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The deconfined quantum critical point (DQCP) is an example of phase transitions beyond the Landau
symmetry-breaking paradigm that attracts wide interest. However, its nature has not been settled after
decades of study. In this paper, we apply the recently proposed fuzzy-sphere regularization to study the
SO(5) nonlinear sigma model with a topological Wess-Zumino-Witten term, which serves as a dual
description of the DQCP with an exact SO(5) symmetry. We demonstrate that the fuzzy sphere functions as
a powerful microscope, magnifying and revealing a wealth of crucial information about the DQCP,
ultimately paving the way toward its final answer. In particular, through exact diagonalization, we provide
clear evidence that the DQCP exhibits approximate conformal symmetry. The evidence includes the
existence of a conserved SO(5) symmetry current, a stress tensor, and integer-spaced levels between
conformal primaries and their descendants. Most remarkably, we identify 23 primaries and 76 conformal
descendants. Furthermore, by examining the renormalization group flow of the lowest symmetry singlet as
well as other primaries, we provide numerical evidence in favor of DQCP being pseudo-critical, with the
approximate conformal symmetry plausibly emerging from nearby complex fixed points. The primary
spectrum we compute also has important implications, including the conclusion that the SO(5) DQCP
cannot describe a direct transition from the Néel to valence bond solid phase on the honeycomb lattice.
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I. INTRODUCTION

The study of universal properties of quantum phase
transitions has been a central task within the condensed
matter physics community [1]. While Landau’s sponta-
neous symmetry-breaking paradigm has provided insights
into many criticalities, researchers have also identified
exotic quantum phase transitions that defy this paradigm.
One famous example is the deconfined quantum critical
point (DQCP) [2,3], initially proposed to describe a direct
quantum phase transition between the Néel antiferromagnet
and the valence bond solid (VBS) on a square lattice [4–6].
DQCP, besides being one of the pioneering phase tran-
sitions beyond Landau symmetry breaking, has led to
numerous theoretical surprises, including the emergence
of SO(5) symmetry [7] and the conjectural duality between
different strongly interacting 3D [i.e., ð2þ 1ÞD] gauge
theories [8].

Since its proposal, DQCPhas undergone extensive studies
in various models over the past two decades [7,9–14,14–30]
(also, see a recent review [31]). However, its nature remains
controversial.Monte Carlo simulations of DQCP in different
models have shown no signals of discontinuity, thus sug-
gesting a continuous phase transition. However, abnormal
scaling behaviors have been observed [7,22]. Moreover, the
critical exponents obtained by Monte Carlo simulations
violate the rigorous bounds from the conformal bootstrap
method [32,33]. Several possibilities have been proposed to
reconcile these tensions. One possibility is that DQCP
represents a continuous quantum phase transition that does
not exhibit emergent conformal symmetry. Alternatively, it is
possible that previous Monte Carlo analyses failed to obtain
precise critical exponents due to the presence of abnormal
scaling behavior [14,19,22,25]. Among these possibilities, a
particularly intriguing proposal is the concept of pseudo-
criticality [8], also known as walking behavior caused by a
complex fixed point [34,35]. According to this proposal,
DQCPmanifests as aweakly first-order transitionwith a tiny
gap and a large correlation length. In contrast to conven-
tional first-order phase transitions, a pseudo-critical system
demonstrates behavior closely resembling a continuous
transition, adhering to universal behaviors, especially at
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energy scales (e.g., finite temperature in real experiments)
larger than its small energy gap.
Theoretically, a pseudo-critical system resides near

complex fixed points within the unphysical (nonunitary)
parameter space. Under the renormalization group (RG)
flow, the system slowly walks in the shadow of complex
fixed points, resulting in approximate scaling and con-
formal symmetry [8,34,35]. A notable example of pseudo-
criticality is observed in a famous weakly first-order
transition, i.e., the order-disorder transition of the 2D
[ð1þ 1ÞD] five-state Potts model [36]. Numerical inves-
tigations have indeed revealed approximate conformal
symmetry in this model [37]. However, despite the plau-
sibility of pseudo-criticality as a scenario consistent with
most numerical findings regarding DQCP [38,39], direct
evidence remains elusive.
In general, understanding 3D interacting phase transi-

tions such as DQCP requires nonperturbative tools like
numerical methods. Historically, Monte Carlo simulation
of lattice models has been the primary reliable numerical
method for studying 3D phase transitions. However, this
approach faces several challenges when tackling problems
like DQCP. First, Monte Carlo simulations do not provide
direct information regarding the emergent conformal sym-
metry. Second, they heavily rely on finite-size extrapolation
of physical observables such as correlators to extract
critical exponents, limiting access to only a small number
of critical exponents. Moreover, subtle issues may arise if
there is abnormal scaling behavior in the pseudo-critical
system. Lastly, the similarity in behavior between pseudo-
critical and true critical systems makes it exceedingly
difficult to distinguish them, despite a few proposals
[40,41] that currently lack a well-founded theoretical
foundation.
A novel approach, called fuzzy-sphere regularization,

has recently emerged as a powerful method for studying
critical phenomena in 3D [i.e., ð2þ 1ÞD] [42]. It involves
investigating the ð2þ 1ÞD quantum phase transition on the
geometry of S2 ×R using the fuzzy (noncommutative)
sphere [43]. This approach offers distinct advantages over
traditional lattice model-based methods, including the
direct observation of emergent conformal symmetry and
the efficient extraction of critical data, such as critical
exponents, by employing the state-operator correspon-
dence, without relying on finite-size extrapolation. A key
feature of the fuzzy-sphere scheme is the state-operator
correspondence [44,45], which allows easy access to
information such as the scaling dimensions of many
operators. Specifically, there is a one-to-one correspon-
dence between the eigenstates jki of the conformal field
theory (CFT) quantum Hamiltonians on the sphere and the
CFT operators. Moreover, the energy gaps δEk are propor-
tional to the scaling dimensions Δk of the CFT operators

δEk ¼ Ek − E0 ¼ const × Δk; ð1Þ

where the scale factor is model and size dependent. The
power of this approach has been demonstrated in the
context of the 3D Ising transition, where the presence of
emergent conformal symmetry has been convincingly
established [42]. Moreover, accurate and efficient determi-
nations of 15 primary operators (i.e., independent critical
exponents) [42], 13 operator product expansion (OPE)
coefficients [46], several four-point correlators [47], and the
RG-monotonic F function [48] have been achieved as well.
This method has also been proven useful and efficient in
O(2) [49] and O(3) [50] Wilson-Fisher CFT and Ising
magnetic line defect CFT [51,52]. Therefore, the fuzzy
sphere can serve as a powerful microscope for studying 3D
critical phenomena, magnifying and revealing crucial
information that is inaccessible through other approaches.
In this paper, using the fuzzy-sphere microscope,

we provide direct evidence that the SO(5) DQCP is
pseudo-critical with an approximate conformal symmetry.
Specifically, we investigate the 3D SO(5) nonlinear sigma
model (NLσM) with a level-1 Wess-Zumino-Witten
(WZW) term, which serves as one of the dual descriptions
of the SO(5) DQCP [7,8]. A similar model has been
previously studied on the torus using determinant
Monte Carlo methods [30,53]. Throughout a wide range
of interaction strengths, we observe an approximate
conformal symmetry in the excitation spectrum of the
Hamiltonian, confirmed by the identification of the con-
served SO(5) symmetry current, stress tensor, and the
(approximately) integer-spaced levels between various
conformal primaries and their descendants. Interestingly,
as we vary the system size, we find that the RG flow
supports the scenario of pseudo-criticality. In particular, we
observe the lowest symmetry singlet flowing from being
slightly irrelevant to slightly relevant, which is a character-
istic feature of pseudo-criticality. The scaling dimensions of
other primaries also exhibit size and parameter depend-
ences that are quantitatively consistent with the prediction
of pseudo-criticality. Furthermore, we identify and calcu-
late the scaling dimensions of various primary operators in
the operator spectrum, some of which are crucial for
understanding the physics of the DQCP. For instance,
our estimated critical exponent η for the SO(5) order
parameter is consistent with previous Monte Carlo estima-
tions. Additionally, we find that the lowest parity-odd
SO(5) singlet is highly irrelevant with a scaling dimension
of approximately Δ ≈ 5.4. If this operator were relevant, it
would drive the DQCP toward a chiral spin liquid,
potentially playing a role in interesting phenomena
observed in real materials [54]. We also identify a relevant
6π monopole (in the language of the CP1 model [6]),
indicating that the Néel-VBS transition on the honeycomb
lattice cannot be described by the SO(5) DQCP [21].
Conversely, the 8π monopole is found to be irrelevant,
supporting the original conjecture of a stable DQCP on the
square lattice.
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The paper is organized as follows. In Sec. II A, we
explain the Hamiltonian of the nonlinear sigma model on
the lowest Landau level and fuzzy sphere. We then discuss
the possible scenarios of the RG flow, in particular, the
conformal window and pseudo-criticality in Sec. II B; we
discuss the quantitative predictions for pseudo-criticality
from conformal perturbation in Sec. II C; following that, in
Sec. II D, we discuss the relation with the original Néel-
VBS DQCP. We then present our numerical results in
Sec. III. In particular, we provide strong evidence for
approximate conformal symmetry and support the scenario
of pseudo-criticality in Sec. III C; in Sec. III D, we discuss
the operator spectrum and its physical consequence; in
Sec. III E, we analyze the drift of scaling dimensions and
show that the results are consistent with the prediction
of pseudo-criticality; in Sec. III F, we calculate the corre-
lation functions and OPE coefficients. Finally, we present
a summary and discussion in Sec. IV. The appendixes
contain more discussion about the formalism and detailed
numerical data of the spectra.

