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A fundamental distinction between many-body quantum states are those with short- and long-range
entanglement (SRE and LRE). The latter cannot be created by finite-depth circuits, underscoring the
nonlocal nature of Schrödinger cat states, topological order, and quantum criticality. Remarkably, examples
are known where LRE is obtained by performing single-site measurements on SRE, such as the toric code
from measuring a sublattice of a 2D cluster state. However, a systematic understanding of when and how
measurements of SRE give rise to LRE is still lacking. Here, we establish that LRE appears upon
performing measurements on symmetry-protected topological (SPT) phases—of which the cluster state is
one example. For instance, we show how to implement the Kramers-Wannier transformation by adding a
cluster SPT to an input state followed by measurement. This transformation naturally relates states with
SRE and LRE. An application is the realization of double-semion order when the input state is the Z2

Levin-Gu SPT. Similarly, the addition of fermionic SPTs and measurement leads to an implementation of
the Jordan-Wigner transformation of a general state. More generally, we argue that a large class of SPT
phases protected by G ×H symmetry gives rise to anomalous LRE upon measuring G-charges, and we
prove that this persists for generic points in the SPT phase under certain conditions. Our work introduces a
new practical tool for using SPT phases as resources for creating LRE, and we uncover the classification
result that all states related by sequentially gauging Abelian groups or by Jordan-Wigner transformation are
in the same equivalence class, once we augment finite-depth circuits with single-site measurements. In
particular, any topological or fracton order with a solvable finite gauge group can be obtained from a
product state in this way.

DOI: 10.1103/PhysRevX.14.021040 Subject Areas: Condensed Matter Physics,
Quantum Information

I. INTRODUCTION

Although quantum mechanics exhibits a dichotomy
between unitary time evolution and measurement, many-
body quantum theory traditionally focuses on unitary
aspects. Indeed, the classification of quantum phases of
matter at zero temperature takes as its very definition that two
states are in the same phase if and only if they can be
connected by a unitary time evolution in a finite time [1–7].
Any state in the samephase as a product state is said to exhibit
short-range entanglement (SRE), whereas the other classes
have long-range entanglement (LRE). [8] Even restricting
to gapped phases, the latter contains interesting cases such
as intrinsic topological [9–14] and fracton order [15–21].

States with SRE can also be subdivided into distinct phases of
matter if one imposes symmetry constraints on the afore-
mentioned unitaries, giving rise to the notion of symmetry-
protected topological (SPT) phases [3,4,22–35].
Recently, there has been growing interest in explicitly

incorporating measurements into the study of many-body
quantum states. For instance, a multitude of works have
studied entanglement reduction from measurements,
giving rise to surprising new structures [36–52]. However,
there are also examples where measurements increase
the entanglement. For example, it is known that perfor-
ming single-site measurements on a subset of sites of a
cluster state (with SRE) can produce a Greenberger-Horne-
Zeilinger (GHZ) cat state [53], the toric code [54–56], and
certain fracton codes via a layered construction [57,58]. In
fact, it has been remarked that all states realized by CSS
stabilizer codes [59,60] (i.e., stabilizers that are of the formQ

i∈S Zi or
Q

i∈S Xi) can be obtained by measuring an
appropriate cluster state [61].
The existence of these examples begs the following

question: What is the general framework for when, how,
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and why one can create LRE from SRE states and single-
site measurements? In this work, we argue that the essential
fact in the above examples is that the cluster state is an SPT.
This deeper understanding confers at least four advantages.
First, in contrast to earlier studies, we argue that LRE states
are obtained on measuring not just the fixed-point wave
function of the SPT but any state within the same phase.
Second, the origin of LRE under measurement is tied to a
specific anomaly involving the symmetries—related to the
anomaly living at the boundary of the original SPT phase—
thereby constraining the nature of the resulting LRE.
Third, it allows for the preparation of states that are not
realized by stabilizer codes, such as topological order
described by twisted gauge theories or non-Abelian fracton
orders [62–71]. Fourth, we achieve a new perspective on
Kramers-Wannier (KW) [19,72–80] and Jordan-Wigner
(JW) [81–89] transformations. Indeed, we show how these
nonlocal transformations can be efficiently implemented in
a finite time by adding SPT entanglers to arbitrary initial
states [90] and subsequently performing single-site mea-
surements. In a companion work [91], we explain how this
general understanding can be utilized to prepare, e.g., Z3,
S3, and D4 topological order in quantum devices such as
Rydberg atom arrays.
This work is structured as follows. In Sec. II, we set the

stage by reviewing some known examples, explaining how
the 1D GHZ and 2D toric code states can be obtained by
measuring particular cluster states. In Sec. III, we general-
ize these cases by reinterpreting the act of measuring cluster
states as effectively implementing a KW transformation. To
give illustrative examples, we explain how this process
allows one to transform the nontrivial Z2 SPT in 2D to the
double-semion topological order, and to transform the 1D
XY chain into two decoupled critical Ising models by using
finite-depth circuits and single-site measurements.
Moreover, we discuss how certain types of non-Abelian
topological order can be obtained by sequential applica-
tions of this scheme. Section IV generalizes this discussion
to the fermionic case, where a similar procedure imple-
ments the JW transformation, illustrated by creating the
Kitaev chain from a trivial spin chain. Section V broadens
our scope further: First, we argue that this procedure is a
robust property of the SPT phase (which we exemplify by
obtaining cat states via measuring the spin-1 Heisenberg
chain), and second, we argue that anomalous symmetries
and LRE are generically obtained by measuring a broad
class of SPT states (which we discuss in detail for the Z3

2

SPT in 2D). We conclude with directions for future research
in Sec. VI.

II. MOTIVATING EXAMPLES

We begin by reviewing how measuring cluster states in
1D and 2D can produce GHZ states [53] and the toric code
[54], respectively. Consider a 1D chain with 2N qubits. The
cluster state jψi on this chain is the unique state that

satisfies Zn−1XnZnþ1jψi ¼ jψi for all n, where X, Y, Z
denote the Pauli matrices. It can be prepared from the
product state in the X basis by applying controlled-Z gates
on all nearest-neighboring qubits:

jψi ¼
Y
n

CZn;nþ1jþi⊗2N ≕UCZjþi⊗2N: ð1Þ

We call the above unitary UCZ the cluster state entangler.
Now, suppose we measure X on all odd sites, with
outcomes X2nþ1 ¼ ð−1Þs2nþ1 . Since Z2n−2X2n−1Z2n com-
mutes with the measurement, the state after the measure-
ment jψouti satisfies Z2n−2Z2njψouti ¼ ð−1Þs2n−1 jψouti. On
the other hand, the even stabilizers do not commutewith the
measurement; only their product

Q
n Z2n−1X2nZ2nþ1 ¼Q

n X2n commutes, implying jψouti is Z2 symmetric. If
all the sm ¼ 0, then jψouti is the GHZ state on the even
qubits:

jGHZi ¼ 1ffiffiffi
2

p ðj↑↑ � � �↑i þ j↓↓ � � �↓iÞ: ð2Þ

Otherwise, it is the GHZ state up to single-site spin
flips conditioned on the measurement outcomes:

jGHZi ¼ Q
N
n¼1 X

P
n
m¼1

s2m−1

2n jψouti. Thus, regardless of the
outcome, jψouti has long-range entanglement, as can,
for example, be quantified by quantum Fisher information
[92,93] (see also Sec. VA 5).
In 2D, we can consider a cluster state on the vertices and

edges of the square lattice [54]. The stabilizers of the cluster
state for each vertex and edge are Xv

Q
e⊃v Ze and

Xe
Q

v⊂e Zv, respectively, where e ⊃ v and v ⊂ e denote
edges e that contain the vertex v and vertices v that are
contained in e, respectively. Measuring X on all the edges
will give a GHZ state on the vertices (up to spin flips
that depend on measurement outcomes). On the other
hand, measuring X on all the vertices gives a state of
the toric code: We have the vertex term of the toric code,Q

e⊃v Ze ¼ �1, depending on the measurement outcome,
and we have the plaquette operator

Q
e⊂p Xe ¼ 1 coming

from a product of four edge stabilizers around a plaquette,
which commutes with the measurement. Note that while
the topological order of this state is independent of the sign
of the aforementioned stabilizers, one can always bring this
to a state with

Q
e⊃v Ze ¼ þ1 by applying string operators

that pair up the vertices with
Q

e⊃v Ze ¼ −1.

