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Berry curvature multipoles appearing in topological quantum materials have recently attracted much
attention. Their presence can manifest in novel phenomena, such as nonlinear anomalous Hall effects
(NLAHE). The notion of Berry curvature multipoles extends our understanding of Berry curvature effects
on the material properties. Hence, research on this subject is of fundamental importance and may also
enable future applications in energy harvesting and high-frequency technology. It was shown that a Berry
curvature dipole can give rise to a second-order NLAHE in materials of low crystalline symmetry. Here, we
demonstrate a fundamentally new mechanism for Berry curvature multipoles in antiferromagnets that are
supported by the underlying magnetic symmetries. Carrying out electric transport measurements on the
kagome antiferromagnet FeSn, we observe a third-order NLAHE, which appears as a transverse voltage
response at the third harmonic frequency when a longitudinal ac drive is applied. Interestingly, this NLAHE
is strongest at and above room temperature. We combine these measurements with a scaling law analysis, a
symmetry analysis, model calculations, first-principle calculations, and magnetic Monte Carlo simulations
to show that the observed NLAHE is induced by a Berry curvature quadrupole appearing in the spin-canted
state of FeSn. At a practical level, our study establishes NLAHE as a sensitive probe of antiferromagnetic
phase transitions in other materials—such as moiré superlattices, two-dimensional van der Waal magnets,
and quantum spin liquid candidates, which remain poorly understood to date. More broadly, Berry
curvature multipole effects are predicted to exist for 90 magnetic point groups. Hence, our work opens a
new research area to study a variety of topological magnetic materials through nonlinear measurement
protocols.

DOI: 10.1103/PhysRevX.14.021046 Subject Areas: Condensed Matter Physics, Magnetism

I. INTRODUCTION

Inmaterials with topologically nontrivial electronic states,
a finite Berry curvature Ω has a profound influence on the
electrical, optical, and thermal materials properties [1,2].
Microscopically,Ω is related to the topology of the quantum-
mechanical wave function and can be regarded as the
momentum space analogue of a magnetic flux density.
Hence, a finite Ω can induce an anomalous Hall effect
(AHE), which appears as a finiteHall voltageVH in electrical
transport measurements [3]. The Berry curvature contribu-
tion to the Hall effect arises from its momentum space
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integration over theoccupied electronic statesM∝
R
f0Ωzdk,

wheref0 is the Fermi-Dirac distribution. Effectively, it can be
viewed as a Berry curvature monopole M ∝ ρ−1xy . Because of
the direct connection betweenΩ and the Hall resistivity ρxy,
the AHE plays a key role in the investigation of topological
quantummaterials, such asWeyl [4,5] and Dirac [6] fermion
systems, and the Chern insulating state in the quantized Hall
limit [7–9].
It has been recognized that Berry curvature multipole

moments—such as dipoles Dαβ [10,11], quadrupoles Qαβγ ,
hexapoles, and octupoles [12]—can generally exist. These
Berry curvature multipoles derive from the momentum
space derivatives of Ω, e.g., Dαβ ∝

R
f0∂αΩβdk and Qαβγ ∝R

f0∂α∂βΩγdk, where α; β; γ denote the spatial directions.
Finite Berry curvature multipole moments modify the
material properties, and their presence can be experimen-
tally detected, for example, through measurements of the
nonlinear anomalous Hall effect (NLAHE). Here, multi-
pole moments induce a finite Hall voltageVnω

H at the higher
harmonics nωðω ¼ 2; 3;…Þ of a longitudinally applied ac
current with frequency ω. A finite M permits a first-order
response V1ω

H when time-reversal symmetry T is broken,
which is the conventional linear anomalous Hall effect.
The breaking of crystalline inversion symmetryP [10] can
yield a finite Dαβ, which permits a second-order Hall
responseV2ω

H even when T is preserved. This second-order
nonlinear Hall effect was initially observed in bilayer
WTe2 [13], which is nonmagnetic. Interestingly, it has
been predicted that the magnetic point group symmetries
of antiferromagnetic materials can support higher-order
Berry curvature multipole moments—such as quadrupole,
hexapole, and octupole moments—which should manifest
in NLAHEs up to the fifth order. Note that Berry curvature
multipoles do not induce a longitudinal higher order
response. Crucially, the origin of these higher order multi-
pole moments is qualitatively different from that of the
previously observed Berry curvature dipole moment
[10,13–15], which only requires a low crystalline sym-
metry. To date, experimental evidence for higher-order
Berry curvature effects in antiferromagnets is missing.
Here, we report the observation of a Berry curvature

quadrupole (BCQ) induced third-order NLAHE in electric
transport measurements conducted on the kagome anti-
ferromagnet (AFM) FeSn [16,17]. The observation of this
NLAHE is consistent with expectations from our symmetry
analysis, as well as tight-binding and ab initio calculations
that predict the presence of a BCQ in the spin-canted state
of FeSn. Interestingly, the observed NLAHE signal is
strongest above room temperature and sensitive to the
symmetry of the magnetic order parameter. Our scaling
analysis in terms of the charge carrier scattering time
reveals the intrinsic BCQ origin of the third-order Hall
signal.

