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Optimizing the energy efficiency of driving processes provides valuable insights into the underlying
physics and is of crucial importance for numerous applications, from biological processes to the design
of machines and robots. Knowledge of optimal driving protocols is particularly valuable at the
microscale, where energy supply is often limited. Here, we experimentally and theoretically investigate
the paradigmatic optimization problem of moving a potential carrying a load through a fluid, in a finite
time and over a given distance, in such a way that the required work is minimized. An important step
towards more realistic systems is the consideration of memory effects in the surrounding fluid, which are
ubiquitous in real-world applications. Therefore, our experiments were performed in viscous and
viscoelastic media, which are typical environments for synthetic and biological processes on the
microscale. Despite marked differences between the protocols in both fluids, we find that the optimal
control protocol and the corresponding average particle trajectory always obey a time-reversal symmetry.
We show that this symmetry, which surprisingly applies here to a class of processes far from
thermal equilibrium, holds universally for various systems, including active, granular, and long-range
correlated media in their linear regimes. The uncovered symmetry provides a rigorous and versatile
criterion for optimal control that greatly facilitates the search for energy-efficient transport strategies in a
wide range of systems. Using a machine learning algorithm, we demonstrate that the algorithmic
exploitation of time-reversal symmetry can significantly enhance the performance of numerical
optimization algorithms.
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I. INTRODUCTION

The increasing quest of energy-efficient machines and
processes is not limited to macroscopic length scales.
Because of ongoing miniaturization, micro- and nano-
scopic machines are within reach, and there is a great
need for optimal control strategies that enable their efficient
operation [1,2]. This search is also motivated by biological
engines (molecular motors), which achieve remarkable
efficiencies even at high frequencies and in the presence
of liquid environments [3,4]. At first glance, this seems to
be in contradiction with conventional heat engines where
maximal efficiency is only reached for infinitely slow, i.e.,
quasistatic motion [5–9]. Recent studies of molecular
machines suggest that by regulating their power according

to the external resistance, excessive dissipation can be
avoided [10,11].
The energy-efficient operation of nanomachines is a

specific example of a finite-time, (near-)optimal driving
process [11–19]. Such processes are not only important for
small-scale robotic applications [1,2,20] but also in various
other fields like plant physiology [21] and molecular
biology [22], as well as classical [14] and quantum
information processing [13,23]. As a generic example of
a finite-time optimal process, theoretical studies have
considered the most energy-efficient dragging of a
micron-sized particle through a viscous environment.
Surprisingly, this is achieved by a nonsteady forcing with
jump discontinuities at the beginning and end [12,18].
So far, experimental and theoretical studies on optimal

driving processes have mainly considered viscous envi-
ronments, which remain in equilibrium in the presence of a
driven particle. Typically, however, molecular motors or
microrobots operate within more complex surroundings.
Common environments are viscoelastic media (e.g., intra-
cellular plasma [24], blood [25], polymeric gels [26,27],
micellar solutions [28], or colloidal suspensions [29,30]),
which do not remain in equilibrium during operation due to
their slowly relaxing microstructure. Such relaxation
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processes lead to pronounced memory effects, i.e., non-
Markovian behavior of driven particles in such media,
which are absent in purely viscous (memory-free)
liquids [31,32].
Here, we experimentally and theoretically investigate the

optimal control problem of translating optical tweezers
containing a Brownian particle over a given distance within
a given time, with minimum average work performed on
the particle. In viscous liquids, our experiments confirm
previously predicted driving discontinuities at the begin-
ning and the end of the protocol and a constant driving
power in between [12]. For viscoelastic fluids, however, no
constant driving regime is found due to the presence of
memory effects. Astonishingly, despite the fundamentally
different optimal protocols in viscous and viscoelastic
fluids, we find that both the mean particle trajectory and
the protocol for optimal control exhibit a time-reversal
symmetry. Starting from a generalized Langevin equation
(GLE), we theoretically prove that this symmetry generally
arises irrespective of the specific memory kernel or noise
property, in both the overdamped and underdamped
regimes, as long as all forces are linear. Therefore, time-
reversal symmetry allows a clear distinction to identify
optimal control in various systems including granular [33]
and active [34,35] media, and fluids with hydrodynamic
backflow [36] and anomalous diffusion [37]. Beyond their
implications for the optimal operation of micromachines in
complex environments, our findings suggest that the use of
symmetry considerations is a powerful tool to significantly
expedite optimization problems.

II. EXPERIMENTAL SETUP

Our experiments were performed using spherical silica
particles (diameter ≈ 2.7 μm) suspended in a fluid con-
tained in a sample cell with 100 μm height. In addition to a
purely viscous water-glycerol mixture (1∶1), we used a
viscoelastic solution composed of cetylpyridinium chloride
monohydrate (CPyCl) and sodium salicylate (NaSal) (for
details, see Appendix A). At the used concentration of
8 mM, the solution forms a wormlike micellar micronet-
work [38]. We experimentally determined the relaxation
time of that network to τb ≈ 17 s (see Appendix B). A laser
beam (532 nm) was focused with an objective (NA ¼ 1.45,
100x) into the midplane of the sample cell [see Fig. 1(a)],
where it created a parabolic optical potential

VðX; λÞ ¼ κ

2
ðX − λÞ2: ð1Þ

Here, κ denotes the trap stiffness, X the particle position,
and λ the time-dependent trap center location, which is the
control parameter. Experimentally, a dynamical variation of
λ with time t was realized by translating the sample cell
relative to a static optical trap. The positions of the particle
and the trap were determined by digital video microscopy

with a spatial and temporal resolution of 5 nm and 10 ms,
respectively. All experiments were performed at a sample
temperature of 25 °C. We applied protocols that shift the
trap between an initial λðt ¼ 0Þ ¼ 0 and a final position
λðtfÞ ¼ λf within the time interval tf [see Fig. 1(b)]. After
each protocol, we waited for the system to fully equilibrate.
Thus, hXð0Þi ¼ λð0Þ ¼ 0 for each run.
The work W exerted on the particle during such proto-

cols is determined according to [39,40]

W½λ; X� ¼
Z

tf

0

λ̇
∂V
∂λ

dt ¼ κ

Z
tf

0

λ̇ðλ − XÞdt: ð2Þ

Because W fluctuates between individual protocols due to
thermal noise, each measurement was repeated at least 100
times to yield mean values hWi with a relative statistical
error less than 1%. In the following, we determine the
optimal protocol λ� which requires the smallest hWi.

III. OPTIMAL CONTROL IN VISCOUS LIQUIDS

For viscous liquids, the optimal protocol λ� is known to
exhibit symmetric jumps at t ¼ 0 and t ¼ tf and a constant
trap velocity in between [12] (see Appendix C). Such
protocols are fully quantified by the jump height Δλ.
Figure 2(a) shows experimental (solid lines) and ideal
(dashed lines) protocols for Δλ ¼ 0, 0.4, and 1 μm with
λf ¼ 2 μm and tf ¼ 1 s. Since the acceleration of the
translational stage is finite, instantaneous jumps cannot
be perfectly realized in experiments. Compared to ideal
protocols, the inertia of the stage leads to deviations at
the beginning and the end of λðtÞ and slightly increases the
time during which the optical trap exerts work on the
particle. To take this effect into account, when calculating
the work [Eq. (2)], the upper integration limit was increased
accordingly (see Appendix B).
Figure 2(b) shows the experimentally determined mean

