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Understanding superfluidity remains a major goal of condensed matter physics. Here, we tackle this
challenge utilizing the recently developed fermionic neural network (FermiNet) wave function Ansatz
[D. Pfau et al., Phys. Rev. Res. 2, 033429 (2020).] for variational Monte Carlo calculations. We study the
unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid
ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet Ansatz
in studying the unitary Fermi gas and propose a simple modification based on the idea of an antisymmetric
geminal power singlet (AGPs) wave function. The new AGPs FermiNet outperforms the original FermiNet
significantly in paired systems, giving results which are more accurate than fixed-node diffusion
Monte Carlo and are consistent with experiment. We prove mathematically that the new Ansatz, which
differs from the original Ansatz only by the method of antisymmetrization, is a strict generalization of the
original FermiNet architecture, despite the use of fewer parameters. Our approach shares several
advantages with the original FermiNet: The use of a neural network removes the need for an underlying
basis set; sand the flexibility of the network yields extremely accurate results within a variational quantum
Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation
values. We discuss how the method can be extended to study other superfluid.
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I. INTRODUCTION

The unitary Fermi gas (UFG) is a paradigmatic example
of a strongly interacting system of two-component fer-
mions that possesses a superfluid ground state and lies in
the crossover region between a Bardeen-Cooper-Schrieffer
(BCS) superconductor and a Bose-Einstein condensate
[1,2]. The effective range of the interaction is zero and
the s-wave scattering length diverges (the “unitarity limit”),
so the UFG has no intrinsic length scale. The only
remaining length is the inverse of the Fermi wave vector
1=kF, on which all thermodynamic quantities depend. For
example, regardless of the particle density, the ground-state
energy per particle of a unitary Fermi gas can be written as

E ¼ ξEFG ¼ ξ
3

5

ℏ2k2F
2m

; ð1Þ

where EFG is the energy per particle of a noninteracting
Fermi gas of the same density. The dimensionless constant
ξ is known as the Bertsch parameter [3].
Because of the universality of the UFG model, it can be

used to describe many real physical systems at different
scales, such as the neutron matter in the inner crust of a
neutron star [4] or the quantum criticality of an s-wave
atomic superfluid [5,6]. The size of the pairs in the UFG is
comparable to the interparticle spacing, which is also a
feature of many high-Tc superconductors [7–9]. As a result,
the UFG has been studied extensively [10]. Although the
UFG is an idealized model, it can be accurately realized in
the laboratory using ultracold atomic gases in which the
interactions have been tuned by using an external magnetic
field to drive the system across a Feshbach resonance [11].
The UFG has been studied for decades, but it remains

difficult to calculate its ground-state properties accurately
using analytic methods. Mean-field treatments such as BCS
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theory [12] give good results for systems with weak
interactions, but there is no guarantee of success in the
strongly interacting regime. As a result, various quantum
Monte Carlo (QMC) methods [13,14] have been used to
simulate the properties of the UFG to high accuracy at zero
and finite temperature. Methods used include variational
Monte Carlo (VMC), fixed-node diffusion Monte Carlo
(FNDMC), fixed-node Green function Monte Carlo, aux-
iliary field Monte Carlo (AFMC), and diagrammatic
Monte Carlo [15–25]. However, a full quantitative descrip-
tion remains an open and challenging problem.
Recent advances in machine learning algorithms and the

growing availability of inexpensive GPU-based computa-
tional resources have allowed neural-network-based
approaches to permeate many areas of computational
physics, including lattice [26–29] and continuum [30–
33] QMC simulations. Here, we employ a neural-network
Ansatz within a VMC approach to study the unitary Fermi
gas. The Ansatz we use, the fermionic neural network
(FermiNet) [30], gives very accurate results for atoms and
molecules [30,34–36] and has recently been applied to
periodic solids and the homogeneous electron gas (HEG)
with comparable success [37]. In the case of the HEG, the
variational optimization of the FermiNet Ansatz discovered
the quantum phase transition between the Fermi liquid and
Wigner crystal ground states without external guidance
[38]. In contrast, previous approaches required different
Ansätze to be used for the two different phases. The
FermiNet has not previously been applied to fermionic
superfluids such as the UFG.
The paper is organized as follows. Section II describes

the architecture of the FermiNet. We find that the original
FermiNet Ansatz is insufficient to capture the two-particle
correlations of superfluids. Although a FermiNet wave
function with one determinant and a sufficiently large
neural network is, in principle, able to represent any
fermionic state [30], it is often advantageous to use a
network of a fixed size and a small linear combination of
FermiNet determinants. In the case of the unitary Fermi
gas, however, we find that the number of block-diagonal
determinants required to describe the ground state accu-
rately scales exponentially with the system size. This is the
first example in which the FermiNet has been seen to fail
both quantitatively and qualitatively and suggests that the
FermiNet wave function may not be able to represent
arbitrary fermionic wave functions in practice. To remedy
the problem, we utilize the neural-network part of the
FermiNet architecture to build a different type of wave
function based on the idea of an antisymmetric geminal
power singlet wave function (AGPs) [29,39–42], which we
discuss in detail in Sec. III. This leads to substantial
improvements, even though the neural-network part of
the wave function remains unchanged. The implementation
of the AGPs wave function using the FermiNet, as well as
its relation to the original block-diagonal multideterminant

FermiNet, are discussed in Sec. IV. Our computational
results are presented in Sec. V, followed by a summary and
discussion in Sec. VI. The Appendixes A–F include
detailed explanations and derivations of important formulas
as well as implementation and training details.

II. FERMINET

The fermionic neural network, or FermiNet [30], is a
neural network that can be used to approximate the ground-
state wave function of any system of interacting fermions.
The inputs to the network are the positions r1; r2;…; rN and
spin coordinates σ1; σ2;…; σN of the N particles, and the
output is the value of the wave function Ψðr1; σ1;
r2; σ2;…; rN; σNÞ corresponding to those inputs. The net-
work is trained using theVMCmethod [13]: Theweights and
biases that define the network are varied at each training
iteration to minimize the energy expectation value according
to the variational principle. If the network is flexible enough,
the approximate wave function obtained after training may
be very close to the true ground state. The FermiNet provides
a more general and accurate alternative to the conventional
Slater-Jastrow (SJ) and Slater-Jastrow-backflowAnsätze that
have been used in most VMC and FNDMC calculations to
date and may improve VMC and FNDMC results for
strongly correlated systems.
In conventional SJ Ansätze, the antisymmetry of the

N-electron wave function is represented using Slater
determinants, which are antisymmetrized products of
single-particle orbitals. For simulations of solids, it is
common to use one determinant only; for molecules, a
linear combination of determinants is usually employed. In
both cases, the presence of determinants guarantees that the
wave function has the correct exchange antisymmetry. To
improve the representation of electronic correlations, espe-
cially the correlations that chemists call “dynamic,” the
determinants are multiplied by a totally symmetric non-
negative function of the electron coordinates known as a
Jastrow factor. This acts to decrease the value of the wave
function as pairs of electrons approach each other, reducing
the total Coulomb repulsion energy.
If the Hamiltonian is independent of spin and all the

single-particle orbitals are eigenfunctions of total Sz, one
can assign spins to the electrons and every Slater deter-
minant can be factored into a product of spin-up and spin-
down Slater determinants [13,43]. The wave function is no
longer antisymmetric under the exchange of electrons of
opposite spin, but expectation values of spin-independent
operators are unaltered. Including a spin-assigned Jastrow
factor expressed in the form eJ, a one-determinant SJ
Ansatz becomes

ΨSJðfr↑g; fr↓gÞ

¼ eJðfr↑g;fr↓gÞ det
�
ϕ↑
i ðr↑j Þ

�
det

�
ϕ↓
i ðr↓j Þ

�
; ð2Þ
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where fr↑g and fr↓g are the sets of position coordinates of
the N↑ electrons assigned to be spin up and the N↓

electrons assigned to be spin down, respectively.
One can improve the SJ Ansatz by transforming the

electron coordinates as

rαj → xα
j ¼ rαj þ

XNα

ði≠jÞ
i¼1

ηkðrααij Þðrαi − rαj Þ

þ
XNᾱ

i¼1

η∦ðrᾱαij Þðrᾱi − rαj Þ; ð3Þ

where α and ᾱ are the two possible spin components of an
electron, rβαij ¼ jrβi − rαj j, and ηkðrÞ and η∦ðrÞ are para-
metrized functions of a single distance argument. The
coordinate-transformed SJ Ansatz is called a Slater-
Jastrow-backflow (SJB) wave function, and the new
coordinates are called quasiparticle coordinates. Note
that the quasiparticle coordinate xα

j is invariant under
the exchange of any two position vectors in frα=jg ¼
frα1;…; rαj−1; r

α
jþ1;…; rαNαg or in frᾱg ¼ frᾱ1;…; rᾱNᾱg [13].