II. RESULTS

A. Epitaxial FeSn films for electrical
transport studies

FeSn (space group P6=mmm, a ¼ 5.2959 Å, and c ¼
4.4481 Å) belongs to the family of transition metal-based
kagome metals, which has recently attracted much interest,
owing to thepresenceof the kagome-lattice-derived flat bands
[18–20], topological electronic states [6,19], and itinerant
magnetism [21,22]. FeSn consists of individual Fe3Sn and
stanene layers that are vertically stacked in alternating order
along the crystallographic c axis [Fig. 1(a)]. The iron (Fe)
atoms are arranged on a 2D kagome lattice and contribute an
approximate 2μB magnetic moment per atom, which origi-
nates from the partially filled d orbitals. Strong intralayer
magnetic exchange interactions J between the spin S ¼ 1
moments lead to in-plane ferromagnetism, whereas an
interlayer antiferromagnetic Heisenberg term JC ≅ 0.1J
results in layered A-type antiferromagnetic order along the
c axis with a Néel temperature TN ¼ 365 K [17,23,24].
Using solid phase epitaxy with a molecular beam epitaxy
system [25], we have synthesized 33-nm-thick FeSn thin
films, which were shaped into Hall bar devices [Fig. 1(b)]
[26]. The high crystalline quality of the films, which nucleate
in a single phase, was confirmed using x-ray diffraction,
energy-dispersive x-ray spectroscopy, and transmission elec-
tronmicroscopy experiments (Fig. S1) [26].Measurements of
the temperature-dependent longitudinal resistivity ρxxðTÞ
demonstrate the film’s metallic character with a residual
resistance ratio RRR¼Rð300KÞ=Rð2KÞ¼23.9 [Fig. 1(c)].
The overall transport characteristics (Fig. S2) agree with
previous studies of MBE-grown antiferromagnetic FeSn
films [16,25]; the kink in ρxxðTÞ at T ¼ 352 K can be
associated with the onset of AFM [27] at TN, whose value
for thin films was previously found to be slightly smaller
compared to that of bulk crystals [25,27]. The comparably
high Néel temperature combined with the ability to grow
high-quality thin filmsmakes FeSn particularly well suited to
study nonlinear topological transport responses at room
temperature.

B. Measurement of anomalous Hall effects
at room temperature

We now turn to the measurement of the linear and
nonlinear Hall effects. To this end, we apply a longitudinal
ac current IxðωÞ to the Hall bar device D1 and measure the
transverse Hall voltages V1ω

xy , V2ω
xy , and V3ω

xy via phase-
sensitive lock-in detection as a function of an external
magnetic field B applied in the out-of-plane direction at
room temperature T ¼ 300 K [Fig. 1(b)]. Control mea-
surements to ensure the accuracy of our lock-in detection
method are discussed in Sec. V. In Fig. 1(d), we display the
anomalous contribution to the first-order Hall resistivity
ρ1ωAHEðBÞ. Note that ρ1ωAHEðBÞ can be obtained from the Hall
resistivity ρ1ωxy ðBÞ by subtracting the linear contribution to
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the Hall effect ρ1ωL , ρ1ωAHEðBÞ¼ρ1ωxy ðBÞ−ρ1ωL ðBÞ [cf. Fig. 1(d)
inset]. Here, ρ1ωL ðBÞ likely contains contributions from the
orbital Hall effect R1ω

H and (an anomalous part linear in B)
from the linear magnetic susceptibility of the Fe magnetic
moments to the out-of-plane magnetic field R1ω

0 [17]. We
note that their relative contributions to ρ1ωL are difficult to
separate unless the out-of-plane magnetization is saturated.
The resulting ρ1ωAHEðBÞ is an odd function of B, and it
saturates at large field values jBj < 2 T. By contrast, we do

not observe a second-order AHE, and ρ2ωAHEðBÞ fluctuates
around zero resistivity [Fig. 1(e)].
On the other hand, we observe a strong third-order Hall

response [Fig. 1(f)]. It contains a linear background ρ3ω0 ðBÞ
as well as an anomalous part ρ3ωAHEðBÞ, which is nonlinear in
B and which saturates at jBj < 2 T. The third-order
anomalous Hall resistivity ρ3ωAHEðBÞ can be obtained by
subtracting ρ3ω0 ðBÞ from the third-order Hall resistivity
ρ3ωxy ðBÞ, ρ3ωAHEðBÞ ¼ ρ3ωxy ðBÞ − ρ3ω0 ðBÞ [Fig. 2(e) inset].

