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We propose a new electrical breakdown mechanism for exciton insulators in the BCS limit, which differs
fundamentally from the Zener breakdown mechanism observed in traditional band insulators. Our new
mechanism results from the instability of the many-body ground state for exciton condensation, caused by
the strong competition between the polarization and condensation energies in the presence of an electric
field. We refer to this mechanism as “many-body breakdown.” To investigate this new mechanism, we
propose a BCS-type trial wave function under finite electric fields and use it to study the many-body
breakdown numerically. Our results reveal two different types of electric breakdown behavior. If the system
size is larger than a critical value, the Zener tunneling process is first turned on when an electrical field is
applied, but the excitonic gap remains until the field strength reaches the critical value of the many-body
breakdown, after which the excitonic gap disappears and the system becomes a highly conductive metallic
state. However, if the system size is much smaller than the critical value, the intermediate tunneling phase
disappears since the many-body breakdown happens before the onset of Zener tunneling. The sudden
disappearance of the local gap leads to an “off-on” feature in the current-voltage (I-V) curve, providing a
straightforward way to distinguish excitonic insulators from normal insulators.
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I. INTRODUCTION

The excitonic insulator (EI) is an insulating phase where
electron-hole pairs condensate [1–3]. Historically, exciton
condensation in solid-state systems has been predominantly
examined in three distinct types of systems. First, exciton
condensation states have been extensively studied in
semiconductors with optically pumped electrons and holes
[4–6], which is also called exciton-polariton. Although this
is essentially a nonequilibrium system, it can be treated as
an approximate equilibrium state for a brief period within
the lifetime of electrons and holes. The second type of
system comprises semimetal materials with equal-sized
electron and hole pockets [7–10]. The conservation of
electron and hole numbers is ensured by specific sym-
metries, such as translation symmetry for electron and hole
pockets located in different areas of the Brillouin zone or

horizontal mirror symmetry for certain two-dimensional
materials. The third type of system includes quantum well
or double-layer systems separated by an insulating barrier
in the middle [11–17]. In these systems, the electrons and
holes can be separated on different layers with negligible
single-particle tunneling process between them and their
densities can be tuned precisely by two independent gates.
We will focus on the third kind of system, where many

interesting observations have been reported recently.
The real space separation of electrons and holes in these
systems provides not only the electrons and holes with a
sufficiently long lifetime but also new ways to detect
the exciton condensation states, such as perfect Coulomb
drag [18–20] and quantum capacitance [17] measurements.
The experimental setup of the double-layer systems, e.g.,

transition metal dichalcogenides (TMDs) bilayer separated
by hexagonal boron nitride (h-BN) or semiconductor
quantum well, is illustrated in Fig. 1(a), and the generic
model is written as [21–28]
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where c†ek, c
†
hk are electron creation operators in the electron

and hole layer, respectively, and V is the area of the 2D
system. The single-particle Hamiltonian H0 describes the
electron and hole bands with quadratic dispersion near the
valley center with effective mass me and mh. The exciton
chemical potential μex ¼ eVb − Eg is tuned by the voltage
difference Vb between the electron and hole layer.
The interlayer and intralayer interaction are taken as the
Coulomb ones: VðrÞ≡ Vs¼s0 ¼ e2=ϵr and UðrÞ≡ Vs≠s0 ¼
e2=ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
whose Fourier transformations are VðqÞ ¼

2πe2=ϵq, UðqÞ ¼ VðqÞe−qd. ϵ is the dielectric constant.
If the interlayer interaction is absent, the charged bilayer

would be expected to exhibit metallic behavior with the
coexistence of free electrons and holes. Because of
the charge conservations in each layer, the system has a
Uð1Þ × Uð1Þ symmetry. However, the attractive interaction
UðrÞ between electrons and holes will drive the system into
an exciton condensation state at the charge neutrality point
(CNP) which spontaneously breaks the electron-hole U(1)
symmetry and leaves only the total charge conservation. In
this context, we consider the terms “excitonic insulator”
and “exciton condensation” to be synonymous throughout
the paper. Furthermore, by tuning the particle-hole density
such exciton condensation state will experience a BEC to
BCS crossover as illustrated in Fig. 1(b).
Although excitonic insulators have been discussed in the

literature for over half a century, very few material systems
have been confirmed experimentally to exhibit such exotic
states. This is because the exciton condensation only breaks
the particle-hole U(1) symmetry, resulting in charge-neutral
superfluidity, which is very hard to detect directly through
experiments like perfect dragging. In this study, we propose
that the excitonic insulator in the BCS limit may possess a
unique breakdown mechanism, which can serve as a critical
“smoking gun” type of experimental evidence, helping to
distinguish an excitonic insulator from ordinary narrow-gap
semiconductors.
Recently, there have been experimental evidences show-

ing that the electrical breakdown behavior of an excitonic
insulator may largely deviate from the Zener breakdown of
normal band insulators [29], e.g., a much smaller critical
field strength and an apparent metal-insulator transition [the
R-T characteristics show an insulator (metal) feature before
(after) the breakdown]. These facts inspire us to investigate
the breakdown behaviors of excitonic insulators. The intrin-
sic breaking-down mechanism for band insulators is attrib-
uted to interband Zener tunneling [30–36]. In an infinite
system, the total energy becomes unbounded below when a
uniform electric field is applied, resulting in the absence of a
ground state. However, a finite system can still maintain an
insulating stationary state at low electric fields [37,38]. If we
take the rigid band assumption and include only the electric
field by a positional dependent chemical potential, the
single-particle Zener tunneling process can occur when
the in-plane bias voltage eFL becomes comparable to the

band gap Δ as shown in Fig. 1(c). This means the Zener
critical field is inversely proportional to the system size L.
To go beyond the rigid band picture, Souza et al. [38]
considered the polarization of the occupied bands and they
found the 1=L behavior of the Zener field still stands.
We would emphasize that this critical field strength

denotes the onset of Zener tunneling when a current
proportional to the tunneling probability starts to flow.
Under WKB approximation, the tunneling probability
could be expressed as e−l=ξ [39–41], where ξ is the
correlation length determined by the gap Δ and the
tunneling length l ¼ Δ=eF is the width of the classically
forbidden region for the Zener tunneling process. For an
excitonic insulator in the BCS limit, ξ ¼ 4vF=πΔ is just the
coherence length of the exciton condensate (details can be
found in Appendix J). When the electric field reaches
Δ=eξ, the tunneling current experiences a sharp increase
and the so-called Zener breakdown occurs. Thus, the
critical field for Zener breakdown could be roughly
estimated as Fz

c ¼ Δ=eξ.
As pointed out by Zener, the interband tunneling process

in normal insulator is just analogous to the autoionization
of free atoms by large electric fields [30] and the tunneling
probability e−l=ξ ¼ e−Δ=eFξ is similar to the ionization
probability of a bound s state with radius ξ and binding
energy Δ [42]. In excitonic insulators, the basic ingredients
are excitons instead of free atoms, and the Zener breakdown
picture will still stand, where the current generation stems

(c)(b)

(a)

FIG. 1. (a) Setup of the electron-hole bilayer system. The direct
gap between electron and hole bands can be tuned by a vertical
voltage Vb. (b) At CNP, the interlayer Coulomb interaction
between electrons and holes will drive the system into an exciton
condensation state and the single-particle gap will be renormal-
ized into an excitonic gap. The electron band is coded by blue and
the hole band by orange, where they are mixed when exciton
condensation occurs. By increasing the electron and hole den-
sities, the exciton condensation state will experience a BEC to
BCS crossover. (c) If an in-plane electrical field F is applied, a
Zener tunneling current is expected to appear when the in-plane
voltage exceeds the band gap, i.e., eFL > Δ. For any energy-
allowed tunneling process, there exists a classically forbidden
region (from B to A) with width l ¼ Δ=eF where the wave
function decays. The correlation length of the gap ξ characterizes
the penetration depth of the wave function into the classically
forbidden region.
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from the field-induced ionization of an exciton to a pair of
quasielectron and quasihole. Additionally, there will be a
new type of electrical breakdown mechanism which orig-
inates from the loss of the stability of the electron-hole
pairing ground state due to the competition between
polarization and condensation energies; thus we refer to
this mechanism as “many-body breakdown.”
In this paper, we will show that the many-body break-

down could be interpreted as the collective mode softening
in EI whose threshold field strength is much smaller than
that of the Zener breakdown in the BCS limit, and the
system will encounter the many-body breakdown when
the Zener tunneling rate is tiny. Compared to the Zener
breakdown, which is due to the ionization probability of
each individual exciton, the many-body breakdown is a
collective ionization process, in which all the excitons of
the system ionize at the same time. Therefore, this unique
electric breakdown feature can be considered as an impor-
tant experimental signal for excitonic insulators, serving as
a smoking gun to identify their presence.

II. POLARIZED MEAN-FIELD THEORY

The actual breakdown scenario in excitonic insulators is
complex since these two mechanisms could take effect
at the same time. To better understand the breakdown of
excitonic insulators, we will utilize a self-consistent mean-
field theory to analyze the interplay between Zener tunnel-
ing and the many-body breakdown.
Although an in-plane field breaks translation symmetry,

to describe an insulating ground state, we can always take a
trial state that keeps translation symmetry as long as the
field is adiabatically added (the proof is in Appendix A).
A trial Hartree-Fock (HF) ground state (GS) with trans-
lation symmetry at the CNP is jGSi ¼ Q

k c
†
vkjvaci, where

the valence band c†vk ¼ αkc
†
ek þ βkc

†
hk is a linear combi-

nation of the electron and hole band with con-
straints jαj2 þ jβj2 ¼ 1.
Since we choose the exciton chemical potential μex as

the thermodynamic variable, we are using the grand
canonical ensemble for excitons. At zero temperature,
the relation between the grand potential and internal energy
is EGðμexÞ ¼ U − μexNex. By using Dirac notation jvki ¼
½αk; βk�T , the grand potential density becomes a functional
of jvki (see details in Appendix B),

εG½jvki;F; μex�

≡ 1

V
hGSjHjGSi

¼ 1

V

X
sk

h0sskρssk þ
−eF
VΔkk

Im
X
k

loghvkjvkþ Δkki

þ 2πe2n2exd
ϵ

−
1

2V2

X
ss0k1k2

Vss0 ðk1 − k2Þρ̃ss0k1 ρ̃s0sk2 ; ð2Þ

where ρ̃≡ ρ − ρ0 is the density matrix relative to the
initial uncharged state ρ0ss0 ¼ δss0δsh and ρ is calculated

as ρss0k ≡ hGjc†s0kcskjGi ¼ ðjvkihvkjÞss0 . The grand poten-
tial density depends on μex from the single-particle
Hamiltonian:

h0k ¼
"
ℏ2k2=2me − μex 0

0 −ℏ2k2=2mh

#
: ð3Þ

So the exciton density nex is calculated as

nex ¼ −∂μexεG ¼ 1

V

X
k

ρeek: ð4Þ

The four terms in Eq. (2) could be viewed as kinetic,
polarization, Hartree, and Fock energies separately. The
Hartree energy is just the charging energy of the two-layer
capacitor with the charge number density nex. The relative
density matrix ρ̃ is used in the Fock energy expression to
avoid the double counting problem [43]. The polarization
energy is in principle −eFP, where P is electrical polari-
zation which is dependent on the occupied states. For
numerical convenience, a periodic boundary condition is
assumed, and the polarization is calculated with the help
of the expectation value of many-body position operators
defined on a ring geometry [44], which is just a discrete
form of Berry phase [45–47]:

