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Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene
multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular
rotations enabling new properties, from electronics to photonics and phononics. Analogously, in
monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can
naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing
polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and
microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena
have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources
and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions
available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial
dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the
angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over
elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to
demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free
defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy,
demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-
acoustic-wave propagation of great interest for a wide range of applications spanning from seismic
mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their
translation into emerging photonic and polaritonic metasurface technologies.
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I. INTRODUCTION

Breaking symmetries is paramount to achieving exquisite
control over light and sound propagation. A landmark
example is found in hyperbolic waves characterized by
strongly directional, raylike propagation [1–4] driven by
extreme asymmetry in the material response. Such atypical
wave dynamics can naturally emerge in polar dielectrics that
support hybrid light-matter quasiparticles stemming from the
resonant coupling between photons and strong in-plane
anisotropic lattice vibrations, namely, hyperbolic phonon
polaritons [5–11]. These peculiar surface waves exhibit
extreme field confinement, ultralow loss, and highly

canalized propagation at midinfrared frequencies, offering
exciting opportunities for superior light manipulation, large
light-matter coupling, sensing, and imaging at the nanoscale.
In this context, a further degree of asymmetry has been

recently unveiled in monoclinic polar crystals, where a
new form of surface polaritons emerges from the inter-
action of light with two nondegenerate dipolar phonon
resonances whose orientation forms a nontrivial angle.
The resulting hyperbolic shear polaritons are character-
ized by microscopic shear phenomena that lead to an in-
plane rotation of their optical axis with frequency, accom-
panied by asymmetric damping of the supported hyper-
bolic waves [12–14]. Compounding the intrinsic
directionality of hyperbolic waves with this loss asym-
metry leads to a new degree of wave control in nano-
optics. While exciting from a fundamental level, natural
material platforms supporting hyperbolic shear polaritons
suffer from several drawbacks, such as the inherent
limitation to midinfrared frequencies for the relevant
phonon resonances, difficult to access with commercial
lasers, lack of tunability, and restrictions on the degree
of asymmetry naturally available in crystal lattices.
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These constraints prevent deeper manipulation and con-
trol of shear-hyperbolic responses, restraining their range
of potential applications.
To overcome these limitations and harness hyperbolic

shear waves on demand, here we extend this concept to
hyperbolic metasurfaces, structured thin sheets patterned
with subwavelength resonator arrays that realize strong in-
plane anisotropy, enabling precise control over the sym-
metries that govern wave propagation, and dramatically
enhancing wave-matter interactions [15–19]. As a new
paradigm to design hyperbolic shear metasurfaces, given the
important role of rotations and asymmetries, it appears
natural to embrace the concept of twistronics [20] from
condensed-matter systems, based on which the combined
rotation and stacking of rotated layered materials can induce
exotic responses, such as superconductivity [21] and density
waves [22], as well as a variety of new phenomena spanning
the fields of electronic [23–26], photonic [27–36], and
phononic [37–45] systems. Without loss of generality, here
we work with elastodynamic waves, overlaying two thin
elastic 3D-printed metasurfaces, each loaded with a different
subwavelength array of anisotropic pillar resonators [46]. By
leveraging their reconfigurable twist angle, we achieve
precise control over shear wave phenomena, demonstrating
maximal axial dispersion and mirror-asymmetric lifetime of
flexural hyperbolic shear waves. Finally, we leverage the
unique properties of hyperbolic shear waves to demonstrate
reflectionless negative refraction at an interface, and propose
a technological avenue for this concept to realize axial-
dispersion-based surface scanning for diffraction-free non-
destructive testing.
By combining the concepts of non-Hermicity and twist-

ronics, our results establish an intuitive, general paradigm for
the realization and control of twist-governed monoclinic
hyperbolic metasurfaces extendable across multiple wave
domains. Beyond the experimental demonstration of hyper-
bolic shear phenomena, our elastodynamic platform paves
the way for advanced surface-wave technologies ranging
from on-chip phononics to seismic mitigation [46,47], as
well as metasurface-based devices for radio-frequency tele-
communications and nanophotonic technologies [48,49].

II. MONOCLINIC HYPERBOLIC METASURFACE

Consider an elastic metasurface formed by an array of
subwavelength unit cells, each featuring two dipolar
resonances R1 and R2. Their respective Lorentzian
response functions τ1ðωÞ and τ2ðωÞ account for their
hybridization with the flexural waves of a thin plate
(equivalent to the dielectric permittivity of a polaritonic
material), for an excitation oriented along their oscillator
directions. If the two resonators are orthogonal, the result-
ing linear response tensor τ̂ is uniaxial, with different
diagonal components τxx ¼ τ1 and τyy ¼ τ2, and null off-
diagonal terms τxy ¼ τyx ¼ 0 defined in a Cartesian refer-
ence frame whose axes x and y are aligned with the

resonator symmetry axes [Fig. 1(a), left]. In the absence of
absorption, the elements of τ̂ are Hermitian and, if the two
resonances are nondegenerate, a band between the two
resonance frequencies emerges, within which τxx and τyy
have opposite signs. In this frequency range, the metasur-
face supports hyperbolic elastic waves, in analogy to the
hyperbolic polaritons demonstrated in various uniaxial
polar crystals in their reststrahlen bands [9–11].
We assume a general Kirchoff-Love model for flexural