III. KRAMERS-WANNIER TRANSFORMATION
FROM MEASURING CLUSTER STATE

SPT PHASES

We have seen that long-range entangled states can be
obtained by performing single-site measurements on the
cluster state. To explore a deeper reason for this finding, we
show how the cluster state secretly encodes the KW
transformation. For simplicity, we will first discuss the
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1D case, where the KW transformation is defined as the
map Xn → ZnZnþ1 and Zn−1Zn → Xn; although this map
preserves the locality of Z2-symmetric operators, it is a
nonlocal mapping, relating SRE to LRE.
A first hint of the connection between the cluster state

and the KW transformation is the fact that ZnZnþ2 and
Xnþ1 act the same way on the cluster state. Moreover,
Xnþ1UCZ ¼ UCZZnXnþ1Znþ2, where UCZ is the cluster
entangler, Eq. (1). Let us divide the sites into the odd
and even sublattices, denoted A and B, respectively, and
define the states jþiA;B on these subspaces. We find that
the operator σ ≔ hþjAUCZjþiB∶ HA → HB gives the KW
transformation. For example, we show that XA is correctly
mapped to ZBZB, i.e., σXA ¼ ZBZBσ:

hþjAUCZjþiBXA ¼ hþjAUCZXAjþiB
¼ hþjAZBXAZBUCZjþiB
¼ hþjAZBZBUCZjþiB
¼ ZBZBhþjAUCZjþiB; ð3Þ

and vice versa. This example is depicted graphically in
Fig. 1. Note that this method works on any bipartite graph
using a suitably generalized cluster state in any dimension,
in which case, the ZB’s that appear act on the B vertices
adjacent to where XA acts and vice versa.

Equation (3) suggests a method to apply KW by
measurement. We begin with a state in HA and then
introduce the ancillas jþiB. We then apply UCZ to the
combined system and measure the X spins on A. If
the measurement outcomes are all þ spins, then we have
exactly implemented the KW duality. Otherwise, we have
instead implemented the closely related operator

M ¼ hþjA
�Y

a∈A

Zsa

�
UCZjþiB ¼ σ

Y
a∈A

Zsa; ð4Þ

where sa ∈ f0; 1g are the measurement outcomes of site a.
By pushing through the excess operators from the A sites to
the B sites using σ, we can rewrite this formula as

M ¼
�Y

b∈B

Xsb

�
hþjAUCZjþiB ¼

�Y
b∈B

Xsb

�
σ; ð5Þ

where the sb are functions of the sa that depend on the
graph. For example, in 1D, where A and B are the odd
and even sublattices of the chain, respectively, we have
sb ¼

P
1<a<b sa. Thus, we see that further applying

ðQb∈B X
sbÞ restores the exact KW mapping σ. See Fig. 2.

This finding explains why the measured 1D cluster
state has long-range order—it produces the KW dual of
the trivial state jþiA, which is a GHZ state. Likewise, in

(a) (b)

FIG. 1. From the cluster state entangler to the Kramers-Wannier transformation. (a) Relation between the cluster state entangler and
the Kramers-Wannier duality in arbitrary dimensions, with A legs drawn in red and B legs drawn in blue. Here, the entangler is simply a
product of controlled-Z on nearest-neighbor sites. (b) Proof of this equality at the level of operators where X on the red sites is
interchanged with ZZ on the blue sites.

FIG. 2. The Kramers-Wannier transformation from finite-depth circuit and measurements. The cluster state entangler can be used to
implement Kramers-Wannier duality by measurement. The final state depends on sn ¼ 0, 1, corresponding to measurement outcomes
Xn ¼ 1;−1, respectively, which we can express as a product

Q
n Z

sn applied to jψi before KW transformation. These operators can be
pushed through the KW transformation to obtain a product of X operators on the B sublattice (blue). Hence, by acting with this product
on the postmeasurement state, one can obtain the KW transformation of jψi without postselection.
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2D, we obtain the KW dual of the trivial state, which is a
toric code state [94].
We later argue that the long-range order holds for any

state in the same SPT phase as the cluster state. Indeed, this
fact can be seen by symmetry fractionalization for the two
Z2 symmetries

Q
a∈A Xa and

Q
b∈B Xb (acting on the odd

and even sublattices, respectively) protecting the SPT
phase. If we act on any state jψi in the same SPT phase
by the ZA

2 symmetry in a region R, it will reduce to some
ZB

2 charged operators at the boundary of the region:Q
a∈R Xajψi ¼ OLORjψi, where O is some operator with

finite support situated at the left and right boundaries ofR,
which anticommutes with ZB

2 . Intuitively, this means that
jψi has the KW property, exchanging order operators and
disorder operators, at long distances. See Sec. VA 1.
In higher dimensions, the cluster state is an SPT for

higher form or subsystem symmetries that depend on the
lattice. For example, if A and B are sites at the vertices and
edges of the square lattice, then we have symmetriesQ

a∈A Xa and
Q

b∈ γ⊂B Xb, where we have a symmetry
for each closed curve γ drawn along the edges of the direct
lattice. The KW so constructed is the duality between the
Ising model and Ising gauge theory in 2þ 1D.
A summary of examples that arise from the KW trans-

formation of various symmetries is given in Table I.

A. Twisted gauge theory from measuring
cluster+SPT phases

As a first application, we discuss what happens when we
apply this procedure to other states on the A sublattice,
such as an SPT. As in Fig. 2, we add jþiB ancillas, couple A
and B with the cluster state entangler, and then perform
measurements on the A sublattice. The result of this
procedure is equivalent to gauging the SPT phase [99].
To illustrate this procedure, we discuss how, beginning

with the A sublattice in the pure Z2 or “Levin-Gu” SPT
state jψi [33], we obtain the double-semion topological
order [13] after entangling and measuring. The Levin-Gu

SPT is defined on the vertices of the triangular lattice (A)
and is an eigenstate of the following (non-Pauli) stabilizers:

ð6Þ

where hvuu0i are the six triangles around v and the wavy
lines denote e

πi
4
ZuZu0 between vertices u and u0. Note that this

stabilizer is not simply a product of Pauli operators. Let us
also stress that since this is an SPT phase, it is possible to
prepare this state by a finite-depth circuit [102]. Following
our procedure, we add the B sublattice consisting of edges
of the triangular lattice, supporting a product with the trivial
stabilizer

ð7Þ

Next, we couple the two sublattices with the cluster state
entangler, resulting in the stabilizers

ð8Þ

ð9Þ

Before we perform the measurements on all A sites (the
vertices of the triangular lattice), we note that the vertex
stabilizer does not commute with the measurement. Thus, it
would not directly give us a useful condition on the
postmeasurement state. However, using the fact that
ZuZu0 jψi ¼ Xðuu0Þjψi, where ðuu0Þ is the edge with u

TABLE I. Examples of states obtained by measuring SPTs. After evolving the product state with the corresponding SPT entangler, the
A sublattice is measured, effectively performing a KWor JW transformation to the product state. All SPTs listed except those that create
the Kitaev chain and double-semion model are cluster states. Here, D is the space dimension, Z2½1� denotes a Z2 1-form symmetry, and
A, B denote gauge fields defined for the A and B symmetries, respectively. See Sec. V B for examples that go beyond this framework.

D A symmetry B symmetry SPT Product state maps to See

1 Z2 Z2 AB GHZ Sec. II
1 Z2 ZF

2
ηA Kitaev chain Sec. IV

2 Z2 Z2½1� AB Toric code Sec. II
2 Z2 Z2½1� A3 þ AB Double semion Sec. III A
2 Z2 (2-foliated line) Z2 (2-foliated line) “A2 þ AB” (strong) SSPT Wen plaquette Appendix B 1
3 Z2½1�2 Z2½1�2 A2

1 þ A2
2 þ A1A2 þ A1B2 þ A2B1 3-fermion Walker-Wang Appendix B 2

3 Z2 (3-foliated planar) Z2 (dual subsystem) “AB” SSPT X-cube Ref. [91]
3 Z2 (fractal) Z2 (dual fractal) “AB” fractal SSPT Sierpinski fractal spin liquid Ref. [91]
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and u0 as end points, the following is an equally valid set of
stabilizers of jψi:

ð10Þ

ð11Þ

where Re ¼ e
πi
4
Xe . The vertex stabilizers now commute with

the measurement. However, the stabilizers in Eq. (10) do
not commute for adjacent vertices. However, this problem
is cured by restricting to the subspace:

ð12Þ

We can therefore circumvent having noncommuting sta-
bilizers by attaching

ð13Þ

which is a projector into this subspace on each triangle.
Finally, jψi is identified as the unique state that has
eigenvalue þ1 under the following operators:

ð14Þ

ð15Þ

Performing the measurement with outcomes Xv ¼ ð−1Þsv ,
the postmeasurement state is the unique state that has
eigenvalue þ1 under the operators

ð16Þ

ð17Þ

which is the ground state of the double-semion model [33]
up to single-site X rotations on edges that pair up the
vertices where sv ¼ 1 to remove the signs, and swapping
Xe with Ze to match the choice in Ref. [33].
Our implementation of gauging via combining measure-

ments with a cluster state entangler (including Zn gener-
alizations) implies that we can produce all twisted quantum
double models of a finite Abelian gauge group via stacking
general SPTs prior to measuring—which can be prepared
by finite-depth circuits [29]. Note that these models already
contain certain non-Abelian phases; e.g., D4 topological
order arises upon gauging the Z3

2 symmetry of an SPT
phase with a type-III cocycle [103,104]. (For obtaining
non-Abelian topological order associated with any solvable
group, see Sec. III C.) Similarly, our procedure allows for
the creation of twisted fracton phases by gauging 3D
subsystem SPT phases [67,86,87,105,106]. Thus, a much
wider class of states can be obtained from local unitary
circuits and local operations and classical communications
[56] than previously established.