P½jvki� ¼ e
VΔkk

Im
X
k

loghvkjvkþ Δkki: ð5Þ

This form of polarization energy functional has already
been used to calculate the electrical properties of insulators
in the literature [38,48,49]. On the other hand, for the open
boundary problem, the polarization energy functional should
be written in real space by Wannier functions [50,51]
which is much more complex technically. However, as long
as the system is large enough, the behaviors of the energy
functionals for different boundary condition are tested to
be identical for topological trivial systems with no edge
states [38,50].
The local minimum is found by requiring the first-order

derivative of εG to be zero, i.e., δεG=δhvkj ¼ 0 (details
are presented in Appendix C.). This gives the mean-field
Hamiltonian hMF

k ≡ h0k þ hH þ hFk þ hPk , where

hH½jvki� ¼ 4πe2nexd
ϵ

ð1 − ρ0Þ; ð6aÞ

hFss0k½jvki� ¼ −
1

V

X
k0
Vs0sðk − k0Þρ̃ss0k0 ; ð6bÞ

hPk ½jvki;F� ¼
ieF
2Δkk

X
σ¼�

σjvkþ σΔkkihvkj
hvkjvkþ σΔkki

þ H:c:; ð6cÞ
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as well as the self-consistent equation,

hMF
k ½jvki;F�jvki ¼ ξvkjvki: ð7Þ

The definition of the abbreviation σ in Eq. (6c) can be
found in Eq. (C10).
In the following, we will take length and energy units

as a�B ¼ ϵℏ2=m�e2 and Ry� ¼ e2=2ϵa�B, where m� ≡
memh=ðme þmhÞ is the reduced mass. Then the electrical
field strength unit is fixed as F� ¼ Ry�=ea�B and the
polarization unit is P� ¼ e=a�B. At zero temperature, the
only independent parameters in the mean-field problem are
d=a�B, V=a

2
B, F=F

�, and μex=Ry� (or equivalently nexa�B
2).

Typical values of these parameters in a double-layer TMD
system, for example, MoSe2=WSe2 separated by h-BN,
are me ≈mh ≈m ¼ 0.4m0, m� ≈ 0.2m0 (m0 is the bare
electron mass) [52], and ϵ ¼ 5 [53]. So the units are
calculated as a�B ≈ 1.3 nm, Ry� ≈ 108 meV, and
F� ≈ 8.3 × 105 V=cm.

III. CRITICAL FIELDS

In the phase diagram depicted in Figs. 2(a) and 2(b),
the abscissas represent the system size a�B=Lx and exciton
density nexa�B

2 separately, and the vertical axis is the
in-plane electric field strength F=F�. The zero-field band
gap Δ0=Ry (black line, left-hand axis) and the correlation
length ξ=a�B of the gap (purple line, right-hand axis)
estimated by Eq. (J22) are also plotted as functions
of system size and exciton density separately in
Figs. 2(c) and 2(d).
In the calculation, the interlayer distance is set as

d ¼ 1.875a�B. The momentum space summation in Eq. (2)
is restricted in the region jkx;yj < kc ≈ 2.7a�B

−1. The
numerical results are nearly independent of the cutoff kc
when kc ≫ kF since the BCS-type condensation occurs
only in a small range around kF ¼ ffiffiffiffiffiffiffiffiffiffiffi

4πnex
p

< 1.3a�B
−1. The

size of the system is defined by the spacing of k mesh as
L ¼ 2π=Δk, so the varying of system size is realized by
using different sizes of k mesh. The electrical field is
applied in the x direction, and the length of the system
perpendicular to it is fixed at Ly ¼ 2πNky=2kc ≈ 94a�B
(Nky ¼ 80) for numerical convenience. In Figs. 2(a)
and 2(c), the exciton density is fixed at nex ≈ 0.068a�B

−2

and the number of k points in the x direction is taken as
Nkx ¼ 40M [M is an integer and some used Nkx are marked
by red texts above the bottom axis in Fig. 2(c)]. On the
contrary, in Figs. 2(b) and 2(d), the system size is fixed
(kmesh is fixed at 120 × 80) and the exciton density varies.
As is shown in Figs. 2(c) and 2(d), the correlation length

of the gap ξ [evaluated by Eq. (J22)] is about 4a�B within
the range of the parameters we consider. The correlation
length ξ is much smaller than the system size Lx along the
direction of the electrical field, which means tunneling
current at the onset of Zener tunneling I ∝ e−Lx=ξ is

negligible. Additionally, the fact that Lx ≫ ξ also indicates
that the assumption of the translation symmetry and
periodic boundary condition are reasonable.
To overcome the Zener instability of the energy func-

tional for the electrical field in the range Δ=eLx ∼ Δ=eξ,
the polarization Hamiltonian hPk and the polarization energy
are always evaluated on the coarse 40 × 80 mesh. For an
original 40M × 80 kmesh, this is equivalent to dividing the
system into M copies with size Lx ¼ L0 ≈ 47a�B. Thus the
Zener tunneling process whose tunneling length l satisfies
ML0 > l > L0 > ξ is ignored. This approximation is
reasonable since the tunneling probability e−l=ξ for such
process is smaller than e−L0=ξ ≈ 10−3. Although this
approximation method was first developed to calculate
the higher-order susceptibilities in the zero-field limit [38],
this does not mean that the finite field solution has no
physical meanings. Souza et al. [54] rederived the effective
Hamiltonian for polarization Eq. (6c) from the time-
dependent dynamics of density matrix, and the solution
from the minimization of the energy functional was found
to be a resonance state with very long lifetime in the
thermodynamic limit.
The blue lines in Figs. 2(a) and 2(b) represent the critical

field Fm
c accounting for the many-body breakdown of the

excitonic gap, which divides the entire region into a

(a) (b)

(c) (d)

FIG. 2. (a) Phase diagram as a function of the in-plane electrical
field F and system size 1=Lx. (b) Phase diagram as a function of
the in-plane electrical field F and exciton density nex. The critical
field Fm

c for many-body breakdown (solid blue lines) firstly
divides the entire region into a locally gapped phase and a
metallic phase. The onset filed for Zener tunneling Fz

onset (dashed
orange lines) further separates the locally gapped phase into an
excitonic insulating phase and tunneling phase. (c),(d) Zero-field
band gap Δ0 (black lines, left-hand axis) and the correlation
length ξ (purple lines, right-hand axis) as functions of system size
and exciton density. The red labels above the bottom axis of
(c) mark the number of k points used for the corresponding
system size.
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metallic phase and a locally gapped phase. In the metallic
phase, the self-consistent equations have no solutions
with excitonic order parameter, while in the locally gapped
phase, such solutions always exist. By solving eFLx ¼
ΔðFÞ ≈ Δ0 (Lx ¼ 2π=Δkx is the system size assumed in the
calculation which is inverse proportional to the k-mesh
spacing), the onset field for Zener tunneling Fz

onset is
obtained and plotted by the orange lines and further
separates the locally gapped phase into an excitonic
insulating phase and a tunneling phase. In the excitonic
insulating phase, the system is fully gapped, and no
current flows. In the tunneling phase, an exponentially
small Zener tunneling current appears while the system is
still locally gapped. In the metallic phase, the excitonic
gap is destroyed, the system becomes highly conductive,
and the resistivity-temperature (R-T) curve becomes
typical metallic.
To illustrate how the critical field Fm

c for the many-body
breakdown is extracted, let us investigate the effect of
electrical field on some physical quantities. Assume we are
in the region of insulating state, so the local minimum
jvk;Fi of the energy functional Eq. (2) could be found by
our self-consistent procedure. The self-consistent equation
at the mean-field solution reads hMF

k ½jvk;Fi;F�jik;Fi ¼
ξik;Fjik;Fi, where jck;Fi; jvk;Fi are conduction and
valence bands with band energies ξck;F > ξvk;F. Then the
mean-field gap is just defined as ΔðFÞ¼minðξck;F−ξvk;FÞ.
Additionally, the polarization density is obtained from
Eq. (5) as PðFÞ≡ P½jvk;Fi� and the electrical susceptibil-
ity could also be defined as χðFÞ≡ ∂PðFÞ=∂F.
On a 120 × 80 k mesh with exciton density nex ≈

0.068a�B
−2 [dashed gray line in Figs. 2(a) and 2(b)].

Some physical quantities are plotted in Fig. 3 as functions
of field strength. Figure 3(a) shows the mean-field band
structure at zero field and the critical field strength. The
results indicate that the electrical field has little effect
on the band structure and as a result the mean-field gap
barely changes with the increase of the field strength, as is
shown in Fig. 3(b). To determine the boundary of the
locally gapped phase, the polarization P and susceptibil-
ity χ are plotted in Figs. 3(c) and 3(d). When approaching
the critical field strength Fm

c , χ−1 continuously goes to 0,
which means the electrical susceptibility χ diverges
and the system will transition into a metallic phase.
Additionally, the momentum space distributions of the
interband coherence hMF

cv at F ¼ 0 and F ¼ Fc are also
shown in Fig. 4. With the increase of electric field
strength, the amplitude slightly shrinks while the phase
varies dramatically.

IV. FLUCTUATIONS AND COLLECTIVE MODES

In addition to the nonanalytic behaviors of macroscopic
physical quantities, the breakdown phase transition could
also be understood by examining the stability of the local

minimum to fluctuations. At the local minimum, the trial
HF state with fluctuations could be written as [55]

jv0k;Fi ¼ ðjvk;Fi þ zkjck;FiÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jzkj2
q

; ð8Þ

(a) (b)

(c) (d)

FIG. 3. (a)Mean-field band structure at zero field (blue solid line)
and critical field strength (red dotted line). We can see that the
electrical field has little effect on the mean-field band structure.
(b) Mean-field gap as a function of electrical field strength. When
reaching the critical field strength Fm

c , the mean-field gap goes to
zero discontinuously. (c) Electrical field induced polarizationP as a
function of field strength F. Nonanalytic behavior appears when
reaching the critical field strength. (d) To see the nonanalytic
behavior clearly, inverse of the susceptibility χ−1 is plotted. χ−1 goes
to zero means χ diverges and the system turns into a metallic state.
These data are generated on a 120 × 80 kmeshwith exciton density
nex ≈ 0.068a�B

−2 [along the dashed gray line in Figs. 2(a) and 2(b)].