II. DECONFINED PHASE TRANSITION
ON THE FUZZY SPHERE

A. Model

The DQCP has multiple dual theoretical descriptions [8],
one of which involves the 3D SO(5) NLσM with a level-1
WZW term [7]. It has been found that this SO(5) NLσM
can be naturally realized with electrons in the half-filled
lowest Landau level (LLL), where an intriguing aspect is
that the UV Hamiltonian has an exact SO(5) symmetry
[30,53]. Our fuzzy-sphere model is a spherical realization
of this proposal, albeit formulated in a slightly differ-
ent form.
The target space of the SO(5) NLσM is S4 ≅ ½SOð5Þ=

SOð4Þ� ≅ ½ðSpð2ÞÞ=ðSpð1Þ × Spð1ÞÞ�. Here, we adopt the
convention that Spð1Þ ≅ SUð2Þ and Spð2Þ ≅ Spinð5Þ
[where Spinð5Þ is the double cover of SO(5)]. Although
we study only the SO(5) NLσMnumerically in this paper, it
is highly beneficial to consider its large-N generalization,
namely, the Spð2NÞ Grassmannian NLσM defined on the
target space ½ðSpð2NÞÞ=ðSpðNÞ × SpðNÞÞ�. Interestingly,
this Spð2NÞ Grassmannian NLσM can also be straightfor-
wardly realized using LLL.
We begin with 4N-flavor fermions ψa (a ¼ 1;…; 4N)

in the LLL, possessing a maximal flavor symmetry of
SUð4NÞ alongside U(1) charge conservation. Next, we
introduce interactions that break the SUð4NÞ symmetry
down to Spð2NÞ symmetry. The 4N-flavor fermions Ψ̂ ¼
ðψ1…ψ4NÞT form an Spð2NÞ fundamental, resulting in
Ψ̂TJΨ̂ being invariant under Spð2NÞ but not SUð4NÞ, where

J ¼
�

0 I2N
−I2N 0

�
:

Consequently, we can consider a Hamiltonian in the LLL
with a real space interaction:

Hint ¼
Z

d2r⃗1d2r⃗2

�
Uðr⃗12Þn̂ðr⃗1Þn̂ðr⃗2Þ

−
Vðr⃗12Þ
2N

Δ̂†ðr⃗1ÞΔ̂ðr⃗2Þ
�
; ð2Þ

where n̂ðr⃗Þ ¼ Ψ̂†ðr⃗ÞΨ̂ðr⃗Þ and Δ̂ðr⃗Þ ¼ Ψ̂Tðr⃗ÞJΨ̂ðr⃗Þ. For
simplicity, we consider the potentials to be both δ functions:
Uðr⃗12Þ ¼ Uδðr⃗12Þ andVðr⃗12Þ ¼ Vδðr⃗12Þ. The first term can
be viewed as a continuum version of SUð4NÞ Hubbard
interaction on the lattice, which maintains the maximal
SUð4NÞ fermion flavor symmetry. The second term breaks
SUð4NÞ down to Spð2NÞ symmetry. It is worth noting that
when N ¼ 1 our model reduces to the SO(5) NLσM studied
in Refs. [30,53], which is expressed in a slightly different
form [55].
Let us now explain why Eq. (2) on LLL at half filling

gives an Spð2NÞ Grassmannian NLσM with a level-1
WZW term. The N ¼ 1 case has been discussed in
Refs. [53,56]. When V ¼ 0, the dynamics of the system
is captured by a NLσM on the Uð4NÞ Grassmannian
½ðUð4NÞÞ=ðUð2NÞ × Uð2NÞÞ�:

S½Q� ¼ 1

g

Z
d2r⃗dtTr½∂μQðr⃗; tÞ�2 þ SWZW½Q�: ð3Þ

Here,Qðr⃗; tÞ is a 4N × 4N matrix field living on the Uð4NÞ
Grassmannian, parametrized by

Q ¼ A†
�
I2N 0

0 −I2N

�
A; ð4Þ

with A being a Uð4NÞ matrix. The matrix field Qðr⃗; tÞ
encodes the occupation of fermions in our original system,
specifically describing which 2N fermions out of the
total 4N are occupied at the space-time coordinate ðr⃗; tÞ.
The same theory has also been proposed to describe
the surface of certain ð3þ 1ÞD symmetry-protected
topological phases [57]. The WZW term has a simple
physical interpretation: The skyrmion, characterized by
π2ð½Uð4NÞ�=½Uð2NÞ × Uð2NÞ�Þ ¼ Z, is a fermion carrying
a U(1) electronic charge [58]. This generalizes a well-
established result of the quantum Hall ferromagnet [59],
which corresponds to the case of N ¼ 1=2 in our scenario.
Specifically, one can consider a special skyrmion that
exhibits nontrivial patterns solely in the first two compo-
nents of fermions, which then reduces to the familiar story
of the quantum Hall ferromagnet.
Once a finite V is introduced, the global SUð4NÞ

symmetry is explicitly broken down to the Spð2NÞ sym-
metry. As a consequence, the matrix field Qðr⃗; tÞ becomes
energetically favorable to fluctuate on the Spð2NÞ
Grassmannian ½ðSpð2NÞÞ=ðSpðNÞ × SpðNÞÞ�, which is a
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submanifold of the larger Uð4NÞ Grassmannian.
Additionally, the WZW term defined on the Uð4NÞ
Grassmannian is also reduced to a WZW term on the
Spð2NÞ Grassmannian. Therefore, even at finite V, the
system can still be effectively described by Eq. (3), where
the matrix field Qðr⃗; tÞ resides on the Spð2NÞ
Grassmannian and is parametrized by

Q ¼ MT

�
JN 0

0 −JN

�
M; M∈Spð2NÞ: ð5Þ

The stiffness of the NLσM is controlled by V=U in our
original model given by Eq. (2). The specific value of g
determines the phase of the system, which we discuss in
further detail later.
Having understood how to realize the Spð2NÞ

Grassmannian NLσM on the LLL, we are now ready to
extend it to the sphere. In practice, we simply consider
the LLL on a sphere with a 4πs monopole placed at the
center [60] [Fig. 1(a)]. The LLL on the sphere consists
of Norb ¼ 2sþ 1 degenerate orbitals, which can be

described by the monopole harmonics YðsÞ
smðθ;φÞ [61],

where m ¼ −s;−sþ 1;…; s. These 2sþ 1 orbitals
form a spin-s irreducible representation of the SO(3)
sphere rotation. On the sphere, we can parametrize the
system using spherical coordinates ðθ;φÞ, and we have
d2r⃗ ¼ Norb sin θdθdφ and δðr⃗12Þ ¼ ð1=NorbÞδðcos θ1 −
cos θ2Þδðφ1 − φ2Þ. Here, we utilize the fact that, on the
spherical LLL, the sphere radius R and the Landau orbital
number Norb are physically equivalent; i.e., Norb ∼ R2.

Next, we project the interaction Eq. (2) onto the LLL on
sphere:

Ψ̂ðθ;φÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Norb

p
Xs

m¼−s
ȲðsÞ
smðθ;φÞĉm: ð6Þ

Here, ĉm ¼ ðcm;1;…; cm;4NÞ is the second quantized fer-
mion operator defined on the Landau orbitals. The nor-
malization factor 1=

ffiffiffiffiffiffiffiffiffi
Norb

p
is to ensure the particle density

n̂ðr⃗Þ ¼ Ψ̂†ðr⃗ÞΨ̂ðr⃗Þ is an intensive quantity. Rewriting the
interaction Hamiltonian in a second quantized form in
terms of ĉm, we get

HðLLLÞ
int ¼

X
m1m2m3m4

�
Um1m2m3m4

ðĉ†m1
ĉm4

Þðĉ†m2
ĉm3

Þ − Vm1m2m3m4
ðĉ†m1

J†ĉ†m2
Þðĉm3

Jĉm4
Þ
�
: ð7Þ

The parameter Um1m2m3m4
is connected to the Haldane pseudopotential Ul by

Um1m2m3m4
¼

X
l

Ulð4s − 2lþ 1Þ
�

s s 2s − l

m1 m2 −m1 −m2

��
s s 2s − l

m4 m3 −m4 −m3

�
δm1þm2;m3þm4

; ð8Þ

where

�
j1 j2 j3
m1 m2 m3

�

is the Wigner 3j symbol and, similarly, Vm1m2m3m4
is

connected to the Haldane pseudopotential Vl. For the case
of δ potential we choose, the only nonzero component of
the Haldane pseudopotential is l ¼ 0.
At last, let us comment on why the LLL projection

(truncation) leads to a fuzzy sphere. It is instructive to
consider the projection of the coordinates of a unit sphere,
denoted as x⃗ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. After the

projection, the coordinates are transformed into ð2sþ 1Þ ×
ð2sþ 1Þ matrices, where ðX⃗Þm1;m2

¼ R
sin θdθdφx⃗ȲðsÞ

s;m1
×

ðθ;φÞYðsÞ
s;m2

ðθ;φÞ. These matrices satisfy the following
relations:

½Xμ;Xν� ¼ 1

sþ 1
iϵμνρXρ; XμXμ ¼ s

sþ 1
12sþ1: ð9Þ

The fact that the three coordinates satisfy the SO(3) algebra
formally defines a fuzzy sphere [43]. It isworth noting that, in
the thermodynamic limit s → ∞, the fuzziness disappears
and a unit sphere is recovered.

g ~ V / U

A

(i)N > Nc

B C

4πs

LLL
(a) (b)

A

(ii) N = Nc

D
Pseudo-critical(iii) N < Nc

A Z re

im

FIG. 1. (a) An illustration of the fuzzy-sphere setup. (b) Possible
scenarios of the RG flow of the SpðNÞ model as a function of
V=U: (i) At N > Nc, there is a symmetry-breaking fixed point A,
a repulsive B, and an attractive C CFT fixed point; (ii) at N ¼ Nc,
the CFT fixed points B and C merge into a single fixed point D;
(iii) at N < Nc, D splits into two complex fixed points Z, and the
region in vicinity exhibits pseudo-critical behavior. Here, the
filled and empty circles denote CFT and non-CFT fixed points,
respectively.
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B. Conformal window and pseudo-criticality

As conjectured in Ref. [62], the generic phase diagram
of a 3D NLσM with a WZW term can be summarized
in Fig. 1(b), which contains three different situations,
depending on the value of N.

(i) N > Nc.—For N larger than a critical value Nc,
there exist three different fixed points as we tune
the NLσM coupling g or, equivalently, V=U in our
model. When g is small, the NLσM spontaneously
breaks the global symmetry, and the ground state
manifold corresponds to the target space of the
NLσM [in our case, the Spð2NÞ Grassmannian].
This corresponds to the attractive fixed point A. On
the other hand, when g is large, the system flows
to the attractive fixed point C, which is fully sym-
metric and described by a 3D CFT. For the Spð2NÞ
Grassmannian NLσM considered in our paper, this
attractive conformal fixed point is in the same
universality class as a QCD3 theory with 2N flavors
of Dirac fermions coupled to an SU(2) gauge field
[58,62]. In the limit of N ≫ 1, the operator spectrum
can be computed using the standard large-N ex-
pansion technique [63]. This QCD3 theory has also
been studied by lattice Monte Carlo simulation [64].
At a critical coupling gc, there is a repulsive fixed
point B, which also corresponds to a fully symmetric
CFT. This fixed point describes the phase transition
between the CFT phase (C) and the spontaneous
symmetry-breaking phase (A).

(ii) N ¼ Nc.—When decreasing N to a critical value
N ¼ Nc, the two CFT fixed points B and C merge
into one (D), and the singlet S becomes exactly
marginal (ΔS ¼ 3).

(iii) N < Nc.—For N < Nc, the fixed point D splits into
two fixed points located in the complex plane,
denoted Z. Along the real axis, there are no CFT
fixed points. However, the complex fixed points Z
are described by complex CFTs, which have com-
plex conformal data including complex scaling
dimensions [34,35]. When Z is sufficiently close
to the real axis, these complex conformal data have a
very small imaginary part. Importantly, the RG flow
near Z is slow, and, over a large length scale, the
system exhibits an approximate conformal sym-
metry with conformal data that closely resemble
the real part of the complex CFT’s complex con-
formal data. This behavior, referred to as pseudo-
criticality or “walking behavior,” is conjectured to
account for the anomalous scaling observed numeri-
cally in the DQCP. A similar phenomenon has been
observed in the 2D five-state Potts model [37].