B. Physically applying the Kramers-Wannier
transformation to a gapless state

Here, we discuss an example where, the input state jψi
(in Fig. 2) itself has long-range entanglement. In particular,
we focus on a well-known example of how the XY chain—
an example of a gapless state—can be transformed into two
decoupled critical Ising chains by gauging particle-hole
symmetry [107]. Here, we achieve this gauging by using a
finite-depth circuit and single-site measurements.
We place the XY chain on the odd sites (A) and initialize

with jþi states on the even sites (B). The aforementioned
state can be considered the ground state of the following
Hamiltonian:

H ¼
X
n

X2n−1X2nþ1 þ Y2n−1Y2nþ1 − X2n: ð18Þ

Next, we gauge the Z2 subgroup
Q

n X2n−1 of the full Uð1Þ
symmetry of the XY chain. To do so, we couple the
even and odd sites with the cluster state entangler
U ¼ Q

n CZn;nþ1, resulting in

UHU† ¼
X
n

Z2n−2ðX2n−1X2nþ1 þ Y2n−1Y2nþ1ÞZ2nþ2

− Z2n−1X2nZ2nþ1: ð19Þ

Note that since Z2n−1X2nZ2nþ1 is an integral of motion, the
following Hamiltonian also has the same wave function as
its ground state:
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X
n

Z2n−2ðX2n−1X2nþ1 − X2nÞZ2nþ2 − Z2n−1X2nZ2nþ1:

ð20Þ

Now, we perform a measurement on the odd sites with
measurement outcomes X ¼ ð−1Þs; the state after the
measurement is the ground state of the Hamiltonian,

X
n

ð−1Þs2n−1þs2nþ1Z2n−2Z2nþ2 − Z2n−2X2nZ2nþ2; ð21Þ

with the integral of motion
Q

n X2n serving as a global Z2

symmetry. After appropriate spin flips to remove the signs
and the circuit

Q
n CZ2n;2nþ2, the Hamiltonian reads

X
n

Z2n−2Z2nþ2 − X2n; ð22Þ

which describes two decoupled critical Ising chains.
We thus confirm that we have physically implemented
the KW transform on a gapless state.
Let us remark that this procedure does not rely on free-

fermion solvability of the XY chain and the Ising model.
For example, the procedure still works in the presence of
the XXZ deformation, which respects Z2 symmetry (albeit
opening up a gap).

C. Non-Abelian topological order from sequentially
gauging Abelian groups

Beyond cyclic groups Zn, cluster states and the corre-
sponding KW dualities have been generalized to arbitrary
finite groups [109–111], giving the potential to gauge non-
Abelian groups by unitaries and measurement. However,
unlike the Abelian case, which produces Abelian anyons
depending on the measurement outcome, gauging non-
Abelian groups can produce non-Abelian anyons that can
only be paired up using linear depth string operators [112].
The intuition for this is that the string operators for moving
such anyons consist of noncommuting operators, which
hence cannot be applied all at once [113].
Our implementation of the KW duality avoids this issue

by a sequence of circuits and measurements, which can be
interpreted as sequentially gauging Abelian groups. In such
a method, the measurement outcomes in all intermediate
states correspond to Abelian anyons, which can all be
paired up in finite depth. In this way, all gauge theories
whose gauge group is solvable (i.e., obtained by extending
finite Abelian groups) can be constructed efficiently in this
manner. For example, the S3 quantum double can be
obtained by gauging a Z3 symmetry (i.e., measuring a
Z3 cluster state), which prepares a Z3 toric code, followed
by gauging the charge conjugation symmetry that permutes
anyons e ↔ e2 and m ↔ m2. We note that since S3 is not
nilpotent, it can be used for universal quantum computation
[114]. As a second example, the D4 topological order can

be obtained by first preparing the 2D color code and
gauging the Hadamard symmetry. In our companion paper,
we provide explicit finite-depth qubit-based circuits for
these two examples [91].
We note that sequentially gauging Abelian groups

can also give rise to states beyond quantum doubles. For
instance, the doubled Ising anyon theory can be obtained
by gauging the e ↔ m symmetry of Z2 topological
order [101]. Such a Kramers-Wannier transformation
(implemented using our finite-depth circuit and single-site
measurements) can indeed be performed since it is known
that the Z2 symmetry can be made on site (for explicit
models, see Refs. [115,116]). By definition, this state
can be connected to any other state with Z2 topological
order through a finite-depth circuit, and we have already
described how, e.g., the usual toric code can be obtained
from the product state.

IV. JORDAN-WIGNER TRANSFORMATION
FROM MEASURING FERMIONIC SPT PHASES

Analogous to the KW transformation, the JW map is a
nonlocal transformation that maps between fermionic and
bosonic degrees of freedom [81,82]. Similarly to the KW
transformation, here we can prepare and entangle bosonic
and fermionic degrees of freedom as shown in Fig. 3. We
can then perform either bosonization of an arbitrary input
fermionic state by measuring the parity of all fermions or
fermionization of an arbitrary input bosonic state by
measuring X on all the spins after the entangling step.

A. 1 + 1D bosonization

Let us demonstrate this case explicitly by preparing the
Kitaev Majorana chain, which cannot be prepared in finite
time with only unitary evolution [6]. We start with N qubits
on odd sites initialized in the jþi state and N fermions on
even sites initialized in the empty state P ¼ −iγγ0 ¼ 1,
where γ ¼ cþ c† and γ0 ¼ −iðc − c†Þ are Majorana

FIG. 3. Jordan-Wigner transformation from finite-depth circuit
and measurements. We show the process of entangling fermionic
(red) and bosonic (blue) degrees of freedom and its relation to the
JW transformation. Here, h0j corresponds to contracting with the
empty state of fermions. We use Jordan-Wigner* to emphasize
that this transformation differs from the usual JW by an additional
KW transformation. Similar to Fig. 2, this transformation can be
utilized to implement the JW transformation via measurements
(see main text).
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operators. Furthermore, we define the hopping operator
S2n ¼ iγ02n−2γ2n, which hops a fermion from site 2n − 2 to
2n. We create aZ2 × ZF

2 SPT [117–120] with the following
circuit:

U ¼
YN
n¼1

CS2n−1;2n; ð23Þ

where the operator

CS2n−1;2n ¼ j↑ih↑j2n−1 þ j↓ih↓j2n−1S2n ð24Þ

is a hopping operator controlled by the qubit at 2n − 1. In
other words, a fermion is hopped if the spin at site 2n − 1 is
down. We also remark that because all gates mutually
commute, it can be implemented as a finite-depth circuit.
The resulting SPT (which we will call the Jordan-Wigner
state) is the þ1 eigenstate of the stabilizers,

UX2n−1U† ¼ iγ02n−2X2n−1γ2n; ð25Þ

UP2nU† ¼ Z2n−1P2nZ2nþ1: ð26Þ

Now, we measure all the spins with outcomes
X2n−1 ¼ ð−1Þs2n−1 . The stabilizers of the measured state
are ð−1Þs2n−1γ02n−2γ2n and

Q
n Z2n−1P2nZ2nþ1 ¼

Q
n P2n,

which, after applying
Q

N
n¼1 P

P
n
m¼1

s2m−1

2n , gives the ground
state of the Kitaev chain. We note that, alternatively,
starting with the SPT, measuring the parity of all the
fermions gives the GHZ state.

