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Detection of critical slowing down (CSD) is the dominant avenue for anticipating critical transitions from
noisy time-series data. Most commonly, changes in variance and lag-1 autocorrelation [AC(1)] are used as
CSD indicators. However, these indicators will only produce reliable results if the noise driving the system is
white and stationary. In the more realistic case of time-correlated red noise, increasing (decreasing) the
correlation of the noise will lead to spurious (masked) alarms for both variance and AC(1). Here, we propose
two new methods that can discriminate true CSD from possible changes in the driving noise characteristics.
We focus on estimating changes in the linear restoring rate based on Langevin-type dynamics driven by either
white or red noise. We assess the capacity of our new estimators to anticipate critical transitions and show that
they perform significantly better than other existing methods both for continuous-time and discrete-time
models. In addition to conceptual models, we apply our methods to climate model simulations of the
termination of the African Humid Period. The estimations rule out spurious signals stemming from
nonstationary noise characteristics and reveal a destabilization of the African climate system as the dynamical
mechanism underlying this archetype of abrupt climate change in the past.
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I. INTRODUCTION

The phenomenon of critical slowing down (CSD), which
occurs in the advent of critical transitions induced by
certain bifurcations, is an essential observational character-
istic in the analysis of dynamical systems and for the
anticipation of such transitions [1]. If caused by the
approach of a codimension-1 bifurcation, the vanishing
of a stable equilibrium point and the resulting transition
will be preceded by a gradual decline of the linearized
restoring rate of said equilibrium. This decline, in turn,
leads to a weaker and slower response to perturbations, i.e.,
higher variance and autocorrelation in time. This result can
indeed be shown analytically for fold-type bifurcations
driven by small, additive white noise with standard
deviation σ and the drift of the linearized dynamics denoted
by λ: for the variance, hx2i ¼ σ2=ð2λÞ, and for the auto-
correlation, ACðτÞ ¼ expð−λτÞ. Insofar as the assumption
that high-dimensional complex systems such as Earth
system components are prone to bifurcation-induced tip-
ping is justified, CSD is expected to occur in the dynamics
leading up to these events [2–4]. This idea has spurred

interest in the development of so-called CSD indicators
or early warning signals (EWS), i.e., estimators of local
system stability that allow one to anticipate bifurcation-
induced transitions [3,5–8]. However, the applicability
of such estimators will depend on whether the actual
system’s dynamics are approximated well by the simple
low-dimensional model used to derive them. This question
pertains both to the approximation of the deterministic
equilibrium dynamics [9–12] and the representation of
omitted dimensions via a stochastic component in terms of
noise [13–15]. In the most reductive model for fold-type
bifurcations, a one-dimensional observable X of the system
is assumed to remain close to equilibrium and thus
experience approximately linear restoring forces,

dXðwÞ
t ¼ −λXðwÞ

t dtþ dWt:

The linear restoring rate λ will then vanish gradually as the
system approaches the critical forcing value of the fold
bifurcation. Perturbations to the system are modeled as
additive white noise dW, with W being a Wiener process.
Its use assumes temporal independence of the perturbations
inflicted on the system by the unresolved dynamics.
However, many physical systems exhibit memory effects
or persistence in their unresolved dynamics. In particular,
the Mori-Zwanzig formalism implies that if an effective
stochastic dynamic equation of a high-dimensional system
is derived as the projection to a low-dimensional space
of observed variables, the interactions between resolved
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and unresolved variables lead to non-Markovian dynamics
[16,17]. To represent the memory, a model driven by
red noise,

dXt ¼ −λXtdtþ Utdt;

with an Ornstein-Uhlenbeck process U, is more
suitable [18,19]. While other continuous-time noise models
with positive correlation in time exist [20,21], the specific
frequency characteristics of red noise make it the most
appropriate for application to many physical systems,
including the Earth’s climate [22–24]. Numerous tech-
niques exist for assessing system stability under the
influence of white noise [6,25,26]. In contrast, the red
noise case addressed here has so far only been approached
from the standpoint of discrete-time models [13,27,28].
In the following, we see that the white noise case can be
obtained as a parameter limit of the red noise case. We
introduce two novel stability indicators designed to be
simultaneously suitable for the red and white noise cases
and compare their performance to the well-established
variance and lag-one autocorrelation in the general case
of nonstationary time-correlated driving noise. We also
discuss the applicability of two existing discrete-time
methods developed for such nonstationary noise, presented
in Refs. [13,27], and assess their performance in the
continuous-time setup. Lastly, we apply the novel methods
to time-series data of the abrupt transition ending the
African Humid Period, which was recently reproduced
in simulations with a global climate model [29].