(a) (b)

(c) (d)

FIG. 4. (a),(b) Amplitude and (c),(d) phase distributions of the
exciton order parameter (interband coherence hMF

eh ) in momentum
space at F ¼ 0 and F ¼ Fm

c . These data are also generated on a
120 × 80 k mesh with exciton density nex ≈ 0.068a�B

−2.
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where the fluctuation variables zk ¼ xk þ iyk are arbi-
trary complex-valued functions. As derived in
Appendix E, when the gauge of the mean-field con-
duction and valence band wave functions are taken as
Eq. (E1), the real and imaginary parts of the fluctuation
variables zk are directly related to the density and phase
fluctuations of the EI order parameter ρehk. Then the
grand potential becomes a functional of xk; yk, i.e.,
EG½xk; yk;F�≡ EG½jv0k;Fi;F�, and up to the second
order of the fluctuation variables xk and yk, the grand
potential could be approximated as

EG ≈ EG½jvk;Fi�
þ
X
kk0

h
xkK

ðþÞ
kk0 xk0 þ ykK

ð−Þ
kk0 yk0 þ 2xkK

ðXÞ
kk0 yk0

i
; ð9Þ

where the specific expression of the kernel matrix Kkk0

can be found in Appendix D. In the absence of electrical
field, the cross term KðXÞ is exactly zero, which recovers
the expression in Wu et al. [24]. However, when the
electrical field is added, the density and phase fluctua-
tions will be coupled together and Kkk0 is not zero.
Stability of the mean-field ground state against fluctua-

tions requires the eigenvalues of the Hessian matrix,

H≡
"

KðþÞ KðXÞ

ðKðXÞÞT Kð−Þ

#
; ð10Þ

to be non-negative, where the eigenvalues and fluctuation
eigenmodes are defined by the eigenvalue equation,

X
k0
Hkk0

"
xλk0

yλk0

#
¼ λ

"
xλk
yλk

#
; ð11Þ

and the superscript λ in zλk ¼ xλk þ iyλk means it is the
fluctuation eigenmode with respect to the eigenvalue λ.
For convenience, the eigenmodes in the following text are

normalized by zλk → zλk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k jzλkj2
q

. Still along the dashed

gray line in Figs. 2(a) and 2(b), the stability of the ground
state is analyzed, and the results are shown in Fig. 5.
In Fig. 5(a), we plot the smallest few eigenvalues λ0−4
of the Hessian matrix Eq. (10) as functions of field strength.
By taking the trial HF state as jv0k;F; θλii ∝ jvk;Fi þ
θλi z

λi
k jck;Fi, the grand potential difference between the

trial state and the HF ground state along the directions zλik in
the variational parameter space is evaluated as

ΔEGðF; θλiÞ≡ EG½jv0k;F; θλii� − EG½jvk;Fi�: ð12Þ

Using the lowest three eigenmodes zλ0;1;2k , for example,
the grand potential difference as a function of

the electric field F and excitation amplitudes θλi is
plotted in Figs. 5(b)–5(d). In these plots, the horizontal
axes are the amplitudes of those eigenmodes, while differ-
ent electric field strengths are represented by different
color lines.
There is a consistent zero mode λ0 for any electric field

strength, as shown in Fig. 5(a). However, the behavior of
the energy functional along the direction zλ0k in Fig. 5(b)
indicates that it is not a “breaking-down mode” because the
high-order derivatives of the energy functional along
this direction are always positive. Such a zero mode is
exactly the Goldstone mode related to phase fluctuation
of the exciton condensate and accounts for the exciton
superfluidity (see details in Appendix F). The real
breaking-down direction in parameter space is zλ1k as shown
in Fig. 5(c). When the electric field is small, all eigenvalues
of the Hessian matrix (except the Goldstone mode λ0)
satisfy λ > λ1 > 0, which means the solution is indeed a
local minimum. As the electric field approaches the critical
field strength Fm

c , the eigenvalue of the breakdown mode λ1
approaches 0 and the excitonic insulator ground state
becomes unstable as the local minimum turns into a saddle
point. Further investigations on the breakdown mode zλ1k in
Appendix G reveal that it accounts for the polarization
fluctuation δPx which couples with the electrical field in
the x direction.
To find the collective modes, we also need to include

the fluctuation dynamics. In Appendix H, the dynamics

(a) (b)

(c) (d)

FIG. 5. (a) The smallest five eigenvalues of the Hessian matrix
Eq. (10) as a function of the electric field. (b)–(d) Grand potential
difference Eq. (12) as a function of the electric field and
excitation amplitudes along the directions zλ0;1;2k in the variational
parameter space. The excitation amplitudes are used as the
horizontal axes while different field strengths are represented
by different color lines. These data are also generated along the
dashed gray line in Figs. 2(a) and 2(b).
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equation of fluctuation variable zk is derived from the time-
dependent HF equation as

−∂tyk ¼
X
k0

h
KðþÞ

kk0 xk0 þKðXÞ
kk0 yk0

i
; ð13aÞ

∂txk ¼
X
k0

h
KðXÞ

k0k xk0 þKð−Þ
kk0 yk0

i
; ð13bÞ

which is consistent with the previous study byWu et al. [24].
After the Fourier transformation to the frequency domain,
the collective modes should be obtained by solving the
generalized eigenvalue problem:

X
k0
Hkk0

"
xωk0

yωk0

#
¼ iω

�
0 −1
1 0

�"
xωk
yωk

#
: ð14Þ

As proved in Appendix H, the eigenvalues ω are either zero
or appear in pairs as�ω, which are the excitation energies of
the collective modes.
In general, the fluctuation eigenmodes solved by

Eq. (11) are not necessarily identical with the collective
modes solved by Eq. (14). But the fluctuation eigenmode
with eigenvalue λ ¼ 0 is always a collective modewith zero
excitation energy ω ¼ 0. This means that when the eigen-
value λ1 in Fig. 5(a) becomes zero when approaching the
critical field Fm

c , there must exist another collective mode
with zero excitation energy in addition to the Goldstone
mode. In Fig. 6(a), the collective modes spectra in the long
wavelength limit (zero momentum excitations) are plotted
as functions of exciton density at zero electrical field.
Because of the rotational symmetry, the collective modes
could be labeled by their angular momentums. In Fig. 6(a),
the s-wave collective mode with zero angular momentum is
indicated by the blue line with cross markers, which is
exactly the zero-energy Goldstone mode. Additionally, the
two degenerated p-wave collective modes with angular
momentum lz ¼ �1 are indicated by the orange line with
dot markers. In Fig. 6(b), the same quantities are plotted as
functions of electrical field strength at a fixed exciton
density nex ≈ 0.068a�B

−2. Since the electrical field breaks
the rotational symmetry, the degeneracy of the two p-wave
collective modes is lifted. And the px mode which couples
directly with the electrical field in x direction gradually
softens when approaching the critical field strength.
In the zero-field limit, due to the angular momentum

conservation, only the p-wave modes with angular momen-
tum lz ¼ �1 indicated by the orange lines in Fig. 6 can
couple with the electrical field directly. Additionally, the
softened px mode is highly related to the breakdown mode
zλ1k in Fig. 5, which is proven in Appendix G to be the
polarization fluctuation δPx arisen from the relative motion
of electrons and holes. As the Goldstone mode can be
viewed as the analogy to the acoustical phonon mode of

ionic crystals, the breakdown mode is then similar to the
optical modes.
Because of inversion symmetry, the excitation energy of

the breakdown mode ωpx should be an even function of
the electrical field strength F. Near zero-field strength, the
excitation energy could be approximated by

ωpxðFÞ ≈ ωpx
0 −

η0
2
F2; ð15Þ

where ωpx
0 is the excitation energy at zero field and η0 ≡

−∂2FωpxðFÞjF¼0 is the polarizability. Then the condition of
the many-body breakdown is just ωpx ∼ 0, which means the
critical field is approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωpx

0 =η0
p

. Detailed analyses
in Appendix I give a more accurate estimation of the critical
field as

Fm
c ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpx
0 =2η0

q
; ð16Þ

which is only related to the zero-field excitation energy ωpx
0

and its polarizability η0. Near zero field, the polarizability
of the breakdown mode is calculated and plotted in Fig. 7(a)
as a function of exciton density. In Fig. 7(b), the critical

(a)

(b)

FIG. 6. (a) Collective modes spectra in the long wavelength
limit (zero momentum excitations) as functions of the excitation
density at zero electrical field. The black solid line represents the
mean-field gap, which marks the boundary between collective
modes and quasiparticle electron-hole continuum. Because of the
rotational symmetry, the collective modes could be labeled by
their angular momentum. The s-wave collective mode with zero
angular momentum is indicated by the blue line with cross
markers. The two degenerated p-wave collective modes with
angular momentum lz ¼ �1 are indicated by the orange line with
dot markers. Collective modes with higher angular momentums
are not explicitly marked. (b) At nex ≈ 0.068a�B

−2, the collective
modes spectra are also plotted as functions of the electrical field.
Since the electrical field in x direction breaks the rotational
symmetry, the two degenerated p-wave collective modes split
into the px and py modes.
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fields for the many-body breakdown calculated from the
self-consistent procedure are also compared with the esti-
mated values by Eq. (16), which show good agreement.
Such a many-body breakdown mechanism is completely

different from traditional Zener tunneling and the correspond-
ing critical field strength can bemuchweaker than the one for
Zener tunneling, as discussed in the following section.

V. DISCUSSION

With the increase in exciton density, the zero-field
excitation energy of the breakdown mode decreases as
shown in Fig. 6(a), while the polarizability grows expo-
nentially as shown in Fig. 6(b). Thus the critical field for the
many-body breakdown also decreases dramatically accord-
ing to the estimation formula Eq. (16). This is reasonable
since with the increase in exciton density, the binding
between electron and hole becomes weaker and the
excitonic insulator will turn into a quantum electron-hole
plasma state [56–61].
From the physical picture of Zener tunneling, the

tunneling current exists only when the gate voltage is
larger than the single-particle gap. Assume the distance
between electrodes is L, then at the critical field of many-
body breakdown Fm

c , the gate voltage is eFm
c L. Comparing

the critical voltage eFm
c L with the single-particle gap Δ

gives a critical value for the electrodes distance:

Lc ∼ Δ=eFm
c : ð17Þ

Below the critical distance Lc, there will be no Zener
tunneling even when the many-body breakdown occurs,
which also indicates that the many-body breakdown
mechanism is distinct from the Zener tunneling and break-
down physics. The ratio ξ=Lc ∼ Fm

c =Fz
c roughly measures

the relative magnitudes between the critical fields of many-
body breakdown and Zener breakdown. In Fig. 8(a), Lc and
ξ are plotted as functions of exciton density. The ratio ξ=Lc
decreases with the increase of exciton density and in the
region included in Fig. 8(a) ξ=Lc ∼ 10−1–10−2, which
means the critical field strength for the many-body break-
down is about 10 to 100 times smaller than Zener

breakdown. Such a small field is expected to serve as a
smoking gun to identify the excitonic gap in the BCS limit.
To study the many-body breakdown, the most ideal case

is to avoid the Zener tunneling effect by reducing the
electrode distance. In the green colored region in Fig. 8(a),
where Lc > L > ξ, the excitonic gap is disrupted before the
onset of interband Zener tunneling. For small field strength,
the system is purely insulating at zero temperature and no
current flows. As the electrical field increases, the BCS-
type exciton condensation wave function will lose stability
and exhibit a typical first-order transition feature. After this
transition, the system becomes gapless and highly con-
ductive, and a quasilinear metallic current Im ∝ eV will
flow in the system. Thus a discontinuous switching
phenomenon is expected in the I-V characteristic as shown
in Fig. 8(c).
However, most experimental setups fall into the orange

colored region where L ≫ Lc ≫ ξ, and a tunneling current
will first appear when the in-plane bias voltage exceeds the
band gap. For voltage in the range Δ ≪ eV < eFm

c L, this
current is in the form of

IzðeV ≡ eFLÞ ∼ ðeV − ΔÞ3=2e−ðΔ=eVÞðL=ξÞ: ð18Þ

The exponential factor e−ΔL=eVξ is the WKB tunneling
probability and the power term ðeV − ΔÞ3=2 arises from the
density of states of the tunneling channels in 2D systems
(details can be found in Appendix J). The tunneling current
persists until the field strength reaches the critical field of
many-body breakdown, after which the excitonic gap dis-
appears and a metallic current Im ∝ eV appears replacing the
Zener tunneling current Iz. However, even at the critical field
Fm
c , the tunneling current IzðF ¼ Fm

c Þ ∝ e−Lc=ξ in the BCS

(a) (b)

FIG. 7. (a) Zero-field polarizability of the breakdown mode.
(b) The blue dots are the critical field calculated from the self-
consistent procedure, while the blue line is estimated from the
zero-field quantities by Eq. (16), which show good agreement.

