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Magic-angle twisted bilayer graphene is the best-studied physical platform featuring moiré potential-
induced narrow bands with nontrivial topology and strong electronic correlations. Despite their
significance, the Chern insulating states observed at a finite magnetic field—and extrapolating to a band
filling s at zero field—remain poorly understood. Unraveling their nature is among the most important open
problems in the province of moiré materials. Here, we present the first comprehensive study of interacting
electrons in finite magnetic field while varying the electron density, twist angle, and heterostrain. Within a
panoply of correlated Chern phases emerging at a range of twist angles, we uncover a unified description
for the ubiquitous sequence of states with the Chern number t for ðs; tÞ ¼ �ð0; 4Þ, �ð1; 3Þ, �ð2; 2Þ, and
�ð3; 1Þ. We also find correlated Chern insulators at unconventional sequences with sþ t ≠ �4, as well as
with fractional s, and elucidate their nature.

DOI: 10.1103/PhysRevX.14.021042 Subject Areas: Condensed Matter Physics, Graphene,
Strongly Correlated Materials

I. INTRODUCTION

Twisted bilayer graphene (TBG) has been a subject of
intense theoretical and experimental investigation, in no
small part due to its isolated, topologically nontrivial,
narrow bands displaying rich correlated electron physics
when partially occupied [1,2]. As the twist angle between
the two graphene layers is tuned toward the magic value of
approximately 1.05° [3], TBG devices show a plethora of
correlated phenomena including superconductivity, corre-
lated insulating states, and (quantized) anomalous Hall
effect [4–26]. The nontrivial topology of the pair of narrow
bands for a given valley and spin flavor is protected by the
combined twofold rotation symmetry about the out-of-
plane axis C2z (an emergent symmetry at low twist angle)
and spinless time reversal symmetry T [27,28]. The narrow
band Hilbert space can thus be decomposed into a Chern
þ1 and a Chern −1 band [27,29,30]. One way to reveal the
nontrivial topology of the narrow bands is to break C2z via
alignment with the hexagonal boron nitride substrate
(h-BN) and separate the Chern bands in energy. If, in
addition, the valley is spontaneously polarized, thus break-
ing T, the resulting state with one electron or hole per moiré

unit cell becomes a Chern �1 insulator [31–34]. Indeed,
experiments have observed the anomalous Hall effect
(AHE) near the filling of three electrons per moiré unit
cell [10,20] in h-BN aligned samples. Further studies on
nonaligned samples [21,25] have also observed AHE near
one electron per moiré unit cell. Theoretically, such zero-
field Chern insulating states (zCIs) have been proposed to
be energetically competitive near magic angle, when the
Coulomb interaction exceeds the narrow bandwidth, even
without the h-BN alignment [30,33,35,36].
An external magnetic field B, which preserves C2z but

breaks T, has been argued to be an alternative way to reveal
the band topology [11,19,22], as evidenced by the exper-
imental observations of correlated Chern insulating states
(CCIs) with a finite Chern number t and extrapolating to a
band filling s at B ¼ 0 [6–8,11,13–16,18,19,21–23,25,26].
Specifically, the most prominent sequence of CCIs
has ðs; tÞ ¼ ð0;�4Þ;�ð1; 3Þ;�ð2; 2Þ;�ð3; 1Þ, consistent
with selective population of the aforementioned B ¼ 0

Chern� 1 bands [11,21,22]. These experiments also report
that some CCIs are stable down to B ∼ 1 T, suggesting that
they originate from the zCIs [11,21].
However, CCIs are also observed in TBG devices away

from the magic angle (approximately 1.27°), where the
bandwidth of the narrow bands is expected to be signifi-
cantly larger than at 1.05°, without any observation of
the correlated insulators at B ¼ 0 [9]. Such CCIs appear
only above a critical B, below which they transition into
nearly compressible states for a fixed ðs; tÞ. Similar
phenomenology has also been reported in near-magic-angle
devices, leading to an alternative explanation of the CCIs
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invoking Stoner ferromagnetism within the magnetic sub-
bands [7,15,16,23], termed Hofstadter subband ferromag-
nets (HSFs) [15]. As argued theoretically [37–39], realistic
heterostrain can also increase the bandwidth dramatically
near the magic angle, likely placing many TBG devices in
the intermediate coupling regime where the zCIs may not
be energetically favored.
To date, the nature of these CCIs remains poorly

understood. No microscopic calculation favoring zCI,
HSF, or other states has been carried out at B ≠ 0 nor
tying them to the relevant experiments. Moreover, the
interplay of the CCIs with the competing states at B ¼ 0
near the magic angle, such as the intervalley coherent
(IVC) states [29,33,40–42], the incommensurate Kekulé
spiral (IKS) orders [38], and the stripe and nematic states
[14,30,43,44], remains unclear.
Here, we report the first comprehensive study of the

interacting electrons within the TBG narrow bands directly
at B ≠ 0 and construct the phase diagram for a range of
twist angles, B fields, and electron densities, with and
without heterostrain. Consistent with the experimental
observations, we find CCIs with ð0;�4Þ, �ð1; 3Þ,
�ð2; 2Þ, and �ð3; 1Þ, as shown in Fig. 1 for the case with
heterostrain and Fig. 2 for the case without heterostrain.

These figures plot the single-particle excitation gap at the
Fermi level obtained using the self-consistent Hartree-
Fock method for each electron density and each magnetic
field that we study. In either the strained or unstrained case,
CCIs are found to be stabilized at higher B fields for twist
angles as high as 1.38° (the highest twist angle studied in
this work). Based on an analysis of their wave functions,
we identify them as correlated Hofstadter ferromagnets
(CHFs). Similar to HSFs, the CHFs correspond to selective
population of the valley and spin flavors but of the
interaction-renormalized magnetic subbands (see Fig. 3).
Unlike HSFs, however, CHFs may include—but are not
limited to—spin- and/or valley-polarized states which
correspond to B ¼ 0 Chern insulators whose interaction
renormalized bands are Landau quantized at B ≠ 0.
Although only metastable at B ¼ 0, such Chern insulators
can be stabilized at B ≠ 0 in the form of CHFs as we
demonstrate in Figs. 6(d) and 6(e).
For realistic heterostrain (Fig. 1), upon lowering B and at

a nonzero s we find a phase transition into incompressible
states with intervalley coherence. These states break the
discrete magnetic translation symmetry but preserve the
combination of the discrete magnetic translation and a
Uvð1Þ valley transformation (see Sec. III B) and, therefore,

FIG. 1. Single-electron excitation gap as a function of electron filling and magnetic flux in the presence of 0.2% uniaxial heterostrain
at twist angles 1.38° (a), 1.32° (b), 1.28° (c), 1.24° (d), 1.2° (e), and 1.05° (f). The sizes of the gaps are proportional to the radius of the
respective solid circles, with the circle representation 10 meV shown in (a). The sequences of ðs; tÞ ¼ ð0;−4Þ, ð−1;−3Þ, ð−2;−2Þ, and
ð−3;−1Þ are labeled by red dashed lines in (c). Chern insulating states with fractional s at ðs; tÞ ¼ ð−1=2;−3Þ, ð−2=3;−3Þ, and
ð−3=2;−2Þ are labeled by dashed lines in (f). A quantum spin Hall insulating state is identified at high twist angles and labeled by the
orange dashed line in (a).
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are the finite B analogs of the IKS states [38], albeit
carrying a nonzero Chern number t. Upon lowering B and
at larger twist angles, the IKS states transition into nearly
compressible states; at lower twist angles, they remain
robust down to the lowest magnetic flux studied in
this work.
In the absence of heterostrain (Fig. 2) and at larger twist

angles, we instead observe CHFs transitioning directly into
nearly compressible states upon lowering B without the
intermediate IKS states. As we lower the twist angle toward
1.05°, the incompressible state at �ð3; 1Þ extends to lower
B and crosses over into the finite B analog of the zCI,
approaching maximal sublattice polarization. We refer to
this state as the strong coupling Chern insulator (sCI).
Because there is no symmetry distinction between them,
there is no true phase transition between the CHF and the
sCI; rather, it is a smooth crossover as shown in Figs. 4(c)
and 4(d). The �ð2; 2Þ, �ð1; 3Þ, and ð0;�4Þ states also
approach sCIs upon decreasing the twist angle, but they
experience a first-order phase transition into IVCs at low
twist angles [29,33,40–42]. IVCs break the Uvð1Þ valley
symmetry, but, unlike the IKSs, they preserve the magnetic
translation symmetry while also strongly hybridizing the
entirety of the narrow band Hilbert space. The details of this
transition depend sensitively on the model parameters, as
shown in Fig. S19 [45].

