal, respectively, while for Zener breakdown, the local gap
always exists and the R-T curve always shows a semi-
conductor feature. Additionally, the gap closing after the
many-body breakdown may also be identified by charge
compressibility measurements. In the excitonic insulator
phase, the system is charge incompressible when chemical
potential lies between the gap [17], while in the metallic
phase, absence of local gap makes the system charge
compressible.

We note that Sugimoto et al. [41] also proposed a
breaking-down mechanism in correlated insulators which
has a threshold field much smaller than that for Zener
breakdown. However, the mechanism in their work is
distinct from the many-body breakdown mechanism pro-
posed in our work. The many-body breakdown is intrinsic
for an excitonic insulator while the critical field in their work
is related to the extrinsic relaxation time. Additionally, the
typical I-V curve for an excitonic insulator as illustrated in
Figs. 8(b) and 8(c) has size dependence which is already
observed by the experiments of Yang et al. [29].

Finally, the many-body breakdown mechanism is a
breakdown of the electronic band structure and has nearly
no influence on the lattice, which means the breaking-down
process is reversible and the switching phenomenon of the
I-V characteristic is promising for practical usage.
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APPENDIX A: TRIAL STATE

We first prove that under a uniform electric field, the
many-body state will keep its lattice translation symmetry
at all times.

A many-body state |¥;¢) is said to have lattice trans-
lation symmetry if and only if the wave function satisfies

Y(ry + Ry, ....ry, + Rost) = ¥ (ry, ....ry 1),

where N, is the total number of electrons and R, is arbitrary
lattice vector.

The many-body Schrédinger equation in length gauge
(using a scalar field ¢ = eF - r to include electric field) is
written as

i0,YE(ry,....ry 1)

N(,
= { [ho(—iV,i,r,») +eF -r]

+ V(r,»—rj)}‘I‘E(rl,...,rNe;t), (A1)

1<i<j<N,

which seems to break lattice translation symmetry.
However, by taking gauge transformation of the electric
field 0,A(7) = —F and defining

WA(ry, .y f) = ¢ 2 AOTNBE ey cp), (A2)
we find that the Schrodinger equation for [#4) becomes

i0,Y4(ry,....ry 1)

N(’
> hO[=iV, + eA(t).r]
i=1

YA(ry,....ry 5 1), (A3)

+ Z V(ri—r))

1<i<j<N,

which keeps the lattice translation symmetry. So starting
from a many-body state |¥°) with lattice translation
symmetry, the many-body state |¥4;7) as well as [WE; 1)
will have lattice translation symmetry at any time:

WE(r| + Ry, ....ry, + Ro3 1)
— e 2 AW THR)IYAG LRy 4+ Ry 1)
— giNeeA(1)Ro+ida gl ZZIA(I)T"\PA('L TN )

= eNeeADRADPE (p 1y 1), (A4)

When treating a static uniform electric field, as long as
the field is adiabatically turned on, a trial HF state with
lattice translation symmetry could be safely assumed. For
insulators, this state is written as

n,

IGS) = H H ¢l |vac),

n=1keBZ

(AS)

where n, is electron per cell and |vac) is vacuum state. C;k
is creation operators of Bloch electron with wave function
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— (W), ) = %()

where V = Nv, is the volume of the system, A is the
number of unit cells, and v, is cell volume.

W (r) (A6)

As electron creation operators, CZk should satisfy

{Cjnk? an’} = 5mn5kk’7 (A7)

which forces the corresponding Bloch functions to be
orthonormal; i.e.,

<l//mk|l//nk’> = /dr l//jnk(r)l//nk' (r) = 5mn5kk” (Asa)

1
(el = / driy )(r) = 5 (ASD)

c

APPENDIX B: POLARIZED HF ENERGY
FUNCTIONAL

In this appendix, a general form of the polarized HF
energy as a functional of occupied Bloch states will be
derived.

Using field operator ¥(r), the second quantization form
of the single-particle (kinetic and potential energy), polari-
zation, and interaction Hamiltonians are written as

Hy = /drTT(r)hO(—iV,,r)\}‘(r), (B1)

Hp = eF - /dr\PT(r)r‘P(r), (B2)

Hy= [ dradrs¥ (r)¥ () V(ry =) 9 ¥(r). (83)

Matrix elements of the single-particle density operator p
under position basis are calculated as

p(r.r') = (GS|¥!()¥(r)|GS)

=5 e W EHP0). o)

n=1keBZ
= Z Z Wk ()W () (B4)
n=1keBZ
Then its k-dependent counterpart is defined by
/A)k = Ne_ik'i/,\)eik.i' = Z |unk><unk|' <B5)
=1

It is important to note that the single-particle Hilbert space
‘H of p is all kinds of functions while the Hilbert space H,
of py is only the cell-periodic functions. That is why the

prefactor A/, number of cells, appears in the definition of py

in Eq. (BS). And we will see the single-particle and

interaction energies could be expressed as functionals of

Pr and therefore functionals of occupied states |u,).
The single-particle part is

E, = (GS|H,|GS)

_ / drdr' 8(r — )R (=iV,, Flp(r.1')