II. METHODS

A. Linearly restoring process under red noise forcing

We first linearize the dynamics of the observable x
around a fixed point x�:

ẋðtÞ ¼ fðx; aÞ ≈ ∂xf(x�ðaÞ; a)(xðtÞ − x�)

≕ − λðaÞ(xðtÞ − x�):

The dynamics described via f are mutable through the
external parameter a and are assumed to be autonomous.
If the global dynamics fðx; aÞ are that of a generic fold
bifurcation located at a certain value ā, then the linearized
restoring rate λðaÞ > 0 of the initial state will decrease and
eventually vanish: λðāÞ ¼ 0.
The following formulas give a general model of a system

driven by positively correlated noise, which is of particular
interest when considering CSD in physical systems with
the corresponding dynamics,

dXt ¼ −λXtdtþ κUtdt; X0 ¼ 0; ð1aÞ

dUt ¼ −θUtdtþ dWt; U0 ¼ 0; ð1bÞ

where W is a Wiener process on the filtered probability
space (Ω;F ; ðF tÞt∈R;P). For comparison, we also con-
sider the model forced by white noise:

dXðwÞ
t ¼ −λXðwÞ

t dtþ σdWt; XðwÞ
0 ¼ 0: ð2Þ

The solutions to the stochastic differential equations
(SDEs) (1) and (2) are

Xt ¼ κ

Z
t

0

exp ( − λðt − sÞ)Usds; ð3Þ

XðwÞ
t ¼ σ

Z
t

0

exp ( − λðt − sÞ)dWs; ð4Þ

respectively. Note that all parameters of the model are
a priori assumed to be constant because we are interested in
the stationary characteristics of the observable at any given
distance from the bifurcation point. From these character-
istics, we derive suitable estimators of the constant linear
restoring rate λ.
Both Eqs. (3) and (4) are asymptotically stationary

Gaussian processes. There exist initial distributions for

XðwÞ
0 and ðX0; U0Þ, respectively, such that they are stationary

for all t ≥ 0. The stationary characteristics of XðwÞ are well
known since it is itself anOrnstein-Uhlenbeck process. They
are given in Table I. For the red-noise-driven process X, we
derive these characteristics via the corresponding Lyapunov
equation (see Table II). We include explicit calculations in
the Supplemental Material (SM) [30].
We further observe that the stochastics of the white-

noise-driven process XðwÞ are the limits in the distribution
of the stochastics of the red-noise-driven process X in the
case that κ; θ → ∞ and ðκ=θÞ → σ. This specific conver-
gence is an example of a more general model convergence,
which has been discussed extensively in the literature [31].
It will later be of practical use when employing estimators
for system stability that are sensitive to such a limit. Wewill
henceforth only consider X as the general model and
implicitly include the setting XðwÞ as a limit case.
An important characteristic of the stationary distribution

of X is that all quantities are symmetric with respect to a
swapping of λ ↔ θ. This characteristic will be particularly

TABLE I. Stationary characteristics of the white-noise-driven
process XðwÞ defined by Eq. (2). The continuous-time (c.t.) and
discrete-time (d.t.) power spectral densities (PSDs) are defined as
the time-scaled c.t. and d.t. Fourier transforms taken in their
squared amplitude, respectively (see SM [30] for further dis-
cussion).

Variance σ2=ð2λÞ
ACðτÞ expð−λjτjÞ
c.t. PSD SðωÞ σ2=ðλ2 þ ω2Þ
d.t. PSD Sð1ÞðωÞ σ2

2λ
sinhðλÞ

coshðλÞ−cosðωÞ
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relevant when trying to infer information about one of the
two in isolation. Analyzing the behavior of the quantities
introduced in Table II under changes in the three parameters
λ, θ, and κ, the risk of spurious CSD indications, and hence
false alarms, becomes evident (see Table III). On the other
hand, it is easy to imagine that simultaneous trends in the
parameters could cause the respective observable quantity
to remain constant, leading to missed alarms. We will later
refer to this second case as a masking of CSD.
We note that there exists an ARMA(2,1) representation

of the process X:

Xkþ1 ¼d ( expð−λÞ þ expð−θÞ)Xk − exp ( − ðλþ θÞ)Xk−1

þ σ0zk þ σ1zk−1; ð5Þ

where the zk are independent identically distributed (i.i.d.)
unit normal random variables and the constants σ0 and σ1
are unwieldy yet may be explicitly computed by solving the
appropriate system of correlation equations. A CSD indi-
cator relying on the ARMAðp; qÞ best model fit to data
with no specific a priori fixed model structure has recently
been proposed [28]. The above considerations on the red-
noise-driven process X imply that this method should be
sensitive to CSD in this model. At the same time, the
symmetry in the parameters with respect to λ ↔ θ implies a
risk of spurious indications in the case of nonstationary
noise, much like the conventional methods of variance and

AC(1). Therefore, we will not include this approach in our
later comparisons of indicator performances.

B. Estimators of system stability λ

Perhaps the most common indicators in use for the
detection of CSD are increases in variance and AC(1) of
the observable X [7,32,33]. As we have established above,
both quantities will monotonically increase in the event of a
decreasing linear restoring rate λ → 0 under either red
or white noise forcing. We first present well-established
estimators for these two quantities before introducing one
known and two novel estimation techniques for inferring
information about the linear restoring rate. We see that, for
each of the estimators, the white noise limit κ; θ → ∞ and
ðκ=θÞ → σ is well defined and consistent with the quantities
obtained when applying the techniques to the white noise
model. In our setup, the white noise case is hence a special
case of the more general red noise model. Even without
an a priori model decision on whether the noise is white or
red, the introduced estimators are generally applicable. We
discuss the application to time-series samples with a
dimensionless time step Δt ¼ 1, though the methods are,
in principle, applicable to time series with any constant time
step. Proofs for the applicability of the conventional esti-
mation methods as well as a comparison of the quality of the
estimators in terms of their sample spread for different
parameter settings can be found in the SM [30], as can a
numerical analysis of their distributional convergence in a
central limit theorem fashion. While we do not prove a
corresponding result, the numerical results suggest an
underlying convergence property of our new estimators.