Conversely, in the presence of heterostrain, the sCIs are
absent in Fig. 1, as evidenced by the fact that the sublattice
polarization remains low and far from saturating the sCI
bound [Figs. 4(a) and 4(b)]. At the magic angle with
heterostrain, we also identify Chern 0 IKS states along
ð−3; 0Þ and ð−2; 0Þ [Fig. 1(f)], consistent with what has
been reported previously in B ¼ 0 Hartree-Fock calcula-
tions [38]. Unlike IKS states at a nonzero t, these states are
less robust upon increasing B and lose to nearly compress-
ible states. A similar phenomenon has been reported
experimentally in Refs. [15,21,22,46].
In addition to these prominent CCIs, we also find gap-

ped Chern states emanating from band edges and the
charge neutrality point (CNP) as shown in Figs. 1 and 2.
In the presence of heterostrain, they are quantum Hall
ferromagnetic states (QHFMs) corresponding to spin-
valley symmetry-breaking states within a multiflavored
Landau level, with more details discussed in Figs. S6
and S7 [45]. Without heterostrain, gapped states emanating
from the band edges are also identified as QHFMs
(Fig. S13 [45]). However, the gapped states emanating
from the CNP assume a different character (Fig. S14 [45]),
developing intervalley coherence and a correlation gap at
B ¼ 0 even at the largest twist angle studied. In contrast,
QHFMs are field-induced symmetry-breaking states and
are absent at B ¼ 0. At larger twist angles, a quantum spin

FIG. 2. Single-electron excitation gap as a function of electron filling and magnetic flux in the absence of heterostrain at twist angles
1.38° (a), 1.32° (b), 1.28° (c), 1.24° (d), 1.2° (e), and 1.05° (f). Compared to Fig. 1, results at larger twist angles (upper) are similar, while
noted differences emerge at lower twist angles.
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Hall insulating state (QSH) along ð−2; 0Þ is identified [see
the orange dashed line in Figs. 1(a) and 2(a)], whose
origin can be traced back to the spin-split noninteracting
magnetic subbands at half flux quantum per moiré unit
cell (Figs. S1 and S11 [45]). CCIs extrapolating to a
fractional s at B ¼ 0 can also be found at 1.05° with
heterostrain and for all twist angles in the absence of
heterostrain. Further examination of their many-body
wave functions reveal that the magnetic translation sym-
metries are broken (Figs. 7, S9, and S16 [45]), similar
to the symmetry-broken Chern insulators discussed in
relation to the experiments in Ref. [14].

II. MODEL AND METHOD

We perform self-consistent Hartree-Fock analysis
(B-SCHF) at B ≠ 0 using the minimal continuum
Hamiltonian (BM) [3,47], with Coulomb interactions
projected onto the narrow band Hilbert space. Here, we
briefly outline the formalism; additional details are in
Supplemental Material [45]. Our starting point is the
(strained) BM Hamiltonian at rational magnetic flux ratios
ϕ=ϕ0 ¼ p=q, where p and q are coprime integers, ϕ is the
magnetic flux per moiré unit cell, and ϕ0 ¼ h=e is the

FIG. 3. Compilation of B-SCHF results at θ ¼ 1.2°. (a) The noninteracting spectra. The group of magnetic subbands colored in red has
total Chern number −1. (b)–(e) The self-consistent Hartree-Fock spectra along ðs; tÞ ¼ ð−3;−1Þ, ð−2;−2Þ, ð−1;−3Þ, and ð0;−4Þ. The
occupied electronic states are colored by their valley polarization jhτzij. jhτzij → 1 (0) implies maximal valley polarization (maximal
intervalley mixing). The alternating colors along ð−3;−1Þ near ϕ=ϕ0 ≈ 0.3 are due to near energetic degeneracies (approximately
0.05 meV) between competing states and are not resolved within our calculation. Along ð−1;−3Þ and at ϕ=ϕ0 < 0.3, the occupied
single-electronic states are maximally valley polarized in the down spin sector and maximally intervalley mixing in the up spin sector.
One-particle density matrix at higher B (f) and lower B (g) showing either valley- and spin-polarized state (CHF) or intervalley coherent
state (IKS). (h) shows the Hartree-Fock energy difference per moiré unit cell between the ground state and the (metastable) CHF state
along ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ.

FIG. 4. Averaged σzτz per occupied single-electron states at
ðs; tÞ ¼ ð0;−4Þ, ð−1;−3Þ, ð−2;−2Þ, and ð−3;−1Þ for
(a) ϕ=ϕ0 ¼ 2=5 with heterostrain, (b) ϕ=ϕ0 ¼ 1=8 with hetero-
strain, (c) ϕ=ϕ0 ¼ 2=5 without heterostrain, and (d) ϕ=ϕ0 ¼ 1=8
without heterostrain. The dotted line is the value for sCI, and the
dashed line corresponds to HSF.
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magnetic flux quantum. We choose a Landau gauge such
that the magnetic vector potential AðrÞ ¼ eBŷ, where ŷ
is defined along L2 direction, with Li¼1;2 the two
(strain-deformed) moiré unit cell vectors. The interac-
ting Hamiltonian is invariant under discrete magnetic
translation symmetries t̂L1

ðrÞ ¼ e−i2πðϕ=ϕ0Þðy=jL2jÞT̂L1
and

t̂L2
¼ T̂L2

, where T̂Li¼1;2
denote discrete moiré transla-

tions at B ¼ 0. t̂L1
and t̂L2

are noncommuting but satisfy
½t̂L1

t̂qL2
� ¼ 0. This allows us to define a magnetic Brillouin

zone described by the magnetic crystal momentum
k ¼ k1g1 þ k2g2, with k1 ∈ ½0; 1Þ and k2 ∈ ½0; 1=qÞ, and
gi¼1;2 are moiré reciprocal lattice vectors (for more
detailed information, see Supplemental Material, Secs. I
and II [45]). We therefore first solve for the noninteracting
Hofstadter spectra εηsrðkÞ and associated eigenstates
jΨηsrðkÞi, with η ¼ K;K0 and s ¼ ↑;↓ denoting valley
and spin quantum numbers, respectively, and r ¼ 1;…2q
is the magnetic subband index. Spin Zeeman splitting
is also considered in this calculation. In earlier works
[48,49], we used the hybrid Wannier states (hWS) at
B ¼ 0 to construct the finite B Hilbert space. Although
accurate and numerically efficient at low B, the hWS
approach to TBG was shown to break down above
moderate flux ratios (e.g., ϕ=ϕ0 ≳ 0.2) [48]. As one of
the purposes of this work is to connect the CCIs between
low and high B, we instead solve the BM Hamiltonian by
expanding in Landau level (LL) basis of each graphene
layer. By scaling the upper Landau level cutoff as ϕ=ϕ0

decreases, we ensure an accurate construction of the
Hilbert space as well as the noninteracting Hofstadter
spectra. While the high-B regime is straightforward in
the LL basis, the low B is computationally expensive.
We were nevertheless able to reach ϕ=ϕ0 ¼ 1=12 using
the LL basis, which corresponds to approximately 2.2 T
at the magic angle (for all twist angles studied here,
we reach B < 4 T). This value is, therefore, sufficiently
low to make direct comparison with experiments. The
(interacting) results shown in Figs. 1 and 2 are for
1=12 ≤ ϕ=ϕ0 ≤ 1=2, with the maximum value of q being
12 and 1 < p < q.
For the model parameters studied in this work, the gap to

remote Hofstadter bands does not close at the magnetic
fluxes of interest. We study interaction effects by projecting
the screened Coulomb interaction onto the narrow band
Hilbert space. The Hamiltonian is given by