The backflow transformation replaces every single-par-
ticle orbital ϕα

i ðrαj Þ by a transformed orbital ϕα
i ðxα

j Þ, which
depends on the position of every electron in the system.
Exchanging the coordinates of any two spin-parallel
electrons still exchanges two rows of the Slater determi-
nant, so the antisymmetry is preserved. The downside is
that moving one electron now changes every element of the
Slater matrix, preventing the use of efficient rank-1 update
formulas and increasing the cost of reevaluating the
determinant by a factor of N. Despite the extra cost,
however, the enrichment of the description of correlations
between electrons makes SJB wave functions significantly
better than SJ wave functions, and they are frequently used
in VMC and FNDMC simulations.
The FermiNet [30] takes the idea of permutation equiv-

ariant backflow much further, replacing the orbitals ϕα
i ðrαj Þ

entirely by neural networks. The orbitals represented by
these networks differ from SJB orbitals, because they are
not functions of a single three-dimensional vector xα

j but
depend in a very general way on rαj and all the elements of
the sets frα=jg and frᾱg. They are best written as
ϕα
i ðrαj ; frα=jg; frᾱgÞ. The exchange antisymmetry is main-

tained, because ϕα
i ðrαj ; frα=jg; frᾱgÞ is totally symmetric on

exchange of any pair of coordinates in frα=jg or frᾱg.
Furthermore, because they are represented as neural net-
works, the FermiNet orbitals need not be expanded in terms
of an explicit basis set, widening the class of functions they
can represent [44]. In order to build functions with the
correct exchange symmetry properties, a carefully con-
structed neural-network architecture is used, which is
described below.

The FermiNet architecture consists of two parts: the one-
electron stream, which takes electron-nucleus separation
vectors rαi −RI and distances jrαi −RIj as inputs, and the
two-electron stream, which takes electron-electron separa-
tions rαi − rβj and distances jrαi − rβj j as inputs, with
i; j∈ f1; 2;…; Nαg and α; β∈ f↑;↓g. The inputs to the
one-electron stream are concatenated to form one input
vector for each electron, and the inputs to the two-electron
stream are concatenated to form one input vector for each
pair of electrons:

h0α
i ¼ ðrαi −RI; jrαi −RIj ∀ IÞ; ð4Þ

h0αβ
ij ¼ ðrαi − rβj ; jrαi − rβj jÞ; ð5Þ

where the superscript 0 means that the vectors are the inputs
to the first layer of the network. The distances between
particles are passed into the network to help it to model the
wave function cusps, i.e., the discontinuities in the deriv-
atives of the wave function when two electrons or an
electron and a nucleus coincide. These discontinuities
create divergences in the kinetic energy that exactly cancel
the divergences in the potential energy as pairs of charged
particles approach each other [30].
Each electron stream consists of several layers. At each

layer l∈ f0;…; L − 1g, the outputs hlα
i and hlαβ

ij from the
streams are averaged and concatenated in the following
way:

flαi ¼ ðhlα
i ;g

l↑;gl↓;glα↑
i ;glα↓

i Þ;

gl↑ ¼ 1

N↑

XN↑

j¼1

hl↑
j ; gl↓ ¼ 1

N↓

XN↓

j¼1

hl↓
j ;

glα↑
i ¼ 1

N↑

XN↑

j¼1

hlα↑
ij ; glα↓

i ¼ 1

N↓

XN↓

j¼1

hlα↓
ij : ð6Þ

The concatenated one-electron vectors are then passed into
the next layer, as are the two-electron vectors:

hðlþ1Þα
i ¼ tanhðVlflαi þ blÞ þ hlα

i ; ð7Þ

hðlþ1Þαβ
ij ¼ tanh

�
Wlhlαβ

ij þ cl
�
þ hlαβ

ij ; ð8Þ

where Vl andWl are matrices, bl and cl are vectors, and all
of them are optimizable. We denote the number of hidden
units in each layer in the one-electron stream by nl such that
hlα
i ∈Rnl ; l∈ f0; 1; 2;…; Lg [45]. The outputs from the

final layer L of the one-electron streams are used to build
the many-particle FermiNet orbitals:

ϕkα
i ðrαj ; frα=jg; frᾱgÞ ¼ ðwkα

i · hLα
j þ gkαi Þχkαi ðrαj Þ; ð9Þ
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where wkα
i is an optimizable vector and gkαi an optimizable

scalar. The χkαi ðrαj Þ factor is an envelope function to ensure
that the wave function satisfies the relevant boundary
conditions. For example, in a system which requires the
wave function to tend to zero as jrαj −Rmj → ∞, expo-
nential envelopes are used:

χkαi ðrαj Þ ¼
X
m

πkαim expð−σkαimjrαj −RmjÞ; ð10Þ

where πkαim and σkαim are variational parameters. No attempt is
made to ensure that the FermiNet orbitals are normalized or
orthogonal to each other.
As mentioned earlier, FermiNet orbitals are not functions

of one electron position rαi only but also depend on the
positions of all the other electrons in the system in an
appropriately permutation-invariant way. No Jastrow factor
is needed, as the electron-electron correlations are included
in the network. The full wave function is, thus, a block-
diagonal determinant of the FermiNet orbitals ϕkα

i ðrαj ;
frα=jg; frᾱgÞ. Multiple determinants may also be used,
in which case the wave function is a weighted linear
combination:

ΨD
Slater FermiNet

�
r↑1 ;…; r↑

N↑ ; r
↓
1 ;…; r↓

N↓

�

¼
XD
k

ωk det

�
ϕk↑
i ðr↑j ; fr↑=jg; fr↓gÞ

�

× det
�
ϕk↓
i ðr↓j ; fr↓=jg; fr↑gÞ

�
; ð11Þ

where the superscriptD specifies the number of determinants
of FermiNet orbitals in the linear combination of determi-
nants that makes up the full wave function and the “Slater
FermiNet” subscript serves to specify this specific wave
function Ansatz and is discussed in more detail below. In
practice, theweightsωk are absorbed into the orbitals, which
are not normalized.
The VMCmethod is then applied to the FermiNet Ansatz

and the parameters of the network are optimized using a
second-order method known as the Kronecker-factored
approximate curvature algorithm [46]. The aim is to
minimize the expectation value of the Hamiltonian hHi,
which acts as our loss function. For a more detailed
explanation of the FermiNet architecture, see Pfau et al.
[30] and the discussion of the improved JAX implementa-
tion [47] in Spencer et al. [36].
The FermiNet architecture can be extended to study the

periodic system [37,38,48]. Consider the basis fa1; a2; a3g
of the Bravais lattice generated by repeating the finite
simulation cell periodically. Any position vector may be
written as r ¼ s1a1 þ s2a2 þ s3a3. To ensure that the
FermiNet represents a periodic function, the position

coordinates si are replaced in the FermiNet inputs by pairs
of periodic functions: si → ½sinð2πsiÞ; cosð2πsiÞ�. Thus, if
any electron is moved by any simulation-cell Bravais lattice
vector, the inputs to the network are unchanged. It follows
that the output, the value of the wave function, is also
unchanged. A periodic envelope function is used to
improve the speed of convergence [38]:

χkαi ðrαj Þ ¼
X
m

½νkαim cosðkm · rαj Þ þ μkαim sinðkm · rαj Þ�; ð12Þ

where the km are simulation-cell reciprocal lattice vectors
up to the Fermi wave vector of the noninteracting Fermi
gas. This specific way of adapting the FermiNet to periodic
systems was proposed by Cassella et al. [38], although
other similar methods exist [37,48].
The FermiNet has been used to study only systems of

electrons interacting via Coulomb forces to date but can
easily be adapted to systems of other spin-1=2 particles
simply by changing the Hamiltonian. Here, we use the
periodic FermiNet Ansatz to approximate the ground state
of the UFG Hamiltonian in a cubic box subject to periodic
boundary conditions. Since there are no atomic nuclei and
the wave function has no electron-nuclear cusps, the inputs
to the one-electron streams are simpler than shown in
Eq. (4), containing only the particle coordinates [49]:
h0α
i ¼ rαi , with respect to an origin placed at one corner

of the simulation cell. A detailed discussion of translational
symmetry of the wave function can be found in
Appendix E.
As is demonstrated below, the Slater FermiNet is

sufficient to learn the superfluid ground state for small
systems but fails for large systems. Hence, we propose a
modification to the method of building orbitals. The
motivation for this modification comes from earlier work
using antisymmetrized products of two-particle orbitals
known as antisymmetrized geminal power (AGP) wave
functions [15,29,39,40,42,50,51]. We describe the anti-
symmetrized geminal power singlet (AGPs) wave function
in the next section.
The authors of Ref. [30] used the term “FermiNet wave

function” to refer to all wave functions constructed using a
FermiNet neural network. Now that we are going to use
almost the same neural network to generate AGPs-based
pairing wave functions in addition, more precise terminol-
ogy is required. Wave functions of the type introduced in
Ref. [30], which contain many-particle generalizations of
the one-particle orbitals that appear in Slater determinants,
are called one-determinant or multideterminant Slater
FermiNets. Wave functions built using determinants of
many-particle generalizations of pairing functions are
called one-determinant or multideterminant AGPs
FermiNets. Since every AGPs FermiNet determinant is
built using one pairing function or “geminal,” we also refer
to one-geminal or multigeminal AGPs FermiNets.
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III. ANTISYMMETRIZED GEMINAL POWER
WAVE FUNCTION

The FermiNet and other Ansätze that expand the ground
state as a linear combination of Slater determinants give
very accurate results for many molecules and solids but
may still fail to capture strong two-particle correlations in
superfluids. An alternative starting point, which is better at
capturing two-particle correlations, is the AGP wave
function [40–42,52]. This uses an antisymmetrized product
of two-particle functions known as pairing orbitals or
geminals instead of an antisymmetrized product of sin-
gle-particle orbitals.
Although one can build a general AGP wave function

with pairings between arbitrary particles, the UFG
Hamiltonian contains only interactions between particles
of opposite spin. It is, therefore, sufficient to consider
pairing orbitals involving particles of opposite spin only. In
this case, the wave function is called an AGPs. The rest of
this section summarizes the main features of the AGPs
Ansatz and explains how the FermiNet architecture can be
modified to produce many-particle generalizations of AGPs
pairing orbitals. Detailed discussions of AGPs wave func-
tions, including derivations of the equations, can be found
in Refs. [29,40–42,52] and Appendixes A–F.

A. AGP singlet wave functions

It is helpful to start by considering an unpolarized system
with an even number (N ¼ 2p) of particles and total spin
Sz ¼ 0. An AGPs wave function for such a system is
constructed using a singlet pairing function of the form

Φðri;σi;rj;σjÞ¼φðri;rjÞ×hσiσjj
1ffiffiffi
2

p ðj↑↓i− j↓↑iÞ; ð13Þ

where φðri; rjÞ is a symmetric function of its arguments.
We work with spin-assigned wave functions, so we set the

spins of particles 1; 2;…; p to ↑ and the spins of particles
pþ 1; pþ 2;…; 2p to ↓. If, for example, i ≤ p and j > p,
so that particle i is spin up and particle j is spin down, the
spin-assigned pairing function is

Φðri;↑; rj;↓Þ ¼ φðri; rjÞ=
ffiffiffi
2

p
: ð14Þ

The spin-assigned singlet pairing function is equal to zero if
the spins of particles i and j are the same.
The spin-assigned AGPs wave function is a determinant

of spatial pairing functions [15,39]:

ΨAGPsðr↑1 ;…; r↑p; r
↓
1 ;…; r↓pÞ ¼ det½φðr↑i ; r↓j Þ�: ð15Þ

Like all spin-assigned wave functions, it depends on
position coordinates only. For convenience, we change
the particle labeling scheme: i and j now run from 1 to p,
and arrow superscripts are added to distinguish up-spin
from down-spin particles. Note that the AGPs wave
function coincides with the BCS wave function projected
onto a fixed particle number subspace (see Ref. [39] and
Appendix A 1). It is, therefore, suitable for describing
singlet-paired systems, including s-wave superfluids.

B. AGPs with unpaired states

We can generalize the spin-assigned AGPs wave func-
tion to allow for unpaired particles. Consider a system with
N ¼ 2pþ uþ d particles, where p is the number of pairs,
u is the number of unpaired spin-up particles, and d is the
number of unpaired spin-down particles. The total number
of spin-up particles is pþ u, and the total number of spin-
down particles is pþ d. The AGPs wave function can be
written as a determinant of pairing functions and single-
particle orbitals [39,42,52] as shown in Eq. (16):

Ψð1; 2;…; 2pþ uþ dÞ ¼ det

0
BBBBBBBBBBBBBBBBBBBBB@

φðr↑1 ; r↓1 Þ � � � φðr↑1 ; r↓pþdÞ ϕ↑
1 ðr↑1 Þ � � � ϕ↑

uðr↑1 Þ
φðr↑2 ; r↓1 Þ � � � φðr↑2 ; r↓pþdÞ ϕ↑

1 ðr↑2 Þ � � � ϕ↑
uðr↑2 Þ

..

. . .
. ..

. ..
. . .

. ..
.

φðr↑pþu; r
↓
1 Þ � � � φðr↑pþu; r

↓
pþdÞ ϕ↑

1 ðr↑pþuÞ � � � ϕ↑
uðr↑pþuÞ

ϕ↓
1 ðr↓1 Þ � � � ϕ↓

1 ðr↓pþdÞ 0 � � � 0

ϕ↓
2 ðr↓1 Þ � � � ϕ↓

2 ðr↓pþdÞ 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

ϕ↓
dðr↓1 Þ � � � ϕ↓

dðr↓pþdÞ 0 � � � 0

1
CCCCCCCCCCCCCCCCCCCCCA

; ð16Þ
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where φðr↑i ; r↓j Þ is an arbitrary singlet pairing function and
ϕσi
i ðrσij Þ are arbitrary single-particle functions. For the UFG

considered in this paper, we need only the case where u ¼ 1
and d ¼ 0 or vice versa. This represents a fully paired 2p-
particle system to which one particle has been added.

IV. AGP SINGLET FERMINET

Having discussed the form of the AGPs wave function,
we now discuss how it can be implemented using
FermiNet. In the original Slater FermiNet architecture,
the outputs of the one-electron stream are used to build
FermiNet orbitals ϕkα

i ðrαj ; frα=jg; frᾱgÞ. The full many-
particle wave function is a weighted sum of terms, each
of which is the product of one up-spin and one down-spin
determinant of the FermiNet orbital matrices, as shown
in Eq. (11).
To build a many-particle pairing function using the

neural-network part of FermiNet, one can make use of
its outputs hLα

i from the last layer L of the one-electron
stream. Instead of using these outputs to build FermiNet
orbitals, as in Eq. (9), they can be used to build FermiNet
pairing orbitals, also known as FermiNet geminals:

φkðrαi ; rᾱj ; frα=ig; frᾱ=jgÞ
¼ ½wk · ðhLα

i ⊙ hLᾱ
j Þ þ gk�χkðrαi Þχkðrᾱj Þ; ð17Þ

where χkðrÞ are the envelope functions, wk are vectors, gk is
a scalar, and ⊙ denotes the elementwise product. Note that
the same FermiNet geminal is used for all pairs of particles,
so the envelope functions in Eq. (17) do not require the
particle and spin indices that appear in the envelope
functions of the FermiNet orbitals defined in Eq. (9).
This construction generates a many-particle pairing func-
tion between particles rαi and r

ᾱ
j , retaining the permutation-

invariant property possessed by FermiNet orbitals.
Depending on the number of FermiNet geminals generated,
the wave function can be written as one or a weighted sum
of multiple determinants of FermiNet geminals:

ΨD
AGPs FermiNet

�
r↑1 ;…; r↓

N↓

�

¼
XD
k

ωk det

�
φkðrαi ; rᾱj ; frα=ig; frᾱ=jgÞ

�
; ð18Þ

where the superscript D in ΨD
AGPs FermiNet specifies the

number of determinants (and, thus, FermiNet geminals)
appearing in the linear combination that makes up the wave
function. This is analogous to a weighted sum of conven-
tional single-determinant AGPs wave functions of the type
defined in Eq. (15), but the replacement of the two-particle

pairing orbitals by FermiNet geminals that depend on the
positions of all the particles makes it much more general.
Although using the outputs from the one-electron stream

is sufficient to build an AGPs, one can also include the
outputs from the two-electron stream:

φkðrαi ; rᾱj ; frα=ig; frᾱ=jgÞ ¼ ½wk
1 · ðhLα

i ⊙ hLᾱ
j Þ

þ wk
2 · ðhLαᾱ

ij ⊙ hLᾱα
ji Þ

þ gk�χkðrαi Þχkðrᾱj Þ; ð19Þ

where wk
1 and wk

2 are vectors.
Note that Eqs. (17) and (19) are two possible ways of

building a many-particle pairing function. There are many
other ways, and they are all valid as long as the appropriate
symmetries are preserved. An alternative method is given
by Xie et al. [53].
The benefit of building AGPs-like wave functions using

the FermiNet is that the many-particle pairing function
φðrαi ; rᾱj ; frα=ig; frᾱ=jgÞ now depends not only on rαi and rᾱj ,
but also on the positions of the other particles in the system
[54]. Correlations between the singlet pair and the other
particles can, thus, be captured. In a similar way, the
original Slater FermiNet replaces Hartree-Fock-like single-
particle orbitals ϕα

i ðrαj Þ by many-particle orbitals (FermiNet
orbitals) ϕα

i ðrαj ; frα=jg; frᾱgÞ, helping to capture correla-
tions between the particle at rαj and all other particles.