(i.e., antisymmetric) A0 modes supported by a thin plate,
which we assume to be decoupled from the (symmetric) S0
mode, and consider its coupling to a subwavelength array
of pillar resonators. In the Supplemental Material [50]
Secs. I and II, we derive and solve a homogeneous model
that accounts for the interaction of the resonators with the
flexural displacement field of the plate. The eigenmodes of
the system consist of solutions of the dispersion relation

DΔ2wþ ∇⃗ · ðτ̂ ∇⃗wÞ − ρhω2w ¼ 0; ð1Þ

where h is the plate thickness, ρ the plate (volume) mass
density, D ¼ Eh3=12ð1 − ν2Þ the plate stiffness with the
Young’s modulus E and Poisson ratio υ, and Δ corresponds
to the Laplacian operator. For simplicity, in Fig. 1 we
restrict ourselves to the local (small-wave-vector) limit
D → 0, which is homomorphic to a 2D model for the
electromagnetic scalar potential, as detailed in Appendix C.
For τ1τ2 < 0, the modes form hyperbolic isofrequency
contours (IFCs) in momentum space, with principal axis
(the symmetry axis crossing the tip of the hyperbola)
aligned with the resonators [the dotted line in the right
panel of Fig. 1(a) accounts for the three overlapping axes],
but frequency-dependent asymptotes [blue to green con-
tours in Fig. 1(a)], consistent with the open-angle
dispersion of hyperbolic phonon polaritons in uniaxial
crystals [9–11].
Consider now nonorthogonal resonators, such that R1 is

aligned with the x axis, while R2 forms an angle θ with it
[Fig. 1(b)]. The linear response tensor becomes (see
Supplemental Material Sec. I [50])

τ̂ ¼
�

τ1 þ τ2cos2ðθÞ −τ2 sinðθÞ cosðθÞ
−τ2 sinðθÞ cosðθÞ τ2sin2ðθÞ

�
: ð2Þ

The nonzero off-diagonal terms are responsible for the
interaction between the two resonators due to their non-
orthogonality. This coupling leads to axial dispersion,
namely, a frequency-dependent rotation of the principal
axis [dotted lines in Fig. 1(b)] and of the hyperbolic IFCs,
by an angle (see Appendix B for details)

β ¼ 1

2
tan−1

�
ℜ½τ2� sinð2θÞ

ℜ½τ1� þℜ½τ2� cosð2θÞ
�
; ð3Þ

YVES, GALIFFI, NI, RENZI, and ALÙ PHYS. REV. X 14, 021031 (2024)

021031-2



obtained by diagonalizing τ̂, consistent with the recently
observed axial dispersion of hyperbolic shear polaritons in
monoclinic crystals [12–14].
Once material losses are included in the oscillator

responses τ1ðωÞ and τ2ðωÞ, τ̂ becomes non-Hermitian,
and the losses of each mode can be evaluated via the
power loss rate PI ¼ ∇w†I½τ̂†�∇w (see Appendix C and

Supplemental Material Sec. III for details [50]). This power
loss rate is shown in Fig. 1(c) normalized with respect to the
least lossy state for the orthogonal (θ ¼ 90°) case, i.e., the
state at the vertex of the dispersion hyperbola. For
orthogonal oscillators (θ ¼ 90°), the loss distribution
inherits the symmetry axis of the contour [dotted line in
Fig. 1(c)], indicating that mirror-symmetric modes are

FIG. 1. Twist-induced axial dispersion and loss asymmetry. (a) A metasurface formed by orthogonal dipolar resonators R1 and R2 is
described by a diagonal tensor τ̂, leading to a frequency-independent principal axis (dotted line). (b) By contrast, a twist angle
0° < θ < 90° (45° in this example) between the two dipolar resonators introduces off-diagonal terms in the tensor τ̂, resulting in axial
dispersion, i.e., frequency dependence of the principal axis orientation (dotted lines). (c)–(e) Considering the non-Hermitian features of
τ̂, the orthogonal scenario shown in (a) leads to (c) conventional axisymmetric loss profiles (logarithmic color scale shows the power loss
rate PI normalized to the lowest-loss state for θ ¼ 90°), also evidenced in the (d) reciprocal and (e) real-space hyperbolic polariton
propagation under near-field excitation (gray disk). Note how in conventional hyperbolic media the large momentum states suffer from
large losses. (f)–(h) The change in relative angle between the principal axis and the underlying resonators depicted in (b) yields
(f) asymmetric loss profiles leading to enhanced directionality in polariton propagation along one of the hyperbolic arms shown in
(g) reciprocal and (h) real space. Insets in (c) and (f) show, respectively, the symmetric and asymmetric loss stemming from the
alignment or misalignment between the eigenvectors of I½τ̂� (orange and purple segments denote high- and low-loss eigenvectors of
I½τ̂�) and the field eigenvectors (black arrows) corresponding to three eigenvalues (shaped markers) located symmetrically with respect
to the principal axis. (i),(j) The lifetime enhancement induced by the twist angle is evident from (i) the line integral of the lifetime along
the two arms of the dispersion hyperbola, and (j) the ratio ζ ¼ PI