(a) (b)

(c)

FIG. 8. (a) The critical length Lc where the onset field for Zener
tunneling Fz

onset equals the critical field Fm
c for the many-body

breakdown is plotted as a function of exciton density by the
dotted blue line, which separates the nex − L plane into two
regions, i.e., the green region where the many-body breakdown
occurs without Zener tunneling and the orange region where
Zener tunneling current appears before the many-body break-
down. The correlation length of the excitonic gap ξ given by
Eq. (J22) is also plotted by the purple line for reference. And we
only focus on the case with L > ξ. The two dashed gray lines
mark the paths along which Fig. 2 is generated. (b),(c) I-V
characteristics for the excitonic insulator in the two regions in (a).
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limit is still exponentially small as the critical length Lc is
nearly 2 orders larger than correlation length ξ, as is shown
in Fig. 8(a). This means the discontinuity of the I-V curve
like Fig. 8(b) is still observable.
In addition to the smaller value of critical field strength in

the BCS limit, from the discussions above we conclude that
the discontinuity of the I-V characteristic at nearly zero
temperature is also an important feature of the many-body
breakdown since the tunneling current increase smoothly in
the Zener breakdown picture. This discontinuity arises from
the gap closing, and the induced metal-insulator transition
could be identified by investigating the R-T characteristic;
i.e., before and after the many-body breakdown, the R-T
characteristics should behave like a semiconductor and a
metal, respectively, while for Zener breakdown, the local gap
always exists and the R-T curve always shows a semi-
conductor feature. Additionally, the gap closing after the
many-body breakdown may also be identified by charge
compressibility measurements. In the excitonic insulator
phase, the system is charge incompressible when chemical
potential lies between the gap [17], while in the metallic
phase, absence of local gap makes the system charge
compressible.
We note that Sugimoto et al. [41] also proposed a

breaking-down mechanism in correlated insulators which
has a threshold field much smaller than that for Zener
breakdown. However, the mechanism in their work is
distinct from the many-body breakdown mechanism pro-
posed in our work. The many-body breakdown is intrinsic
for an excitonic insulator while the critical field in their work
is related to the extrinsic relaxation time. Additionally, the
typical I-V curve for an excitonic insulator as illustrated in
Figs. 8(b) and 8(c) has size dependence which is already
observed by the experiments of Yang et al. [29].
Finally, the many-body breakdown mechanism is a

breakdown of the electronic band structure and has nearly
no influence on the lattice, which means the breaking-down
process is reversible and the switching phenomenon of the
I-V characteristic is promising for practical usage.
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APPENDIX A: TRIAL STATE

We first prove that under a uniform electric field, the
many-body state will keep its lattice translation symmetry
at all times.

A many-body state jΨ; ti is said to have lattice trans-
lation symmetry if and only if the wave function satisfies

Ψðr1 þ R0;…; rNe
þ R0; tÞ ¼ eiϕΨðr1;…; rNe

; tÞ;
whereNe is the total number of electrons andR0 is arbitrary
lattice vector.
The many-body Schrödinger equation in length gauge

(using a scalar field φ ¼ eF · r to include electric field) is
written as

i∂tΨEðr1;…; rNe
; tÞ

¼
(XNe

i¼1

½h0ð−i∇ri ; riÞ þ eF · ri�

þ
X

1≤i<j≤Ne

Vðri − rjÞ
)
ΨEðr1;…; rNe

; tÞ; ðA1Þ

which seems to break lattice translation symmetry.
However, by taking gauge transformation of the electric
field ∂tAðtÞ ¼ −F and defining

ΨAðr1;…; rNe
; tÞ ¼ e−i

P
Ne
i¼1

eAðtÞ·riΨEðr1;…; rNe
; tÞ; ðA2Þ

we find that the Schrödinger equation for jΨAi becomes

i∂tΨAðr1;…; rNe
; tÞ

¼
"XNe

i¼1

h0½−i∇ri þ eAðtÞ; ri�

þ
X

1≤i<j≤Ne

Vðri − rjÞ
#
ΨAðr1;…; rNe

; tÞ; ðA3Þ

which keeps the lattice translation symmetry. So starting
from a many-body state jΨ0i with lattice translation
symmetry, the many-body state jΨA; ti as well as jΨE; ti
will have lattice translation symmetry at any time:

ΨEðr1 þ R0;…; rNe
þ R0; tÞ

¼ ei
P

Ne
i¼1

eAðtÞ·ðriþR0ÞΨAðr1 þ R0;…; rNe
þ R0; tÞ

¼ eiNeeAðtÞ·R0þiϕAei
P

Ne
i¼1

AðtÞ·riΨAðr1;…; rNe
; tÞ

¼ eiNeeAðtÞ·R0þiϕAΨEðr1;…; rNe
; tÞ: ðA4Þ

When treating a static uniform electric field, as long as
the field is adiabatically turned on, a trial HF state with
lattice translation symmetry could be safely assumed. For
insulators, this state is written as

jGSi ¼
Yne
n¼1

Y
k∈BZ

c†nkjvaci; ðA5Þ

where ne is electron per cell and jvaci is vacuum state. c†nk
is creation operators of Bloch electron with wave function
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ψnkðrÞ ¼ fΨðrÞ; c†nkg ¼ 1ffiffiffiffi
V

p eik·runkðrÞ; ðA6Þ

where V ¼ N vc is the volume of the system, N is the
number of unit cells, and vc is cell volume.
As electron creation operators, c†nk should satisfy

fc†mk; cnk0 g ¼ δmnδkk0 ; ðA7Þ
which forces the corresponding Bloch functions to be
orthonormal; i.e.,

hψmkjψnk0 i ¼
Z

drψ�
mkðrÞψnk0 ðrÞ ¼ δmnδkk0 ; ðA8aÞ

humkjunki ¼
1

vc

Z
cell

dr u�mkðrÞunkðrÞ ¼ δmn: ðA8bÞ

APPENDIX B: POLARIZED HF ENERGY
FUNCTIONAL

In this appendix, a general form of the polarized HF
energy as a functional of occupied Bloch states will be
derived.
Using field operator ΨðrÞ, the second quantization form

of the single-particle (kinetic and potential energy), polari-
zation, and interaction Hamiltonians are written as

H0 ¼
Z

drΨ†ðrÞh0ð−i∇r; rÞΨðrÞ; ðB1Þ

HP ¼ eF ·
Z

drΨ†ðrÞrΨðrÞ; ðB2Þ

HI ¼
1

2

Z
dr1dr2Ψ†ðr1ÞΨ†ðr2ÞVðr1−r2ÞΨðr2ÞΨðr1Þ: ðB3Þ

Matrix elements of the single-particle density operator ρ̂
under position basis are calculated as

ρðr; r0Þ ¼ hGSjΨ†ðr0ÞΨðrÞjGSi

¼
Xne
n¼1

X
k∈BZ

fcnk;Ψ†ðr0Þg�ΨðrÞ; c†nk�

¼
Xne
n¼1

X
k∈BZ

ψnkðrÞψ�
nkðr0Þ: ðB4Þ

Then its k-dependent counterpart is defined by

ρ̂k ¼ N e−ik·r̂ρ̂eik·r̂ ¼
Xne
i¼1

junkihunkj: ðB5Þ

It is important to note that the single-particle Hilbert space
H of ρ̂ is all kinds of functions while the Hilbert space Hk
of ρ̂k is only the cell-periodic functions. That is why the

prefactorN , number of cells, appears in the definition of ρ̂k
in Eq. (B5). And we will see the single-particle and
interaction energies could be expressed as functionals of
ρ̂k and therefore functionals of occupied states junki.
The single-particle part is

E0 ≡ hGSjH0jGSi

¼
Z

drdr0δðr − r0Þh0ð−i∇r; rÞρðr; r0Þ

¼
Xne
n¼1

X
k∈BZ

Z
drψ�

nkðrÞh0ð−i∇r; rÞψnkðrÞ

¼
X
k∈BZ

Tr
	
ĥ0kρ̂k



; ðB6Þ

where ĥ0k ¼ e−ik·rĥ0ðp̂; r̂Þeik·r̂ ¼ ĥ0ðp̂þ k; r̂Þ is the
k-dependent single-particle Hamiltonian acting on cell-
periodic functions with matrix elements:

h0mnk ≡ 1

vc

Z
cell

dr u�mkðkÞh0ð−i∇r þ k; rÞunkðrÞ: ðB7Þ

Similarly, the interaction part is evaluated with the help
of Wick’s theorem,

hGSjHIjGSi

¼ 1

2

Z
drdr0Vðr − r0ÞhΨ†ðrÞΨ†ðr0ÞΨðr0ÞΨðrÞi

¼ 1

2

Z
drdr0Vðr − r0Þ½ρðr; rÞρðr0; r0Þ − ρðr0; rÞρðr; r0Þ�

¼ 1

2V

X
q

VðqÞ
Z

drdr0eiq·ðr−r0Þρðr; rÞρðr0; r0Þ

−
1

2V

X
q

VðqÞ
Z

drdr0eiq·ðr−r0Þρðr0; rÞρðr; r0Þ; ðB8Þ

where VðqÞ≡ R
drVðrÞe−iq·r is the Fourier transformation

of VðrÞ. The first part in Eq. (B8) is the Hartree energy and
is simplified as

EH ¼ 1

2V

X
q

VðqÞ
Z

drdr0eiq·ðr−r0Þρðr; rÞρðr0r0Þ

¼ 1

2V

X
q

VðqÞ
Z

dreiq·r
Xne
n¼1

X
k1 ∈BZ

ψ�
nk1

ðrÞψnk1ðrÞ

×
Z

dr0e−iq·r0
Xne
m¼1

X
k2 ∈BZ

ψ�
mk2

ðr0Þψmk2ðr0Þ

¼ 1

2V

X
ki ∈BZ

X
q

VðqÞδqGTr
	
eiq·r̂ρ̂k1



Tr
	
e−iq·r̂ρ̂k2




¼ 1

2V

X
ki ∈BZ;G

VðGÞTr	eiG·r̂ρ̂k1
Tr	e−iG·r̂ρ̂k2
; ðB9Þ
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where G is reciprocal vector. The eiG·r̂ term in Eq. (B9)
should be understood as a single-particle operator that acts
on junki as

hrjeiG·r̂junki¼ eiG·runkðrÞ¼unk−GðrÞ¼hrjunk−Gi: ðB10Þ

The second part in Eq. (B8) is the Fock energy:

EF¼−
1

2V

X
q

VðqÞ
Z

drdr0eiq·ðr−r0Þ

×
Xne
m;n¼1

X
ki∈BZ

ψnk1ðr0Þψ�
nk1

ðrÞψmk2ðrÞψ�
mk2

ðr0Þ

¼−1
2V

X
ki∈BZ;q

VðqÞδqk1−k2þGTr
	
e−iG·r̂ρ̂k1e

iG·r̂ρ̂k2



¼−1
2V

X
ki∈BZ;G

Vðk1−k2þGÞTr	e−iG·r̂ρ̂k1eiG·r̂ρ̂k2
: ðB11Þ

The polarization energy cannot be expressed by density
operator ρ̂k but is still a functional of occupied states:

EP ≡ hGSjHPjGSi

¼ eF ·
Z

drrρðr; rÞ

¼ eF ·
XNe

n¼1

X
k;k0

δk;k0
Z

drψ�
nk0 ðrÞrψnkðrÞ

¼ eF ·
XNe

n¼1

X
k;k0

δkk0 ×

�
−i∇k

Z
drψ�

nk0 ðrÞψnkðrÞ

þ 1

V

Z
dreiðk−k0Þ·ru�nk0 ðrÞi∇kunkðrÞ

�

¼ eF ·
XNe

n¼1

X
k;k0

δkk0 ½−i∇kδkk0 þ hunkji∇kunki�

¼
Xne
n¼1

X
k

hunkjieF ·∇kjunki: ðB12Þ

This result is consistent with the Berry phase definition
of polarization. For a finite-size system with periodic
boundary conditions, the polarization and the polarization
energy should be written with the discrete form of Berry
phase as [44]

EP ¼ −eF
Δkk

Im
X
k

log det Sðk; kþ ΔkkÞ; ðB13Þ

where jΔkkj ¼ 2π=L and is along the direction of electric
field. The overlap matrix S is defined as

Smnðk; k0Þ ¼ humkjunk0 i; m; n ¼ 1; 2;…; ne: ðB14Þ

APPENDIX C: MEAN-FIELD HAMILTONIAN
AND SELF-CONSISTENT EQUATION

The total energy as a functional of occupied bands
fjunkignen¼1 is written as

Etot½junki;F� ¼ E0½ρ̂k� þ EHF½ρ̂k� þ EP½junki;F�; ðC1Þ

and the stationary state is found by minimizing Etot with
constraints

humkjunki ¼ δmn: ðC2Þ

By introducing Lagrange multipliers ξnk, the constrained
minimization of Etot is transformed into an unconstrained
minimization of

F½junki;F�≡ Etot½junki;F� þ
X
nk

ξnkð1 − hunkjunkiÞ: ðC3Þ

Let us calculate the unconstrained derivatives of F with
respect to hunkj. We first show that

δTr½ρ̂k2 ôk2 �
δhunk1 j

¼ δ

δhunk1 j
X
m

hunk2 jôk2 junk2i

¼ δk1k2 ôk2 junk2i: ðC4Þ

The single-particle, Hartree, and Fock energy functionals
all take this form and thus are easily evaluated:

δE0

δhunkj
¼ ĥ0kjunki; ðC5Þ

δEH

δhunkj
¼ 1

V

X
k2 ∈BZ;G

VðGÞTr½ρ̂k2e−iG·r̂�eiG·r̂junki; ðC6Þ

δEF

δhunkj
¼−

1

V

X
k2∈BZ;G

Vðk−k2þGÞeiG·r̂ρ̂k2e−iG·r̂junki: ðC7Þ

From the expression above, we could define the Hartree
and Fock Hamiltonian as

ĥHk ½ρ̂k� ¼
1

V

X
k2 ∈BZ;G

VðGÞTr½ρ̂k2e−iG·r̂�eiG·r̂; ðC8Þ

ĥFk ½ρ̂k� ¼ −
1

V

X
k2 ∈BZ;G

Vðk − k2 þ GÞeiG·r̂ρ̂k2e−iG·r̂: ðC9Þ

As functionals of gauge invariant single-particle density
operator ρ̂k, the Hartree and Fock Hamiltonian defined in
Eqs. (C8) and (C9) are also invariant under k-space gauge
transform of the occupied bands.
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As for the polarization term, we start from the discrete
form Eq. (B13) and take the thermodynamic limit later.
Let us first rewritte Eq. (B13) as

EP¼
ieF
2Δkk

X
k

½logdetSðk;kþΔkkÞ− logdetS†ðk;kþΔkkÞ�

¼ ieF
2Δkk

X
k

½logdetSðk;kþΔkkÞ− logdetSðkþΔkk;kÞ�

¼ ieF
2Δkk

X
k

½logdetSðk;kþΔkkÞ− logdetSðk;k−ΔkkÞ�

¼ ieF
2Δkk

X
k;σ¼�

σ logdetSðk;kþσΔkkÞ: ðC10Þ

Then the unconstrained derivatives of EP is

δEP

δhunkj
¼ ieF

2Δkk
δ

δhunkj
�X
σ¼�

σ
X
k

log det Sðk; kσÞ
�

¼ ieF
2Δkk

δ

δhunkj
�X
σ¼�

σ
X
k

Tr logSðk; kσÞ
�

¼ ieF
2Δkk

X
σ¼�

σTr

�
δSðk; kσÞ
δhunkj

S−1ðk; kσÞ
�

¼ ieF
2Δkk

X
σ¼�

σ
Xne
m¼1

jumkσ iS−1mnðk; kσÞ; ðC11Þ

where abbreviation kσ ¼ kþ σΔkk is used for simplicity.
Denote jDnki ¼ δEP=δhunkj. It is easy to see that

hulkjDnki ¼
ieF
2Δkk

X
σ

σ
Xne
m¼1

Slmðk; kσÞS−1mnðk; kσÞ

¼ ieF
2Δkk

X
σ

σδln

¼ 0: ðC12Þ

So the polarization Hamiltonian could be defined as

ĥPk ½junki;F� ¼
Xne
n¼1

jDnkihunkj þ H:c: ðC13Þ

and satisfies

ĥPk junki ¼
Xne
m¼1

jDmkiδmn ¼ jDnki ¼
δEP

δhunkj
: ðC14Þ

Before processing, one should verify that this
definition of polarization Hamiltonian is a gauge invariant.
By denoting Φ†

k ¼ ½ju1ki;…; juneki�, the polarization
Hamiltonian is written in a neater form:

ĥPk ¼ ieF
2Δkk

X
σ¼�

σΦkσ ðΦ†
kΦkσ Þ−1Φ†

k þ H:c: ðC15Þ

A k-space gauge transformation ðUkÞne×ne on occupied
bands will transform Φk into ΦkUk, and the polarization
Hamiltonian becomes

ðĥPk Þ0¼
ieF
2Δkk

X
σ¼�

σΦkσUkσ ðU†
kΦ

†
kΦkσUkσÞ−1U†

kΦ
†
kþH:c:

¼ ieF
2Δkk

X
σ¼�

σΦkσUkσU
−1
kσ
ðΦ†

kΦkσ Þ−1ðU†
kÞ−1U†

kΦ
†
kþH:c:

¼ ĥPk ; ðC16Þ

which is invariant.
It is easier to see this gauge invariance in the thermo-

dynamic limit L → ∞ and dk ¼ Δkk → 0. In this limit,

Smnðk; kσÞ ¼ δmn þ σhumkj∂kkunkidk; ðC17aÞ

S−1mnðk; kσÞ ¼ δmn − σhumkj∂kkunkidk; ðC17bÞ

so

jDnki ¼
ieF
2dk

X
σ¼�

σ
Xne
m¼1

ðjumki þ σj∂kkumkidkÞ

× ðδmn − σhumkj∂kkunkidkÞ

¼ ieF
Xne
m¼1

½j∂kkumkiδmn − jumkihumkj∂kkunki�

¼ ieFð1 − ρ̂kÞj∂kkunki; ðC18Þ

and the polarization Hamiltonian in the thermodynamic
limit is written as

lim
dk→0

ĥPk ¼ ieF
XNe

n

ð1 − ρ̂kÞj∂kkunkihunkj þ H:c:

¼ ieFð1 − ρ̂kÞ∂kk ρ̂k þ H:c:

¼ ieF · ½∇kρ̂k; ρ̂k�: ðC19Þ

The thermodynamic limit expression Eq. (C19) is only a
functional of the gauge invariant ρ̂k and thus is also a
gauge invariant.
Finally, minimization of F½junki;F� gives us the self-

consistent equation,

δF
δhunkj

¼ 0 ⇒ ĥMF
k ½junki;F�junki ¼ ξnkjunki; ðC20Þ
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where the mean-field Hamiltonian is

ĥMF
k ¼ ĥ0k þ ĥHk ½ρ̂k� þ ĥFk ½ρ̂k� þ ĥPk ½junki;F�: ðC21Þ

APPENDIX D: HESSIAN MATRIX

Assume F < Fm
c , and the self-consistent equation has

solutions

hMF
k ½jvk;Fi�jik;Fi ¼ ξik;Fjik;Fi; i ¼ c; v: ðD1Þ

The valence band jvk;Fi is chosen as the one with lower
band energy, i.e., ξvk;F < ξck;F, The F label in wave
functions and band energies means they are converged
solutions.
At the converged point (local minimum of the energy

functional), the trial HF state could be reparametrized as

jv0k;Fi ¼ jvk;Fi þ zkjck;Fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzkj2

p ; ðD2Þ

where zk is an arbitrary complex-valued function defined
on Brillouin zone. This parametrization is unconstrained
and complete, and the grand potential then becomes func-
tional of zk as

EG½z�k; zk;F�≡ EG½jv0k;Fi;F�: ðD3Þ

By writing zk ¼ xk þ iyk, the Hessian matrix is defined as

Hkk0 ¼
1

2

2
4 δ2EG

δxkδxk0
δ2EG
δxkδyk0

δ2EG
δykδxk0

δ2EG
δykδyk0

3
5: ðD4Þ

To be consistent with the notation in Wu et al. [24], we will
also denote the diagonal part of the Hessian matrix as KðþÞ

and Kð−Þ. Additionally, the upper off-diagonal part is
denoted as KðXÞ. In summary, the Hessian matrix is written
in the form of

H ¼
"

KðþÞ KðXÞ

ðKðXÞÞT Kð−Þ

#
: ðD5Þ

For simplicity, the F label will be omitted in the
following derivations.
We first calculate the derivatives of jv0ki with respect to

xk and yk for further usage.