work hWi (black symbols), which exhibits a minimum at

FIG. 1. (a) Colloidal particle trapped in optical tweezers. The
relative movement of the trap center λ is achieved by translating a
piezo-actuated sample stage. (b) Protocol λðtÞ describing the
transfer of the trap center from its initial λð0Þ ¼ 0 to its final
position λðtfÞ ¼ λf during the time tf . Note that λ� corresponds to
the protocol of minimum work.
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Δλ� ≈ 0.5 μm. Despite the above-mentioned experimental
limitations in realizing ideal jumps, our data are in good
agreement with theoretical predictions for protocols with
infinitely fast jumps. To match the theoretical prediction
with the experiments, we use the relaxation time τ0 ¼
0.35 s calculated from the measured equilibrium distribu-
tion and the mean squared displacement of the particle in
the static trap (see Appendix B). Without any adjustable
parameters, the theory then gives Δλ� ¼ 0.41 μm (black
line) [12], which agrees well with the experimental
findings.
Mean particle trajectories x ¼ hXi corresponding to the

executed protocols are plotted in Fig. 2(c). Interestingly, we
find that, only near the optimal protocol, x obeys time-
reversal symmetry, which can be formally written as

fðtÞ ¼ −fðtf − tÞ þ fðtfÞ; ð3Þ

with f ≡ x. This property becomes even clearer when the
deviation from time-reversal symmetry of x is quantified.
For this purpose, we introduce the asymmetry parameter

Af ¼ 1

tf

Xtf=2
t¼0

½fðtÞ þ fðtf − tÞ − 2fðtf=2Þ�2Δt; ð4Þ

with Δt corresponding to the temporal resolution. The
asymmetry parameter Af is zero for time-symmetric

functions f, and it increases with increasing asymmetry
[note that fð0Þ ¼ 0, namely, λð0Þ ¼ 0 by choice and
without loss of generality, and xð0Þ ¼ λð0Þ ¼ 0 due to
the relaxed initial condition]. For an illustration of Af, we
refer to Fig. 10 in Appendix D.
Figure 2(b) shows the asymmetry parameter Ax defined

in Eq. (4) evaluated for f ¼ x, versus Δλ, which exhibits a
minimum at the experimentally obtained ideal protocol at
Δλ� ≈ 0.5 μm (symbols). In agreement with the experi-
mental findings, the theoretically predicted trajectories for
the perfectly symmetric protocols (with instantaneous
jumps) also lead to coinciding minima of hAxi and hWi.

IV. SYMMETRY PROOF

As will be demonstrated below, the occurrence of time-
reversal symmetry of both x� and λ� is a distinctive and
universal property of a wide class of optimal processes. To
prove this surprising observation, we start from a general
GLE [41–46],

mẌ þ
Z

t

−∞
Γðt − t0ÞẊðt0Þdt0 ¼ −∇V þ νðtÞ; ð5Þ

with an arbitrary memory kernel Γ, zero-mean noise ν,
and particle mass m. We further assume that the potential
V is parabolic (as is the case for an optical trap), rendering
the GLE linear in X and λ. Notably, no further restrictions

FIG. 2. (a) Experimental (solid lines) protocols for the motion of an optical trap that is displaced by λf ¼ 2 μmwithin the time tf ¼ 1 s
through a viscous fluid. Different protocols are characterized by their jump height Δλ. The dashed lines correspond to protocols with
ideal infinitely fast jumps at the start and end of the protocol. The optimal protocol (green) λ� corresponds to Δλ� ¼ 0.4 μm [see
Eq. (C2) in Appendix C]. (b) Experimentally measured mean work hWi (black) and asymmetry parameter hAxi (orange) as functions of
Δλ (symbols). The minima of hWi and hAxi are positioned at the optimal protocol λ�, in agreement with theoretical predictions (solid
lines). The fact that hAxi ≈ 0 for λ� suggests that both λ and x are time symmetric for optimal control. Error bars correspond to the
standard error of the mean (SEM). (c) Average particle trajectories x ¼ hXi normalized by the position at the end of the protocol xðtfÞ
corresponding to the protocols shown in panel (a).
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are applied to Γ or ν. The latter may be a colored or a non-
Gaussian noise, and we do not restrict our considerations
to systems obeying the fluctuation-dissipation relation
Γðjt − t0jÞ ∝ hνðtÞνðt0Þi. Within such assumptions, Eq. (5)
describes the dynamics of a broad class of systems,
including granular media [33], glasses in their ergodic
regime [47,48], linear viscoelastic fluids [44], polymer
condensates [49], particles in bacterial baths [34], and
even tracers in molecular fluids [50]. The above GLE also
applies to memory-free, viscous liquids by using delta-
correlated kernels. Furthermore, the overdamped limit,
which is the relevant regime in our experiments, is readily
included by taking the limit m → 0.
Based on Eq. (5), we obtain general implications and

nonimplications between optimality and time-reversal sym-
metry of the corresponding protocol λ and the mean
observable (trajectory) x ¼ hXi. The results are summa-
rized in Fig. 3. Here, we outline the main idea of the proof,
which is described in detail in Appendix D.
First, all nonimplications can be proved by simple

counterexamples (see Appendix D 1). For instance, the
nonimplication “time-reversal symmetry of λ⇏ time-
reversal symmetry of x” becomes immediately obvious
by considering an entirely linear protocol λðtÞ ¼ ðλf=tfÞt,
which leads, in a purely viscous, overdamped system, to an
exponentially relaxing trajectory that is clearly not sym-
metric under time reversal.
Next, by rewriting the work as a functional of either x or

λ only, one can show that optimality directly implies time-
reversal symmetry. Because the confining potential is
quadratic, both in λ and x, the functionals are also
quadratic, from which the symmetry directly follows.
Concretely, as we explicitly show in Appendix D 2 based
on Eqs. (2) and (5), the mean work can be expressed as the
functional of x,

hWi ¼
Z

tf

0

Z
t

0

Γðt − t0ÞẋðtÞẋðt0Þdt0dtþm½ẋðtfÞ2�=2

þ κ½xðtfÞ − λf �2=2þ C; ð6Þ

where C encapsulates terms that are independent of the
process during t∈ ½0; tf � and therefore irrelevant for the
optimization or symmetry property. To derive Eq. (6), we
have further made use of the fact that hWi is independent of
the noise level, which is a consequence of the linearity of
the GLE. By applying appropriate coordinate transforma-
tions, one can show that the functional in Eq. (6) is invariant
under time reversal of x, irrespective of the particular
memory kernel Γ. Specifically, any trajectory x and its
time-reversed image x̃ðtÞ≡ −xðtf − tÞ þ xðtfÞ yield the
same average work, hW½x�i≡ hW½x̃�i. Given the quadratic
form of the work functional, we expect only a unique
extreme, such that x� ≡ x̃�, implying that optimal trajecto-
ries are always time-reversal symmetric. Similarly, by
explicitly making use of causality of the stochastic process,
we can express the mean work as a quadratic functional of λ̇
convoluted with the response function Φ [see Eq. (D20) in
Appendix D 2]. Analogous arguments then also imply that
optimal protocols λ� must be time-reversal symmetric.
Finally, to show the reversed implication, we reexamine

the work functional (6). Optimal trajectories x� are char-
acterized by a vanishing variation of the work δhWi with
respect to all variations of x� that satisfy δxð0Þ ¼
δxðtfÞ≡ 0. Using variational calculus and some integral
manipulations, we find that δhWi ¼ 0, if and only if

d
dt

�Z
tf

0

Γðjt − t0jÞẋ�ðt0Þdt0
�
¼ 0; ∀ t∈ ½0; tf �: ð7Þ

See Appendix D 4 for a derivation. In addition, for all
time-symmetric protocols, one can show that any time-
symmetric mean solution xðtÞ of Eq. (5) for t∈ ½0; tf �
fulfills the equality

Z
tf

0

Γðjt − t0jÞẋðt0Þdt0 ¼ κ½λf − xðtfÞ� ð8Þ

as given in Eq. (D25) in Appendix D 4. Realizing that the
equality (8) readily implies the condition (7), it follows that
hWi is optimal whenever x and λ are both time-reversal
symmetric.
Overall, we have thus shown that the simultaneous time-

reversal symmetry of both x and λ is a necessary and
sufficient condition for optimal control. Importantly, this
holds for all linear GLE models.