— Z Z /dry/nk ho( iV, r)wu(r)

n=1 keBZ

= Z Tr [ill%k] ;

keBZ

(B6)

where 7Y = e *TR0(p,#)e®” = W°(p + k,#) is  the
k-dependent single-particle Hamiltonian acting on cell-
periodic functions with matrix elements:

dru’ () (=i, + k. P)u(r).  (B7)

Ve Jeell

Similarly, the interaction part is evaluated with the help
of Wick’s theorem,

(GS|H,|GS)

:% / drdr'V (r — ) (% (1) ()9 ()9 (1))
-2 / drdr'V(r =) [p(r, (e ¥) = ple' F)p(r, )
:ﬁ;V(q) / drdr'e®" ") p(r.r)p(r'. 1)
—%;V(q) / drdr' et ") p(r Pp(r.F),  (BS)

where V(gq) = [drV(r)e™" is the Fourier transformation
of V(r). The first part in Eq. (B8) is the Hartree energy and
is simplified as

1 )
Ey= EZV(q) / drdr'e’® ") p(r,r)p(r'r')

VZV /dre"”z

n=1k, €BZ

x/dre"q'JZ Z wmko

m=1k, €BZ

PPN

keBZ q

Z V(G)TI’[ tGrpk]Tr[ lGrpkz]
k €BZG

Wi, )W, ()

l//mkz (r/ )

S46Tr [Py | Tr[e™7py |

1

= (B9)
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where G is reciprocal vector. The e’¢" term in Eq. (B9)
should be understood as a single-particle operator that acts
on |u,) as

(e lu) =S U (r) =t (r) = (rlug—g).  (B10)

The second part in Eq. (B8) is the Fock energy:

EF:—$ZV(q)/drdr’e"q'("")
X Z Z l//nkl

m,n=1k;EBZ

2

k;eBZq

W nie, VW ey, (D)W o (1)

)8k, —kr+ G Tr[€7C7 Py Py |

:_— Z V(kl —k2 +G)Tr [e_iG';p iG: rpkz]
k;,eBZ.G

(B11)

The polarization energy cannot be expressed by density
operator py but is still a functional of occupied states:

Ep = (GS|Hp|GS)

=eF- / drrp(r,r)
=eF- Zzékk’/dn//nk' r)ryu(r)

n=1 kk'

N,
= eF'ZZ@:k/ X [—ivk/d"l//flk/(")l//nk(")

n=1 kk'

1 k!
+ v/ dreik—k )‘ru:;k’ (r) iV, (r):|
N,
— €F . Z Z(Skk/[—ivkékk/ +

n=1 kk
e
= Z Z(unk|ieF ’ vklunk>‘
n=1 k

This result is consistent with the Berry phase definition
of polarization. For a finite-size system with periodic
boundary conditions, the polarization and the polarization
energy should be written with the discrete form of Berry
phase as [44]

<unk | ivkunk>]

(B12)

Ep == kn Imzk: log det S(k.k + Ak), (B13)
where |Ak|| = 2z/L and is along the direction of electric
field. The overlap matrix § is defined as
Son (k. k') = (U |ttpe) mn=12,..n,. (Bl4)

APPENDIX C: MEAN-FIELD HAMILTONIAN
AND SELF-CONSISTENT EQUATION

The total energy as a functional of occupied bands
{|u) }oe, is written as

Eol|tti); F] = Eo[pi] + Englpe] + Eplluw); Fl,  (C1)

and the stationary state is found by minimizing E, with
constraints

<umk|unk> = 5mn’ (C2)

By introducing Lagrange multipliers &,;, the constrained

minimization of E, is transformed into an unconstrained
minimization of

Fllue); Fl =

+ Z&nk

Let us calculate the unconstrained derivatives of F' with
respect to (u,;|. We first show that

| Z Vlkv |0k2 |unk2

= 5k1k20k2 |unk2>‘

(C3)

Etot |unk nk|unk>>'

5TrL6k2 Ok2 _
6<unk1| nk]

(C4)

The single-particle, Hartree, and Fock energy functionals
all take this form and thus are easily evaluated:

= C5
5<unk| klunk>’ ( )
SEy; 1 S
=5 V(G)Tr[py,e e [u,y),  (C6)
6<uz1k| V k, ;:Z,G & “
OEF ! iGip  a—iGF
6<unk|:_]_) Z V(k—k2 +G)CG pkze G |unk>' (C7)

k,eBZ,G

From the expression above, we could define the Hartree
and Fock Hamiltonian as

1

W) =5 Y. V(G)Tr[p,e7e’67,  (C8)
k, €eBZ,G
BE[A 1 G a—iGF
hE [pi] = > Vik—ky +G)ep e (C9)

k, €BZ.G

As functionals of gauge invariant single-particle density
operator py, the Hartree and Fock Hamiltonian defined in
Egs. (C8) and (C9) are also invariant under k-space gauge
transform of the occupied bands.
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As for the polarization term, we start from the discrete
form Eq. (B13) and take the thermodynamic limit later.
Let us first rewritte Eq. (B13) as