90°;min=P
I [enlarged compared to (c),(f); see also Fig. S11 in

Supplemental Material [50]) between the lifetime of each state and the maximum lifetime for the conventional hyperbolic polariton
shown in panels (a),(c)–(e) plotted for different angles (blue color scale). Note how the redistribution of loss endows high-momentum
states on one branch with remarkably long lifetimes.
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equally long-lived. Hence, a point source excites the four
hyperbolic branches with equal efficiency, yielding mirror-
symmetric features in reciprocal and real space, as shown in
Figs. 1(d) and 1(e), respectively.
By stark contrast, in a monoclinic system (θ ≠ 90°) the

principal axis associated with the Hermitian contribution of
the material response cannot be generally expected to be a
symmetry axis for the dissipative processes affecting the
modes. Consequently, in the frame aligned with the sym-
metry axis of the contour, only the real part of the tensor
τ̂0 ¼ R̂ðβÞτ̂ R̂ ðβÞT is diagonal, resulting in purely imaginary
off-diagonal elements τ0xy in the rotated frame. This quantity
measures the misalignment between the symmetry axes of
the Hermitian and non-Hermitian components of the tensor
R½τ̂� and I½τ̂�, which leads to a mirror-asymmetric distri-
bution of the loss along the contours exemplified in Fig. 1(f)
(see Appendix D and Supplemental Material Sec. IV [50]),
consistent with recent observations for hyperbolic shear
polaritons [12–14]. Normalizing τ0xy by the total loss in
the system yields the shear factor Sðω; θÞ. Despite being
agnostic to the IFCs of the system, the shear factor is
proportional to the difference between the power loss rate
calculated at any two mirror-symmetric k points of a given
contour, making it the relevant criterion for quantifying the
strength of loss asymmetry (see Supplemental Material
Sec. IV for details [50]). Geometrically, this effect is
associated with the misalignment between the eigenfields
mirrored with respect to the principal axis [arrows in
Figs. 1(c) and 1(f) and insets] and the eigenvectors of the
non-Hermitian component of τ̂ [orange and purple segments
in Figs. 1(c) and 1(f) insets denote high-loss and low-loss
eigenstates of I½τ̂� respectively]. Importantly, the shear
factor Sðω; θÞ is independent of the absolute loss in the
system, as can be seen by multiplying I½τ1� and I½τ2� in
Eq. (D4) by a common factor (Appendix D).
Because of this broken symmetry, a point source will

selectively excite the two low-loss hyperbolic branches, as
evident from Fig. 1(g), producing a remarkably skewed,
and more directional, hyperbolic wave [Fig. 1(h)]. Notably,
this angular redistribution of loss enables a dramatic
extension in the lifetime of modes carrying large momenta,
as opposed to the conventional hyperbolic case of Fig. 1(d),
despite the overall dissipation in the resonators being the
same. In turn, this implies that the corresponding shear-
hyperbolic waves can propagate much farther, and more
directionally, than in the case of mirror-symmetric hyper-
bolic waves in Fig. 1(e), establishing twistronics as a
powerful paradigm to tailor ultralong-lived shear-hyper-
bolic waves. To quantify this enhancement in propagation
length, Fig. 1(i) shows the logarithm of the lifetime
integrated over the two arms of the dispersion hyperbola
as a function of the twist angle, demonstrating an overall
enhancement across the entire arm of the hyperbola of
multiple orders of magnitude. Remarkably, the integrated
lifetime grows monotonically for one arm of the hyperbola

and decreases for the other. Furthermore, Fig. 1(j) shows
the twist angle dependence of the lifetime enhancement
factor ζ ¼ PI

90°;min=P
I, i.e., the ratio between the lifetime of

the hyperbolic waves in the shear metasurface at each k
point, and the maximum lifetime of the conventional
hyperbolic waves at the vertex of the dispersion hyperbola
in Figs. 1(a) and 1(c)–1(e). It is therefore evident how our
shear metasurface can leverage the twistronics paradigm to
dramatically enhance the propagation of hyperbolic waves,
both at the modal level and for the integrated response.

III. TWISTED-BILAYER ELASTIC
METASURFACES

In order to validate our theory and demonstrate these
phenomena, we fabricate a mechanical metasurface con-
sisting of two 3D-printed thin plates, each loaded with an
array of rectangular pillars [Fig. 2(a); see fabrication details
in Appendix A and Fig. S1 of Supplemental Material [50] ],
whose respective heights h1 and h2 are offset to detune their
directional bending resonances. In turn, they support a
hyperbolic frequency band with effective resonant material
response R½τ1ðωÞ� < 0 and R½τ2ðωÞ� > 0 [Fig. 2(b); see
also Supplemental Material Sec. I [50] ]. The two plates are
coupled using double-sided tape [inset in Fig. 2(a)],
enabling full control over the twist angle θ between the
oscillation axes of the detuned resonators in each layer.
In order to model the elastic response, we use the full

nonlocal thin-plate Kirchoff-Love model outlined in Eq. (1)
for the flexural waves. As a result, the analytical IFCs for
θ ¼ 60° [Fig. 2(c)] are not open like usual hyperbolic
waves, but form closed hippopedal contours due to the
fourth-order spatial derivatives that dominate the dispersion
for large momenta. Yet, they feature a local hyperbolic
response for realistically achievable wave numbers, and
clearly show strong axial dispersion for the three frequen-
cies denoted in Fig. 2(b) by blue-to-green vertical lines
within the reststrahlen band. While the IFCs in the lossless
scenario follow the symmetry dictated by the principal axes
[dashed lines in Fig. 2(c)], axial dispersion alone is not
sufficient to capture the simulated [Fig. 2(d); see simulation
details in Appendix B] phenomenology arising from point-
source excitation, which is in remarkable agreement with
the experimental measurements of the twisted metasurface
sample [Fig. 2(e)]. This insufficiency is due to the broken
mirror symmetry in the loss distribution: As visible from
the Fourier (left columns) and real (right columns) space
plots, the excitation profile is very skewed, evidencing the
shear features of the hyperbolic waves. This loss asym-
metry closely matches our analytical prediction in Fig. 2(c).
Notably, this asymmetry, stemming from shear phenomena,
does not hinge on the hyperbolic nature of the bands, but it
arises regardless of the contour topology. Based on the
previous discussion, it is due to the interplay between
monoclinicity and non-Hermiticity of the effective
response tensor τ̂ of the metasurface. Its implementation
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using a design as intuitive as twisted metasurfaces opens a
plethora of opportunities for advanced integrable and
reconfigurable devices in phononics and photonics.