B. 2 + 1D bosonization

The recipe above extends to arbitrary dimensions.
The generalization of the Jordan-Wigner transformation
has been explored in a number of works, including
Refs. [83–89,121–123], and can be thought of in the
context of this work as gauging the fermion parity
symmetry. Thus, we can construct a particular state of
fermions and spins that conserves fermion parity and a
higher form Z2 symmetry such that one can perform either
bosonization, by measuring the parity of each fermion, or
fermionization, by measuring the spins in the X basis. Here,
we demonstrate this case for the 2D bosonization procedure
of Ref. [83] on a square lattice.
As with the 2D KW transformation, we consider the

square lattice with fermions initialized in the empty state
Pv ¼ 1 on the vertices, and spins are initialized in the jþi
state on the edges (Xe ¼ 1). We create an “SPT” state (see
below for caveats) protected by fermion-parity symmetry
and a global 1-form symmetry. The stabilizers of this “JW
state” are given by

ð27Þ

Upon measuring the fermion parity of all fermions, the
resulting state is described by the stabilizers

ð28Þ

which, up to a sign given by measurement outcomes,
describe the 2D toric code.
To discuss the circuit required to prepare this SPT, we

first define the fermion hopping operator for each edge as

ð29Þ

Then, we may define the controlled operator

CSe ¼ j↑ih↑je þ j↓ih↓jeSe: ð30Þ

Here, the only novel subtlety—not present in the bosonic
case or the 1D JW transformation—is that not all of the CS
gates mutually commute and therefore must be applied
sequentially. Nevertheless, it turns out that their ordering is
irrelevant: Each choice of ordering gives a valid JW
transformation [86,87], and moreover, these choices only
differ by phase gates. Thus, a given choice determines the
spatial anisotropy of the stabilizers.
To obtain the stabilizers of the SPT in Eq. (27), the

unitary that prepares it can be written as

U ¼
Y
v

CZeNðvÞ;eEðvÞ

Y
ex

CSex
Y
ey

CSey ; ð31Þ

where eNðvÞ and eEðvÞ refer to the edges directly north and
east of the vertex v, respectively. In other words, we have
chosen to apply the control gates on all vertical edges
(which mutually commute) followed by those on the
horizontal edges; lastly, we apply appropriate CZ gates
to obtain the desired form of the stabilizers.
The JW state has the property that if we form the open

string operator associated with the 1-form symmetry, by
taking a product of stabilizers, we will find a fermion
operator at the end. Thus, it looks like a nontrivial SPT for
fermion parity and the 1-form symmetry. However, if we
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consult the cobordism classification, we find there are no
nontrivial SPTs in this symmetry class. In fact, if we try to
construct an SPT class with this property using the Atiyah-
Hirzebruch spectral sequence, we find that the relevant
class in H2ðZ2½1�;Ω1

spinÞ has a nonzero differential. It
would be a supercohomology class, but it does not satisfy
the Gu-Wen equation [117] (also see Ref. [124]).
The puzzle is resolved by considering the cobordism

classification as describing a torsor rather than a group,
meaning that with this choice of 1-form symmetry, the
associated open string must always end on a fermion; in
that sense, there is only one SPT phase, but it is not quite
trivial because the 1-form symmetry generator we have
chosen is not completely “on site.”
Indeed, in Refs. [121,122], it was stressed that the 1-form

symmetry in 2þ 1D bosonization has an anomaly Sq2B
(unlike in 1þ 1D bosonization where we obtain an
anomaly-free Z2 symmetry upon bosonizing), and the
kernel of the bosonization transformation gives a triviali-
zation of this anomaly in the presence of fermions. In
simple terms, the Sq2B anomaly says that the 1-form
symmetry generator needs to obey fermionic statistics.
Now, there is no issue with realizing such an anomalous
symmetry in a not-on-site fashion, but because of the
anomaly, it cannot be screened—there is no end-point
operator that will give the open string long-range order.
However, if physical fermions are present, we can have a
short-range entangled state where the 1-form symmetry
generator ends on these fermions, and we interpret this
finding as a trivialization of the Sq2B anomaly, which is
precisely what happens in the JW state. To trivialize the
anomaly, the 1-form symmetry generator has to end on a
fermion (which is essentially the Gu-Wen equation), so
while it looks like a nontrivial SPT, there is really only one
option, in harmony with the classification.
Similarly to the KW transformation, we can now apply

the JW transformation to arbitrary states by measurements.
For example, we can consider preparing the fermions in a
2þ 1D topological pþ ip superconducting state with
chiral Majorana edge modes. After coupling to the JW
state and measuring fermion parity, the remaining spins will
describe a chiral Ising topological order. Similarly, cou-
pling ν stacks of pþ ip superconductors to the SPT and
performing the measurement can realize the topological
orders in Kitaev’s 16-fold way [14].
The generalization to higher dimensions [84,85] and to

other types of fermionic gauge theories (including fracton
models with fermionic statistics [86,87]) is straightforward
by taking a sequential product of CS operators that
mutually commute within each layer.

V. GENERALIZATIONS

Thus far, we have focused on two illustrative cases,
where measuring sublattices of the cluster and JW states

leads to LRE. In this last section, we generalize this approach
in two directions. First, we make the case that the ability to
produce LRE frommeasurements is indeed a property of the
whole SPT phase, being robust to tuning away from a fixed-
point limit. Second, we show that LRE is naturally obtained
by measuring a broad class of SPT phases, of which the
cluster and JW states are but two examples.

A. LRE generation as stable property of SPT phase

1. Intuition away from fixed-point limit

Let us first consider the 1D cluster SPT phase and ask
whether one obtains a cat state upon measuring one of the
sublattices starting with an arbitrary state in this phase. We
present an intuitive argument, which holds away from
the fixed-point limit. A key property of the cluster SPT
phase in 1D is that it generically has long-range order for
the following string operator [125]:

lim
jn−mj→∞

hZ2mS2m;2nZ2ni ¼ C ≠ 0; ð32Þ

where S2m;2n ≔ X2mþ1X2mþ3 � � �X2n−1 is a string operator
consisting of the Z2 symmetry of the odd sites. The SPT
invariant [126] is encoded in the fact that the string operator
for one of the Z2 symmetries only has long-range order if
one includes an end-point operator that is charged under the
other Z2 symmetry (in this case, Z2n, which is odd underQ

m X2m−1). Indeed, in the nontrivial SPT phase, one finds
that the undressed string does not have long-range order:

lim
jn−mj→∞

hS2m;2ni ¼ 0: ð33Þ

We would like to understand what happens if we
measure all odd sites in the X basis, which is a rather
challenging many-body question; Secs. VA 2–VA 5 are
devoted to addressing this issue. However, as a first
encounter, and to build some intuition, let us imagine that
instead of measuring all odd sites, we measure a single
global observable, namely, the string operator S2m;2n for a
fixed choice of m and n. Since all X measurements
commute, we can indeed think of this as a first step in
our measurement process, and we find that this first step
indeed produces long-range entanglement.
To determine the result of measuring S2m;2n, first note

that Eq. (33) tells us that if we choose n and m far enough
apart, then hS2m;2ni ≈ 0. Hence, both measurement out-
comes S2m;2n ¼ �1 ¼ ð−1Þs are equally likely. The two
possible postmeasurement states can thus be written as

jψ si ¼
1ffiffiffi
2

p ð1þ ð−1ÞsS2m;2nÞjψi: ð34Þ

Plugging jψi ¼ ð1= ffiffiffi
2

p Þðjψ0i þ jψ1iÞ into Eq. (32), we
obtain
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hψ0jZ2mZ2njψ0i − hψ1jZ2mZ2njψ1i ¼ 2C: ð35Þ

Moreover, using the dual string operator, one can prove that
hψ0jZ2mZ2njψ0i ¼ −hψ1jZ2mZ2njψ1i (see Appendix C),
such that, for either measurement outcome, we have

jhψ ijZ2mZ2njψ iij ¼ jCj ≠ 0: ð36Þ

We thus find that measuring the string leads to long-range
cat-state-like entanglement between the two end points.
This result is consistent with the notion of SPT entangle-
ment explored in Ref. [127], where the author showed that
measuring a large connected block of sites leads to a Bell
pair between the two end points.
The above argument can be extended to higher dimen-

sions. For instance, let us revisit the 2D case mentioned
in Sec. II: the Lieb lattice with spins on the vertices
(A sublattice) and bonds (B sublattice) of the square lattice.
The cluster state on this lattice is an SPT phase protected by
a globalZ2 symmetryUA ¼ Q

a∈A Xa, as well as a “1-form
symmetry,” UB

γ ¼ Q
b∈ γ⊂B Xb, meaning a symmetry

defined for each closed curve γ on the bonds of the square
lattice [104,128,129].
In the SPT phase, we have long-range order for the

membrane operator S∂R
Q

a∈A∩R Xa, where R is some
region and S∂R is a string operator on the boundary which
“braids” with UB

γ , meaning UB
γ Sγ0 ðUB

γ Þ† ¼ Sγ0 ð−1Þγ∩γ0 ,
where the exponent is the number of intersection points
between the curves γ and γ0. For the fixed-point cluster
state, Sγ0 ¼

Q
b∈ γ0 Zb.

Upon measuring the membrane, we are left with long-
range order for Sγ (see Fig. 5). This quantity serves as an
order parameter for spontaneously breaking the 1-form
symmetry, thereby implying topological order. In fact, this
point of view naturally generalizes to other SPT phases, as
we will discuss in Sec. V B.
However, while the above is intuitive and encouraging, it

does not actually prove that the LRE persists upon
measuring all (or a finite density of) sites. In particular,
in the 1D case, we have thus far only measured S2m;2n

and not yet all odd sites. This calculation does not auto-
matically guarantee that the long-range order in Eq. (36)
persists after performing the other measurements [130]
since measurements can reduce entanglement. We now
argue that, generically, it does indeed persist.