1. Variance

A consistent estimator for the variance is

dVarN ≔
1

N

XN−1

k¼0

X2
k;

converging in probability to the quantity determined in the
previous section,

dVarN ⟶
P

N→∞

κ2

2λθðλþ θÞ :

TABLE II. Stationary characteristics of the red-noise-driven process X defined by Eq. (1). All quantities
associated with the process X are symmetric with respect to a swapping of λ ↔ θ. The quantities calculated for the
case λ ¼ θ coincide with the well-defined limit θ → λ of the case λ ≠ θ.

λ ≠ θ λ ¼ θ

Variance κ2=(2λθðλþ θÞ) κ2=ð4λ3Þ
ACðτÞ (λ expð−θjτjÞ − θ expð−λjτjÞ)=ðλ − θÞ ð1þ λjτjÞ expð−λjτjÞ
c.t. PSD SðωÞ κ2=(ðθ2 þ ω2Þðλ2 þ ω2Þ) κ2=ðλ2 þ ω2Þ2
d.t. PSD Sð1ÞðωÞ κ2

2λθðλ2−θ2Þ
�

λ sinhðθÞ
coshðθÞ−cosðωÞ −

θ sinhðλÞ
coshðλÞ−cosðωÞ

�
κ2

4λ3
coshðλÞ(λ cosðωÞþsinhðλÞ)−sinhðλÞ cosðωÞ−λ

( coshðλÞ−cosðωÞ)2

TABLE III. Behavior of the quantities in Table II when one of
the three parameters is taken to the respective limit in the first
column. The true CSD to anticipate a critical transition is present
in the λ → 0 case. Considering the θ → 0 case, the potential for a
spurious indication of CSD is evident, while the AC(1) will reveal
the κ → ∞ case as spurious. Spectral reddening refers to the value
of the PSD at low frequencies, in this case, ω ¼ 0. The behavior
is equivalent for the discrete-time and continuous-time PSD. All
of the increases are strictly monotonic. The symbol “—” refers to
the independence of the AC(1) from the parameter κ.

Variance AC(1) Spectral reddening

λ → 0 ↗∞ ↗1 ↗∞
θ → 0 ↗∞ ↗1 ↗∞
κ → ∞ ↗∞ — ↗∞
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2. Lag-1 autocorrelation

A consistent estimator for the lag-τ autocorrelation for
τ < N is

dACðτÞN ≔
N

N − τ

P
N−τ−1
k¼0 XkXkþτP

N−1
k¼0 X

2
k

; ð6Þ

also converging in probability as

dACðτÞN ⟶
P

N→∞

λ expð−θjτjÞ − θ expð−λjτjÞ
λ − θ

:

3. Generalized least squares estimator

There exist three notable studies regarding the detection
of CSD under the influence of nonstationary time-
correlated noise [13,27], with the third requiring explicit
external knowledge of the noise characteristics [34].
Boettner and Boers [13] and Boers [27] build on the
discrete-time model of an AR(1) process, in turn, driven by
an AR(1) process

Ykþ1 ¼ φYk þ cVk;

Vkþ1 ¼ ρVk þ zk;

where the zk, k∈N are i.i.d. unit normal random variables.
Here, an increase towards 1 of the autoregressive parameter
φ would be indicative of a destabilization of the underlying
dynamics and hence a sign of CSD. Rearranging these
discrete-time evolution equations, one arrives at the follow-
ing ARMA(2,0) model for Y:

Ykþ1 ¼ ðφþ ρÞYk − φρYk−1 þ czk−1: ð7Þ

Recalling the ARMA(2,1) representation of the continuous-
time process X given in Eq. (5), it is clear that because
σ1 ≠ 0, the marginal distributions of Xt and Yk will differ in
their moments and correlations. Nevertheless, it is conceiv-
able that the methods developed for the discrete-time model
might deliver satisfactory results even on data from the
continuous-time case.
The unbiased estimator for φ introduced by Boettner

et al. in Ref. [13] does not appear to be applicable. The
reason is that, even when applied to time-series data
generated through the intended model, Eq. (7), the alge-
braic expression of the estimator is not well defined on a set
of positive probability, only performing well on time series
much longer than the ones considered here. Applying the
method to data of the continuous-time process X seems to
exacerbate this issue, effectively making the interpretation
of the estimator results impossible. Thus, we do not
consider it for further analysis.
The method proposed and implemented by Boers

in Ref. [27] builds on regressing observed increments

on the left-hand side against the system state on the
right-hand side:

Ykþ1 − Yk ¼ ðφ − 1ÞYk þ cVk:

Instead of an ordinary least squares model suitable for
white noise, the AR(1) structure of V is taken into account.
To this effect, the PYTHON module statsmodels and its class
GLSAR are used. The resulting estimate φ̂ is taken as a
stability estimator, and its increase is taken as a CSD
indicator. Comparing the ARMA models (5) and (7), one
could assume that the underlying value of φ should be
approximately expð−λÞ. However, investigating the distri-
bution of φ̂, its mean seems to significantly differ from this
value (see Fig. 3.1 in the SM [30]). This finding is again
due to the different ARMA structures.