IV. MAXIMAL AXIAL DISPERSION
AND SHEAR FACTOR

We now quantify and maximize axial dispersion and loss
asymmetry in our twisted hyperbolic shear metasurfaces.
Figure 3(a) shows the theoretically predicted rotation angle
β as a function of the frequency for different twist angles θ.
Notice how the axial rotation becomes increasingly abrupt
as the twist angle is reduced, enabling control over both
range and rate of axial dispersion with the frequency.

Interestingly, the behavior of β with respect to θ can be
found in two distinct phases, depending on the dominant
oscillator. At low frequencies (jR½τ1�j > jR½τ2�j), the
principal axis fully rotates together with the twist angle
between the dipolar resonators, ranging from 0° to 90°.
Conversely, at high frequencies (jR½τ2�j > jR½τ1�j), the
principal axes tilt only up to a finite angle, and then revert to
their original orientation along the x axis (see Fig. S2 of
Supplemental Material [50] for more details). The existence
of this phase transition highlights the importance of the
transition frequency f ≈ fm [black dotted line in Figs. 3(a)
and 3(b)], at which jℜ½τ1�j ≈ jℜ½τ2�j. In fact, the similarity
between the two detuned oscillator strengths in this
transitory regime implies a stronger interaction between

FIG. 2. Twisted elastic metasurface. (a) Illustration of back-to-back-stacked elastic metasurfaces twisted by an angle θ. The inset
shows a cross section of the experimental sample. (b) Frequency dependence of the effective linear response parameters τ1 and τ2 for two
detuned pillar-bending resonators of height h1 ¼ 7.5 mm and h2 ¼ 7.0 mm (inset) normalized by the center frequency
fm ¼ ðf1 þ f2Þ=2. (c) Analytic IFCs of our homogenized elastic metasurfaces for θ ¼ 60° and different frequencies corresponding
to the blue-to-green lines in (b). The contour color scale indicates the corresponding normalized power loss rate (increasing from purple
to yellow) PI=PI

90°;min. Dashed lines denote the principal axis at the three frequencies chosen in (c). (d) Finite-element simulations of the
flexural displacement of the pillar system under point-source excitation (gray disk) demonstrate axial dispersion and loss asymmetry in
Fourier (left) and real (right) space. (e) Corresponding displacement measurements carried out with a laser vibrometer, showing
excellent agreement. The spatial scale of all real-space plots corresponds to the diameter of the sample (51 unit cells of 3.5 mm each),
while Fourier maps extend over 0.48π=A ≈ 0.431 rad=mm.
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the two resonances, whose balanced interplay maximizes
axial dispersion (see Supplemental Material Sec. V [50] for
details). This axial dispersion has direct consequences on
the degree of loss asymmetry, as shown by the behavior of
the shear factor S depicted in Fig. 3(b), which is indeed
maximized when f ≈ fm for all nonorthogonal twisted
configurations, while its value increases at the expense of

its bandwidth following the progressive alignment of the
two resonators. This behavior is consistent with the
corresponding symmetry breaking in the spatial distribu-
tion of losses in the medium, making the twist between
metasurfaces a straightforward parameter for the precise
control of both strength and bandwidth of the loss asym-
metry of shear-hyperbolic waves.