V. OPTIMAL CONTROL
IN VISCOELASTIC FLUIDS

To experimentally test the generality of the predicted
symmetry and to explore the generic features of optimal
control in non-Markovian environments, we perform drag-
ging experiments in a viscoelastic micellar fluid. To realize
experimental variations around λ�, we first obtain a
theoretical prediction regarding the optimal protocol. Our
calculations are based on previous studies, demonstrating

FIG. 3. Diagram showing implications (⇒) and nonimplica-
tions (⇏) between time-reversal symmetry [defined in Eq. (3)] of
the protocol λ and mean particle trajectory hXi ¼ x, and opti-
mality with respect to the work required, for control processes in
linear media. Optimal control is characterized by time-reversal
symmetry of both λ and hXi.
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that the memory kernel of micellar viscoelastic solutions is
well described by a single exponential decaying with the
bath stress-relaxation time τb [28,44,49].We further treat the
dynamics in the overdamped limit because the inertial
effects in our experimental system are negligible. As a
consequence, the motion of a colloidal particlewithin such a
Maxwell fluid is experimentally observed to be in agreement
with two coupled overdamped equations [51,52],

τpẊ ¼ −
κ

κb
ðX − λÞ − ðX − XbÞ þ ξp; ð9Þ

τbẊb ¼ −ðXb − XÞ þ ξb: ð10Þ

Here,X andXb correspond to the positions of the colloid and
a fictitious bath particle connected by a harmonic springwith
stiffness κb, and ξp, ξb are uncorrelated Gaussian white
noises with variances 2kBTτi=κb, i ¼ p, b, respectively,
and τp ≔ γ=κb.

Expressing the work as a functional of hXi and hXbi
using Eqs. (2) and (9), and incorporating Eq. (10) as a
dynamical constraint via a Lagrange multiplier, we con-
struct an appropriate cost functional [15], for which the
Euler-Lagrange equations yield x�; λ� (see Appendix E).
The theoretically predicted optimal protocol, as realized

in our experiment in a viscoelastic micellar solution, is
shown as a green solid line in Fig. 4(b). As expected, λ� and
x� display time-reversal symmetry. Similar to theMarkovian
case (even though hardly visible here), the optimal protocol
exhibits jumps at the beginning and end. However, in non-
Markovian systems, λ� contains no linear parts. Only in the
quasistatic limit tf → ∞ where the memory kernel has
decayed to zero, the protocol converges to the Markovian
case and becomes linear.
To experimentally test the theoretically calculated λ�, we

vary the protocol around this prediction. Variations around
λ� are achieved by a variation parameter α, with α ¼ 0.5

FIG. 4. (a) Sketch visualizing the used Maxwell model with a fictitious bath particle with friction γb, coupled to the tracer particle with
friction γ with a linear spring with stiffness κ. Only the tracer feels forces from the optical potential. (b) Different time-reversal
symmetric control protocols λðtÞ executed, which are a linear combination of a tanh function (blue line), the predicted optimal protocol
(green line), and a steplike function (purple line) weighed by a parameter α (for details, see Appendix B). We depict the corresponding
particle trajectories in Fig. 8 in Appendix B. (c) Experimentally measured mean work hWi (black symbols) showing a distinct minimum
close to α ¼ 0.5 matching the predicted optimal protocol. Theoretical predictions (black line) using the Maxwell model [Eqs. (9) and
(10)], which are offset by −290kBT, are in good qualitative agreement with the experimental data. The asymmetry parameter Ax [orange,
Eq. (4)] quantifies the deviation of the mean trajectory x from time-reversal symmetry and exhibits a minimum at the same position as
hWi. Error bars again show the SEM. (d) Measured time resolved power hdW=dti traces for the protocols shown in panel (b). Individual
protocols are offset to negative values by 200kBT for better readability; gray lines indicate the corresponding y-axis origin. Protocols
including a jump show strong peaks at the beginning and end. The work trace for the optimal protocol (green line) shows a complex
nonlinear and nonmonotonic shape. The matching curve from numerically solving the equation of motion (black line) is in good
agreement with the experiment.
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corresponding to λ� (see Appendix B). Exemplarily, Fig. 4
shows experimental protocols for three different values of
α, all of them exhibiting time-reversal symmetry as
suggested by our theoretical considerations. Because the
friction in the viscoelastic fluid is larger than that in the
viscous water-glycerol mixture, the mean optical trap
velocity had to be reduced by setting λf ¼ 3 μm and
tf ¼ 10 s. Figure 4(c) shows the measured averaged work
hWi versus α, indicating a pronounced minimum at
α ¼ 0.5. In addition, the asymmetry of the mean trajecto-
ries hAxi exhibits a minimum for the optimal protocol,
which is in excellent agreement with the prediction of time-
reversal symmetry of the optimal process independent of
the solvent’s memory effects.
The appearance of time-reversal symmetry of both λ and

x for the optimal solution in non-Markovian systems (see
Appendix B, Fig. 8) is particularly astonishing in view of
the strongly time-asymmetric nature of the overall process,
which starts in thermal equilibrium and ends in a state
where the particlewithin the optical trap and the surrounding
are anisotropic and out of equilibrium. This asymmetry
becomes visible in the time-resolved power hdW=dti, shown
in Fig. 4(c) for different time-symmetric protocols, which is
clearly not time symmetric even for λ� (green curve). In fact,
hdW=dti is strongly time-asymmetric and nonmonotonic,
and the largest contribution to the applied work occurs
towards the end of the optimal protocol. This modulated
power input differs significantly from the Markovian case,
where optimal control is characterized by constant power
between the jumps (see Appendix B 2, Fig. 9).
The nonlinear behavior of λ� and asymmetry of hdWi in

a viscoelastic fluid can be rationalized by energetic con-
siderations. At the beginning of the protocol, the fluid is
isotropic and fully relaxed. In this regime, the particle can
be initially dragged with relatively low energetic costs even
at high trap velocities. With increasing particle displace-
ment, however, the viscoelastic microstructure becomes
increasingly distorted, thereby accumulating elastic energy
and thus increasing the particle resistance against the trap
motion. Therefore, to avoid an excessive increase of work,
the trap velocity should be rather slow. However, since the
protocol must be completed within tf , the trap velocity
cannot be slow over the entire protocol. This conflict is
resolved by slowing down the trap for t < tf=2 and
accelerating it afterward. With this strategy, elastic energy
stored in the fluid becomes largest towards the end of the
protocol, when the trap has already stopped (at λf ) and
therefore exerts no more work on the particle. We remark
that these arguments are in good agreement with the
observation that molecular motors modulate their driving
depending on their resistance [11].