So the key question pertains to the value of Nc for
the Spð2NÞ Grassmannian NLσM. If Nc < 1, the SO(5)
DQCP corresponds to a genuine continuous transition
described by the attractive conformal fixed point C shown

in Fig. 1(b)(i). On the other hand, if Nc > 1, the SO(5)
DQCP exhibits pseudo-critical behavior as depicted in
Fig. 1(b)(iii). We also note that such N-dependent phase
diagrams are believed to be common in various models and
theories. For instance, in critical gauge theories involving
Dirac fermions (or critical bosons) coupled to a dynamical
gauge field GðkÞ ¼ SUðkÞ, UðkÞ, SpðkÞ, etc., there exists a
critical value Nc½GðkÞ� for each gauge group [65]. Our
Spð2NÞ Grassmannian NLσM corresponds to 2N Dirac
fermions coupled to an SU(2) gauge field. However,
determining the precise region of the conformal window
(N > Nc½GðkÞ�) for any gauge theory has been a long-
standing challenge in the field. The main difficulty lies in
distinguishing between pseudo-critical behavior and true
critical behavior: The former also exhibits an approximate
conformal symmetry over a large length scale, while the
conformal symmetry of the latter is exact only in the
thermodynamic limit.
Here, we propose that the fuzzy-sphere microscope can

be used to resolve the outstanding puzzle of the conformal
window. The idea is to examine the RG flow of operators’
scaling dimensions, particularly, the lowest-lying global
symmetry singlet S which controls RG flow. A character-
istic feature of pseudo-criticality is that, at the coupling
V=U on the right-hand side of the vicinity of the complex
fixed points Z, since the RG flow is attractive at the
beginning toward the complex fixed points and then
becomes repulsive past the complex fixed points, ΔS will
decrease from being slightly irrelevant (i.e., ΔS ≳ 3) to
slightly relevant (i.e., ΔS ≲ 3) as the system size increases
[66]. Such flow does not occur in the case of N > Nc, as
one has either ΔS > 3 or ΔS increasing from being relevant
to irrelevant as the system size increases. The latter
situation corresponds to the coupling being close to the
critical coupling of the repulsive fixed point B. A quanti-
tative analysis based on conformal perturbation follows in
the next section. In this paper, we focus on the case N ¼ 1,
where we find a clear signature of pseudo-criticality.

C. Conformal perturbation for pseudo-criticality

The RG flow can be quantitatively described by the
conformal perturbation theory [34,35]. In the scenario of
pseudo-criticality, we can write the Hamiltonian as

HðλÞ ¼ H0 þ λ

Z
dr⃗
4π

Sðr⃗Þ; ð10Þ

where H0 is the Hamiltonian at a reference point and
λ ¼ λðR; λ0Þ is the factor of the singlet operator S that
depends on the linear system size R ¼ N1=2

orb and a tuning
parameter λ0 in the Hamiltonian that is determined by V=U.
The rescaled energy of an arbitrary operator Φ could be
interpreted as the scaling dimension due to the state-
operator correspondence in the presence of conformal
symmetry:
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ΔΦðλÞ ¼ hΦjHðλÞjΦi þOðλ2Þ ¼ ΔΦ;0 þ λfΦΦS þOðλ2Þ
ð11Þ

to the lowest order of λ, where ΔΦ;0 ¼ hΦjH0jΦi [67].
The flow of λðR; λ0Þ is captured by the β function

βðλÞ ¼ R
dλðR; λ0Þ

dR
: ð12Þ

To capture the structure of the pseudo-critical flow, to the
lowest order the β function takes the form

βðλÞ ¼ R
dλðR; λ0Þ

dR
¼ −αðλ2 þ y2Þ þOðy4Þ; ð13Þ

where λ ¼ 0 is defined to be the point where the flow is the
slowest and α and y are parameters to be determined.
Continuing λ into the complex plane, the two complex
fixed points lie at λ�Z� ¼ �iy [68]. Subsequently, the
scaling dimensions at two complex fixed points ΔΦ;Z�
are given by

ΔΦ;Z� ¼ ΔΦð�iyÞ ¼ ΔΦ;0 � iyfΦΦS þOðy2Þ: ð14Þ

The physical parameters lie on the real axis λ∈R. One
can solve from the flow equation that to the leading order

λðR; λ0Þ ¼ y tan

�
tan−1

λ0
y
− αy log

R
R0

�
þOðy2Þ: ð15Þ

The rescaled energy of any state corresponding to the
primary operator Φ is given by substituting into Eq. (11).
To the leading order,

ΔΦðλ0; RÞ ¼ ΔΦ;0 þ fΦΦSλðR; λ0Þ þOðλ2Þ: ð16Þ

Physically, we can compare it with the scenario where
there are two real conformal fixed points, which are very
close to each other. We set the repulsive fixed point at
λ ¼ −x and the attractive fixed point at λ ¼ þx. To the
leading order,

β̃ðλÞ ¼ −αðλ2 − x2Þ þOðx4Þ;

λ̃ðR; λ0Þ ¼ x tanh

�
tanh−1

λ0
x
þ αx log

R
R0

�
þOðx2Þ;

Δ̃Φðλ0; RÞ ¼ ΔΦ þ λ̃fΦΦS þOðλ̃2Þ; ð17Þ
where we use the tilde to distinguish with the case of
pseudo-criticality and we define tanh−1 ξ ¼ iπ − coth−1 ξ
when jξj > 1. A pronounced difference is that ΔΦ increases
with system size R on one side of the attractive fixed
point λ� ¼ x and decreases with R on the other side, and
ΔΦðλÞ for different R should intersect near the fixed point.
A similar intersection is also expected in the vicinity
of the repulsive fixed point. In contrast, for the case of

pseudo-criticality, the dependence of ΔΦ on R stays the
same regardless of λ. This can be used to distinguish
the two scenarios. We also note that the microscopic
Hamiltonian may also contain various irrelevant operators
S0, S00, etc. Each of them has a subleading contribution to
the scaling dimension δΔΦðR; λ00;…Þ ∼ λ00R

ΔS0−3 þ � � �,
which scales to zero in the thermodynamic limit.
This result also supports our claim that the RG flow

of the lowest singlet from irrelevant to relevant is a key
feature for pseudo-criticality. To the leading order, ΔS ¼
3þOðy2Þ and fSSS ¼ 2αþOðy2Þ. Thus, from Eq. (16),
the rescaled energy for the state corresponding to S is

ΔSðλ0; RÞ ¼ 3 − 2αy tan

�
αy log

R
Rcðλ0Þ

�
þOðy2Þ; ð18Þ

where Rcðλ0Þ ¼ R0 exp½ðtan−1λ0=xÞ=ðαxÞ�. For small sys-
tem size R < Rcðλ0Þ, S is irrelevant ΔSðλ0; RÞ > 3; as R
increases, ΔS decreases, and, until R > Rc, S will become
relevant: ΔSðλ0; RÞ < 3. The size dependence of ΔS is
sketched in Fig. 2(c). We can similarly work out the
expression in the case where there are two real fixed points:

Δ̃Sðλ0; RÞ ¼ 3þ 2αx tanh

�
αx log

R

R̃cðλ0Þ
�
þOðx2Þ; ð19Þ

where R̃cðλ0Þ ¼ R0 exp½ðtanh−1λ0=xÞ=ðαxÞ� and ΔSðλ0; RÞ
increases from relevant ΔSðλ0; R < RcÞ < 3 to irrelevant

(a) (b)

(c) (d)

FIG. 2. An illustration of the flow diagram of λ (a),(b) and the
dependence of the rescaled energy ΔSðλ; RÞ on the system size R
for different parameters λ (c),(d) in the scenario of pseudo-
criticality (a),(c) and true criticality with two real fixed points
(b),(d). For the purpose of illustration, we set αy ¼ 0.2 and
αx ¼ 0.5 and take the horizontal axes in logarithmic scale. The
arrows in (a) and (b) indicate the position in the flow at scale
R=R0 ¼ 0.5 and 2 for different curves in (c) and (d). The red stars
denote the fixed points. A characteristic feature of pseudo-
criticality (a),(c) is that the lowest singlet always flows from
irrelevant to relevant as the system sizeR increases, if the flow starts
from ΔS > 3.
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ΔSðλ0; R > RcÞ > 3 along the flow. The size dependence
of ΔS is sketched in Fig. 2(d). We also note that, in the
vicinity of the fixed points, the scale R̃c → 0 as λ0 → −x
and R̃c → ∞ as λ0 → þx, and we can use the asymptotic
behavior tanh ξ → �ð1 − 2e∓ξÞ as ξ → �∞ to recover the
familiar flow behavior

Δ̃Sðλ0; RÞ

→

�
3þ 2αxþ 2αðλ0 − xÞðR=R0Þ−2αx; λ0 → þx;

3 − 2αxþ 2αðλ0 þ xÞðR=R0Þþ2αx; λ0 → −x:
ð20Þ

In conclusion, the conformal perturbation gives the
dependence of the rescaled energy for any primary operator
Φ from state-operator correspondence on linear system size
R and parameter λ0 in Hamiltonian

ΔΦðλ0; RÞ ¼ ΔΦ;0 þ fΦΦSy tan

�
tan−1

λ0
y
− αy log

R
R0

�

þOðy2Þ ð21Þ

to the leading order. We verify it numerically as evidence
for pseudo-criticality in Sec. III E.

D. Relation to the original story of DQCP

Before presenting our results, it is worth commenting
on how our model is related to the original story of
DQCP. DQCP was originally proposed to describe a
direct continuous transition between a Néel phase and
VBS phase on the square lattice [2,3]. The effective
field theory is the CP1 model, which is a gauge theory
that has Nf ¼ 2 flavors of complex critical bosons
coupled to a U(1) gauge field. This field theory has
an explicit SUð2Þ × Uð1Þ global symmetry, where SU(2)
is the flavor rotation symmetry between the two flavors
of bosons and U(1) is also called the topological U(1)
corresponding to the flux conservation of the U(1)
gauge field. For the Néel-VBS transition on the square
lattice, there is only an SUð2Þ × Z4 symmetry in the UV,
where SU(2) is the spin-rotation symmetry, while Z4 is
the square lattice C4 rotation symmetry. At the phase
transition, it is conjectured that Z4 is enhanced to U(1),
which means that the 8π monopole M8π has to be
irrelevant. Similarly, for the Néel-VBS transition on the
honeycomb lattice [21,69], where there is only a C3

lattice rotation, the 6π monopole M6π has to be
irrelevant if it is described by the DQCP.
More recently, it was numerically discovered that the

SUð2Þ × Uð1Þ symmetry enhances to the SO(5) symmetry
[7], and it inspired a number of new dual descriptions of
DQCP [8], including the SO(5) NLσM studied here. In the
original Néel-VBS transition, the SO(5) symmetry corre-
sponds to the symmetry between the three-component
Néel order parameter and the two-component VBS order

parameter. The WZW term encodes the physics of inter-
twinement between the Néel and VBS orders; namely, the
topological defect of one binds the symmetry charge of
the other [70–72]. One component of the SO(5) rank-2
symmetric traceless tensor becomes the SUð2Þ × Uð1Þ
singlet, so it is the tuning operator for the Néel-VBS
transition. In our model, this operator is not allowed by the
SO(5) symmetry, so there is no relevant singlet if the DQCP
is a genuine critical point without further fine-tuning.
It is also worth noting that the DQCP exhibits a mixed

anomaly between the SO(5) and time-reversal symmetry
[8]. In the Néel-VBS transition, apart from time-reversal
symmetry, there is only an SUð2Þ × Z4 symmetry in the
UV, which is consistent with this anomaly. Interestingly,
the SO(5) NLσM possesses exact SO(5) and time-reversal
symmetry (i.e., particle-hole symmetry) in the UV,
which appears to contradict the anomaly of DQCP. The
way to reconcile this contradiction is by understanding
that the particle-hole symmetry on the LLL is a nonlocal
symmetry [73]. Similar physics also applies to the Spð2NÞ
Grassmannian NLσM, which realizes 2N flavor SU(2)
QCD3 with exact Spð2NÞ and time-reversal symmetry in
the UV. In contrast, for a lattice realization of QCD3, one
can have only SpðNÞ × SpðNÞ symmetry in the UV due to
the parity anomaly.