FIG. 3. Maximal axial dispersion and loss asymmetry tuning with twist angle and frequency. (a) The frequency dependence of the
principal axis angle β for different twist angles θ (blue shades) reveals an axial winding phase (lower frequencies), whereby the axis fully
rotates by 90° as θ varies from 0° to 90°, and an axially stable phase (higher frequencies), whereby the principal axis rotates but then folds
back. (b) This behavior strongly impacts the bandwidth of the shear factor S, which peaks at the transition frequency fm [dotted black
line in (a),(b)], where the interaction between the two resonant modes is strongest. (c) Twist dependence of theoretical IFCs at the
frequency where the shear factor is maximum. (d) Effective-medium theoretical wave propagation results both in reciprocal (top) and
real (bottom) space for a large domain, corresponding to the IFCs displayed in (c). (e),(f) Simulation (e) and experimental (f)
counterparts of the results presented in (d) for a smaller domain. Dashed lines in (c)–(e) denote principal axes. The spatial scale of the
real-space plots for experimental data and pillar simulations corresponds to the diameter of the sample (51 unit cells of 3.5 mm each),
whereas homogenized simulations extend over 3.36 times the sample size to show more clearly the enhancement in propagation length.
All Fourier maps extend over 0.48π=A ≈ 0.431 rad=mm. (g) The asymmetry factor obtained by dividing the difference between the
intensities of the Fourier transform of the fields across opposite quadrants by their sum, analogous to Ref. [14], shows an experimental
asymmetry peak αmax;exp ¼ 0.73 for θ ¼ 15° at the critical frequency, as predicted by our theory, constituting an asymmetry
enhancement of approximately 100% compared to the best experimental values in Ref. [14].
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To showcase such versatility, we focus on the regime of
maximum shear factor at frequency f ¼ fm, for which the
corresponding theoretical IFCs are displayed as a function
of the twist angle θ in Fig. 3(c). In particular, for θ changing
from 90° to 45°, the contour rotation as a function of the
twist angle is accompanied by a sharp increase of the loss
asymmetry. As a direct consequence, strongly directional
shear-hyperbolic waves exhibit a dramatic increase in
propagation length along the suppressed-loss branch as
the twist angle decreases, as evidenced by the theoretical
field maps of Fig. 3(d) [top (bottom) in reciprocal (real
space)]. As the amount of dissipation in the resonators is
constant throughout the twisting process, this effect
emerges from the redistribution of loss induced by the
finite twist angle: While parts of the contours are over-
damped, their mirrored counterparts are strongly enhanced
compared to the orthogonal hyperbolic case. In reciprocal
space, this effect yields a clear sharpening of the correspond-
ing contours [Fig. 3(d), top]. Furthermore, in Fig. S9 of the
Supplemental Material [50] we show experimental measure-
ments and simulations of the pillar systems for θ ¼ 90° and
θ ¼ 0° at the critical frequency to characterize the losses in
our metasurface, and we demonstrate a measured 15%
enhancement of the relative propagation length of the
macroscopic polaritons in the θ ¼ 0° case compared to the
θ ¼ 90° case. Although significantly smaller than the five-
fold enhancement predicted by the numerical simulations for
the full pillar system, it is meaningful that the θ ¼ 0° case
hosts states with much shorter wavelengths, which are much
more susceptible to losses, roughness, and fabrication
defects.
Twisting the metasurfaces even further (0° ≤ θ < 45°)

induces a topological transition of the contours from
quasihyperbolic (θ ¼ 45°) to flat (θ ¼ 30°) and finally
elliptic (θ ≤ 15°), as the resonators progressively align.
In this regime, we find the maximum asymmetry in the loss
distribution, corresponding to a shear factor S → 1 for a
passive medium, as predicted by our theory in Fig. 3(b),
and clearly verified by our simulations and experimental
measurements in Figs. 3(c)–3(e) (θ ¼ 15°), where the
measured signal strikingly lies entirely on one side of
the principal axis. These results are further corroborated by
the remarkable agreement of simulations and experiments
[Figs. 3(e) and 3(f), respectively].
It is meaningful to compare the degree of asymmetry

achieved with our tunable metasurface to those observed in
natural materials [13,14]. The asymmetry in the field dis-
tribution is fully quantified in Fig. 3(g), where we plot the
figure of merit α obtained by subtracting the surface integral
of the Fourier map intensity over opposite quadrants defined
by the symmetry axis and its normal, and dividing the result
by their sum (see Supplemental Material Sec. IV [50] for
details). This figure ofmerit was used in Ref. [14] to quantify
the strongest loss asymmetry observed to date, exhibited by
shear polaritons in beta gallium oxide. Computing this figure

of merit for our measurements and simulations allows us to
demonstrate howour designparadigmfor shearmetasurfaces
yields a value of α ≈ 0.75 corresponding to a loss asymmetry
enhancement of approximately 100% compared to the
experimental value therein, under perfectly symmetric exci-
tation. Thus, by combining the maximization of the loss
asymmetry and the axial dispersion, twisted hyperbolic shear
metasurfaces unlock complete control over the wave direc-
tionality, while enabling extremely long-range directional
steering of hyperbolic waves.

V. REFLECTION-FREE NEGATIVE REFRACTION
AT A HYPERBOLIC SHEAR INTERFACE

The interplay betweenmirror-asymmetric loss distribution
and hyperbolicity at a boundary offers unique opportunities
to tailor hyperbolic wave propagation and scattering. As an
example, it is well known that hyperbolic media exhibit
negative refraction at an interface with elliptic media
[1,54,55] [Fig. 4(a)]. Indeed, parallel momentum conserva-
tion at the interface [represented by a dotted line in Fig. 4(a)]
combinedwith the curvature inversion between isotropic and
hyperbolic contours, results in a reflected wave and a
negatively refracted one [green arrows denote energy flow
in Fig. 4(a)]. This configuration can be implemented using
our bilayer metasurface with aligned top and bottom lattices
(θ ¼ 0°) in an orthogonal hyperbolic phase interfaced with
an unloaded plate forming the isotropic medium [Fig. 4(b)].
Figure 4(c) shows simulations (left) and experimental
results (right) that demonstrate the resulting conventional
negative-refraction-mediated focusing of the field emitted by
a point source placed in the hyperbolic medium and its
backreflections.
Negative refraction at an interface has also been recently