FIG. 1. Room temperature third-order nonlinear anomalous Hall effect in FeSn thin films. (a) Crystallographic and magnetic structure
of FeSn forming an A-type antiferromagnet. The iron (Fe) atoms occupy the sites of the kagome lattice that coordinates a triangular tin
(Sn) lattice. The vertical stacking of the kagome planes along the c axis is coordinated by individual stanene spacer layers. (b) Optical
micrograph of the Hall bar device and the electrical transport measurement geometry [26]. (c) Measurement of the temperature
T-dependent longitudinal resistivity ρxxðTÞ. The inset displays the corresponding derivative dρxxðTÞ=dT. (d) Linear ρ1ωAHE, (e) second-
order nonlinear ρ2ωAHE, and (f) third-order nonlinear ρ3ωAHE anomalous Hall resistivity as a function of the magnetic field B measured at
T ¼ 300 K. The insets in panels (a) and (f) display the corresponding Hall resistivities ρ1ωxy ðBÞ and ρ3ωxy ðBÞ, respectively, before the linear
background subtraction (see main text). (g) First-order linear V1ω

xy and (h) third-order nonlinear V3ω
xy Hall voltages measured as a function

of the longitudinal drive current Ix at T ¼ 300 K and B ¼ 8 T (open symbols). The solid lines show a linear and cubic fit, respectively,
to the experimental data.
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As we will show below, ρ3ωAHEðBÞ predominantly arises
from the BCQ. On the one hand, ρ3ω0 ðBÞ can contain two
contributions, first, a magnetic-field-induced third-order
orbital Hall effect. This effect likely results from a third-
order correction to the longitudinal drift velocity, which
gives rise to a Drude-type third-order longitudinal resis-
tivity ρ3ωxx [see Fig. S14(b) for measurements of ρ3ωxx on
device D4]. Note that ρ3ω0 ðBÞ could also contain contribu-
tions from the BCQ, which evolves nearly linearly with B
over large field ranges [see Fig. 3(b) and related discussion
of our model calculations]. Because discerning between
these two contributions to ρ3ω0 ðBÞ is difficult, we will focus
our following analysis on ρ3ωAHEðBÞ, which is free from
orbital effects. Like ρωAHEðBÞ, ρ3ωAHEðBÞ is an odd function of
B, and it displays B-independent characteristics at
jBj ≫ 0 T. We have further studied the dependence of
the measured Hall voltages on the longitudinal current
drive Ix at B ¼ 8 T [Figs. 1(g) and 1(h)]. The observed
V1ω
xy ðIxxÞ ∝ Ix and V3ω

xy ðIxÞ ∝ I3x relations establish the first-
and third-order nature of the measured Hall voltages.

C. Experimental characterization of the Hall effects

To characterize the observed AHEs in more detail, we
study their temperature dependence. Consistent with the
room-temperature observations, we do not observe a second-
order AHE at any temperature (Fig. S3). In Fig. 2(a),
we display ρ1ωAHEðBÞ measured at different temperatures
[Figs. S2(a) and S2(b) show the temperature dependence
of ρ1ωxy ðBÞ and ρ3ωxy ðBÞ, respectively]. While ρ1ωAHEðBÞ van-
ishes for T < 90 K, ρ1ωAHEðBÞ monotonically increases with
increasing temperature and plateaus at T > 330 K. By
comparison, ρ3ωAHEðBÞ shows a much richer temperature
response [Fig. 2(b)]. Like ρ1ωAHEðBÞ, ρ3ωAHEðBÞ vanishes at
T < 90 K and increases with temperature up to T ¼ 330 K.
However, ρ3ωAHEðBÞ then decreases and exhibits a sign change
between 350 and 360 K. This contrasting behavior at
T > 330 K is also illustrated in Figs. 2(c) and 2(d), which
display the temperature dependence of ρ1ωAHEjB¼−4 TðTÞ and
ρ3ωAHEjB¼−4 TðTÞ at T > 90 K. Furthermore, ρ1ωAHEðBÞ and
ρ3ωAHEðBÞ sensitively depend on the spatial orientation of B
with respect to the crystallographic axes of FeSn. When B