III. NUMERICAL RESULTS

A. Exact diagonalization and quantum numbers

We perform an exact diagonalization calculation for
the Hamiltonian Eq. (2) at N ¼ 1 to get the lower spectra
up to a system size Norb ¼ 10 (i.e., 20 electrons). As each
eigenstate carries a definite quantum number of all the
symmetries of the Hamiltonian and implementing the cor-
responding conserved quantities can divide the Hilbert
space into sectors and block-diagonalize the Hamiltonian, it
is useful to first analyze the symmetries of the Hamiltonian.
(1) The SO(3) rotation symmetry of S2. The angular

momentum of the state can be determined by
measuring the SO(3) quadratic Casimir hΦjL̂2jΦi ¼
lΦðlΦ þ 1Þ. In the calculation, we implement the
conservation of L̂z which gives each state a quantum
number mz

Φ ¼ hΦjL̂zjΦi. The mz ¼ 0 sector can be
further divided into even-l and odd-l sectors by
representation under π rotation around y axis Ry

(cf. Appendix A).
(2) The SOð5Þ ¼ Spð2Þ=Z2 flavor symmetry. The SO

(5) representation carried by the operator (state) is
determined by the counting degeneracy of the
corresponding states and by measuring the SO(5)
quadratic Casimir. In this paper, we label the
representations by their dimensions, namely, the
singlet representation 1, the SO(5) vector represen-
tation [i.e., the Sp(2) antisymmetric rank-2 traceless
tensor representation] 5, the SO(5) antisymmetric
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rank-2 tensor representation [i.e., the Sp(2) sym-
metric rank-2 tensor representation] 10, and the SO
(5) symmetric rank-2 traceless tensor representation
14. In the calculation, we implement two commuting
conserved quantities σ1;2 (cf. Appendix A) due to
this symmetry, corresponding to the two generators
of the Cartan subalgebra of soð5Þ. The σ1;2 ¼ 0

sector can be further divided by representation under
two permutations of layers X1;2 (cf. Appendix A).

(3) The particle-hole symmetry P∶ĉm → Jðĉ†mÞT;
i → −i. This further divides the mz ¼ 0 sector.
With these conserved quantities Lz, σ1;2, P, Ry,

and X1;2 implemented, we are able to look at the
500 lowest-lying states in the sector Lz ¼ 0 and
σ1;2 ¼ 0 at maximal size Norb ¼ 10. The Norb ¼ 10

calculation takes 96.7 GB of memory and 7075 s
[using 2.4 Hz Intel(R) Xeon(R) Gold 6148 CPU
with 40 cores] to produce the 50 lowest eigenstates
in the maximal sector ðmz; σ1; σ2;P;Ry;X1;X2Þ ¼
ð0; 0; 0;þ;þ;þ;þÞ.

B. Phase diagram

To study the physics of DQCP, we should first identify a
region in the phase diagram that does not show spontaneous
symmetry breaking at finite system size. In the scenario of
true criticality, there is an ordered and spontaneously
symmetry-broken phase at small V=U and a CFT phase
at large V=U, and the phase transition is described by
another CFT. In the scenario of pseudo-criticality, in the
thermodynamic limit, there is only one phase which is
ordered and spontaneously symmetry broken. However, at
finite system size, the behavior is similar to a crossover
between a disordered region and an ordered region, as the
system at small V=U flows to the vicinity of the symmetry-
broken fixed point, and the system at large V=U flows
toward the pseudo-critical region before its eventual order-
ing in the thermodynamic limit. As the RG flow in the
pseudo-critical region is very slow and the correlation
length is very large, a finite-size system in this region
exhibits disorder.

So we look at the SO(5) symmetry-breaking order
parameter [i.e., SO(5) vector]

mi ¼ 1

Norb

X
m

ĉ†mγiĉm; ð22Þ

in the finite-size systems, where the γ matrices are
fI ⊗ τx; I ⊗ τz; σx ⊗ τy; σy ⊗ τy; σz ⊗ τyg. In a quantum
system described by a unitary CFT, the order parameter
should scale with the linear scale of the system as

hm2i ∼ R−2Δϕ ¼ N
−Δϕ

orb , where ϕ is the lowest parity-odd
scalar SO(5) vector operator in the CFT. We can similarly
look at the one-point function hϕjmj0i ∼ R−Δϕ , where jϕi is
the state corresponding to the ϕ operator in the CFT. As its
scaling dimension is bounded by the unitarity bound Δϕ ≥
d=2 − 1 ¼ 1=2 [32], hm2iN1=2

orb and hϕjmj0iN1=4
orb should be

decreasing with Norb. Numerically, we observe these two
quantities increase with Norb at V=U ≲ 0.4, corresponding
to a symmetry-breaking region, and decrease with Norb at
V=U ≳ 0.5 [Figs. 3(a) and 3(b)]. We also perform a finite-
size scaling to fit the scaling dimension Δϕ [Fig. 3(c)].
These results consistently indicate that SO(5) symmetry is
not breaking at V=U > 0.5 for the system sizes Norb ≤ 10.
Consequently, we focus on this region in the following.

C. Approximate conformal symmetry

To verify whether or not the V=U ≳ 0.5 region is
described by a CFT, we need to examine if the energy
spectrum has an emergent conformal symmetry, namely, if
they form irreducible representations of the conformal
group. We first determine the size and parameter-dependent
factor in Eq. (1) by setting the scaling dimension of the
SO(5) symmetry current to be exactly ΔJ ¼ 2. The sym-
metries of the Hamiltonian should be identified with the
symmetries of the conformal field theory and so are the
quantum numbers carried by the quantum states and by
the CFT operators. In particular, the SO(3) rotation sym-
metry of S2 is identified with the Lorentz rotation of the
conformal group, and the angular momentum is identified
with the Lorentz spin l; the particle-hole symmetry acts as

(a) (b) (c)

FIG. 3. Identifying a disorder region by finite-size scaling of the order parameter SO(5) vectorm. (a) hm2iN1=2
orb and (b) hϕjmj0iN1=4

orb as
a function of V=U at 5 ≤ Norb ≤ 10. (c) The scaling dimension Δϕ as a function of V=U extracted from the finite-size scaling of hm2i
and hϕjmj0i.
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an improper Z2 of O(3) and is, thus, identified as the space-
time parity P of the CFT [42].
One convincing evidence for the conformal symmetry is

the integer-spaced levels (e.g., see Ref. [42] for a detailed
discussion). In a CFT spectrum, for any scalar primary Φ
with quantum numbers ðl ¼ 0;P; rep;ΔÞ, its descendants
can be written in the form of ∂ν1…∂

νjð∂2ÞnΦ (n, j ≥ 0) with
quantum numbers ðj;P; rep;Δþ 2nþ jÞ; for spinning
primary Φμ1…μl, its descendants can be written either as
∂
ν1…∂

νjð∂2Þn∂μ1…∂μiΦ
μ1…μl (0≤ i≤ l;n;j≥ 0) with quan-

tum numbers ðl − iþ j;P; rep;Δþ 2nþ iþ jÞ or as
ϵμ1ρσ∂

ρ
∂
ν1…∂

νjð∂2Þn∂μ2…∂μiΦ
μ1…μl (1 ≤ i ≤ l; n; j ≥ 0)

with quantum numbers ðl − iþ jþ 1;−P; rep;Δþ 2nþ
iþ jÞ; for conserved currents like SO(5) symmetry current
Jμ and stress tensor T μν, only i ¼ 0 descendants exist due to
the conservation ∂μ1Φ

μ1…μl ¼ 0.
Numerically, we observe that the low-lying levels indeed

exhibit a remarkable alignment with the integer-spaced
patterns predicted by the conformal symmetry. Figure 4
shows numerically identified conformal multiplet (i.e.,
primary and its descendants) of the lowest SO(5) vector
ϕ, the lowest SO(5) traceless tensor T, and the symmetry
current Jμ by matching the quantum numbers. For each
system size Norb, the data are measured at a size-dependent
parameter value V=U around 0.9 such that ΔT ¼ 3 holds
exactly, which is another requirement of conformal sym-
metry. We are able to find all their descendants up to l ≤ 3
andΔ ≤ 5with nonemissing. In general, the finite-size effect
is larger for a larger l; a similar behavior has also been
observed for the 3D Ising CFTon the fuzzy sphere [42]. The
measured scaling dimensions (symbols) and the correspond-
ing anticipated values (gray lines) exhibit good agreement.
More conformal multiplets like these are summarized in
Table VI in Appendix B, which contains 23 primaries and 76
conformal descendants. These results convincingly demon-
strate the emergent conformal symmetry.
We remark that certain intervals do not have the expected

trend when increasing the system size (e.g., Δ∂
μϕ − Δϕ

scales to approximately 1.1). This may come from either an
insufficiently large system size or the lack of exact
conformal symmetry due to the pseudo-criticality (see
the discussion below). It is also worth noting that if we
move away from this parameter point, approximate con-
formal symmetry still holds in a vast region. We examine
scaling dimension of the stress tensor T μν and the descend-
ants ∂μϕ, ∂μ∂νϕ, and ϵμνρ∂νJρ and compare them with the

FIG. 4. The scaling dimensions of the conformal multiplet of (a) the lowest SO(5) vector ϕ, (b) the SO(5) symmetry current Jμ,
and (c) the lowest SO(5) rank-2 traceless symmetric tensor T at different spin l and system size Norb. The horizontal gray bar denotes
the anticipated values based on the integer-spaced levels from the conformal symmetry. The filled and empty symbols in (b) signify the
parity-even and parity-odd descendants, respectively. Parameter V=U is taken such that ΔT ¼ 3 exactly. The rest of the states in the
respective sector, listed in Table V, can also be organized in conformal multiplets.