demonstrated using Weyl metamaterials [56]. Remarkably,
due to their topological features it was shown that their
dispersion features truncated hyperbolic contours with only
half of the branches available, resulting in reflectionless
negative refraction at the interface with an elliptic medium.
Remarkably, our twist-induced hyperbolic shear waves
yield a similar effect: Here the strongly asymmetric damp-
ing of the IFCs extends the propagation of one hyperbolic
branch [green arrows in Fig. 4(d)], while dramatically
hampering the other one [red arrows in Fig. 4(d)], thus
supporting negative refraction at the interface without
reflections. We verify this prediction with the setup in
Fig. 4(e), where loss asymmetry is induced with a θ ¼ 30°
twist between the two layers (inset). In this scenario, the
field emitted by the point source propagates only along one
of the hyperbolic branches before negatively refracting at
the interface, while the reflected wave is strongly attenu-
ated [Fig. 4(f); see also Fig. S5 in Supplemental Material
[50] for a comparison between the cases with and without
shear]. Although this effect does not guarantee unitary
transmission as with Fermi arcs [56], the enhancement in
propagation length of the desired mode combined with the
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suppression of unwanted interference between incoming
and reflected signals can greatly aid practical applications,
e.g., for imaging. This additional demonstration further
highlights the exciting potential of twist-induced shear
phenomena for extreme wave manipulation.

VI. DIFFRACTION-FREE DEFECT DETECTION
BASED ON HYPERBOLIC AXIAL DISPERSION

We conclude by demonstrating the use of shear-hyper-
bolic elastic metasurfaces for diffraction-free nondestruc-
tive testing. In elasticity, a key technological playground is
the wave-based detection of mechanical defects. Here we
show that the unique combination of extreme directionality
and maximal axial dispersion exhibited by our hyperbolic
shear metasurfaces provides a new strategy for defect
detection. In a conventional nondestructive testing setup,
a material is scanned using complex tomographic tech-
niques and multiple sources and detectors to localize the
presence of defects. Hyperbolic waves, thanks to their
extreme directionality and subdiffractive propagation fea-
tures, offer interesting opportunities in this context.
However, conventional hyperbolic materials support direc-
tional waves limited to a narrow angular range, limiting
their potential for defect detection. Shear-hyperbolic meta-
surfaces, on the contrary, offer axial dispersion, based on
which highly directive hyperbolic waves rotate their

symmetry axes by varying the excitation frequency. As a
result, a broadband excitation can launch a broad range of
directional waves, whose angular spectrum is encoded into
the excitation frequency, and which can be used to locate
defects over a surface.
We provide a proof-of-principle demonstration of this

concept in Fig. 5. Figure 5(a) shows a defect-loaded
surface. The source is located at the center of the sample,
while a defect is realized by removing a few pillars (see
Fig. S6 in Supplemental Material [50] for details).
Figure 5(b) shows (top) simulated and (bottom) exper-
imentally measured field maps of the vertical displace-
ment of the plate at different frequencies (left to right).
The defect location is marked with a semitransparent
white circle. Note the large steering of the directive
hyperbolic beams with frequency, which spans an angle
of approximately 45° within a frequency scan of only 8%
of the center frequency fm of the hyperbolic band (see
Fig. S7 in Supplemental Material [50] for details).
Figure 5(c) shows the (top) theoretical and (bottom)
experimental radiation patterns measured along the black
circle in Fig. 5(a) for different frequencies [blue to green;
see Fig. 5(b)], clearly showing the shadow created by the
defect. Note, however, how the propagation of the waves
away from the defect is diffractionless across the entire
frequency band considered, since all of the scattered

FIG. 4. Shear-induced reflectionless negative refraction. (a) Momentum matching at the interface between a hyperbolic (left) and an
isotropic medium (right). Parallel momentum conservation at the interface results in reflected and negatively refracted waves (green
arrows). (b) Metasurface interface sample corresponding to (a): pillars are aligned on both plate sides (inset) on the left of the interface,
while the plate is nude on the right. (c) Pillar metasurface simulation (left) and experimental measurements (right) showing the
refocusing of waves emitted by a point source (gray disk) across the interface in (b), accompanied by backreflections (energy flux is
shown as green arrows). (d) In the presence of shear, only one set of waves on the right hyperbolic branch reaches the interface (green
arrow), and the reflected waves are heavily damped (red arrow on left branch). (e) Metasurface interface sample corresponding to
(d) with a twist angle θ ¼ 30° (inset) for hyperbolic shear waves. (f) Simulation (left) and measurement (right) of the sample in
(e) showing reflectionless negative refraction. The unit cell size in panels (b) and (e) is 3.5 mm as in the rest of the paper, while the size
shown in the field plots is 50 unit cells.
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waves propagate only along the directions imposed by the
hyperbolic bands for each specific frequency. This raylike
propagation preserves the resolution with which the
information carried by the shadow is measured at the
detector. A sketch of the proposed defect detection
protocol is given in Fig. S8 of Supplemental Material
[50]. Note the contrast between the unobstructed patterns
in the lower left quadrant, which evenly scan the entire
quadrant, and those in the upper right one, where the
defect is located. Remarkably, hyperbolic shear waves
support directionality encoded in the operating frequency;
hence, they can be dynamically steered without mechani-
cal motion or bias, a concept that can be readily translated
to airborne acoustics, photonics, and other wave sciences
for sonar and radar applications.

