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As a schematic model of the complexity economic agents are confronted with, we introduce the
“Sherrington-Kirkpatrick game,” a discrete time binary choice model inspired from mean-field spin
glasses. We show that, even in a completely static environment, agents are unable to learn collectively
optimal strategies. This is either because the learning process gets trapped in a suboptimal fixed point or
because learning never converges and leads to a never-ending evolution of agent intentions. Contrarily to
the hope that learning might save the standard “rational expectation” framework in economics, we argue
that complex situations are generically unlearnable and agents must do with satisficing solutions, as argued
long ago by Simon [Q. J. Econ. 69, 99 (1955)]. Only a centralized, omniscient agent endowed with
enormous computing power could qualify to determine the optimal strategy of all agents. Using a mix of
analytical arguments and numerical simulations, we find that (i) long memory of past rewards is beneficial
to learning, whereas overreaction to recent past is detrimental and leads to cycles or chaos; (ii) increased
competition (nonreciprocity) destabilizes fixed points and leads first to chaos and, in the high competition
limit, to quasicycles; (iii) some amount of randomness in the learning process, perhaps paradoxically,
allows the system to reach better collective decisions; (iv) nonstationary, “aging” behavior spontaneously
emerges in a large swath of parameter space of our complex but static world. On the positive side, we find
that the learning process allows cooperative systems to coordinate around satisficing solutions with rather
high (but markedly suboptimal) average reward. However, hypersensitivity to the game parameters makes
it impossible to predict ex ante who will be better or worse off in our stylized economy. The statistical
description of the space of satisficing solutions is an open problem.
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I. INTRODUCTION

A. Rationality, complexity, and learning

Classical economics is based on the idea that rational
agents make optimal decisions, i.e., optimize their expected
utility over future states of the world, weighted by their
objective probabilities. Such an idealization of human behav-
ior has been criticized by many (see, e.g., Refs. [1–6]). In
particular, assuming that all agents are rational, allowing one
to use game-theoretic arguments to build such optimal
strategies—often the result of complicated mathematical
calculations—is implausible, to say the least.

Away to possibly save the rational expectation paradigm
is to posit that agents are able to learn best responses from
past experience. Yes, agents are only “boundedly” rational,
but they learn and, in the long run, they act “as if” they were
rational [7]. This is clearly expressed by Evans and
Honkapohja in their review paper on the subject [8].
They note that [i]n standard macroeconomic models
rational expectations can emerge in the long run, provided
the agents’ environment remains stationary for a suffi-
ciently long period.
While seemingly reasonable, this proposition is by no

means guaranteed to be legitimate. Indeed, the hypothesis
that the environment should be stationary over “sufficiently
long periods” can be restated in terms of the speed
of convergence of the learning process, that should be
short enough compared to the correlation timescale of the
environment. However, in many circumstances and, in
particular, in complex games, the convergence of the
learning process to a collectively optimal state can be
exceedingly long or may, in fact, never take place.
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For example, reasonable learning rules can trap the system
in some suboptimal regions of the (high-dimensional)
solution space; see, e.g., Refs. [9–12]. In other words,
the learning process itself can be nonergodic, even if the
environment is described by an ergodic, stationary process.
Another possibility is that agents’ strategies, even prob-
abilistic, evolve chaotically forever, as was found by Galla
and J. Farmer [13] in the context of competitive multichoice
two-player games or by one of us (J.-P. B.) with R. Farmer
in a simple binary choice, multiplayer game [14]. In such
cases, the probabilities governing the different possible
choices are not fixed but must themselves be described by
probabilities.
This is, in fact, a generic feature of “complex systems.”

As proposed by Parisi [15,16], the description of such
systems requires the introduction of probabilities of prob-
abilities, as their statistical behaviors themselves (and not
only individual trajectories) are highly sensitive to the small
changes in parameters, initial conditions, or time. The
inability to describe such systems with knowable proba-
bilities was coined “radical complexity” in Ref. [17].
The sensitivity of optimal solutions to the parameters of

the problem, or to the algorithm used to find them, has a
very real consequence: One can no longer assume that all
agents, even fully rational, will make the same decision,
since any small perturbation may lead to a completely
different solution, although similar in performance. In other
words, the “common knowledge” assumption is not war-
ranted [18]. This has already been underlined, for example,
in the context of portfolio optimization in Refs. [19,20], or
in the context of networked economies [12,21], but is
expected to be of much more general scope, as anticipated
by Keynes long ago and emphasized by many heterodox
economists in the more recent past [1,3,5,6].
Here, we dwell on this issue in the context of a multi-

player binary game—the “Sherrington-Kirkpatrick (SK)
game”—understood as an idealization of the economic
world where agents strongly interact in such a way that
their payoffs depend nontrivially on the action of others. In
our setting, some relationships are mutually beneficial,
while others are competitive. Agents have to learn how to
coordinate to optimize their expected gains, which they do
in a standard reinforcement way by observing the payoff of
their past actions and adapting their strategies accordingly.
We find that our stylized model gives rise to a very wide

range of dynamical behavior: suboptimal fixed points (also
known as Nash equilibria), but also limit cycles when
learning is too fast, and “chaos,” meaning that individual
mixed strategies never converge. Chaos can be determin-
istic, when learning is noiseless, or stochastic when random
noise is introduced in the learning process. In such chaotic
situations, the environment of each agent changes over
time, not because of exogenous shocks but because of the
endogenous learning dynamics of other agents, as, in fact,
anticipated in Ref. [22]: Complex economies are always

out of equilibrium [23]. This was also argued recently in
Ref. [12]: A purely static network of interactions can
generate an apparent never-ending evolution of the world
in which agents live, although it may appear stationary for
very long periods of time. In such a case, one speaks of
“aging,” which we address in a dedicated section below.
Even when learning is efficient and fixed points are

reached, the average payoff of agents—although better than
random—is noticeably lower than the maximum possible
value that could be obtained if a perfectly informed social
planner with colossal computing power was dictating their
strategies to each agent (and provided they accepted to
follow its advice).
Hence, our model provides an explicit example of

Simon’s satisficing principle [1]: With reasonable, bound-
edly rational methods, agents facing complex problems can
reach only some satisfying and sufficing but suboptimal
solutions. In fact, in the absence of the omniscient and
omnipotent social planner alluded to above, agents can
hardly do better—the world in which they live in is de facto
unlearnable. This is the main message of our paper.
A further interesting twist of the model is that the fixed

point reached by the learning process depends sensitively
on the initial condition and/or the detailed structure of the
interaction network, an effect called “parameter chaos” in
the context of disordered systems. As a consequence,
which agents will do better than average and which will
do worse is totally unpredictable, even when the economic
interactions between agents are fixed and known.
Correspondingly, small changes in the interaction network
(as a result of—say—small exogenous shocks or as some
agents die and other are born [14]) can lead to very large
changes in individual strategies that agents would have to
relearn from scratch.
This feature actually corresponds to another possible

definition of a “complex” system [16]: Small perturbations
can lead to disproportionally large reconfigurations of the
system—think of sand (or snow) avalanches as an arche-
type of this type of behavior: A single grain of sand might
leave the whole slope intact or, occasionally, trigger a
landslide [24] (see also, e.g., Refs. [3,5,21,22,25–32] for
early and more recent discussions of complexity ideas in
the context of economics). We believe that all the above
features, which are present in our model, are, in fact,
common to many other specifications, such as those
proposed in Refs. [12,13,33], and are expected to be
universally present as soon as the situation faced by
learning agents is “sufficiently complex.”

B. Related ideas

Our contribution follows the footsteps of several
important contributions on the subject of learning in
economics [8], in particular, the complex two-player game
of Galla and J. Farmer [13] and its multiplayer generali-
zation in [33], in which the seminal idea of unlearnable
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games is introduced. Our work goes beyond these papers in
several respects. First, our framework allows one to give a
precise meaning to the idea of satisficing solutions. To the
best of our knowledge, the SK game is the first model in
which this longstanding concept is concretely illustrated, as
it spontaneously emerges from the dynamics of boundedly
rational agents. Second, we emphasize the conceptual
importance of parameter chaos and the fragility of attain-
able fixed points. Third, we insist on the corresponding
generic nonstationary, aging nature of the dynamics even
when the world in which agents live is completely static.
None of these important aspects have been covered in
Refs. [13,33]. Finally, our framework allows us to leverage
many exact results that have been obtained for the SK
model, such as the value of the optimal average rewards or
the full distribution of individual rewards, to which the
result of learning can be compared. Such comparisons are
difficult to make within the context of Galla and J. Farmer
and are, in fact, essential in our opinion, as they allow us to
expand the notion of unlearnability beyond purely dynami-
cal considerations. Our game is unlearnable not only when
its dynamics is chaotic, but also when it reaches some fixed
points, as those are demonstrably suboptimal.
Hence, we believe that our SK game is conceptually

and technically simpler than the random payoff games
introduced by Galla and J. Farmer. This should ease the
dissemination of the concepts of unlearnable games and
satisficing solutions, which we believe to be of great
relevance to describe realistic situations.
Another relevant work is the study of Grandmont [2] on

the stability of economic equilibrium under different learn-
ing rules. Although his general conclusions are somewhat
similar to ours, there are important differences, due to the
fact that complexity, in our model, arises from the strong
interaction between agents that are absent in Grandmont’s
framework. The main differences are the following.

(i) While our agents can in some cases (i.e., when
interactions are reciprocal) converge to a locally
stable equilibrium, this equilibrium is rather ineffi-
cient compared to the best theoretical one, which is
unattainable without the help of a central planner
with superpowers. Furthermore, instead of a single
equilibrium in the Grandmont case, the equilibrium
reached by our learning agents is one among an
exponential number of possible equilibria that are
each sensitively dependent on the parameters of the
model. In other words, which equilibrium is reached
by the agents is totally unpredictable.

(ii) As soon as some small amount of noise is present,
Grandmont-style instabilities set in. In our case,
however, there is no change in stability per se; the
system is simply exploring the set of possible
equilibria following random fluctuations, albeit in a
slow, nonergodic way: The effective stability of the
visited equilibria increases with the age of the system.

(iii) In the case where interactions are sufficiently non-
reciprocal, there are no fixed points to the learning
dynamics of the SK game, except the trivial one
where agents play randomly at each turn (like “rock
paper scissors”). However, this is not what agents
agree to do. They keep holding strong beliefs at
each time step, such beliefs evolving chaotically in
time—but now in an ergodic way [34]. Whereas
there is now a unique “equilibrium” as in Grand-
mont’s model, it is not reached due to purely
dynamical effects, unrelated to the (in)stability of
the fixed point.

Somewhat related ideas can be found in the recent paper
of Hirano and Stiglitz [37], where there can be a plethora
of equilibrium trajectories, converging neither to a steady
state or even to a limit cycle, what they call “wobbly”
macrodynamics. We should finally mention the work of
Dosi et al. [38], which showcases that even sophisticated
learning rules can fail at improving the individual and
collective outcomes when interacting agents are hetero-
geneous. Although the context is quite different, such a
finding appears to be consistent with the saturation of the
average reward at suboptimal satisficing levels that we
observe when the memory loss rate of our learning agents
vanishes.

C. Outline of the paper

The layout of the paper is as follows. In Sec. II, we
introduce our spin-glass-inspired game. We then review the
model’s main features and present what we believe are the
most important conceptual results in the socio-economic
context in Sec. III. In Sec. IV, we enter the technical
analysis of the SK game by discussing the existence and
abundance of fixed-point solutions. A similar analysis is
conducted for short limit cycles when there are no
fluctuations in the system in Sec. V. Having determined
when these solutions may or may not exist, we take interest
in the N → ∞ dynamics in Sec. VI by writing the
dynamical mean-field theory of the problem. Combining
the static and dynamic pictures, we focus on the fully
rational (or “zero-temperature”) limit and, in particular, on
the role of learning on the collective dynamics in Sec. VII.
Section VIII finally considers the effect of fluctuations
stemming from the bounded rationality of agents in their
decision-making process. In Sec. IX, we summarize our
findings and discuss future perspectives as well as the
relevance of our model for other complex systems such as
biological neural networks.

II. A SIMPLE MODEL FOR A COMPLEX WORLD

A. Setup of the model

As a minimal, stylized model for decision making in a
complex environment of interacting agents, we restrict
ourselves to binary decisions, as in many papers on models
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with social interactions; see, e.g., Refs. [14,39–42]. At
every time step t, each agent i plays SiðtÞ ¼ �1, with
i ¼ 1;…; N, which can be thought of, for example, as the
decision of an investor to buy or to sell the stock market or
the decision of a firm to increase or to decrease production,
etc. The difference of incentive to play SiðtÞ ¼ þ1 rather
than SiðtÞ ¼ −1 is denoted as QiðtÞ and is defined as the
agent’s estimate of the payoff associated to SiðtÞ ¼ þ1
compared to that of SiðtÞ ¼ −1. The actual decision of
agent i is probabilistic and drawn using the classic “logit”
rule in discrete decision theory [43]; i.e., it is sampled from
a Boltzmann distribution over choices:

P½SiðtÞ ¼�1� ¼ e�βQiðtÞ

eβQiðtÞ þ e−βQiðtÞ ¼
1

2
½1� tanhðβQiðtÞÞ�;

ð1Þ
or, equivalently, the expected choice mi (or “intention”) of
agent i at time t is given by

miðtÞ ≔ hSiðtÞi ¼ tanh ðβQiðtÞÞ: ð2Þ
Parameter β, assumed to be independent of i henceforth,
is analogous to the inverse temperature in statistical
physics and represents the agent’s rationality or intensity
of choice [44]. The limit β → ∞ corresponds to perfectly
rational agents, in the sense that they systematically pick
the choice corresponding to their preference [given by the
sign of QiðtÞ], while setting β ¼ 0 gives erratic agents that
randomly pick either decision with probability 1=2 regard-
less of the value of QiðtÞ. This, in fact, turns out to be the
case, in our model, in a whole region of parameter space:
When β is smaller than some critical value βc, all intentions
mi do converge to zero, leading to a random string of
decisions.
The evolution of the preference QiðtÞ is where the

learning takes place. We resort to so-called “Q learning”
[45], i.e., reinforcement learning with a memory loss
parameter α. Given the (yet unspecified) reward R�

i ðtÞ
associated to making the choice SiðtÞ ¼ �1, the evolution
of incentives (and, in turn, beliefs) is given by

Qiðtþ 1Þ ¼ ð1 − αÞQiðtÞ þ α½Rþ
i ðtÞ − R−

i ðtÞ�: ð3Þ
This map amounts to calculating an exponentially weighted
moving average (EWMA) on the history of rewards R�

i ðtÞ.
Taking α ¼ 0, the agent’s preferences are fixed at their
initial values, and we thus restrict ourselves to α > 0. When
α → 0, QiðtÞ is approximately given by the average reward
over the last α−1 time steps. Note here that this averaging of
past rewards is not exactly the same as the accumulation
rule [where the reward would not be multiplied by α in
Eq. (3)] appearing in some forms of “experience weighted
attraction” that are popular in the socio-economic
context [46]. In fact, one can always rescale the prefactor
α into β, so our choice just means that Q does not

artificially explode as α → 0, which would impose that β
effectively diverges in that limit.
Now, the missing ingredient is the specification of the

rewards that encodes heterogeneity and nonreciprocity of
interactions. Inspired by the theory of spin glasses, in
particular, by the SK model [47,48], we define the rewards
associated to choices � as

R�
i ðtÞ ¼ � 1

2

�XN
j¼1

JijSjðtÞ þ hiðtÞ
�
: ð4Þ

Here, the matrix elements Jij specify the mutually benefi-
cial or competitive nature of the interactions between i and
j, while hiðtÞ can be interpreted as the personal preference
of the agent toward the choice corresponding to the sign of
this “external field.” (Note that Jij measures the impact of
the decision of j on the reward of i.) We henceforth
set hiðtÞ ¼ 0, but note that the presence of such idiosyn-
cratic preference may be relevant, as it breaks the global
SðtÞ → −SðtÞ symmetry of the game. In a game-theoretic
language, this extra term indeed allows one to have non-
symmetric payoff matrices for all pairwise interactions in
between the agents, as clearly visible when describing the
game in the standard “normal-form” representation; see
Appendix A. More complicated, multiagent-dependent
payoffs could also be considered, which corresponds to
p-spin models in the spin-glass literature and that we
cursorily discuss in the conclusion [49].
In the context of firm networks, a client-supplier relation

would correspond to Jij > 0, whereas two firms i and j
competing for the same clients would correspond to
Jij < 0. In the so-called “Dean problem,” Jij > 0 means
that agents i and j get along well, whereas Jij < 0 means
that they are in conflict [50]. The sign of Si determines in
which of the two available rooms agent i should sit in order
to minimize the number of possible conflicts. A predator-
prey situation is when Jij × Jji < 0, meaning that if i
makes a gain, j makes a loss and vice versa.
Note that reward RiðtÞ depends on the actual (realized)

decision of other players and not their expected decisions or
intentions. In other words, agents resort to online learning,
which differs from offline learning where other players’
decisions SiðtÞ are averaged over large batch sizes during
which their inclinations would be assumed constant and
replaced by their expectation miðtÞ.
Based on the learning dynamics, agents thus make a

decision based on an imperfectly learned approximation of
what other players are likely to do. Indeed, using Eq. (4) to
express QiðtÞ as the time-weighted sum (EWMA) of past
rewards, plugging Eq. (3), and finally replacing in Eq. (2),
one finds that the evolution of agent i’s intention is written

miðtþ 1Þ ¼ tanh

�
β
XN
j¼1

Jijm̃α
j ðtÞ
�
; ð5Þ
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where m̃α
i ðtÞ can be interpreted as the estimate of agent j’s

expected decision at time tþ 1 based on its past actions up
to time t:

m̃α
i ðtÞ ¼ α

X
t0≤t

ð1 − αÞt−t0Siðt0Þ: ð6Þ

Expressed in this form, it is clear that there is characteristic
timescale τα ∼ 1=α over which past choices contribute to
the moving average m̃α

i ðtÞ. Note that offline learning would
correspond to a different evolution equation, namely,

miðtþ 1Þ ¼ tanh

�
β
XN
j¼1

JijmjðtÞ
�
; ð7Þ

although the two coincide in the α → 0 limit.
At this stage, it may be useful to compare and contrast

our prescription with previous work. On the one hand,
the learning procedure closely resembles the original
proposition by Sato, Akiyama, and Crutchfield [51] and
its treatment by Galla [13,52,53] and others [54–57];
however, these authors considered games comprising only
two players with many strategies. The subsequent case
explored by Galla and J. Farmer considering a larger
number of players [33] therefore lies closer to our setting,
but still considers many strategies and a correspondingly
more complex payoff structure, while the similar binary
decision models proposed by Semeshenko et al. [58,59] are
restricted to perfectly rational agents and homogeneous
interactions Jij ¼ J0 > 0 ∀ i; j. Note that all these works
also consider accumulated rewards and offline learning, in
contrast with our averaged rewards and online learning (for
a comparison between the two and other learning dynam-
ics, see Ref. [57]). On the other hand, replicator models
with random nonsymmetric interactions between a large
number of species [60,61] share many features with the
system at hand, but the prescribed dynamics are inherently
linked to evolutionary principles such as extinction that
are not present in our model. We can finally mention
other Ising-inspired games, such as that introduced in
Refs. [62–64], which lead to similar fixed-point equations.
So far, however, these models have been studied without
heterogeneities and, therefore, do not present the “radical
complexity” related to the presence of a very large number
of possible solutions discussed hereafter.