PZZ’ZI; | zk:[logdetS(k,k+AkH) —logdetS' (k,k+ Ak)]
= 2’21; ;[logdetS(k,k%- Ak ) —logdetS(k + Ak .k)]
_ 2’2’; | Ek:[logdets(k,m Aky) —logdet S (k.k — Aky)]
- 2’2’; | k;ialogdetS(k,k—l—oAk“ ) (C10)
Then the unconstrained derivatives of Ep is
;i; = ziZIl:“ o {Z”Z log det S(k. k,) }
= ;Z:“(Xunk {;a;Tr log S(k, k,,)]
356 2 e )
_ ;ZZ” Z mek (kK. (C11)

o= m=

where abbreviation k, = k + oAk is used for simplicity.
Denote |D,;) = 6Ep/8{u,|. It is easy to see that

iel
2k 2 ZGZSM (k.k,)S;L (k. k,)

m=1
ieF
= )
20k Z{;a "

=0. (C12)

(U D) =

So the polarization Hamiltonian could be defined as

|unk Z |an nk| + H.c. (C13)
and satisfies
R n, 5E
hlf'”nk> = Z |Dmk>6mn = |an> = —P (C14)
m=1 5<unk‘

Before processing, one should verify that this
definition of polarization Hamiltonian is a gauge invariant.
By denoting o = (et1h)s oo [ty 1))
Hamiltonian is written in a neater form:

the polarization

' iel Lt
hi 2AkHZGq)k (djdy; )~'@; + Hec.

(C15)

A k-space gauge transformation (Uy), ., on occupied

bands will transform ®; into ®,U;, and the polarization
Hamiltonian becomes

ieF
2AkH

ieF )
— T T _ + T
2Akuza®k U, U (@@ )™ (U;) ™' U, @ +Hec.

(hfY = Za@k U, (U@, U, )™ Ui} +Hec.

=ht, (C16)

which is invariant.
It is easier to see this gauge invariance in the thermo-
dynamic limit L — oo and dk = Ak — 0. In this limit,

Sun(kke) = 8, + 0 (1] O 10,1 (C17a)

Sr_rl]n (k’ ko’) = 6mn - 6<Mmk|aku unk>dk7 (C17b)

SO

iel
nk 2dk ZGZ |umk + 0|akH umk>dk)
X (5mn - 6<umk|akH ”nk>dk)
= ieFZHakH umk>6mn - |umk><umk|akH unk>]
m=1
=ieF(1

= i) Ok tie) (C18)

and the polarization Hamiltonian in the thermodynamic
limit is written as

lim Y = ieF
Jim i le

=ieF(l1

= Pic) Ok i) (| + Hec.

= ieF - [Vipy. prl- (C19)
The thermodynamic limit expression Eq. (C19) is only a
functional of the gauge invariant p, and thus is also a
gauge invariant.

Finally, minimization of F[|u,);
consistent equation,

F] gives us the self-

II:/IF[lunk>; F”unk> = gnklunk>7 (C20)
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where the mean-field Hamiltonian is

T = I+ b (pu] + B pe] + R llu)s I (C21)

APPENDIX D: HESSIAN MATRIX

Assume F < F7', and the self-consistent equation has
solutions

W (|vk; F))|ik; F) = Eq.plik; F), i=cv. (DI)
The valence band |vk; F) is chosen as the one with lower
band energy, i.e., &y p <&, The F label in wave
functions and band energies means they are converged
solutions.

At the converged point (local minimum of the energy
functional), the trial HF state could be reparametrized as

ks F) = |vk; F) + z|ck; F) ’

V14 |z

where z; is an arbitrary complex-valued function defined
on Brillouin zone. This parametrization is unconstrained
and complete, and the grand potential then becomes func-
tional of z; as

(D2)

Eglz, 21 F] = Eg||vV'k; F); F). (D3)

By writing z; = x; + iy, the Hessian matrix is defined as

1 FEg SEg

Oxoxyr OXgOYy

Hiw = = D4

Jeke 2 | SEg 5*Eg ( )
Oyroxy  OyEOyy

To be consistent with the notation in Wu et al. [24], we will
also denote the diagonal part of the Hessian matrix as A(+)
and ). Additionally, the upper off-diagonal part is

denoted as KX). In summary, the Hessian matrix is written
in the form of

(D5)

For simplicity, the F label will be omitted in the
following derivations.

We first calculate the derivatives of |v'k) with respect to
X and y; for further usage.

oK) _ —ulk) + (1= inglek) o
o (=P

SIK) _ nlok) +i0 4 nalk)
o (TP

At z; = 0, they are simplified as

S|v'k S|v'k
L2 k), ROl . (s
OXg | 5—0 OV |z=0
The second-order derivatives of |v'k) at z; = 0 are
&|v'k)
B DY
0% |, e | Uk) (D9)
&|v'k)
= =0 |Vk), D10
5K o i [vke) (D10)
'k
LTI (D11)
5xk5yk’ 2%=0

The first-order derivative of E; defined by Eq. (2) is

5EG 5<U’k| 5EG
= + c.c.
Sxy, ox; 8(v'k|

5(v'k|

== — W [vK)][vk) +cc.  (D12a)
k

OE 5(v'k

ETe _f;;,i' REVR)vE) +c.c. (DI12)

We use the definition of mean-field Hamiltonian
hY'¥[|vk)]|vk) = SE;/5(vk| in Eq. (D12). At z; = 0, the
first-order derivative is just

SE
G = (ck|)[|vk)]|vk) + c.c. = 0,
5Xk Zk:()