δjv0ki
δxk

¼ −xkjvki þ ð1 − iykzkÞjcki
ð1þ jzkj2Þ3=2

; ðD6Þ

δjv0ki
δyk

¼ −ykjvki þ ið1þ xkzkÞjcki
ð1þ jzkj2Þ3=2

: ðD7Þ

At zk ¼ 0, they are simplified as

δjv0ki
δxk

����
zk¼0

¼ jcki; δjv0ki
δyk

����
zk¼0

¼ ijcki: ðD8Þ

The second-order derivatives of jv0ki at zk ¼ 0 are

δ2jv0ki
δxkδxk0

����
zk¼0

¼ −δkk0 jvki; ðD9Þ

δ2jv0ki
δykδyk0

����
zk¼0

¼ −δkk0 jvki; ðD10Þ

δ2jv0ki
δxkδyk0

����
zk¼0

¼ 0: ðD11Þ

The first-order derivative of EG defined by Eq. (2) is

δEG

δxk
¼ δhv0kj

δxk

δEG

δhv0kj þ c:c:

¼ δhv0kj
δxk

hMF
k ½jv0ki�jv0ki þ c:c:; ðD12aÞ

δEG

δyk
¼ δhv0kj

δyk
hMF
k ½jv0ki�jv0ki þ c:c: ðD12bÞ

We use the definition of mean-field Hamiltonian
hMF
k ½jvki�jvki≡ δEG=δhvkj in Eq. (D12). At zk ¼ 0, the

first-order derivative is just

δEG

δxk

����
zk¼0

¼ hckjhMF
k ½jvki�jvki þ c:c: ¼ 0;

δEG

δyk

����
zk¼0

¼ −ihckjhMF
k ½jvki�jvki þ c:c: ¼ 0;

which is consistent with the fact that jvki is a local minimum.
Then let us evaluate second-order derivatives of EG:

δ2EG

δxkδxk0

����
zk¼0

¼ δhv0kj
δxk

����
zk¼0

δhMF
k ½jv0ki�
δxk0

����
zk¼0

jv0ki

þ δhv0kj
δxk

����
zk¼0

hMF
k ½jv0ki� δjv

0ki
δxk0

����
zk¼0

þ δ2hv0kj
δxkδxk0

����
zk¼0

hMF
k ½jv0ki�jv0ki þ c:c:

¼ δkk0 ðξck − ξvkÞ þ hckj δh
MF
k ½jv0ki�
δxk0

����
zk¼0

jvki þ c:c:

ðD13Þ
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Similarly,

δ2EG

δykδyk0

����
zk¼0

¼ δkk0 ðξck − ξvkÞ − ihckj δh
MF
k ½jv0ki�
δyk0

����
zk¼0

jvki þ c:c:

ðD14Þ

and

δ2EG

δxkδyk0

����
zk¼0

¼ hckj δh
MF
k ½jv0ki�
δyk0

����
zk¼0

jvki þ c:c: ðD15Þ

So the final task is to evaluate the derivatives of hMF
k with

respect to xk and yk.
The derivatives of Hartree Hamiltonian hH are

hckj δh
H

δxk0

����
zk¼0

jvki

¼ 4πe2dhckjeihejvki
ϵ

δnex
δxk0

����
zk¼0

¼ 4πe2dhckjeihejvki
ϵ

�
δhv0kj
δxk0

δnex
δhv0kj

����
zk¼0

þ c:c:

�

¼ 4πe2dhckjeihejvki
ϵ

�
1

V
hck0jeihejvk0i þ c:c:

�

¼ 2

V
4πe2dhckjeihejvki

ϵ
Re½hck0jeihejvk0i�

and

hckj δh
H

δyk0

����
zk¼0

jvki

¼ 4πe2dhckjeihejvki
ϵ

�
−i

1

V
hck0jeihejvk0i þ c:c:

�

¼ 2

V
4πe2dhckjeihejvki

ϵ
Im½hck0jeihejvk0i�:

The derivatives of Fock Hamiltonian hFk are

hckj δh
F
k

δxk0

����
zk¼0

jvki

¼ −
1

V

X
ss0

Vs0sðk − k0Þhckjsihs0jvki δρss0k0
δxk0

����
zk¼0

¼ −
1

V

X
ss0

Vs0sðk − k0Þhckjsihs0jvki

× ðhvk0js0ihsjck0i þ hck0js0ihsjvk0iÞ

and

hckj δh
F
ss0k

δyk0

����
zk¼0

jvki

¼ −
i
V

X
ss0

Vs0sðk − k0Þhckjsihs0jvki

× ðhvk0js0ihsjck0i − hck0js0ihsjvk0iÞ:

As for the polarization term, we use the fact that

hckjhPk
δjv0ki
δzk0

����
zk¼0

∝ δkk0 hckjhPk jcki ¼ 0;

where we have

hckj δh
P
k

δxk0

����
zk¼0

jvki

¼ hckj δðh
P
k jv0kiÞ
δxk0

����
zk¼0

¼ hckj δ

δxk0

�
ieF
2Δkk

X
σ¼�1

σjv0kσi
hv0kjv0kσi

�����
zk¼0

¼ ieF
2Δkk

X
σ¼�

σ

�
δk0kσ

hckjckσi
hvkjvkσi

− δk0k
ðhckjvkσiÞ2
ðhvkjvkσiÞ2

− δk0kσ
hckjvkσihvkjckσi

ðhvkjvkσiÞ2
�

and

hckj δh
P
k

δyk0

����
zk¼0

jvki

¼ ieF
2Δkk

X
σ¼�

σ

�
iδk0kσ

hckjckσi
hvkjvkσi

þ iδk0k
ðhckjvkσiÞ2
ðhvkjvkσiÞ2

− iδk0kσ
hckjvkσihvkjckσi

ðhvkjvkσiÞ2
�
:

APPENDIX E: PHASE AND DENSITY
FLUCTUATIONS

In this appendix, we will prove that under a proper gauge
for the mean-field conduction and valence band wave
functions,

jvki ¼
"
eiϕk=2αk

e−iϕk=2βk

#
; jcki ¼

"
eiϕk=2βk

−e−iϕk=2αk

#
; ðE1Þ

where α, β > 0 and α2 þ β2 ¼ 1, the real and imaginary
part of fluctuation variables zk introduced in the main text
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by Eq. (8) are exactly the density and phase fluctuations of
the EI state.
When the gauge is fixed, the relation between the single-

particle density matrix and valence band wave function is a
one-to-one correspondence. For the valence band wave
function jvki in Eq. (E1), the density matrix is just

ρk ¼ jvkihvkj ¼
"

α2k eiϕkαkβk

e−iϕkαkβk β2k

#
; ðE2Þ

where the off-diagonal part ρehk ¼ eiϕkαkβk is the EI order
parameter.
Let us first consider a phase fluctuation to the EI order

parameter ρehk → ρ0ehk ¼ eiðϕkþδϕkÞαkβk. Then the valence
band wave function becomes

jvki → jv0ki ¼
�
eiðϕkþδϕkÞ=2αk
e−iðϕkþδϕkÞ=2βk

�
; ðE3Þ

which could be written as linear combinations of jvki and
jcki as

jv0ki ¼ hvkjv0kijvki þ hckjv0kijcki
¼ ðα2keiδϕk=2 þ β2ke

−iδϕk=2Þjvki
þ αkβkðeiδϕk=2 − e−iδϕk=2Þjcki

≈ jvki þ iδϕkαkβkjvki: ðE4Þ

Comparing Eqs. (E4) and (D2) we find that the phase
fluctuation δϕk of the EI order parameter is directly related
to the fluctuation variable zk ¼ iδϕkαkβk, which is pure
imaginary.
Then let us consider the density fluctuation ρehk →

ρ0ehk ¼ eiϕkðαkβk þ δnkÞ. Assume αk and βk transform to
α0k ¼ αk þ δαk and β0k ¼ βk þ δβk, then up to linear order
of δnk, δαk and δβk should satisfy

α0kβ
0
k ¼ αkβk þ δnk ⇒ αkδβk þ βkδαk ¼ δnk; ðE5aÞ

ðα0kÞ2 þ ðβ0kÞ2 ¼ 1 ⇒ αkδαk þ βkδβk ¼ 0: ðE5bÞ

And δαk, δβk are solved as

δαk ¼ −
βkδnk
α2k − β2k

; δβk ¼
αkδnk
α2k − β2k

: ðE6Þ

The valence band wave function just transforms to

jvki → jv0ki ¼
�
eiϕk=2ðαk þ δαkÞ
e−iϕk=2ðβk þ δβkÞ

�
; ðE7Þ

which could be written as linear combinations of jvki and
jcki as

jv0ki ¼ hvkjv0kijvki þ hckjv0kijcki
¼ ðα2k þ αkδαk þ β2k þ βkδβkÞjvki
þ ðβkδαk − αkδβkÞjcki

¼ jvki − δnk=ðα2k − β2kÞjcki: ðE8Þ

Comparing Eqs. (E8) and (D2) we find that the density
fluctuation δnk of the EI order parameter is directly related
to the fluctuation variable zk ¼ −δnk=ðα2k − β2kÞ, which is
pure real.

APPENDIX F: GOLDSTONE MODE

The many-body Hamiltonian Eq. (1) is invariant under
gauge transformations of the electron creation operators:
c†ek → eiϕec†ek, c

†
hk → eiϕhc†hk. This Uð1Þ × Uð1Þ symmetry

corresponds to the charge conservation in each layer.
After this global gauge transformation, the valence band

electron creation operator becomes

ðc†vkÞ0 ¼ αkeiðϕk=2þδϕeÞc†ek þ βkeið−ϕk=2þδϕhÞc†hk; ðF1Þ

which gives a new trial wave function of the valence
band as

jv0ki ¼
�
eiðϕk=2þδϕeÞαk
eið−ϕk=2þδϕhÞβk

�
¼ eiδϕ

�
eiðϕkþδϕexÞ=2αk
e−iðϕkþδϕexÞ=2βk

�
; ðF2Þ

where δϕ ¼ ðϕe þ ϕhÞ=2, δϕex ¼ ðϕe − ϕhÞ=2 are related
to the conservation of total charge and exciton number,
respectively. The relative density matrix ρ̃ ¼ ρ − ρ0 trans-
forms into

ρ̃0k ¼
"

α2k eiðϕkþδϕexÞαkβk
e−iðϕkþδϕexÞαkβk β2k − 1

#
; ðF3Þ

Additionally, the overlap matrix Sðk; kÞ ¼ hvkjvk0i
becomes

S0ðk; k0Þ≡ hv0kjv0k0i
¼ eiðϕk0−ϕkÞ=2αkαk0 þ e−iðϕk0−ϕkÞ=2βkβk0

¼ Sðk; k0Þ: ðF4Þ

Substituting Eqs. (F3) and (F4) into the grand potential
expression Eq. (2) we find that εG½jv0ki;F� ¼ εG½jvki;F�;
i.e., the grand potential is invariant under the transforma-
tion jvki → jv0ki.
The U(1) symmetry related to exciton conservation

(phase fluctuation δϕex ¼ ϕe − ϕh of electron-hole pairing
condensate ρehk) gives a zero-energy Goldstone mode to
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the valence band fluctuation. Compare Eqs. (E3) and (F2),
and the Goldstone mode is directly obtained from Eq. (E4)
as zGsk ∝ iδϕexαkβk.
The overlap between the Goldstone mode zGsk and

the zero mode zλ0k of the Hessian matrix Eq. (10) is
calculated as

I ¼ jhzGsk ; zλ0k ij ¼
����X

k

ðzGsk Þ�zλ0k
���� ðF5Þ

and plotted in Fig. 9. The results show that I is equal to 1 in
numerical precision, which means the zero mode of the
Hessian matrix is indeed the Goldstone mode zGsk discussed
in this appendix.