VI. APPLICATION IN MACHINE LEARNING

Finally, we aim to address an important practical
implication of the uncovered symmetry in the context of

computational optimization. In this field, recent progress
has been made by incorporating machine learning tech-
niques [53–55]. To demonstrate the benefit of the sym-
metry property in this context, we trained a deep neural
network to find the optimal control protocol in a viscous
overdamped system, following an algorithm similar to
Ref. [54]. Instead of training the network with the objective
of minimizing the work (Fig. 5, black line), we also trained
with the objective of minimizing the asymmetries of the
protocol and mean trajectory Ax þ Aλ (Fig. 5, orange line).
In both cases, the learned protocol converges to the optimal
one, demonstrating that the asymmetry parameter can be
used as an alternative (or additional) cost functional for the
optimization. Moreover, for control in more complex
environments, for which generally no analytical solution
is available, the asymmetry parameter offers the essential
advantage that its value at the global optimum
(Ax þ Aλ ≡ 0) is always and a priori known. Therefore,

FIG. 5. We train a deep neural network (DNN) with the
objective of minimizing the work hWi (black lines), or the
overall asymmetry Ax þ Aλ (orange lines). (b) Shows the work,
(c) shows the total asymmetry during training. The lines depict
the averages of 100 independent training runs, the shaded regions
indicate standard derivations. Both objectives lead to successful
learning. Training on Ax þ Aλ has the crucial advantage that the
globally optimal value Ax þ Aλ → 0 is a priori known. As
illustrated in (a) the network has 5 layers of f1; 4; 4; 10; 1g
nodes and training is done by a Monte Carlo algorithm, similar to
Ref. [54], see Appendix F for details.
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unlike the work, the asymmetry reveals whether the true
work optimum has been reached.

VII. CONCLUSION AND OUTLOOK

With experiments and theoretical calculations, we have
studied the optimal control of an optical trap dragging a
colloidal particle through viscous (memory-free) and
viscoelastic (non-Markovian) baths. Despite the very
different response of colloidal particles in both systems,
we find that the optimal protocols and the corresponding
mean particle trajectories always exhibit time-reversal
symmetry. Remarkably, such symmetry, which is a hall-
mark of thermal equilibrium, reappears in these systems
far away from equilibrium but only when driven in the
most energy-efficient way. The symmetry is rather uni-
versal, applying to all systems in the regime where the
dynamical equations are approximately linear in the
system’s variable and protocol parameter. Thus, we expect
it to also be valid in systems with long-ranged memory,
such as active fluids [34,35] or fluids with hydrodynamic
backflow [36]. This symmetry property of optimal control
is of immediate relevance for the efficient operation of
nanomachines, low-energy swimming mechanisms of
microrobotic systems, and also energy-efficient informa-
tion processing [14,56]. In machine-learning based,
numerical, and exact optimization, the a priori knowledge
of the uncovered time-reversal symmetry provides a
strong constraint for the applicable function space and
will thus significantly improve optimization algorithms.
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APPENDIX A: EXPERIMENTAL METHODS

1. Optical trap setup

The optical tweezers setup used consists of a 532 nm
laser (Coherent Verdi V2) that is amplitude modulated with
an acousto-optic deflector (AOD, AA opto-electronics
DTSXY-400). The laser power in front of the AOD was

adjusted to 250 mW using a λ=2 plate and a polarizing
beam splitter. As a result, the laser power after the AOD
remained below 100 mW. A 100x objective (Olympus
Apochromat MPLAPON-Oil 100x NA ¼ 1.45) was used
to focus the laser beam into the sample cell. To manipulate
the sample position, a 3-axis piezo-driven stage (piezo-
concept LT3) was used. Its position was controlled using
the analog input with a signal supplied with a sampling rate
of 5 kHz by a PCIe card (National Instruments PCIe-6351).
At the same time, the actual position of the stage was
measured from the analog output signal. Differences
between the set and actual positions occurred when the
stage position was adjusted quickly. The sample temper-
ature was controlled by resistive heating of the sample stage
and microscope objective (Okolab). The temperature was
kept at 25 °C throughout all experiments. For video
microscopy, the same microscope objective was used to
give an image on a digital camera (Basler ace 2 a2A3840-
45umPRO). Videos were acquired during the experiment at
a frame rate of 100 frames per second.

2. Sample preparation

The viscoelastic solution was prepared by dissolving
equimolar amounts of cetylpyridinium chloride monohy-
drate (CPyCl) and sodium salicylate (NaSal) in milipor
water. The solution was stirred overnight to ensure equili-
bration of the micellar network. In this study, we used an
8 mM solution.
Sample solutions were prepared by dispersing colloids

(2.73 μmSiO2, microParticles GmbH) in either a water-
glycerol mixture or a viscoelastic solution using an
ultrasonic bath. Samples were prepared by filling glass
capillarieswith an inner diameter of 100 μm(CMScientific)
with the sample solution. The capillaries were closed with a
combination of wax and epoxy resin. After filling the
capillary, the samples were equilibrated in the measurement
setup until the measured mean work showed no drift.

APPENDIX B: MEASUREMENT PROCEDURES

All protocols consisted of moving the trap center λ
according to a specific protocol over a distance λf in a time
tf . The trap stiffness κ remains constant. Translation of the
trap center was technically realized by translating the
sample with a piezo-driven stage relative to the static trap.
Even though this makes the temporal resolution of the
optical trap position relative to the sample slower compared
to, e.g., an AOD, our approach has some advantages: First,
the optical path of the trap is not altered during translation,
which avoids spatial changes to its shape and stiffness. In
addition, a resting optical trap in the reference frame of the
camera makes it possible to considerably reduce the field of
view of the camera and thus to achieve a high temporal
resolution of the particle’s motion. In a single measurement
run, the protocol was executed in both the forward and
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backward directions consecutively, ultimately ending up in
the same trap position. Before and after each individual
protocol, the system was allowed to relax for a specified
time interval trel.

1. Variation of optimal protocols in experiments

To experimentally investigate the optimality of protocols
predicted by the theory, the protocols were systematically
varied as a function of one parameter.

a. Protocol variations for viscous samples

For the (Markovian) case of a particle in a viscous fluid,
the optimal protocol for the shifting of a trap center in a
finite time is given by Eq. (C2). The optimal protocol,
which has symmetric jumps of height Δλ� at the beginning
and end, can be seen as a member of the family of functions
described by

λð0 < t < tfÞ ¼
λf − 2Δλ

tf
tþ Δλ: ðB1Þ

To check the optimality of λ�, protocols defined by Eq. (B1)
with varying jump height Δλ were executed. Examples
comparing the theoretical given shape of the protocol and
the realization in experiments, together with the resulting

mean particle trajectories, are shown in Fig. 6. In this
figure, the relaxation of the particle after the protocol is
finished can be observed.
To calculate a prediction for the optimal jump height

Δλ�, it is necessary to know the relaxation time of the
particle in the trap τ0. The latter is given as the quotient of
particle friction γ0 and trap stiffness κ, both of which can be
determined from equilibrium measurements [57]. The trap
stiffness κ was extracted by fitting a parabolic function to
the potential derived from the equilibrium distribution
using the Boltzmann factor. Using the derived trap stiffness
κ ¼ 0.38ðμN=mÞ, the friction coefficient γ0 was sub-
sequently calculated from the initial slope of the mean
squared displacement (see Fig. 7). This procedure gave a
result of 0.13ðμNs=mÞ for γ0 and therefore τ0 ¼ 0.35 s.

b. Protocol variations for viscoelastic samples

The optimal protocol for the viscoelastic solution, i.e.,
the non-Markovian case, is more complex. In Appendix E,
we describe how we theoretically obtain the exact and
general expression for it. The optimal protocol depends on
the system parameters γ, γb, κb, and κ, defined in Eqs. (9)
and (10), which first need to be determined experimentally
before the optimal protocol can be executed in the experi-
ment. To this end, we first conducted test experiments.
These experiments consisted of shifting the trap with
constant velocity λf=tf. The average work hWexpi calculated
from experimental data was compared to simulation data.
The difference in average work between simulation and
experiment was minimized using a gradient descent algo-
rithm by adjusting γ, γb, and κb in the simulation model.
The resulting parameter set was used to calculate λ�.
To enable a protocol variation in dependence of a single

parameter (like in the Markovian case), we constructed a

FIG. 6. (a) Protocols and (b) mean particle trajectories from
experimental data for the viscous system, for the same set of
experiments as shown in Fig. 2. Different from Fig. 2, here we
also show the relaxation period of the mean particle trajectory
after tf. Note that Δλ ¼ 0.4 yields the optimal control. Only for
this case, both λ and x exhibit time-reversal symmetry on
0 < t < tf . The protocol duration and total trap displacement
are tf ¼ 1 s and λf ¼ 2 μm.