B. The interaction matrix

In order to rely on known results about the SK model, we
assume in the following that all the agents randomly
interact with one another, meaning that all elements
of the matrix J are nonzero. Sparse matrices, corresponding
to low-connectivity interaction matrices, would probably
be more realistic in an economic context. However, we
expect that many of the conclusions reached below will

qualitatively hold in such cases as well. Such a universality
is strongly supported by the preliminary numerical simu-
lations on random regular graphs with a much smaller
connectivity presented in Appendix B.
We choose interactions Jij between i and j to be random

Gaussian variables of the order of N−1=2 [65], with Jij, in
general, different from Jji, accounting for possible non-
reciprocity of interactions. More precisely, we introduce the
parameter ε and write the interaction matrix as

Jij ¼
�
1 −

ε

2

�
JSij þ

ε

2
JAij; ð8Þ

with JS a symmetric matrix and JA an antisymmetric
matrix. The entries of both these matrices are independent
and sampled from a Gaussian distribution of mean 0 and
variance σ2=N (the case of a nonzero average value of JS is
briefly discussed below). This defines what we call the SK
game henceforth.
In the following, we set σ ¼ 1 without loss of generality.

The resulting variance of Jij is, thus, given by

υðεÞ ≔ NV ½Jij� ¼ 1 − εþ 1

2
ε2: ð9Þ

The specific cases ε ¼ f0; 1; 2g, hence, correspond to fully
symmetric (Jij ¼ Jji), asymmetric (i.e., Jij and Jji inde-
pendent), and antisymmetric (Jij ¼ −Jji) interactions,
respectively. We can, thus, also characterize the correlation
between Jij and Jji through parameter η:

η ¼ JijJji

J2ij
¼ 1 − ε

υðεÞ ; ð10Þ

where overlines indicate an average over the disorder.
It may actually be insightful to allow for a nonzero

average value to the interaction parameters and define the
rewards R�

i ðtÞ as

R�
i ðtÞ ¼ � 1

2

�XN
j¼1

JijSjðtÞ þ J0MðtÞ
�
;

MðtÞ ≔ 1

N

XN
j¼1

SjðtÞ: ð11Þ

Note that if only the J0 term is present, the game becomes
simple, in the sense that either J0 > 0 and βJ0 > 1, and all
agents converge to the same strategy mi ≡m with m a
nonzero solution of m ¼ tanhðβJ0mÞ, or they converge to
the random rock-paper-scissor strategy mi ≡ 0.
As mentioned above, one may think that agents have

some idiosyncratic preferences or different costs associated
to the two possible decisions Si ¼ �1, in the form of the
possibly time-dependent field hiðtÞ. Naturally, hi favors
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Si ¼ þ1 if positive and Si ¼ −1 if negative. In the present
paper, we restrict to hiðtÞ≡ 0, ∀ i; t, but one expects from
the literature on spin glasses that the main results discussed
below would still hold for small enough hi’s. Beyond some
threshold value, on the other hand, agents end up aligning
to their a priori preference, i.e., mihi > 0.

III. BASIC INTUITION AND MAIN RESULTS

In this section, we review the most salient properties of the
SK game’ introduced above and why these results may be of
interest in the context of socio-economic modeling. This
section is intended to be give a broad, nontechnical overview,
whereas the following sections delve in more details, using
the language and methods of statistical physics. Readers
more interested in conceptual results and less in technical
details are invited to read this section, skip the subsequent
ones, and jump directly to the final discussion in Sec. IX.
In the SK game, the payoff of each agent is a random

function of the decisions of all other agents. Hence, learning
the optimal strategy (in terms of the probability for agent i
to play þ1 or −1) is bound to be extremely difficult.
Defining the average excess reward [66] per agent as

RN ≔
1

N

XN
i;j¼1

SiJijSj ð12Þ

and noting that
P

N
i;j¼1SiJijSj¼½1−ðε=2Þ�PN

i;j¼1SiJ
S
ijSj,

the largest possible average reward R∞ for N → ∞ can be
exactly computed using the celebrated Parisi solution of the
classical SK model and reads [48,67]

lim
N→∞

RN ≔ R∞ ¼ 0.7631… × ð2 − εÞ: ð13Þ

However, the strategies corresponding to such an optimal
value can be determined only by algorithms that need a
time exponential in N [68]. Hence, it is expected that
simple learning algorithms will inevitably fail to find the
true optimal solution. Nevertheless, we also know from
the spin-glass folklore [48] (see below for more precise
statements) that many configurations of fSig’s corre-
spond to quasioptima or, in the language of Simon,
satisficing solutions [1] (see also Ref. [20]). It is in a
sense the proliferation of such suboptimal solutions that
prevent simple algorithms to find the optimum optimo-
rum. Furthermore, if learning indeed converges (which is
not the case when ε is too large, i.e., when interactions are
not reciprocal enough), the obtained fixed point heavily
depends on the initial condition and/or the specific
interaction matrix J.

A. Phase diagram in the noiseless limit

Let us first consider the case where agents always choose
the action that would have had the best average reward in

the past QiðtÞ (assuming that other agents still played what
they played). This corresponds to the noiseless learning
limit β → ∞. In this case, the iteration map Eq. (5) becomes

Siðtþ 1Þ ¼ sgn

�X
t0≤t

ð1 − αÞt−t0
XN
j¼1

JijSjðt0Þ
�
; ð14Þ

and the model is fully specified by two parameters: α
(controlling the memory timescale of the agents) and ε
(controlling the reciprocity of interactions). For N not too
large, the evolution of Eq. (14) leads to either fixed points,
or oscillations, or else chaos. The schematic phase diagram
in the plane ðα; εÞ is shown in Fig. 1.
One clearly sees a region for ðα; εÞ small where learning

reaches a fixed point, in which the average reward is close
to but significantly below the theoretical optimum R∞
given by Eq. (13); see Fig. 2 [70]. Note that learning
definitely helps: For ε ¼ 0, most fixed points are charac-
terized by a typical reward R ≈ 1.01 [72], significantly
worse than the value of approximately 1.40 reached by our
learning agents, extrapolated to N → ∞.
As ε and α are varied, one observes the following

features.
(i) When ε is not too large (interactions sufficiently

reciprocal) and α increases (shorter and shorter
memory), learning progressively ceases to converge
and oscillations start appearing: Impatient learning
generates cycles. This leads to a sharp decrease of
the average reward [see Fig. 2(a)], as agents over-
react to new information and are no longer able to
coordinate on a mutually beneficial equilibrium.
A similar effect is observed in dynamical models
of supply chains, where overreaction leads to oscil-
lating prices and production—the so-called bullwhip
effect [74] (see also Refs. [21,23]).

(ii) Conversely, when α is small (long memory) and ε
increases, the probability to reach a fixed point
progressively decreases, and when a fixed point is

FIG. 1. Qualitative phase diagram in the ðε; αÞ plane for the
SK game in the noiseless (left) and weak noise (right) regimes.
FP and Q refer to “fixed point” and “quasi,” respectively.
“Random” refers to the case where agents pick �1 with equal
probability [miðtÞ ¼ 0 ∀ t], whereas “chaos” means that at a
given instant of time players have well-defined intentions mi, but
these evolve chaotically with time.
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reached, the average reward is reduced—see
Fig. 2(b). Beyond some threshold value, the dynam-
ics becomes completely chaotic, leading to further
loss of reward. Note that “chaos” here means that,
although agents have well-defined intentions
miðtÞ ≠ 0 at any given instant of time, these in-
tentions evolve chaotically forever [75].

(iii) Surprisingly, oscillations reappear when ε becomes
larger than unity, i.e., when interactions are mostly
antisymmetric, “predator-prey”-like. Perhaps remi-
niscent of the famous Lotka-Volterra model, agents’
decisions and payoffs become periodic, with a
period that scales anomalously as α−1=2, i.e., much
shorter than the natural memory timescale α−1.
Although not the Nash equilibrium mi ≡ 0, this
oscillating state allows the average reward to be
positive, even when at each instant of time some
agents have negative rewards.

(iv) Only in the extreme competition limit ε ¼ 2 [cor-
responding to a zero sum game, Eq. (13)] and for
small α are agents able to learn that the unique Nash
equilibrium is to play random strategies mi ≡ 0 (see
Fig. 1, bottom-right region) [76].

(v) Finally, in the extreme (and unrealistic) case α ¼ 1,
where agents choose their strategy based on only the

last reward, the system evolves, as ε increases from
zero, from high-frequency oscillations with period
L ¼ 2 to “weak chaos,” to “strong chaos” when
ε ≈ 1, and finally back to oscillations of period
L ¼ 4 when ε → 2.

In order to characterize more precisely such temporal
behaviors, it is useful to introduce the two-point autocor-
relation function of the expected decisions or intentions:

Cðt; tþ τÞ ¼ 1

N

X
i

hmiðtÞmiðtþ τÞi; ð15Þ

where the angular brackets now refer to an average over
initial conditions [77]. In cases where the dynamics are
assumed to be time-translation invariant, we write CðτÞ,
which corresponds to the above quantity averaged over
time after the system has reached a steady state.
The autocorrelation function corresponding to the differ-

ent cases described above are plotted in Fig. 3. Note that the
signature of oscillations of period L is that CðnLÞ≡ 1 for
all integer n. However, note that, when ε < εc, not all spins
flip at each time step. The fact that Cð2nþ 1Þ ¼ 0 means
that half of the spins, in fact, remain fixed in time, while the
other half oscillate in sync between þSi and −Si [78]. In
the chaotic phases, CðτÞ tends to zero for large τ, with
either underdamped or overdamped oscillations. Hence, in
these cases, the configuration fSig evolves indefinitely
with time and hardly ever revisits the same states.

(a)

(c)

(b)

(d)

FIG. 2. Evolution of the average reward with (a) the memory
loss rate α, for ε ¼ f0; 0.6; 0.85; 1.05; 1.5; 2g from dark purple to
light green, β → ∞; (b) the asymmetry ε for α ¼ 0.01 and
α ¼ 0.1, β → ∞—the vertical dotted line indicates the value εc
above which the system becomes chaotic [73]; (c) the noise level
1=β for α ¼ 0.01, ε ¼ f0; 0.6g (dark purple and blue, respec-
tively)—note the nonmonotonic behavior; (d) system size N for
α ¼ 0.01, β → ∞, ε ¼ f0; 0.6g (dark purple and blue, respec-
tively)—continuous lines showing fits RN ¼ R∞ − AN−2=3,
excluding N ¼ 32. The dotted line indicates the best fit for
the SK ground state, for which A ≈ 1.5 [71]. In (a)–(c), N ¼ 256
and the dashed line represents the Parisi solution for R∞.

(c)

(b)(a)

(d)

FIG. 3. Evolution of the steady-state two-point correlation
function for α ¼ 1, β → ∞, markers indicating simulations of
the game at N ¼ 256 averaged over 128 samples of disorder and
initial conditions, error bars showing 95% confidence intervals,
and continuous lines representing the solution of the DMFT
equation [see Eq. (30) below]. (a) ε ¼ 0.1 (ε < εc ≈ 0.8), cycles
of length L ¼ 2. (b) ε ¼ 0.85 (εc < ε < 1), “weakly” chaotic
behavior. (c) ε ¼ 1.05 (1 < ε < 2 − εc), “strongly” chaotic
behavior. (d) ε ¼ 1.5 (ε > 2 − εc), cycles of length L ¼ 4.
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B. Finite N, large t versus finite t, large N

The previous results hold in the long-time limit for finite
N, i.e., when we take formally the limit t → ∞ before
N → ∞. There is, however, another regime for which the
N → ∞ limit is taken first, which might be more appro-
priate in the context of firm networks (say) when the
number of firms is very large.
Interestingly, specific analytical tools are available to

treat this regime—the so-called dynamic mean-field theory
(DMFT) that we use below.
In this infinite N regime, new types of behavior appear

that one can call quasifixed points or quasicycles. In the
case of quasifixed points, learning does not strictly speak-
ing converge, but actions SiðtÞ fluctuate around time-
independent averages. In other words, the two-point
correlation CðτÞ is not equal to one for all τ (which would
be the case for a fixed point) but reaches a positive plateau
value for large τ: Cðτ → ∞Þ ¼ C∞ > 0; see Ref. [79]
for the α ¼ 1 case. Only when ε ¼ 0 does one find
C∞ ¼ 1. The same holds for quasicycles of length L if
one considers the correlation function computed for
τ ¼ nL, with n an integer: CðnL→∞Þ¼C∞>0, with
C∞ ¼ 1 when ε ¼ 2.
The schematic phase diagram drawn in Fig. 1 then

continues to hold in the large N finite t limit, provided one
interprets “fixed points (cycles)” as “quasifixed points
(cycles)” in the sense defined above. More details on
the subtle role of α, N, and t are provided in the next,
technical sections.

C. Noisy learning and “aging”

In the presence of noise, the “convictions” jmij of agents
naturally decrease and, in fact, become zero (i.e., decisions
are totally random) beyond a critical noise level that
depends on the asymmetry parameter ε: More asymmetry
leads to more fragile convictions (see Fig. 16 below for a
more precise description).
When the noise is weak but nonzero, strict fixed points

do not exist anymore but are replaced (for ε small enough)
by quasifixed points—in the sense that the intentions mi
fluctuate around some plateau value for very long times
before evolving to another configuration completely uncor-
related with the previous one. This process goes on forever,
albeit at a rate that slows down with time: Plateaus become
more and more permanent. This is called “aging” in the
context of glassy systems.
In a socio-economic context, it means that a form of

quasiequilibrium is temporarily reached by the learning
process, but such a quasiequilibrium will be completely
disrupted after some time, even in the absence of any
exogenous shocks. This is very similar to the quasinoner-
godic scenario recently proposed in Ref. [14], although in
our case the evolution time is not constant but increases
with the “age” of the system, i.e., the amount of time the
game has been running.

Perhaps counterintuitively, however, the role of noise is
on average beneficial when 1=β is not too large. Indeed, as
shown in Fig. 2, the average reward first increases as a
small amount of noise is introduced before reaching a
maximum beyond which “irrationality” becomes detrimen-
tal. The intuition is that, without noise, the system gets
trapped by fixed points with large basins of attraction but
lower average rewards. A small amount of noise allows
agents to reassess their intentions and collectively reach
more favorable quasifixed points, much as with simulated
annealing or stochastic gradient descent.
When learning leads to a chaotic evolution, i.e., when Jij

and Jji are close to uncorrelated (ε ∼ 1), noise in the
learning process does not radically change the evolution of
the system: Deterministic chaos just becomes noisy chaos.
However, there is still a distinction between a low-noise
phase where, at each instant of time, agents have nonzero
expected decisions mi (that evolve over time) from a high-
noise phase where agents always make random choices
between �1 with probability 1=2 (see Fig. 1).
Finally, in the case where learning leads to cycles, any

amount of noise irremediably disrupts the synchronization
process, and cycles are replaced by pseudocycles, with
either underdamped or overdamped characteristics. In the
limit ε → 2, fluctuations drive the system to a paramagnetic
state where q ¼ Cð0Þ ¼ 0 (see Fig. 16 below), meaning the
agents remain undecided.

D. Individual rewards

As we have noted above, the average (excess) reward is
close to but significantly below the theoretical optimum
R∞ given by Eq. (13). However, some agents are better off
than others, in the sense that the individual excess reward ei
at the fixed point (when fixed points exist) is different from
agent to agent. Noting that

ei ≔ R
S⋆i
i − R

−S⋆i
i ¼

����X
j

JijS⋆j

����; ð16Þ

where the second equality holds because at the fixed point
one must have S⋆i ¼ sgnðR⋆

i Þ, it is clear that, in the fully
reciprocal case ε ¼ 0, all rewards ei are positive. The
distribution ρðeÞ of these rewards over agents is expected to
be self-averaging for large N, i.e., independent of the
specific realization of the Jij and of the initial condition.
Such distribution is shown in Fig. 4. One notices that ρðeÞ
vanishes linearly when e → 0:

ρðeÞ ≈
e→0

κe; κ ≈ 1.6;

as for the standard SK model, although the value of κ is
distinctly different from the one obtained for the true
optimal states of the SK model, for which κSK ≈ 0.6
[80,81]. Such a discrepancy is expected, since the fixed
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points are obtained as the long-time limit of the learning
process—in particular, since κ > κSK, the number of poorly
rewarded agents is too high compared to what it would be
in the truly optimal state. Note that, once α is sufficiently

small for the system to reach a fixed point, its precise value
does not seem to have an impact on the distribution of
rewards and κ.
Another important remark is that the distribution of

rewards ρðeÞ does not develop a “gap” for small e, i.e., a
region where ρðeÞ is exactly zero. In other words, although
all agents have positive rewards, some of them are very
small. This is associated with the so-called “marginal
stability” of the equilibrium state [82], to wit, its fragility
with respect to small perturbations, as discussed in more
detail in the next subsection.
For very large e, the distribution ρðeÞ decreases like a

Gaussian (Fig. 4 inset), corresponding to a central limit
theorem behavior in that regime, as for the SK model
[83]. Figure 5 shows how the rewards of individual agents
evolve from an initially random configuration before
settling to constant (but heterogeneous) values at the
fixed point.
As competitive effects get stronger (i.e., as ε increases)

and the system ceases to reach a fixed point, the distribution
ρðeÞ develops a tail for negative values of e, meaning that
some agents make negative gains; see Fig. 6. In the extreme
“predator-prey” limit ε ¼ 2, the distribution ρðeÞ becomes
perfectly symmetric around e ¼ 0, as expected—see Fig. 6,
rightmost plot. However, note that there is no persistence in
time of the winners: The individual reward autocorrelation
function eventually decays to zero, possibly with oscilla-
tions in the competitive region.