VII. CONCLUSIONS

In this work, we have demonstrated hyperbolic shear
waves with maximal axial dispersion and shear phenomena
enabled by twisted-bilayer metasurfaces. Our model has
highlighted how the interplay of twistronics, non-
Hermiticity, and extreme anisotropy endows these meta-
structures with new forms of wave propagation and loss
redistribution, enhancing propagation along certain direc-
tions, while hampering it along others. Notably, we have
demonstrated that maximizing the loss asymmetry by
simply tuning the twist angle allows us to drastically
extend hyperbolic wave propagation far beyond the dis-
tance expected for a given level of material loss.
Furthermore, we have demonstrated applications of shear
metasurfaces to achieve extraordinary wave phenomena
such as reflectionless negative refraction, as well as a new
technological paradigm for nondestructive testing based on
axial dispersion. While we have demonstrated these

concepts in a low-cost, elastodynamic platform to aid
reproducibility of our results, our paradigm for shear-
hyperbolic waves is rooted in the breaking of symmetry
through twisting and is therefore extendable to a wide range
of metamaterial structures and wave domains. For instance,
switching to lower-loss aluminum samples would dramati-
cally enhance the lifetime of the waves studied here [57],
opening a pathway for reconfigurable on-chip elastic sur-
face-wave devices analogous to their recently proposed
electronic counterpart [58]. Moreover, our metasurface
design model can be readily used to engineer optical,
microwave, or airborne acoustic shear metasurfaces. We
believe that our results open a pathway toward twistronics
to harness the combined effect of anisotropy and non-
Hermitian physics to achieve highly directional, long-range
wave control in artificial media.
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APPENDIX A: SAMPLE FABRICATION AND
EXPERIMENTAL SETUP

Mechanical samples depicted in Figs. S1(a) and S1(b) in
Supplemental Material [50] are 3D printed with polylactic
acid (PLA; E ≈ 2.5 GPa, ν ≈ 0.3, ρ ≈ 1300 kgm−3) using
the fused deposition modeling technique (3D printer model
is Raise3D Pro2 Plus). Although PLA exhibits non-
negligible viscoelasticity, which is associated with loss,

FIG. 5. Diffraction-free nondestructive defect detection based on axial dispersion. (a),(b) The maximal axial dispersion of hyperbolic
shear metasurfaces (θ ¼ 30°) is leveraged to detect the location of a surface defect using a fixed point source via frequency steering. In
our experimental sample (a), we introduce a localized defect by removing a few pillars on both sides. Panel (b) shows (top) simulated
and (bottom) experimental field intensity maps for different excitation frequencies, demonstrating broad steering of subdiffractive
flexural waves by approximately 45°. We can precisely locate the defect (semitransparent white circle), thanks to the raylike propagation
of hyperbolic waves and their axial dispersion. (c) Simulated (top) and measured (bottom) radiation patterns (green to blue) obtained by
averaging the field intensities in the black-shaded area in (a) for each angle, clearly showing the shadow created by the defect.
Theoretical and experimental field plot sizes correspond to the diameter of the entire sample approximately 178.5 mm.
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it is a conventional prototyping material, thanks to its
affordable cost and accessibility with standard 3D printers
(our samples are printed in-house). This choice benefits the
reproducibility of our results without impacting the evi-
dence of our proof-of-principle demonstration of shear-
hyperbolic metasurfaces. Lower-loss samples can, in prin-
ciple, be realized with more expensive metal structures,
enabling the realization of technologically more competi-
tive devices. In addition, interlayer coupling constitutes a
significant loss channel. Good interlayer coupling is needed
to be able to use the homogenized model accurately. In our
case, this condition is well satisfied; however, it is easily
possible to build even lower-loss samples by gluing the two
plates directly with epoxy, which however hinders the
reconfigurability aspect, which allows us to repeat the study
by simply twisting the same two samples. Adding an extra
layer between the two plates would enable better control of
the interlayer coupling and loss properties by choosing its
structure, composition, and thickness, as demonstrated,
e.g., in the realization of a magic-angle flat-band phononic
analog of twisted-bilayer graphene using LiNbO3 plates
and a rubber spacer (see Ref. [44]).
The cross section of the pillar resonators is

1.225 × 2.625 mm2, the lattice step is A ¼ 3.5 mm, and
the thickness of each PLA plate is 1.3 mm. The diameter of
the plates corresponds to 51 unit cells, so that its size is
178.5 mm. These parameters define the frequency range of
the pillar resonances and the dispersion of the modes of the
nude plate, which hybridize to form the effective polari-
tonic bands discussed in the main text. Further details on
the physics of pillar resonators may be found in Ref. [46].
The out-of-plane displacement field maps of the bilayer
metasurface are measured every 10 Hz between 2 and
12 kHz thanks to a 3D laser vibrometer (Polytec PSV-500-
3D in spectrum mode), as presented in Fig. S1(c) of
Supplemental Material [50]. The medium is excited close
to its center thanks to a mechanical shaker (B&K type
4810) and a pointer [Fig. S1(d) in Supplemental Material
[50], with a broadband signal covering the frequency range
of interest. Bidimensional spatial Fourier transforms of the
field maps, as well as spatial noise filtering, are carried out
directly in MATLAB and allow us to extract IFCs and their
corresponding loss distribution from the experimental data.
The experimental hyperbolic band covers the frequencies
between f1 ≈ 8.8 kHz and f2 ≈ 11 kHz. Albeit slightly
higher in frequency than the pillar system simulations, due
to sample fabrication inaccuracies, the results are in good
agreement.