H ¼
X

ηsr;k

εηsrðkÞd†ηsr;kdηsr;k þ 1

2A

X

q

Vqδρ̂qδρ̂−q: ð1Þ

Here, A is the total area of the system, dηsr;k is the electron
annihilation operator, and δρ̂q is the Fourier transform of
the electron density operator projected onto the narrow
bands, subtracting a background charge density [48,50,51].
It is given by

δρ̂q ¼
X

ηs;rr0;k;p

hΨηsrðkÞje−iq·rjΨηsr0 ðpÞi

×

�
d†ηsr;kdηsr0;p −

1

2
δr;r0δk;p

�
: ð2Þ

We consider a dual-gate screened Coulomb interaction of
the form VðqÞ ¼ ð2πe2=ϵ0ϵrjqjÞ tanh ðjqjξ=2Þ, with rela-
tive dielectric constant ϵr ¼ 15 and screening length
ξ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijL1jjL2j
p

. These parameters are chosen to match
the overall change of chemical potential from empty to full
occupation of the narrow bands in magic-angle devices as
extracted from the compressibility measurements as well as
STM [6,7,52–54] (see also Fig. S2 [45]).
In the B-SCHF procedure, we minimize the total energy

for a fixed particle number using many-body wave func-
tions expressible as product states:

jΩi ¼
Y0

n;k

�X

sr

αðnÞsr;kd
†
Ksr;k þ

X

s0r0
βðnÞs0r0;kþq0

d†K0s0r0;kþq0

�
j0i;

ð3Þ
where q0 is an arbitrary wave vector shift between single-
electron states in opposite valleys, whose value is con-
strained by the discrete momentum mesh such that kþ q0

is on the same momentum mesh as k (modulo a reciprocal
lattice vector). The constrained product

Q0
n;k is over all the

occupied states labeled by n, k. fαðnÞsr;k; β
ðnÞ
s0r0;kþq0

g are
variational parameters that minimize the total energy,

and they obey
P

sr jαðnÞsr;kj2 þ
P

s0r0 jβðnÞs0r0;kþq0
j2 ¼ 1 for

any fn;kg. The total energy is also optimized with respect
to q0, allowing us to probe IKS-like states (see
Supplemental Material, Sec. III D [45]). An equivalent
formulation of the B-SCHF procedure (for details, see
Supplemental Material, Sec. III [45]) is based on the one-
particle density matrix:

Q̂ηsr;η0s0r0 ðkÞ≡ hΩjd̃†ηsr;kd̃η0s0r0;kjΩi; ð4Þ

where for notational convenience we define d̃†Ksr;k ≡ d†Ksr;k

and d̃†K0s0r0;k ≡ d†K0s0r0;kþq0
. Note that Q̂ contains informa-

tion about q0. In the remaining text, we discuss the
numerical results based on either the one-particle density
matrix or the many-body wave function, whichever is more
convenient.
The projected Hamiltonian at B ≠ 0 is invariant under

the following set of symmetries [50,55,56]: C2z, valley
Uvð1Þ and spin Usð1Þ, many-body particle-hole P, and
magnetic translation symmetries generated by t̂L1

and t̂L2
.

We fix the gauge such that

t̂L1
d†ηsr;kt̂

−1
L1

¼ e−i2πk1d†ηsr;k; ð5Þ

t̂L2
d†ηsr;kt̂

−1
L2

¼ e−i2πk2d†ηsr;kþϕ=ϕ0g1
: ð6Þ
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The above gauge choice is useful in identifying a magnetic
translation symmetry breaking from the density matrix (see
Supplemental Material [45]).
In the absence of heterostrain, C3z and C2yT also leaveH

invariant. P guarantees symmetry about the charge neutral-
ity point, and, therefore, we present our results for the hole
filling only.
The B-SCHF calculation is carried out for a range of

twist angles from 1.38° to 1.05°, both for the unstrained
model as well as for realistic uniaxial heterostrain magni-
tude ϵ ¼ 0.2% and orientation φ ¼ 0° (see Supplemental
Material [45] and Ref. [39] for the definition of the uniaxial
strain orientation). We choose the Fermi velocity such that
ℏvF=a ¼ 2482 meV with the graphene lattice constant
a ≈ 2.46 Å and interlayer tunneling parameters w0 ¼
77 meV (intrasublattice) and w1 ¼ 110 meV (intersublat-
tice). These parameters place the magic angle near 1.05°.
The respective noninteracting Hofstadter spectra and
Wannier diagrams with and without heterostrain are shown
in Figs. S1 and S11 [45].
At a given B and electron density, obtaining the true

Hartree-Fock ground state is a highly nontrivial task due to
competing states of similar energy. We typically run about
six random initializations of the single-particle density
matrix, as well as several educated guesses (e.g., flavor-
polarized or intervalley coherent states), and report the
lowest-energy state as the ground state. Optimal damping
algorithm is also used to speed up the numerical con-
vergence [29]. This elaborate procedure turns out to be
adequate (i.e., random and educated initializations con-
verge to the same state) for establishing incompressible
ground states with big excitation gaps, such as the CCIs
with ðs; tÞ ¼ ð0;�4Þ, �ð1; 3Þ, �ð2; 2Þ, and �ð3; 1Þ,
QHFMs, and CCIs extrapolating to a fractional s.
However, it may face convergence issues for nearly
compressible states, which are abundant in the phase
diagrams shown in Figs. 1 and 2. We make no assertions
regarding the nature of such nearly compressible states in
this paper and mainly use them in order to highlight
the contrast with the ground states with large excitation
gaps or, at B ¼ 0, to elucidate the physics of the B-induced
incompressible states as in Figs. 6(a)–6(c). We often find
competing states close in energy, with ≲1 meV difference
in the Hartree-Fock energy per moiré unit cell. Throughout
the paper, we try to adopt the philosophy of identifying
these competing states [2] and comment on how small
variations in model parameters (e.g., dielectric constant or
kinetic terms beyond BM Hamiltonian) may tip the balance
between ground states and metastable states.