FIG. 2. Experimental characterization of the linear and nonlinear anomalous Hall effects. (a) Linear ρ1ωAHE and (b) third-order nonlinear
ρ3ωAHE anomalous Hall resistivities as a function of the magnetic field B measured at different temperatures T. (c) ρ1ωAHE and (d) ρ3ωAHE at
B ¼ −4 T plotted as a function of T. (e) ρ1ωAHE ðBÞ and (f) ρ3ωAHEðBÞ measured at different spatial orientations of B with respect to the
longitudinal Hall bar axis X. At θ ¼ 0°, B is aligned in parallel to X, and at θ ¼ 90°, B is aligned perpendicular to X in the out-of-plane
direction that is parallel to the crystallographic c axis. In all measurements, the current bias Ix is applied along the X direction.
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lies within the crystallographic a − b plane, both ρ1ωAHEðBÞ
and ρ3ωAHEðBÞ vanish in measurements conducted at T ¼
300 K [see Figs. 2(e) and 2(f); measurements at other
temperatures are shown in Fig. S4]. This concludes the main
experimental results of our work, demonstrating the third-
order NLAHE over a wide temperature window extending
beyond room temperature (see Figs. S5, S6, and S14 for
measurements of other Hall bar devices D2, D3, and D4,
respectively). The observed third-order NLAHE in our study
is an odd function of the magnetic field. Therefore, it must
have a different origin than the Berry curvature dipole and
Berry connection polarizability-induced second- and third-
order nonlinear Hall effects [10,28], which are an even
function of the magnetic field; i.e., they are finite at zero
magnetic field when T is intact. In the following, we show
that our observations are consistent with a Qαβγ-induced
third-order NLAHE in an A-type kagome antiferromagnet
whose spins are canted toward the c axis.

D. Symmetry analysis and electronic
structure calculations

First, we illustrate this concept by considering the
magnetic structure of FeSn [Fig. 1(a)], which belongs to
the magnetic point group mmm1’. The presence of finite
Berry curvature moments follows from a symmetry analy-
sis. Because mmm1’ preserves P · T , native FeSn does not
exhibit aΩ-induced AHE. On the other hand, canting of the
spins toward the c axis, such as induced by an externally
applied magnetic field, lowers the symmetry to 2=m, which
breaks P · T and permits a finite M and Qαβγ , while Dαβ

vanishes. Hence, an A-type kagome AFMwith spin canting
along the c axis is expected to exhibit a first- and third-
order AHE, whereas the second-order AHE is zero. To
support this hypothesis, we set up a corresponding nearest-
neighbor tight-binding model with spin-orbit coupling and
spin canting Mz [26,29]. This model allows us to quali-
tatively determine Berry curvature-related contributions to
the linear and third-order NLAHE. Figures 3(a) and 3(b)
display M and Qxxz, respectively, as a function of the out-
of-plane spin cantingMz. We findM ¼ Qxxz ¼ 0 ifMz ¼ 0
(P · T preserved), consistent with results from our mea-
surements in which the magnetic field is applied along the
Hall bar direction [cf. Figs. 2(e) and 2(f)]. On the other
hand, M and Qxxz are finite if Mz ≠ 0 (P · T broken). The
underlying Ω primarily originates from the massive Dirac
cones at the K points in the electronic structure (see
Fig. S7). Even in the absence of AFM at T>TN, Mz≠0
breaks T and results in M, Qxxz≠0 [see Figs. 3(c) and
3(d)]. Notably, Qxxz changes sign at the transition from a
canted antiferromagnetic to a canted paramagnetic phase at
TN. While not dictated by symmetry, this sign change
highlights the sensitivity of Qxxz to the underlying magnetic
and electronic material properties [30]. Importantly, our
calculations further show that M and Qxxz can generally
exhibit a nonlinear dependence onMz both in the para- and

antiferromagnetic phases [Figs. 3(a)–3(d)]. The detailed
relation between M and Qxxz and Mz is influenced by
the details of the underlying electronic band structure. Even
though Mz ∝ B was found in previous magnetometry
studies of FeSn [17], the first- and third-order Hall
responses can contain anomalous contributions that are
not linear in B, as observed in our measurements [cf.
Figs. 1(d) and 1(f)].
This supposition is largely consistent with results from