4. Fitting to the observed autocorrelation structure

The symmetry of the stationary distribution of X with
respect to exchanging λ and θ implies that explicit
information about the parameters cannot be inferred from
one-dimensional time-series statistics of variance and
AC(1). The first novel method we propose circumvents
this problem by including multiple estimated moments in
the assessment.
Estimating the autocorrelation structure (ACS) of the

observed process X via the already-established estimator in
Eq. (6), we find a tuple ðλ̂ðACSÞ; θ̂ðACSÞÞ that constitutes the
best model fit in the sense that the mean squared error

between the observed dACðτÞN and the theoretically com-
puted ACλ;θðτÞ corresponding to the red noise model with
these parameters (see Table II) is minimized. This case can
be realized numerically by running a minimization function
on the mean squared error:

ðλ̂ðACSÞN ; θ̂ðACSÞN Þ ¼ arg min
ðλ;θÞ∈R2

þ
λ<θ

Xτmax

τ¼1
( dACðτÞN − ACλ;θðτÞ)

2

:

Since the set of arguments fðλ; θÞ∈R2jλ < θg is an open
set, the minimum of the above squared error does not
exist a priori. In the numerical implementation, either a
local minimum is found or the estimation attempt fails.
To include the white noise limit, the edge case of θ ¼ ∞
should be caught during the optimization and interpreted
appropriately (see also SM [30] for a more detailed
description of the numerical routine).
Though the idea of performing parameter estimation

through the method of moment fitting is not new [35], so far
it has not been applied to this specific problem. Note that
we have made the model assumption that the correlation
time 1=θ of the noise component is always shorter than the
correlation time 1=λ induced by the (locally) linear restor-
ing dynamics. While the method is also applicable without
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this assumption, we have to bear in mind that some outside
knowledge about the relation of the two parameters is
required in order to distinguish the trends observed in them.
A relative timescale separation in the noise and the
dynamics of interest is a common assumption in many
applied fields such as climate science [22,36]. Furthermore,
if the linear restoring rate λ indeed undergoes a decrease
towards zero, at some point, it will fall below the value of θ.
Choosing a “good” maximum τmax of evaluated lags is

not easy to achieve comprehensively. Estimations of the
autocorrelation deteriorate with increasing τ, and the
exponential decay of the theoretical model ACS implies
that, for high lags, the change in neighboring lags is
negligible. For all applications we are considering, a choice
of τmax ¼ 3 delivers satisfactory results. A proof for the
convergence of this estimator could be obtained by adapt-
ing the proof of Lemma 3.4 in Ref. [35], though we do not
attempt it here.

5. Fitting to the observed power spectral density

Similarly, determining the model with the least mean
squared error between the theoretically computed model
PSD and the observed PSD suggests a choice of
ðλ̂ðPSDÞ; θ̂ðPSDÞ; κ̂ðPSDÞÞ. In this case, the observed PSD is
the squared absolute value of the discrete-time Fourier
transform of the data:

dSð1ÞðωÞN ¼
���� 1ffiffiffiffi

N
p

XN−1

k¼0

expð−iωkÞXk

����2:
In contrast to the previous ACS case, the discrete-time PSD
is not equal to the continuous-time PSD, and it is
imperative to choose the former, given in Table II.
The discrete-time PSD will be a periodic function

classically probed on the frequencies F ≔ fð2πl=NÞjl ¼
1;…; N=2 − 1g if N is even and F ≔ fð2πl=NÞjl ¼
1;…; ðN − 1Þ=2g if N is odd. In order to weight the entire
frequency range more evenly, taking the logarithm of the
observed and expected PSD is advantageous. Averaging
over neighboring frequencies to smooth out the fitting
target may also improve the quality of the estimations. The
estimator is then given by�

λ̂ðPSDÞN ; θ̂ðPSDÞN ; κ̂ðPSDÞN

�
¼ argmin

ðλ;θ;κÞ∈R3
þ

λ<θ

X
ω∈F

( log( dSð1ÞðωÞN)− log(Sð1Þλ;θ;κðωÞ))
2

:

Much like in the formulation of the estimators relying on
the ACS, the set of arguments is open, and possible infima
of the squared error on the boundary should be interpreted
correctly in implementations. This case is, again, particu-
larly relevant for the detection of the white noise limit
θ; κ → ∞ and ðκ=θÞ → σ ∈Rþ (see, again, SM [30]).