E. Unpredictable equilibria

Now, the interesting point about our model is that the
final rewards are highly dependent on the initial conditions
and/or the realization of the Jij’s. In other words, successful
agents in one realization of the game become the losers
for another realization obtained with different initial con-
ditions. A way to quantify this is to measure the cross-
sectional correlation of final rewards for two different
realizations, i.e.,

C×
N ≔

1

N

X
i

ðeai − heaiÞðebi − hebiÞ; a ≠ b; ð17Þ

FIG. 4. Distribution of individual rewards at β → ∞ for N ¼
512 and 128 initial conditions and realizations of the disorder in
the fully symmetric case ε ¼ 0 for α ¼ f0.5; 0.1; 0.01g (dark to
light coloring). The dashed line is the Sommers-Dupont analyti-
cal solution to the SK model [80]. Inset: associated survival
function in a lin-log scale and focusing on the right tail, the dotted
line corresponding to a Gaussian fit.

(a)

(b)

FIG. 5. Evolution of individual rewards in time for N ¼ 256,
α ¼ 0.01, β → ∞, and (a) ε ¼ 0 and (b) ε ¼ 0.6. Right: histo-
gram of the individual rewards after a single time step (shaded)
and at the final time (unshaded).

FIG. 6. Distribution of individual rewards for N ¼ 256 and α ¼ f1; 0.5; 0.01g represented by black triangles, purple squares, and
green circles, respectively, β → ∞, measured over 32 initial conditions and realizations of the disorder. From left to right:
ε ¼ f0; 0.1; 0.85; 1.05; 1.5; 2g.
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where a and b correspond to two different initial conditions
and hei corresponds to the cross-sectional average reward.
As shown in Fig. 7, C×

N goes to zero at large N, indicating
that the final outcome of the game, in terms of the winners
and the losers, cannot be predicted. The dependence on N
appears to be nontrivial, with different exponents governing
the decay of the mean overlap C×

N (decaying as N−0.85) and
its standard deviation (decaying as N−2=3).
A similar effect would be observed if instead of changing

the initial condition one would randomly change the
interaction matrix J by a tiny amount ϵ. The statement
here is that, for any small ϵ, C×

N goes to zero for sufficiently
large N. This is called “disorder chaos” in the context of
spin glasses [87]; by analogy with known results for the SK
model, we conjecture that C×

N is a decreasing function
of Nϵζ, where ζ is believed to be equal to 3 in the SK
case [88]. This means that when N ≫ ϵ−ζ the rewards
between two systems with nearly the same interaction
structure, starting with the same initial conditions, are close
to independent.
Such a sensitive dependence of the whole equilibrium

state of the system (in our case, the full knowledge of the
intentions mi of all agents) prevents any kind of “common
knowledge” assumption about what other agents will
decide to do in a specific environment. No reasonable
learning process can lead to a predictable outcome; even the
presence of a benevolent social planner assigning their
optimal strategy to all agents would not be able to do so
without a perfect knowledge of all interactions between
agents and without exponentially powerful (in N) comput-
ing abilities. Such a “radically complex” situation leads to
“radical uncertainty” in the sense that the behavior of
agents, even rational, cannot be predicted. Learning agents
can achieve only satisficing solutions that are, furthermore,
hypersensitive to details. As we see in Sec. III C, any
amount of noise in the learning process makes the whole

system “jump” from one satisficing solution to another in
the course of time.

F. Increasing cooperativity

Away to help agents coordinate is to use rewards given
by Eq. (11) with J0 > 0, representing a nonzero average
cooperative contribution to rewards. This term obviously
helps agents finding mutually beneficial strategies. (Note
that, with our normalization, the J0 term is, in fact, N−1=2

times smaller than the random interaction terms Jij.)
The impact of such a term is well understood in the

context of the SK model for ε ¼ 0 [89], which nicely
translates into the current dynamical framework. For
β ¼ ∞, one finds that, whenever J0 ≤ 1, the average
intention MðtÞ remains zero for large N, and one expects
that the learning process is not affected by such a “nudge.”
When J0 > 1, on the other hand, the situation changes as
all agents start to coordinate on one of the two possible
choices. As shown in Fig. 8, the average intention
becomes nonzero, although a finite fraction of agents
still play opposite to the majority because of their own
idiosyncratic rewards.
For J0 ≫ 1, radical complexity disappears and learning

quickly converges to the obvious optimal strategy where
all agents make the same move Si ¼ þ1 or Si ¼ −1, ∀ i.
In this case, RN ¼ J0 as MðtÞ eventually reaches unity;
see Fig. 8. For ε > 0, the same occurs albeit for different
values of J0.
In the case J0 < 0 with jJ0j ≫ 1, the only solution of

Eq. (7) (valid for α → 0) is mi ¼ 0 for all i; i.e., agents
cannot coordinate and play random strategies.

G. Habit formation

Up to this point, all results have assumed that there is no
self-interaction, Jii ¼ 0. Nonetheless, it is interesting to
consider the possibility of having anOð1Þ positive diagonal
term in the interaction matrix. In the socio-economic
context, such a contribution is relevant, as it represents
self-reinforcement of past choices, which is also called

(a) (b)

FIG. 7. Overlap between solutions for different initial con-
ditions and identical draws of interactions, for α ¼ 0.01, β → ∞,
and ε ¼ 0. (a) Distribution of overlaps shifted by the mean and
rescaled with the system size N to the power 2=3. (b) Average
overlap as a function of system size in log-log coordinates, with
the best regression line N−0.85. Error bars show the 95% con-
fidence interval over 16 different draws of the disorder.

(a) (b)

FIG. 8. (a) Evolution of the average reward with the incentive to
cooperate J0 for N ¼ 256, α ¼ 0.01, β → ∞, and ε ¼ f0; 0.6;
0.85; 1.05; 1.5; 2g with colors ranging from purple to light green
with increasing ε. (b) Average intention in the long-time limit
M ¼ limt→∞ MðtÞ for the same parameters.
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“habit formation” where agents stick to past choices, a
popular idea in behavioral science; see, e.g., Refs. [9,11],
and references therein.
The introduction of a diagonal contribution has impor-

tant consequences for the problem. Assuming the self-
interaction is identical for all agents, Jii ¼ Jd > 0, it will
rather intuitively favor the emergence of fixed points, since
agents are tempted to stick to past choices. It is, for
instance, known that, in the case of fully random inter-
actions ε ¼ 1, fixed points will start to appear when Jd is
sufficiently large [90]. Interestingly, these fixed points can
be very difficult to reach dynamically with standard
Hopfield dynamics (α ¼ 1).
Adding such diagonal contribution to our learning

dynamics, we observe that the fraction of trajectories
converging to seemingly dynamically inaccessible configu-
rations significantly increases, especially when α ≪ 1.
While further work is required to precisely assess the
effectiveness of learning with self-reinforcement (particu-
larly as finite size effects appear to play a significant role),
such a result is consistent with the overall influence of
learning reported here.

H. Core messages

In line with the conclusions of Galla and J. Farmer [13],
our multiagent binary decision model provides an explicit
counterexample to the idea that learning could save the
rational expectation framework (cf. Sec. I and Ref. [8]).
Learning, in general, does not converge to any fixed

point, even when the environment (in our case, the
interaction matrix J) is completely static: Nonstationarity
is self-induced by the complexity of the game that agents
are trying to learn, as also recently argued in Ref. [12].
When learning does indeed converge (which requires a

minima a high level of reciprocity between agents) the
collective state reached by the system is far from the
optimal state, which only a benevolent, omniscient social
planner with formidable powers can achieve. In other
words, even more sophisticated learning rules would not
really improve the outcome: The SK game is unlearnable
and—as argued by Simon [1]—agents must resort to
suboptimal, satisficing solutions.
Furthermore, any small random perturbation (noise in

the learning process or slow evolution in the environment)
eventually destabilizes any fixed point reached by the
learning process and completely reshuffles the collective
state of the system: In the long run, agents initially favoring
the þ1 decision end up favoring −1, and better-off agents
end up being the underdogs, and vice versa (much as in the
simpler model in Ref. [14]).
Finally, even in the most favorable case of a fully

reciprocal game with slow learning, the average reward
is, in fact, improved when some level of noise (or
irrationality) is introduced in the learning rule, before
degrading again for large noise.

IV. FIXED-POINT ANALYSIS AND COMPLEXITY

We see that our model displays a wide variety of complex
collective dynamics. Only in some cases does learning
converge to nontrivial fixed points where strategies are
probabilistic but with time-independent probability p� to
play �1, such that p� ¼ ð1�m⋆

i Þ=2 for agent i. Such a
steady state would be analogous to an economic equilib-
rium (although it is essential to dissociate this notion from
that of a thermodynamic equilibrium, which may exist only
in the case of fully reciprocal interactions, ε ¼ 0).
We mostly focus, in the following, on the long memory

case α ≪ 1 which is most relevant for thinking about
learning in a (semi)realistic context. In this case, one can
show that the exponential moving average on the realized
values SiðtÞ converges to one on the expected values miðtÞ.
Indeed, as detailed in Appendix C,��

α
X
t0≤t

ð1 − αÞt−t0 ½miðt0Þ − Siðt0Þ�
�

2
�

≤
α

2 − α
⟶
α→0

0:

ð18Þ

This means that, up to fluctuations of the order of
ffiffiffi
α

p
, we

can describe the dynamics of the system through a
deterministic iteration on miðtÞ, in fact corresponding to
offline learning. (We see below that the neglected fluctua-
tions are of the order of

ffiffiffi
α

p
=β.)

Further making the Ansatz that the mean-field dynamics
will eventually reach a fixed point miðtÞ ¼ m⋆

i ∀ i given
sufficient time, Eq. (5) then yields

m⋆
i ¼ tanh

�
β
X
j

Jijm⋆
j

�
: ð19Þ

This equation is known in the spin-glass literature as the
naive mean-field equation (NMFE) when ε ¼ 0 and defines
a so-called static quantal response equilibrium, similar to its
fully mean-field equivalent (Jij ¼ J=N) studied in Ref. [62].
To the reader familiar with the physics of disordered

systems, this equation is immediately reminiscent of the
celebrated Thouless-Anderson-Palmer (TAP) equation [91]
describing the mean magnetization in the SK spin glass
[47]. Physically, the NMFE is satisfied when minimizing
the free energy of a system of N sites comprising M → ∞
binary spins, with sites interacting through an SK-like
Hamiltonian [92]. Despite being seemingly simpler than its
previously mentioned TAP counterpart, which includes an
additional Onsager “reaction term,” the NMFE shares many
of its properties. Relevant to our problem, both the NMFE
and the TAP equations have a paramagnetic phase
(m⋆

i ¼ 0 ∀ i) for β < βc, while above this critical value
there is a spin-glass phase where q⋆ ¼ N−1P

iðm⋆
i Þ2 > 0

and solutions are exponentially abundant inN [92–94]. The
NMFE has a critical temperature 1=βc ¼ 2 as opposed to
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1=βc ¼ 1 in the TAP case, while the two equations become
strictly equivalent in the β → ∞ limit.
Using known properties from the spin-glass literature,

we can, therefore, already establish that if the system
reaches a fixed point when interactions are fully reciprocal
(ε ¼ 0) and memory is long ranged, it will be either a trivial
fixed point where agents continue making random deci-
sions forever (m⋆

i ¼ 0 ∀ i), or, when learning is not too
noisy (β > βc), the number of fixed points is ∼ exp½ΣðβÞN�,
where ΣðβÞ is called the “complexity.” In this second case,
the fixed point actually reached by learning depends
sensitively on the initial conditions and the interaction
matrix J.
How is this standard picture altered when interactions are

no longer reciprocal? In such cases, the system cannot be
described using the equilibrium statistical mechanics
machinery.

A. Critical noise level

In order to extend the notion of critical noise βc to ε > 0,
one can naively look at the linear stability of the para-
magnetic solution m⋆

i ¼ 0 ∀ i to Eq. (19). Just as in the
TAP case [48], expanding the hyperbolic tangent to the
second order and projecting the vector of mi on an
eigenvector of J, the stability condition can be expressed
with the largest eigenvalue of the interaction matrix.
Adapting known results from random matrix theory to
our specific problem formulation, the spectrum of J can be
expressed as an interpolation between a Wigner semicircle
on the real axis (ε ¼ 0), the Ginibre ensemble (ε ¼ 1), and
aWigner semicircle on the imaginary axis (ε ¼ 2) [95]. The
resulting critical “temperature” is then given by

TcðεÞ ¼
1

βcðεÞ
¼ 1

2

ð2 − εÞ2ffiffiffiffiffiffiffiffiffi
υðεÞp ; ð20Þ

recovering the known result 1=βc ¼ 2 for the case ε ¼ 0.
(We recall that we have set the interaction variance σ2 to
unity throughout the paper. If needed, σ can be reinstalled
by the rescaling β → βσ.)

B. The elusive complexity

To determine if there are still an exponential number of
fixed points to reach below the candidate critical noise
level, i.e., if there is a spin-glass phase, for β > βcðεÞ when
ε > 0, we should study the complexity, defined for a single
realization of the disorder as

Σðβ; εÞ ¼ lim
N→∞

1

N
logN JðN; β; εÞ; ð21Þ

where N J is the number of fixed points in the system for a
given interaction matrix. There are then two ways to
compute an average of this quantity over the disorder:

the “quenched” complexity, where the mean of the loga-
rithm of the number of solutions is considered, and its
“annealed” counterpart, where the logarithm is taken on the
mean number of solutions. The former is usually consid-
ered to be more representative, as unlikely samples leading
to an abnormally large number of solutions can be observed
to dominate the latter (see, e.g., Refs. [20,96] for recent
examples), but requires a more involved calculation with
the use of the so-called “replica trick” [48]. In the TAP case,
quenched and annealed complexities coincide for solutions
above a certain free-energy threshold [72] (where most
solutions lie but importantly not the ground state).
As a matter of fact, even in the annealed case, the

computation of the TAP complexity has proved to be a
formidable task and has sparked a large amount of con-
troversy, as the original solution computed by Bray and
Moore (BM) [72] has been put into question before being
(partially) salvaged by the metastability of TAP states in the
thermodynamic limit [97]. For a relatively up to date
summary of the situation, we refer the reader to Parisi’s
contribution in Ref. [98].
While the BM approach can be adapted to the NMFE

[93,99], several aspects of the calculation remain unclear,
particularly as the absence of a subdominant reaction term
means that the argument of the metastability of states in the
N → ∞ limit is no longer valid a priori, although numeri-
cal results support the marginally stable nature of NMFE
fixed points in the thermodynamic limit [93]. We leave its
extension to ε > 0 to a later dedicated work.
Nevertheless, the previously introduced critical βc and

the existing computation of the number of fixed points as a
function of ε in the β → ∞ limit [73,100] can be used to
conjecture the boundaries of the region in ðβ; ε) space
where the complexity Σ is nonvanishing. Indeed, in the
zero-temperature case, it has been shown [73] that the
annealed complexity can be expressed as a function of
the asymmetry parameter η defined in Eq. (10) as

ΣðηÞ ¼ −
1

2
ηx2 þ log 2þ logΦðηxÞ; ð22Þ

with Φ the Gaussian cumulative density and x the
solution to

xΦðηxÞ ¼ Φ0ðηxÞ; ΦðxÞ ≔ 1

2
erfc

�
−

xffiffiffi
2

p
�
: ð23Þ

The main insight provided by this result is that the
complexity vanishes at η ¼ 0, corresponding to ε ¼ 1,
where the paramagnetic fixed point is supposed to be
unstable as βcðε ¼ 1Þ ¼ ffiffiffi

2
p

. As the complexity is a
decreasing function of temperature, this, therefore, means
that ε ¼ 1 is an upper limit for the existence of fixed points
when β is finite. This conjecture is also consistent with
the breakdown of fixed-point solutions to the dynamical
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mean-field theory below the critical noise level that is
discussed in Sec. VIII A, as well as the saddle point equations
obtained when adapting the BM calculation to ε > 0.
Combining these two somewhat heuristic delimitations

for the existence of a large number of nontrivial fixed
points, we obtain the critical lines shown in Fig. 9(a).
Overlaying these borders with the annealed complexity
measured numerically, we find a very good agreement. In
particular, the vanishing of the complexity at ε ¼ 1 in
appears to be consistent for T < Tcðε ¼ 1Þ ¼ 1=

ffiffiffi
2

p
, as

shown in Fig. 9(b). The agreement with the β → ∞
analytical result, represented by the continuous line, also
appears to validate our counting method at low temper-
atures. Note that one can, in fact, show that, for ε > 1 and
N ¼ ∞, the only fixed point (or Nash equilibrium) is the
rock-paper-scissors equilibrium m⋆

i ¼ 0, ∀ i.

V. COUNTING LIMIT CYCLES

In the previous section, we establish the region of
parameter space where exponentially numerous fixed
points exist, which might possibly be reached by learning
in the slow limit α ≪ 1. However, limit cycles of various
lengths turn out to also be exponentially numerous when
ε < 1, so we need to discuss them as well before under-
standing the long-term fate of the learning process within
our stylized complex world.