ab initio calculations of the electronic structure of FeSn
[26]. The band structure of our density functional theory
(DFT)-derived Wannier Hamiltonian in the antiferromag-
netic phase (see Fig. S9) is characterized by a complex
Fermi surface with multiple electron and hole pockets [see
Figs. 4(a) and 4(b) insets for the calculated Fermi surfaces].
We include a canting term Mz to simulate the spin canting
along the c axis. AtMz ≠ 0, the double band degeneracy in
both the antiferromagnetic (T < TN) and paramagnetic
(T > TN) states is lifted and indeed yields finite M and
Qxxz in the antiferromagnetic [Figs. 4(a) and 4(b)] and
paramagnetic phases, respectively [26]. As can be seen, M
and Qxxz deviate from a strictly linear dependence on Mz.
Especially in the limit Mz → 0, symmetry-breaking effects
could have an outsized effect on the generation of M and
Qxxz in the complex electronic band structure of FeSn. This
finding is consistent with the observation of anomalous
contributions ρ1ωAHE and ρ3ωAHE to the Hall response at
jBj < 2 T. Overall, the results of the symmetry analysis,
tight-binding model, and the electronic structure calcula-
tion support a Qxxz-induced third-order NLAHE.

E. Spin-canted state of FeSn

The spin-canted state of FeSn with a finite c-axis
magnetization (∼0.01 μB=Fe atom) in the presence of an
out-of-plane magnetic field was previously established by
magnetometry measurements over a wide temperature
window (2 K to 300 K) [17]. Here, we use classical
Monte Carlo simulations based on realistic magnetic
exchange terms of FeSn [17] to further demonstrate that
this canted state results from the interplay between critical
thermal fluctuations near TN and an externally applied
magnetic field [26]. The resulting in-plane hMxyð0; 0; πÞ2i
and out-of-plane hM2

zi spin correlation functions are shown
in Figs. 4(c) and 4(d), respectively. At T ≪ TN, the Fe spins
lie almost parallel to the a–b plane owing to a finite easy-
plane crystalline anisotropy, and they exhibit A-type AFM
order [cf. Fig. 1(a)]. As temperature increases, thermal
fluctuations gradually weaken this magnetic order and
hMxyð0; 0; πÞ2i → 0 near TN ¼ 0.76Jk, which is consistent
with the reported TN [17]. This “thermal softening” of the
in-plane spin alignment permits a finite out-of-plane spin
canting hM2

zi > 0 in the presence of an out-of-plane
magnetic field. This effect is the strongest near TN at
which critical fluctuations render the spins extremely
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susceptible to external perturbations, in this case, the
out-of-plane magnetic field. Therefore, hM2

zi gradually
increases with temperature, peaks at TN, and remains finite
even at T > TN. Magnetic-field-dependent simulations
further confirm the linear susceptibility and magnitude
of the previously experimentally determined out-of-plane
magnetization (Fig. S10) [17]. Overall, these characteristics
are consistent with our experimental observations of the
first- and third-order AHE, both of which require an out-of-
plane spin-canted state to take finite values: ρ1ωAHE and ρ3ωAHE
vanish at B ¼ 0 T and T → 0 K, exhibit a monotonic
growth toward TN in a finite out-of-plane magnetic field,
and remain finite at T > TN and B ≠ 0 T. We note that the
residual hM2

zi at B ¼ 2 T and T ¼ 0 K could be too small
to induce a measurable AHE. Possible spin-charge inter-
actions [17] and quantum-mechanical corrections could

further amend the low-temperature magnetic structure via
second-order effects not considered in our model.

III. DISCUSSION

A. Excluding competing mechanisms

It is important to distinguish intrinsic Qxxz contributions
to ρ3ωAHE from possible extrinsic contributions. In general,
extrinsic contributions to the third-order Hall response can
result from impurity scattering [31–33], a longitudinal
Drude response [see Fig. S14 for measurements of
ρ3ωxx ðTÞ on device D4], and Joule heating [34,35]. In the
presence of an external magnetic field applied in the out-of-
plane direction, ρ3ωxx results in a third-order orbital Hall
effect that contributes to the linear background ρ3ω0 ðBÞ of
the Hall response ρ3ωxy . As such, neither the third-order

FIG. 3. Berry curvature quadrupole of an A-type antiferromagnet on the kagome lattice with canted spins in the antiferromagnetic and
paramagnetic phases. (a) Berry curvature monopole M and (b) Berry curvature quadrupole Qxxz of an A-type kagome antiferromagnet as
a function of an out-of-plane magnetization Mz, owing to spin canting, as calculated from the a tight-binding lattice model. The
corresponding momentum kx;y-dependent Berry curvature Ω and spatial derivative ∂x∂xΩ are shown in the insets. (c) M and (d) Qxxz of
the canted kagome paramagnet as a function of Mz. The corresponding momentum kx;y-dependent Ω and ∂x∂xΩ are shown in the
respective insets. See main text and Ref. [26] for model details.
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Drude response nor Joule heating can account for the
observed ρ3ωAHE.
To further distinguish between Qxxz and skew scattering

contributions to ρ3ωAHE, we developed a scaling law analysis
for the third-order NLAHE in terms of the charge carrier
scattering time τ [13,14,26,36]. BCQ contributions to the
third-order Hall effect are predicted to scale as τ2. By
contrast, skew scattering contributions to the third-order
Hall effect are predicted to scale as τ4 [26]. The scaling
behavior of the experimentally observed third-order Hall
effect can be analyzed through the temperature dependence
of the anomalous Hall (E3ω