This method bears similarities with the ratio of spectra
(ROSA) method recently proposed in Ref. [34]. In their
approach, Clarke et al. also performed a least square error
fit between two PSDs, but they relied on dividing out the
PSD of the driving noise, which needs to be known a priori.
Therefore, this method is not suited to infer information
about the stability of the system from the observable alone.
In their practical implementation, they reverted to the
continuous-time PSD as a theoretical fitting target. This
choice can lead to considerable biases due to the mis-
matched behavior of the discrete-time PSD for frequencies
close to the Nyquist frequency.
Using the PSD instead of the ACS as a model-fit target

has two practical advantages in our context. First, since we
are using the entire relevant frequency domain, we are not
faced with having to fix another degree of freedom in the
estimation. In the ACS method, this was the number of
included lags τmax. Second, since only the omitted zero
frequency entry of the PSD is sensitive to a shift of the time
series by a constant, the method is considerably more stable
with respect to prior centering and low-order detrending.
This feature is particularly relevant in applications where
the approximate Ornstein-Uhlenbeck residual first has to be
separated from a slow deterministic trend.

III. RESULTS

A. Comparison of the indicators

To compare the performance of the proposed indicators,
we first formulate a general application setting. This setting
will describe the range of possible parameter evolutions
we posit for some real-world case of detecting CSD. In the
classical setting, we would assume the white noise limit
κ=θ → σ and further assume that σ is fixed during the time
of observation. In that case, none of the indicators is prone
to spurious indication or masking of CSD. However, in the
general red noise case, not only the parameter of interest,
i.e., λ, but also the noise parameters θ and κ change in time.
In this case, the two conventional indicators likely give
false-positive (spurious) or false-negative (masking)
results. To quantitatively compare these pitfalls, we per-
form a disjoint window analysis on data from a large range
of randomly drawn parameter settings. We check the
resulting series of estimations for a positive Kendall’s τ

in dACð1Þ, dVar, φ̂, −λ̂ðACSÞ, and −λ̂ðPSDÞ, respectively, each
suggesting CSD. We then plot the receiver-operating
characteristic (ROC) for each indicator to compare their
ability to discern the cases with a truly decreasing linear
restoring rate λ from those where no change takes place.
The general model setting in which we probe our

estimators is defined by

dXt ¼ −λðtÞXtdtþ κðtÞUtdt; X0 ¼ 0; ð8aÞ

dUt ¼ −θðtÞUtdtþ dWt; U0 ¼ 0: ð8bÞ
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Linearizing the equilibrium dynamics via λ is expected to
be a good enough approximation to justify this setup,
replacing an actual codimension-1 bifurcation. Since the
parameters are now deterministic functions of time, our
considerations about the formerly stationary process X do
not hold exactly anymore. Nevertheless, with reasonably
slow changes in the parameters, the indicators can capture
the contemporary stability of the system given by λ to a
satisfactory degree.
The following settings are considered in this analysis.

The linear restoring rate λ either follows the decline that is
typical for a fold bifurcation in normal form with a linear
change in the bifurcation parameter, i.e.,

λðtÞ ≔ λ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=T

p
;

or it remains constant, i.e.,

λðtÞ≡ λ0:

Here, T ¼ 14000 is the time span of the complete exper-
imental setup, and λ0 ∼ Uð0.3; 0.5Þ is a randomly drawn
scaling parameter. Note that θ and κ evolve linearly starting
from θ0; κ0 ∼ Uð0.5; 4Þ and ending at θT; κT ∼ Uð0.5; 4Þ,
respectively:

θðtÞ≔
�
1−

t
T

�
θ0 þ

t
T
θT; κðtÞ≔

�
1−

t
T

�
κ0 þ

t
T
κT:

The samples are generated by discrete-time integration
of the continuous-time differential equation in Eq. (2) via
the Euler method using time steps δt ¼ 0.1 after having
integrated Eq. (8). In 20 disjoint windows of size N ¼ 700
each, we apply the four estimators in question and calculate
the Kendall’s τ value for each of these indicator series of
size 20. Applying the methods on overlapping windows
instead of a disjoint partition does not affect any of the
presented results. We draw 5000 random instances of
ðλ0; θ0; θT; κ0; κTÞ, and for each, we generate one sample
time series for a truly decreasing and one for a constant
λðtÞ. Based on these findings, we may assess the true- and
false-positive rates of the different indicators and, hence,
benchmark our newly proposed indicators against existing
ones. A visualization of one of these sample instances,
along with the relevant parameter thresholds, is given in
Fig. 1. The corresponding sample paths in this case clearly
show a spurious increase in the observed variance and AC
(1), rendering them unsuitable indicators of CSD despite
their wide usage. The reason is that the trends in both noise
parameters θ and κ have the same effect as decreasing λ
with respect to these quantities.
The ROC curve is determined by varying the threshold

value demanded of the Kendall’s τ to qualify as a
significant increase in the respective estimator. If this
threshold is high, there will be a high number of false

negatives in the decreasing λ case. As one gradually lowers
the threshold (moving from the bottom left to the top
right in Fig. 2), a good indicator will show a more rapid
increase in true-positive than in false-positive results, which
results in a characteristic arc toward the top-left corner of
the plane for a good indicator. A one-dimensional perfor-
mance metric of the estimator is the area under the ROC
curve (AUC), which is a quantity commonly employed for
the comparison of CSD indicators [37–40]. The ROC
curves, along with the respective AUC values, can be seen
in Fig. 2(a).
In the context of assessment through Kendall’s τ trends,

it bears mentioning that the kind of sensitivity-specificity
analysis inherent to the ROC is missing the information
on the explicit threshold value along the curve. In order to
obtain a complete curve, the threshold value may have
to be reduced to −1, thus interpreting negative values in
Kendall’s τ as positive outcomes. In our plots of the ROC
curves, we mark the point along the curve at which the last
sensible threshold of zero is crossed. The higher the true-
positive rate (TPR) associated with this point, the larger
the amount of true-positive classifications that are indeed
reasonable. As expected, the false-positive rate (FPR)