A. Relations between the Slater FermiNet
and the AGPs FermiNet

Next, we clarify the relation between the Slater FermiNet
with block-diagonal determinants and the AGPs FermiNet,
showing that the AGPs FermiNet is the more general of the
two. A FermiNet geminal with a two-particle stream term is
even more general than a FermiNet geminal without, so it is
sufficient for this purpose to omit the two-particle stream
term. We also neglect the envelope functions and the bias
term gk, which is set to 0 in all results presented here. The use
of envelope functions circumvents numerical difficulties in
finite systems and can speed up the network optimization but
does not affect the generality of the Ansatz.
Let us first define a many-particle pairing function in the

following way:

φðr↑i ; r↓j ; fr↑=ig; fr↓=jgÞ ¼
X
kl

Wklh
L↑ðkÞ
i hL↓ðlÞj ; ð20Þ

where hLαðkÞi ¼ ½hLα
i �k are the outputs from the final layer of

the one-electron stream for particle i of spin α. As we
explain below, Eq. (20) is equivalent to the simpler
FermiNet geminal described above:
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φðr↑i ; r↓j ; fr↑=ig; fr↓=jgÞ ¼ w · ðhL↑
i ⊙ hL↓

j Þ: ð21Þ

We choose to write the many-particle pairing function in
the form of Eq. (20) only because this makes it easier to
relate to FermiNet orbitals. Since Eqs. (20) and (21) are
equivalent, the choice does not affect the conclusions of the
argument. In the rest of this section, for the sake of
simplicity, we omit the sets fr↑=ig and fr↓=jg from the
arguments of the many-particle pairing functions and
orbitals.
To explain the equivalence of Eqs. (20) and (21), it is

helpful to represent the matrix Wkl as its singular-value
decomposition:

Wkl ¼
XnL
γ¼1

σγUγkVγl; ð22Þ

where U∈RnL×nL and V ∈RnL×nL are orthogonal matrices
and nL is the size of the vector hLα

i output by the final layer
L of the one-electron stream. This is also known as the
number of hidden units in layer L. The many-particle
pairing function in Eq. (20) becomes

φðr↑i ; r↓j Þ ¼
X
kl

Wklh
L↑ðkÞ
i hL↓ðlÞj ð23Þ

¼
X
γ

σγ

�X
k

Uγkh
L↑ðkÞ
i

��X
l

Vγlh
L↑ðlÞ
j

�
ð24Þ

¼
X
γ

σγðUhL↑
i ÞγðVhL↓

j Þγ: ð25Þ

Given the universal approximation theorem [44] and the
fact that every layer of the network contains an arbitrary
linear transformation, it is reasonable to assume that the
functions hLα

i andOhLα
i , whereO is U or V, have the same

variational freedom and information content. In other
words, we assume that any network capable of representing
hLα
i can also represent OhLα

i , since this is merely a rotation
of the vectors hLα

i in the last layer. We, thus, define h̃L↑
i ¼

UhL↑
i and h̃L↓

i ¼ VhL↓
i , such that the many-particle pairing

function becomes

φðr↑i ; r↓j Þ ¼
X
γ

σγðUhL↑
i ÞγðVhL↓

j Þγ

¼
X
γ

σγðh̃L↑
i ⊙ h̃L↓

j Þγ; ð26Þ

which is equivalent to Eq. (21).

To relate the AGPs FermiNet and the Slater FermiNet,
we expand an AGPs determinant constructed using the
many-particle pairing function from Eq. (20) as a sum of
block-diagonal determinants of FermiNet orbitals. It will be
sufficient to consider matrices W ∈RnL×nL of rank M, with
p ≤ M ≤ nL. We can decompose any such matrix using
rank factorization:

Wkl ¼
XM
γ¼1

FγkGγl; ð27Þ

where F and G are matrices in RM×nL . Equation (20) then
becomes

φðr↑i ; r↓j Þ ¼
XM
γ¼1

�XnL
k¼1

Fγkh
L↑ðkÞ
i

��XnL
l¼1

Gγlh
L↓ðlÞ
j

�

¼
XM
γ¼1

ϕ↑
γ ðr↑i Þϕ↓

γ ðr↓j Þ; ð28Þ

where the last line defines the functions ϕ↑
γ and ϕ↓

γ . In the
case when M ¼ p, where p ¼ N=2 is the number of pairs
in the system, the determinant of the many-particle pairing
function can be written as a block-diagonal determinant of
FermiNet orbitals:

det
�
φðr↑i ; r↓j Þ

�
¼ det

�Xp
γ¼1

ϕ↑
γ ðr↑i Þϕ↓

γ ðr↓j Þ
�

¼ det

�
ðϕ↑Tϕ↓Þij

�

¼ det

�
ϕ↑
i ðr↑j Þ

�
det

�
ϕ↓
i ðr↓j Þ

�
; ð29Þ

where ½ϕα�ij ¼ ϕα
i ðrαj Þ are matrices in RM×p with M ¼ p.

The product of two p × p determinants can be written as
the determinant of a single 2p × 2p matrix, with the p × p
spin-up and spin-down blocks on the diagonal. Therefore, a
single-geminal AGPs FermiNet wave function constructed
using the many-particle pairing function from Eq. (20) with
a rank-p matrix Wkl is equivalent to a 2p × 2p block-
diagonal determinant of FermiNet orbitals. The equivalence
is already well known [51] for AGPs wave functions
constructed using conventional two-particle orbitals.
Now consider the more general case where p ≤ M ≤ nL.

The Cauchy-Binet formula states that
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det

�
φðr↑i ; r↓j Þ

�
¼ det

�XM
γ¼1

ϕ↑
γ ðr↑i Þϕ↓

γ ðr↓j Þ
�

¼
X

1≤j1<j2<���<jp≤M
det

0
BBBBBBBB@

ϕ↑
j1
ðr↑1 Þ ϕ↑

j1
ðr↑2 Þ � � � ϕ↑

j1
ðr↑pÞ

ϕ↑
j2
ðr↑1 Þ ϕ↑

j2
ðr↑2 Þ � � � ϕ↑

j2
ðr↑pÞ

..

. ..
. . .

. ..
.

ϕ↑
jp
ðr↑1 Þ ϕ↑

jp
ðr↑2 Þ � � � ϕ↑

jp
ðr↑pÞ

1
CCCCCCCCA

det

0
BBBBBBBB@

ϕ↓
j1
ðr↓1 Þ ϕ↓

j1
ðr↓2 Þ � � � ϕ↓

j1
ðr↓pÞ

ϕ↓
j2
ðr↓1 Þ ϕ↓

j2
ðr↓2 Þ � � � ϕ↓

j2
ðr↓pÞ

..

. ..
. . .

. ..
.