AHE) and longitudinal (Exx)
electric field ratio E3ω

AHE=E
3
xx and the longitudinal conduc-

tivity σxx at T < TN [Fig. 5(a)] [26]. Above T ¼ 200 K, we

find that E3ω
AHE=E

3
xx is nearly temperature independent, a

characteristic that is typically associated with intrinsic
Berry curvature-related contributions to the Hall effect.
The scattering time dependence can then be parametrized
as E3ω

AHE=ðE3
xxσxxÞ ¼ ασ2xx þ β, where α accounts for skew

scattering and β ¼ ðm2
eff=2ℏ

3n2ÞQxxz for the intrinsic BCQ
contribution [36] (meff denotes the effective electron mass,
ℏ the reduced Planck’s constant, and n the charge carrier
density). The intrinsic BCQ-related contribution dominates
the Hall response in the limit σ2xx → 0 and is proportional to
the vertical intercept β. Indeed, our corresponding analysis
[Fig. 5(b)] demonstrates that the experimentally observed
third-order anomalous Hall effect satisfies the derived
scaling law. The significant amplitude of the vertical

FIG. 4. Berry curvature monopole and quadrupole in the spin-canted state of FeSn. (a) Berry curvature monopole M as a function of
the out-of-plane spin canting Mz, calculated from the DFT-derived electronic structure of FeSn [16,26]. The inset displays the
corresponding momentum kx;y-dependent Berry curvature Ω distribution at Fermi energy (Mz ¼ 0.05). (b) Corresponding Berry
curvature quadrupole Qxxz as a function of Mz. The inset displays the corresponding kx;y-dependent second derivative ∂x∂xΩ at Fermi
energy, and the Fermi surface is depicted as a green line. (c) In-plane hMxyð0; 0; πÞ2i and (c) out-of-plane hM2

zi spin correlations as a
function of temperature T in the presence of an external magnetic field B ¼ 2 T applied along the crystallographic c axis as obtained
from magnetic Monte Carlo simulations [26]. Note that T is parametrized in terms of the ferromagnetic in-plane exchange Jjj. The insets
in panel (a) schematically display the corresponding in-plane spin-polarization, both in the ordered state near T ¼ 0 K and above Néel
temperature TN when in-plane spin correlations vanish. The insets in panel (b) schematically display the corresponding out-of-plane spin
polarization at T ≪ TN when spin canting is weak and at T ≤ TN when the canting effect is maximum.

EXPERIMENTAL EVIDENCE FOR A BERRY CURVATURE … PHYS. REV. X 14, 021046 (2024)

021046-7



intercept at σ2xx → 0 indicates that intrinsic contributions
dominate over a wide temperature range (approximately
95% at T ¼ 300 K), while skew scattering only becomes
relevant at T < 100 K. This finding distinguishes our
results from existing work on nonlinear Hall effects in
which the relative contribution of the topological transport
response to the AHE is much smaller owing to the
prevalence of skew scattering [14,37]. Importantly, our
analysis is also consistent with the predicted τ4 scaling of
the skew scattering contribution to the third-order anoma-
lous Hall effect. In passing, we note that contributions to
the orbital Hall effect arising from a third-order Drude
response and Joule heating also scale as τ4 and, as such,
would contribute to α.
Using β ¼ ð7.6� 0.2Þ × 102 Ωμm3V−2 obtained from

fitting E3ω
AHE=ðE3

xxσxxÞ, meff ¼ 5.4 me [16] (me denotes the
electron mass), and n ¼ 1 × 1021 cm−3 (from density
functional theory calculations [26]), we obtain Qxxz;exp ¼
73� 2 Å. We note that the equivalent scaling analysis [36]
of the first-order AHE (Fig. S8) also suggests an intrin-
sic origin of ρ1ωAHE, consistent with our expectation from
the symmetry analysis, tight-binding model, and elec-
tronic structure calculations. Here, Qxxz;exp deviates from
Qxxz;calc ∼ 100 Å, which can be obtained from the DFT-
derived Wannier states (Fig. S9). This deviation can have
multiple origins. First, the accuracy of DFT to approximate
the complex electronic structure of FeSn is generally
limited, which makes a quantitative estimate based on
DFT less reliable. Second, the narrow Ω and ∂x∂xΩ
distributions [cf. Figs. 4(a) and 4(b)] in momentum space
render a quantitative estimate of Qxxz;calc inherently chal-
lenging [26]. Moreover, uncertainties in the actual meff
[16], as well as an impurity-induced reduction of n, could
further influence the Qxxz;exp magnitude [26]. We note that