(a) (b)

(c) (d)

(f)(e)

FIG. 1. Example of a randomly generated parameter setting
according to the procedure described in the main text. (a),(b)
Evolutions of λðtÞ, θðtÞ, and κðtÞ. The λðtÞ corresponding to true
critical slowing down is given in panel (a) while that of the null
model is given in panel (b). The red dashed lines represent the
boundary values of the uniform distributions from which the start
and end values of the parameters were drawn. (c),(d) Respective
generated sample paths, along with the partition into disjoint
windows for the subsequent application of the estimators [results
shown in panels (e) and (f)]. In this parameter setting, a spurious
indication of CSD is possible, as can be observed in panel (f). The
reason is that the trends of θðtÞ and κðtÞ influence the quantities
of variance and AC(1) of the observable X in a way that is
indistinguishable from true CSD.
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associated with this point is approximately 50% for all of
the indicators since the null model is, by construction,
symmetric with respect to the parameter trends (Fig. 2). In
an application, one would likely choose a higher classi-
fication threshold for the Kendall’s τ value, which would
curtail the false-positive rate and increase the significance
of positive results in a statistical sense.
Comparing the AUC values of the five indicators in

Fig. 2(a), the conventional marker variance and AC(1) per-
form worst under our broad model assumption of evolving
noise characteristics. However, AC(1) still captures the
CSD better than the variance. The estimator φ̂ and the novel
estimation methods via ACS and PSD give the most robust
indication of whether CSD is actually taking place in
this case.
The sharp dropoff in the linear restoring rate towards the

end of the parameter time series is characteristic of fold-
type bifurcations. Yet, allowing assessment of CSD up until
the bifurcation point can give an unrealistically positive
impression of the indicator’s skill because, in the immediate
proximity to a bifurcation point, noise-induced tipping may
become inevitable [41,42]. In applications, the indicator
should be able to confidently assess whether CSD is taking
place long before the sharp dropoff in λ dominates the
dynamics. Thus, we are prompted to perform a similar
comparison to that above but on data corresponding to
the first 60% of the evolution in the linear restoring rate λ.

The noise parameters θ and κ still evolve according to the
same constraints as before but now in only the first 60% of
the time frame. The amount of available disjoint windows
for the respective estimations also reduces to this fraction
accordingly.
We give the ROC curves for this more realistic setting in

Fig. 2(b) and further illustrate the comparison between the
two situations in Fig. 3. In the more realistic case of having
only access to data still relatively far from the bifurcation
point, the new CSD indicators introduced here (λACS and
λPSD) dramatically outperform all other indicators in terms
of the ROC curves and the AUC, including φ. It should also
be noted that all indicators perform worse in this more
realistic comparison setting compared to the case of full
access to the data, up to the bifurcation point. For the two
conventional indicators variance and AC(1), the reduced
performance is due to the relative sizes of the parameter
trends. Lacking the sharp decline in λ toward the bifurca-
tion, the changes in the other two parameters can more
easily overwhelm the effects of a changing λ. For the
indicators proposed here, using the estimators λ̂ðACSÞ and
λ̂ðPSDÞ, the reason for the increase in faulty results is not
rooted in spurious or masking effects themselves. Instead, a
higher uncertainty associated with the estimations leads to
more noise in the indicator trends. This uncertainty stems
from the fact that the methods respond more sensitively to
the fast parameter changes in θ and κ. A larger amount of
longer windows of data would work against this statistical
effect, yet in applications, the amount of data available is

(a) (b)

FIG. 2. ROC curves for each of the considered CSD indicators
obtained through the procedures laid out in the main text.
(a) Comparison performed on the entirety of the decline in
λðtÞ typical for a fold bifurcation. The ROC curves of the
indicators using the ACS and PSD concur at nearly perfect
discrimination. The AUC is given in the legends. The symbols
mark the locations within the curve generation at which the
threshold value of the Kendall’s τ is zero. In panel (b), only 60%
of the trend and 60% of available data were used. The two novel
indicators introduced here, based on the ACS and PSD, respec-
tively, perform best in both comparison settings. The quality of all
indicators deteriorates as the amount of available data decreases
and the underlying trend in λðtÞ becomes less pronounced,
corresponding to the setting where one is still far away from a
bifurcation-induced transition. The individual reasons for this
finding are discussed in the main text.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Example for a randomly generated parameter setting
according to the intensified comparison procedure described in the
main text (panels are equivalent to those in Fig. 1), but note the
inverted trends of θðtÞ and κðtÞ. In this parameter setting, masking
of CSD is possible. The reason is that the trends of θðtÞ and κðtÞ
counteract the effect of a decreasing λðtÞ in the theoretical
stationary quantities of variance and AC(1) of the observable X.
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often limited and of the order of magnitude discussed in
this section. Thus, comparing the techniques boils down to
a trade-off between exposure to spurious indication or
masking and potential misestimation due to a lower signal-
to-noise ratio. Nevertheless, our results show that the two
indicators proposed in this work should always be preferred
over the conventional variance and AC(1).