FIG. 7. Mean squared displacement (MSD) of the particle in the
stationary trap to experimentally determine the friction coefficient
γ0. Symbols show the ensemble-averaged data from experiments;
error bars correspond to the SEM. The solid line shows the
analytical expression for the MSD of a 2.73-μm colloid in a
harmonic trap plotted using the fitted parameters. The trap
stiffness κ is fitted from the positional distribution in equilibrium,
and γ0 is derived afterward from the initial slope of the MSD [57].
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superposition of three different protocols in dependence of
one parameter α. For the three base functions, we chose a
tanh function [λT , given in Eq. (B3)], the optimal protocol
[λ�, see Appendix E], and a step function featuring two
symmetric jumps at the beginning and the end [λS, given in
Eq. (B4)]. These were linearly combined [see Eq. (B2)],
i.e., added up, each one multiplied with an individual
weighting factor wi ≤ 1, with i ¼ T; S;O, where “O” is for
“optimal.” The weighting factors can be expressed via a
single mixing parameter α according to Eqs. (B5)–(B7):

λðtÞ ¼ wTλTðtÞ þ wSλSðtÞ þ wOλ
�ðtÞ; ðB2Þ

λTðtÞ ¼
λf
2

�
tanh

�
t −

tf
2

�
þ 1

�
; ðB3Þ

λSðtÞ ¼
8<
:

0 for τ < 0

λf=2 for 0 ≤ τ < tf
λf for τ ≥ tf ;

ðB4Þ

wO ¼ 1 − j2α − 1j; ðB5Þ

wT ¼ maxð1 − 2α; 0Þ; ðB6Þ

wS ¼ maxð2α − 1; 0Þ: ðB7Þ

By varying the mixing parameter α, the individual con-
tributions can be controlled. Notably, α ¼ 0 represents a
mere tanh function [λðtÞ ¼ λTðtÞ], α ¼ 0.5 gives exactly
the optimal protocol [λðtÞ ¼ λ�ðtÞ], and α ¼ 1 is the pure
step function [λðtÞ ¼ λSðtÞ]. Experimental realizations of
these edge cases with corresponding mean particle trajec-
tories are shown in Fig. 8. In between these edge cases, the
protocols are a superposition of the two respective func-
tions. How we theoretically determine λ� for the visco-
elastic case considered here is explained in Appendix E.

2. Evaluation of experimental data

The particle position was tracked by analyzing video
recordings captured at a frame rate of 100 frames/s using a
custom tracking algorithm based on Ref. [58]. The position
of the piezo stage and the exposure active signal of the
camera were recorded at 5 kHz using a PCIe card, which
allowed us to synchronize the stage and particle positions
a posteriori.
The work performed during an individual protocol

was calculated in the framework of stochastic thermody-
namics using Stratonovich integrals [see Eq. (2)]. Since the
trajectory was only sampled at finite intervals Δt ¼ 0.01 s,
the integral transformed into a sum:

W ¼
XN−1

i¼1

∂V
∂λ jtiþ1

þ ∂V
∂λ jti

2
½λðtiþ1Þ − λðtiÞ�: ðB8Þ

The calculated work was then averaged over multiple
trajectories.
Because of the inertia of the stage, it did not reach its

final position λf at tf ¼ 1; 10 s but only about 0.1 s later. To
account for this contribution to the work, the time frame of
work calculation was extended until λ̇ ≈ 0. Similar con-
siderations must be made for the asymmetry parameter Ax:
The increased protocol time shifts the inflection point of the
symmetry operation to slightly later times. To account for
this, the time frame for calculating Ax was extended to t0f so
that the observed inflection point lies at t0f=2. For this
adjusted integration window, the asymmetry parameter of
the protocol Aλ was minimized.

APPENDIX C: MODEL AND THEORETICAL
PREDICTION OF OPTIMAL PROTOCOL

IN VISCOUS FLUID

The dynamics of the particle in the harmonic trap of
stiffness κ in the viscous fluid is described very accurately
by the Markovian overdamped Langevin equation

τ0Ẋ ¼ −ðX − λÞ þ ξ ðC1Þ

FIG. 8. (a) Protocols and (b) mean particle trajectories from
experimental data for the viscoelastic system, for the same set of
experiments as shown in Fig. 4. For the optical protocol
(α ¼ 0.5), both λ and x exhibit time-reversal symmetry on
0 < t < tf . Protocol duration and total trap displacement are
tf ¼ 10 s and λf ¼ 3 μm.
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with zero-mean, Gaussian white noise ξ with hξðtÞξðt0Þi ¼
2kBTτ0=κδðt − t0Þ, where τ0 ¼ γ0=κ denotes the relaxation
time in the trap and γ0 is the friction constant. The seminal
paper [12] showed that, in this case, the optimal protocol
has, at the beginning (t ¼ 0) and end (t ¼ tf ), two sym-
metric jumps of sizeΔλ� ¼ λf=ð2þ tf=τ0Þ and, in between,
increases linearly in time,

λ�ðtÞ ¼

8>><
>>:

0 t ¼ 0

ðΔλ�Þð1þ t=τ0Þ 0 < t < tf
λf t ¼ tf :

ðC2Þ

The corresponding optimal trajectories are fully linear,
x�ðtÞ ¼ Δλ�ðt=τ0Þ, and the optimal mean work takes the
value hW�i ¼ ðΔλ�Þγ0λf=τ0. Thus, in the viscous fluid,
optimal control is achieved, when the particle and trap both
exhibit a motion of the same constant speed Δλ�=τ0 for
0 < t < tf , akin to a steady state. In order to initiate this
joint constant-speed motion, the trap needs to abruptly
jump at time t ¼ 0, bringing the particle to the displace-
ment from the trap center, where the relaxation force is
constant and balanced with the trap’s speed.

APPENDIX D: THEORETICAL PROOFS

1. Counterexamples to show nonimplications
between symmetries and optimality

Here, we briefly show all nonimplications sketched in
Fig. 3 by giving two counterexamples. To this end, we
consider the case of an overdamped particle in a viscous fluid.
First, while a fully linear protocol λðtÞ ¼ ðλf=tfÞt possesses
time-reversal symmetry, the corresponding mean particle
trajectory violates it. This case is seen in Fig. 2(b), case
Δλ ¼ 0 (purple curve), consistent with the theoretical pre-
diction obtained by solving the LE (C1) for the linear
protocol, which yields an exponential relaxation in the
comoving reference frame: xðtÞ¼ðλf=tfÞ½t−τ0ð1−e−t=τ0Þ�.
We recall that τ0 ¼ γ0=κ denotes the trap relaxation time and
γ0 the friction coefficient. Thus, symmetry of λ⇏ symmetry
of x. This counterexample also demonstrates that symmetry
of λ⇏minimum hWi. As a second counterexample, consider
the protocol λð0Þ ¼ 0, λðt > 0Þ ¼ Mð1þ t=τ0Þ, with
M ¼ λf=ð1þ tf=τ0Þ, which has a single jump at t ¼ 0 and
no jump at time tf , and thus violates time-reversal symmetry.
However, the corresponding mean trajectory is given by
xðtÞ ¼ Mt and is thus time symmetric, showing that sym-
metry of x ⇏ symmetry of λ and that symmetry of x ⇏
minimum hWi.