SE

G = —i(ck|hM¥[|vk)]|vk) 4 c.c. =0,
5yk ;=0

which is consistent with the fact that | vk) is a local minimum.
Then let us evaluate second-order derivatives of E;:

&Eg
5xk5xk/ =0
ok R
6Xk Zk:() 6Xk/ Zk=0
S(v'k| 8|0k
T oxs hllyl F[lv'k)] “oxe
xk Zk:() Xk/ Zk:()
8 (V'k|
— WNE[0'E] [0k .C.
5xk5xk’ 2=0 k HU >]|U > +c.c
ShM¥(|v'k
= O (Sok — Sure) + (ck| w |vk) + c.c.
X =0
(D13)
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Similarly,
&Eg
OYiOY | ;=0
o ShMEWE
= S (Eox — Eux) — i{ck]| w |vk) +c.c.
Vi ;=0
(D14)
and
8’E ShMF[|v'k
—4 | = @k\w |vk) +c.c. (DI5)
OxkYk' |, —0 12 772 P

So the final task is to evaluate the derivatives of i}'" with
respect to x; and y.
The derivatives of Hartree Hamiltonian 4 are

Shtt
(ck]| |vk)
5)Ck/ =0
_4rzetd(ck|e) e|vk) bney
€ x| =0
_ 4ne’d(ckle)(e|vk) [5(v'k| onex |
€ OXyy 5<1}/k| 2=0
dreldlck k) [1
_ Anme (ckle){e|vk) [_<Ck/|e><e|vk’>+c.c.]
€ v
2 4ne*d(ck k
_2 e (c |e><e|1} >Re[<ck/|e><€ka/>]
v €
and
Shtt
(ck| |vk)
5yk' ;=0
_ e <C |e><e|v > |:_iv<ck/|e><e|1jk/>+c.c.
€

2 4re*d(ck k
_ 24ned(ckle)(elok)

v . [{ck'|e) (e[ vk")].

The derivatives of Fock Hamiltonian h,f are

Shi
ox k'

(ck]| |vk)

Zk:()

1 5pss’k’
= —— (k=K (ck vk
S Vall k) ek 5100 K|

== SVl =) ekls) (k)

X ((vK'|s") (s]ck’) + (ck'|s") (s|vk’))

and

Shf,
k ss'k
(ek| s

vk
- |vk)

=0
i / !/
= SV =Rk 5k

x ((oK'[') (slck’) — (ck'|s') (o).

As for the polarization term, we use the fact that

5|v'k)
<Ck|hlf?k/ X 5kk/<ck|l’l,f|ck> = O,

;=0

where we have

sht

k
(el S

|vk)

;=0
S(hg|v'k))
5xk/

= (ck|

;=0

B 5 [ieF o|v'k,)
= (k5 [k Z VK| o'k
< k [ o=+1 c
ieF (ck|ck,)
frnd 6/ —_—
20k z"{ ¥k ok vk,

o=+t
<ckvka><vk|ck6>]
((vk|vk,))?

=0
 ({ck|vk,))*
 ((vk|vk,))?

— O,

and

Shf

ck
(ck| Se

|vk)

;=0

_ieF o (cklck,) .o ((ck|vk,))?
= 3ak 27 o ek 5 o)

<Ck|vkg><vk|cka>]
((vk|vk,))?

— iy,

APPENDIX E: PHASE AND DENSITY
FLUCTUATIONS

In this appendix, we will prove that under a proper gauge
for the mean-field conduction and valence band wave
functions,

i /2 iy /2
|vk>—[e “"], |ck>—[e P

e_i¢k/2ﬂk _e_i¢k/2ak

], (E1)

where @, > 0 and a® + > = 1, the real and imaginary
part of fluctuation variables z; introduced in the main text
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by Eq. (8) are exactly the density and phase fluctuations of
the EI state.

When the gauge is fixed, the relation between the single-
particle density matrix and valence band wave function is a
one-to-one correspondence. For the valence band wave
function |vk) in Eq. (El), the density matrix is just

5 .
a; eeay iy

px = |[vk)(vk| = | _
e oy pr

1 . (E2)

where the off-diagonal part p,,;, = €%y is the EI order
parameter.

Let us first consider a phase fluctuation to the EI order
parameter pou — ply = €Yy B Then the valence
band wave function becomes

(E3)

|vk) — [v'k) = [ et Py }

i utom)/2,

which could be written as linear combinations of |vk) and
|ck) as

|v'k) = (vk|v'k)|vk) + (ck|v'k)|ck)
— (/2 4 FReithl2) k)
+ g (P2 — e P02 | ck)

~ |vk) + idgraufr|vk). (E4)
Comparing Eqgs. (E4) and (D2) we find that the phase
fluctuation ¢y, of the EI order parameter is directly related
to the fluctuation variable z; = id¢ oy, which is pure
imaginary.