APPENDIX B: SIMULATION PROTOCOL

The simulation results of pillared metasurface presented
in this paper are obtained with both the eigenfrequency
module and the frequency response module of COMSOL

Multiphysics Solid Mechanics for the band structure results
[Figs. S3(a) and S3(b) in Supplemental Material [50]

and point-source excitation of the finite-size sample
[Figs. 2(d), 3(e), 4(c), 4(f), 5(b), and Supplemental
Material Figs. S2(c) and S2(d) [50], respectively. The PLA
material properties used are E ≈ 2.5 GPa; E ≈ 2.5 GPa,
υ ≈ 0.3, and ρ ≈ 1300 kgm−3, and the material dissipation
is modeled in COMSOL Multiphysics as a built-in isotropic
loss factor ηloss ¼ 0.05 such that the lossy elasticity tensor
readsCloss ¼ ð1þ iηlossÞC. The simulated systemconsists of
a single plate with a thickness 2.6 mm decorated with a
square lattice of pillars on each sidewhose heights and global
orientation depend on the side, with geometrical parameters
similar to the ones of Appendix A. This design ensures the
strong coupling between the two twisted lattices and the
relevance of the homogenization procedure. In that regard, it
differs from the experimental implementation where this
strong coupling is practically obtained with double-sided
tape which, albeit making the experiment straightforward
and reconfigurable, induces additional dissipation in the
system (see Supplemental Material Sec. III for more details
[50]). For the finite-sample point-source simulations, per-
fectly matched layers are displayed around the metasurface
that has a diameter of 51 unit cells. A point load with an out-
of-plane total force is set at the center of the system, on the
bottom side only, in order to excite efficiently the flexural
waves in the plate. At a given operating frequency, the
corresponding out-of-plane displacement 2D field maps on
the bottom side of the plate is recorded, and using a 2Dspatial
Fourier transform in theMATLAB environment, we extract the
corresponding IFC in reciprocal space. These results show
good qualitative agreement with the experiments.
Simulations related to the homogenized metasurface

[Figs. 1(d), 1(e), 1(g), 1(h), and 3(d)] are obtained by
solving the corresponding partial differential equation
problem at a given frequency using the Mathematics
module of COMSOL for a 2D medium in the case of a
point-source excitation. Similar to the pillar metasurface
simulation described in the previous paragraph, a 2D
spatial Fourier transform is applied using the MATLAB

environment to the field map for contour extraction.
Overall, a good qualitative agreement is reached between
effective-medium theory, pillar metasurface simulations,
and experiments.

APPENDIX C: THEORETICAL MODEL OF
GENERAL HOMOGENIZED SHEAR-

HYPERBOLIC METASURFACE

Here we provide a simple derivation of the model
demonstrated in Fig. 1 for the case of magnetostatics.
We start from Gauss’s law for an isotropic medium:

∇ · ðε̂EÞ ¼ ∇ · ε̂

�
−∇φ − ∂A

∂t

�
¼ 0; ðC1Þ

where we substitute the standard expression for the electric
field in terms of the scalar and vector electromagnetic
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potentials φ and A. We now apply the anisotropic form of
the Lorenz gauge [59]

∇ · ðε̂AÞ ¼ − ∂ϕ

∂t
ðC2Þ

and substitute the left-hand side into Eq. (C1). Assuming,
that ε̂ is constant in time, it commutes with the time
derivative, so that Eq. (C2) becomes

∇ ⋅ ðε̂∇φÞ − ∂
2φ

∂t2
¼ 0: ðC3Þ

Interestingly, this model coincides exactly with the
Kirchoff-Love case if the nonlocal bi-Laplacian term is
ignored. To evaluate loss, in our elasticity calculations we
compute the scalar product ∇w†I½τ̂†�∇w (where w is the
flexural displacement of the plate), which quantifies
the effect of resonant loss within the medium, paralleling
the standard expression E†I½ε̂†�E used for power loss rate
in electrodynamics.

APPENDIX D: DERIVATION OF AXIAL
DISPERSION AND SHEAR FACTOR

Diagonalization of R½τ̂� gives the angle β that its two
eigenvectors form with the x and y axes:

β ¼ 1

2
arctan

�
ℜ½τ2� sinð2θÞ

ℜ½τ1� þℜ½τ2� cosð2θÞ
�
; ðD1Þ

Rotating the entire τ̂ tensor by β gives

τ̂0 ¼
�
τ0xx τ0xy
τ0yx τ0yy

�
¼
�
ℜ½τ0xx� 0

0 ℜ½τ0yy�
�
þ i

�
ℑ½τ0xx� ℑ½τ0xy�
ℑ½τ0yx� ℑ½τ0yy�

�
:

ðD2Þ

With

τ0xx ¼ τ1cos2ðβÞ þ τ2cos2ðβ − θÞ;
τ0yy ¼ τ1sin2ðβÞ þ τ2sin2ðβ − θÞ;
τ0xy ¼ fsinð2βÞI½τ1� þ sin½2ðβ − θÞ�I½τ2�g=2: ðD3Þ

τ0xy can be normalized to 1 to obtain the shear coefficient

Sðω; θÞ ¼ τ0xy
NI ¼ sinð2βÞI½τ1� þ sin½2ðβ − θÞ�I½τ2�

I½τ1� þI½τ2�
ðD4Þ

plotted in Fig. 3(b) of the main text, where we define the
normalization factor NI ¼ ðI½τ1� þI½τ2�Þ=2. Note that the
shear coefficient Sðω; θÞ is independent of the absolute
losses in the system, as can be seen by multiplying I½τ1�
andI½τ2� by a common factor, and it is therefore applicable
to any wave phenomenon, frequency range, and loss level.
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