2. Proof: Optimality ⇒ symmetry of x

Here, we provide more details of the proof that opti-
mality implies time-reversal symmetry of x. As a first step,
we express the work as a functional of x only. To this end,
we first simplify Eq. (2) by explicit integration of λ̇λ and

partial integration of λ̇X, taking into account the boundary
conditions, which yields

W½λ; X� ¼ κ

�
λ2f
2
− XðtfÞλf

�
þ κ

Z
tf

0

λðtÞẊðtÞdt: ðD1Þ

Next, substituting λ by

λðtÞ¼m
κ
ẌðtÞþ κ−1

Z
t

−∞
Γðt− t0ÞẊðt0Þdt0 þXðtÞ− κ−1νðtÞ;

ðD2Þ

which follows from solving the GLE (5) for λ, and taking
the noise average, we find the functional

hWi ¼ ðκ=2Þh½XðtfÞ − λf �2i − ðκ=2ÞhXð0Þ2i
þ ðm=2ÞhẊðtfÞ2i − ðm=2ÞhẊð0Þ2i

þ
Z

tf

0

Z
t

−∞
Γðt − t0ÞhẊðtÞẊðt0Þidt0dt

−
Z

tf

0

hẊðtÞνðtÞidt: ðD3Þ

We have used
R tf
0 Ẍ Ẋ dt ¼ ½Ẋ2�tf0 =2. Note that the first two

terms of Eq. (D3) are the increase of potential energy from
time 0 to tf , and the third and fourth terms are the increase
of kinetic energy. To proceed further, we make use of the
fact that the mean work is independent of the noise level.
While this is not directly obvious from Eq. (D3), one can
make it apparent as follows. Reconsidering Eq. (2) and
directly performing a noise average over it, we obtain

FIG. 9. Measured work increment hdW=dti traces over time
for selected protocols executed in a viscous fluid. Individual
protocols are offset to negative values by 300kBT for better
readability; gray lines indicate the corresponding y-axis origin.
The visible peaks result from jumps performed by λ. The work
trace for the optimal protocol (Δλ ¼ 0.4 μm, green line in the
middle) shows a constant work increment during the protocol
execution. This finding is in agreement with the theoretical
prediction, which, for the optimal protocol, is hdW=dti ¼
ðΔλ�=τ0Þ2τ0, for all 0 < t < tf .
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hWi ¼ κ
R tf
0 λ̇ðλ − xÞdt and conclude that hWi depends

only on the mean trajectory x, not on the fluctuations of
X. Then, because of the linearity of the GLE, the temporal
evolution of x is fully independent of the noise, so the same
holds for hWi. To formally see the noise independence of x,
we also take the noise average of the GLE (5), which,
together with the initial condition, yields

mẍðtÞ þ
Z

t

0

Γðt − t0Þẋðt0Þdt0 ¼ −κ½xðtÞ − λðtÞ�; ðD4Þ

i.e., x follows a deterministic (integro-differential) equa-
tion. Taken together, hWi itself is independent of the noise
level. Hence, we can evaluate Eq. (D3) in the noise-free
limit. For a vanishing noise level, statistical dependencies
between dynamical quantities disappear, so hẊðtÞẊðt0Þi→
hẊðtÞihẊðt0Þi¼ ẋðtÞẋðt0Þ and hẊðtÞνðtÞi → hẊðtÞihνðtÞi →
0, simplifying Eq. (D3). Finally, in the constant C, we
encapsulate all terms of Eq. (D3) that are independent of
the process during t∈ ½0; tf � (and thus play no role in the
optimization), allowing us to tighten the bounds of inte-
gration and leading to

hWi½x� ¼
Z

tf

0

Z
t

0

Γðt − t0ÞẋðtÞẋðt0Þdt0dtþm½ẋ2ðtfÞ�=2

þ κ½xðtfÞ − λf �2=2þ C; ðD5Þ

as given in the main text in Eq. (6).

This functional is invariant under time reversal. To show
this, we first consider only the integral term of hWi½x� and
perform the coordinate transformations t0 ¼ tf − t00 and
t ¼ tf − t̃, which leads to

Z
tf

0

Z
t

0

Γðt − t0Þẋðt0ÞẋðtÞdt0dt

¼
Z

tf

0

Z
tf

t̃
Γðt00 − t̃Þẋðtf − t00Þẋðtf − t̃Þdt00dt̃: ðD6Þ

Now, interchanging the order of integration and accord-
ingly adjusting the limits of the double integral [59],

… ¼
Z

tf

0

Z
t00

0

Γðt00 − t̃Þẋðtf − t00Þẋðtf − t̃Þdt̃dt00; ðD7Þ

and subsequently renaming t00 → t and t̃ → t0, we find

… ¼
Z

tf

0

Z
t

0

Γðt − t0Þẋðtf − tÞẋðtf − t0Þdt0dt: ðD8Þ

Comparing this result with the original integral in Eq. (D5),
we notice that each path x and the paths defined by
x̂ðtÞ≡�xðtf − tÞ þ Cs, with some arbitrary constant Cs,
give the same value of the integral term. However, among
the possible paths x̂ðtÞ, only the one with Cs ¼ xðtfÞ and a
negative sign of the xðtf − tÞ term is compatible with the
equilibrium initial condition and satisfies the constraint
x̂ðtfÞ ¼ xðtfÞ, such that the remaining contributions to
hWi½x� in Eq. (D5), in particular, the increase of potential
and kinetic energy, are also identical for x̂ and x. We
conclude that any given trajectory xðtÞ and its time-reversed
image x̂ðtÞ ¼ −xðtf − tÞ þ xðtfÞ yield the samework. Since
the work can be expressed as a quadratic functional of x
alone [see Eq. (D5)], we expect only a unique optimum,
such that optimal trajectories must satisfy x� ≡ x̂ and,
consequentially, must obey time-reversal symmetry.

3. Proof: Optimality ⇒ symmetry of λ

Here, we outline the proof that optimal protocols λ� are
time symmetric. First, we show how one can generally
express x as a functional of λ. To this end, we take the noise
average of the GLE (5), which, together with the equilib-
rium initial condition, yields Eq. (D4). To formally solve
Eq. (D4) for x, we apply a Laplace transformation,
f̂ðsÞ ¼ R∞

0 fðtÞe−stdt, and make use of the convolution
theorem, obtaining

−κx̂ðsÞ þ κλ̂ðsÞ ¼ mˆẍðsÞ þ Γ̂ðsÞ ˆ̇xðsÞ
¼ m½s2x̂ðsÞ − sxð0Þ − ẋð0Þ�
þ Γ̂ðsÞ½sx̂ðsÞ − xð0Þ�: ðD9Þ