2. Conjecture and theorem: LRE from SPT

Having gained the above intuition, let us now try to
formalize how and when long-range entanglement is
produced by measuring SPT phases. To this end, we state
a general conjecture, for which we give plausibility argu-
ments. In addition, we provide a rigorous theorem for a
slightly more constrained setting.

We consider a (short-range entangled) wave function jψi
in a nontrivial SPT phase protected by an Abelian sym-
metry group G ×H. Moreover, we presume that the SPT
phase is mixed, which means that explicitly breaking either
G orH would trivialize the SPT phase. Note that the notion
of an on-site symmetry automatically implies the notion of
a unit cell, whereby a global symmetry U∈G ×H can be
decomposed as a tensor product over the unit cells:
U ¼ Q

n Un. The physical act of measuring the G-charge
(for a given unit cell n) means that, mathematically, we
apply a projector

PGðqÞn ¼
1

jGj
X
g∈G

χqðgÞðUgÞn; ð37Þ

where q is a charge labeling the (random) measurement
outcome and χq is the corresponding character. For a given
set of measurement outcomes fqngn (one for each unit
cell), we thus obtain the postmeasurement state

jψifqng ∝
Y
n

PGðqnÞnjψi: ð38Þ

The probability of obtaining a given measurement outcome
(and thus the corresponding postmeasurement state) is, of
course, given by Born’s rule. For each given outcome, one
can ask whether the postmeasurement state is long-range
entangled. We generally expect that this is indeed the case.
For concreteness, we consider the one-dimensional case,
although many of the arguments have higher-dimensional
analogs. (We will discuss higher-dimensional examples
in Sec. V B.)
Conjecture. If the premeasurement state jψi has a

conventional SPT string order parameter [131] for a mixed
Abelian G ×H SPT phase, then the probability of the
postmeasurement state being long-range entangled is unity.
We will give plausibility arguments for this conjecture in

the next subsection. The above claim of unit probability
allows for a “measure-zero” case, where the postmeasure-
ment state can be short-range entangled. Indeed, wewill see
examples of this in our numerical exploration in Sec. VA 5.
However, if we slightly strengthen our assumptions, we can
prove one always obtains long-range entanglement:
Theorem. Let jψi be in a nontrivial mixed SPT phase for

Abelian symmetry group G ×H. If it admits a finite-bond
dimension matrix product state (MPS) description, then
there exists a choice of unit cell such that measuring the
G-charge for each unit cell produces a state with long-range
entanglement for any measurement outcome. More pre-
cisely, the postmeasurement state is a cat state for the
(partial) spontaneous symmetry breaking of H.
To phrase and prove this result, we use the notion of

MPS. In fact, this same framework will provide an intuitive
justification for our more general conjecture. We thus turn
to an MPS-based description of our setup.
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3. Proof using matrix product states

For a review of MPS, we point the reader to
Refs. [96,132]. The key idea of MPS is that a wave
function is written in terms of finite-dimensional tensors:

jψi ¼
X

i1;i2;…;iN

tr

�YN
n¼1

Ai1

�
ji1; i2;…; iNi; ð39Þ

where N labels the number of unit cells, i ¼ 1;…; d labels
the states in each unit cell, and Ai is a χ × χ matrix. (For
convenience, we work with translation-invariant states,
where the tensor is identical for all sites.) Here, χ ∈N is
called the bond dimension, with χ ¼ 1 corresponding
to a product-state wave function. It is known that up to
exponentially small errors in local quantities, ground states
of gapped Hamiltonians are well approximated by such an
MPS [133,134]. In what follows, we will use the graphical
notation. For instance, Eq. (39) becomes

ð40Þ

where we ignore boundary conditions, or equivalently, we
work in the thermodynamic limit.
A key property that makes MPS such a useful framework

is that global symmetries, such as U ¼ Q
n Un, imply nice

local properties on the MPS tensor. In particular, one
can “push” physical symmetries through to the “virtual”
level [135] [3,24,27,96,136]: There exists an operator Vg

such that

ð41Þ

In other words, we see that the physical operator Ug is
equivalent to acting with Vg and V

†
g at the virtual level. As a

sanity check, we indeed see that if we apply Ug on each
site, then each Vg is canceled by a V†

g, thereby confirmingQ
n ðUgÞn is a global symmetry of jψi.
An interesting property of these virtual symmetry actions

Vg is that they only need to form a projective representation
of the symmetry group. Thus, for any g; g0 ∈G ×H, we
have VgVg0 ¼ ωðg; g0ÞVgg0 with a potentially nontrivial
phase factor ωðg; g0Þ∈Uð1Þ. A nontrivial SPT class is
then equivalent to the statement that ½ω�∈H2(G×H;Uð1Þ)
is a nontrivial cocycle; the simplest example is when
G ×H ¼ Z2 × Z2, where the nontrivial SPT phase corre-
sponds to the projective representation where the two
generators anticommute. More generally, a mixed SPT
class implies that ωðg; hÞ ≠ ωðh; gÞ for a certain choice of

g∈G and h∈H, which we will use to derive long-range
entanglement in the postmeasurement state.
As discussed, the act of measurement corresponds to

applying a projector, Eq. (37). The MPS tensor for the
postmeasurement state (38) is simply

ð42Þ

Since for any g∈G we have UgPG ¼ χqðgÞPG (i.e., the
symmetry operator acts like a number), we have the
following local tensor properties:

ð43Þ

ð44Þ

for g∈G and h∈H. Equation (44) tells us that H still acts
like a physical symmetry on the postmeasurement state;
however, Eq. (43) tells us that G now only acts on the
virtual degrees of freedom, which we can interpret as a sort
of higher symmetry. More concretely, as wewill now argue,
Vg acts as an order parameter for the spontaneous breaking
of H symmetry, such that the postmeasurement state is a
long-range entangled cat state for symmetry breaking.
The key identity we need is the ability to push Vg from

the virtual level to the physical level. In particular, the
question is whether there exists an operator Og such that

ð45Þ

Let us temporarily earmark the question of whether Og

exists and first explain how its existence is sufficient to
prove that the postmeasurement state is long-range
entangled.
From the projective group relations VgVg0 ¼ ½ωðg; g0Þ=

ωðg0; gÞ�Vg0Vg, one can straightforwardly prove that if Og

exists, it must carry charge under H. In particular, in
Appendix D, we prove that Eq. (45) implies
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UhOgU
†
h ¼ ωðg; hÞωðh; gÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≡αg;h

Og: ð46Þ

Since we are considering a mixed SPT phase, we know that
this phase factor is nontrivial for certain g∈G and h∈H;
let us henceforth fix those elements, such that αg;h ≠ 1.
One consequence of Eq. (45) is that in the postmeasure-

ment state, the expectation value ofOg must vanish. Indeed,
taking the expectation value of both sides of Eq. (46) and
using that Uh is a symmetry, we obtain

hOgipostmeas ¼ αg;hhOgipostmeas: ð47Þ

Since αg;h ≠ 1, this finding implies that hOgipostmeas ¼ 0.
However, the two-point correlation is nonzero. Indeed,
combining Eq. (45) with Eq. (43) directly implies that

jhðOgÞ†mðOgÞnipostmeasj ¼ 1: ð48Þ

We thus have long-range mutual information and long-
range entanglement. In more physical terms, we see that the
postmeasurement state can be interpreted as a cat state for
the (partial) spontaneous symmetry breaking of H.
We have thus proven that the existence of Og, as defined

in Eq. (45), is sufficient to prove long-range entanglement.
The final issue is when we expect this to hold. One scenario
where we can show thatOg exists is when the conditions of
the theorem in Sec. VA 2 are met. Indeed, it is known that
short-range entangled MPS satisfy a certain injectivity
condition [96], which means that after potentially blocking
sites a finite number of times, the MPS tensor defines an
injective map where we consider the virtual legs to be its
input and the physical leg its output. Equivalently, there
exists a tensor [137] C that functions as an inverse for A:

ð49Þ

where we will henceforth presume one has blocked the unit
cell to achieve the injectivity condition. Thus, we can
define the physical operator Og as follows:

ð50Þ

Using Eq. (49), one sees that this operator satisfies Eq. (45)
for the A tensor. Moreover, one can prove that Og

commutes with the G symmetry, i.e., UgOgU
†
g ¼ Og for

any g∈G (see Appendix D). Hence, Og commutes with
the projection PG, such that we obtain Eq. (45) also
for the B tensor. This concludes the proof of the theorem
in Sec. VA 2.
Thus, if we are willing to block unit cells a finite [138]

number of times, we can prove that LRE is obtained for any
measurement outcome. In the absence of such blocking, we
believe one can only make a probabilistic statement. In fact,
while we do not offer a proof of the conjecture stated in
Sec. VA 2, the above MPS arguments provide an intuitive
justification. To see this case, let us first remark that to
make probabilistic arguments, one only needs a weaker
version of Eq. (45), namely, that there exists anOg such that
one has finite overlap with the virtual Vg action, i.e.,

ð51Þ

for some λ ≠ 0. Indeed, one can again show that this
impliesOg carries nontrivial charge underH. Moreover, the
same argument as above still implies that one expectsOg to
have a long-range two-point function since it picks up on
the long-range order of Vg [see Eq. (43)]. The only way this
case can fail is if the multiple terms on the right-hand side
of Eq. (51) conspire to exactly cancel out the long-range
contributions, which can certainly happen (we will give an
example in the next subsection); however, it requires a
delicate balancing of terms and is thus likely a measure-
zero case over the ensemble of all possible measurement
outcomes. Lastly, we note that Eq. (51) can be expected to
hold for SPT phases that admit a conventional SPT order
parameter, as defined in footnote [131]. Indeed, the very
reason the string order parameters have nontrivial end-point
operators is because they are able to cancel out the virtual
Vg action of the symmetry string or disorder operator [126].
Commonly used string order operators have an end point
Og supported on a single unit cell, and they commute with
the corresponding symmetry generator Ug, such that if
Eq. (51) applies to the A tensor, it also automatically
carriers over to the postmeasurement B tensor. In con-
clusion, for these reasons, we conjecture that only a
measure zero of measurement outcomes can fail to give
long-range entanglement. It would be interesting to sharpen
this intuition into a rigorous proof of our conjecture.