A. Cycles without memory (α= 1)

In the memoryless limit, the dynamics becomes that of
the extensively studied Hopfield model [100,102,103],
where the binary variable represents the activation of a
neuron evolving as

Siðtþ 1Þ ¼ sgn

�X
j

JijSjðtÞ
�
; ð24Þ

with parallel updates. Counting limit cycles of length L is
even more difficult than counting fixed points (which
formally correspond to L ¼ 1). Some progress has been
reported by Hwang et al. [73] in the memoryless case
α ¼ 1. The notion of fixed-point complexity Σ [defined in
Eq. (21)] can be extended to limit cycle complexity ΣL for
limit cycles of length L, with ΣL¼1 ≡ Σ. The results of
Hwang et al. [73] can be summarized as follows.

(i) When ε < 1, limit cycles with L ¼ 2 have the
largest complexity, which is exactly twice the
fixed-point complexity: Σ2 ¼ 2Σ1 (as was, in fact,
previously shown by Gutfreund, Reger, and
Young [100]).

(ii) The complexities ΣLðεÞ all go to zero when ε ¼ 1.
(iii) When 1 < ε ≤ 2, limit cycles with L ¼ 4 dominate,

with Σ4ðεÞ ≥ Σ2ð2 − εÞ.
(iv) Close to ε ¼ 1, the cutoff length Lc, beyond which

limit cycles become exponentially rare, grows ex-
ponentially with N: Lc ∼ eaN , where a weakly
depends on ε.

From this analysis, one may surmise the following.
(a) When a limit cycle is reached by the dynamics, it is

overwhelmingly likely to be of length L ¼ 2 for ε < 1
and of length L ¼ 4 for 1 < ε ≤ 2.

(b) Even if exponentially less numerous, exponentially
long cycles will dominate when eaN > eNΣ2 , which
occurs when εc < ε < 2 − εc, with εc ≈ 0.8.

These predictions are well obeyed by our numerical data;
see Figs. 3 and 11. Note, however, the strong finite N
effects that show up in the latter figure, which we discuss in
the next sections.

B. Cycles with memory (α < 1)

When α < 1 and β ¼ ∞, the update of SiðtÞ is given by
Eq. (14) and has the same fixed points independently of α,
but, of course, different limit cycles, which may, in fact,
cease to exist when α is small. In this section, we attempt to
enumerate the number of cycles of length L in the spirit of
the calculation of Hwang et al. [73] for α < 1. As detailed
in Appendix D, we write the number of these cycles as a
sum over all possible trajectories of a product of δ functions
ensuring the α < 1 dynamics of Qi are satisfied between
two consecutive time steps, while a product of Heaviside
step functions enforces SiðtÞ ¼ sgn½QiðtÞ�. Introducing the
integral representation of the δ function, averaging over the
disorder, and taking appropriate changes of variable to
decouple the N dimensions, the (annealed) complexity of
cycles of length L is written

ΣLðα; ηÞ ¼ saddle
R̂;K̂;V̂

�X
s<t

iR̂ðt; sÞiK̂ðt; sÞ

−
η

2

X
t;s

V̂ðt; sÞV̂ðs; tÞ þ log IL

	
; ð25Þ

(a) (b)

FIG. 9. (a) Annealed complexity of the naive mean-field
equation in ðT; εÞ space, where we recall T ¼ β−1, measured
numerically for N ¼ 40. The dashed line represents the critical
temperature TcðεÞ for which the paramagnetic fixed point ceases
to be stable, while the continuous line indicates ε ¼ 1 inferred
from the β → ∞ result. (b) Annealed complexity as a function of
ε for varying temperatures T < 1=

ffiffiffi
2

p
, i.e., in the bottom region in

(a), where the complexity vanishes at ε ¼ 1. The continuous line
represents the β → ∞ analytical solution, recovering the result of
Tanaka and Edwards [101] Σ ≈ 0.1992 for ε ¼ 0. For ε > 1 and
T ¼ 0, the only possible fixed point is m⋆

i ¼ 0, ∀ i.
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where R̂ðt; sÞ and K̂ðt; sÞ are symmetric matrices, while
V̂ðt; sÞ is not a priori, IL is explicitly given in Appendix D,
and we can notably identify −iR̂ðt; sÞ ¼ Cðjt − sjÞ. As a
sanity check, one can verify that the L ¼ 1 case, corre-
sponding to the fixed-point complexity, is indeed indepen-
dent of α and is given by the same expression as Eq. (22);
see Appendix D 1. In a similar vein, one can recover
Σ2ðα ¼ 1Þ ¼ 2Σ1ðηÞ.
Numerically solving the saddle point equations for

decreasing values of α, it appears that Σ2ðα; ηÞ → ΣðηÞ
when α → 0þ; see Fig. 10. While numerical difficulties
prevent us from exploring very small values of α, it seems
clear that the saddle point corresponding to the L ¼ 2
cycles eventually coalesces with the fixed-point saddle
(which is known to be a subdominant saddle point when
α ¼ 1; see Ref. [73] and the discussion above). In any case,
and perhaps surprisingly, there does not appear to be a
critical value of α below which fixed points become more
abundant than cycles. We, therefore, expect a progressive
crossover and not a sharp transition.

VI. DYNAMICAL MEAN-FIELD THEORY

We, thus, see that both fixed points and limit cycles are
exponentially numerous. However, the question remains as
to what happens dynamically, as the existence of a large
number of fixed points or limit cycles by no means
guarantees that these will be reached at long times.
In fact, the number of agentsN is expected to play a major

role in determining the long-term fate of the system. In
particular, there are strong indications that the time τr needed
to reach a fixed point or a limit cycle grows itself exponen-
tially with N, at least when α ¼ 1 [103]. More precisely,

τr ∼ NseNBðεÞ; ð26Þ

where s is an exponent (possibly dependent on ε) and BðεÞ
an effective barrier such that Bðε ¼ 0Þ ¼ 0. Hence, one
expects that, as N grows, fixed points or limit cycles will, in

fact, never be reached, even if they are numerous. This is, in
fact, what happens numerically; see Fig. 11.
What is then to be expected in the limitN → ∞? In order

to study the complicated learning dynamics that takes
place, we resort to DMFT. In a nutshell, DMFT allows
deterministic or stochastic dynamics in discrete or con-
tinuous time of a large number N of interacting degrees of
freedom to be rewritten as a one-dimensional stochastic
process with self-consistent conditions. While difficult to
solve both analytically and numerically due to their self-
consistent nature, DMFT equations have proved very
effective at describing a very wide range of complex
systems—see Ref. [104] for a recent review. Note, how-
ever, that such an approach is valid only when N → ∞; as
is clear later, strong finite size effects can appear and
change the conclusions obtained using DMFT.
In our case, we write the DMFT for the evolution of the

incentives QiðtÞ, which directly yield miðtÞ¼ tanh½βQiðtÞ�.
In order to do so, we rewrite our online learning process,
which depends on the realized SiðtÞ, as an expression solely
in terms of miðtÞ with additional fluctuations:X
j

JijSjðtÞ¼
X
j

JijmjðtÞþηiðtÞ; ηiðtÞ¼
X
j

JijξiðtÞ;

ð27Þ

with ξiðtÞ ¼ SiðtÞ −miðtÞ and, hence, hξiðtÞi ¼ 0 and
hξiðtÞξiðsÞi ¼ f1 − ½miðtÞ�2gδt;s. Now, assuming the cen-
tral limit theorem holds, the random variables ηi become
Gaussian for large N with

hηiðtÞi ¼ 0; hηiðtÞηjðsÞi ¼ υðεÞ½1 − qðtÞ�δt;sδi;j; ð28Þ

(a) (b)

FIG. 10. (a) L ¼ 2 cycle complexity from the numerical
resolution of the saddle point equations for ε¼f0;0.2;0.4;0.6g
from dark purple to light green, dashed lines indicating the fixed-
point complexity associated to each parameter. (b) Order parameter
at the L ¼ 2 saddle, showing the nontrivial coalescence of the
cycle and fixed-point saddle point as α is decreased. The numerical
resolution appears to break down when we get close to α ¼ 0.

FIG. 11. Steady-state two-point correlation between configu-
rations shifted by τ ¼ 2 time steps in the α ¼ 1, β → ∞ limit
from finite N numerical simulations averaged over 128 samples
of disorder and initial conditions, error bars showing 95% con-
fidence intervals. The N ¼ f64; 128g simulations are run for
t ¼ 108 time steps to illustrate taking the t → ∞ limit before
N → ∞, whereas N ¼ f256; 512; 1024g are simulated for
t ¼ 5 × 106 time steps to recover the N → ∞ before t → ∞
regime. The continuous line represents the N → ∞ DMFT
solution integrated numerically, while the vertical dotted line
corresponds to the critical value εc found by Hwang et al. [73].
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where qðtÞ ¼ Cðt; tÞ as defined in Eq. (15). As required, in
the noiseless limit β → ∞ limit, one has qðtÞ ¼ 1 ∀ t and
the random variables ηi are identically zero.
Starting from the N equations

Qiðtþ 1Þ ¼ ð1 − αÞQiðtÞ þ α
X
j

JijmjðtÞ

þ αηiðtÞ þ αhiðtÞ; ð29Þ

where we reintroduce an arbitrary external field hiðtÞ that
eventually is set to 0, the DMFT can be derived using path
integral techniques or the cavity method, the latter being
detailed in Appendix E. Remaining in discrete time to
explore the entire range of values of α, one finds, in the
N → ∞ limit,

Qðtþ 1Þ ¼ ð1 − αÞQðtÞ þ α2ð1 − εÞ
X
s<t

Gðt; sÞmðsÞ

þ αϕðtÞ þ αhðtÞ; ð30Þ

with hϕðtÞi ¼ 0, and

hϕðtÞϕðsÞi ¼ υðεÞ½Cðt; sÞ þ ½1 − qðtÞ�δt;s�: ð31Þ

The memory kernel G and correlation function C are then
to be determined self-consistently:

Gðt; sÞ ¼
�
∂mðtÞ
∂hðsÞ

����
h¼0

�
; Cðt; sÞ ¼ hmðtÞmðsÞi; ð32Þ

where the averages h� � �i are over the realizations of the
random variable ϕ. These discrete time dynamics can first
be integrated numerically with an iterative scheme to
update both the memory kernel and correlation function
until convergence; see Refs. [105,106]. As detailed in the
original work of Eissfeller and Opper [107,108], one can
also make use of Novikov’s theorem to compute the
response function with correlations, avoiding the unpleas-
ant task of taking finite differences on noisy trajectories, at
the cost of the inversion of the correlation matrix. Note that
this inversion, however, means that very long trajectories
become difficult to integrate.
While we see that this numerical resolution can provide

precious intuition to understand the role of finite N in the
dynamics, a continuous description is much more conven-
ient to obtain analytical insights. In the α ≪ 1, t ≫ 1
regime, we can rescale the time as t → t=α. Interestingly,
doing so requires expandingQðtþ 1Þ to the second order if
one is to keep an explicit dependence on α. The resulting
continuous dynamics reads

α

2
Q̈ðtÞ þ Q̇ðtÞ ¼ −QðtÞ þ ð1 − εÞ

Z
t

0

dsGðt; sÞmðsÞ

þ ϕðtÞ þ hðtÞ ð33Þ

with

hϕðtÞϕðsÞi ¼ υðεÞ½Cðt; sÞ þ α½1 − qðtÞ�δðt − sÞ�; ð34Þ

and the memory kernel and correlation function are
similarly defined self-consistently:

Gðt; sÞ ¼
�
δmðtÞ
δhðsÞ

����
h¼0

�
; Cðt; sÞ ¼ hmðtÞmðsÞi; ð35Þ

with, we recall, qðtÞ ¼ Cðt; tÞ ¼ hm2ðtÞi. Very impor-
tantly, note that the rescaling in time introduces a prefactor
α in the variance of the ϕ, which stems from the noise in the
learning process. Since 1 − qðtÞ ∼ β−2 for large β, this extra
term is of the order of α=β2, as anticipated above.
In the next sections, the DMFT equations are used to

shed light on the dynamical behavior of the model in the
limit N → ∞.

VII. NOISELESS LEARNING

In this section, we use both the DMFT equations and the
results on the complexity of fixed points and limit cycles to
classify the different dynamical behaviors of the learning
process in the noiseless case β → ∞, where the realized and
expected decisions are equal, miðtÞ ¼ SiðtÞ ¼ sgn½QiðtÞ�.

A. The memoryless limit α= 1

In this case, corresponding to Eq. (24), both approaches
(DMFT and complexity of limit cycles) seem to agree on
the overall picture: As ε increases from 0 to 1, the system
transitions from L ¼ 2 cycles to overdamped oscillations
and chaos—see Fig. 3. However, upon scrutiny, one
realizes that the perfect agreement between DMFT
and direct numerical simulations of the dynamics for finite
N is valid only in a region where ε is small and N large
enough—see Fig. 11. In particular, when 0.5≲ ε≲ 0.8,
L ¼ 2 cycles do persist when N is smaller than approx-
imately 200. For largerN, the lag 2 autocorrelation function
Cðτ ¼ 2Þ is noticeably smaller than unity (consistent
with [79]) and well predicted by DMFT as soon as
N ≳ 1000.
What happens for ε≲ 0.5 when N → ∞? The numerical

solution of the DMFT equations suggest the following
scenario: When ε < εRM ≈ 0.473, the long-time value m∞
of the correlation with the initial conditions Cð0; 2nÞ at
even time steps is strictly positive, hence the subscript
“RM” for remnant magnetization [109]. It is exactly
equal to one only for ε ¼ 0 (permanent oscillations) and
decreases to reach zero when ε → εRM [108,110]. Below
εRM, we can conclude that the system is not ergodic, which
has important implications on the finite-temperature
dynamics. For asymmetries greater than εRM, on the other
hand, the decorrelation becomes exponential, and we enter
a bona fide chaotic, ergodic regime.
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Although memoryless learning is clearly unrealistic,
these results are rather instructive. The system is indeed
unable to display aggregate coordination when interactions
are mutually independent (chaotic region around ε ¼ 1).
Placing ourselves in the socio-economic setting, it seems
evident that the number of players vastly exceeds the
number of iterations, and the results above indicate that
the chaotic region is, in fact, quite large. Perhaps more
importantly, in the absence of learning, agents see their
decisions vary at a high frequency without ever reaching
any static steady state, not only when the game is close to
zero sum (ε → 2), but even when it is fully reciprocal
(ε → 0). Clearly, this last point underlines the importance
of introducing memory to recover realistic learning
dynamics.

B. Memory helps convergence to fixed points

For N not too large, we observe numerically that the
fraction of “frozen” agents for which Siðtþ 1Þ ¼ SiðtÞ
quickly tends to 1 as α decreases from 1, as shown in
Fig. 12. This is somewhat consistent with intuition, as the
learning dynamics average rewards over a period τα ∼ 1=α,
meaning that high-frequency cycles observed for α ¼ 1 are
expected to be “washed out” when α is sufficiently small.
Since fixed points exist in large numbers, it appears natural
that they are eventually reached given their abundance at
zero temperature. However, as we show in the previous
section, L ¼ 2 limit cycles are still much more numerous
than fixed points for α≳ 0.5. The fact that Cðτ ¼ 1Þ
approaches unity as α is reduced much faster than in
Fig. 10(b) suggests that the basin of attraction of fixed
points quickly expands, at the expense of L ¼ 2 limit
cycles [111].
Our numerical results, therefore, indicate that, for any

finite size system which has enough time to reach a steady

state, the effect of α is effectively to help the system find
fixed points—see Fig. 13. Focusing, for example, on the
points corresponding to N ¼ 128 and α ¼ 0.1, we indeed
observe that the 95% quantile includes Cð2=αÞ ¼ 1 even
for ε ¼ 1; i.e., fixed points can be reached even in the
chaotic regime with modest simulation times, which would
be an overwhelmingly improbable scenario in the memo-
ryless case, as illustrated by Figs. 13(b) and 13(c).
As the number of agents N increases, we enter the

DMFT regime shown as plain lines in Fig. 13. One finds
that decreasing the value of α slows down the decorrelation
of the system. However, for small α, the evolution becomes
a function of ατ only, as suggested by Eq. (33) when α → 0:
The dynamical slowdown is dominated by the long
memory of learning itself.
Figure 13 shows that, when ε≳ 0.5, sufficiently large

systems (described by DMFT) decorrelate with time for all
α, and we expect Cðτ → ∞Þ → 0: Learning leads to chaos
in such cases.
When ε≲ 0.5, on the other hand, we find that there is

ergodicity breaking, in the sense that Cðτ → ∞Þ > 0, as we
find above for cycles when α ¼ 1. More precisely, a
numerical analysis of the DMFT equations suggests that,
when α → 0 and ε small, 1 − Cðτ → ∞Þ is extremely
small but nonzero. For example, when ε ¼ 0.4 we find
1 − Cðτ → ∞Þ ≈ 0.005. This is compatible with the
numerical results in Ref. [108].
In other words, there seems to exist a critical value εRMðαÞ

separating the ergodic, chaotic phase for ε > εRMðαÞ from
the nonergodic, quasi-fixed-point behavior for ε < εRMðαÞ.

(a)
(b)

(c)

(d)

FIG. 12. Convergence to fixed points with decreasing α and for
different values of ε < 0.8, β → ∞, and finite N. (a) Steady-state
two-point correlation function between successive configurations
from finite N numerical simulations averaged over 200 samples
of disorder and initial conditions, error bars showing 95% con-
fidence intervals. (b)–(d) Sample trajectories of 32 randomly
chosen sites among N ¼ 256 for ε ¼ 0.4, t0 ¼ 105=α, for
α ¼ f1.0; 0.88; 0.7g, respectively.