the FeSn films contain a crystallographic subdomain that is
rotated by Δϕ ¼ 30° in the film plane (see Fig. S1). The
underlying 2=m symmetry should result in a twofold
symmetry of the Qxxz-induced third-order Hall response
when the longitudinal current IxðωÞ is applied parallel or
antiparallel to the AFM-order parameter within the crys-
tallographic ab plane. The presence of domains breaks this
symmetry, and the other quadrupole component Qyyz

comes into play. In this case, the associated nonlinear
Hall signal is expected to be more isotropic, containing
Qxxz and Qyyz contributions. In our study, the effective
amplitude of ρ3ωAHE thus reflects the underlying domain
structure.
Finally, while the multiband Fermi surface of FeSn

[Figs. 4(a) and 4(b) insets] could generally contribute to
an S-shaped Hall response [Fig. 1(f)], the derived scaling
law is robust against multiband transport [26]. Hence,
based on the presented scaling analysis, we can exclude
multiband transport as a possible origin of the observed
third-order NLAHE. Because we are not aware of other
mechanisms that can give rise to a third-order Hall signal
with these scaling characteristics, our analysis strongly
supports the Berry curvature quadrupole origin of the
observed third-order NLAHE.

IV. CONCLUSION

Our study presents experimental evidence for the Berry
curvature quadrupole-induced third-order NLAHE at room
temperature in spin-canted FeSn [12,30]. This conclusion is
supported by a scaling law analysis, a symmetry analysis,
model calculations, first-principle calculations, and mag-
netic Monte Carlo simulations whose results are consistent
with the experimentally observed phenomenology. Hence,
our work suggests that Berry curvature multipoles can be

FIG. 5. Scaling law analysis of the third-order nonlinear AHE. (a) Ratio of the AHE electric field E3ω
AHE and the cubed longitudinal

electric field Exx (left axis), and longitudinal conductivity σxx (right axis) as a function of T. Here, E3ω
AHE ¼ V3ω

AHE=Lxy with
Lxy ≅ 21 μm, and Exx ¼ Vxx=Lxx with Lxx ≅ 26 μm. (b) E3ω

AHE=ðσxxE3
xxÞ and fit to the data (solid line) plotted as a function of σ2xx. The

respective temperatures associated with the data points are indicated.
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supported by the magnetic point group symmetries of
antiferromagnets. This finding constitutes a fundamentally
new mechanism for the NLAHE (T broken, P preserved)
which is qualitatively distinct from the Berry curvature
dipole (T preserved, P broken) [13,14] and the quantum
metric dipole (product preserved) [38,39] induced second-
order NLAHEs by symmetry arguments. Because Berry
curvature multipoles are predicted to exist for 90 magnetic
point groups [12], our work opens a new field to study a
variety of magnetic materials, whose topological electronic
states were previously inaccessible, through nonlinear
measurement protocols. Of particular interest will be
materials in which Berry curvature multipoles are predicted
to appear in the leading order [12], such as a BCQ in
antiferromagnetic SrMnBi2 thin films with broken inver-
sion symmetry (magnetic point group 40m0m) [40] and a
Berry curvature hexapole in the noncollinear antiferromag-
net TbAuIn (magnetic point group 6̄10) [41]. Owing to the
observed sensitivity of the third-order NLAHE to the
electronic and magnetic material properties [12,30], our
work showcases the use of NLAHEs as a sensitive electric
transport probe to investigate antiferromagnetic phase
transitions of various materials—such as moiré super-
lattices [42], two-dimensional van der Waal magnets
[43], quantum spin liquid materials [44,45], and altermag-
nets [46]—that remain poorly understood to date and that
are notoriously difficult to study by using electric transport
measurements. Our work further extends previous research
on AHEs in antiferromagnets [47–49] to the nonlinear
transport regime and highlights antiferromagnets [50–52]
as promising candidates to exhibit useful quantum proper-
ties at room temperature, owing to comparably large
antiferromagnetic exchange terms, the absence of a large
net magnetization, and the rich magnetic symmetries. In
this regard, the observation of the third-order NLAHE in an
epitaxially grown kagome magnet [25,53,54] in our study
narrows the gap toward the technological use of nonlinear
Hall effects in high-frequency and energy-harvesting appli-
cations [55].

