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We derive an exact solution for the steady state of a setup where two XX-coupledN-qubit spin chains (with
possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by
a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure
entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of
squeezed light. Our solution also provides insights into a single boundary-driven dissipative XX spin chain
that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation
effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping.
Our system could be implemented in a number of experimental platforms, including circuit QED.
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I. INTRODUCTION

The recent intense interest in driven-dissipative quantum
systems has many distinct motivations. One key goal is to
understand how tailored dissipative processes [1,2] could
be used to stabilize entangled quantum states in both the
few and many-body regimes, with possible applications
to quantum information processing (see, e.g., Refs. [3–22]).
A second, seemingly distinct line of work seeks to under-
stand the unique properties of nonequilibrium steady
states (NESS) that arise in driven quantum spin chains
from the interplay of driving, lattice dynamics, and dis-
sipation [23–35]. Here, certain exact solutions have been
especially valuable [23–27].
In this paper, we present new exact results for two

boundary-driven spin models that are directly relevant to
both of the above motivations. The first [Fig. 1(a)] consists
of two passively coupled N-qubit chains that hang off the
same waveguide. We show that, for arbitrary N, this system
has a pure, highly entangled steady, even for weak driving
and with certain kinds of disorder. The second [Fig. 1(b)] is
a single-qubit chain with boundary Rabi driving and loss,

which somewhat surprisingly corresponds to an interacting
fermionic model. We nonetheless obtain an exact result for
the NESS by considering the directional waveguide limit of
the double-chain system: The double-chain pure state is the
purification of the desired NESS. This represents the first
use of the hidden time-reversal or quantum absorber exact
solution method [4,36,37] to a nontrivial system where
interactions are not long-ranged. This solution is also a rare
example of an exactly solved coherently driven 1D spin
chain model. In contrast, the few existing examples of
exactly solvable boundary-driven spin chains have involved
purely incoherent drives [23–27].
Our exact solutions provide a wealth of insights relevant

to understanding correlations in the NESS and to the
application of remote entanglement stabilization. Despite
the lack of any explicit attractive interactions in our
systems, their steady states exhibit strong real-space pairing
correlations. In fact, we show that the pure steady state of
the double-chain system can be exactly written as a
condensate of paired holes, where a hole here corresponds
to an interchain dimer of qubits that are both in the vacuum
state [see Fig. 1(c)]. We discuss how this pairing has clear
observable consequences and how it ultimately arises from
a kinetically constrained hopping process (something that
could also be studied in certain nondissipative cold atom
systems [38]). This pairing mechanism also has a direct
connection to the emergence of quantum scar states: It
represents a restricted spectrum-generating algebra of the
two-chain Hamiltonian [39] and can be used to construct a
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tower ofmany-body scar states in relatednonintegrable ladder
models such as that studied in Ref. [40]. We also discuss
regimes where this pairing structure directly results in an
NESSwith features reminiscent of charge densitywave order.
In terms of entanglement stabilization, our double-

chain system has potential advantages over other proposals
[16–21], as it does not require the preparation and transport
of high-fidelity squeezed light but only simple Rabi drives
and passive waveguide couplings. It unifies and extends to
the multiqubit regime previously known two-qubit schemes
[4–8]. For large Rabi drive amplitude Ω, our system is just
one example of a more general mechanism for replicating
definite-parity two-qubit states using simple XX (hopping)
couplings. While this was seen previously in different
systems [16–19], the underlying mechanism had not been
elucidated. For finite Ω, the two-qubit systems need Ω > γ
for significant steady-state entanglement, where γ is the
waveguide-induced dissipation. We find that this is no
longer the case for larger systems: For N ≥ 2, strong
steady-state entanglement requires only the potentially
much weaker condition Ω >

ffiffiffiffiffi
Jγ

p
, where J is the hopping

(XX coupling) in each chain. We also show that the method
introduced in Ref. [8] for speeding up the dissipative
stabilization of a two-qubit entangled state can be extended
to situations with multiple qubits, leading to a dramatic
acceleration of our protocol.
The rest of this paper is organized as follows. In Sec. II,

we introduce our two basic models, while in Sec. III

we give the exact pure steady state of the double chain,
discuss its structure, and explain the general entanglement
replication mechanism that applies for large Ω. In Sec. IV,
we explain three surprising features of the steady state:
effective hole pairing, universal single-parameter scaling of
the excitation density, and the emergence of single-particle
states with charge density wave order. In Sec. V, we discuss
the application of Fig. 1(a) to remote many-Bell-pair
entanglement stabilization.