ϕ↓
jp
ðr↓1 Þ ϕ↓

jp
ðr↓2 Þ � � � ϕ↓

jp
ðr↓pÞ

1
CCCCCCCCA
; ð30Þ

where the sum is over all ðMpÞ distinct choices of p rows
from the two M × p matrices ϕ↑

γ ðr↑i Þ and ϕ↓
γ ðr↓i Þ. The

products of the determinants of the two p × p matrices
associated with each such choice are summed to reproduce
the AGPs. This is similar to the linear combination of
multiple block-diagonal determinants of FermiNet orbitals
without weights given by Eq. (11) and in the original
FermiNet paper [30,55].
Note that the intermediate layers, i.e., the one- and two-

electron streams, are identical in the Slater FermiNet and
the AGPs FermiNet. The only modifications are made at
the orbital shaping layer, or, equivalently, the method of
antisymmetrization has changed. Thus, the representational
power of the intermediate layers of the AGPs FermiNet
remains the same as for the Slater FermiNet. Thus, it must
be the method of antisymmetrization that limits the
performance of the Slater FermiNet when applied to
the UFG.
We have shown that a single AGPs determinant con-

structed using the many-particle pairing function from
Eq. (20) with a matrix Wkl of rank greater than p contains
multiple block-diagonal determinants of FermiNet orbitals.
If the rank ofWkl is equal to p, the AGPs is equivalent to a
single block-diagonal FermiNet determinant. Conversely,
any single-determinant FermiNet wave function can be
written as an AGPs of rank p. Therefore, the AGPs

FermiNet provides a more powerful Ansatz with fewer
variational parameters than the Slater FermiNet, since the
former contains the latter.
It is worth mentioning another advantage of using the

FermiNet to build geminals. By generating more sets of
independent parameters wk

i in Eq. (19), one can easily
construct an arbitrary number Ndet of FermiNet geminals
φkðrαi ; rᾱj ; frα=ig; frᾱ=jgÞ with k∈ f1; 2;…; Ndetg, all without
the use of a basis set. This allows one to use weighted sums
of AGPs determinants as trial wave functions, similar to the
weighted sum of conventional FermiNet determinants seen
in Eq. (11).

B. AGPs FermiNet with unpaired states

To extend the AGPs FermiNet to systems with unpaired
states, such as an odd number of particles system, we use
FermiNet geminals and orbitals to replace both the pairing
orbitals and the single-particle orbitals in Eq. (16). In this
work, we consider systems with equal numbers of up-spin
and down-spin particles, which are assumed to be fully
paired, and systems containing one additional unpaired
particle, which may have spin up or spin down. For
example, the AGPs FermiNet with an extra spin-up particle
is given by

ΨAGPs
FermiNet

�
r↑1 ;…; r↑pþ1; r

↓
1 ;…; r↓p

�

¼
X
k

ωk det

0
BBBBBBBB@

φkðr↑1 ; r↓1 ; fr↑=1g; fr↓=1gÞ � � � φkðr↑1 ; r↓p; fr↑=1g; fr↓=pgÞ ϕk↑
1 ðr↑1 ; fr↑=1g; fr↓gÞ

φkðr↑2 ; r↓1 ; fr↑=2g; fr↓=1gÞ � � � φkðr↑2 ; r↓p; fr↑=2g; fr↓=pgÞ ϕk↑
1 ðr↑2 ; fr↑=2g; fr↓gÞ

..

. . .
. ..

. ..
.

φkðr↑pþ1; r
↓
1 ; fr↑=pþ1g; fr↓=1gÞ � � � φkðr↑pþ1; r

↓
p; fr↑=pþ1g; fr↓=pgÞ ϕk↑

1 ðr↑pþ1; fr↑=pþ1g; fr↓gÞ

1
CCCCCCCCA
; ð31Þ
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where φkðr↑i ; r↓j ; fr↑=ig; fr↓=jgÞ can be defined as either
Eq. (17) or Eq. (19) and ϕk↑

i ðr↑j ; fr↑=jg; fr↓gÞ is defined
in Eq. (9). In practice, we generate the required number of
FermiNet geminal and orbital parameters in batch at the
orbital projection layer. For example, one FermiNet gemi-
nal and one FermiNet orbital are generated per determinant
for a system with one extra spin-up particle.

V. RESULTS

The power of the AGPs FermiNet Ansatz may be
demonstrated by studying the UFG. The Hamiltonian is

Ĥ ¼ −
1

2

XN
i

∇2
i þ

XN=2

ij

Uðr↑i − r↓j Þ; ð32Þ

where

UðrÞ ¼ −
2v0μ2

cosh2ðμrÞ ð33Þ

is the modified Pöschl-Teller potential, which is widely
used in variational and diffusion QMC simulations [15–22].
It would be preferable to use a delta function interaction
with an infinite s-wave scattering length, but it is difficult to
simulate systems with deltalike potentials using QMC
methods. Thus, a finite but short-ranged interaction is
typically used. The s-wave scattering length of the
Pöschl-Teller potential diverges when v0 ¼ 1. By changing
the value of μ at fixed v0 ¼ 1, it is possible to vary the
effective range of the interaction, re ¼ 2=μ, while holding
the s-wave scattering length infinite.
We choose to study a system with density parameter

rs ¼ 1, where rs, the radius of a sphere that contains one
particle on average, provides a convenient measure of the
interparticle distance. Throughout this work, we employ
the dimensionless system based onHartree atomic units: The
unit of length is the Bohr radius a0, and the unit of energy is
theHartree. To ensure that the rangeof the interaction is small
compared with the interparticle separation, we set μ ¼ 12
(re ¼ 1=6), keeping v0 ¼ 1 to ensure that the scattering
length remains infinite [56]. We also simulate the system
with kF ¼ 1 [equivalent to rs ¼ ð9π=4Þ1=3 ≈ 1.92] and μ ¼
12 to compare with the FNDMC result from Forbes,
Gandolfi, and Gezerlis [20].
We use both the Slater FermiNet with multiple block-

diagonal determinants and the AGPs FermiNet with multi-
ple geminals to study the unitary Fermi gas from N ¼ 4 to
N ¼ 38 particles in a cubic box subject to periodic
boundary conditions, as well as AGPs FermiNet on the
N ¼ 66 system [57]. The same network size, number of
determinants, and number of training iterations are used for
both Ansätze. The FermiNet orbitals are given by Eq. (9)
without the bias term. The FermiNet geminal used for

systems containing from 4 to 28 particles is the one defined
in Eq. (17). Unless otherwise stated, all calculations used a
linear combination of 32 determinants or 32 geminals.
Including contributions from the two-electron stream
improves the optimization rate and can achieve a slightly
lower variational energy in larger systems, so Eq. (19) is
used for systems of N ≥ 29. The inclusion of plane-wave
envelopes as defined in Eq. (12) also improves the
optimization rate. For molecular and electron gas systems,
we find that the bias term in the FermiNet orbital projection
[Eq. (9)] does not affect the accuracy or optimization of the
model. We, hence, set the bias term, gkαi and gk as
appropriate, to zero for all calculations presented here.
A comparison of the ground-state energy expectation

values given by the two Ansätze is shown in Fig. 1(a). The
Slater FermiNet, which consists of a linear combination of
block-diagonal determinants of FermiNet orbitals, per-
forms well when the number of particles N is smaller than
around 10, but the AGPs FermiNet is much superior in
larger systems. It is clear that the Slater FermiNet Ansatz
has difficulties learning the ground states of large paired
systems [60].
In systems containing an odd number of particles, one

must be left unpaired. This raises the energy a little and
explains the zigzag shape in Fig. 1(a). The odd-even
staggering is lost for larger systems with the Slater
FermiNet Ansatz, indicating the absence of pair formation
[15,61]. The Slater FermiNet fails to learn the superfluid
state. For the AGPs FermiNet, by contrast, the amplitude of
the odd-even zigzag remains constant, superposed on the
linear increase with N expected of any extensive quantity.
Another comparison between the two Ansätze is shown

in Fig. 1(b), which depicts the ratio of the interacting and
noninteracting energies per particle, known as the Bertsch
parameter [3] and defined in Eq. (1), as a function of N. All
FermiNet energies are variational and the noninteracting
energies are exact, so the AGPs FermiNet, for which the
Bertsch parameter is lower by up to around 30%, is much
the better of the two Ansätze.
We next compare our results with the state-of-the-art

FNDMC results of Forbes, Gandolfi, and Gezerlis [20],
shown in Fig. 2 for the case kF ¼ 1 and μ ¼ 12. The AGPs
FermiNet achieves a lower energy per particle than
FNDMC for all system sizes except for N ¼ 4 and
N ¼ 6. The dependence of the Bertsch parameter on
system size is also smoother when calculated with the
AGPs FermiNet [62]. A full training curve of N ¼ 66 with
comparison to the FNDMC energy can be found in Fig. 8 in
Appendix F.
The pairing gap may be found using the approximation

formula [14,61]

Δ ¼ ð−1ÞN
�
EðN þ 1Þ − 1

2
½EðNÞ þ EðN þ 2Þ�

�
; ð34Þ
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whereN is the total number of particles in thebox.The results
fromN ¼ 4 toN ¼ 36 are shown in Fig. 3. Also shown is the
thermodynamic (N → ∞) limit of the BCS pairing gap
including Gorkov’s polarization correction [63]:

ΔBCS ¼ 8

e2
ℏ2k2F
2m

exp

�
π

2kFa

�
; ð35Þ

ΔGorkov ¼
1

ð4eÞ1=3ΔBCS: ð36Þ

Here, a is the scattering length of the interaction, which is
infinite in the UFG. In this limit, ΔBCS ¼ 1.804EFG and
ΔGorkov ¼ 0.815EFG, whereEFG ¼ 3

5
ðℏ2k2F=2mÞ is the aver-

age energy per particle of an unpolarized noninteracting
Fermi gas and e is Euler’s number [64]. The UFG is a

(a) (b)

FIG. 1. Comparison between results obtained using the AGPs FermiNet and the Slater FermiNet for different numbers of particles N,
with rs ¼ 1 and μ ¼ 12. All simulations use 32 determinants, 300 000 optimization steps, and the same hyperparameters, which are
detailed in the Appendixes A–F. (a) The total energy of the UFG simulation cell, measured in units of the free Fermi gas energy EFG. The
Slater FermiNet Ansatz begins to fail when N⪆ 10. (b) The Bertsch parameter ξ (the ratio of the interacting and noninteracting ground-
state energies per particle) as a function of the number of particles N.