III. RESULTS

A. Phase diagram and main CCIs

We first address the finite B phase diagram for TBG
subject to 0.2% of heterostrain. Figure 1 gives an overview

of the calculated single-particle excitation gap (i.e., the
charge gap) as a function of moiré unit cell filling (n=ns)
and magnetic flux ratio (ϕ=ϕ0) for six twist angles: 1.38°,
1.32°, 1.28°, 1.24°, 1.20°, and 1.05°. The size of the gap
is proportional to the radius of the solid circle. As seen,
there is a rich panoply of correlated insulating states.
We start by focusing on the sequence of CCIs with
ðs; tÞ ¼ ð0;−4Þ; ð−1;−3Þ; ð−2;−2Þ; ð−3;−1Þ, which are
observed for all the twist angles studied and marked by
red dashed lines in Fig. 1(c). At larger twist angles, CCIs
along ð−3;−1Þ; ð−2;−2Þ; ð−1;−3Þ emerge at high ϕ=ϕ0

and are replaced by nearly compressible states at lower
ϕ=ϕ0 via a first-order phase transition. As the twist angle is
lowered, they become more robust and can persist beyond
the lowest flux ratio of 1=12 studied in this work.
To better elucidate their nature, we compile detailed

results for a representative twist angle 1.20° in Fig. 3.
Results for other twist angles can be found in Supplemental
Material [45]. Figure 3(a) shows the noninteracting spectra
of valley K and for one spin component (neglecting the
Zeeman effect). The magnetic subbands marked in red
denote the Chern −1 group below the charge neutrality
point. The analogous group of subbands above the charge
neutrality point is related to it by particle hole symmetry
and also carries total Chern number −1. The remaining two
subbands emanate from either the zeroth Landau levels
(zLLs) of the energetically split Dirac points (ϕ=ϕ0 ≳ 0.1)
or the �1 LLs (ϕ=ϕ0 ≲ 0.1) and carry Chern number þ1
each, such that the total Chern number of all magnetic
subbands is zero.
Figure 3(b) shows the single-particle spectra including

Coulomb interactions along ðs; tÞ ¼ ð−3;−1Þ, where the
occupied states are colored according to their valley
polarization jhτzij, where τz is the Pauli matrix acting on
valley degrees of freedom. jhτzij → 1 (0) implies maximal
valley polarization (maximal intervalley mixing). At
ϕ=ϕ0 ≳ 1=3, the occupied states are maximally valley
polarized and have a large overlap onto the states marked
in red in Fig. 3(a). To quantify the overlap, we make use
of the density matrix defined in Eq. (4), which has the

spin-valley diagonal form QðηsÞ
r;r0 ðkÞδη;η0δs;s0 for a state with

unbroken valley and spin symmetries. A representative
jQK↑

r;r0 ð0Þj is shown in Fig. 3(f). It is predominantly diagonal
in the magnetic subband index, mostly occupying the lower
q − p magnetic subbands, i.e., the group states with total
Chern number −1 marked red in Fig. 3(a). For ð−2;−2Þ
and ð−1;−3Þ and at higher B, the CCIs are also valley and
spin polarized, similarly mostly populating the lower Chern
−1 group of magnetic subbands for the specified valley and
spin, with jQðηsÞð0Þj identical for all occupied flavors.
Although these CCIs are closely related to the HSFs
discussed in Refs. [7,15,23], the band structure renormal-
ization is apparent in the nonvanishing off-diagonal matrix

elements of QðηsÞ
r;r0 ðkÞ, signifying hybridization with the
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higher-energy subbands [marked by gray in Fig. 3(a)]. For
this reason, we refer to them as CHFs. As further
demonstrated in Fig. S3 [45], the density matrices of the
CHFs assume a much simpler structure when expressed in
the eigenbasis of the valley- and spin-symmetric ð0;−4Þ
Chern insulating state, which limits to an interaction-
renormalized semimetal at B ¼ 0 (see Fig. S2 [45] and
also Ref. [38]).
At lower B, the valley- and spin-polarized CCIs along

ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ all transition into
gapped states with strong intervalley mixing, as reflected
by jhτzij→0 for the occupied states shown inFigs. 3(b)–3(e).
Along ð−3;−1Þ and ð−1;−3Þ, the intervalley mixing is
between the same spin species [Fig. 3(g)], and the resulting
states do not suffer from theZeeman energy cost compared to
CHFs which have the same spin polarization. However,
along ð−2;−2Þ, the intervalley mixing is between opposite
spins (mixing between the same spins is achieved as a
metastable state), leading to an extra Zeeman energy cost.
This likely explains the lowered critical field for the transition
between the CHF and the IKS states for ð−2;−2Þ compared
to ð−3;−1Þ and ð−1;−3Þ, as seen in Figs. 3(b)–3(e) by the
valley polarization of occupied single-electron states. Based
on a detailed analysis of the density matrix, we identify
these intervalley coherent CCIs as the finite B analog of IKS
states [38] carrying a finite Chern number. We postpone a
detailed discussion of identifying IKS states to Sec. III B.
Finally, in Fig. 3(h), we show the Hartree-Fock energy
difference between the ground state and the CHFs which
become metastable at lower B. It shows that the phase
transition between CHF and IKS is likely first order along
ð−3;−1Þ and ð−1;−3Þ, where the IKS order parameter—
qualitatively captured by the jQ̂Ksr;K0sr0 ðkÞj—has an abrupt
onset upon lowering B. On the other hand, the transition
along ð−2;−2Þ ismost likely second order, as jQ̂Ksr;K0sr0 ðkÞj
gradually increases as B decreases.
The qualitative picture described above is universal across

all the twist angles we have studied (see Fig. S4 [45]).
However, at larger twist angles, in addition to the phase
transition between CHF and IKS, upon further decreasing B
we observe a transition from a gapped IKS into a nearly
compressible state, e.g., along ð−3;−1Þ at 1.38° as shown in
Fig. 1(a). This can be attributed to the larger noninteracting
bandwidth and comparatively weaker Coulomb interaction.

B. IKS states

In previous Hartree-Fock studies at B ¼ 0, a notable
finding is that, in the presence of a small amount of uniaxial
heterostrain (e.g., 0.2%), the ground state at integer filling
fractions are the incommensurate Kekulé spiral ordered
states [38]. Unlike the IVC states achieved when hetero-
strain is absent [29,40], IKS states predominantly mix
the lower-energy bands (instead of the full narrow band
Hilbert space) between opposite valleys of the noninteract-
ing BM Hamiltonian while developing a wave vector

QIKS incommensurate with the underlying moiré lattice.
On the moiré scale, a modified discrete translation
symmetry is preserved, i.e., discrete moiré translations
(T̂Lj¼1;2) followed by a Uvð1Þ valley transformation:

e−ði=2ÞðQIKS·LjÞτz T̂Lj
.

In our calculations, we find that the gapped states along
ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ at lowerB [Figs. 3(b)–3(e)
and 3(g)] also hybridize electronic states predominantly of
the lower Chern −1 group of the noninteracting magnetic
subbands, break the magnetic translation symmetries
generated by t̂Lj¼1;2

, but preserve a modified translation

e−ði=2ÞðQIKS·LjÞτz t̂Lj
. This further constrains the many-body

wave function in Eq. (3) and the density matrix in Eq. (4),
with details discussed in Supplemental Material, Sec. III D
[45]. Therefore, we can identify them as the finiteB analog of
the zero B IKS states. At larger twist angles, we find only
gapped IKS states with a finite Chern number (i.e., nonzero
t), and an absence ofChern 0 IKS states. The latter occur only
close to the magic angle [e.g., Figs. 1(e) and 1(f)] along
ð−3; 0Þ and ð−2; 0Þ. At higher B, these Chern 0 IKS states
become energetically unfavorable and lose to nearly com-
pressible states. This phenomenon has been reported in
various experiments [15,21,22,46].