Recalling xð0Þ ¼ 0, ẋð0Þ ¼ 0, and solving for x̂ðsÞ, we find

FIG. 10. Visualization of the symmetry property and the
asymmetry parameter Af. Consider the difference between the
two distances marked as red vertical lines [i.e., fðtÞ and
fðtfÞ − fðtf − tÞ]. For time-reversal symmetrical curves that
are point symmetrical around their center (black point), this
operation results in zero, and fðtfÞ ¼ 2fðtf=2Þ. Any deviation
from this symmetry leads to a remainder after subtraction of fðtÞ
and 2fðtf=2Þ − fðtf − tÞ, which can be positive or negative. The
absolute value increases with greater deviations. In order to
always obtain a positive value, the result of the subtraction is
therefore squared, giving rise to the definition of Af as given in
Eq. (4).
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x̂ðsÞ ¼ Φ̂ðsÞsλ̂ðsÞ; ðD10Þ

with the response function in the Laplace domain,

Φ̂ðsÞ ≔ κ

ms3 þ Γ̂ðsÞs2 þ κs
: ðD11Þ

Noting that λð0Þ ¼ 0 and thus sλ̂ðsÞ ¼ ½sλ̂ðsÞ − λð0Þ�, we
transform back to the time domain and find

xðtÞ ¼
Z

∞

0

Φðt − t0Þλ̇ðt0Þdt0: ðD12Þ

Assuming causality of the stochastic process implies that
any response function must satisfyΦðt < 0Þ ¼ 0, so we can
tighten the integration limits and finally find

xðtÞ ¼
Z

t

0

Φðt − t0Þλ̇ðt0Þdt0: ðD13Þ

Now, this expression can be used to replace x in the noise
average of Eq. (2), directly leading to the following
expression of the work as a functional of λ only,

hWi½λ� ¼ κλ2f
2

þ κ

Z
tf

0

Z
t

0

Φðt − t0Þλ̇ðtÞλ̇ðt0Þdt0dt: ðD14Þ

Starting from this functional, which is again quadratic in
λ, and repeating the analogous steps we used before to
prove time-reversal symmetry of x�, we readily find that λ�
possesses time-reversal symmetry, too.
Consistent with our findings, it was shown in Ref. [60]

using linear response theory that optimal protocols of
generic Hamiltonian systems in the fast-but-weak driving
regime are time symmetric.

4. Proof: Symmetry of x and λ ⇒ optimality

Finally, we show that the combined symmetry of x and λ
implies that the process is optimal. The main step of this
proof is to derive a generic condition on x for optimality via
variational calculus [leading to Eq. (7) in the main text].
To this end, we start from the work functional given in

Eq. (6). The variation of hWi½x�with respect to variations of
x that satisfy δxð0Þ ¼ δxðtfÞ ¼ 0 is generally given by

δhWi½xðtÞ; δxðtÞ� ¼
Z

tf

0

Z
t

0

Γðt − t0Þẋðt0ÞδẋðtÞdt0dt

þ
Z

tf

0

Z
t

0

Γðt − t0Þδẋðt0ÞẋðtÞdt0dt:

ðD15Þ

The second term of this last expression can be rewritten by
interchanging the integrals and renaming t → t0, t0 → t,
leading to

… ¼
Z

tf

0

Z
tf

t
ẋðt0ÞΓðt0 − tÞδẋðtÞdt0dt: ðD16Þ

Now, by using twice the identity, a ¼ jaj, ∀ a > 0, we can
combine both integral terms of δhWi from Eq. (D15) and
find

δhWi ¼
Z

tf

0

δẋðtÞ
Z

tf

0

Γðjt − t0jÞẋðt0Þdt0dt: ðD17Þ

Finally, integration by parts and using that, per the
definition, δxð0Þ ¼ δxðtfÞ ¼ 0, we obtain

δhWi ¼
Z

tf

0

δxðtÞ d
dt

�Z
tf

0

Γðjt − t0jÞẋðt0Þdt0
�
dt: ðD18Þ

Thus, trajectories that satisfy the condition

d
dt

�Z
tf

0

Γðjt − t0jÞẋðt0Þdt0
�
¼ 0; ∀ t∈ ½0; tf � ðD19Þ

automatically fulfill δhWi½xðtÞ; δxðtÞ� ¼ 0 for all variations
with δxð0Þ ¼ δxðtfÞ ¼ 0, which is a characteristic property
of optimal solutions. [The condition Eq. (D19) is identical
to Eq. (7) in the main text.]
For the sake of completeness, we note that, starting from

Eq. (D14), analogous steps yield the analogous condition

d
dt

�Z
tf

0

Φðjt − t0jÞλ̇ðt0Þdt0
�
¼ 0; ∀ t∈ ½0; tf �; ðD20Þ

for optimal protocols.
The second step of this part of the proof is to show that

symmetric control processes automatically satisfy the
condition (D19). We start by assuming that a given protocol
is time symmetric, i.e.,

λf ¼ λðtÞ þ λðtf − tÞ: ðD21Þ

Substituting λðtÞ and λðtf − tÞ in this equation, using the
noise-averaged GLE (D4), yields

λf ¼
1

κ

Z
t

0

Γðt− t0Þẋðt0Þdt0 þm
κ
ẍðtÞþxðtÞ

þ1

κ

Z
tf−t

0

Γðtf − t− t0Þẋðt0Þdt0 þm
κ
ẍðtf − tÞþxðtf − tÞ:

ðD22Þ

Now, transforming the coordinates of the second integral
(t0 ¼ tf − t00) and assuming that the trajectory x also obeys
time-reversal symmetry, which implies xðtÞ þ xðtf − tÞ ¼
xðtfÞ and ẍðtÞ þ ẍðtf − tÞ ¼ 0, we find
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κ½λf − xðtfÞ� ¼
Z

t

0

Γðt − t0Þẋðt0Þdt0

þ
Z

tf

t
Γðt00 − tÞẋðtf − t00Þdt00: ðD23Þ

Finally, using ẋðtf − tÞ ¼ ẋðtÞ, which is implied by the
time-reversal symmetry of x, and again the identity a ¼ jaj,
∀ a > 0, we find

κ½λf − xðtfÞ� ¼
Z

t

0

Γðjt − t0jÞẋðt0Þdt0

þ
Z

tf

t
Γðjt − t00jÞẋðt00Þdt00; ðD24Þ

which readily implies

Z
tf

0

Γðjt − t0jÞẋðt0Þdt0 ¼ κ½λf − xðtfÞ�; ðD25Þ

as given in Eq. (8) in the main text. It is easy to see that this
equality, which, as we have just shown, is fulfilled by all
processes with time-symmetric x and λ, readily implies that
condition (D19) is fulfilled. This finding further implies
that time-symmetric processes are generally optimal. We
note that this proof also holds in the overdamped limit.
We note that the work required to translate the trap can be

reduced if additional real-time information about the actual
particle position is acquired, e.g., by performing a meas-
urement at t ¼ 0 and modifying the protocol at t > 0
according to the measurement outcome [19]. In the
presence of such measurements, the symmetry property
discussed here is lost.

APPENDIX E: MODEL AND THEORETICAL
PREDICTION OF OPTIMAL PROTOCOL

IN VISCOELASTIC FLUID

Here, we derive the optimal protocols for the particle in a
Maxwell fluid described by the overdamped limit of the
GLE (5), where Γðt − t0Þ ¼ 2γδðt − t0Þ þ κbe−ðt−t

0Þ=τb and
hνðtÞνðt0Þi ¼ 2kBT½γδðΔtÞ þ γbe−jΔtj=τb �, with the bath
stress-relaxation time τb. Equivalently, the dynamics of
X can be described by Eqs. (9) and (10), as given in the
main text.
As a first step, we express the work as a functional of x

and xb ≔ hXbi only. To this end, we use the noise average
of Eqs. (9) and (10), which is

τpẋ ¼ −ðkþ 1Þxþ xb þ kλ; ðE1Þ

τbẋb ¼ −xb þ x: ðE2Þ

Solving Eq. (E1) for λ and substituting the result, we can
rewrite the expression for the work W as

hWi½x; xb� ¼
κ

k2

Z
tf

0

dt½τ2pẍ ẋþτpẍx − τpẍxb − τpẋẋb

þ τpðkþ 1Þẋ2 þ ðkþ 1Þẋx − ðkþ 1Þẋxb
− xẋb þ ẋbxb�: ðE3Þ

This expression can be simplified by explicitly integrat-
ing all terms of the form