We further illustrate this trade-off by performing the above
analysis for an ensemble of different configurations, varying
the time-series length and the percentage of the time series
used to detect CSD. Figure 4 shows the AUC values for each
CSD indicator under these varying conditions, and Fig. 5
shows cross sections along fixed choices of the total time-
series length and the observed fraction. It is apparent that the
quality of assessment for the conventional methods almost
exclusively depends on the fraction of CSD under observa-
tion and not the amount of data points. The novel methods
designed for the continuous-time red noise case can detect
CSD at much earlier points in time, i.e., after very few
observed windows. Even though the discrete-time red noise
method via φ̂ performs better than the two conventional
indicators, the novel methods still clearly outperform it.

B. Analyzing the desertification of the Western Sahara

In the following, we show how the methods introduced
above can be used to discriminate between different physical
candidate mechanisms leading to real-world abrupt tran-
sitions, focusing on the example of the abrupt desertification
of the Western Sahara some 6 thousand years ago. Hopcroft
and Valdes [29] investigated the retreat of Western Sahara
vegetation during the mid-Holocene epoch and, in particu-
lar, whether climate models support the view of an abrupt
retreat possibly caused by bifurcation dynamics. In the
Western Sahara region, the contemporary climate is that of
an arid, hot desert. Paleoclimate evidence suggests that
during the late Pleistocene and early to mid-Holocene
epochs, until about 6 thousandyears ago, therewas abundant
savanna-typevegetation present in the same region [43]. The
driving external variable responsible for this changewas the
orbital forcing, which affects the Northern Hemisphere
summer insolation [44]. Before 6 thousand years ago, the
increased summer insolation in the Western Sahara facili-
tated the green Sahara via the following feedback mecha-
nism: The vegetation in the region had a lower reflectivity
than the desert and hence absorbedmore solar energy, which
can fuel convective systems and even cause a northward
extension of the West African summer monsoon system
[45]. Changes in cloud cover and evapotranspiration must
also be considered [45,46].
There has been a debate about whether the available

paleoclimate data allow for the characterization of the
Western Sahara vegetation system as a tipping element
[47–49], in the strict sense of exhibiting bifurcation
dynamics that can lead to critical transitions between
alternative states. Even though the aforementioned con-
ceptual “Charney” model of the above-described feedback
is plausible, there may be more complex and spatially
constrained dynamics at play. A suitable consistency check
of the hypothesis of positive feedback mechanisms driving
the transition is to investigate the time series for indications
of critical slowing down. Hopcroft and Valdes [29,50]
performed a preliminary analysis of the variance in veg-
etation coverage in the advent of the transition and found a

FIG. 4. AUC values obtained from ROC curves of each of the
discussed CSD indicators in different observational settings. The
parameter evolutions of λðtÞ, θðtÞ, and κðtÞ are generated as
outlined in the main text. The length of the time series indicated
on the y axis of each panel is divided into 20 disjoint windows.
The percentage on the x axis determines how many of these
windows are used to assess CSD in the synthetically generated
data. Highlighted in pink and red are the values corresponding to
the ROC curves presented in Figs. 2(a) and 2(b), respectively. The
black cross sections of these heat maps are shown in Figs. 5(a)
(dashed) and 5(b) (dotted), respectively.

(a) (b)

FIG. 5. One-dimensional cross sections of the heat maps in
Fig. 4. In panel (a), the length of the evaluated time series is kept
constant at T ¼ 14000 while the fraction of the time series before
tipping that is used for CSD estimation with the different
indicators is varied. In panel (b), this fraction is kept constant
at 60% while the length of the evaluated time series is varied.
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clear increase. This finding may be interpreted as an
indication of critical slowing down if the underlying model
assumptions on the noise are valid. These include the rather
strict assumption of the disturbances inflicted on the system
being well represented by stationary white noise and
excludes nonstationary temporal correlations. Such corre-
lations can be found in atmospheric observables, which are
relevant to the dynamics of vegetation systems. We will
analyze the time-series data obtained from the model
configuration of Hopcroft and Valdes [29] with respect
to critical slowing down using our novel estimation
methods for quantifying system stability. The underlying
premise for the applicability of the red noise model is to
assume that disturbances in precipitation drive the vegeta-
tion dynamics. More specifically, the following linearized
conceptual model of the Western Sahara vegetation system
warrants the application of our novel methods to simulated
data from the complex general circulation model of
Ref. [29] (see SM [30] for a more detailed motivation [30]):