C. Robustness of the CHF-IKS phase transition
against perturbations

Given the small energy differences between the CHF
and IKS states along ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ
shown in Fig. 3(h), it is natural to ask how robust this
phase transition is to small variations in model parameters.
Although this is difficult to answer definitively, it is
possible to present some qualitative arguments favoring
such a phase transition. Along ð−2;−2Þ, as argued above,
Zeeman coupling is expected to favor a CHF state, as it is
fully spin polarized, while the IKS is not. The Zeeman
energy cost of both CHF and IKS can be computed via
gsμBtrfQ̂szg, where gs ¼ 2, μB is the Bohr magneton,
and sz is the z component of the spin. We find that
numerically switching off the Zeeman splitting increases
the critical field at which the CHF-IKS transition occurs.
Interestingly, the same argument does not hold along
ð−3;−1Þ and ð−1;−3Þ, as IKS does not suffer from extra
Zeeman energy cost compared to CHF. It would appear
that the relative strength of the Coulomb interaction and
the noninteracting bandwidth of the relevant magnetic
subbands [red colored states in Fig. 3(a)] also plays an
important role. We find numerical evidence that decreas-
ing the Coulomb interaction (e.g., changing the relative
dielectric constant from 15 to 25) makes IKS more stable
and increases the critical field; conversely, increasing
Coulomb interaction favors a CHF state. Finally, there
is also evidence that increasing the strength of the uniaxial
heterostrain (e.g., from 0.2% to 0.3%) favors IKS over
CHF and increases the critical field.
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In a recent experiment, the spin polarizations of the main
CCIs near the magic angle are identified by edge conduct-
ance measurements, with ð−3;−1Þ and (2,2) being spin
polarized and ð−2;−2Þ being spin unpolarized [17]. Our
theory naturally recovers the spin polarization along
ð−3;−1Þ. While CHF is fully spin polarized, as mentioned,
the IKS is not. Therefore, spin polarization along �ð2; 2Þ
could be used to differentiate between CHF and IKS states
as shown in Figs. 3(f) and 3(g). The experimental results,
therefore, suggest an IKS state along ð−2;−2Þ and CHF
along (2,2), although to fully explain them more careful
analysis of the edge modes and modeling beyond the BM
Hamiltonian [57] which captures the particle-hole asym-
metry are necessary.

D. Crossover to strong coupling regime

In order to clarify the connection between the CHFs and
the sCIs, we first note that the sCIs saturate the expectation
value of σzτz for the occupied electronic states, where σz
and τz are Pauli matrices acting in the sublattice and valley
subspace, respectively [29,30,48,50]. The solid lines in
Figs. 4(a) and 4(b) show calculated hσzτzi per electron as a
function of twist angle in the presence of heterostrain along
ð0;−4Þ, ð−1;−3Þ, ð−2;−2Þ, and ð−3;−1Þ, for ϕ=ϕ0 ¼ 2=5
and 1=8, respectively. For comparison, the upper dashed
line corresponds to the sCI limit and the lower dashed line
to the HSF limit. This measure shows that the CHFs are
quantitatively different from both the HSFs and the sCIs in
the presence of heterostrain but closer to HSFs. Intuitively,
the increased hσzτzi of CHFs compared to HSFs may
originate in the short-ranged part of the Coulomb repulsion
disfavoring two electrons sitting close to each other in
real space.
On the other hand, in the absence of heterostrain, as

shown in Figs. 4(c) and 4(d), the CHFs along ð−3;−1Þ
smoothly cross over into the sCIs upon lowering the twist
angle. For our model parameters, there is a collapse of the
hσzτzi along ð−2;−2Þ, ð−1;−3Þ, and ð0;−4Þ at lower twist
angles, when the CHFs become energetically less favorable
than populating the Landau quantized excitation spectra of
the IVC states [33,40,48,58]. As further demonstrated in
Fig. S19 [45], this transition depends sensitively on model
parameters and can be pushed toward lower ϕ=ϕ0 (e.g., by
moving toward the chiral limit; see Supplemental Material
[45] and Ref. [59]). References [11,21] report that the
(2,2) persist down to ϕ=ϕ0 ∼ 1=25 and, therefore, argue
that they correspond to the zCIs (more precisely, sCIs).
Our quantitative calculations clearly demonstrate that such
states can indeed be stabilized at weak fields by small
changes of the model parameters.
In our earlier work [48], we computed the single-particle

excitations of IVC insulators in the strong coupling limit
at B ≠ 0, which have been demonstrated to be the
ground states at the CNP and n=ns ¼ −2. At the CNP
and at low B, we find twofold degenerate LLs 0;�2;�4;….

At n=ns ¼ �2, we find instead 0;�1;�2;…. These have
been corroborated by other works [58,60]. Although the
results in Ref. [48] assumed adding a single electron or a
single hole, they are expected to hold at an asymptotically
lowB even at a small but finite density along ð0; tÞ or ð�2; tÞ.
This is because the energy difference between competing
many-body states due to addition of a small density of
carriers necessary to fill the excited LLs is expected to be
proportional to the number of flux quanta, while the energy
difference between competing states at B ¼ 0 is extensive
and thus proportional to the total particle number. Therefore,
a finite critical B field would be necessary to tip the energy
balance in favor of a state such as the sCI, distinct from the
one obtained by a naive rigid filling of the LLs. Closer
examination of Fig. 2(f) indeed demonstrates this. At
n=ns ¼ −2, we find a prominent ð−2;−1Þ which corre-
sponds to emptying one energetically well-separated LL
from the spectra of the ð−2; 0Þ IVC state, consistent with our
earlier studies. Along ð−2;−2Þ and atϕ=ϕ0 < 1=7, a weaker
gapped state is observed where two LLs are emptied.
However, at ϕ=ϕ0 > 1=7 and ϕ=ϕ0 ≤ 1=3, the sCI is
stabilized via a first-order phase transition. At n=ns ¼ 0,
we similarly find a prominent ð0;−2Þ corresponding to
emptying a twofold degenerate LL of the (0,0) state [with
ð0;−1Þ being the QHFM of ð0;−2Þ]. Interestingly, gapped
states along ð0;−4Þ—expected based on the results in
Ref. [48]—are not observed down to ϕ=ϕ0 ¼ 1=12. Given
that this corresponds to an electron filling of n=ns ¼ −1=3,
we attribute the absence of ð0;−4Þ to band renormalization
effects at finite electron densities not captured in Ref. [48].
Figure 2(f) also shows gapped states emanating from n=ns ¼
−3 and−1 that can be characterized either as sCIs [ð−3;−1Þ,
ð−1;�1Þ] or via (de)population of the sCIs’ Landau quan-
tized excitation spectra [ð−3; 0Þ, ð−1;−2Þ, ð−1; 0Þ].We refer
interested readers to details presented in Fig. S18 [45]. We
note that in the strong coupling limit there are near degen-
eracies between competing states. For example, along
ð−1;−3Þ, a Chern −3 sCI can be found as a metastable
state, with aHartree-Fock energy≲0.01 meV higher than the
nearly compressible state plotted in Fig. 2(f).