V. METHODS

A. Sample preparation

Epitaxial FeSn thin films were grown on SrTiO3 (STO)
substrates in the (111) direction (from CrysTec GmbH) by
using a home-built molecular beam epitaxy (MBE) setup.
The as-received STO (111) substrates were cleaned using
sonication in acetone and isopropyl alcohol (IPA) for 5 min
each. Single-terminated STO (111) surfaces were obtained
by using a hot water etching step performed at 90 °C for
90 minutes. Thermal annealing of the STO (111) substrates
was performed at 1050 °C with an oxygen flow of 50 sccm
inside a tube furnace for 1 hour. Prior to the thin-film growth,
substrates were outgassed inside theMBE chamber at 600 °C
at a base pressure of less than 5 × 10−10 mbar. Following the

growth recipe of Inoue et al. [25], high-purity Fe (99.99%)
and Sn (99.99%) (Alfra Aesar) were co-evaporated from
Knudsen effusion cells at a beam flux ratio of 1∶2.2 at an
approximate growth rate of 1 nm=min to obtain a 30-nm-
thick amorphous FeSn film. During the deposition, the
STO (111) substrate was held at T ¼ 200 °C. Next, the films
were capped with an approximately 6-nm-thick layer of
amorphous BaF2. FeSn of high crystalline quality were
obtained by in situ postannealing of the deposited FeSn
layer at T ¼ 500 °C using a ramp rate of 5 °C=min during the
heat-up and cooldown phase. The FeSn thin films were
patterned into six terminal Hall bars [Fig. 1(b)] by using Arþ
ion milling and optical UV lithography. During the whole
fabrication process, the FeSn films were protected by the
BaF2 capping layer. Electrical contacts to the FeSn Hall
bar structure were fabricated by evaporating 5-nm/100-nm
titanium/gold electrodes.We note that cleaved [56] and argon
ion-irradiated [57] STO (111) surfaces can exhibit conducting
two-dimensional electron gases at the substrate surface.
Neither prepared STO substrates prior to FeSn deposition
nor STO substrates after argon ion milling of the Hall bar
structures exhibited a finite conductance across the substrate
surface in four-probe measurements conducted at ambient
conditions. This finding indicates the absence of substrate
surface effects in our electric transport measurements.

B. Electric transport measurements

All transport measurements were carried out in a com-
mercial cryogenic magnet system (J4804 from Cryogenic
Limited) using a four-probe contact geometry. The Hall bar
devices werewire bonded with 40-μm aluminumwire to the
chip carrier. Two-terminal measurements between different
contact pairs were carried out to ensure Ohmic device
contacts (Fig. S11). An ac drive of IxðωÞ ¼ I0 sinðωtÞ with
a peak amplitude peak of I0 ¼ 5 mA at a frequency of
f ¼ ðω=2πÞ ¼ 19.357 Hz was applied by using a source
meter (6221A from Keithley). For dc measurements, an
Ix ¼ 100 μA dc bias was applied. Four SR830 (Stanford
Research Systems) lock-in amplifiers, which were phase
matched to the Ix output, were used to simultaneously
measure V1ω

xx , V1ω
xy , V2ω

xy , and V3ω
xy [Fig. 1(b)]. Both Vω

xy and
V3ω
xy are in phasewith the drive frequency,whereasV2ω

xy is out
of phase by π=2 with respect to the drive frequency. The
lock-in phase was calibrated and monitored for each
measurement. Typical phase data of Vω

xy and V3ω
xy are shown

in Fig. S12. Measurements of V1ω
xy were conducted using

different filters, which have different roll-off characteristics,
to ensure the spectral purity of the measured lock-in signals
(see Fig. S13). Before any data analysis presented in the
main text was conducted, zero-field constant voltage offsets
were removed from Vω

xy; V2ω
xy , and V3ω

xy . These offsets likely
arose from a slight misalignment between the FeSn
Hall bar and the electrodes, causing a finite albeit small
coupling of the longitudinal signal into the Hall voltages.
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The zero-field offset Hall signal was found to exhibit
random values across different devices. The longitudinal
ρ1ωxx ¼ ðdLxy=LxxÞðV1ω

xx =IxÞ and first- and third-order Hall
ρ1ω;3ωxy ¼ ðdLxx=LxyÞðV1ω;3ω

xx =IxÞ resistivities were obtained
by considering the film thickness d ¼ 30 nm and Hall bar
dimensions Lxx ¼ 26 μm and Lxy ¼ 21 μm.
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