4. Analytics: Cat state from the deformed cluster state
and AKLT state

Let us illustrate our general theorem with two MPS-
based examples. Both examples are SPT phases with
nonzero correlation length, i.e., away from the simple
fixed-point cases studied in the earlier sections of this work.
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First, we consider a deformation of the cluster state:

jψðβÞi ∝ eβ
P

n
Xn jclusteri: ð52Þ

Here, jψð0Þi is the cluster state of Eq. (1). For any β, this
state admits a χ ¼ 2MPS representation [139], and one can
show that for any finite β, this state is in the nontrivial SPT
phase protected by Z2 × Z2 symmetry. Its correlation
length ξ increases monotonically with β and diverges as
β → ∞. The MPS tensor turns out to be injective without
blocking, meaning that our theorem implies that measuring,
say, X2nþ1, on odd sites produces a long-range entangled
state on the remaining qubits—for any possible measure-
ment outcome.
As a second example, we consider the paradigmatic

spin-1 AKLT state [140], which is known to be described
by a χ ¼ 2 MPS and is an SPT phase protected by the
Z2 × Z2 symmetry of π rotations. As generators, we can
choose Rx ¼ Q

n e
iπSxn and Rz ¼ Q

n e
iπSzn . If we block the

spin-1s into two-site unit cells, then the MPS satisfies
the aforementioned injectivity property. Hence, our
MPS-based arguments prove that if one measures, say,
Rz
2n−1R

z
2n ∈ f−1; 1g charge on each two-site unit cell, then

the postmeasurement state will always have long-range
entanglement.
What if we did not block in the last example? If we

measure Rz
n ∈ f−1; 1g in each single-site unit cell, then

there is a measure-zero chance that we obtain Rz
n ¼ 1 for all

sites. In this case, the postmeasurement state is simply the
product state j0iN , where j0i is the unique þ1 eigenstate of
Rz ¼ eiπS

z
. However, as long as a finite density of sites

projects onto the −1 eigenstate of Rz, the postmeasurement
state is a long-range entanglement of GHZ type, capturing
the spontaneous symmetry breaking of Rx. This example is
thus consistent with our conjecture, and it illustrates the
importance of making probabilistic statements in the cases
where one does not block unit cells.
While both examples are illustrative, by definition they

are analytically tractable. One might wonder about SPT
phases of ground states that are not exactly solvable. For
this reason, we now turn to a numerical exploration.

5. Numerics: Cat state from the spin-1
Heisenberg chain

To emphasize the generality of our claim that SPT phases
can be used to generate LRE upon measurement, we
consider the incarnation of the Haldane SPT phase in
the spin-1 Heisenberg chain. Its Hamiltonian is a nearest-
neighbor antiferromagnetic coupling:

H ¼
X
n

Sn·Snþ1: ð53Þ

This spin chain is known to be gapped [141], forming
a nontrivial SPT phase for the Z2 × Z2 group of π

rotations generated by Rγ ¼ Q
n e

iπSγn with γ ¼ x, y, z
[23,140,142,143]. Indeed, it has been argued to be in the
same phase as the tractable AKLT state encountered in the
previous section [140].
By our general proposal, we expect that measuring, say,

the Rz charge for every site should result in a cat state for
the remaining Z2 symmetry. An interesting difference
from the cluster chain is that the symmetries do not act
on distinct sites. We thus measure Rz

n ¼ eiπS
z
n on every

single site. Effectively, this process comes down to meas-
uring whether ðSznÞ2 is 0 or 1. For the first outcome, the site
has no degree of freedom left, whereas for the latter, we still
have a remaining qubit (Szn ¼ �1), which is toggled by Rx.
Hence, with the exception of there being no qubits left
(which is of measure zero in the thermodynamic limit), we
expect a cat state for the remaining chain of qubits. This
case is similar to the AKLT discussion in Sec. VA 4,
although now we cannot rely on an exact solution.
To test this prediction, we numerically obtain the ground

state of Eq. (53) using the density matrix renormalization
group (DMRG) [132,144,145] for a variable system size L
with periodic boundary conditions. We then project each
site into ðSznÞ2 ¼ 0 with probability 1=3 or ðSznÞ2 ¼ 1 with
probability 2=3. As a robust way of detecting whether the
resulting state is a cat state, we calculate the Fisher
information, which, in this case, is simply the variance
of the total (staggered) magnetization:

F ¼
��XL

n¼1

ð−1ÞnSzn
�2�

−
�XL

n¼1

ð−1ÞnSzn
�2

: ð54Þ

This Fisher information is a quantitative measure for the
use of the state for quantum metrology purposes [92,93].
While SRE states obey a scaling F ∼ L, only nonlocal cat
states have F ∼ L2. Our numerical results [146] are shown
in Fig. 4. While the original ground state has F ∼ L, we find
that the postmeasurement state indeed has F ∼ L2, con-
firming that it is a cat state. In addition, it is interesting to
see that FðLÞ varies relatively continuously with L, despite
each system size having a completely randommeasurement
outcome (each red dot is computed for only a single
measurement shot).
The above emergence of a cat state can actually be linked

to the original interpretation of the Haldane SPT phase.
Indeed, when the topological string order parameter was
first introduced in 1989 [142], it was designed to pick up
the “hidden symmetry breaking” of the state, where it was
observed that if one imagines removing all Szn ¼ 0 states,
then the remaining Szn ¼ �1 states form long-range Néel
order. However, since the Szn ¼ 0 states are interspersed
within the Szn ¼ �1 states and are allowed to have quantum
fluctuations, they disorder this local order (which can now
only be picked up with a string order parameter). Our above
procedure can be interpreted as making this hidden order
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manifest: The measurement pins the location of Szn ¼ 0,
preventing them from disordering the Néel state.

B. Measuring general SPT phases

Here, we discuss how LRE arises upon measuring more
general SPT states, even beyond 1D. As a natural starting
point, we consider one of the simplest SPT phases (beyond
1D) protected by more than a single cyclic group—such
that it is meaningful to measure one symmetry and preserve
the other. Let us thus consider the Z3

2 “cubic” SPT in
2þ 1D. One model for this phase [104,147] is given by
placing spins on the sites of a triangular lattice, with
each Z2 acting as

Q
j∈A;B;C Xj on each of three triangular

sublattices A, B, C. For each site j, there is a stabilizer
given by

Sj ¼ Xj

Y
hjqq0i

CZq;q0 ; ð55Þ

where the product is over triangles hjqq0i with vertices
j; q; q0. When we measure Xj on the A sublattice, we are
left with a state on a honeycomb sublattice with

Y
hjqq0i

CZq;q0 ¼ ð−1Þsj ð56Þ

around each hexagon, for some fixed signs (determined by
our measurement outcome sj).
The loop operators

Q
ij∈ γ CZi;j along a closed path γ

of vertices can be considered as a Z2 1-form symmetry of

this state. Note that this acts as the cluster SPT entangler
for ZB;C

2 along γ, which implies there is a mixed
anomaly; therefore, the resulting state obtained from
measurements cannot be short-range entangled. Note that
this anomaly can be realized on the boundary of a lattice
model of a 3D SPT protected by Z2

2 × Z2½1� as studied
in Ref. [104].
We believe that a similar conclusion holds generally

when we measure SPT states, at least when the corre-
sponding topological term is linear in the gauge field
associated with the measured charge. Let G and H be
(p − 1)- and (q − 1)-form symmetries, where G and H are
on-site symmetries that act only on subsystems A and B,
respectively. Denote the background gauge fields of G
and H, Ap and Bq, respectively. Now, consider an
SPT associated with the cohomology class ApFðBqÞ∈
Hdþ1(G ×H;Uð1Þ), where d is the space dimension and
FðBqÞ∈Hdþ1−pðH;G⋆Þ describes a topological G current
made from Bq, where G⋆ ¼ Hom(G;Uð1Þ). Physically,
FðBqÞ can be understood as an H SPT in d − pþ 1 spatial
dimensions, and the SPT ApFðBqÞ corresponds to deco-
rating fluctuating G-domain walls with this H SPT [148].
In this fixed-point model, if we now measure the G

charges, we essentially project out the topological current
FðBqÞ. Analogously to the CZ ring in Eq. (56), we
similarly obtain a p-form symmetry, the remnant of the
G symmetry action by symmetry fractionalization of the
parent SPT phase before measurement—applying the G
symmetry in a region is equivalent to acting on the
boundary of that region with the entangler of the H SPT
(see Fig. 5).