E. Main CCIs in the absence of heterostrain

Though most of the experiments so far are believed to be
strongly influenced by uniaxial heterostrain, there are a few
experiments which appear to be in the ultralow heterostrain
regime [12,18]. In addition to the main CCIs along ð0;�4Þ,
�ð1; 3Þ, �ð2; 2Þ, and �ð3; 1Þ, these experiments show that
the CNP develops a gap at B ¼ 0 at low temperatures
without any apparent h-BN alignment. This is in contrast to
a (gapless) semimetal found at a moderate amount of
uniaxial heterostrain (e.g., 0.2%) [12,38]. As discussed in
the previous section, in the strong coupling limit, there are
prominent gapped states along ð−2;−1Þ, while ð−1;−3Þ
and ð0;−4Þ are gapless at reasonable magnetic flux ratios.
In contrast, ð−2;−1Þ does not appear to be a prominent
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gapped state in experiments without h-BN alignment, and
the main CCIs are ubiquitous. We therefore conclude that
the above low heterostrain experiments [12,18] cannot be
in the strong coupling regime with a negligible noninter-
acting bandwidth.
We investigate the impact of a finite noninteracting

bandwidth by systematically studying the finite B phase
diagram for a range of twist angles from 1.38° down to the
magic angle of 1.05°, in an analogous fashion compared to
studies with 0.2% heterostrain. The single-electron exci-
tation gaps at different twist angles, electron densities, and
B field are presented in Fig. 2. Through separate B ¼ 0
Hartree-Fock calculations, we demonstrate that at CNP the
ground state is a gapped IVC state for all twist angles, albeit
with an IVC order parameter localized to the vicinity of the
K points of the moiré Brillouin zone at larger twist angles.
At the largest twist angle 1.38° with the largest non-
interacting bandwidth, the gap structures are very similar
to that in the presence of heterostrain. Main CCIs along
ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ first emerge at high B
and lose to nearly compressible states at lower B. Here, the
main CCIs are CHFs, without competing IVC states
nearby. As the twist angle decreases and the noninteracting
bandwidth decreases, the main CCIs become stable at
lower B. Finally, at the magic angle 1.05° where the
noninteracting bandwidth is negligibly small in the BM
model, main CCIs along ð−3;−1Þ remain stable, but
along ð−2;−2Þ they are stable only for intermediate B
fields. Along ð−1;−3Þ, we do not observe gapped states.

Moreover, we identify a strong ð−2;−1Þ gapped state
consistent with previous works [48,58,60]. However, the
gapped state along ð0;−4Þ is missing, and we attribute it to
a finite B and finite electron density regime where populat-
ing the rigid excitation spectra of n=ns ¼ 0 IVC insulator is
no longer energetically favorable.
At the twist angle 1.2°, as shown in Fig. 2(e), the main

CCIs along ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ remain robust
down to the lowest magnetic flux ratio ϕ=ϕ0 ¼ 1=12
studied. Simultaneously there are strong IVC states along
(0,0) and ð−2; 0Þ. We also do not find a strong gapped state
along ð−2;−1Þ. Moreover, the main gapped states emanat-
ing from the CNP are along (0,0), ð0;−2Þ, and ð0;−4Þ,
consistent with the mentioned experiments. To better under-
stand these states, we present their detailed Hartree-Fock
spectra and representative density matrices in Fig. 5. At
n=ns ¼ 0 and along (0,0), the IVC state hybridizes
fK;↑ð↓Þg with fK0;↓ð↑Þg, creating bonding and anti-
bonding states. The occupied bonding states have net Chern
number 0, resulting in the gapped state along (0,0). In
contrast, the gapped state along ð0;−4Þ is a CHF, where the
occupied group of states in each valley and spin sector
contributes a Chern number −1. Along ð0;−2Þ, we identify
thegapped state as aCHF in the spin↑ sectorwhich accounts
for the net Chern number−2 and an IVC in the spin ↓ sector
having zero Chern number. Analogously at n=ns ¼ −2, the
gapped state along ð−2; 0Þ forms intervalley coherence
between fK;↓g and fK0;↓g, whereas the gapped state
along ð−2;−2Þ is a CHF. Along ð−2;−1Þ, we find that the

FIG. 5. Hartree-Fock excitation spectra (upper) and representative density matrices jQ̂ηsr;η0s0r0 ð0Þj calculated at ϕ=ϕ0 ¼ 1=8 (lower)
along (0,0), ð0;−2Þ, ð0;−4Þ, ð−2; 0Þ, ð−2;−1Þ, and ð−2;−2Þ, calculated for 1.20° in the absence of heterostrain. Electronic states below
the dashed lines in the upper panel are occupied, and the color coding represents the averaged σzτz of every single-electron state. In
ð−2; 0Þ and ð−2;−1Þ excitation spectra at several ϕ=ϕ0 are omitted in the plot, because they are states of different characters, due to
either Landau fan crossing or the B-induced phase transitions as shown in Fig. 2(e). The density matrix structure for each column is as
follows: Along (0,0) and ð−2; 0Þ, the occupied electronic states form an IVC state, between opposite spin species along (0,0), and
between the spin ↓ species along ð0;−2Þ which is favored by Zeeman splitting. Along ð0;−4Þ and ð−2;−2Þ, they are the CHF states.
Along ð0;−2Þ, it is a partial IVC state with IVC in the spin ↓ sector and a net Chern −2 valley-polarized state in the spin ↑ sector. Along
ð−2;−1Þ, it is a valley- and spin-polarized state, populating one extra LL on top of the ð−2;−2Þ CHF state.
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state is described by adding one Landau level worth of
electrons on top of a CHFground state along ð−2;−2Þ rather
than adding one Landau level worth of holes to an IVC state
along ð−2; 0Þ. The latter state is metastable at 1.2° but is the
Hartree-Fock ground state at 1.05°, as illustrated in Figs. 2(e)
and 2(f). Our results at twist angle 1.2° therefore capture the
most salient features of the experiments in Refs. [12,18].
It is also interesting to note that, at finite B, the (0,0) IVC

state mixes opposite spin species. Within our numerics
we can find an IVC state which mixes the same spin
species, which has a slightly higher energy. Nevertheless,
we find that the energetic difference between these two IVC
states grows as B increases. For example, at ϕ=ϕ0 ¼ 1=8
the energy difference between these two states is about
0.02 meV per moiré unit cell but grows to about 0.4 meV
at ϕ=ϕ0 ¼ 5=11.

F. Heavy-light dichotomy

As demonstrated in both Figs. 1 (strained) and 2
(unstrained), a notable feature of the finite B phase diagram
is that the main gapped Chern states point away from the
CNP as B increases, e.g., along ðs; tÞ ¼ �ð1; 3Þ, �ð2; 2Þ,
and �ð3; 1Þ. On the other hand, with a few exceptions,
Chern states pointing toward the CNP with a big gap are
largely missing, e.g., along ðs; tÞ ¼ �ð−1; 3Þ, �ð−2; 2Þ,
and �ð−3; 1Þ.
As we show in the previous section, at 1.05°, at low B,

and in the absence of heterostrain, this can be understood
from the Landau quantization [48,58] of the strong cou-
pling single-particle excitation spectra of the flavor sym-
metry-breaking ground states at B ¼ 0 [60,61]. At integer
fillings on the hole-doped side of the CNP, a doped hole
(i.e., moving away from CNP) has a light mass, leading to
well-separated LLs (large cyclotron frequency) in relatively
low B. In contrast, a doped electron (i.e., moving toward the
CNP) has a heavy mass, and the LLs are much more
densely spaced at a comparable B. While this explanation
holds at low B for 1.05° twist angle without heterostrain,
Figs. 1 and 2 show that the main Landau fans point away
from the CNP even at larger twist angles or when we
include moderate heterostrain. Under such conditions,
the strong coupling limit is not reached as can be seen
by the absence of the correlated insulators at B ¼ 0 or the
presence of IKS states which do not saturate the sublattice-
valley polarization [Figs. 4(a) and 4(b)].
In order to understand why this result persists away from

the strong coupling, we start by focusing on 1.28° in the
absence of heterostrain whose phase diagram is presented
in Fig. 2(c). In Figs. 6(a)–6(c), the left columns show
the Hartree-Fock spectra of the respective ground states
at B ¼ 0 and n=ns ¼ −1;−2;−3. These ground states
preserve the valley Uvð1Þ, spin Usð1Þ, C3z, and C2zT
symmetries. As a result, the Dirac points (DPs) of any
given valley and spin flavor are protected and located at the
K point of the moiré Brillouin zone. Crucially, however, for

all three fillings there is an exchange splitting (approx-
imately 12 meV) between different flavors, as reflected in
the relative energetic shift between the DPs of different
valley and spin character. These ground states are all
compressible, where the DPs are shifted above the Fermi
energy, with the charge being compensated by the Fermi
pockets from the exchange split bands. Moreover, there is a
band renormalization effect for all flavors, reflected in
the narrowing (sharpening) of the bands below (above) the
DPs. The band renormalization becomes stronger as the
filling is tuned to the band edge (e.g., n=ns ¼ −3). Such a
band flattening effect has been discussed in the literature as
a Hartree effect [24] (our calculation here also shows
exchange splitting due to Fock terms). The second and third
columns show the B ≠ 0 Hartree-Fock spectra of the CHFs
which share the same valley and spin quantum numbers as
the B ¼ 0 states and color coded in the same manner. It is
evident that spectra of the CHFs can be smoothly extrapo-
lated to the B ¼ 0 Hartree-Fock dispersions, e.g., by
matching the energies of the DP zLLs to DPs at B ¼ 0.
This demonstrates that the CHFs emerge from the respec-
tive compressible ground states at B ¼ 0.
Generally, the heavy-light dichotomy at high twist angles