(a)

(c) (d)

(b)

FIG. 5. The scaling dimension of (a) stress tensor T μν, (b) the
descendant ϵμνρ∂νJρ of the symmetry current, (c),(d) the differ-
ence between the lowest SO(5) vector ϕ and its descendants
(c) ∂

μϕ and (d) ∂μ∂νϕ at different system size Norb calibrated
by the scaling dimension of the symmetry current ΔJ ¼ 2.
The quantum numbers ðl;P; repÞ are given in the bracket.
The gray grid line indicates the values imposed by the conformal
symmetry.
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anticipated values (Fig. 5). For T μν, the agreement holds
with a maximal discrepancy of 5% for a vast region
0.7 < V=U < 1.5, and the error decreases with increasing
Norb; for ϵμνρ∂νJρ, the agreement holds with a maximal
discrepancy of 3%.
Our observation provides strong support for an

approximate conformal symmetry in a vast region
0.7<V=U<1.5. The next question we want to answer
is whether this CFT signature corresponds to the fixed point
B (a phase transition), C [a genuine SO(5) CFT], or Z
(pseudo-criticality) in Fig. 1(b). The vast region of approxi-
mate conformal symmetry rules out the possibility of an
unstable fixed point B that needs fine-tuning. The dis-
tinction between a genuine SO(5) CFT and pseudo-
criticality can be further diagnosed by the lowest singlet
S. In the case of real fixed points, ΔS increases toward
irrelevance with ΔS > 3, while for pseudo-criticality, ΔS
decreases from irrelevant (ΔS > 3) toward relevant
(ΔS < 3) along the flow. Our results indeed observe
such flow (Fig. 6 and Table I). In particular, for
1.0≲ V=U ≲ 1.5, ΔS flows from slightly irrelevant
(ΔS ≳ 3) to slightly relevant (ΔS ≲ 3) as the system size
increases, supporting the scenario that DQCP corresponds

to not a real CFT, but to a pseudo-critical region that locates
near complex CFT fixed points and exhibits approximate
conformal symmetry.

D. Operator spectrum

Having presented the evidence that DQCP is likely
pseudo-critical, we now turn to its (pseudo-)critical proper-
ties, i.e., scaling dimensions of primary operators. Since
there are no true CFT fixed points in the real axis, the
operator spectrum presented below should be viewed as the
real part of the complex scaling dimensions of the true
complex CFTs. We also note that the scaling dimensions of
the operators change with the parameter V=U (Fig. 7); this
may be the result of the walking behavior in the vicinity of
the complex fixed point. The parameter dependence of
scaling dimensions of various primaries appears to follow
the same pattern, suggesting a potential universal behavior
that can be understood through RG analysis.
As we target the pseudo-critical region in the RG flow

diagram, to minimize the finite-size effect, for each system
size Norb, we conduct the calculation at a V=U value where
ΔT ¼ 3 holds exactly. We analyze the operators through
the following process: (i) We pick out the lowest state in
each representation and identify it as a primary; (ii) we
identify its descendants by matching the quantum numbers
ðl;P; rep;ΔÞ; (iii) we remove the identified conformal

(a) (b)

FIG. 6. The scaling dimension of the lowest scalar S (a) as a
function of V=U for different Norb and (b) as a function of Norb
for different V=U. The horizontal axis of (b) is taken in
logarithmic scale to compare with Fig. 2(c). The gray grid line
indicates Δ ¼ 3 that separates relevance and irrelevance.

TABLE I. The scaling dimensions ΔS of the lowest singlet S at
different V=U and system size Norb calibrated by the scaling
dimension of the symmetry current ΔJ ¼ 2.

V=U
Norb

10 9 8 7 6 5

0.3 2.712 2.725 2.744 2.773 2.817 2.882
0.7 2.760 2.782 2.811 2.847 2.895 2.960
0.9 2.819 2.841 2.868 2.902 2.946 3.005
1.0 2.847 2.868 2.894 2.927 2.969 3.026
1.5 2.959 2.977 2.999 3.026 3.061 3.106
3.0 3.122 3.136 3.151 3.170 3.193 3.221
10.0 3.267 3.276 3.286 3.297 3.308 3.321

(a) (b)

(c) (d)

FIG. 7. The scaling dimension of (a) the lowest SO(5) vector ϕ,
(b) the lowest rank-2SOð5Þ symmetric traceless tensor T, (c) the
6π monopole M6π , and (d) the 8π monopole M8π as a function
of V=U at different system size Norb calibrated by the scaling
dimension of the symmetry current ΔJ ¼ 2. The quantum
numbers ðl;P; repÞ are given in the bracket.
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multiplet from the spectrum and repeat the process.
The lowest-lying primaries are listed in Table II. We
complement this table with two other operators M8π

and S− which are explained in the following. The full
spectrum can be found in Appendix B.
Besides Jμ, T μν, and S that we have introduced before,

there are several other primary operators worth noting.
(i) The lowest l ¼ 0 parity-odd SO(5) vector ϕ corre-

sponds to the order parameter. Its scaling dimension is
related to the anomalous dimensionη¼ðΔϕ−1=2Þ=2.
Our Norb ¼ 10 data imply η ¼ 0.168.

(ii) The lowest l ¼ 0 parity-even symmetric rank-2
tensor T corresponds to the relevant perturbation
that controls the original Néel-VBS transition. Its
scaling dimension is related to the exponent ν ¼ 1=
ð3 − ΔTÞ. Our Norb ¼ 10 data imply ν ¼ 0.647.

(iii) The lowest l ¼ 0 parity-odd operator in rep-
resentation corresponds to the 6π monopole M6π in
the CP1 description. This operator is forbidden in
lattices with C4 rotation symmetry but allowed for
C3 symmetry. Although the exact value of its scaling
dimension flows [Fig. 7(c)], our calculation finds it
relevant in all cases, which is likely to imply that the
DQCP is not possible on honeycomb lattice as M6π

drives it away [21,26].
(iv) The lowest l ¼ 0 parity-even operator in

representation corresponds to the 8π monopole
M8π in the CP1 description. This operator is related
to the dangerous irrelevant perturbation in the Néel-
VBS DQCP [2,3]. Although the exact value of its
scaling dimension flows [Fig. 7(d)], our calculation
confirms its irrelevance.

(v) The lowest l ¼ 0 parity-odd singlet S− corresponds
to the fermion bilinear in the QCD3 description. This
operator has engineering dimension 2 but receives
a huge correction up to ΔS− ≈ 5.37 [74]. If this
operator were relevant, it would drive the DQCP
toward a chiral spin liquid, potentially playing a role
in interesting phenomena observed in real materials
[54]. Our calculation finds it highly irrelevant and,
therefore, negates this scenario.

It is worth noting that the scaling dimensions of various
monopoles in the CP1 description have been calculated by
introducing such defects into 3D critical dimer model in
Monte Carlo simulation [23,24], including Δϕ ¼ 0.579ð8Þ,
ΔT ¼ 1.52ð7Þ, and ΔM6π

¼ 2.80ð3Þ, which are very close
to our results and also confirm the relevance of 6π
monopole. We can also compare the critical exponents
with the Monte Carlo results in various transitions, includ-
ing 3D loop model ηloop;VBS ¼ 0.25ð3Þ, ηloop;Néel¼0.259ð3Þ,
νloop;VBS ¼ 0.503ð9Þ, and νloop;Néel¼0.477ð4Þ [22], J-Q model
ηJ-Q ¼ 0.35, νJ-Q ¼ 0.455ð2Þ [14,25,75], and transition
between quantum spin Hall insulators and s-wave
superconductor (QSH-SC) [76] νSC ¼ 0.56ð6Þ, νQSH ¼
0.6ð1Þ, ηSC ¼ 0.22ð6Þ, and ηQSH ¼ 0.21ð5Þ [28]. We think
that the discrepancy between these results is a consequence
of critical exponents drift of walking behavior of pseudo-
criticality. Phenomenologically, the exponents computed
using the RG analysis (or scaling assumptions) of true
criticality are drifting with the system size and interaction
strengths, as shown in Fig. 7. Similar drift with system size
has also been observed in ν in loop models [22] and both η
and ν in the QSH-SC transition [28]. For example, in the
loop model computation [22], ν is drifting from ν ≈ 0.65 at
L ∼ 50 to ν ≈ 0.50 at L ∼ 500. In the next section, we show
that our data of scaling dimensions drift can be understood
using the conformal perturbation of the pseudo-criticality
discussed in Sec. II C.

E. A pseudo-critical data collapse
for scaling dimension drifts

To verify that the scaling dimension drift (Fig. 7) is the
consequence of the walking behavior in the vicinity of the
complex fixed point, we perform a data collapse based on
the theory of pseudo-criticality. We try to fit the parameter
and size dependence with the prediction of conformal
perturbation Eqs. (15) and (21). For the dependence of λ0
on V=U, we assume that both HCFT and S can be expressed
as a linear combination of two terms in the Hamiltonian
HCFT ¼ R

d2r⃗ðU0n2 − V0Δ†ΔÞ and S ¼ U1n2 − V1Δ†Δ.
The λ0ðV=UÞ then take the ansatz λ0ðV=UÞ ¼ C1ð1þ
C2V=UÞ=ð1þ C3V=UÞ. To facilitate fitting, we linearize
Eq. (15) into λðR; λ0Þ ¼ λ0 − αy2 logðR=R0Þ. Under these
assumptions, the fitting ansatz can be organized into

ΔΦðNorb; V=UÞ ¼ ΔΦ;0 þ fΦΦSλðNorb; V=UÞ; ð23Þ

TABLE II. The scaling dimension and quantum numbers for
the lowest-lying primary operators obtained from state-operator
correspondence at different system sizes Norb. These numbers
still violate the bootstrap bound. Parameter V=U is taken such
that ΔT ¼ 3 exactly.

Norb 10 9 8 7 6
V=U 0.9437 0.9150 0.8904 0.8717 0.8617

Op. l P Rep Δ

I 0 þ 1 0.000 0.000 0.000 0.000 0.000
ϕ 0 − 5 0.585 0.584 0.583 0.583 0.586
T 0 þ 14 1.458 1.454 1.452 1.455 1.463
Jμ 1 þ 10 2.000 2.000 2.000 2.000 2.000
M6π 0 − 30 2.571 2.565 2.562 2.567 2.582
S 0 þ 1 2.831 2.845 2.865 2.894 2.937
T μν 2 þ 1 3.000 3.000 3.000 3.000 3.000

1 − 35 3.031 3.028 3.028 3.030 3.037
1 þ 10 3.164 3.167 3.171 3.176 3.183
2 þ 14 3.333 3.330 3.325 3.315 3.283

M8π 0 þ 55 3.895 3.885 3.881 3.887 3.908
S− 0 − 1 5.338 5.354 5.366 5.373 5.372
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λðNorb; V=UÞ ¼ C1

1þ C2V=U
1þ C3V=U

−
1

2
αy2 logNorb ð24Þ

with the constants ΔΦ;0, C1fΦΦS, αy2=C1, and C2;3 to be
fitted and the linear size is taken as R ¼ ffiffiffiffiffiffiffiffiffi

Norb
p

. We find
that the scaling dimensions plotted as a function of the
running coupling λðNorb; V=UÞ for different system sizes
collapse well (Fig. 8), which is further evidence for
the scenario of pseudo-criticality. The goodness of the
fittings can be evaluated by the average relative residual
δΦ ¼ h½Δansatz

Φ ðNorb; V=UÞ=Δnumerics
Φ ðNorb; V=UÞ − 1�2i1=2,

which are around δ ≈ 3.5 × 10−3 for all the quantities in
Fig. 8. In addition, if we make a further assumption that
ΔT ¼ 3 holds exactly at the point λ ¼ 0, we can fit the
scaling dimensions ΔΦ;0: Δϕ ¼ 0.583ð7Þ, ΔT ¼ 1.456ð12Þ,
ΔM6π

¼ 2.569ð19Þ, ΔM8π
¼ 3.89ð3Þ, ΔS ¼ 2.90ð6Þ, and

ΔT μν ¼ 3.00ð6Þ.
We also need to stress that these values are calculated in

the walking region off the critical point. To produce reliable
scaling dimensions, one should consider a non-Hermitian
Hamiltonian and tune parameters to the complex fixed
points. We also need to stress that the analysis of conformal
perturbation above is very preliminary. The subleading
contributions from the irrelevant operators have not been
eliminated. The undetermined parameters in the fitting may

also be determined by measurements at the complex
fixed point.