(a)

(b)

(c)

FIG. 13. Influence of finite size N, nonreciprocity ε, and
memory span α on the learning dynamics. (a) Steady-state
two-point correlation function shifted by τ ¼ 2=α in the
β → ∞ limit for different memory loss rates α, from light green
to black (color map on the right axis). Symbols correspond to
direct simulations and plain lines to the solutions of the DMFT
equations, while the dashed line is the solution to the DMFT
equations for α → 0. The N ¼ 128 simulations are initialized
with t0 ¼ 108 time steps, whereas N ¼ f256; 512g are simulated
for t0 ¼ 106 iterations before taking measurements. Results are
averaged over 32 samples, with error bars showing 95% con-
fidence intervals. (b),(c) Sample trajectories for all N ¼ 128 sites
for ε ¼ 1 and α ¼ f1.0; 0.1g, respectively, clearly reaching
chaotic and fixed-point steady states.
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However, our numerical results are not precise enough to
ascertain the dependence of εRM on α, which seems to hover
around the value 0.473 found for α ¼ 1. More work on this
specific point would be needed to understand such a weak
dependence on the memory length.
The precise dynamical behavior of the autocorrelation

function CðτÞ can be ascertained in the continuous limit
α → 0 when ε ¼ 1. Indeed, the influence of the memory
kernel vanishes in this case where interactions are exactly
nonsymmetric, leaving us with

Q̇ðtÞ ¼ −QðtÞ þ ϕðtÞ ðα → 0Þ; ð36Þ

where we emphasize that the time variable has been
rescaled as t → αt. From there, the classical solution
method proposed by Crisanti and Sompolinsky [112,113]
can be straightforwardly adapted with a small modification
due to our parametrization of the interaction matrix that
scales the variance of the entries by a factor 1=2 for ε ¼ 1;
see Appendix F. The two-point autocorrelation function is
found to be given by

CðτÞ ¼ 2

π
sin−1

�
ΔðτÞ
Δð0Þ

�
; ð37Þ

where ΔðτÞ ¼ hQðtþ τÞQðtÞi follows the second-order
ordinary differential equation

Δ̈ðτÞ ¼ ΔðτÞ − 1

2
CðτÞ; ð38Þ

withΔð0Þ ¼ 1 − ð2=πÞ [114]. Very quickly, this means that
the autocorrelation decays exponentially, CðτÞ ∝ e−τ=τ1
with

τ1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
π − 2

π − 3

r
≈ 2.84: ð39Þ

Both the full solution, obtained by integrating the ordinary
differential equation (ODE) numerically, as well as this
exponential decay are shown in Fig. 14, displaying a very
satisfactory match with numerical simulations.

C. Anomalous stretching of cycles

Having a better understanding of how the memory
allows the system to find fixed points when they exist, a
central question is what happens if the memory loss rate is
reduced in the region of parameter space where there are
only limit cycles. As previously stated, averaging over a
period τα ∼ 1=α clearly suggests that the occurrence
of short cycles (starting at L ¼ 4 for α ¼ 1) should
gradually vanish.
Naively, one might expect a simple rescaling in time

t → t=α, yielding cycles—when they exist—of period
inversely proportional to α itself. Looking at the numerical

results from both the finite size game and the DMFT
integrated numerically in Fig. 15(a), it quickly appears that
such a simple rescaling in time does not provide the correct
description. Indeed, the period of cycles is observed to be

(a) (b)

FIG. 14. Evolution of the time shifted autocorrelation function
in the nonsymmetric case ε ¼ 1, β → ∞, for different system
sizes and memory loss parameters averaged over 20 realizations.
Left: lin-lin scale, error bars showing 95% confidence intervals
and continuous lines representing the numerically integrated full
DMFT equations [Eq. (36)]. Right: lin-log scale and rescaling of
the time shift by α such that points collapse onto a single curve
(error bars not shown), the black continuous line representing the
analytical solution found by solving the Sompolinsky and
Crisanti ODE Eq. (38) and the dashed line representing a pure
exponential decay with characteristic time τ1.

(a)

(b) (c)

FIG. 15. Evolution of the oscillation frequency ω0 with the
memory loss rate α for β → ∞, ε > 2 − εc averaged over 96
samples of disorder and initial conditions, error bars showing
95% confidence interval. (a) Log-log plot highlighting the near
square root dependency ω0 ∼

ffiffiffi
α

p
the dashed line corresponding

to an exponent 1=2. (b) Two-point autocorrelation for ε ¼ 1.8,
N ¼ 256 as a function of the rescaled time lag for different values
of α, confirming the suitability of the scaling, in particular, at
short timescales. (c) Power spectrum of the autocorrelation for the
same parameters, displaying the maximum at ω0 and secondary
peaks at odd multiples of this fundamental frequency as expected
from the triangular aspect of the autocorrelation.
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proportional to 1=
ffiffiffi
α

p
, i.e., much shorter than 1=α—see

Figs. 15(b) and 15(c).
One important aspect to note is that there is some

decorrelation, as the second peak of CðτÞ does not quite
reach unity [in Fig. 15(b)], meaning that we may see
quasicycles and not exact limit cycles, complicating the
analytical description of the phenomenon. Just as true
fixed points in the N → ∞ limit exist only when ε ¼ 0,
it appears that only the case ε ¼ 2 does display true
limit cycles.
Another subtle point to consider is that, similar to the

ε < 1 cases discussed, we expect the time taken to reach
these cycles to depend on the system size and the relative
distance to the chaotic region. This is confirmed by the
DMFT solved for fixed trajectory times for ε ¼ 1.5 (light
crosses), which progressively departs from the ω0 ∼

ffiffiffi
α

p
regime around α ¼ 0.1.
To understand how such nontrivial stretching occurs, we

go back to the continuous DMFT equation

α

2
Q̈ðtÞ ¼ −Q̇ðtÞ −QðtÞ þ ð1 − εÞ

Z
t

0

dsGðt; sÞmðsÞ

þ ϕðtÞ þ hðtÞ:

While the presence of the second-order derivative Q̈ðtÞ
appears natural to recover limit cycles, it should be noted
that this term, being prefactored by α, is superficially
subdominant relative to the dissipation represented by
Q̇ðtÞ. While we have seen that there is some decorrela-
tion, the fact that robust oscillations are present, there-
fore, suggests that the complicated self-consistent forcing
terms almost exactly compensate dissipation over a
period, allowing the system to periodically revisit
quasi-identical configurations. In fact, the shape of these
oscillations is far from sinusoidal but rather of seesaw
type; see Fig. 15(b). This suggests that, in the limit α → 0,
Q̈ðtÞ diverges each time ĊðτÞ changes sign, such that
ðα=2ÞQ̈ðtÞ cannot be neglected and, therefore, sets the
relevant timescale to α−1=2. We have, however, not been
able to perform a more precise singular perturbation
analysis of this phenomenon.
Going beyond this rather loose argument and precisely

characterizing such seesaw patterns appears very challeng-
ing and is left for future work. A possible approach would
be to first take the ε ¼ 2 case where true cycles should exist
and to assume the correlation function is an exact triangular
wave of frequency ω as suggested by Fig. 15(c). As a result,
mðsÞ ¼ sgn½QðsÞ� is an exact square wave, and the con-
volution with G can be written as a product in Fourier
space. Enforcing the dissipation over a period to be zero,
one could then perhaps find a closed equation for Q and ω
if appropriate Ansätze for the response and forcing func-
tions are taken.

VIII. NOISY LEARNING

While we have shown that the β → ∞ deterministic limit
can be relatively well understood with the analytical tools at
our disposal, one of the key features of our model is
the uncertainty in the decision occurring for boundedly
rational agents. Besides, it is also in this situation that
the online learning dynamics differ significantly from
the more widely studied offline learning where the entire
model can be understood in terms of deterministic mixed
strategies parametrized by the coefficients miðtÞ [compare
Eqs. (5) and (7)].
When α is close to unity and β becomes small, the

fluctuations are too large for coordination to occur. Taking,
for instance, α ¼ 1, it is indeed clear that the iteration

miðtþ 1Þ ¼ tanh

�
β
X
J

JijSjðtÞ
�

will have an extremely large fluctuation in the argument on
the right-hand side. As a result, we expect to lose the sharp
transition as a function of T that can be observed for the
NMFE (see Fig. 16). The order parameter q instead
continuously tends to 0 with T, regardless of the asymmetry
ε. This regime is shown in Fig. 16(a), representing the heat
map of q for α ¼ 0.5. Clearly, the linear stability analysis of
the paramagnetic fixed point presented in Sec. IV cannot
hold when the thermal fluctuations are not averaged on
large periods of time. To find a richer phenomenology, we,
therefore, focus on the α ≪ 1 regime, where more complex
dynamics can be observed.

A. Fixed points for intentions

In Sec. IV, we study the fixed points of the NMFE that
the game may reach if the fluctuations from imperfect
learning can be neglected, i.e., if α → 0. Now, we have seen
that the DMFT equations proved effective in the zero-
“temperature” limit and, importantly, established that true
fixed points or two-cycles are reached only in finite time in
the fully reciprocal case ε ¼ 0 when the system size

(a) (b) (c)

FIG. 16. Heat map of q ¼ Cð0Þ in ðT ¼ 1=β; εÞ space from
numerical simulations for N ¼ 256, t0 ¼ 106 averaged over 32
samples of disorder and initial conditions and (a)–(c) correspond-
ing to α ¼ f0.5; 0.1; 0.01g, respectively. The white dashed line
represents the critical temperature TcðεÞ where the paramagnetic
solution (q ¼ 0) becomes linearly unstable (Sec. IV).
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diverges (see Fig. 11). The same equations can also be used
to revisit this finite β regime.
Going back to Eq. (33) and neglecting the term in

ffiffiffi
α

p
from the correlation function as we do in the static setup,
fixed-point solutions require

Q ¼ ð1 − εÞmχ þ J
ffiffiffiffiffiffiffiffiffiffiffi
qυðεÞ

p
z; ð40Þ

where z is now a static white noise of unit variance, q is
simply the now constant autocorrelation, and χ is the
integrated response function that we assume to be time-
translation invariant:

χ ¼
Z

∞

0

dτGðτÞ: ð41Þ

The averages on the effective process can now be taken on z
to self-consistently solve for q and χ (see, e.g., Ref. [61] for
a more detailed description). The resulting set of equations
are then

q ¼ hm2ðzÞiz; ð42Þ

to be solved simultaneously with

χ ¼
�

β½1 −m2ðzÞ�
1 − βð1 − εÞχ½1 −m2ðzÞ�

�
z
; ð43Þ

where mðzÞ is the solution to

mðzÞ ¼ tanh
h
βð1 − εÞχmðzÞ þ β

ffiffiffiffiffiffiffiffiffiffiffi
qυðεÞ

p
z
i
: ð44Þ

Although our model is entirely built on a dynamical
evolution equation and not on a notion of thermal equi-
librium, this set of self-consistent equations coincides with
the replica-symmetric solution of the NMFE model found
by Bray, Sompolinsky, and Yu [92] for ε ¼ 0. Since replica
symmetry is broken in the whole low-temperature phase of
the NMFE model, we expect that these static solutions
of the DMFT cannot correctly describe the long-time limit
of the dynamics, as we now show.
The numerical solutions for the DMFT fixed-point

equations are shown in Fig. 17(a) and compared to
numerical results of the game for small α and for ε ¼ 0.1
(similar results, not shown, are obtained for other values of
ε≲ 0.8) [115]. We find that the long-time behaviors of q for
the direct simulation of the SK game (circles and squares)
and for long-time dynamical solution of the DMFT
equations match very well but differ from the value of q
inferred from the set of self-consistent equations estab-
lished above. This is expected, since with such solution the
order parameter q approaches unity exponentially fast as
T → 0, whereas the fact that the probability of small local
fields (i.e., rewards in the game analogy) vanish linearly
(see Fig. 4) suggests that q ¼ 1 − κT2, as for the full replica

symmetry breaking solution of [92] but with presumably a
different value of κ.
To ascertain the range over which this nontrivial mean-

field solution should be valid, we can study the stability of
the DMFT fixed point close to the critical temperature
1=βc, following the procedure first detailed in Ref. [60].
Considering a random perturbation to the fixed point ϵξðtÞ,
with ξðtÞ a Gaussian white noise and ϵ ≪ 1, we study the
perturbed solution

QðtÞ ¼ Q0 þ ϵQ1ðtÞ; ð45Þ

withQ0 the fixed point given in Eq. (40), where the noise is
no longer static but similarly given by ϕðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

qυðεÞp
zþ

ϵϕ1ðtÞ. Replacing in the DMFT continuous dynamics for
α → 0þ and collecting terms of the order of ϵ, we find that
the perturbation evolves as

Q̇1ðtÞ ¼ −Q1ðtÞ þ βð1 − εÞ½1 −m2ðzÞ�
Z

t

0

Gðt; sÞQ1ðsÞ

þ ϕ1ðtÞ þ ξðtÞ; ð46Þ

where we use sech2ðβQ0Þ ¼ 1 −m2ðzÞ from Eq. (44),
giving in Fourier space

Q̂1ðωÞ ¼
ϕ̂1ðωÞ þ ξ̂ðωÞ

iωþ 1 − βð1 − εÞ½1 −m2ðzÞ�ĜðωÞ ; ð47Þ

where we again assume that the memory kernel is time-
translation invariant.
Now, in the limit βQ1 ≪ 1, i.e., close to the critical

temperature, one can we linearize the hyperbolic tangent

(a) (b)

FIG. 17. (a) Order parameter q ¼ Cðt; tÞ averaged in time in the
(quasi)stationary regime versus rescaled temperature for ε ¼ 0.1.
Circular and diamond markers correspond direct, finite size
simulations at N ¼ 256 for α ¼ 0.01 and α ¼ 0.1, respectively,
whereas crosses represent the (dynamical) numerical solution to
the complete set of N → ∞ DMFT equations for α ¼ 0.1.
Continuous lines show the solution to the static DMFT fixed-
point equations [Eqs. (42)–(44)] for ε ¼ 0.1. (b) Spectral density
of a small perturbation Q1 to the fixed-point solution of the
DMFT close to the critical temperature. As the quantity is
necessarily positive for a valid solution, the gray region corre-
sponds to instability.
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tanh½βQ1ðtÞ� and write a closed equation for the spectral
density of Q1 at the order of β2Q2

1:

1

hjQ̂1ðωÞj2i
¼ jiωþ 1 − βð1 − εÞĜðωÞj2 − β2υðεÞ: ð48Þ

As a result, we have the criterion for the onset of instability
for ω ¼ 0:

ð1 − εÞχ ¼ 1 − β
ffiffiffiffiffiffiffiffiffi
υðεÞ

p
; ð49Þ

where we notice Ĝðω ¼ 0Þ ¼ χ, given, close to βc, by

χ ¼ 1

2βð1 − εÞ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4β2ð1 − εÞ

q �
: ð50Þ

Taking ε ¼ 0, we recover the criterion found by Bray,
Sompolinsky, and Yu [92] for the critical temperature,
giving Tc ¼ 1=βc ¼ 2 in their case.
For nonzero ε, we can also find the critical temperature

by replacing Eq. (50) in Eq. (49), to recover yet again the
critical value given by Eq. (20). The invalidity of the fixed-
point solution is illustrated in Fig. 17(b), where the spectral
density evaluated at ω ¼ 0 can be observed to become
negative for T < TcðεÞ. While the linearization used to
obtain the relation is expected to become invalid, we
understand this negativity as a strong sign that the solution
is unstable and, thus, likely invalid throughout the low-
“temperature” phase, consistently with the discrepancy
observed between the static prediction and the direct
simulations and the dynamic solution of the DMFT shown
in Fig. 17(a). In this finite β regime, we therefore effectively
have only what we previously referred to as quasifixed
points at best (including when ε ¼ 0), even when neglect-
ing the vanishing fluctuations caused by the online learning
dynamics as α → 0.

B. Aging

The inadequacy of the static solution of the DMFT
equations to describe the long-term dynamics of the system
is a well-known symptom associated with the “aging”
phenomenon [116], i.e., the fact that equilibrium is never
reached and all correlation functions depend on the “age”
of the system [117]:

Cðtw; tw þ tÞ ¼ CrelaxðtÞ þ Cagingðt; twÞ; ð51Þ

where tw is the waiting time, or age of the system, tw ¼ 0
corresponding to a random initial condition.
Aging typically arises in complex systems in the low-

temperature (low-noise) limit. Pictorially, the energy land-
scape of such systems (like spin glasses) are highly non-
convex and “rugged,” with a very large number of local
minima or quasistable saddle points in which the dynamics
gets stuck for extended periods of time [117,118].

The consequence is then that the time required to exit a
local minimum is a function of the age of the system, i.e.,
the time taken for the system to reach this configuration.
Intuitively, the deeper in the energy landscape the solution
is, the longer it takes for a sufficiently large random
fluctuation to occur and allow the system to resume its
exploration of the landscape. Such aging phenomena are
known to occur in a wide range of complex systems with
reciprocal interactions, such as glassy systems, populations
dynamics [119], or neural networks that are described by
very similar mean-field dynamics [120]. Aging dynamics
was also recently found in a “habit formation” model;
see Ref. [11].
Not surprisingly, in view of its similarity with usual spin

glasses, the SK game displays aging for reciprocal inter-
actions (ε ¼ 0) and sufficiently low temperatures β > βc;
see Fig. 18(a), for which Eq. (51) accurately describes the
data with the initial relaxation component CrelaxðtÞ well
fitted by a power law t−x and

Cagingðt; twÞ ¼ C
�
t
tw

�
; ð52Þ

corresponding to the aging behavior found in a wide
range of glassy models [117,121–126]. Interestingly,
this is not the behavior observed in the “physical” SK
model [127,128], which is typically found to display
“subaging,” although the precise scaling of the aging
correlation function remains unclear. It is, however, impor-
tant to emphasize that the learning dynamics of the SK
game is markedly different from the physical dynamics of
the original SK model, so there is a priori no reason to
expect their complicated out-of-equilibrium relaxation to
be directly comparable.
What happens in our model when ε > 0? It is known

from previous work (in somewhat different contexts) that
aging is interrupted at long times in the presence of
nonreciprocal interactions but survives for finite times
provided the asymmetry is not too large [129–131]. If
the asymmetry strength is further increased, we expect the
amount of mixing in the system to eventually be large
enough for the dynamics to no longer get stuck [132]. From
our numerical simulations, shown in Figs. 18(b)–18(d), it
appears that aging [as described by Eq. (51)] still holds
when ε < ε⋆ but that the dynamics becomes time-trans-
lation invariant when ε > ε⋆. It is tempting to conjecture
that aging disappears exactly when the dynamics becomes
ergodic, i.e., when the correlation with a random initial
condition decays to zero. This suggests that ε⋆ ¼ εRM,
which is roughly in line with our numerical data. Note,
however, that the transition between aging dynamics
and time-translation-invariant correlations seems to occur
somewhat progressively; hence, it may well be that we, in
fact, observe interrupted aging beyond a time that decreases
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not only with ε, but also with temperature 1=β. More
analytical work is needed to clarify the situation.
A particularity of the aging dynamics of the SK game is

related to its online learning dynamics. As clearly visible in
both the DMFT equation and the derivation of the naive
mean-field equation detailed in Appendix C, there will
inevitably be some decorrelation in time of the expected
decisions if αð1 − qÞ becomes significant. We, therefore,
naturally expect the region where time-translation invari-
ance breaks down to be dependent on all three parameters
α, β, and ε.
The interpretation of aging in the socio-economic con-

text is quite interesting and is discussed in Sec. III C. In a
nutshell, it means that, as time goes on, agents get stuck in
locally satisficing strategies for longer and longer, but, after
a time proportional to the total time the game has already
been played, the system eventually evolves and individual
strategies mi reach an altogether different configuration.
This process goes on forever but becomes slower and
slower with time: The notion of quasiequilibrium, there-
fore, makes sense at long times, for small enough noise and
small enough nonreciprocity.