(such as 1.28°) can be understood by examining the B ¼ 0
dispersions. We address it using the CHF (or lack thereof)
along ð−3;�1Þ as an example. As shown in Fig. 6(c), the
CHF is formed by populating the Chern −1 group of
magnetic subbands below the DP zLLs of a given valley
and spin flavor (in this case, fK;↓g shown in the second
column). However, Landau quantizing the B ¼ 0 disper-
sions shows that CHF is not an energetically favorable state
at infinitesimally weak B field, as the DP LLs of the K;↓
are buried inside the dense LLs associated with the Fermi
pockets (i.e., heavier electronic states due to band flat-
tening) of the other three flavors. Only at larger B can the
Chern −1 magnetic subband group be separated from the
rest of the spectra due to the wide LL spacings of a linearly
dispersing Dirac cone. This ties the finite B CHF along
ð−3;−1Þ directly to the Landau quantizations of the B ¼ 0
ground state. Conversely, the zLLs of the DPs cannot be
separated from the dense LLs; therefore, the state along
ð−3; 1Þ is nearly compressible [unless intercepted by
gapped states along another ðs; tÞ]. The B ¼ 0 and finite
B correspondence can also explain why the critical field for
the onset of CHFs along ð−3;−1Þ occurs at a lower B than
ð−2;−2Þ, which, in turn, occurs at a lower B than ð−1;−3Þ.
As n=ns increases from −3 to −1, the flavor degeneracy
of the DPs (marked by green or red crossings) increases,
while the flavor degeneracy of the Fermi pockets—
originating from the exchange split bands—decreases.
As a result, the size of the Fermi pockets grows, and the
bottom of these pockets sinks deeper below the DPs. A
higher B is therefore necessary to separate the aforemen-
tioned Chern −1 group of magnetic subbands per flavor
from the rest of the spectra.
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Next, we focus on 1.20° in the absence of heterostrain,
where interaction effects are stronger than at 1.28°, with the
CHFs along ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ all persisting
down to the lowest magnetic flux ratio studied in this work.
The finite B phase diagram is presented in Fig. 2(e), and
the comparisons to B ¼ 0 states are presented in Figs. 6(d)–
6(f). These B ¼ 0 states are obtained by enforcing the
valley Uvð1Þ and spin Usð1Þ symmetries and share the
same valley and spin quantum numbers as the respec-
tive CHFs at finite B. While the state at n=ns ¼ −3 is the
Hartree-Fock ground state, states at n=ns ¼ −2;−1 are
metastable. Comparing the B ¼ 0 and finite B spectra,
we conclude that the CHFs originate from the Landau
quantization of these B ¼ 0 bands. A notable difference
compared to 1.28° is that the C2zT symmetry is sponta-
neously broken at all n=ns ¼ −3;−2;−1, making them
(meta)stable and gapped zCIs (with Chern numbers

�1;�2;�3, respectively), analogous to those discussed
in the strong coupling limit [32,33]. Given that the B ¼ 0
states at n=ns ¼ −2;−1 are metastable, at very low B, these
CHFs must lose to populating LLs of the excitation spectra
of the respective true ground states (with IVC order; see
Fig. S20 [45]), likely via a first-order phase transition. This
is in contrast to higher twist angles (e.g., 1.28°) where there
are no competing zCI states nearby.
We finally address the heavy-light dichotomy for the

calculations performed with 0.2% of uniaxial heterostrain.
Because of competing Chern 0 IKS states (gapped or
compressible) which persist to higher twist angles, it is
challenging to find the B ¼ 0 metastable states from which
the finite B CCIs descend, as we can in the absence of
heterostrain. We therefore postpone tying the finite B and
B ¼ 0 physics to a future work. Here, we instead provide an
intuitive picture by examining Hartree-Fock spectra directly

FIG. 6. Comparative study of B ¼ 0 Hartree-Fock spectra at integer fillings n=ns ¼ −1;−2;−3 of states that preserve valley Uvð1Þ
and spin Usð1Þ symmetries and the B ≠ 0 Hartree-Fock ground state spectra of CHFs along ð−1;−3Þ, ð−2;−2Þ, and ð−3;−1Þ. The
B ¼ 0 states share the same valley and spin quantum numbers with the CHFs. (a)–(c) are at 1.20° twist angle and (d)–(f) are at 1.28°, all
in the absence of heterostrain. At 1.20° the B ¼ 0 states at n=ns ¼ −1;−2 are metastable, while the state at n=ns ¼ −3 is a stable ground
state. They all break the C2zT symmetry and are incompressible Chern states with Chern numbers −3;−2;−1, respectively. Although
not strictly in strong coupling, they are similar to the zCIs discussed in the strong coupling limit. The spectra of CHFs smoothly
extrapolate to these states as B decreases even though some are metastable at B ¼ 0. At 1.28°, the B ¼ 0 states are stable ground states
within our Hartree-Fock calculation, preserve C2zT and are compressible, but display sizable exchange splittings (approximately
12 meV) reflected in the relative energy shift of the Dirac cones of different valley and spin flavors. The spectra of CHFs also extrapolate
to the spectra of the B ¼ 0 states, albeit with some differences such as the exact locations of the zLLs of the exchange split Dirac cones.
In (a) and (d), the fK;↓g states (red) are hidden behind fK;↑g (blue) at B ¼ 0 and hidden behind fK0;↓g at B ≠ 0. In (b) and (e) at
B ≠ 0, the spectrum of fK;↓g (red) is hidden behind fK0;↓g (green), while that of fK;↑g (blue) behind fK0;↑g (orange). In (c) and (f)
and finite B, fK;↑g (blue) states are hidden behind fK0;↑g (orange).
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at finite B. We use CCIs (or lack thereof) along ð−3;�1Þ at
1.28° twist angle as an example. Along ð−3;−1Þ, both CHF
and IKS predominantly involve the lower Chern−1 group of
the noninteracting magnetic subbands, separated from the
zLLs and the upperChern−1 groupbya gap [seeFig. 3(a) for
1.2°; at 1.28°, the structure of the magnetic subbands is
qualitatively similar]. The bandwidth of the lower Chern −1
group narrows upon increasing B, creating a favorable
condition for symmetry-breaking states (either CHF or
IKS) driven by Coulomb interactions [15]. Along ð−3; 1Þ,
to get a similar flavor symmetry-breaking state, one would
involve both the lower Chern −1 group and the two zLLs.
However, as B increases, this Chern þ1 composite of
magnetic subbands has an increasing bandwidth, making
it energeticallymore costly to break the valley and spin flavor
symmetry. Conversely, it is more energetically favorable to
populate two extra LLs from the nearby, exchange split,
group of states on top of the ð−3;−1Þ state. Because of band
flattening effect discussed above, an added electron to the
bottom of the spectra of a given valley and spin flavor on the
hole side of the CNP is heavy and reflected as nearly
compressible along ð−3; 1Þ. This is further supported
numerically from Fig. S4 [45], where the spectra above
the gap at ð−3;−1Þ (gray) do not have well-separated LLs.
The finite B perspective presented here complements the
perspective of tying finiteB toB ¼ 0 (meta)stable states and
relies on the same Hartree-Fock effects of band (magnetic
subband) renormalizations and exchange splitting.
At low twist angles in the presence of heterostrain, such as