FIG. 2. Comparison of the system-size-dependent values of the
Bertsch parameter, ξ, as calculated using the AGPs FermiNet and
FNDMC, with kF ¼ 1 and μ ¼ 12. According to the variational
principle, lower values are better. The error bars on the AGPs
FermiNet results are smaller than the sizes of the crosses. Inset:
difference between the AGPs and FNDMC values of the Bertsch
parameter. The errors in the inset are obtained by adding the
standard errors of the FNDMC and AGPs FermiNet results in
quadrature. The latter are obtained by computing the standard
error of the Markov chain Monte Carlo-averaged Bertsch
parameter accumulated over 50 000 inference steps.

FIG. 3. Pairing gaps calculated with the Slater FermiNet and the
AGPs FermiNet for different numbers of particles N, with rs ¼ 1
and μ ¼ 12.
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strongly coupled system, so the BCS and Gorkov estimates
of the gap need not be accurate.
The striking collapse of the pairing gap with increasing

system size shows that the Slater FermiNet Ansatz struggles
to describe paired states in systems of more than ten
particles. The AGPs FermiNet Ansatz behaves much better,
although the oscillations with system size suggest that
significant finite-size errors remain even for the largest
systems simulated.
Another signature of fermionic superfluidity is the

presence of off-diagonal long-ranged order in the two-
body density matrix (TBDM):

ρð2Þ↑↓ðr1; r2; r01; r02Þ ¼ hψ̂†
↑ðr1Þψ̂†

↓ðr2Þψ̂↓ðr02Þψ̂↑ðr01Þi; ð37Þ

the largest eigenvalue of which diverges as the number of
particlesN tends to infinity [65]. The superfluid condensate
fraction c may be obtained by evaluating [66]

c ¼ lim
r→∞

Ω2

N↑
ρð2ÞTR↑↓ ðrÞ; ð38Þ

where Ω is the volume of the simulation cell, N↑ is the

number of spin-up particles, and ρð2ÞTR↑↓ ðrÞ is the rotational
and translational average of the TBDM:

ρð2ÞTR↑↓ ðrÞ ¼ 1

4πr2Ω2

Z
ρð2Þ↑↓ðr1; r2; r1 þ r0; r2 þ r0Þ

× δðjr0j − rÞdr1dr2dr0: ð39Þ

The one-body density matrix, by contrast, tends to zero in
the r → ∞ limit [65]. A full discussion of the methods used
to evaluate the condensate fraction in QMC simulations can
be found in the Appendixes A–F and the CASINO

manual [66].
After fully training both the Slater FermiNet and the

AGPs FermiNet for the N ¼ 38 particle system, we use the
resulting neural wave functions to compute the quantity

ðΩ2=N↑Þρð2ÞTR↑↓ ðrÞ. The results are shown in Fig. 4, which
provide further evidence that the Slater FermiNet fails to
converge to the superfluid ground state; the quantity

ðΩ2=N↑Þρð2ÞTR↑↓ ðrÞ appears to be approaching zero in the
large pair-separation limit, implying that the condensate
fraction is also zero. The same quantity for the AGPs
FermiNet approaches a finite value, which we estimate to
be roughly c ¼ 0.44ð1Þ using the eight data points with
separations r=rs ≥ 2.0. This value is consistent with
previous estimations from experiments and the most recent
AFMC value from Ref. [21] (Table I).
In addition, we also estimate the condensate fractions for

the N ¼ 66 UFG at a fixed μ ¼ 12 with two different
densities: rs ¼ 1 (kFre ¼ 0.32) and kF ¼ 1 (kFre ¼ 0.17),

respectively. We compute the quantity ðΩ2=N↑Þρð2ÞTR↑↓ ðrÞ at

five sequentially spaced separations r near r ¼ L=2, where
the quantity has approached its asymptotic value. We then
take the average of the five data points to get estimated
values of the condensate fraction. [71]. Our estimate of the
condensate fraction for N ¼ 66 is c ¼ 0.42ð1Þ at kFre ¼
0.32 and c ¼ 0.52ð1Þ at kFre ¼ 0.17, which are both
consistent with the experiments. The results are summa-
rized in Table I.
Although VMC methods are generally considered to be

less accurate than FNDMC methods, an important advan-
tage of VMC methods is that almost any expectation value,
including any reduced density matrix, may be estimated
without bias. The same is not true of FNDMC simulations,

FIG. 4. Comparison of the TBDM estimators calculated using
the AGPs FermiNet and the Slater FermiNet with N ¼ 38,
rs ¼ 1, and μ ¼ 12. The error bars show the standard error of
the TBDM estimator, accumulated over 2000 inference steps.
Most of the error bars are so small that they are obscured the
symbols.

TABLE I. Estimates of the superfluid condensate fraction at
unitarity using various methods. The quantity kFre is a dimen-
sionless number, indicating the deviation of the simulated system
from a perfect UFG with zero-range interaction.

Method Value

Our estimate for N ¼ 38 at kFre ¼ 0.32 0.44(1)
Our estimate for N ¼ 66 at kFre ¼ 0.32 0.42(1)
Our estimate for N ¼ 66 at kFre ¼ 0.17 0.52(1)
FNDMC for N ¼ 38 at kFre ¼ 0.03 [67] 0.61(2)
FNDMC for N ¼ 66 at kFre ¼ 0.03 [67] 0.57(2)
FNDMC for N ¼ 128 with VMC
extrapolation at kFre ¼ 0.32 [17]

0.51

FNDMC with kFre → 0 extrapolation
for N ¼ 66 [68]

0.56(1)

AFMC with kFre → 0 extrapolation
for N ¼ 66 [21]

0.43(2)

Experiment [69] 0.46(7)
Experiment [70] 0.47(7)

NEURAL WAVE FUNCTIONS FOR SUPERFLUIDS PHYS. REV. X 14, 021030 (2024)

021030-11



which sample the wave function instead of its square
modulus and produce biased “one-sided” estimates of
the expectation values of operators that do not commute
with the Hamiltonian [13]. Thus, there are very few
unbiased and accurate first-principles calculations of the
condensate fraction. Our approach, having both the advan-
tages of VMC and surpassing the accuracy of DMC,
provides solutions to these problems and a more accurate
way to estimate general expectation values.
Finally, we study how the number of block-diagonal

determinants required to achieve a given accuracy scales
with the number of particles in the system. We choose six
even-particle systems from N ¼ 4 to N ¼ 14 and compare
the energies obtained using linear combinations of multiple
block-diagonal FermiNet Slater determinants against
energies obtained using a single-determinant (and, thus,
single-geminal) FermiNet AGPs wave function. All other
hyperparameters are as given in Table II (Appendix B 1). In
Fig. 5, we show that the number of block-diagonal deter-
minants required to achieve a given percentage accuracy
increases approximately exponentially with the number of
particles. Plots for each individual system, along with a more
detailed discussion, can be found in Appendix C. These
results suggest that multideterminant Slater FermiNet wave
functions constructed using a neural network of fixed size are
incapable of describing the ground state of the UFG
accurately unless the number of block-diagonal determinants
rises exponentially with system size. Hence, in practice, the
AGPs FermiNet is required for studying paired systems.