C. Chaos and (quasi)limit cycles

When the nonreciprocity of interactions is sufficiently
small and quasifixed points exist, we have established that
boundedly rational systems display complicated aging
dynamics when learning noise, parametrized by the value
of β, is present. The immediate question is now how such
noise influences the complex dynamics, chaos, and (quasi)
limit cycles that we have found in the β → ∞, α ≪ 1
regime (see Sec. VII).
To qualitatively illustrate the effect of nonzero noise, we

run simulations for α ¼ 0.1 and different values of ε and β.
Figure 19 displays individual trajectories of the intentions

miðtÞ, as well as the distribution of the values of individual
mi over all agents, realizations, and time steps. We also
show the autocorrelation function CðτÞ (assumed to be
time-translation invariant over the short timescales consid-
ered), which is also compared to the DMFT solved
numerically. Note that, for the smallest value ε ¼ 0.1,
the trajectories illustrate the previously discussed quasi-
fixed points emerging from the online dynamics. Clearly,
while the correlation function remains close to constant,
individual intentions are not exactly frozen (notice the
wiggles in the top row in Fig. 19, especially for β ¼ 2),
explaining how the system as a whole eventually decorre-
lates and displays aging, as discussed in the previous
section.
In the chaotic regime around ε ¼ 1, it is clear that

decreasing β (increasing noise) spreads the distribution
of the mi, which is less and less concentrated around �1
as an immediate consequence of the smoothed out
hyperbolic tangent. As a result, the equal-time autocor-
relation Cð0Þ ¼ q naturally decreases when β decreases.
It is furthermore interesting to note that its value
significantly decreases as the asymmetry parameter ε
increases. We expect a decrease in α to have a similar
role, as suggested by the phase diagrams presented in
Figs. 16(b) and 16(c).
Dynamically, the decay of the autocorrelation in this

chaotic regime appears to be more or less independent
of the strength of the noise, which can be seen by
comparing the insets in the third row in Fig. 19. While
it is known that external noise kills deterministic chaos in
neural networks with uncorrelated couplings [133], what is
interesting in our case is that both the nonlinearity of the
hyperbolic tangent (governed by β) and the strength of the
effective noise [which scales as 1 − q; see Eq. (34)] are
varied simultaneously and, in a sense, self-consistently.

(a) (b) (c) (d)

FIG. 18. Aging behavior of the system forN ¼ 256, averages performed over 576 realizations. Color indicates the value of αtw; see the
scale on the far right. (a),(b) Aging two-point correlation functions with the initial power law decay removed to isolate the aging
component plotted as a function of t=tw, the inset showing the entire correlation function as a function of αt and the dashed line
representing the power law fit At−x of the first relaxation. (a) α ¼ 0.5, β ¼ 4, and ε ¼ 0; (b) α ¼ 0.2, β ¼ 2, and ε ¼ 0.25. (c),(d)
Partially aging two-point correlation functions plotted as a function of αt. (c) α ¼ 0.5, β ¼ 4, and ε ¼ 0.5; (d) α ¼ 0.2, β ¼ 2, and
ε ¼ 0.5.
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Determining the way the decorrelation rate evolves with
both β and ε is, therefore, quite nontrivial and would be a
very interesting endeavor.
Where we previously had limit cycles, for ε ¼ 1.5, for

instance (last row in Fig. 19), it appears that oscillations
survive for large values of β. Note, however, that in this
case the value q ¼ Cð0Þ appears to very quickly vanish
when β decreases. This is consistent with the linear stability
analysis of the paramagnetic solution that should be valid
for vanishingly small α. As visible in Fig. 16(c), we indeed
expect that the region in which the system displays any
form of aggregate coordination becomes increasingly
narrow as ε gets closer to its maximum value of 2.
Precisely for ε ¼ 2, the system likely becomes fully
disordered (q ¼ 0) for any finite values of β when
α → 0. For small but finite values of α as those presented
here, this is not quite the case, however, and large
asymmetries ε > 2 − εc do give rise to clear oscillations,
in both individual trajectories and the correlation function
(for instance, Fig. 19, bottom row, shows for ε ¼ 1.5 that
some oscillations can be somewhat sustained).

D. Role of the noise: Recap

In the presence of noise, the “conviction” of agents
naturally goes down, in the sense that individual mi’s
become smaller in absolute value, i.e., less polarized

around �1. For small α (long memory time), there exists
a well-defined transition line in the plane ε (asymmetry),
1=β (amplitude of the noise) above which agents start
playing randomly at each round (i.e., mi ¼ 0) but below
which some instantaneous propensity to overplayþ1 or −1
appears. The time evolution of this propensity depends on
the value of ε: For small asymmetries, the fixed points that
are reached in the absence of noise become quasifixed
points around which the system settles for longer and
longer periods of time, after eventually moving on to a
completely different configuration (aging). For ε ∼ 1
(uncorrelated influence from i to j and from j to i),
deterministic chaos when noise is absent becomes noisy
chaos, with not much change. In the highly competitive
region ε → 2, periodic cycles progressively become over-
damped, as expected, since noise does not allow synchro-
nization to survive at long times. In terms of individual
rewards, not surprisingly, noise tends to be detrimental,
except in the reciprocal region (ε small), where weak noise
actually helps agents coordinating around mutually ben-
eficial actions.
While the precise characterization of this very rich

ecology of dynamical behaviors is left for future work,
we emphasize that the decorrelation induced by the fact that
incentives Qi are themselves random variables is a key
difference between the online learning presented here and

(a) (b)

FIG. 19. Finite β trajectories obtained from numerical simulations at α ¼ 0.1, N ¼ 256, and t0 ¼ 108 averaged over 96 samples of
disorder and initial conditions for (a) β ¼ 4 and (b) β ¼ 2 and from top to bottom ε ¼ f0.1; 0.85; 1.05; 1.5g. Each line displays (from left
to right) the evolution of 16 randomly selected agents, the associated histogram of mi over both agents, time, and realizations and the
autocorrelation function assumed to be time-translation invariant on short timescales. Third row: insets representing the evolution of the
normalized autocorrelation CðτÞ=Cð0Þ with a logarithmic vertical scale.
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their offline counterpart that are often considered [13,53].
While the phenomenology between these two types of
learning is somewhat similar for α ≪ 1, β ≫ 1, there are
clearly key differences whenever the ratio

ffiffiffi
α

p
=β ceases to

be negligible.

IX. SUMMARY AND DISCUSSION

A. Blind sided by complexity

Let us summarize our main conceptual assertions. As a
schematic model of the complexity economic agents are
confronted with, we introduced the SK game, a discrete
time binary choice model with N interacting agents and
three parameters: α (memory loss rate), β (inverse ampli-
tude of noise in the learning process or intensity of choice),
and ε (nonreciprocity of interactions).
We have shown that, even in a completely static

environment where the payoff matrix does not evolve,
agents are unable to learn collectively optimal strategies.
This is either because the learning process gets trapped by a
suboptimal fixed point (or remains around one for very
long times) or because learning never converges and leads
to a never-ending (chaotic or quasiperiodic) evolution of
agent intentions.
Hence, contrarily to the hope that learning might save

the “rational expectation” framework [8], which still
holds the upper hand in macroeconomics textbooks,
we argue that complex situations are generically unlearn-
able, as first suggested by Galla and J. Farmer [13]. Faced
with complexity, therefore, agents must do with satisfic-
ing solutions—an idea proposed long ago by Simon [1]
and made precise and tangible for the first time within our
model specification.
Only a centralized, omniscient agent may be able to

ascribe an optimal strategy to all agents—which inciden-
tally raises the question of trust: Would agents even agree to
follow the central planner advice? Would they even believe
in her ability to solve complex problems, knowing that their
solution sensitively depends on all parameters of the
model? If a finite fraction of all agents fail to comply,
the resulting average reward will drop precipitously below
the optimal value and not be much better than the result
obtained through individual learning.
As general ideas of interest in a socio-economic context,

we have established that
(1) long memory of past rewards is beneficial to learning,

whereas overreaction to recent past is detrimental;
(2) increased competition generically destabilizes fixed

points and leads first to chaos and, in the high
competition limit, to quasicycles;

(3) some amount of noise in the learning process, quite
paradoxically, allows the system to reach better
collective decisions, in the sense that the average
reward is increased;

(4) nonergodic behavior spontaneously appears (in the
form of aging) in a large swath of parameter space,
when α, 1=β, and ε are small.

On the positive side, we have shown that learning is far
from useless: Instead of getting stuck among one of the
most numerous fixed points with low average reward, the
learning process does allow the system to coordinate
around satisficing solutions with rather high (but not
optimal) average reward. Numerically, the average reward
at the end of the learning process is, for ε ¼ 0, approx-
imately 8% below the optimal value, when the majority of
fixed points lead to a much worse average reward approx-
imately 33% below the optimal value [72].

B. Technical results and conjectures

From a statistical mechanics perspective, our model is
next of kin to but different from several well-studied
models; a synthesis of our original results can be found
in Figs. 1, 2, 9, and 16.
For example, when α ¼ 1, β → ∞, the dynamics is

equivalent to a Hopfield model of learning with non-
symmetric Gaussian synaptic couplings, for which many
results are known, in particular, on the number of fixed
points and L-cycles. Introducing some memory with α < 1,
we found that previously dynamically unattainable fixed
points become typical solutions, replacing the short limit
cycles in which the α ¼ 1 parallel dynamics get stuck. We
also showed how the number of L-cycles can be calculated
for all values of α < 1.
The chaotic region that is known to exist when inter-

actions are mostly nonsymmetric (ε ≈ 1) also appears to be
reduced by memory. When couplings are mostly nonre-
ciprocal ε≲ 2, periodic oscillations survive but we found
that decreasing α nontrivially increases the cycle length,
as α−1=2.
When β is finite, the fixed-point solutions to the

dynamics correspond to the so-called naive mean-field
equation of spin glasses, another model that has been
studied in detail [92]. One knows, in particular, that such
solutions become exponentially abundant for small enough
noise 1=β and for ε ¼ 0, a result that we have extended to
all ε < 1. When ε > 1, on the other hand, the only fixed
point (or Nash equilibrium) ismi ¼ 0, ∀ i, i.e., completely
random decisions at each time step.
The DMFT is a tool of choice for investigating the

dynamics of the model when N → ∞. DMFT is, however,
frustratingly difficult to exploit analytically in the general
case, so we are left with numerical solutions of our DMFT
equations that accurately match direct numerical simula-
tions of the model when N is large but fail to capture
some specific features arising when N is small. From our
numerical results, we conjectured that quasifixed points
(and, correspondingly, aging dynamics) persist for small
noise and when ε ≤ ε⋆, where the value of ε⋆ is difficult to
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ascertain but could be as high as εRM ¼ 0.47, perhaps
related to the remnant magnetization transition found in
Ref. [108].
For β ¼ ∞, the long-time, zero-temperature autocorre-

lation Cð∞Þ appears to drop extremely slowly with ε, but
we have not been able to get an analytical result. DMFT
equations also clearly lead to the anomalous α−1=2 stretch-
ing of the cycles mentioned above, but an analytic solution
again eluded us.
One of the reasons analytical progress with DMFT is

difficult is presumably related to the phenomenon of replica
symmetry breaking and its avatar in the present context of
dynamical learning. Indeed, any attempt to expand around
a static solution of the DMFT equations leads to incon-
sistencies in the interesting situation β > βcðεÞ when
decisions are not purely random; see Fig. 17(b). In fact,
as shown in Fig. 17(a), the value of the order parameter q
predicted by such static solutions is substantially off the
value found from the long-time, numerical solution of the
DMFT equations, which itself coincides with direct sim-
ulations of the SK game. En passant, we noticed that
the value of q seems to be given by a universal function
of βcðεÞ=β, independently of the value of ε. Again, we
have not been able to understand why this should be
the case.
Finally, we have numerically established several inter-

esting results concerning average and individual rewards
that would deserve further investigations. For example, the
average reward seems to converge toward its asymptotic
value as N−2=3, exactly as for the SK model, although, as
already noted above, this asymptotic value is approxi-
mately 8% below the optimal SK value. Is it possible to
characterize more precisely the ensemble of configurations
reached after learning in the long memory limit α → 0? Can
one, in particular, understand analytically the distribution
of individual rewards shown in Fig. 4 and the correspond-
ing asymptotic value of the average reward, as well as its
nonmonotonic behavior as a function of the noise param-
eter β? These are, in our opinion, very interesting theo-
retical questions that one should solve in order to establish a
statistical mechanics of satisficing solutions, which would
be needed to understand the emergent properties of large
assemblies of learning agents.

C. Extensions and final remarks

Many extensions of the very simple framework pre-
sented here can be imagined for the model to be more
representative of real socio-economic systems. For exam-
ple, by analogy with spin glasses, going beyond the fully
connected interactions and toward a more realistic network
structure should not change the overall phenomenology,
although some subtle differences may show up. While
analytical predictions become even more challenging,
recent works on dynamical mean-field theories with finite
connectivity, so far developed for Lotka-Volterra-type

systems, could perhaps be adapted to the learning
dynamics of our model. Nonetheless, the preliminary
simulations on sparse random graphs presented in
Appendix B suggest that most of the salient results of
our paper carry through to such situations. Having broadly
distributed bonds Jij could also be a valuable extension to
our model (as mentioned in Refs. [49,77]), which we leave
for future work.
Allowing the interaction network to evolve with time

would, of course, also make the model more realistic, as in
Ref. [12]; in this case, one would have to distinguish the
case where the learning time is much longer or much
shorter than the reshuffling time of the network. In the latter
case, it interestingly appears feasible to devise an adaptive
DMFT to describe the system on two separated time-
scales [134].
Other interesting additions to Ising games could also

include the introduction of self-excitation [135] or of
alternative decision rules that might be less statistical
mechanics-friendly [42]. Extension to multinary decisions
[33], beyond the binary case considered here, as well as
higher-order interactions (i.e., a “p-spin game”; see also
Ref. [136] for recent ideas), would obviously be interesting
as well, especially as higher-order interactions are known to
change the phenomenology of the SK model (see, e.g.,
Ref. [117] and references therein). In particular, we expect
that in the p-spin case with p ≥ 3 a much larger gap would
develop between the optimal average reward and the one
reached by learning.
Finally, whereas temperature in physics is the same for

all spins, there is no reason to believe that the amount of
noise β or the memory span α should be the same for all
agents. Introducing such heterogeneities might be worth
exploring, as some agents with longer memory may fare
systematically better than others, like in minority games;
see Ref. [40].
Beyond the socio-economic context that was our initial

motivation for its design, we believe that the simplicity and
generality of our model makes it a suitable candidate to
describe a much wider range of complex systems. In the
context of biological neural networks, the parameter α
indeed allows one to interpolate between simple discrete-
time Hopfield network [102] and continuous-time models
where Qi is an activation variable for the firing rates mi
[137–142]. Although in our case the influence of β
introduces some perhaps unwanted stochasticity, these
fluctuations can, in principle, be suppressed (at least
partially) with sufficiently small α. The memory loss
parameter could also represent an interesting way to tune
the effective slowing down of the dynamics caused by
symmetry and described in Ref. [120]. Here, the descrip-
tion of real neural networks would likely require much
more sparse interactions but also perhaps the introduction
of some dedicated dynamics for the interactions them-
selves; see, e.g., Ref. [143] for recent ideas.
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Closer to our original motivation, more applied socio-
economic problems might benefit from the introduction of
this type of reinforcement learning. In macroeconomics,
for instance, some form of “habit formation” could
perhaps be relevant to extend existing descriptions of
input-output networks [12,23], where client-supplier rela-
tionships are probably strongly affected by history (on this
point, see Kirman’s classic study on Marseilles’ fish
market [144]; see also Ref. [32]). Finally, while it is an
aspect of our model we have not investigated here,
previous works have reported that similar dynamics yield
interesting volatility clusters and heavy tails, correspond-
ing to sudden changes of quasifixed points. Such effects
might be relevant to describe financial time series, as
noted in Refs. [13,33].
In the context of financial markets, our model could also

be used to challenge the idea that efficiency is reached by
evolution. Indeed, a theory that has been proposed to
explain empirical observations going against the efficient
market hypothesis is the so-called “adaptive markets
hypothesis,” stating that inefficiencies stem from the
(transient) evolution of a market toward true efficiency
[145,146]. However, reinterpreting the Qi in our model as
some form of fitness measure, it appears unlikely that
simple evolutionary dynamics (akin to the learning dynam-
ics) could overcome the type of radical complexity dis-
cussed here. As a matter of fact, such an evolutionary twist
to the SK game could also be used to conjecture that simple
Darwinian dynamics is unlikely to lead to a global optimum
in a complex biological setting [147].
Last but not least, we believe that the learning dynamics

presented here may be useful from a purely algorithmic
point of view in the study of spin glasses and so-called
TAP states. Indeed, in the β → ∞ limit, we have seen that
our iteration relatively frequently finds fixed points in
regions where their abundance is known to be subexpo-
nential (close to ε ¼ 1, in particular) and this even for
relatively large values of α. Interestingly, similar expo-
nentially weighted moving averages have been employed
in past numerical studies of TAP states for symmetric
interactions [148,149], but on the magnetizations mi
themselves and not on the local fields Qi like is the case
above.
Using an offline version of our learning procedure

could then be of use to effectively converge to fixed points
of the TAP equations or naive mean-field equations and
study their properties. Perhaps even more interestingly,
the online dynamics and the resulting fluctuations of the
mi themselves could prove to be extremely valuable to
probe hardly accessible regions of the solution space. In
some sense, the fluctuations related to finite values of α
and β could allow one to define “meta-TAP” states, in the
sense of closely related TAP states mutually accessible
thanks to such extra fluctuations, in the same spirit as
standard Langevin dynamics in an energy landscape.