Then let us consider the density fluctuation p,,; —
P = € (aqfy + 6ny). Assume ay and f; transform to
a = oy + 6oy and f), = Py + 6f, then up to linear order
of ony, day and Of; should satisfy

a}cﬂ;c = akﬂk + 5I’lk = akéﬂk + ﬂkéak = 5nk, (ESa)
(a;c)z —|— (ﬂ;c)z = 1 = (Xk5(lk +ﬂk5ﬂk = O (ESb)
And by, 6p; are solved as
I} 1)
bay = — DOy OOk g
o = Py o = Py

The valence band wave function just transforms to

e/ (g + Soy)

vk) - |[vk) = . ,
k) = k) T2 (B + 5py)

(E7)

which could be written as linear combinations of |vk) and
|ck) as
|v'k) = (vk|v'k)|vk) + (ck|v'k)|ck)
= (af + aboy + B + PSPy | vk)
+ (Brday. — oy 3py)|ck)

= |vk) — 6ny/ (o — Bp)Ick).
Comparing Eqgs. (E8) and (D2) we find that the density
fluctuation ony, of the EI order parameter is directly related

to the fluctuation variable z; = —&n;/(ag — fz), which is
pure real.

(E8)

APPENDIX F: GOLDSTONE MODE

The many-body Hamiltonian Eq. (1) is invariant under
gauge transformations of the electron creation operators:
ch, = eitect, el — el . This U(1) x U(1) symmetry
corresponds to the charge conservation in each layer.

After this global gauge transformation, the valence band
electron creation operator becomes

(1) = el /2430 T 1 peil=h/2+00) ¢l (F1)

which gives a new trial wave function of the valence
band as

el(¢k/2+5¢e)ak _ 15¢ el(¢k+§¢ex>/2ak
e_i(¢k+5¢ex )/zﬂk

) = | G

o=t/ 24001) g,

where 6¢ = (¢e + ¢h)/2v 5¢ex = (¢e - ¢h)/2 are related
to the conservation of total charge and exciton number,

respectively. The relative density matrix p = p — p° trans-
forms into

2 i (D +Opex
ay, e’((/’k P )akﬂk

L
Pr L—i((/wa«tex)akﬂk g1

the overlap matrix S(k,k) = (vk|vk')

1 . (F3)

Additionally,
becomes

S'(k, k') = (vV'k|v'K')
_ ei(¢k/—¢k)/2akak/ + C_i((pk/_[ﬁk)/zﬁkﬂk/
— S(k ). (F4)

Substituting Egs. (F3) and (F4) into the grand potential
expression Eq. (2) we find that e5[|v'k); F| = eg||vk); F];
i.e., the grand potential is invariant under the transforma-
tion |vk) — |v'k).

The U(l) symmetry related to exciton conservation
(phase fluctuation é¢., = ¢, — ¢, of electron-hole pairing
condensate p,;;) gives a zero-energy Goldstone mode to
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FIG. 9. Overlap between the Goldstone mode and the zero
mode of the Hessian matrix.

the valence band fluctuation. Compare Eqgs. (E3) and (F2),
and the Goldstone mode is directly obtained from Eq. (E4)
as z9% o i6hex P

The overlap between the Goldstone mode zo° and
the zero mode z,'io of the Hessian matrix Eq. (10) is
calculated as

I=[(z* ) (F5)

Z(ZGs

and plotted in Fig. 9. The results show that I is equal to 1 in
numerical precision, which means the zero mode of the
Hessian matrix is indeed the Goldstone mode z,?s discussed
in this appendix.

APPENDIX G: BREAKDOWN MODE

In this appendix, we will prove that, in the zero-field

limit F = 0, the breakdown mode zi‘ shown in Fig. 5 is the
only fluctuation eigenmode which accounts for the polari-
zation fluctuation in x direction (the direction of electri-
cal field).

At zero electrical field strength, the bilayer model has a
continuous rotation symmetry. In addition, the phase of the
EI order parameter p,;; is a constant, as shown by Fig. 4,
which could be chosen as zero due to the electron-hole U(1)
symmetry. At this time, the valence band wave function
could be written in the form

wfl

where ay, f; > 0 are only functions of the norm of k. When
phase and density fluctuations ¢, and dny, are considered,
the valence band wave functions becomes

iogy/2 + 6
€ (. + Soy) } (G2)

U/k - . 9
k) L—za(/),,/ 2(Br + 6pr)
where the relation between day, 6f; and 6n; is given by

Eq. (E6). Then the ground state polarization density in x
direction becomes

d*k .
P, = / 2n)7 (v'klioy |v'k)

— /(({l—kl [(a + 60u)* — (B + i) |0k O

271.)2 2 (G3)

To first order of d¢p and ony, the polarization fluctuation is
written as

Pk @ —p2
6Px—/ T (G4)

27)?

where only the phase fluctuation leads to the fluctuation of
polarization 6P,. Because of the rotational symmetry at
zero field, the phase fluctuation ¢, could be expanded into
channels with different angular momentum as

S =) e, (G5)

where 0 is the angle of k. Since d¢y, is real, the expansion
coefficient satisfies 5¢p} = (5¢;')*. Then 0, ¢y becomes

ok
Or, 8 =Z<5k 0udp} + il 5 ) v

ind¢! sin @

= Z (cos 00,6¢", — P > e’ (G6)
]

and the polarization fluctuation is rewritten as

1
6PX:ZQ

[/ kdk(a2 — 7)oy 59 /2 de cos e’’’
]