VI. DISCUSSION

In this work, we used neural wave functions to study the
benchmark superfluid system known as the UFG [72]. We

showed that the Slater FermiNet Ansatz has difficulties in
describing paired systems with strong, short-ranged attrac-
tive interactions between particles of opposite spin. Hence,
we proposed a way to improve the variational Ansätze by
using determinants of FermiNet geminals, similar to an
AGPs or a BCS wave function. We showed mathematically
that the Slater FermiNet is a limiting case of the AGPs
FermiNet despite the use of fewer parameters in the latter. It
follows that any FermiNet wave function can, in principle,
be written as an AGPs FermiNet wave function.
We compared the total energies and energies per particle

of the UFG as calculated using the Slater FermiNet and the
AGPs FermiNet. The former fails to produce a paired state
when the number of particles, N, is greater than around 10,
while the AGPs FermiNet works very well.
As the UFG has a superfluid ground state, we computed

the pairing gap and condensate fraction for the N ¼ 38
system and compared estimates made with the Slater
FermiNet and the AGPs FermiNet. There is a clear
qualitative difference between the pairing gap obtained
using the AGPs FermiNet and the Slater FermiNet, with the
latter approaching zero as the number of particles N
increases. Calculations of the superfluid condensate frac-
tion show a similar behavior: The AGPs FermiNet gives an
accurate finite result, while the value obtained using the
Slater FermiNet tends to zero in the limit of large system
size. Although the AGPs pairing gap shows significant
finite-size errors, it lies close to the mean-field BCS result
with Gorkov-Melik-Barkhudarov corrections [63]. Taken
together, these results show that the Slater FermiNet is
unable to represent large systems with superfluid ground
states. The AGPs FermiNet is much more suitable for
studying paired systems such as the UFG.
To demonstrate the success of the AGPs FermiNet, we

also compared our calculated total energies with state-of-
the-art fixed-node diffusion QMC energies obtained using a
Jastrow-BCS Ansatz [20]. For all systems with more than a
few particles, the AGPs FermiNet achieves lower (i.e.,
better) variational energies than FNDMC using the same
model interaction and system parameters.
The inability of the Slater FermiNet Ansatz to accurately

describe the UFG ground state comes as a surprise, because
the original FermiNet paper [30] argued that any many-body
fermionic wave function can be represented as a single
determinant of FermiNet orbitals. However, the mathemati-
cal argument relies on the construction of FermiNet orbitals
with unphysical discontinuities. Whether or not any wave
function can be represented as a single determinant of
FermiNet orbitals of the type used in practice, which are
differentiable everywhere except at electron-electron and
electron-nuclear coalescence points, remains an open ques-
tion. Another limitation is that the architecture of the
FermiNet neural network, which is rather simple, may not
be able to represent an arbitrary many-electron FermiNet
orbital. Even if a single-determinant Slater FermiNet wave

FIG. 5. Number of block-diagonal determinants required for
the multideterminant Slater FermiNet energy to fall within 5%
and 10% of the energy obtained using a single-determinant or
single-geminal AGPs FermiNet.

WAN TONG LOU et al. PHYS. REV. X 14, 021030 (2024)

021030-12



function is general in principle, there is no guarantee that it is
equally easy to represent all wave functions. It may be that
producing an accurate representation of a paired wave
function requires the width and number of layers in the
neural network to increase rapidly with system size.
Furthermore, if a network of fixed size is used, it may be
necessary to increase the number of Slater FermiNet deter-
minants rapidly as the system size increases. The observation
that the Slater FermiNetworkswellwhenN ⪅ 10 but that the
quality of the results degrades rapidly for larger systems,
along with the scaling study presented in the final part of
Sec. V, suggests that this is, in fact, the case.
The AGPs FermiNet introduced in this paper shares

many of the strengths of the Slater FermiNet. In particular,
there is no need to construct and optimize a new basis set
for every new system or particle type. If the AGPs
FermiNet proves equally successful in other paired sys-
tems, it may now be relatively easy to investigate the
importance of pairing in molecules, electron-positron
systems, electron-hole liquids, and other s-wave super-
fluids. Another strength of the AGPs FermiNet is the ease
with which it is possible to optimize linear combinations of
determinants of FermiNet pairing orbitals, such as the one
in Eq. (31). This is much more difficult to accomplish with
conventional wave functions based on explicit two-electron
pairing orbitals or pairing orbitals represented as outer
products of single-particle orbitals or basis functions. Just
as the many-particle orbitals in a Slater FermiNet radically
generalize single-particle orbitals by incorporating elec-
tron-electron terms in a permutation-equivariant fashion, so
the pairing functions in an AGPs FermiNet generalize
BCS-style pairing functions by incorporating the effects of
the remaining electrons in a permutation-equivariant
fashion.
The AGPs FermiNet introduced here has a straightfor-

ward Pfaffian extension and can, thus, be applied to non-
s-wave and triplet pairing. Therefore, we expect it to
become a powerful tool for understanding strongly corre-
lated non-s-wave superfluid and superconducting systems
such as helium-3 or high-Tc and p-wave superconductors.
Finally, our approach is not limited to the FermiNet neural
network and can be readily adapted to use more recent
architectures such as the Psiformer [74], GLOBE and
MOON [75], and DeepErwin [76].
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APPENDIX A: ANTISYMMETRIC GEMINAL
POWER WAVE FUNCTION

This section discusses the relation between the AGPs
wave function and the BCS wave function.

1. Fixed-particle number BCS ground state

The AGPs wave function may be obtained by projecting
the BCS ground-state wave function [12] into a subspace of
fixed particle number [39]. We start with the BCS ground
state:

jΨBCSi ¼
Y
k

ðuk þ vkĉ
†
k;↑ĉ

†
−k;↓Þj0i

¼
�Y

k

uk

�
e
P

k
φkĉ

†
k;↑ĉ

†
−k;↓ j0i;

where φk ¼ ðvk=ukÞ. Ignoring global phase factors and
coefficients, the fixed-particle BCS wave function can be
written as

jΨPBCSi ¼
�X

k

φkĉ
†
k;↑ĉ

†
−k;↓

�
p
j0i; ðA1Þ

where p ¼ N=2 is the number of pairs in the system and N
is the number of electrons. After Fourier transforming this
wave function, we get the real space wave function [39]:

ΨPBCS ¼ A½Φð1; 10ÞΦð2; 20Þ…Φðp; p0Þ�; ðA2Þ

where A is the antisymmetrizer, the wave function corre-
sponding to Φði; i0Þ is
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Φði; i0Þ≡Φðri; σi; ri0σi0 Þ

¼ φðri; ri0 Þ × hσiσi0 j
1ffiffiffi
2

p ðj↑↓i − j↓↑iÞ; ðA3Þ

and φðri; ri0 Þ ¼
P

k φkeik·ðri−ri0 Þ is the Fourier transform
of φk.
As mentioned in the main text, Eq. (A2) can be written as

a determinant of the pairing function φðri; ri0 Þ after spin
assignment [39,40]:

ΨPBCS ¼ det

�
φðr↑i ; r↓j Þ

�
: ðA4Þ

APPENDIX B: EXPERIMENTAL SETUP

In this section, we report the FermiNet setup and
hyperparameters used in this work.

1. FermiNet

The periodic version of the FermiNet implemented by
Cassella et al. [38], which can be found in the FermiNet
repository [77], is used as the basis for the AGPs code. The
small modifications required to support AGPs wave func-
tions are made using the JAX Python library [47]. For the
majority of our calculations, four NVIDIA A100 GPUs are
used. For systems with N > 30 particles, we use four nodes
with a total of 16 A100 GPUs to speed up the calculations.
A JAX implementation of the Kronecker-factored approxi-
mate curvature (KFAC) gradient descent algorithm [46,78]
is used for optimization. The initial parameters of the
network are initialized using Xavier (random) initialization
[79], and the positions of the particles are initialized
uniformly in the simulation box. We do not observe
significant run-to-run variation in the final energy of a
given system as a function of the random initialization. The
FermiNet hyperparameters are shown in Table II and the

network sizes in Table III. All training runs use 3 × 105

iterations to ensure convergence, except for the N ¼ 66
system (see Appendix F). When evaluating expectation
values with an optimized wave function, 5 × 104 inference
steps are used.