1.20° and 1.05° shown in Figs. 1(e) and 1(f), the gapped IKS
states along ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þ remain robust
down to the lowest magnetic flux ratio studied in this work,
while gapped Chern 0 IKS states along ð−3; 0Þ [both ð−3; 0Þ
and ð−2; 0Þ at 1.05°] are also found.Moreover,we find that at
1.05° the IKS wave vectors of these two classes of IKS states
are very different (approximately 1

2
g1 for Chern-0 IKS and

approximately 1
qg2 for IKS carrying a Chern number). Given

the earlier discussions of competing zCI and IVC states in the
absence of heterostrain and at lower twist angles, it is
tempting to conjecture that the gapped IKS states along
ð−3;−1Þ, ð−2;−2Þ, and ð−1;−3Þmay descend from B ¼ 0
“topological IKS” (tIKS) states which break the C2zT
symmetry, i.e., a distinct IKS state from those reported in
the literature [38]. Should they exist, the tIKS state must be
metastable atB ¼ 0 and energetically unfavorable compared
to the IKS state that preservesC2zT.We leavemore elaborate
analysis of such a conjecture to future studies.

G. Additional CCIs

Besides the aforementioned CCIs, we also find addi-
tional correlated insulating states in the phase diagram both
with and without heterostrain, as shown in Figs. 1 and 2,
respectively.
In the presence of heterostrain, the most prominent states

emanate from the CNP and are identified as quantum Hall

ferromagnetic states (QHFMs) within the zLLs of the
energetically split Dirac cones [62–64] (see Fig. S7 [45]).
QHFMs emanating from the band minimum (n=ns ¼ −4)
arewell developed at 1.38° but become progressivelyweaker
as the angle decreases (see Fig. S6 [45]).Moreover, at higher
ϕ=ϕ0 a gapped state with ðs; tÞ ¼ ð−2; 0Þ is observed in
Figs. 1(a)–1(c). We identify it as a QSH insulator due to
strong spin splitting near ϕ=ϕ0 ¼ 1=2, as demonstrated in
the noninteracting Hofstadter spectra in Fig. S1 and repre-
sentative density matrices in Fig. S8 [45]. At 1.05°, we also
find CCIs with fractional s along ð−2=3;−3Þ, ð−1=2;−3Þ,
and ð−3=2;−2Þ; see Fig. 1(f). These states break magnetic
translation symmetry.We identify them as striped states with
periodm along theL2 direction, such that the density matrix
is invariant under ðt̂L2

Þm. Their respective density matrices
are shown in Fig. S9 [45]. We use the electron occupation
number of the lower zLL [see, e.g., Fig. 3(a)] in valley K
and for spin ↓ to illustrate the striped states. We define it as
n0ðkÞ and show its momentum dependence in the magnetic
Brillouin zone at ϕ=ϕ0 ¼ 1=6 for ð−2=3;−3Þ, ð−1=2;−3Þ,
and ð−3=2;−2Þ in Figs. 7(a), 7(b), and 7(c), respectively. At
ð−1=2;−3Þ and ð−3=2;−2Þ, the fractional part of s corre-
sponds to half filling of a valley and spin flavor, and we
identify the period of the striped state as m ¼ 2. At
ð−2=3;−3Þ, the fractional part of s corresponds to two-
thirds filling of a flavor, and we identify the stripe period as
m ¼ 3. While some of the fractional sCCIs show intervalley
coherence and others show valley or spin polarization, the
energy difference between these two kinds of states are about
0.05meVpermoiré unit cell.Within our numerical accuracy,
we cannot say with certainty if either will be observed in
future experimental works. Furthermore, we are also limited
to probe striped states only along the L2 direction, but not

FIG. 7. Occupation number n0ðkÞ of the lower zLL of the
noninteracting spectra in valley K and for spin ↓. Results are
obtained at 1.05° for correlated Chern insulating states with
fractional s, marked by the dashed lines in Fig. 1(f).
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striped states along L1 or checkerboard states modulating
along both directions. Nevertheless, it is clear that states
with broken magnetic translation symmetries (being striped
or checkerboard states) are more energetically favorable
than states that preserve them (or IKS states that preserve
modified magnetic translation symmetries). More careful
studies of fractional s states are beyond the scope of the
present work and left for the future. Reference [14] observed
fractional s CCIs in h-BN aligned TBG devices and
presented a qualitative argument based on translation
symmetry-breaking phases at B ¼ 0. Here, our results
demonstrate that they can be stabilized purely due to
interactions and without h-BN alignment.
In the absence of heterostrain and large twist angles, we

identify gapped states emanating from the band minimum as
QHFMs similar to the strained case (see Fig. S13 [45]).
However, the most prominent gapped states emanating from
the CNP are no longer QHFMs even at the largest twist angle
studied. As alluded to in Sec. III E, the CNP develops a small
but finite correlation gap even at 1.38°, supported by separate
B ¼ 0 Hartree-Fock studies. However, the energy minimum
of electronlike excitations (or maximum of holelike excita-
tions) remains at the hexagon corners of the moiré Brillouin
zone. As the twist angle decreases, QHFMs emanating from
the band minimum fade away similar to the cases in the
presence of heterostrain, the size of the IVC gap at CNP
grows, and Coulomb interaction hybridizes electronic states
further from the vicinity of the Dirac cones of the non-
interacting band. This eventually leads to “inverted” excita-
tion spectra at the magic angle 1.05°, with the energy
minimum of electronlike excitations shifted to the Γ point
of the moiré Brillouin zone. Additionally, as in the strained
case, fractional s CCIs are also found at the magic angle
but persist to higher twist angles compared to strained case
(see Fig. S16 [45]).

IV. CONCLUSION

In summary, by performing a comprehensive self-
consistent Hartree-Fock study of the continuum Bistritzer-
MacDonald model in finite magnetic fields, we unravel the
nature of the prominent correlated Chern insulators
observed in a wide range of TBG experiments. For realistic
heterostrain, these correlated Chern insulators are stabilized
at higher magnetic fields and correspond to valley and spin
polarizations of the interaction-renormalized magnetic
subbands that we dub correlated Hofstadter ferromagnets.
Upon lowering magnetic field, the CHFs become energeti-
cally less favored, losing to gapped states with intervalley
coherence. In the absence of heterostrain and at higher
magnetic fields, the CHF crosses over to the strong
coupling Chern insulating states as the twist angle
decreases. At lower fields, competing states with interval-
ley coherence become more energetically favored, and the
transition is marked by a collapse of the averaged sublattice
polarization per occupied single-electron state.

Our calculations also predict additional gapped correlated
insulating states beyond the ðs;tÞ¼ð0;�4Þ;�ð1;3Þ;�ð2;2Þ;
�ð3;1Þ sequence, notably the striped states at fractional s.
Given that our calculations have direct access to the
interaction renormalized single-electron excitation spectra
at a given filling and magnetic field (see Fig. S10 [45]),
comparisons with experiments such as STM can be made to
facilitate the characterization of the panoply of correlated
insulating states.
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