R tf
0 ẋxdt ¼ 1

2
½x2�tf0 and rewriting,

by partial integration, some of the other terms, likeR tf
0 ẋxbdt ¼ 1

2
½xxb�tf0 −

R tf
0 xẋbdt, leading to

k
κ
hWi½x; xb� ¼

Z
tf

0

dtðτpẋ2 − ẋxbÞ

þ 1

2k
½τ2pẋ2 þ ðkþ 1Þx2 þ x2b�tf0

þ 1

k
½τpẋx − τpẋxb − xxb�tf0 : ðE4Þ

Next, to minimize the work functional (E4), we incorpo-
rate, as a dynamical constraint Eq. (E2) via a Lagrange
multiplier ΛðtÞ, giving rise to the cost functional
(Lagrangian)

L½x; ẋ; ẋb� ¼ ½τpẋ2 − ẋxb� þ ΛðtÞ½τbẋb þ xb − x�: ðE5Þ

For this cost functional, the Euler-Lagrange equations

∂L
∂x

−
d
dt

∂L
∂ẋ

¼ 0; ðE6Þ

∂L
∂xb

−
d
dt

∂L
∂ẋb

¼ 0; ðE7Þ

∂L
∂Λ

−
d
dt

∂L
∂Λ

¼ 0; ðE8Þ

yield the set of three linear, coupled, second-order differ-
ential equations: 2τpẍ ¼ ẋb − Λ and τbΛ̇ ¼ −ẋþ Λ, as
well as the dynamical constraint Eq. (E2). Introducing the
variable v ≔ ẋ, we can rewrite the latter three equations as
the set of four linear, coupled, first-order differential
equations,

ż ¼ Az; with z ¼ ð x v xb Λ ÞT; ðE9Þ

A ¼

0
BBBBB@

0 1 0 0
1

2τbτp
0 − 1

2τbτp
− 1

2τp

1
τb

0 − 1
τb

0

0 − 1
τb

0 1
τb

1
CCCCCA
: ðE10Þ

The solution of this equation is z ¼ zð0ÞeAt. In combina-
tion with the initial conditions xð0Þ ¼ 0; xbð0Þ ¼ 0, we
obtain the optimal solution
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x�ðtÞ ¼ 1

2ðτb þ τpÞ
�
2τpC1tþ τbðτb þ tÞC2 þ τ2b

�
−C2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p
τb

ffiffiffiffiffi
τp

p tþ
ffiffiffiffiffi
τp

p ð2C1 − C2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p
τb

ffiffiffiffiffi
τp

p t
��

; ðE11Þ

x�bðtÞ¼
1

2ðτbþ τpÞ
�
2τpC1þ τbC2þ τbð2C1−C2Þcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τbþ τp

p
τb

ffiffiffiffiffi
τp

p t− τb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τbþ τp

p
ffiffiffiffiffi
τp

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τbþ τp

p
τb

ffiffiffiffiffi
τp

p t

�
; ðE12Þ

λ�ðtÞ ¼ 1

2ðτb þ τpÞk
�
2τpðτb þ τp þ ktÞC1 þ τbðτb þ τp þ τbkþ ktÞC2

− τbðτb þ τp þ τbkÞC2 cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p
τb

ffiffiffiffiffi
τp

p tþ τb
ffiffiffiffiffi
τp

p ðτb þ τp þ τbkÞð2C1 − C2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb þ τp

p
τb

ffiffiffiffiffi
τp

p t

�
: ðE13Þ

Note that, in the last step, we have used Eq. (E1) to
obtain λ� from x� and x�b. Thus, although the equation of
motion of the particle is linear in X, as in the Markovian
case, the optimization now leads to fully nonlinear sol-
utions. In particular, there is no “steady-state-like” regime
anymore (where the particle and trap move at a constant
distance with constant speed).
The solutions obtained by this optimization procedure

given in Eqs. (E11)–(E13) still depend on two unknown
parameters, C1 and C2. We remark that the long-time limit
of Eqs. (E11)–(E13) reveals that these unknowns encode
the initial jump of ẋ and the initial value of the Lagrange
multiplier, C1 ¼ ẋð0þÞ; C2 ¼ Λð0þÞ, which depend on all
parameters fλf ; tf ; τb; τp; κb; kg.
Usually, these unknowns must be determined by a

secondary minimization. Concretely, by inserting x� and
x�b, the work in Eq. (E4) can be expressed as a function of
C1, C2. Then, minimizing hWiðC1; C2Þ with respect to C1
yields the optimal value of C1ðC2Þ as a function of C2.
Inserting this result, and subsequently minimizing hWiðC2Þ
with respect to C2, yields the optimal C2. For the Maxwell
fluid, this process involves very cumbersome and nested
expressions. However, this secondary minimization can
be entirely avoided by making use of the symmetry
property of the optimal mean trajectory and protocol,
which we have proven on general grounds. Postulating
time-reversal symmetry of x� and λ� immediately leads to
analytical expressions for C1;2ðλf ; tf ; τb; τp; κb; kÞ, result-
ing in closed-form solutions fx�; x�b; λ�g.
As a consistency check, we have verified that the

solutions obtained via the secondary minimization (without
postulating the symmetry) match the analytical expressions
found via the symmetry.

APPENDIX F: MACHINE LEARNING
ALGORITHM

We chose an architecture and training procedure similar
to Ref. [54]. We used feed-forward fully connected deep
neural networks (DNN) that take a single scalar input and
return a single scalar output value, and have three hidden
layers of 4,4,10 nodes, as illustrated in Fig. 5. The set θ of

weights and biases of all nodes parametrize the DNN. We
applied a ReLU activation function to the input layer and a
tanh activation function to all other layers. The series of
time steps ti ∈ fΔt; 2Δt;…; tf − Δtg, with Δt > 0 and
0 < ti < tf , was sequentially given as input to the
DNN, which returned, as a sequential output, the protocol
values λðtiÞ. The generated protocol was complemented
by the values λð0Þ ¼ λ0 and λðtfÞ ¼ λf , which are fixed by
the boundary conditions. Thus, there was a direct mapping
between θ and a protocol λ. The DNN was initialized by
setting all its parameters θ to zero, so it generated
protocols that were zero for all time steps ti < tf and
abruptly jumped to λf at tf . The work corresponding to
such a protocol is hWi0 ¼ λ2f =2ðγ0=τ0Þ, and the asymme-
try is hAx þ Aλi0 ¼ λ2f =2ðΔt=tfÞ. The training by a
Monte Carlo algorithm was performed as follows. At
each training step n > 0, a copy of the DNN θn−1 was
generated, and all parameters of the copy were perturbed
by a Gaussian noise with zero mean and variance
σ ¼ 0.03, leading to θ0n. For the protocol generated by
θ0n, we then numerically computed (by solving the
Langevin equation) the new tentative value of the objec-
tive ϕn, for which we chose either the average work
(ϕn ≡ hWin) or asymmetry parameter (ϕn ≡ hAx þ Aλin).
If ϕ0

n < ϕn−1, the DNN was replaced by the perturbed
copy (θn ← θ0n), and ϕn ¼ ϕ0

n. Otherwise, the copy DNN
was rejected, and ϕn ¼ ϕn−1. Expressing times in units of
τ0, and space in units of λf , dedimensionalized the
dynamical equations, allowing us to keep κ and τ0 generic.
We chose tf ¼ τ0 and a temporal discretization of
Δt=tf ¼ 10−3. Note that the chosen network architecture
and parameters provide robust results and fast conver-
gence, but we have not performed a systematic optimi-
zation of the hyperparameters (i.e., the number of nodes
and layers, choice of activation function, and temporal
discretization).
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