2. Estimation of the two-body density matrix

The TBDM in first quantized notation can be written as

ρð2Þαβ ðr1; r2; r01; r02Þ

¼ NαðNβ − δαβÞ
R jΨðRÞj2 Ψðr0

1
;r0
2
Þ

Ψðr1;r2Þ dr3…drNR jΨðRÞj2dR ; ðB1Þ

where α and β denote the spin or particle species. The
superfluid condensate fraction in a finite and periodic
system is defined as

c ¼ Ω2

Nα
lim
r→∞

ρð2ÞTRαβ ðrÞ; ðB2Þ

where Ω is the volume of the simulation cell, Nα is the

number of particles with spin α, and ρð2ÞTRαβ ðrÞ is the
translational and rotational average of the TBDM given
in Eq. (39).
The one-body density matrix (OBDM) is expected to

tend to zero as r → ∞. However, because of finite-size
effects, the OBDM is not necessarily zero within our
simulation cell. We, therefore, use an improved estimator
in Eq. (B3) that removes the one-body contribution
explicitly [66]:

ρð2Þαβ ðr1; r2; r01; r02Þ
¼ NαðNβ − δαβÞ

×

R jΨðRÞj2
h
Ψðr0

1
;r0
2
Þ

Ψðr1;r1Þ−
Ψðr0

1
;r2Þ

Ψðr1;r2Þ
Ψðr1;r02Þ
Ψðr1;r2Þ

i
dr3…drNR jΨðRÞj2dR : ðB3Þ

This quantity can then be estimated using Monte Carlo
sampling.

TABLE III. Network sizes and number of determinants used in
all simulations. The corresponding mathematical symbols men-
tioned in the main text of the paper, where available, are also
listed.

Parameter Symbol Value

One-electron stream network size nl 512
Two-electron stream network size � � � 64
Number of network layers L 4
Number of determinants D 32

TABLE II. Hyperparameters used in all simulations. “std. dev.”
stands for standard deviation.

Parameter Value

Batch size 4096
Training iterations 3 × 105

Pretraining iterations None
Learning rate ð2 × 104 þ tÞ−1
Local energy clipping 5.0
KFAC momentum 0
KFAC covariance moving average decay 0.95
KFAC norm constraint 1 × 10−3

KFAC damping 1 × 10−3

Markov chain Monte Carlo proposal
std. dev. (per dimension)

0.02

Markov chain Monte Carlo steps
between parameter updates

10
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APPENDIX C: HOW MANY BLOCK-DIAGONAL
DETERMINANTS DOES THE SLATER

FERMINET NEED TO ACHIEVE THE SAME
ACCURACY AS THE AGPS FERMINET WITH

ONE DETERMINANT?

In the main text, we demonstrate that the Slater FermiNet
with 32 block-diagonal determinants is able to capture
superfluidity in small systems but fails at larger systems.
Therefore, we are interested in the scaling of the original
block-diagonal determinant FermiNet wave function with
respect to the system size; i.e., how many block-diagonal
determinants do we need in order for the Slater FermiNet to
converge to the ground state at each system size?
To answer this question, first we set the AGPs FermiNet

with one determinant energies as baselines and plot the
percentage difference of the Slater FermiNet from the
baseline against the number of block-diagonal determinants
used in the Slater FermiNet wave function, repeated at
different system sizes from 4 to 14 even-particle systems.
The results are shown in Fig. 6.
As the results suggest, it becomes more difficult for the

Slater FermiNet to get close to the AGPs FermiNet baseline
as the number of determinant increases, especially for
larger systems. This is due to the limited performance of the
optimizer as the number of determinant increases. Hence,
due to the constraints on time and resources, it is not
feasible to continue to increase the number of determinants
until the Slater FermiNet achieves the same accuracy as the
AGPs FermiNet. Instead, we decide to set two thresholds

for the percentage difference between the two results. Here,
we use 5% and 10% as the thresholds, plotted as the two
horizontal lines in Fig. 6. By plotting the x intercept of the
curves with the two threshold lines against system size, we
can determine the relationship between the two, as shown
in Fig. 5. As the y axis in Fig. 5 is in logarithmic scale, a
roughly linear relationship suggests an exponential scaling
of the number of block-diagonal determinants as system
size increases.
The result indicates that, in theory, the Slater FermiNet is

capable of converging to the ground state given the number
of block-diagonal determinants is sufficiently large. In
practice, the number of block-diagonal determinants
required to learn the ground state increases exponentially
as the system size gets bigger and the number gets
inaccessible rapidly.

APPENDIX D: DENSE DETERMINANT

Previous works [32,38,74,80–82] have suggested that
the use of dense determinants

ΨDense
FermiNet ¼ det

 
ϕ↑
i ðr↑j ;fr↑=jg;fr↓gÞ ϕ↑

i ðr↓j ;fr↓=jg;fr↑gÞ
ϕ↓
i ðr↑j ;fr↑=jg;fr↓gÞ ϕ↓

i ðr↓j ;fr↓=jg;fr↑gÞ

!
;

ðD1Þ

in contrast to block-diagonal diagonal determinants with
FermiNet in Eq. (11), provides a slight gain in accuracy in

FIG. 6. Percentage difference between the Slater FermiNet with various number of block-diagonal determinants and the AGPs
FermiNet with one determinant at different system sizes, from 4 to 14 particles.
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various infinite and periodic systems. In this subsection, we
present a small set of calculations of the UFG with dense
determinants and compare the results with the block-
diagonal FermiNet and the AGPs FermiNet. The results
are presented in Table IV.
Although the use of dense determinants in the UFG does

provide lower energies comparing to the block-diagonal
determinants, they are still significantly higher than the
AGPs FermiNet energies. In addition, the qualitative
behaviors, such as the absence of odd-even staggering,
are still similar to the block-diagonal FermiNet, which are
qualitatively different from the AGPs FermiNet.

APPENDIX E: TRANSLATIONAL SYMMETRY
OF THE AGPS FERMINET

In this section, we discuss the consequences of setting an
origin in the simulation cell.

As mentioned in the main text, in all of our simulations,
an origin is set at one corner of the simulation cell. The
particle coordinates rαi , which are used as inputs to the one-
electron stream network, are taken with respect to this
origin. Thus, the AGPs FermiNet Ansatz does not impose
translational invariance with respect to simultaneous trans-
lations of all particle coordinates.
As the model unitary Fermi gas system has a transla-

tionally invariant ground state, it is natural to use a
translationally invariant Ansatz to study it. While it is
possible to neglect the one-electron stream network and use
only the two-electron stream network, which is transla-
tionally invariant by construction, in the AGPs FermiNet
simulations, we find that doing so gives significantly worse
energies than the standard AGPs FermiNet. This is due to
the limitation on the expressivity of the two-electron stream
network, which, despite being translationally invariant, is
not sufficient to represent the ground state of the unitary

FIG. 7. A 2D projection of the N ¼ 14 unitary Fermi gas density in the simulation cell from sampling the converged AGPs FermiNet
wave function. L is the length of the simulation cell.

TABLE IV. Total energy of the UFG with 36–38 particles and their corresponding pairing gap using different
wave functions.

Total energy (EFG)

Type of wave function N ¼ 36 N ¼ 37 N ¼ 38 Pairing gap (EFG)

Block 17.8523(5) 18.2032(5) 18.3131(6) 0.121(2)
Dense 17.7027(5) 18.1601(5) 18.2570(5) 0.180(2)
AGPs 14.6059(4) 15.8060(5) 15.3975(5) 0.804(1)

WAN TONG LOU et al. PHYS. REV. X 14, 021030 (2024)

021030-16



Fermi gas. This finding is also consistent with the findings
in the previous study of the homogeneous electron gas by
Cassella et al. [38]. Hence, we include the one-electron
stream networks in our Ansatz when studying the unitary
Fermi gas.
Despite an explicit origin being embedded into the one-

electron stream network in the AGPs FermiNet Ansatz
when studying the unitary Fermi gas, we conclude that this
does not create any obvious bias in the converged wave
function. Evidence supporting this is shown in Fig. 7,
where a 2D-projected density of the N ¼ 14 unitary Fermi
gas, obtained using the converged AGPs FermiNet wave
function, is plotted. There is no obvious structure in the
density plot, and it is uniform across the whole simulation
cell. Hence, we believe the Ansatz is capable of represent-
ing translationally invariant wave functions, even though
this is not explicitly imposed.

APPENDIX F: TRAINING CURVES
OF THE 66-PARTICLE UFG

We present the training curves of theN ¼ 66UFG in this
section. Because of limited computational resources, we
train the 66-particle UFG system only up to 150 000 steps,
which is half the number of steps we use to train all other
systems in the paper (see Table II). Therefore, even though
our N ¼ 66 results are able to outperform the FNDMC
results by a similar amount as the smaller systems, it is not
fully converged as demonstrated in the training curve in
Fig. 8. We emphasize that the energy we obtain is still a
variational upper bound on the ground-state energy.
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