F. Correlation functions and OPE coefficients

Having studied the spectrum of the system and the
corresponding CFT, we now turn to the operators and their
correlation functions. The simplest particle-hole symmetric
operator is the density operator [46]

n̂Mðθ;φÞ ¼ Ψ̂†ðθ;φÞMΨ̂ðθ;φÞ; ð25Þ
where M is a Hermitian matrix insertion. Any gapless
density operator in the microscopic model can be expres-
sed as a linear combination of CFT operators including
primaries and descendants that have the same parity and
SO(5) quantum number as n̂M:

n̂Mðθ;φ; τ ¼ 0Þ ¼
X
α

cαΦ̂α: ð26Þ

Using this decomposition, we may consider the one-point
functions

hΦαjn̂Mðθ;φ; τ ¼ 0Þj0i ¼
X
β∈ ½α�

cβR−Δβhβðθ;φÞ;

hΦαjn̂Mðθ;φ; τ ¼ 0ÞjΦγi ¼
X
β

fαβγcβR−Δβ h̃αβγðθ;φÞ;

ð27Þ
where jΦαi denotes the state corresponding to the CFT
operator Φ̂α, [α] denotes conformal multiplet of α, hβðθ;φÞ
and h̃αβγðθ;φÞ are universal functions fixed by conformal
symmetry, and fαβγ is the OPE coefficient. Specifically, we
may consider the density operator in the vector represen-
tation of SO(5) [i.e., the Sp(2) antisymmetric rank-2
traceless tensor representation] by inserting the γ matrices

n̂V;iðθ;φÞ ¼ Ψ̂†ðθ;φÞγiΨ̂ðθ;φÞ: ð28Þ
In the perspective of CFT, this operator receives its
lowest contribution from the Φ̂ and its descendants
n̂V ¼ cϕϕ̂þ c∂μϕ∂μϕ̂þ c∂2ϕ∂

2ϕ̂þ � � �.
The normalized two-point function of n̂V , therefore,

receives its leading-order contribution from the two-point
function of ϕ̂:

CVðθ1;φ1; θ2;φ2Þ ¼ CVðθ12Þ

¼ h0jn̂Vðθ1;φ1Þn̂Vðθ2;φ2Þj0i
jh0j R sin θdθdφ

4π n̂Vðθ;φÞjϕij2
¼ hϕ̂ðe⃗1Þϕ̂ðe⃗2Þiflat þOðR−1Þ

¼
�
2 sin

θ12
2

�
−2Δϕ þOðR−1Þ; ð29Þ

(a) (b)

(c) (d)

FIG. 8. The data collapse for the scaling dimensions as a
universal function of the running coupling parameter
λðNorb; V=UÞ Eq. (15) for different system sizes. The data are
the same as in Fig. 7. The black line on each figure denotes the
fitted result. Note that the x axis λðNorb; V=UÞ could differ up to
an arbitrary linear transformation, and the zero point of λ is taken
such that ΔT μν ¼ 3 holds exact at Norb ¼ 10.
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where θ12 is the angular distance and e⃗1;2 are the unit
vector of the two points; the subleading correction OðR−1Þ
comes from the contribution of the descendant ∂

μϕ̂
on the nominator. Numerically, we find the finite-size
result approaches theoretical expectation as Norb increases
[Fig. 9(a)]. At large distance near θ12 ¼ π, the finite-size
result has little discrepancy with the theoretical expectation,
while the divergence at small distance is not captured by the
finite-size numerical result. From the two-point function,
we can also extract the scaling dimension of ϕ by taking its
value at antipodal points

CVðπÞ ¼ 2−2Δϕ þOðR−1Þ ð30Þ

and its spatial integral

Z
sin θdθ

2
CVðθÞ ¼ 2−2Δϕ

Δ − 1
þOðR−2Þ; ð31Þ

where for the latter the subleading contribution comes from
∂
2ϕ̂ instead. After a finite-size scaling, we extrapolate that

ΔðantipodalÞ
ϕ ¼ 0.56ð2Þ and ΔðintegralÞ

ϕ ¼ 0.55ð5Þ [Fig. 9(b)],
which are 6% and 5% different, respectively, from the result
from the state-operator correspondence 0.584.
On the other hand, we can extract the OPE coefficients

by taking the inner product of n̂Vðθ;φÞ with CFT states and
integrate out the angular dependence [46]. For details, see
Appendix C. As an example,

fϕϕJ ¼
ffiffiffi
3

2

r R sinθdθdφ
4π Y10ðθ;φÞhϕjnVðθ;φÞjJm¼0iR sinθdθdφ

4π Ȳ00ðθ;φÞhϕjnVðθ;φÞj0i
þOðR−2Þ;

ð32Þ

where the subleading contribution comes from ∂
2ϕ̂.

Similarly, we calculate several OPE coefficients. After a
finite-size scaling [Fig. 9(c)], the extrapolated values are
listed in Table III. Here, we use a convention that the
two-point correlator of Jμ or T μν normalizes to 1, so OPE
coefficients fϕϕJ and fϕϕT can give central charges.
For example, the stress tensor central charge CT ¼
ð½3Δϕ=4fϕϕT �Þ2 ≈6.561¼ 0.8748 · ð5Cfree

T Þ, where Cfree
T ¼

1.5 is the central charge of a free real scalar [32].

IV. SUMMARY AND DISCUSSIONS

In this paper, we utilize the fuzzy-sphere regularization
as a microscope to investigate the SO(5) NLσM with a
level-1 WZW term, which serves as one of the dual
descriptions of the SO(5) DQCP. We present compelling
evidence supporting the presence of an approximate con-
formal symmetry in the model. Specifically, in the exci-
tation spectrum, we have identified many characteristic
features of emergent conformal symmetry, including the
conserved SO(5) symmetry current, the stress tensor, and
observed integer-spaced levels between primary operators
and their descendants. Furthermore, we find that the RG
flow supports the scenario of pseudo-criticality. In particu-
lar, we observe the lowest symmetry singlet flowing from
being slightly irrelevant to slightly relevant, which is a
characteristic feature of pseudo-criticality. The scaling
dimensions of other primaries also exhibit size and param-
eter dependences that are quantitatively consistent with the
prediction of pseudo-criticality. Additionally, we identify
various primary operators, including a relevant 6π monop-
ole (in the context of the CP1 model), an irrelevant 8π
monopole, and a highly irrelevant parity-odd SO(5) singlet.
These findings hold important physical implications.
Furthermore, we have computed several OPE coefficients,
including the central charge of the stress tensor.
It is worth noting that our work is the first time observing

that the SO(5) DQCP has approximate conformal sym-
metry. This essentially rules out several proposals explain-
ing the abnormal scaling behavior in the Néel-VBS
transition; e.g., the Néel-VBS transition is described by

(a) (b) (c)

FIG. 9. (a) The dimensionless two-point correlation function CVðθ12Þ defined in Eq. (29) at different system size Norb and the
theoretical expectation in the thermodynamic limit Cðθ12Þ ¼ ð2 sinðθ12=2ÞÞ−2Δϕ ; (b) the scaling dimension Δϕ extrapolated from its
value at antipodal points Eq. (30) and spatial integral Eq. (31); (c) the finite-size scaling of OPE coefficients fϕϕT , fϕϕJ , fϕϕS, and fϕϕT .

TABLE III. The extrapolated OPE coefficients. The error bar is
extracted from linear extrapolation.

fϕϕT fϕϕJ fϕϕS fϕϕT

1.242(7) 0.771(3) 0.235(8) 0.121(8)
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a continuous transition without conformal symmetry. We
also need to add that, in principle, the subleading con-
tributions from multiple irrelevant operators in the vicinity
of a real fixed point could cause a similar flow behavior
of the singlet dimension decreasing toward relevance.
Although we have not found any indication of it, our
analysis currently cannot rule out this small possibility. To
rule out this scenario, a more sophisticated analysis with
conformal perturbation [77] taking into account the irrel-
evant perturbations of the Hamiltonian can be carried out in
the future. Besides, other techniques such as density matrix
renormalization group [46] and quantum Monte Carlo [78]
can also be conveniently applied to fuzzy sphere and
greatly expand the system sizes. With the help of these
methods, our numerical findings could be further strength-
ened in the future.
So far, our exploration has been limited to the pseudo-

critical phenomenon, which serves as a shadow of the
complex fixed point in the complex plane. It is highly
intriguing to directly investigate the physics of the complex
fixed point itself. Establishing its existence and compre-
hending its nature would not only conclusively settle the
two-decade-long debate surrounding the DQCP, but also
provide fresh insights into the landscape of fixed points and
CFTs, which hold fundamental significance. It is conjec-
tured that the complex fixed point is a relatively common
feature in many models and theories, representing one of
the few, if not the only, known mechanisms for interaction-
driven first-order phase transitions. However, apart from a
few examples in 2D [i.e., ð1þ 1ÞD], no example in 3D or
higher dimensions has been firmly established thus far. The
study of the complex fixed point necessitates the exami-
nation of a non-Hermitian Hamiltonian, a task made
feasible through the fuzzy-sphere technique.
We also emphasize that the observation of pseudo-

critical behavior in the DQCP should not diminish its
significance. Pseudo-criticality closely resembles true criti-
cality over a wide range of length scales (e.g., system size)
or energy scales (e.g., temperature). For instance, any
experimental realization of a quantum phase transition is
necessarily conducted at a finite temperature, so for a
pseudo-critical system one would also observe universal
phenomena governed by the complex fixed point.
Therefore, employing the fuzzy-sphere technique to
uncover the CFT perspective of the DQCP at finite temper-
ature, an aspect inaccessible through traditional lattice
model simulations, holds great intrigue.
In addition to observing pseudo-critical behavior, we

have demonstrated the efficacy of the fuzzy-sphere micro-
scope by computing the scaling dimensions of many
primary operators. These results play a vital role in
enhancing our understanding of the DQCP in various
systems, which were previously unattainable through ear-
lier studies. For instance, our findings indicate that the
SO(5) DQCP cannot be applied to the Néel-VBS transition

on the honeycomb lattice. Consequently, it becomes
imperative to employ the fuzzy-sphere microscope in
investigating other intricate CFTs. One primary target of
interest is the U(1) Dirac spin liquid [79–81], whose
comprehension holds significant value for experimental
studies involving real materials. Specifically, it is crucial to
determine the (ir)relevance of specific operators, as this
determines whether the U(1) Dirac spin liquid represents a
stable phase of matter or a phase transition on triangular or
kagome lattices and related materials [82–84].
Another exciting application of the fuzzy-sphere micro-

scope is to solve the conformal window problem of 3D
critical gauge theories, a long-standing open problem that
is interesting to both condensed matter and high-energy
physics. Specifically, the SO(5) DQCP studied here is dual
to N ¼ 2 Dirac fermions coupled to an SU(2) gauge field.
We have also provided a simple model for its large-N
generalization, which corresponds to the QCD3 theory with
2N Dirac fermions coupled to an SU(2) gauge field. By
studying this model on the fuzzy sphere, one should be
able to determine the precise region of the conformal
window (i.e., N >Nc) for which the QCD3 theory becomes
conformal. The traditional methods, such as lattice model
simulations [64], may not be able to complete this task due
to the challenge of distinguishing a true critical (conformal)
theory from a pseudo-critical theory. Moreover, generaliz-
ing this scheme to other critical gauge theories with
different gauge groups should be feasible and interesting
to explore in the future.
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APPENDIX A: SECTIONING THE HILBERT
SPACE