2 X
—in/dk(a%—ﬂ%)éqﬁf{/ dQSinQe’”’]
0
Z—/kdk

which means only the real part of 54[)5(:1 can contribute to
the polarization fluctuation in x direction. Keeping only the
real part of 54! in Eq. (G5), the phase fluctuation related
to the polarization fluctuation is in the form of

— 2)0;Resgp=", (G7)

S¢py ~ 2Redpl=" cos 0. (G8)

In Fig. 10, the real (density fluctuation) and imaginary

(phase fluctuation) part of the breakdown mode zk = xi‘ +

zyk' are plotted at zero field and the critical field strength.
At zero field F =0, the off-diagonal part XX of the
Hessian matrix Eq. (10) is zero. So the density and phase
fluctuations are decoupled. Figures 10(a) and 10(c) show
that the breakdown mode at zero field is a pure phase
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FIG. 10. (a),(b) Real E)art (density fluctuation component) of
the breakdown mode z;' at zero electrical field F = 0 and the
critical field strength F = F”'. (¢),(d) Imaginary part (phase
fluctuation component) of the breakdown mode z,'i'. These
plots are generated on the 120 x 80 k& mesh with exciton
density ne, ~0.068a;72.
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fluctuation of the type of Eq. (GS8), which exactly corre-
sponds to the polarization fluctuation 6P,. When electrical
field is turned on, K®) becomes nonzero, which will mix
the density and phase fluctuations. As a consequence,
the breakdown mode will gain some density fluctuation
component, while the main component is still the
phase fluctuation of the type of Eq. (GS8) as illustrated
by Figs. 10(b) and 10(d).

APPENDIX H: FLUCTUATION DYNAMICS
AND COLLECTIVE MODES

To find the collective modes, we also need to study the
dynamics of the fluctuation variables zj.
The time-dependent trial HF occupied states is defined as

ks £) + g (1)e!Cain | ks )

|0k 1)
1+ |z (n)?

. (H1)

where |c/vk;t) = e~/n!|c/vk). In the definition of z;(t)
in Eq. (H1), the dynamical phases e/(é#«~%)" from the time
evolutions of |vk;f) and |ck;r) are subtracted. The time
evolution of Eq. (H1) should satisfy the time-dependent HF
equation:

i0,|v'k; 1) = WY (|v'k; 1)) |v'k; 1) (H2)
To zeroth order of z;, Eq. (H2) becomes
h,I:’[FHvk; 0]|vk; t) = io,|vk; t) = & |vk; 1y, (H3)

which is exactly the self-consistent equation Eq. (7). To
first order of z;, Eq. (H2) becomes

(10,24 (1) = (£ — &)@/ Ca=Cw)t | che; 1)
-y [5”24 i S
I 5xk/

Syw
Or, equivalently,

xp (1) +

Ik =0

ym)} k1), (H4)

K =0

iatzk(t) :fck _Cka

§hMF
k k
AL

MF

oh
xp (1) + %
x oyr

e ()] 18

(H5)

ke =0 Tk =0

By taking real and imaginary parts of the previous
equation and using the definition of the Hessian matrix
Egs. (D4), (D5), (D13)—-(D15), we finally get the dynamics
equation of the fluctuation variables as

0= Kl + Kidwe| . (H6w)
k/
o =3 [ic,ﬁfjgxk, n IC,((_,)yk:}, (H6b)

K

which recovers the dynamics equation in Wu et al. [24]
(the dynamics equation in their paper is derived from an
effective field theory and there is a sign error when they
apply the Euler-Lagrange equation).

To solve the dynamics equation, let us omit the subscript
k and write the dynamics equation in a neater form as

X 0 Z by
0, = H ,

y -Z 0 y
where 7 is the identity matrix. Since the Hessian matrix H
is real symmetric and non-negative, the square root of

‘H is well defined and is also real symmetric. Define
u = +/H(x,y)", then Eq. (H7) could be written as

(H7)

0,u = Du, (HB)
where the coefficient matrix D is defined as
0 7
D= x/ﬁ[ ] VH. (H9)
-7 0
It is easy to verify that DT = —D, which means D is a real

and antisymmetric matrix. As an antisymmetric matrix, the
eigenvalues can only be zero or pure imaginary numbers.
As a real matrix, the imaginary eigenvalues must appear in
pairs as +iw, where w could be viewed as the excitation
energies of collective modes.
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The fluctuation eigenmodes (x*,y*) of the Hessian
matrix H are not necessary to be the collective modes
since the collective modes are eigenvectors of the D matrix
defined by Eq. (H9). However, the zero mode of Hessian
matrix is always a collective mode with zero excitation
energy. Assume (x*,y*) is a zero mode of the Hessian
matrix such that

(H10)

then we can verify that

vV | =va| © nl 20, @
w=ova| | =] © Y=o g

APPENDIX I: ESTIMATION OF THE
BREAKDOWN FIELD FROM ZERO-FIELD
QUANTITIES

Because of inversion symmetry, the excitation energy
of the breakdown mode w”+ should be an even function of
the electrical field F. Additionally, near the critical field
strength F' ~ F'', the critical behavior of the excitation
energy should be

@l (F = F" +07) ~ (1= F/F7Y, (11)

where v is the critical exponent of the many-body break-
down phase transition. Define zero-field excitation energy
as wh* = wP<(F = 0), then (wPx/wh*)* is replotted as a
function of (F/F™)? in Fig. 11(a), which shows a good
linearity. This indicates that the critical exponent is
v=1/4, and the excitation energy as a function of
electrical field strength could be fitted by

o (F) = af [l = (F/F)]'%, (12)

which is also shown in Fig. 11(b).