APPENDIX G: BREAKDOWN MODE

In this appendix, we will prove that, in the zero-field
limit F ¼ 0, the breakdown mode zλ1k shown in Fig. 5 is the
only fluctuation eigenmode which accounts for the polari-
zation fluctuation in x direction (the direction of electri-
cal field).
At zero electrical field strength, the bilayer model has a

continuous rotation symmetry. In addition, the phase of the
EI order parameter ρehk is a constant, as shown by Fig. 4,
which could be chosen as zero due to the electron-hole U(1)
symmetry. At this time, the valence band wave function
could be written in the form

jvki ¼
�
αk

βk

�
; ðG1Þ

where αk; βk > 0 are only functions of the norm of k. When
phase and density fluctuations δϕk and δnk are considered,
the valence band wave functions becomes

jv0ki ¼
�
eiδϕk=2ðαk þ δαkÞ
e−iδϕk=2ðβk þ δβkÞ

�
; ðG2Þ

where the relation between δαk; δβk and δnk is given by
Eq. (E6). Then the ground state polarization density in x
direction becomes

Px ¼
Z

d2k
ð2πÞ2 hv

0kji∂kx jv0ki

¼
Z

d2k
ð2πÞ2

1

2
½ðαk þ δαkÞ2 − ðβk þ δβkÞ2�∂kxδϕk: ðG3Þ

To first order of δϕk and δnk, the polarization fluctuation is
written as

δPx ¼
Z

d2k
ð2πÞ2

α2k − β2k
2

∂kxδϕk; ðG4Þ

where only the phase fluctuation leads to the fluctuation of
polarization δPx. Because of the rotational symmetry at
zero field, the phase fluctuation δϕk could be expanded into
channels with different angular momentum as

δϕk ¼
X
n

δϕl
ke

ilθ; ðG5Þ

where θ is the angle of k. Since δϕk is real, the expansion
coefficient satisfies δϕl

k ¼ ðδϕ−l
k Þ�. Then ∂kxδϕk becomes

∂kxδϕk ¼
X
l

�
∂k
∂kx

∂kδϕ
l
k þ ilδϕl

k
∂θ

∂kx

�
eilθ

¼
X
l

�
cos θ∂kδϕl

k −
inδϕl

k sin θ
k

�
einθ; ðG6Þ

and the polarization fluctuation is rewritten as

δPx ¼
X
l

1

8π2

�Z
kdkðα2k − β2kÞ∂kδϕl

k

Z
2π

0

dθ cos θeilθ

− in
Z

dkðα2k − β2kÞδϕl
k

Z
2π

0

dθ sin θeilθ
�

¼ 1

4π

Z
kdkðα2k − β2kÞ∂kReδϕl¼1

k ; ðG7Þ

which means only the real part of δϕl¼1
k can contribute to

the polarization fluctuation in x direction. Keeping only the
real part of δϕl¼1

k in Eq. (G5), the phase fluctuation related
to the polarization fluctuation is in the form of

δϕk ∼ 2Reδϕl¼1
k cos θ: ðG8Þ

In Fig. 10, the real (density fluctuation) and imaginary
(phase fluctuation) part of the breakdown mode zλ1k ¼ xλ1k þ
iyλ1k are plotted at zero field and the critical field strength.
At zero field F ¼ 0, the off-diagonal part KðXÞ of the
Hessian matrix Eq. (10) is zero. So the density and phase
fluctuations are decoupled. Figures 10(a) and 10(c) show
that the breakdown mode at zero field is a pure phase

FIG. 9. Overlap between the Goldstone mode and the zero
mode of the Hessian matrix.
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fluctuation of the type of Eq. (G8), which exactly corre-
sponds to the polarization fluctuation δPx. When electrical
field is turned on, KðXÞ becomes nonzero, which will mix
the density and phase fluctuations. As a consequence,
the breakdown mode will gain some density fluctuation
component, while the main component is still the
phase fluctuation of the type of Eq. (G8) as illustrated
by Figs. 10(b) and 10(d).

APPENDIX H: FLUCTUATION DYNAMICS
AND COLLECTIVE MODES

To find the collective modes, we also need to study the
dynamics of the fluctuation variables zk.
The time-dependent trial HF occupied states is defined as

jv0k; ti ¼ jvk; ti þ zkðtÞeiðξck−ξvkÞtjck; tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzkðtÞj2

p ; ðH1Þ

where jc=vk; ti ¼ e−iξc=vktjc=vki. In the definition of zkðtÞ
in Eq. (H1), the dynamical phases eiðξck−ξvkÞt from the time
evolutions of jvk; ti and jck; ti are subtracted. The time
evolution of Eq. (H1) should satisfy the time-dependent HF
equation:

i∂tjv0k; ti ¼ hMF
k ½jv0k; ti�jv0k; ti: ðH2Þ

To zeroth order of zk, Eq. (H2) becomes

hMF
k ½jvk; ti�jvk; ti ¼ i∂tjvk; ti ¼ ξvkjvk; ti; ðH3Þ

which is exactly the self-consistent equation Eq. (7). To
first order of zk, Eq. (H2) becomes

½i∂tzkðtÞ − ðξck − ξvkÞ�eiðξck−ξvkÞtjck; ti

¼
X
k0

�
δhMF

k

δxk0

����
zk¼0

xk0 ðtÞ þ
δhMF

k

δyk0

����
zk¼0

yk0 ðtÞ
�
jvk; ti: ðH4Þ

Or, equivalently,

i∂tzkðtÞ¼ξck−ξvk

þ
X
k0
hckj

�
δhMF

k

δxk0

����
zk¼0

xk0 ðtÞþ
δhMF

k

δyk0

����
zk¼0

yk0 ðtÞ
�
jvki:

ðH5Þ

By taking real and imaginary parts of the previous
equation and using the definition of the Hessian matrix
Eqs. (D4), (D5), (D13)–(D15), we finally get the dynamics
equation of the fluctuation variables as

−∂tyk ¼
X
k0

h
KðþÞ

kk0 xk0 þKðXÞ
kk0 yk0

i
; ðH6aÞ

∂txk ¼
X
k0

h
KðXÞ

k0k xk0 þKð−Þ
kk0 yk0

i
; ðH6bÞ

which recovers the dynamics equation in Wu et al. [24]
(the dynamics equation in their paper is derived from an
effective field theory and there is a sign error when they
apply the Euler-Lagrange equation).
To solve the dynamics equation, let us omit the subscript

k and write the dynamics equation in a neater form as

∂t

�
x

y

�
¼

�
0 I

−I 0

�
H
�
x

y

�
; ðH7Þ

where I is the identity matrix. Since the Hessian matrix H
is real symmetric and non-negative, the square root of
H is well defined and is also real symmetric. Define
u ¼ ffiffiffiffiffi

H
p ðx; yÞT , then Eq. (H7) could be written as

∂tu ¼ Du; ðH8Þ

where the coefficient matrix D is defined as

D ¼
ffiffiffiffiffi
H

p �
0 I

−I 0

� ffiffiffiffiffi
H

p
: ðH9Þ

It is easy to verify that DT ¼ −D, which means D is a real
and antisymmetric matrix. As an antisymmetric matrix, the
eigenvalues can only be zero or pure imaginary numbers.
As a real matrix, the imaginary eigenvalues must appear in
pairs as �iω, where ω could be viewed as the excitation
energies of collective modes.

(a) (b)

(c) (d)

FIG. 10. (a),(b) Real part (density fluctuation component) of
the breakdown mode zλ1k at zero electrical field F ¼ 0 and the
critical field strength F ¼ Fm

c . (c),(d) Imaginary part (phase
fluctuation component) of the breakdown mode zλ1k . These
plots are generated on the 120 × 80 k mesh with exciton
density nex ≈ 0.068a�B

−2.
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The fluctuation eigenmodes ðxλ; yλÞ of the Hessian
matrix H are not necessary to be the collective modes
since the collective modes are eigenvectors of the D matrix
defined by Eq. (H9). However, the zero mode of Hessian
matrix is always a collective mode with zero excitation
energy. Assume ðxλ; yλÞ is a zero mode of the Hessian
matrix such that

H

"
xλ

yλ

#
¼ 0; ðH10Þ

then we can verify that

Duλ¼D
ffiffiffiffiffi
H

p "
xλ

yλ

#
¼

ffiffiffiffiffi
H

p "
0 I

−I 0

#
H

"
xλ

yλ

#
¼0: ðH11Þ

APPENDIX I: ESTIMATION OF THE
BREAKDOWN FIELD FROM ZERO-FIELD

QUANTITIES

Because of inversion symmetry, the excitation energy
of the breakdown mode ωpx should be an even function of
the electrical field F. Additionally, near the critical field
strength F ∼ Fm

c , the critical behavior of the excitation
energy should be

ωpxðF → Fm
c þ 0−Þ ∼ ð1 − F=Fm

c Þν; ðI1Þ

where ν is the critical exponent of the many-body break-
down phase transition. Define zero-field excitation energy
as ωpx

0 ≡ ωpxðF ¼ 0Þ, then ðωpx=ωpx
0 Þ4 is replotted as a

function of ðF=Fm
c Þ2 in Fig. 11(a), which shows a good

linearity. This indicates that the critical exponent is
ν ¼ 1=4, and the excitation energy as a function of
electrical field strength could be fitted by

ωpxðFÞ ¼ ωpx
0 ½1 − ðF=Fm

c Þ2�1=4; ðI2Þ

which is also shown in Fig. 11(b).

Near zero-field strength, Eq. (I2) is approximated as

ωpxðF → 0Þ ≈ ωpx
0 −

ωpx
0

4ðFm
c Þ2

F2; ðI3Þ

and the polarizability is just η0 ≡ −∂2FωpxðFÞjF¼0 ¼
ωpx
0 =2ðFm

c Þ2. This means the critical field for the many-
body breakdown could be estimated from the zero-field
excitation energy ωpx

0 and the polarizability η0 as

Fm
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpx
0 =2η0

q
: ðI4Þ

APPENDIX J: INTERBAND ZENER TUNNELING

Consider the interband tunneling problem of the 2D
continuous model,

ĥ ¼
2
4− ∂

2
x

2m − ∂
2
y

2m − μ0ex
2

Δ
2

Δ
2

∂
2
x

2m þ ∂
2
y

2m þ μ0ex
2

3
5þ VðxÞ; ðJ1Þ

where the barrier potential VðxÞ is defined as

VðxÞ ¼

8>><
>>:

eFL=2; x ≤ −L=2
−eFx; −L=2 ≤ x ≤ L=2

−eFL=2; x ≥ L=2:

ðJ2Þ

For a given tunneling energy E, the Schrödinger equation is

ĥjΨ;Ei ¼ EjΨ;Ei: ðJ3Þ

Since the electrical field is applied only along the x
direction, translation symmetry in the y direction still holds
and ky is a good quantum number. Following Zener
and Fowler [30], we could write the approximated WKB
wave function as

jΨky ;Ei ∝ exp

�
ikyyþ i

Z
x

−∞
kðx0Þdx0

�
jũkðxÞkyi: ðJ4Þ

If kðxÞ is slow varying so that ∂xkðxÞ could be neglected,
substituting Eq. (J4) into the Schrödinger equation we
find that

hkðxÞky jũkðxÞkyi ¼ ðE − VðxÞÞjũkðxÞkyi; ðJ5Þ

where

hkðxÞky ¼
"

k2ðxÞ
2m − μexðkyÞ

2
Δ
2

Δ
2

− k2ðxÞ
2m þ μexðkyÞ

2

#
; ðJ6Þ

(a) (b)

FIG. 11. (a) ðωpx=ωpx
0 Þ4 as a function of ðF=Fm

c Þ2 which
shows a good linearity. The orange dots are numerically
solved data while the solid line is the linear fit. (b) Fit of
excitation energy of the breakdown mode ωpx by the function
form ωpxðFÞ ¼ ωpx