FIG. 4. Cat state from measuring the Haldane SPT phase. We
consider the ground state of the spin-1 Heisenberg chain, which is
in a nontrivial SPT phase for the Z2 × Z2 symmetry of π
rotations. In accordance with its short-range entanglement, we
find that the Fisher information scales linearly with system size
(blue dots). In contrast, if we measure the Rz

n ¼ eiπS
z
n charge on

every site, the remaining state has Fisher information F ∼ L2 (red
dots), signaling long-range entanglement in the postmeasurement
state (here, we have chosen different random measurement
outcomes for each L). This finding confirms that measuring
one Z2 symmetry of the Haldane SPT phase creates a cat state for
the remaining Z2 symmetry, even if one is not at a fine-tuned
fixed-point limit.

FIG. 5. Anomalous symmetry from measuring an SPT phase.
In an SPT phase, applying the symmetry in a region is equivalent
to applying a unitary operator just near the boundary of that
region; equivalently, the membrane operator has long-range order
if we include the appropriate unitary operator along its boundary.
In theG ×H SPT fixed-point models of the linear form ApFðBqÞ,
G acts only on the A sublattice and the boundary operator acts
only on the B sublattice. If we then measure the spins of the A
sublattice, this boundary operator remains as a symmetry, now
locally defined along the boundary. Because the boundary is
codimension p, this defines a G p-form symmetry, which acts as
the entangler for a nontrivial H SPT phase. This finding implies
that the G p-form symmetry in the postmeasured state has a
mixed anomaly with H, implying that the state cannot be short-
range entangled.
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This anomaly can also be seen from studying the
topological response of the G ×H SPT. Projecting out
G charges is equivalent to making the G gauge field Ap

dynamical. Measuring the G charges can be thought of as
making Ap dynamical with a charge background fixed by
the measurement outcome. Since we began with a gapped
phase, there are no fluctuating G charges at low energies.
As a result, there is an emergent p-form symmetry that
acts as Ap ↦ Ap þ λ, known as the center, or electric
symmetry [128]. This symmetry is the same as the p-form
symmetry we defined above. From the form of the
topological response, assumed to be ApFðBqÞ, we see that
this global symmetry is broken when there is a nontrivial
Bq since it produces a variation of the effective action,
namely,

R
λFðBqÞ. This variation is characteristic of an

anomaly associated with a dþ 1-dimensional topological
response Ãpþ1FðBqÞ [149], where Ãpþ1 is the background
pþ 1-form gauge field (note the shift) associated with the
center symmetry.
When the SPT class is not linear in Ap, we will not be

able to fractionalize the G symmetry so that the boundary
operator commutes with the G charges [35]. However, if it
is the form F1ðApÞF2ðBqÞ, where F1ðApÞ∈HjðG;KÞ and
F2ðBqÞ∈Hdþ1−jðG;K�Þ, for some Abelian group K, then
there will be a codimension jþ 1 defect Poincaré dual to
dF1ðApÞ that can factorize, defining a jþ 1-form sym-
metry in the fixed-point model postmeasurement corre-
sponding to a field Cjþ2. The anomaly will then be
Cjþ2F2ðBqÞ∈Hdþ2(K½jþ 1� ×H;Uð1Þ). For example,

if we measure both Zð1Þ
2 and Zð2Þ

2 in the cubic SPT, then

in this case, we identify Ap ¼ ðAð1Þ
1 ; Að2Þ

1 Þ, Bq ¼ Að3Þ
1 ,

FðApÞ ¼ 1
2
Að1Þ
1 Að2Þ

1 , and FðBqÞ ¼ Að3Þ
1 . Thus, the anomaly

postmeasurement is 1
2
C3A

ð3Þ
1 for a Z2 2-form symmetry

associated with C3.

VI. OUTLOOK

In this work, we have presented a general framework for
which performing measurements of short-range entangled
states produces long-range entanglement. We have given
some intuitive arguments that this is a stable property of
the SPT phase, as well as proven that this always holds if
the measurements are performed in an appropriately large
enough unit cell. It would be very interesting to fine-tune
these arguments, perhaps by constructing the anomalous
symmetry of Sec. V B away from fixed-point states. We
would also like to determine the nature of the long-range
entangled states that appear.
We have also described how nonlocal transformations,

including Kramers-Wannier and Jordan-Wigner, arise from
coupling an arbitrary state with a symmetry to a clusterlike
SPT and performing measurements. It would be interesting
to see whether other SPTs define useful transformations

this way. If so, what family of MPOs do they define? We
note that, given a general MPO, it is not obvious how to
implement it from finite-depth unitaries and measurements.
Sequential applications of our procedure even lead to

non-Abelian topological order, including quantum doubles
for solvable groups. A natural question is to find an
analogue for nonsolvable groups—or to prove a no-go
theorem. We also argued that non-Abelian states beyond
quantum doubles can be obtained, such as the doubled
Ising anyon theory, although we have left an explicit
prescription of a circuit to future work.
Another feature of our method is that it can be per-

formed in an arbitrary region, producing a duality defect
on its boundary. We expect this defect to be topological
[150–152]. It might even be natural to consider moving it
by measurements.
It is also interesting to note the similarities to quan-

tum teleportation [153] and measurement-based quantum
computation (MBQC) [154–157], where measurement
effectively performs unitary operations on the input state.
Here, the act of measurement instead performs a nonlocal
transformation on the initial state. It would be interesting
to make contact with similar notions of “computational
phases of matter” in MBQC [158–162]. Exploring con-
nections to the topological bootstrap [163] is also a
promising future direction.
In addition, it may be interesting to “soften” the

projectors, considering either weak measurements or an
open system weakly interacting with the environment by a
subset of its degrees of freedom.

Note added.—Recently, Ref. [164] appeared, which over-
laps with our section on KW duality. We also recently
learned of a parallel work preparing quantum double
topological order via measurements [165]. Our results
agree with both of these works where they intersect.
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APPENDIX A: MATRIX PRODUCT
FOR THE 1D CLUSTER STATE AND KW

Consider a one-dimensional lattice of 2N qubits. We
identify two sublattices A and B corresponding to the odd
and even sites of the lattice, respectively. The 1D cluster
state can be expressed using a MPS as
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jψi ¼
X
fsg

Tr½Cs1Cs2 � � �Cs2N �js1; s2;…; s2Ni; ðA1Þ

where sn ¼ 0, 1 are Z-basis states and the tensor C is
defined as

C ¼ 1ffiffiffi
2

p
� h0j h0j
h1j −h1j

�
: ðA2Þ

To turn this into a matrix product operator (MPO), we first
double the unit cell to obtain an MPS with double the
physical legs,

C ⊗ C ¼
� h0þ j h1 − j
h0 − j h1þ j

�
: ðA3Þ

Flipping the leg of the first entry upwards (see Fig. 6) yields
the MPO

σ ¼
� j0ihþj j1ih−j
j0ih−j j1ihþj

�
: ðA4Þ

This expression is exactly the Kramers-Wannier duality.
For example, if we plug in the jþi product state, then we
find the MPS for the GHZ state,� h0j 0

0 h1j

�
: ðA5Þ

APPENDIX B: MORE EXAMPLES

1. Wen plaquette model

Consider the following cluster state given by stabilizers,

ðB1Þ

This state is in fact the cluster state on the triangular
lattice, although we have placed it on the square lattice.
This cluster state is a (strong) Z2 subsystem SPT
protected by line symmetries, given by flipping spins
along the x and y lines of the square lattice [166]. In fact,
gauging this subsystem SPT gives rise to the Wen
plaquette model [167].
Based on this finding, we show how to prepare the

Wen plaquette model via measuring an appropriate cluster
state. The A and B are the vertices of the square (red) and
dual square (blue) sublattices, respectively. We create the
cluster state given by the stabilizers

ðB2Þ

Note that because of the couplings within the A sub-
lattice, this cluster state is not bipartite. Now, let us measure
the X operators on the A sublattice. The local product of
stabilizers that commute with the measurements is