In the exact algorithm, we consider the following U(1)
conserved quantities:

m̂z ¼
X
m

mĉ†mĉm; σ̂1 ¼
X
m

ĉ†mσ1ĉm; σ̂2 ¼
X
m

ĉ†mσ2ĉm;

ðA1Þ

where
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σ1 ¼

0
BBB@
1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

1
CCCA and σ2 ¼

0
BBB@
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

1
CCCA:

These quantities are conserved because of the SO(3)
rotation symmetry and the SO(5) flavor symmetry.
These quantities divide the many-body Hilbert space into
sectors and block-diagonalize the Hamiltonian. The
ðmz; σ1; σ2Þ ¼ 0 representation can be further divided four
Z2 symmetries, viz. parity P, π rotation around y axis Ry,
and permutation of flavour indices X1;2:

P∶ĉm → Jðĉ†mÞT; i → −i

Ry∶ ĉm → ĉ−m

X1∶ĉm → Jĉm

X2∶ĉm;1 ↔ ĉm;2; ĉm;3 ↔ ĉm;4: ðA2Þ

The eigenstates we obtain are also simultaneously eigen-
states of these quantities. Using the branching rule soð5Þ ⊃
suð2Þ ⊕ suð2Þ [σ̂1;2 corresponds to the Cartan subalgebra
of the suð2Þ’s], we can list the degeneracy within each
ðσ1; σ2Þ sector and each ðσ1 ¼ 0; σ2 ¼ 0;X1;X2Þ sector
for each representation (Table IV). By matching the
degeneracy of the measured state, we can infer the
representation of the corresponding operator.

APPENDIX B: FULL SPECTRUM

In Table V, we list the scaling dimensions of various
operators at different V=U and system size Norb. These
results support the emergence of approximate conformal
symmetry in a vast region V=U ≥ 0.7.
We list the operator spectrum of operators with l ≤ 3

and Δ < 5.5 measured at Norb ¼ 8 and V=U ¼ 0.8904 in
Table VI, containing 2691 states corresponding to 137
operators, organized into different representations and
conformal multiplets.

TABLE IV. The Young diagrams and quadratic Casimir C2 of different Sp(2) and SO(5) representations and the corresponding state
degeneracies in different ðσ1; σ2Þ and ðσ1 ¼ 0; σ2 ¼ 0;X1;X2Þ sectors. Here, we listed only the sectors with 0 ≤ σ2 ≤ σ1. The sectors
ð�σ1;�σ2Þ and ð�σ2;�σ1Þ should have the same degeneracy; e.g., the degeneracy listed for (3,1) also applies to ð3;−1Þ, ð−3;�1Þ,
ð1;�3Þ, and ð−1;�3Þ.

Young diagram Degeneracy in sector ðσ1; σ2Þ In sector ð0; 0;X1;X2Þ
Rep Sp(2) SO(5) C2 (0, 0) (1, 1) (2, 0) (2, 2) (3, 1) (3, 3) (4, 0) (4, 2) (4, 4) ðþ;þÞ ðþ;−Þ ð−;þÞ ð−;−Þ
1 0 1 1
5 2 1 1 1
10 3 2 1 1 1 1
14 5 2 1 1 1 2
30 9 2 2 1 1 1 1 2
35 6 3 3 2 1 1 1 1 1
350 8 3 2 2 1 1 1 2 1
55 14 3 2 2 2 1 1 1 1 1 3
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TABLE V. The scaling dimensions of several operators at different V=U and system size Norb calibrated by the scaling dimension of
the symmetry currentΔJ ¼ 2. The quantum numbers ðl;P; repÞ are given in the bracket. (a) The conserved stress tensor T μν, fixed to be
3 by conformal symmetry; (b) the difference of scaling dimension of ϕ and its descendant Δ∂

μϕ − Δϕ, fixed to be 1 by conformal
symmetry; (c) the difference of scaling dimension of ϕ and its descendant Δ∂

μ
∂
νϕ − Δϕ, fixed to be 2 by conformal symmetry; (d) the

descendant ϵμνρ∂νJρ of the conserved current Jμ, fixed to be 3 by conformal symmetry; (e) the descendant ∂μJν of the conserved current
Jμ, fixed to be 3 by conformal symmetry; (f) the difference of scaling dimension of T and its descendant Δ∂

μT − ΔT , fixed to be 1 by
conformal symmetry.

Norb
V=U 10 9 8 7 6 10 9 8 7 6 10 9 8 7 6

(a) T μν; ð2;þ; 1Þ (b) ∂μϕ; ð2;−; 5Þ − ϕ (c) ∂μ∂νϕ; ð1;−; 5Þ − ϕ

0.3 3.404 3.413 3.427 3.452 3.493 1.403 1.399 1.395 1.393 1.392 2.872 2.856 2.833 2.803 2.760
0.7 3.084 3.080 3.079 3.079 3.086 1.155 1.152 1.149 1.146 1.143 2.196 2.178 2.155 2.126 2.086
0.9 3.012 3.005 2.997 2.989 2.983 1.104 1.100 1.096 1.092 1.086 2.052 2.031 2.004 1.970 1.926
1.0 2.986 2.976 2.965 2.954 2.943 1.086 1.082 1.078 1.072 1.066 2.000 1.977 1.948 1.912 1.865
1.5 2.898 2.880 2.859 2.834 2.802 1.033 1.027 1.020 1.011 0.999 1.837 1.806 1.768 1.723 1.665
3.0 2.788 2.758 2.720 2.674 2.615 0.983 0.974 0.962 0.947 0.928 1.661 1.618 1.568 1.506 1.431
10.0 2.678 2.634 2.579 2.511 2.427 0.951 0.938 0.922 0.901 0.875 1.525 1.471 1.408 1.332 1.239

(d) ϵμνρ∂νJρ; ð1;−; 10Þ (e) ∂μJν; ð2;þ; 10Þ (f) ∂μT; ð1;þ; 14Þ − T

0.3 3.313 3.294 3.270 3.241 3.206 3.473 3.457 3.432 3.396 3.343 1.394 1.389 1.383 1.378 1.373
0.7 3.099 3.093 3.084 3.074 3.060 3.031 3.016 2.995 2.967 2.927 1.145 1.139 1.132 1.123 1.111
0.9 3.064 3.059 3.053 3.045 3.034 2.945 2.927 2.905 2.875 2.835 1.090 1.083 1.074 1.062 1.047
1.0 3.052 3.048 3.042 3.035 3.026 2.914 2.896 2.872 2.841 2.800 1.070 1.062 1.052 1.040 1.023
1.5 3.020 3.016 3.012 3.006 2.999 2.821 2.798 2.770 2.735 2.690 1.007 0.996 0.982 0.965 0.942
3.0 2.988 2.985 2.980 2.975 2.968 2.725 2.696 2.661 2.619 2.566 0.938 0.923 0.903 0.878 0.846
10.0 2.962 2.956 2.950 2.944 2.936 2.652 2.618 2.577 2.527 2.467 0.886 0.866 0.840 0.808 0.766

TABLE VI. The full low-lying states with l ≤ 3 and Δ < 5.5
measured at Norb ¼ 10 and V=U ¼ 0.9437, organized into
different representations and conformal multiplets. The “P”
and “D” in the last column denote the identified primaries and
their descendants, respectively. The short dash divides multiplets,
and the line divides representations.

l P Rep Δ

0 þ 1 0.000
0 þ 1 2.831 P
1 þ 1 3.911 D
2 þ 1 4.713 D
0 þ 1 5.055 D
2 þ 1 3.000 P
3 þ 1 3.802 D
2 − 1 4.014 D
3 − 1 4.700 D
2 þ 1 4.945 D
0 − 1 5.338 P
2 þ 1 4.919
3 þ 1 5.207

0 − 5 0.585 P
1 − 5 1.681 D
2 − 5 2.614 D
0 − 5 2.956 D
3 − 5 3.308 D

(Table continued)

TABLE VI. (Continued)

l P Rep Δ

1 − 5 3.950 D
2 − 5 4.732 D
0 − 5 5.059 D
2 − 5 3.845 P
3 − 5 4.664 D
2 þ 5 4.858 D
1 − 5 5.082 D
2 þ 5 3.986 P
3 þ 5 4.726 D
2 − 5 4.903 D
1 þ 5 5.047 D
0 − 5 4.325 P
1 − 5 5.330 D
1 − 5 4.501 P
2 − 5 5.464 D
3 − 5 4.576
3 − 5 5.249
2 − 5 5.381
3 − 5 5.382

1 þ 10 2.000 P
2 þ 10 2.931 D
1 − 10 3.059 D
3 þ 10 3.628 D

(Table continued)
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APPENDIX C: OPE TENSOR STRUCTURE

The OPE coefficients are defined by the two-point and
three-point functions, namely,

hϕiðx1Þϕjðx2Þi ¼ δijx
−2τϕ
12 ;

hTijðx1ÞTklðx2Þi ¼ Tij;klx
−2τT
12 ;

hĴijðx1; z1ÞĴklðx2; z2Þi ¼ Aij;klHðx1; x2; z1; z2Þx−2τJ12 ;

hSðx1ÞSðx2Þi ¼ x−2τS12 ;

hT̂ ðx1; z1ÞT̂ ðx2; z2Þi ¼ Hðx1; x2; z1; z2Þ2x−2τT12 ; ðC1Þ

TABLE VI. (Continued)

l P Rep Δ

2 − 10 3.911 D
1 þ 10 4.081 D
3 − 10 4.521 D
2 þ 10 4.857 D
1 − 10 5.056 D
1 þ 10 3.164 P
2 þ 10 4.064 D
1 − 10 4.216 D
0 þ 10 4.304 D
3 þ 10 4.711 D
2 − 10 5.051 D
1 þ 10 5.206 D
3 þ 10 4.215 P
3 − 10 5.103 D
2 þ 10 5.397 D
3 − 10 4.418
1 þ 10 4.515
2 − 10 4.895
1 − 10 5.144
3 þ 10 5.189
1 þ 10 5.239
3 þ 10 5.316
3 þ 10 5.408
3 þ 10 5.497

0 þ 14 1.458 P
1 þ 14 2.538 D
2 þ 14 3.446 D
0 þ 14 3.753 D
3 þ 14 4.191 D
1 þ 14 4.659 D
2 þ 14 5.477 D
2 þ 14 3.333 P
3 þ 14 4.038 D
2 − 14 4.349 D
1 þ 14 4.720 D
3 − 14 5.028 D
2 þ 14 5.232 D
0 þ 14 4.351 P
1 þ 14 5.338 D
2 þ 14 4.887
2 − 14 5.299
2 þ 14 5.376
3 − 14 5.500