0 ½1 − ðF=Fm
c Þ2�1=4.
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and μexðkyÞ¼μ0ex−k2y=m. Solving the secular equation (J5)
gives the relation between the complex wave vector kðxÞ
and position x:

½k2ðxÞ −mμex�2 þ ðmΔÞ2 ¼ f2m½E − VðxÞ�g2: ðJ7Þ

Things are different for μex > 0 and μex < 0 and should be
discussed separately. The condition μexðkyÞ ¼ 0 gives a
critical ky as

μexðkyÞ ¼ μ0ex − k2y=m ¼ 0 ⇒ ky;c ¼
ffiffiffiffiffiffiffiffiffiffi
mμ0ex

q
: ðJ8Þ

The tunneling scenario for μexðkyÞ > 0 (or equivalently
k2y ≤ k2y;c) is illustrated in Fig. 12(a). As a tunneling state
propagating to the right, jΨky ;Ei should behave like a

valence band electron in the region x ≪ −L=2 [k�L states
in Fig. 12(a)] and like a conduction band electron in the
region x ≫ L=2 [k�R states in Fig. 12(a)]. This places a
restriction on the tunneling energy ðΔ − eFLÞ=2 ≤ E ≤
−ðΔ − eFLÞ=2, which further demands that eFL ≥ Δ. In
other words, the interband Zener tunneling occurs only
when the in-plane bias voltage exceeds the band gap.
As the electron propagates to the right in the region

jxj ≤ L=2, the complex wave vector kðxÞ will travel from
kσL to kσR in the complex plane along the line [34]

Im½k2ðxÞ −mμex�2 ¼ 0: ðJ9Þ

Equation (J9) is just the imaginary part of Eq. (J7) and is
solved as

Imk × Rek × ½ðRekÞ2 − ðImkÞ2 −mμex� ¼ 0: ðJ10Þ

The solutions of Eq. (J10) in the complex plane are
represented by dashed gray lines in Fig. 12(b). The paths
of kσðxÞ in the complex plane are also illustrated by solid
black arrow lines in Fig. 12(b). This analysis means that
kþðxÞ and k−ðxÞ are two independent tunneling channels.
It is important to note that the tunneling channel kþðxÞ

exists only for tunneling energy E ≥ −ðΔ0 − eFLÞ=2,
where Δ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ex þ Δ2

p
. This is because there is no kþL

state in the region x ≪ −L=2 when E < −ðΔ0 − eFLÞ=2,
as is shown in Fig. 12(a). So the allowed tunneling energy
range for kþðxÞ channel is Eþ

max ¼ ðeFL − ΔÞ=2 and
Eþ
min ¼ max½−ðΔ0 − eFLÞ=2; ðΔ − eFLÞ=2�. Similarly, the

tunneling channel k−ðxÞ exists only when tunneling
energy is in the range E−

max ¼ min½ðΔ0 − eFLÞ=2;
ðeFL − ΔÞ=2� and E−

min ¼ ðΔ − eFLÞ=2.
Once these energy conditions are satisfied, one can

calculate the tunneling probability under WKB approxi-
mation directly by

PWKB
kσLk

σ
R;ky

ðEÞ ¼ jΨkyðx ¼ L=2;EÞj2
jΨkyðx ¼ −L=2;EÞj2 ¼ e−2ζ

σ
ky
ðEÞ;

where ζσkyðEÞ is the Zener parameter defined by

ζσkyðEÞ≡
Z

xþ

x−

dxjImkσðxÞj: ðJ11Þ

The lower and upper limits x� ¼ ð�Δ=2 − EÞ=eF of the
integration are the classical turning points. Only in the
range x− ≤ x ≤ xþ, kσðxÞ has an imaginary part:

jImkσðxÞj ¼
ffiffiffiffi
m
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ex þ Δ2 − 4ðEþ eFxÞ2

q
− μex

r
:

So the Zener parameter is calculated as

ζσkyðEÞ ¼
ffiffiffiffi
m

p

2
ffiffiffi
2

p
eF

Z
Δ

−Δ
dE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ex þ Δ2 − E2

q
− μex

r

¼
ffiffiffiffi
m

p
Δ3=2ffiffiffi
2

p
eF

Z
1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2ex þ 1 − ε2

q
− μ̃ex

r
; ðJ12Þ

where μ̃ex ¼ μexðkyÞ=Δ ¼ ðμ0ex − k2y=mÞ=Δ > 0. One can
see that ζσkyðEÞ ¼ ζðkyÞ is only a function of ky. So the

transition probability is also only a function of ky;
i.e., PWKB

kσLk
σ
R;ky

ðEÞ ¼ PðkyÞ ¼ e−2ζðkyÞ.
The current contributed by state jΨky ; k

σ
L → kσRi is

calculated by multiplying the tunneling probability with
the velocity vc;kσRky ¼ ∂kσR

εc;kσRky of the final state. Sum all
possible final states kσR together and we get

(a) (b)

FIG. 12. (a) Tunneling scenario for μexðkyÞ > 0. The tunneling
channels k�L → k�R exist only when in-plane bias voltage over-
comes the band gap, i.e., eFL > Δ. Under WKB approximation,
the valence band kσL states in the region x ≤ −L=2 will con-
tinuously turn into the conduction band kσR states in the region
x ≥ L=2 as propagating to the right. x� ¼ ð�Δ=2 − EÞ=eF
marks the classical turning points. (b) The paths of the complex
wave vectors kσðxÞ in the complex plane are indicated by the
black arrow lines.
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jðkyÞ ¼ −e
X
σ

Z
dkσR
2π

PWKB
kσLk

σ
R;ky

ðEÞ∂kσRεc;kσRky

¼ −
ePðkyÞ
2π

X
σ

Z
Eσ
max

Eσ
min

dE

¼ −
ePðkyÞ
2π

δEðkyÞ; ðJ13Þ

where δEðkyÞ ¼ min½2ðeFL − ΔÞ;Δ0 − Δ�.
On the other hand, the tunneling scenario for the case

μex < 0 (or equivalently k2y > k2y;c) is shown in Fig. 13(a).
Different from the case μex > 0, there exists one and
only one tunneling channel jΨky ; kL → kRi for tunneling
energy in the range Emin ¼ ðΔ0 − eFLÞ=2 ≤ 0 and Emax ¼
ðeFL − Δ0Þ=2 ≥ 0. And the path of the wave vector kðxÞ in
the complex plane is indicated by the black solid arrow line
in Fig. 13(b). The existence of tunneling channels requires

eFL ≥ Δ0ðkyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2exðkyÞ þ Δ2

q
, which gives an upper

bound for k2y:

k2y ≤ k2y;max ¼ m

�
μ0ex þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeFLÞ2 − Δ2

q �
: ðJ14Þ

In this case, the classical turning points are x0� ¼
ð�Δ0=2 − EÞ=eF. In addition to the region x− ≤ x ≤ xþ,
the complex wave vector kðxÞ also has an imaginary part in
the region x0− ≤ x ≤ x− and xþ ≤ x ≤ x0þ, which is

jImkðxÞj ¼ ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμexj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðEþ eFxÞ2 − Δ2

qr
:

The Zener parameter in this case is

ζðkyÞ ¼
ffiffiffiffi
m

p
Δ3=2ffiffiffi
2

p
eF

�Z
1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2ex þ 1 − ε2

q
þ jμ̃exj

r

þ
ffiffiffi
2

p Z ffiffiffiffiffiffiffiffiffi
1þμ̃2ex

p

1

dε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμ̃exj −

ffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − 1

pq �
; ðJ15Þ

where μ̃ex ¼ μexðkyÞ=Δ ¼ ðμ0ex − k2y=mÞ=Δ < 0. Then the
WKB tunneling probability is PðkyÞ ¼ e−2ζðkyÞ and the
current density is

jðkyÞ ¼ −
ePðkyÞ
2π

δEðkyÞ; ðJ16Þ

where δEðkyÞ ¼ eFL − Δ0.
Combining Eqs. (J13) and (J16) and integrating over ky

gives the final expression for the tunneling current density,

j ¼ −
e

ð2πÞ2
Z

ky;max

−ky;max

dkye−2ζðkyÞδEðkyÞ; ðJ17Þ

where δEðkyÞ ¼ min½2ðeFL − ΔÞ;Δ0 − Δ� for k2y ≤ mμ0ex
and is eFL − Δ0 for k2y > mμ0ex. In addition, the Zener
parameter ζðkyÞ is given by Eq. (J12) for k2y ≤ mμ0ex and is
Eq. (J15) for k2y > mμ0ex.
The integration in Eq. (J17) could not be solved

analytically, but we can give an upper estimation for the
tunneling current. The Zener parameter ζðkyÞ is a mono-
tonically increasing function of k2y; thus,

ζ ≥
ffiffiffiffi
m

p
Δ3=2ffiffiffi
2

p
eF

Z
1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ̃0exÞ2 þ 1 − ε2

q
− μ̃0ex

r
; ðJ18Þ

where μ̃0ex ¼ μ0ex=Δ. It is convenient to define the correla-
tion length of the gap (penetration depth of the electron
wave function into the classically forbidden region),

ξ−1 ¼
ffiffiffiffiffiffiffiffiffiffi
2mΔ

p Z
1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ̃0exÞ2 þ 1 − ε2

q
− μ̃0ex

r
; ðJ19Þ

and the tunneling length l≡ Δ=eF. Then the tunneling
probability is approximated as P ¼ e−2ζ ≤ e−l=ξ.
Additionally, one could verify that δEðkyÞ≤2ðeFL−ΔÞ,
so an upper bound for the current density is estimated as

jjj<eðeFL−ΔÞe−l=ξ
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

�
μ0exþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeFLÞ2−Δ2

q �s
; ðJ20Þ

which generates a Zener tunneling current in the form of

Iz ∼ ðeFL − ΔÞ3=2e−l=ξ ðJ21Þ

in the thermodynamic limit eFL ≫ Δ.
In excitonic insulators, μ0ex appearing in this appendix

should be understood as the exciton chemical potential
normalized by original band gap Eg and the HF self-energy
ΣHF, i.e., μ0ex ¼ μ0ex − Eg − TrðΣHFσzÞ, which is roughly

(a) (b)

FIG. 13. (a) Tunneling scenario for μexðkyÞ < 0. In this case,
there is no band inversion and the band gap becomes Δ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 þ μ2ex
p

. There exists one and only one tunneling channel
kL → kR when tunneling energy satisfies jEj ≤ ðeFL − Δ0Þ=2.
(b) The path of the complex wave vector kðxÞ in the complex
plane is indicated by the black arrow line.
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related with exciton density as μ0ex ¼ k2F=m ¼ 4πnex=m.
Then the correlation length as a function of exciton
density is

ξ−1 ¼
ffiffiffiffiffiffiffiffiffiffi
2mΔ

p Z
1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0exÞ2=Δ2 þ 1 − ε2

q
− μ0ex=Δ

r

¼ mΔffiffiffiffiffiffiffiffiffiffiffi
2πnex

p
Z

1

0

dε

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − ε2ÞðmΔ=4πnexÞ2

p
þ 1

q :

ðJ22Þ

In the high exciton density limit,

ξ−1 ≈
mΔffiffiffiffiffiffiffiffiffiffiffi
2πnex

p
R
1
0 dε

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
ffiffiffi
2

p ¼ πmΔ
8

ffiffiffiffiffiffiffiffiffi
πnex

p ¼ πΔ
4vF

: ðJ23Þ
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