ðB3Þ

and the nonlocal products are along each x and y line.
Thus, with measurement outcomes X ¼ ð−1Þsv , we have

the stabilizers

ðB4Þ

which, up to single-site rotations, are the stabilizers of the
Wen plaquette model.
Although the Wen plaquette model is in the same

topological phase as the toric code, it has the advantage
of treating the e and m anyons on equal footing. In
particular, it naturally has a dislocation defect, which
permutes the e and m anyons that encircle the defect
[168]. In other words, the dislocation hosts a Majorana zero
mode. Consider the cluster state given by the graph

FIG. 6. KW MPO is obtained by starting with the MPS of the
1D cluster state flipping the legs on the B (blue) sublattice.
Generalized KW dualities can be similarly obtained by a cluster
state that is a nontrivial SPT protected by the desired symmetries
on a bipartite lattice.
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which features a dislocation on the B sublattice (dotted
lines). Here, the black lines connect AB sites while the red
lines connect AA sites. Performing measurements on the A
sublattice, the stabilizers for each plaquette on the blue sites
are given by

2. Three-fermion Walker-Wang model

It is argued that the three-fermionWalker-Wang (3FWW)
model [169] cannot be created from a circuit; it requires a
quantum cellular automaton [170]. Here, we argue that we
can alternatively create this state bymeasuring an appropriate
3D cluster state. The preparation of such a state can prove
useful for measurement-based quantum computation using
such Walker-Wang models [171] by effectively evolving the
two-dimensional topological order on the boundary using
measurements [172,173].
The 3FWW model can be obtained by gauging a Z2

2

1-form SPT [174]. The response of this SPT to background
Z2 2-form gauge fields B1 and B2 is given by B2

1 þ B2
2 þ

B1B2. The physical interpretation of the three terms is that

they statistically transmute the anyons on the boundary to
become that of fermions.
Conveniently, the above SPT phase is itself a cluster

state. Therefore, combining with the cluster state that
implements the KW duality on each sublattice, the cluster
state we would like to perform measurements on to obtain
the 3FWW is a Z4

2 1-form SPT. Its response to background
gauge fields Bi for i ¼ 1, 2, 3, 4 is B2

1 þ B2
2 þ B1B2 þ

B1B4 þ B2B3. The 3FWW is obtained by measuring the 1
and 2 sublattices.
Because it is a 1-form SPT, we define the cluster state

on the edges of a cubic lattice, with four qubits placed per
edge (i.e., 12 sites per unit cell). It is convenient to describe
the cluster state using polynomials [175] that denote the
connectivity of this cluster state.
As a stepping stone, we describe the stabilizers for the B2

SPT,

0
BBBBBB@

0 ðyþ z̄ x̄Þð1þ zÞ ðzþ x̄ ȳÞð1þ yÞ
ðxþ ȳ z̄Þð1þ zÞ 0 ðzþ x̄ ȳÞð1þ xÞ
ðxþ ȳ z̄Þð1þ yÞ ðyþ z̄ x̄Þð1þ xÞ 0

1 0 0
0 1 0

0 0 1

1
CCCCCCA

ðB5Þ

Here, each column denotes a stabilizer, and the top and
bottom rows denote the positions of the Pauli-Z and Pauli-
X’s, respectively. Similarly, the B1B2 SPT (RBH cluster
state) [104,176,177] has stabilizers

0
BBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 x̄ð1þ z̄Þ x̄ð1þ ȳÞ
0 0 0 ȳð1þ z̄Þ 0 ȳð1þ x̄Þ
0 0 0 z̄ð1þ ȳÞ z̄ð1þ x̄Þ 0

0 yð1þzÞ zð1þyÞ 0 0 0

xð1þzÞ 0 zð1þxÞ 0 0 0

xð1þyÞ yð1þxÞ 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCA

ðB6Þ
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Therefore, our desired cluster state is the þ1 eigenstate of the stabilizers

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 ðyþ z̄ x̄Þð1þ zÞ ðzþ x̄ ȳÞð1þ yÞ 0 x̄ð1þ z̄Þ x̄ð1þ ȳÞ 0 0 0 0 x̄ð1þ z̄Þ x̄ð1þ ȳÞ
ðxþ ȳ z̄Þð1þ zÞ 0 ðzþ x̄ ȳÞð1þ xÞ ȳð1þ z̄Þ 0 ȳð1þ x̄Þ 0 0 0 ȳð1þ z̄Þ 0 ȳð1þ x̄Þ
ðxþ ȳ z̄Þð1þ yÞ ðyþ z̄ x̄Þð1þ xÞ 0 z̄ð1þ ȳÞ z̄ð1þ x̄Þ 0 0 0 0 z̄ð1þ ȳÞ z̄ð1þ x̄Þ 0

0 yð1þ zÞ zð1þ yÞ 0 ðyþ z̄ x̄Þð1þ zÞ ðzþ x̄ ȳÞð1þ yÞ 0 x̄ð1þ z̄Þ x̄ð1þ ȳÞ 0 0 0
xð1þ zÞ 0 zð1þ xÞ ðxþ ȳ z̄Þð1þ zÞ 0 ðzþ x̄ ȳÞð1þ xÞ ȳð1þ z̄Þ 0 ȳð1þ x̄Þ 0 0 0
xð1þ yÞ yð1þ xÞ 0 ðxþ ȳ z̄Þð1þ yÞ ðyþ z̄ x̄Þð1þ xÞ 0 z̄ð1þ ȳÞ z̄ð1þ x̄Þ 0 0 0 0

0 0 0 0 yð1þ zÞ zð1þ yÞ 0 0 0 0 0 0
0 0 0 xð1þ zÞ 0 zð1þ xÞ 0 0 0 0 0 0
0 0 0 xð1þ yÞ yð1þ xÞ 0 0 0 0 0 0 0
0 yð1þ zÞ zð1þ yÞ 0 0 0 0 0 0 0 0 0

xð1þ zÞ 0 zð1þ xÞ 0 0 0 0 0 0 0 0 0
xð1þ yÞ yð1þ xÞ 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

APPENDIX C: EQUALITY OF LONG-RANGE
ORDER FOR MEASUREMENT

OUTCOMES IN 1D

In Sec. VA 1 in the main text, we claimed that
hψ0jZ2mZ2njψ0i ¼ −hψ1jZ2mZ2njψ1i. This claim can be
derived using the notion of symmetry fractionali-
zation [26]. In particular, since we have a gapped
phase with

Q
k X2k symmetry, one can argue that

X2pX2pþ2 � � �X2qjψi ¼ ULURjψi, where UL;R are expo-
nentially localized near the end points of the original
string operator. Equivalently, if we define S̃2p;2q ¼
X2pX2pþ2 � � �X2q, then our state jψi is an eigenstate of
ULS̃2p;2qUR. Since we are in a nontrivial SPT phase,
UL;R will anticommute with the other Z2 symmetryQ

k X2k−1. Let us now revisit the situation studied in
the main text, where n and m are separated far away
from one another. Then, we can choose m ≪ p ≪ n ≪ q
such that S2m;2n ×ULS̃2p;2qUR ¼ −ULS̃2p;2qUR × S2m;2n.
Note that since this operator leaves jψi invariant and
toggles S2m;2n, we have that ULS̃2p;2qURjψ0i ¼ eiαjψ1i.
Thus,

hψ0jZ2mZ2njψ0i ¼ e−iαhψ0jZ2mZ2nULS̃2p;2qURjψ1i
¼ −e−iαhψ0jULS̃2p;2qURZ2mZ2njψ1i
¼ −hψ1jZ2mZ2njψ1i; ðC1Þ

where we used the fact that Z2n is odd under the spin-flip
symmetry on the even sites, and since m ≪ p ≪ n ≪ q,
it is thus odd under S̃2p;2q (whereas Z2m is not).

APPENDIX D: SYMMETRY CHARGE
OF PUSH-THROUGH OPERATOR

We consider the MPS-based arguments in Sec. VA 3.
There, we encountered the projective group relations
VgVg0 ¼ ωðg; g0ÞVgg0 , which, together with the Abelian
symmetry relations gg0 ¼ g0g, imply that VgVg0 ¼
½ωðg; g0Þ=ωðg0; gÞ�Vg0Vg. Let us introduce αg;h ¼
½ωðg; g0Þ=ωðg0; gÞ�∈Uð1Þ as a convenient shorthand nota-
tion. We now prove that Eq. (45) implies that UhOgU

†
h ¼

αg;hOg or, equivalently, U†
hOgUh ¼ α�g;hOg:
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Here, we used the fact that VhVg ¼ α�g;hVgVh.
Note that the above also carries through for the A tensor,

such that U†
g0OgUg0 ¼ αg;g0Og for any g; g0 ∈G. Since we

are considering a mixed G ×H SPT phase, the SPT must,
by definition, be trivial if we restrict to just G symmetry,
which implies that αg;g0 ¼ 1. Hence, U†

g0OgUg0 ¼ Og for
any g; g0 ∈G.
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