(FIFM)?

FIG. 11. (a) (wPr/wh*)* as a function of (F/F™)> which
shows a good linearity. The orange dots are numerically
solved data while the solid line is the linear fit. (b) Fit of
excitation energy of the breakdown mode w?+ by the function
form P« (F) = o} [1 — (F/F™)*V4.

Near zero-field strength, Eq. (I2) is approximated as

PX
@y

A(F2)?

o’ (F - 0) o} — F?, (I3)
and the polarizability is just 5y = —0%w"(F)|p_y =
w?b*/2(F™)?. This means the critical field for the many-

body breakdown could be estimated from the zero-field
excitation energy w/* and the polarizability 7, as

Fi =\ /2n. (14)

APPENDIX J: INTERBAND ZENER TUNNELING

Consider the interband tunneling problem of the 2D
continuous model,

_E % A
7 2m 2m 2 2
h= ! +V(x), (1)
A ‘)_34_ 9 +&
2 2m 2m 2

where the barrier potential V(x) is defined as

eFL/2, x<-LJ/2
V(x) =< —eFx, —-L/2<x<L/2 (J2)
—eFL/2, x>L/2.

For a given tunneling energy FE, the Schrodinger equation is
h|¥; E) = E|¥;E). (13)

Since the electrical field is applied only along the x
direction, translation symmetry in the y direction still holds
and k, is a good quantum number. Following Zener
and Fowler [30], we could write the approximated WKB
wave function as

X

W) ; E) o exp [ikyy + i/

e [l ) (04
If k(x) is slow varying so that d,k(x) could be neglected,
substituting Eq. (J4) into the Schrodinger equation we
find that

Ty, Bror,) = (B = V@) |Eror,),— (95)
where
B(x)  pealky) A
o 2m 2 2
ko, = A R(x) | ek | ()
2 ~ S T2
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and pey (ky) = pd — k3 /m. Solving the secular equation (J5)
gives the relation between the complex wave vector k(x)
and position x:

[k2(x) = mue]? + (mA)? = {2m[E - V(0)]}>. (I7)

Things are different for u., > 0 and ., < 0 and should be
discussed separately. The condition ., (k,) = 0 gives a
critical k, as

ﬂex(ky) = ﬂgx - kf/m =0= ky,c =V m/“l(e)X' (Js)

The tunneling scenario for yy (k,) > O (or equivalently
ki < k3 ) is illustrated in Fig. 12(a). As a tunneling state
propagating to the right, ‘Pky;E> should behave like a
valence band electron in the region x < —L/2 [k} states
in Fig. 12(a)] and like a conduction band electron in the
region x> L/2 [ki states in Fig. 12(a)]. This places a
restriction on the tunneling energy (A —eFL)/2 <E <
—(A — eFL)/2, which further demands that eFL > A. In
other words, the interband Zener tunneling occurs only
when the in-plane bias voltage exceeds the band gap.

As the electron propagates to the right in the region
|x| < L/2, the complex wave vector k(x) will travel from
k7 to k% in the complex plane along the line [34]

Im[kz(x) - m,"‘ex]2 =0. (J9)

Equation (J9) is just the imaginary part of Eq. (J7) and is
solved as

Imk x Rek x [(Rek)? — (Imk)? — mype,] = 0.

(@) ®).
VAV Y
AeFL

(J10)

FIG. 12. (a) Tunneling scenario for y(k,) > 0. The tunneling
channels kf — ki exist only when in-plane bias voltage over-
comes the band gap, i.e., eFL > A. Under WKB approximation,
the valence band k§ states in the region x < —L/2 will con-
tinuously turn into the conduction band k% states in the region
x> L/2 as propagating to the right. x. = (£A/2—E)/eF
marks the classical turning points. (b) The paths of the complex
wave vectors k?(x) in the complex plane are indicated by the
black arrow lines.

The solutions of Eq. (JI0) in the complex plane are
represented by dashed gray lines in Fig. 12(b). The paths
of k°(x) in the complex plane are also illustrated by solid
black arrow lines in Fig. 12(b). This analysis means that
k*(x) and k™ (x) are two independent tunneling channels.

It is important to note that the tunneling channel k™ (x)
exists only for tunneling energy E > —(A’'—eFL)/2,

where A’ = \/u2, + A% This is because there is no k;
state in the region x < —L/2 when E < —(A' — eFL)/2,
as is shown in Fig. 12(a). So the allowed tunneling energy
range for k*(x) channel is E, = (eFL—A)/2 and
El. = max[—(A"—eFL)/2,(A — eFL)/2]. Similarly, the
tunneling channel k~(x) exists only when tunneling
energy is in the range FEp, = min[(A’—eFL)/2,
(eFL—A)/2] and E;, = (A —eFL)/2.