dVt ¼ −λðtÞ(Vt − VðtÞ)dtþ κVðtÞ(Pt − P̄ðtÞ)dt; ð9aÞ

dPt ¼ −θðtÞ(Pt − P̄ðtÞ)dtþ κPðtÞdWt; ð9bÞ

where V̄ðtÞ denotes the equilibrium of VðtÞ. The overall
negative feedback strength −λðtÞ acts on the yearly
averaged spatially extended vegetation VðtÞ, measured as
the fraction of ground covered by certain plant functional
types. Furthermore, the rate of change of V away from
equilibrium V̄ðtÞ is assumed to be proportional to devia-
tions of the precipitation P from its contemporary equi-
librium P̄ðtÞ. These deviations are, in turn, modeled as an
Ornstein-Uhlenbeck process with correlation parameter
θðtÞ. The equilibrium dynamics of the vegetation thus
follow the linearized model driven by continuous-time red
noise [cf. Eq. (1)] introduced and analyzed in the previous
sections. The conceptual model introduced in Eqs. (9a)
and (9b), though not further investigated numerically,
serves as the argumentative basis for the application of
our methods to the time-series data of Ref. [29]. A decrease
of the feedback parameter λðtÞ can, in this context, be
interpreted as a weakening of the stability of the vegetation
system in the general circulation model. Such indications
on the basis of CSD, were they to be found, would imply
that positive feedback is gaining in strength while negative
feedback weakens.
On yearly averaged time-series data of vegetation and

precipitation obtained from the climate model in Ref. [29],
we first determine V̄ðtÞ and P̄ðtÞ by applying a Gaussian
filter. The analysis is performed up until the observed
tipping point, which is defined to be the point of highest
negative curvature in V̄ðtÞ. The stability estimators based
on the ACS and PSD are each employed on the time-series
data of Vt − V̄ðtÞ and Pt − P̄ðtÞ. In the first case, λðtÞ and
θðtÞ are inferred from the vegetation data, while in the

second case, θðtÞ is inferred from the precipitation data.
A consistency check of the presuppositions made in our
conceptual model defined by Eqs. (9a) and (9b) can be
performed by comparing the two estimations of θðtÞ.
Figure 6 shows the results for the data of one specific
simulation grid cell at 25 °N and 3.75 °W. Analogous
analyses with similar results for other grid cells can be
found in the SM [30]. A decrease in λðtÞ can clearly be
observed in all of these applications. Thus, the increase in
variance in the advent of the transition observed by
Hopcroft and Valdes [29,50], using the methodology
introduced here, can be attributed to an actual decrease
in system stability. The results from θðtÞ stemming from the

(a)

(b)

(c)

(d)

(e)

FIG. 6. Analysis of simulations from a complex climate model
for the African Humid Period obtained from Ref. [29] for the
model cell located at 25° latitude and 3.75° longitude. Panels (a)
and (b) show the time-series data and its contemporary mean
obtained via a Gaussian filter. The tipping point is marked in gray.
In panel (c), the conventional EWS of variance and AC(1) suggest
CSD. The estimation of system stability λ via the ACS and PSD
of V in panel (d) supports this indication consistently and rules
out the counter-hypothesis, namely, effects of nonstationary red
noise as the main cause. We emphasize that this discrimination
could not be performed based on variance and AC(1). In panel
(e), the two estimations of the correlation parameter θ of the
precipitation based on data from V and P, respectively, can be
compared. While they differ at times by a factor of about 2, they
match qualitatively in order of magnitude. Their individual trends
are approximately flat, indicating no substantial change in the
correlation characteristics over the observed time span.
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two time series match qualitatively, encouraging the pro-
posed conceptual linear model as a good representation of
the equilibrium dynamics.

IV. DISCUSSION

The estimators for variance and AC(1) commonly
employed as indicators for CSD easily lead to a false
assessment when aspects of the driving noise cannot be
assumed to be constant. In the case of the general red noise
model, we have discussed this finding on the basis of
theoretical considerations and demonstrated it on sam-
ple data.
The two, new CSD indicators we introduced here,

designed to be sensitive to changes in the correlation
characteristics of the red noise, perform substantially
better across a broad range of parameter configurations
as measured by the receiver-operating characteristic.
However, their performance still depends on the length
of the given time-series data, as seen in Figs. 4 and 5. In
effectively every configuration of the size and number of
observed windows given there, the two novel methods
outperform other existing methods of detecting CSD,
including methods designed for discrete-time red noise.
Many questions in the context of potentially bifurca-

tion-induced tipping in applications may be more
robustly assessed with these new methods. We presented
the example of the desertification of the Green Sahara.
Applying our methods to paleoclimate model data reveals
that this archetype of abrupt climate change is indeed
associated with a weakening of negative feedback, in the
underlying physical system. This finding has crucial
implications for the existence of similar instabilities in
the current climate and the potential crossing of tipping
points in the context of ongoing anthropogenic global
warming.
We stress that, in general, the rather specific red noise

model need not be a good fit for observed time series
without first performing an adequate analysis. In most
cases, it will rely on a physical understanding of the
underlying dynamics. In order to apply our methods to
data concerning the desertification of the Western Sahara,
we have posited such a conceptual model and performed an
analysis of model consistency and system stability based on
the ACS and PSD of the available model data. The results
allow for the attribution of the previously observed increase
in variance before the transition to a destabilization of the
system measured by its linear restoring rate. In the absence
of such confirmation, changes in the driving noise of the
system could not be excluded as the main cause for
observed critical slowing down.

The GitHub repository RedNoiseEstimatorComparison
[51] can be used to access the code generating all figures in
this manuscript. Therein, numerical implementations of all
discussed methods are included.
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