1 − 35 3.031 P
2 − 35 3.953 D
1 þ 35 4.102 D
0 − 35 4.244 D
2 þ 35 4.936 D
3 − 35 5.015 D
1 − 35 5.214 D
2 − 35 3.559 P
3 − 35 4.334 D
1 − 35 4.448 D

(Table continued)

TABLE VI. (Continued)

l P Rep Δ

2 þ 35 4.541 D
3 þ 35 5.446 D
2 − 35 5.454 D
1 þ 35 5.476 D
3 − 35 4.622 P
2 − 35 5.305 D
3 þ 35 5.336 D
1 − 35 4.734
2 − 35 4.787
2 þ 35 4.805
1 þ 35 4.839
1 − 35 5.121
3 þ 35 5.200

2 þ 350 4.692 P
2 − 350 5.169 D
3 þ 350 5.456 D
0 þ 350 4.885

0 − 30 2.571 P
1 − 30 3.621 D
2 − 30 4.519 D
0 − 30 4.803 D
3 − 30 5.063 D
2 − 30 4.400 P
3 − 30 5.284 D
2 þ 30 5.407 D
3 − 30 5.013

1 þ 81 4.295 P
2 þ 81 5.186 D
1 − 81 5.340 D
0 þ 81 5.471 D
2 þ 81 4.792
3 þ 81 5.185

0 þ 55 3.895 P
1 þ 55 4.901 D

0 − 91 5.406 P

SO(5) DECONFINED PHASE TRANSITION UNDER THE FUZZY- … PHYS. REV. X 14, 021044 (2024)

021044-17



hϕiðx1Þϕjðx2ÞTklðx3Þi ¼
fϕϕTTij;kl

x
2τϕ−τT
12 xτT23x

τT
31

;

hϕiðx1Þϕjðx2ÞĴklðx3; z3Þi ¼
fϕϕJAij;klVðx1; x2; x3; z3Þ

x
2τϕ−τJ
12 xτJ23x

τJ
31

;

hϕiðx1Þϕjðx2ÞSðx3Þi ¼
fϕϕSδij

x
2τϕ−τS
12 xτS23x

τS
31

;

hϕiðx1Þϕjðx2ÞT̂ ðx3; z3Þi ¼
fϕϕT δijVðx1; x2; x3; z3Þ2

x
2τϕ−τT
12 xτT23x

τT
31

;

ðC2Þ

where τΦ ¼ ΔΦ þ lΦ; the indices i, j, k, and l are SO(5)
indices, the tensor structures are given by

Aij;kl ¼
1

2
δikδjl −

1

2
δilδjk;

Tij;kl ¼
1

2
δikδjl þ

1

2
δilδjk −

1

5
δijδkl; ðC3Þ

and the conformal invariant tensors are [85]

Hðx1; x2; z1; z2Þ ¼
1

2
x212ðz1 · z2Þ − ðz1 · x12Þðz2 · x12Þ;

Vðx1; x2; x3; z3Þ ¼
1

x212
½x223ðz3 · x13Þ − x213ðz3 · x23Þ�: ðC4Þ

Here, the Lorentz indices are treated in the index-free
treatment where spinning operators are contracted with null
auxiliary vector fields

Φ̂lðx; zÞ ¼ Φμ1…μlðxÞzμ1…zμl ; z
2 ¼ 0; ðC5Þ

and the Lorentz indices can be recovered by applying the
stripping operator

Dz;μ ¼
d − 2

2
∂zμ þ zν∂zμ∂zν −

1

2
zμ∂zν∂zν : ðC6Þ

We now want to rewrite the correlators in terms of the
inner products of states. Consider a spin-l operator Φl;R in
the R-representation of SO(5). Let

jΦe
ni ¼ αðΦe

nÞlim
x→0

nμ1…μleij…Φij…
μ1…μlðxÞj0i; ðC7Þ

where nμ1…μl is the Lorentz polarization and eij… is the
SO(5) polarization. The coefficient αðΦe

nÞ is determined by
the normalization condition

hΦe
njΦe

ni ¼ jαðΦe
nÞj2lim

x→0
ðn�Þμ01…μ0lnμ1…μle�i0j0…eij…hðΦi0j0…

μ0
1
…μ0l

ðxÞÞ†Φij…
μ1…μlðxÞi; ðC8Þ

where the conjugation in the radial quantization is taken as

ðΦ†Þij…μ1…μl
ðxÞ ¼ x2ΔIμ1

ν1ðxÞ…Iμl
νlðxÞΦij…

ν1…νl

�
xμ

x2

�
; ðC9Þ

where IμνðxÞ ¼ δνμ − 2xμxν=x2. Hence,

αðΦe
nÞ ¼

h
lim
x→∞

x2ΔΦðn�Þμ01…μ0lnμ1…μle�i0j0…eij…Iμ0
1

ν1ðxÞ…Iμ0l
νlðxÞhΦi0j0…

ν1…νlðxÞΦij…
μ1…μlð0Þi

i
−1=2

: ðC10Þ

Specifically, for the Lorentz polarization, we consider
eigenstates of L̂2 and L̂z labeled by l and m and pick out
m ¼ 0 components. For l ≤ 2, the nonzero components of
the polarizations are chosen as

nðl;mÞ¼ð0;0Þ ¼ 1;

nzðl;mÞ¼ð1;0Þ ¼ 1;

nzzðl;mÞ¼ð2;0Þ ¼ 2; nxxðl;mÞ¼ð2;0Þ ¼ nyyðl;mÞ¼ð2;0Þ ¼ −1: ðC11Þ

For the SO(5) polarization, we consider eigenstates of σ̂1
and σ̂2. The basis of γ matrices are taken as

γ1;…;5 ¼ fI ⊗ τx; I ⊗ τz; σx ⊗ τy; σy ⊗ τy; σz ⊗ τyg;
ðC12Þ

and the polarizations are determined by

½eðσ1;σ2Þij… γi ⊗ γj ⊗…; σ̂α� ¼ σαe
ðσ1;σ2Þ
ij… γi ⊗ γj ⊗ � � � ; ðC13Þ

where α ¼ 1, 2. We pick out the ðσ1; σ2Þ ¼ ð0; 0Þ; ð1; 1Þ
components of the vector representation and the ðσ1; σ2Þ ¼
ð1; 1Þ components of the symmetric and antisymmetric
rank-2 tensor representations. The nonzero components of
the polarizations are chosen as
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eS;ðσ1;σ2Þ¼ð0;0Þ ¼ 1;

eV;ðσ1;σ2Þ¼ð0;0Þ
2 ¼ 1;

eV;ðσ1;σ2Þ¼ð1;1Þ
4 ¼ 1=

ffiffiffi
2

p
; eV;ðσ1;σ2Þ¼ð1;1Þ

3 ¼ −i=
ffiffiffi
2

p
;

eA;ðσ1;σ2Þ¼ð1;1Þ
24 ¼ 1=

ffiffiffi
2

p
; eA;ðσ1;σ2Þ¼ð1;1Þ

23 ¼ −i=
ffiffiffi
2

p
;

eT;ðσ1;σ2Þ¼ð1;1Þ
24 ¼ 1=

ffiffiffi
2

p
; eT;ðσ1;σ2Þ¼ð1;1Þ

23 ¼ −i=
ffiffiffi
2

p
:

ðC14Þ

Hence, the normalizing factors are taken as

αðSðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ Þ ¼ 1; αðϕðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ Þ ¼ 1;

αðϕðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ Þ ¼ 1; αðTðσ1;σ2Þ¼ð1;1Þ

ðl;mÞ¼ð0;0Þ Þ ¼
ffiffiffi
2

p
;

αðJðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð1;0Þ Þ ¼ 4; αðT ðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð2;0Þ Þ ¼
ffiffiffiffiffiffiffiffiffiffi
8=27

p
: ðC15Þ

With this, the three-point functions, in general, can be
written as

hðΦ1Þe1n1
jðΦ2Þe2n2

ðθ;φÞjðΦ3Þe3n3
i ¼ α�½ðΦ1Þe1n1

�α½ðΦ3Þe3n3
� lim
x→∞

x2Δ1ðn�1Þμ
00
1
…μ00ln

μ0
1
…μ0l

2 nμ1…μl
3 e�

1;i00j00…e2;i0j0…e3;ij…

× Iμ00
1

ν1ðxÞ…Iμ00l
νlðxÞ

D
ðΦ1Þi

00j00…
ν1…νlðxÞðΦ2Þi

0j0…
μ0
1
…μ0l

ðθ;φÞðΦ3Þij…μ1…μl
ð0Þ

E
: ðC16Þ

Specifically,

hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jϕðσ1;σ2Þ¼ð0;0Þðθ;φÞjSðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ i ¼ R−ΔϕfϕϕS;

hϕðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ jϕðσ1;σ2Þ¼ð0;0Þðθ;φÞjJðσ1;σ2Þ¼ð1;1Þ

ðl;mÞ¼ð1;0Þ i ¼ R−ΔϕfϕϕJ cos θ;

hϕðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ jϕðσ1;σ2Þ¼ð0;0Þðθ;φÞjTðσ1;σ2Þ¼ð1;1Þ

ðl;mÞ¼ð0;0Þ i ¼ 1ffiffiffi
2

p R−ΔϕfϕϕT;

hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jϕðσ1;σ2Þ¼ð0;0Þðθ;φÞjT ðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð2;0Þ i ¼ 1ffiffiffi
6

p R−ΔϕfϕϕT ð1þ 3 cos 2θÞ: ðC17Þ

We then integrate out the angular dependence by taking
the angular momentum component

ϕ̂lm ¼
Z

sin θdθdφ
4π

Ȳlmðθ;φÞϕ̂ðθ;φÞ: ðC18Þ

In our calculation, we use the density operator n̂ instead of
ϕ̂. To the leading order,

n̂ðθ;φÞ ¼ αϕϕ̂þ � � � ðC19Þ

and the coefficient can be accessed by

hϕjn̂ðθ;φÞj0i ¼ αϕR−Δϕ ½1þOðR−2Þ�: ðC20Þ

The subleading contribution comes from the descendants of
ϕ and other multiplets in the same sector.

Hence, to the leading order,

fϕϕS ¼
hϕðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jSðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ i
hϕðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ j0i

;

fϕϕJ ¼
ffiffiffi
3

p hϕðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð1;0Þ jJðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð1;0Þ i

hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ j0i
;

fϕϕT ¼
ffiffiffi
2

p hϕðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ jTðσ1;σ2Þ¼ð1;1Þ
ðl;mÞ¼ð0;0Þ i

hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ j0i
;

fϕϕT ¼
ffiffiffiffiffi
15

8

r hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð2;0Þ jT ðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð2;0Þ i

hϕðσ1;σ2Þ¼ð0;0Þ
ðl;mÞ¼ð0;0Þ jnðσ1;σ2Þ¼ð0;0Þ

ðl;mÞ¼ð0;0Þ j0i
:

ðC21Þ
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