Once these energy conditions are satisfied, one can
calculate the tunneling probability under WKB approxi-

mation directly by

. Wy, =L/ZE)P _ 20 (E)

B = a=rzpr ¢

K7 ko ke,

where (7 (E) is the Zener parameter defined by

£ (B) = / " dx[Imke (x)]. (111)

The lower and upper limits x. = (+A/2 — E)/eF of the
integration are the classical turning points. Only in the
range x_ < x < x_, k°(x) has an imaginary part:

[Tmk? (x)| = \/%\/\/,ugx + A? —4(E 4 eFx)? — piex.

So the Zener parameter is calculated as

</ A
CZV(E)_z\/EnZF/ dE\/ ﬂgx+A2_E2_,uex
—-A
A3/2 1
- V\;% . / de\/ o+ 11— —fi.  (J12)
e 0

where fiex = piex (ky)/A = (ud — k3/m)/A > 0. One can
see that ¢7 (E) = {(k,) is only a function of k,. So the
transition probability is also only a function of kj;

ie. Pliey (E) = Pk,) = e~ 2(ky),

The current contributed by state |¥; k7 — k%) is
calculated by multiplying the tunneling probability with
the velocity Ve hok, = ak;&v,k; k, of the final state. Sum all

possible final states k% together and we get

021047-19



YUELIN SHAO and XI DAI

PHYS. REV. X 14, 021047 (2024)

_ —ez / Wi pyrs, |
Z/Jmax

min

)ak;“?e,k;k.‘;

(J13)

where SE(k,) = min[2(eFL — A), A’ — A].

On the other hand, the tunneling scenario for the case
fex < O (or equivalently k? > k3 ) is shown in Fig. 13(a).
Different from the case pu. > 0, there exists one and
only one tunneling channel |"ka§kL — kg) for tunneling
energy in the range E,, = (A’ — eFL)/2 < 0 and E,, =
(eFL — A’)/2 > 0. And the path of the wave vector k(x) in
the complex plane is indicated by the black solid arrow line
in Fig. 13(b). The existence of tunneling channels requires

eFL > A'(k,) =
bound for k%:

3 (ky) + A%, which gives an upper

k3 < K oy = m[ O ++/(eFL)? - AZ} (J14)

In this case, the classical turning points are x/, =
(£A’/2 — E)/eF. In addition to the region x_ < x < x,
the complex wave vector k(x) also has an imaginary part in
the region x’ <x <x_ and x, <x <x/;, which is

Imi(x)| = \/ﬁ\/ sl = \J4(E + eFx)? - A2

The Zener parameter in this case is

A'%/Z
E(ky) = “\;eF U de\/\/ﬁ§x+1—€ + ||

+\/§1mds\/|ﬂex|—\/82—l], (J15)

FIG. 13. (a) Tunneling scenario for pie(k,) < 0. In this case,
there is no band inversion and the band gap becomes A’ =

\/A? + pZ,. There exists one and only one tunneling channel
k; — kg when tunneling energy satisfies |E| < (eFL —A')/2.
(b) The path of the complex wave vector k(x) in the complex
plane is indicated by the black arrow line.

where fig, = pex(ky)/A = (ud — k3/m)/A < 0. Then the
WKB tunneling probability is P(k,) = e *®) and the
current density is

eP(ky)

Jky) = — 5 SE(ky). (J16)
/.
where 6E(k,) = eFL — A'.
Combining Egs. (J13) and (J16) and integrating over k,

gives the final expression for the tunneling current density,

e ky max
j=—-——7—7— / dk e~ 2k

P SE(k,).

(J17)

—k y.max

where SE(k,) = min[2(eFL — A), A’ — A] for k} < mug,
and is eFL — A’ for k} > mud. In addition, the Zener
parameter {(k,) is given by Eq. (J12) for k2 < mpud; and is
Eq. (J15) for k3 > mug,.

The integration in Eq. (J17) could not be solved
analytically, but we can give an upper estimation for the
tunneling current. The Zener parameter {(k,) is a mono-

tonically increasing function of k2 thus,

A’%/Z
C— \/_eF / \/\/ +1_€ _ﬂem J18

where 0, = u% /A. It is convenient to define the correla-
tion length of the gap (penetration depth of the electron
wave function into the classically forbidden region),

1
= \/ZmA[) dE\/\/(ﬁng +1-& =i, (J19)

and the tunneling length £ = A/eF. Then the tunneling
probability is approximated as P =e % <e7/¢,
Additionally, one could verify that SE(k,) <2(eFL—A),
so an upper bound for the current density is estimated as

e(eFL—A)e‘f/g\/m[Bﬁ (eFL)Z—AZ], (J20)

<—
1l =

which generates a Zener tunneling current in the form of

I, ~ (eFL — A)3?e?/¢ (J21)
in the thermodynamic limit eFL > A.

In excitonic insulators, uJ, appearing in this appendix
should be understood as the exciton chemical potential
normalized by original band gap E, and the HF self-energy
SHE e, ply = pd — E, — Tr(Z%6,), which is roughly

021047-20
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related with exciton density as pb, = k%/m = 4xne,/m.
Then the correlation length as a function of exciton
density is

&l = \/2mA/1 ds\/\/(/"/ex)z/A2+ 1 -2 —ul /A
0

_ mA /ldg Vi-é& )
V2R T (1 )b A + 1

(J22)
In the high exciton density limit,
£ mA [l devV1—¢>  zmA A (123)

~ V27hey V2 T 8y mn..  Avp
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