Finally, as mentioned in Sec. III G, in the zero-
temperature limit and for ε ¼ 1, it has recently been
reported that for a certain range of self-interaction strengths
Jd, there appears an exponential number of accessible
solutions to the TAP equations that are seemingly not
reachable with standard Hopfield dynamics [90].
Preliminary numerical experiments seem to suggest that
our learning dynamics find such fixed points, as suggested
by their effectiveness for ε ¼ 1 without any form of self-
interaction. Beyond existing interest around neural net-
works, such a self-reinforcement, habit formation term
could also be, as stated above, interesting to study from the
socio-economic perspective [9,11].
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APPENDIX A: NORMAL-FORM
REPRESENTATION OF TWO-PLAYER

INTERACTIONS

In the main text, we define the rewards stemming
from the interactions of player i with all other players as
a single term. In order to make contact with the classical
game-theoretic approach, one may also describe the SK
game by writing the payoffs resulting from each two-
player interaction in the “normal” or “strategic” form
[150]. To do so, one simply decomposes the rewards R�

i
as the sum of N − 1 terms corresponding to the outcome
of each of the pairwise subgames being performed
simultaneously by the agents. The result for N ¼ 2 is
shown in Table I.

TABLE I. Normal-form game representation of the payoffs in a
two-player SK game. Note that the time dependency as well as
the 1=2 factor acting on all entries are omitted for readability.

S2 ¼ þ1 S2 ¼ −1

S1 ¼ þ1 ðJ12 þ h1; J21 þ h2Þ ð−J12 þ h1;−J21 − h2Þ
S1 ¼ −1 ð−J12 − h1;−J21 þ h2Þ ðJ12 − h1; J21 − h2Þ
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APPENDIX B: NUMERICAL EXPERIMENTS ON
SPARSE RANDOM REGULAR GRAPHS

We test the validity of some of our results on sparser and,
therefore, perhaps more realistic interaction matrices. We
resort to random regular graphs with fixed connectivity
z ¼ 4, for which the strength of interactions is still sampled
from a Gaussian distribution and where ε identically
controls the nonsymmetry of the matrix. (Note that the
standard deviation of the Gaussian now scales as z−1=2

rather than N−1=2.)
In such sparse graphs, the exact value of the optimal

excess reward R∞ is not known. However, it may be
approximated using the zero-temperature cavity method
developed by Mézard and Parisi [151] and applied to this
specific problem in Ref. [152]. While this “belief propa-
gation” (BP) algorithm is not strictly correct, in principle,
as it corresponds to a replica-symmetric or one-step replica
symmetry-breaking solution, it has been found to provide a
very precise estimate for the ground state energy. In
Ref. [152], the authors findR∞ ≈ 1.351 for fully reciprocal
interactions in the replica-symmetric approximation.
Comparing this approximate N → ∞ global optimum

with the outcome of numerical simulations of the game as

shown in Fig. 20, we recover the fact that agents may learn
only satisficing outcomes. Similarly to the measurements in
Ref. [152], we find minimal finite size corrections, meaning
that the difference between theN → ∞ ground state and the
learned solutions may, in fact, be more sizable than in the
fully connected case for diverging system sizes. To ensure
that this may not be a result of the replica-symmetric
assumption taken in the BP algorithm leading to an
overestimate of the optimum, we also perform numerical
experiments on small systems (N ¼ 24), where the best
outcome for each instance of the interaction matrix can be
found by enumerating all 2N solution vectors. The admit-
tedly noisier results are shown in Fig. 21 and appear to be
compatible with the same range of suboptimality, thereby
also demonstrating the validity of our conclusions in
relatively small systems.
As a side note, it is interesting to notice that learning the

satisficing configurations in this sparser context requires a
somewhat longer memory than in the fully connected case
(α≲ 0.4 in Fig. 20 versus α ≲ 0.8 in Fig. 2).
Albeit preliminary, these numerical experiments strongly

support the idea that most of the results presented in
the main text are highly universal and likely survive to a
very wide range of adjustments to the model. We leave the
perhaps more quantitatively dissimilar case of broadly
distributed bonds for future work.

APPENDIX C: STATIC NMFE

We claim that for α ≪ 1

m̃α
j ðtÞ ≃ α

Xt
t0¼1

ð1 − αÞt−t0mjðt0Þ: ðC1Þ

Indeed, given the assumption of independence in time,
i.e., hðSjðt0Þ−mjðt0ÞÞðSjðt00Þ−mjðt00ÞÞi ¼ δt;t0 ð1−mjðtÞ2Þ,
we have

(a)

(c)

(b)

(d)

FIG. 20. Reproduction of Fig. 2 for a random regular graph
with fixed connectivity z ¼ 4, dashed lines showing the approxi-
mate N → ∞ solution obtained by belief propagation in
Ref. [152]. Parameters: (a) ε ¼ f0; 0.6; 0.85; 1.05; 1.5; 2g from
dark purple to light green, β → ∞; (b) α ¼ 0.01 and α ¼ 0.1,
β → ∞; (c) α ¼ 0.01, ε ¼ f0; 0.6g (dark purple and blue,
respectively); (d) α ¼ 0.01, β → ∞, ε ¼ f0; 0.6g (dark purple
and blue, respectively). In (a)–(c), N ¼ 256. The dotted line in
(d) is approximately reproduced from the numerical experiments
in Ref. [152], while the finite size effects in our case are too faint
to be fitted with reasonable confidence.

(a) (b)

FIG. 21. Reproduction of Figs. 2(a) and 2(b) for a random
regular graph with fixed connectivity z ¼ 4 in small systems with
N ¼ 24, dashed lines showing the average reward at the global
optimum computed by exact enumeration of all 2N configurations
(shaded areas showing 95% confidence intervals).
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��
m̃α

j ðtÞ − α
X
t0≤t

ð1 − αÞt−t0mjðt0Þ
�

2
�

¼ α2
X
t0≤t

ð1 − αÞ2ðt−t0Þ
D
ðSjðt0Þ −mjðt0ÞÞ2

E
þ α2

X
t0≤t

X
t00≠t0

ð1 − αÞt−t0 ð1 − αÞt−t00 hðSjðt0Þ −mjðt0ÞÞðSjðt00Þ −mjðt00ÞÞi

¼ α2
X
t0≤t

ð1 − αÞ2ðt−t0Þð1 − ðmjðt0ÞÞ2Þ

≤ α2
X
t0≤t

ð1 − αÞ2ðt−t0Þ ¼ α

2 − α
⟶
α→0

0: ðC2Þ

We can then make the Ansatz that the expected decision
reaches a fixed point m⋆

j after some time. For sufficiently
large t and small but finite values of α, we therefore have

hm̃α
j ðtÞi ≃m⋆

j ðC3Þ

with fluctuations characterized by

hðm̃α
j ðtÞ −m⋆

j Þ2i ¼
α

2
ð1 − ðm⋆

j Þ2Þ þOðα2Þ: ðC4Þ

APPENDIX D: LIMIT CYCLE COMPLEXITY
WITH MEMORY

To study the influence of the memory loss rate α < 1, we
may adapt the method of Hwang et al., although this
requires the introduction of either a strong nonlinearity in
the exponent and subsequent saddle equations or new
variables. We opt for the latter and write the number of
cycles of length L as

N LðN;α;εÞ¼
X
fSiðtÞg

Z
∞

−∞

�YN
i¼1

YL
t¼1

dQiðtÞ
�
jdetJ αjN

Y
i;t

δ

�
Qiðtþ1Þ−ð1−αÞQiðtÞ−α

X
j

JijSjðtÞ
�
Θ½QiðtÞSiðtÞ�; ðD1Þ

where the Dirac δ ensures that the dynamics are satisfied at each step while the second enforces SiðtÞ ¼ sgn½QiðtÞ� ∀ t.
The L × L matrix J α is the α-dependent Jacobian ensuring that the zeros of the δ function are correctly weighted, i.e.,
for L > 1,

J α
ts ¼

8><
>:

−ð1 − αÞ; if s ¼ t ðmod LÞ;
1; if s ¼ tþ 1 ðmod LÞ;
0 otherwise:

ðD2Þ

The first step is, as usual, to perform the average over the disorder after introducing the integral representation of the
Dirac δ:

N LðN; α; εÞ ¼ j detJ αjN
X
fSiðtÞg

Z
∞

−∞

�YN
i¼1

YL
t¼1

dQiðtÞ
dλiðtÞ
2π

��Y
i;t

Θ½SiðtÞQiðtÞ�
�
exp



−i
X
i;t

λiðtÞQiðtþ 1Þ

þ ið1 − αÞ
X
i;t

λiðtÞQiðtÞ −
1

2N
α2
�
1 −

ε

2

�
2X
i<j

�X
t

½λiðtÞSjðtÞ þ λjðtÞSiðtÞ�
�

2

−
1

2N
α2
�
ε

2

�
2X
i<j

�X
t

½λiðtÞSjðtÞ − λjðtÞSiðtÞ�
�

2
�
: ðD3Þ

The last two terms, resulting from the average on disorder, may be rearranged to give

−
α2

2N

X
t;s

�X
i;j

½υðεÞλiðtÞSjðtÞλiðsÞSjðsÞ þ ð1 − εÞλiðtÞSjðtÞλjðsÞSiðsÞ� −
1

2
ðε − 2Þ2

X
i

λiðtÞSiðtÞλiðsÞSiðsÞ
�
:
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Similar to Ref. [73], we introduce a set of auxiliary
functions:

Uðt; sÞ ¼ 1

N

X
i

λiðtÞSiðtÞλiðsÞSiðsÞ; ðD4Þ

Vðt; sÞ ¼ 1

N

X
i

λiðtÞSiðsÞ; ðD5Þ

Rðt; sÞ ¼ 1

N

X
i

λiðtÞλiðsÞ; ðD6Þ

Kðt; sÞ ¼ 1

N

X
i

SiðtÞSiðsÞ; ðD7Þ

such that the last term gives

−
1

2
Nα2

X
t;s



υðεÞRðt; sÞKðt; sÞ þ ð1 − εÞVðt; sÞVðs; tÞ − ð2 − εÞ2

2N
Uðt; sÞ

�
:

In the limit N → ∞, the OðN−1Þ term is insignificant and can, thus, be neglected. The complete expression is then

N LðN;α; εÞ ¼ j detJ αjN
X
fSiðtÞg

Z
∞

−∞

�Y
i;t

dQiðtÞ
dλiðtÞ
2π

��Y
i;t

Θ½SiðtÞQiðtÞ�
�

×

�Y
t;s

dKðt; sÞdK̂ðt; sÞ
2π

dRðt; sÞdR̂ðt; sÞ
2π

dVðt; sÞdV̂ðt; sÞ
2π

�

× exp



−i
X
i;t

λiðtÞQiðtþ 1Þ þ ið1− αÞ
X
i;t

λiðtÞQiðtÞ−
1

2
Nα2

X
t;s

½υðεÞRðt; sÞKðt; sÞ þ ð1− εÞVðt; sÞVðs; tÞ�

− i
X
t;s

K̂ðt; sÞ
�
NKðt; sÞ−

X
i

SiðtÞSiðsÞ
�
− i
X
t;s

R̂ðt; sÞ
�
NRðt; sÞ−

X
i

λiðtÞλiðsÞ
�

− i
X
t;s

V̂ðt; sÞ
�
NVðt; sÞ −

X
i

λiðtÞSiðsÞ
��

: ðD8Þ

Now, one can notice thatZ
∞

−∞

�Y
t;s

dRðt; sÞ
2π

�
e−
P

t;s
iRðt;sÞ½NR̂ðt;sÞ−1

2
iNα2υðεÞKðt;sÞ� ¼

Y
t;s

δ

�
NR̂ðt; sÞ − 1

2
iNα2υðεÞKðt; sÞ

�
; ðD9Þ

which means the integral over Kðt; sÞ now reads

Z
∞

−∞

�Y
t;s

dRðt; sÞ
2π

�Y
t;s

e−iNR̂ðt;sÞRðt;sÞδ
�
NR̂ðt; sÞ − 1

2
iNα2υðεÞKðt; sÞ

�
¼ e

− 2N
α2υðεÞ
P
t;s

R̂ðt;sÞK̂ðt;sÞ
: ðD10Þ

For Vðt; sÞ, we have to be a bit more careful, as the expression is not linear for all terms, as the diagonal for t ¼ s gives a
quadratic term that has to be treated separately. Noticing that the product Vðt; sÞVðs; tÞ is symmetric, we start by
considering the t < s:Z

∞

−∞

�Y
t<s

dVðt; sÞ
2π

�
e−
P

t<s
iVðt;sÞ½NV̂ðt;sÞ−iNα2ð1−εÞVðs;tÞ� ¼

Y
t<s

δðNV̂ðt; sÞ − iNα2ð1 − εÞVðs; tÞÞ: ðD11Þ

Now integrating over the Vðt; sÞ for t > s,

Z
∞

−∞

�Y
t>s

dVðt; sÞ
2π

�Y
t>s

e−iNV̂ðt;sÞVðt;sÞδð−iα2ð1 − εÞVðs; tÞ þ 2V̂ðt; sÞÞ ¼ e
− N
α2ð1−εÞ

P
t>s

V̂ðt;sÞV̂ðs;tÞ
: ðD12Þ
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Finally, the diagonal Vðt; tÞ for which the expression is quadratic can be computed with a Gaussian integral:

Z
∞

−∞

�Y
t

dVðt; tÞ
�
e−

1
2
Nα2ð1−εÞ

P
t
Vðt;tÞ2−iN

P
t
Vðt;tÞV̂ðt;tÞ ∼ e

− N
2α2ð1−εÞ

P
t

V̂ðt;tÞ2
: ðD13Þ

Up to an Oð1Þ multiplicative constant, the complete expression now reads

N LðN; α; εÞ ∼ j detJ αjN
X
fSiðtÞg

Z
∞

−∞

�Y
i;t

dQiðtÞ
dλiðtÞ
2π

��Y
i;t

Θ½SiðtÞQiðtÞ�
��Y

t;s

dK̂ðt; sÞdR̂ðt; sÞdV̂ðt; sÞ
�

× exp

�
−i
X
i;t

λiðtÞQiðtþ 1Þ þ ið1 − αÞ
X
i;t

λiðtÞQiðtÞ þ i
X
i;t

νiðtÞQiðtÞSiðtÞ

−
2N

α2υðεÞ
X
t;s

R̂ðt; sÞK̂ðt; sÞ − N
2α2ð1 − εÞ

X
t;s

V̂ðt; sÞV̂ðs; tÞ

þ i
X
t;s

K̂ðt; sÞ
X
i

SiðtÞSiðsÞ þ i
X
t;s

R̂ðt; sÞ
X
i

λiðtÞλiðsÞ þ i
X
t;s

V̂ðt; sÞ
X
i

λiðtÞSiðsÞ
�
: ðD14Þ

Taking the changes of variable

R̂ðt; sÞ → 1

2
α2υðεÞR̂ðt; sÞ;

K̂ðt; sÞ → 1

2
α2υðεÞK̂ðt; sÞ;

V̂ðt; sÞ → α2ð1 − εÞV̂ðt; sÞ ðD15Þ

for convenience, we can entirely factorize the problem in N, finally giving

N LðN; α; εÞ ∼
Z

∞

−∞

�Y
t;s

dK̂ðt; sÞdR̂ðt; sÞdV̂ðt; sÞ
�
exp

�
N



−
1

2
α2υðεÞ

X
t;s

R̂ðt; sÞK̂ðt; sÞ

−
1

2
α2ð1 − εÞ

X
t;s

V̂ðt; sÞV̂ðs; tÞ þ log IL þ log j detJ αj
��

; ðD16Þ

where

IL ¼
X
fSðtÞg

Z
∞

−∞

�Y
t

dQðtÞ dλðtÞ
2π

��Y
t

Θ½SðtÞQðtÞ�
�
exp



−i
X
t

λðtÞQðtþ 1Þ þ ið1 − αÞ
X
t

λðtÞQðtÞ

þ 1

2
α2υðεÞ

X
t;s

½SðtÞSðsÞiK̂ðt; sÞ þ λðtÞλðsÞiR̂ðt; sÞ� þ α2ð1 − εÞ
X
t;s

λðtÞSðsÞiV̂ðt; sÞ
�
: ðD17Þ

At this stage, we may notice that SðtÞ2 ¼ 1 ∀ t and as such that the diagonal part of the sum over Kðt; sÞ can be taken out
of IL. Doing so and combining this contribution to the first term of the exponent in Eq. (D16), we have

N LðN;α;εÞ∼
Z

∞

−∞

�Y
t;s

dK̂ðt;sÞdR̂ðt;sÞdV̂ðt;sÞ
�
exp

�
N



1

2
α2υðεÞ

X
t

½iR̂ðt;tÞþ1�iK̂ðt;tÞ

þ1

2
α2
�
1−εþε2

2

�X
s≠t

iR̂ðt;sÞiK̂ðt;sÞ−1

2
α2ð1−εÞ

X
t;s

V̂ðt;sÞV̂ðs;tÞþ logILþ logjdetJ αj
��

: ðD18Þ
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Now, the first term in the exponent can be integrated over the K̂ðt; tÞ exactly, yielding a product of δ functions fixing

iR̂ðt; tÞ ¼ −1 ∀ t; ðD19Þ

as expected, and introducing only a subdominant correction OðlogN=NÞ in the complexity.
In the N → ∞ limit, the complexity is then finally given:

ΣLðα; εÞ ¼ saddle
R̂;K̂;V̂

�
1

2
α2υðεÞ

X
s≠t

iR̂ðt; sÞiK̂ðt; sÞ − 1

2
α2ð1 − εÞ

X
t;s

V̂ðt; sÞV̂ðs; tÞ þ log IL þ log j detJ αj
	
; ðD20Þ

with now

IL ¼
X
fSðtÞg

Z
∞

−∞

�Y
t

dQðtÞ dλðtÞ
2π

�Y
t

Θ½SðtÞQðtÞ� exp


−i
X
t

λðtÞQðtþ 1Þ þ ið1 − αÞ
X
t

λðtÞQðtÞ

−
1

2
α2υðεÞ


X
t

λðtÞ2 −
X
s≠t

½SðtÞSðsÞiK̂ðt; sÞ − λðtÞλðsÞiR̂ðt; sÞ�
�
þ α2ð1 − εÞ

X
t;s

λðtÞSðsÞiV̂ðt; sÞ
�
: ðD21Þ

This integral may be rewritten as

IL ¼
X
fSðtÞg

e
1
2
α2υðεÞ

P
s≠t

SðtÞSðsÞiK̂ðt;sÞ Z ∞

−∞

�Y
t

dQðtÞffiffiffiffiffiffi
2π

p dλðtÞffiffiffiffiffiffi
2π

p
�Y

t

Θ½SðtÞQðtÞ� exp
�
−
1

2
λ⊤Aλ − ib⊤λ

�
ðD22Þ

with the L × L matrix A constituted of

Aðt; sÞ ¼ α2υðεÞ½δts − ð1 − δtsÞiR̂ðt; sÞ�; ðD23Þ

and, b∈RL,

bðtÞ ¼ Qðtþ 1Þ − ð1 − αÞQðtÞ − α2ð1 − εÞ
X
s

V̂ðt; sÞSðsÞ; ðD24Þ

such that we, in fact, have

b ¼ J αQþ c; cðtÞ ¼ −α2ð1 − εÞ
X
s

V̂ðt; sÞSðsÞ: ðD25Þ

Computing the Gaussian integral on λ,

IL ¼
X
fSðtÞg

e
1
2
α2υðεÞ

P
s≠t

SðtÞSðsÞiK̂ðt;sÞffiffiffiffiffiffiffiffiffiffiffi
detA

p
Z

∞

−∞

�Y
t

dQðtÞffiffiffiffiffiffi
2π

p
�Y

t

Θ½SðtÞQðtÞ� exp
�
−
1

2
ðJ αQþ cÞ⊤A−1ðJ αQþ cÞ

�
: ðD26Þ

Taking the change of variable u ¼ J αQþ c, the above becomes

IL ¼
X
fSðtÞg

e
1
2
α2υðεÞ

P
s≠t

SðtÞSðsÞiK̂ðt;sÞ

j detJ αj
ffiffiffiffiffiffiffiffiffiffiffi
det Ã

p
Z

∞

−∞

�Y
t

dQðtÞffiffiffiffiffiffi
2π

p
�Y

t

ΘfSðtÞ½Q − ðJ αÞ−1c�ðtÞg exp
�
−
1

2
Q⊤Ã−1Q

�
; ðD27Þ

where Ã ¼ ðJ αÞ−1AðJ αÞ−1. As a result, the j detJ αj contributions in the complexity cancel out, and we find ourselves
with

ΣLðα; εÞ ¼ saddle
R̂;K̂;V̂

�
1

2
α2υðεÞ

X
s≠t

iR̂ðt; sÞiK̂ðt; sÞ − 1

2
α2ð1 − εÞ

X
t;s

V̂ðt; sÞV̂ðs; tÞ þ log IL

	
; ðD28Þ
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with now

IL ¼
X
fSðtÞg

e
1
2
α2υðεÞ

P
s≠t

SðtÞSðsÞiK̂ðt;sÞffiffiffiffiffiffiffiffiffiffiffi
det Ã

p
Z

∞

−∞

�Y
t

dQðtÞffiffiffiffiffiffi
2π

p
�Y

t

ΘfSðtÞ½Q − ðJ αÞ−1c�ðtÞg exp
�
−
1

2
Q⊤Ã−1Q

�
: ðD29Þ

The integral is challenging to study in generality, as the nondiagonal nature ofJ α andAmeans that we cannot factorize the
integrand. We now move on to specific cases of interest. The equations can be further simplified through the rescalings
α2υðεÞK̂ðt; sÞ → K̂ðt; sÞ, α ffiffiffiffiffiffiffiffiffi

υðεÞp
V̂ðt; sÞ → V̂ðt; sÞ, and QðtÞ → α

ffiffiffiffiffiffiffiffiffi
υðεÞp

, in which case we finally get

ΣLðα; ηÞ ¼ saddle
R̂;K̂;V̂

�X
s<t

iR̂ðt; sÞiK̂ðt; sÞ − η

2

X
t;s

V̂ðt; sÞV̂ðs; tÞ þ log IL

	
; ðD30Þ

IL ¼
X
fSðtÞg

e

P
s<t

SðtÞSðsÞiK̂ðt;sÞ
ΨL½Γ1ðα; ηÞ;…;ΓLðα; ηÞ;C�; ðD31Þ

whereΨLðx1;…; xL;CÞ is the cumulative distribution of an
L-dimensional Gaussian with a zero mean vector and
covariance matrix C evaluated up to xt, t∈ f1;…; Lg. In
our case, the upper bounds of integration are given by
Γ ¼ S∘ðJ αÞ−1c, with now

cðtÞ ¼ η
X
s

V̂ðt; sÞSðsÞ; ðD32Þ

while the covariance matrix must be taken with care as the
off-diagonal elements must be adapted to the presence of
SðtÞ in the Heaviside step function. As a result, off-diagonal
elements must be multiplied by SðtÞSðsÞ. As a result,
we have

Cðt; sÞ ¼
�
Ãðt; tÞ for t ¼ s;

SðtÞSðsÞÃðt; sÞ for t ≠ s
ðD33Þ

with Ã ¼ ðJ αÞ−1AðJ αÞ−1 and

Aðt; sÞ ¼ δts − ð1 − δtsÞiR̂ðt; sÞ: ðD34Þ

1. Fixed points

We can start by checking that we recover the known
result for L ¼ 1. In this case, J α ¼ α, and we have only to
solve for a scalar V̂ð1; 1Þ ¼ x. Here,

I1 ¼ 2Ψ1

�
η

α
x;

1

α2

�
¼ 2ΦðηxÞ; ðD35Þ

therefore, the saddle point equation becomes

Σ1ðα; ηÞ ≔ ΣFPðηÞ ¼ max
x

�
−
1

2
x2 þ log 2þ logΦðηxÞ

	
;

ðD36Þ

from which the expression in the main text can immediately
be recovered.

2. Two-cycles

There are now six variables to solve for: iR̂, iK̂, V̂1¼
V̂ð1;1Þ, V̂2¼ V̂ð2;2Þ, V̂12¼ V̂ð1;2Þ, and V̂21¼ V̂ð2;1Þ. In
this case, the Jacobian matrix is given by

J α ¼

−ð1 − αÞ 1

1 −ð1 − αÞ

�
⇒ ðJ αÞ−1 ¼ 1

1 − ð1 − αÞ2


1 − α 1

1 1 − α

�
; ðD37Þ

giving the bounds of integration

Γ ¼ η

1 − ð1 − αÞ2
"
V̂21 þ S1S2V̂2 þ ð1 − αÞðV̂1 þ S1S2V̂12Þ
V̂12 þ S1S2V̂1 þ ð1 − αÞðV̂2 þ S1S2V̂21Þ

#
ðD38Þ

and the covariance matrix

C ¼ 1

½1 − ð1 − αÞ2�2



1þ ð1 − αÞ2 − 2ð1 − αÞiR̂ S1S2f2ð1 − αÞ − ½1þ ð1 − αÞ2�iR̂g
S1S2f2ð1 − αÞ − ½1þ ð1 − αÞ2�iR̂g 1þ ð1 − αÞ2 − 2ð1 − αÞiR̂

�
: ðD39Þ
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Now, it is immediately apparent that I2 is a function of the product S1S2 ¼ �1 rather than S1 and S2. As a result, the
complexity is given by

Σ2ðα; ηÞ ¼ saddle
R̂;K̂;V̂1;V̂2;V̂12;V̂21

�
iR̂iK̂ −

η

2
ðV̂2

1 þ V̂2
2 þ 2V̂12V̂21Þ þ log 2þ log

X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ
	
: ðD40Þ

The six saddle point equations read

iR̂
X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ þ
X
S¼�1

SeSiK̂Ψ2ðΓ1;Γ2;CÞ ¼ 0; ðD41Þ

�
iK̂ þ iR̂

1 − ðiR̂Þ2
�X

S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ −
1

2

X
S¼�1

eSiK̂
Z

Γ1

−∞
dQ1

Z
Γ2

−∞
dQ2Q⊤ ∂C−1

∂iR̂
Q
e−

1
2
Q⊤C−1Q

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ¼ 0; ðD42Þ

− ηV̂1

X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ þ
ηð1 − αÞ

1 − ð1 − αÞ2
X
S¼�1

eSiK̂
Z

Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p

þ η

1 − ð1 − αÞ2
X
S¼�1

SeSiK̂
Z

Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ¼ 0; ðD43Þ

− ηV̂2

X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ þ
η

1 − ð1 − αÞ2
X
S¼�1

SeSiK̂
Z

Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p

þ ηð1 − αÞ
1 − ð1 − αÞ2

X
S¼�1

eSiK̂
Z

Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ¼ 0; ðD44Þ

− ηV̂21

X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ þ
ηð1 − αÞ

1 − ð1 − αÞ2
X
S¼�1

SeSiK̂
Z

Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p

þ η

1 − ð1 − αÞ2
X
S¼�1

eSiK̂
Z

Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ¼ 0; ðD45Þ

− ηV̂12

X
S¼�1

eSiK̂Ψ2ðΓ1;Γ2;CÞ þ
η

1 − ð1 − αÞ2
X
S¼�1

eSiK̂
Z

Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p

þ ηð1 − αÞ
1 − ð1 − αÞ2

X
S¼�1

SeSiK̂
Z

Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ¼ 0; ðD46Þ

with Q�
1 ¼ ½Q1 Γ2�⊤ and similarly for Q�

2, and

∂C−1

∂iR̂
¼ 1

½1 − ðiR̂Þ2�2
"

2iR̂½1þ ð1 − αÞ2� − 2ð1 − αÞ½ðiR̂Þ2 þ 1� Sf−4iR̂ð1 − αÞ þ ½1þ ð1 − αÞ2�½ðiR̂Þ2 þ 1�g
Sf−4iR̂ð1 − αÞ þ ½1þ ð1 − αÞ2�½ðiR̂Þ2 þ 1�g 2iR̂½1þ ð1 − αÞ2� − 2ð1 − αÞ½ðiR̂Þ2 þ 1�

#
:

ðD47Þ

We now take the particular case α ¼ 1. In this case, we expect two-cycles with a zero overlap in between consecutive
steps, meaning iR̂ ¼ 0. As a result, the matrix C is the identity matrix, and, thus,

Ψ2ðΓ1;Γ2;CÞ ¼ Φ(ηðV̂21 þ SV̂2Þ)Φ(ηðV̂12 þ SV̂1Þ): ðD48Þ
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In order for iR̂ ¼ 0 to satisfy Eq. (D41), we then
require iK̂ ¼ 0 and V̂1 ¼ V̂2 ¼ 0 such thatP

S¼�1 Se
iK̂Ψ2ðΓ1;Γ2;CÞ ¼ 0. Given

∂C−1

∂iR̂

����
iR̂¼0

¼


0 S

S 0

�
ðD49Þ

for α ¼ 1, the solution iK̂ ¼ 0 satisfies the saddle point
equation (D42), while the independence of the integrands
on S ensures that V̂1 ¼ V̂2 ¼ 0 are compatible with
Eqs. (D43) and (D44). Equations (D45) and (D46) then
suggest the Ansatz V̂12 ¼ V̂21 ¼ x, in which case the
problem is finally reduced to

Σ2ðα ¼ 1; ηÞ ¼ max
x

f−ηx2 þ 2 log 2þ 2 logΦðηxÞg
¼ 2ΣFPðηÞ; ðD50Þ

recovering the known solution of Refs. [73,100].

APPENDIX E: DERIVATION OF THE DMFT
EQUATIONS

We start from the N ≫ 1 discrete difference equations to
which we have added an external field hiðtÞ:

Qiðtþ1Þ¼ð1−αÞQiðtÞþα
X
j

JijmjðtÞþαηiðtÞþhiðtÞ;

hηiðtÞηjðsÞi≈υðεÞ½1−qðtÞ�δt;sδi;j ðE1Þ

and introduce a new agent at index i ¼ 0. The influence of
this newly introduced agent on the dynamic equation of
agents i ≠ 0 is thenX
j

JijmjðtÞ þ hiðtÞ →
X
j

JijmjðtÞ þ Ji0m0ðtÞ þ hiðtÞ:

ðE2Þ

Given N is large, we consider the response at the linear
order, meaning that the expected decision of all agents
i > 0 becomes

miðtÞ → miðtÞ þ
X
s<t

X
j

∂miðtÞ
∂hjðsÞ

����
h¼0|fflfflfflfflfflffl{zfflfflfflfflfflffl}

χijðt;sÞ

Jj0m0ðsÞ; ðE3Þ

as Jj0m0ðtÞ can be seen as the modification of the effective
field “felt” by all agents j, and χijðt; sÞ is simply the linear
response function to a small external field. The dynamics
that the newly introduced agent follows is then given by

Q0ðtþ 1Þ ¼ ð1 − αÞQ0ðtÞ þ α
X
i>0

J0imiðtÞ

þ
X
s<t

�X
ij

J0iχijðt; sÞJj0
�
m0ðsÞ

þ αη0ðtÞ þ h0ðtÞ: ðE4Þ

The sum on i and j can be split into its diagonal and off-
diagonal parts. On the diagonal, we assume the central limit
theorem holds, yielding

X
i

J0iχiiðt; sÞJi0 ¼ N



hJ0iχiiðt; sÞJi0i þO

�
1ffiffiffiffi
N

p
��

≈ ð1 − εÞhχiiðt; sÞi; ðE5Þ

while the off-diagonal contribution will be subdominant as
its mean will be zero, given nonopposing entries in the
interaction matrix are uncorrelated. We can also assume the
central limit theorem is valid for the sum on indices i at
the leading order, in which case

X
i

J0imiðtÞ ≈ 0þ υðεÞξ0ðtÞ; ðE6Þ

where ξ0 is a Gaussian of zero mean and correlated in
time as hξ0ðtÞξ0ðsÞi ¼ C0ðt; sÞ ¼ hm0ðtÞm0ðsÞi. Bringing
everything together, one realizes that there are no cross
contributions between agents at the leading order and, thus,
that we can drop the index 0 and recover the equation in the
main text:

Qðtþ 1Þ ¼ ð1 − αÞQðtÞ þ α2ð1 − εÞ
X
s<t

Gðt; sÞmðsÞ

þ αϕðtÞ þ αhðtÞ; ðE7Þ

with a new noise term combining the original thermal-like
fluctuations and the effective contribution from the disorder
averaging, with hϕðtÞi ¼ 0, and

hϕðtÞϕðsÞi ¼ υðεÞfCðt; sÞ þ ½1 − qðtÞ�δt;sg; ðE8Þ

and where the memory kernel and correlation function are
to be determined self-consistently:

Gðt; sÞ ¼ hχiiðt; sÞi ¼
�
∂mðtÞ
∂hðsÞ

����
h¼0

�
;

Cðt; sÞ ¼ hmðtÞmðsÞi: ðE9Þ
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Note that, in order to eliminate the external field, we express the susceptibility with the noise term, resulting in a rescaling
Gðt; sÞ → αGðt; sÞ. From this expression, the continuous limit can be taken, changing the sum in time weighted by α into an
integral:

α

2
Q̈ðtÞ þ Q̇ðtÞ ¼ −QðtÞ þ ð1 − εÞ

Z
t

0

dsGðt; sÞmðsÞ þ ϕðtÞ þ hðtÞ: ðE10Þ

APPENDIX F: ADAPTING THE SOMPOLINSKY AND CRISANTI RESULT

We start from the much simplified DMFT equation:

Q̇ðtÞ ¼ −QðtÞ þ ϕðtÞ; hϕðtÞϕðsÞi ¼ 1

2
Cðt; sÞ ðF1Þ

with Cðt;sÞ¼hmðtÞmðsÞi, mðtÞ¼ sgnðQðtÞÞ in the β → ∞ limit. As shown by Sompolinsky and Crisanti [112], we can
write a second-order differential equation for the two-point autocorrelation of QðtÞ:

Δ̈ðτÞ ¼ ΔðτÞ − 1

2
CðτÞ; ðF2Þ

with, therefore, ΔðτÞ ¼ hQðtþ τÞQðtÞi, and where thanks to the Gaussian nature of the fluctuations we have

CðτÞ ¼
Z

∞

−∞

dzffiffiffiffiffiffi
2π

p e−
1
2
z2

Z

∞

−∞

dxffiffiffiffiffiffi
2π

p e−
1
2
x2sgnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð0Þ − jΔðτÞj

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔðτÞj

p
zÞ
�
2

¼
Z

∞

−∞

dzffiffiffiffiffiffi
2π

p e−
1
2
z2erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔðτÞj

Δð0Þ − jΔðτÞ

s
zffiffiffi
2

p
!

2

¼ 2

π
sin−1

�
ΔðτÞ
Δð0Þ

�
ðF3Þ

(see Ref. [153] for the last step above). Now, by identifying
that the only difference with the original problem is a factor
2 in Δ, we can directly use the result Δð0Þ ¼ 1 − ð2=πÞ,
found by enforcing the condition required forΔðτÞ to decay
monotonically [114]. We may finally expand the inverse
sine to recover:

Δ̈ðτÞ ∼
τ≫1

�
1 −

1

πΔð0Þ
�
ΔðτÞ ðF4Þ

and, therefore,

CðτÞ ∼
τ≫1

2

π
e−

τ
τ1 ; τ1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
π − 2

π − 3

r
≈ 2.84: ðF5Þ

We notice that the value of the characteristic time is
identical in the standard Sompolinsky and Crisanti case
[the only difference being a factor 2 in the magnitude
of ΔðτÞ], which is, therefore, not equal to the valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=π − 2Þp

≈ 1.66 originally given in Refs. [112,113].
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