II. XX-COUPLED QUBIT CHAINS WITH
BOUNDARY DISSIPATION AND DRIVING

A. The two-chain model

Consider the setup in Fig. 1(a): two passively coupled
N-qubit chains (A and B), with boundary driving and
correlated dissipation. The dynamics is described by the
Lindblad master equation

∂tρ̂ ¼ −i½Ĥ; ρ̂� þ γD½ĉ�ρ̂; ð1Þ

Ĥ ¼ Ĥdrive þ ĤXX þ Ĥdiss; ð2Þ

ĉ ¼ σ̂−A;1 þ σ̂−B;1; ð3Þ

where the Hamiltonian terms are given by

Ĥdrive ¼
Ω
2
ðσ̂xA;1 þ σ̂xB;1Þ þ

Δ
2
ðσ̂zA;1 − σ̂zB;1Þ; ð4Þ

ĤXX ¼ 1

2

XN−1

j¼1

X
s¼A;B

Jjðσ̂þs;jσ̂−s;jþ1 þ H:c:Þ; ð5Þ

Ĥdiss ¼
1

2
iνγ

�
σ̂þA;1σ̂

−
B;1 − H:c:

�
: ð6Þ

The Lindblad dissipatorD½ĉ�·¼ ĉ · ĉ†−fĉ†ĉ; ·g=2 describes
collective loss on the site-1 qubits (with σ̂− ¼ j0ih1j,
σ̂z ¼ j1ih1j − j0ih0j).
Consider first the driving of our system. Qubits A1 and

B1 are Rabi-driven at the same frequency and amplitude Ω.
We, however, take qubit A1 (B1) to be detuned byþΔ (−Δ)
from the drive frequency. Treating these drives within the
rotating wave approximation, we obtain the rotating frame
Hamiltonian Ĥdrive, given by Eq. (4). We take the remaining
qubits in each chain to be resonant with the drive frequency.
Within each chain, excitations can hop between adjacent

qubits. This is described by simple nearest-neighbor XX
couplings: ĤXX, given by Eq. (5). While the hopping
amplitudes Jj in each chain can vary from bond to bond, we
require that the hopping across a particular bond j is the
same for chains A and B; as we see in Sec. III, this mirror
symmetry is necessary to obtain a pure steady state. The
passive exchange couplings we use here are natural in many
experimental settings. For example, in superconducting

(a)

(c)

(b)

FIG. 1. (a) Two XX-coupled N-qubit chains, with boundary
collective loss (rate γ, mediated by a waveguide) and Rabi drives
(strength Ω, detuning �Δ). (b) A single XX chain with a Rabi
drive and loss on the boundary, which corresponds to an
interacting fermionic model. The steady state here is obtained
from the pure steady state of the two-chain system. (c) For strong
dimensionless driving Ω̃ [cf. Eq. (26)], the steady state ap-
proaches a product of dimer Bell pairs. For finite driving, the
exact steady state is obtained by doping this state with delocal-
ized, paired “holes.” Strong interchain entanglement can be
achieved even if Ω < γ.
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circuits, they could be realized straightforwardly with
capacitive couplings.
Finally, we turn to the dissipation-mediated coupling

between the two chains. Qubits A1 and B1 experience
collective loss (at rate γ) due to a common coupling to a
Markovian reservoir. We focus on the case where this bath
is an open waveguide structure and the two chains are
spatially separated (in the limit where non-Markovian
effects associated with a finite propagation time can be
neglected). We consider two types of waveguides: (i) a
bidirectional waveguide that supports both left- and right-
propagating waves or (ii) a unidirectional waveguide that
supports only, e.g., right-propagating waves. Note that a
bidirectional waveguide requires precise spacing of the
qubits to engineer collective loss (see, e.g., Ref. [7]);
such control is not needed for the directional setup.
When the waveguide is not fully bidirectional (e.g., qubits
couple preferentially to right-propagating modes versus
left-propagating modes), it induces the effective exchange
Hamiltonian Ĥdiss given by Eq. (6) [41], where ν is a
directionality factor, −1 ≤ ν ≤ 1. When ν ¼ 0 the wave-
guide is perfectly bidirectional, and when ν ¼ þ1 (ν ¼ −1)
the waveguide is perfectly unidirectional with system A
(system B) upstream of B (A).

B. Remote two-qubit entanglement stabilization

A key motivation for our two-chain setup is the ability to
stabilize large amounts of remote entanglement. To under-
stand the challenge here, we first review the simpler
problem of dissipatively stabilizing entanglement between
two remote qubits. One generic approach is to use squeezed
light (as first introduced by Kraus and Cirac [3] and further
studied in Refs. [10,13,18]). Such schemes ultimately rely
on generating correlated “pairing” dissipation, with a
Lindblad jump operator ĉpair ¼ uσ̂−A;1 þ vσ̂þB;1. While con-
ceptually appealing, such pairing-based protocols are
experimentally challenging, given the difficulty of pre-
paring and propagating high-quality squeezed light.
Recent work shows that pairing dissipation can be realized
without squeezed light, instead using modulated qubit-
waveguide couplings [7,16]; this is also challenging in
many setups.
A simpler approach for stabilizing remote two-qubit

entanglement (using only Rabi drives and passive loss) is
provided by the N ¼ 1 version of Eq. (1). This both unifies
and generalizes the entanglement stabilization schemes
studied in Refs. [4–7]. The bidirectional waveguide
case (ν ¼ 0) yields the schemes of Refs. [6,7], and the
unidirectional waveguide case (ν ¼ �1) yields the scheme
introduced in Ref. [4].
The general N ¼ 1 system has a pure steady state

ρ̂1ðt → ∞Þ ¼ jψ1ihψ1j given by (up to normalization)

jψ1i ¼
ffiffiffi
2

p
Γj00i þ ΩjSi; ð7Þ

Γ≡ Δ −
1

2
iνγ; ð8Þ

where Γ∈C is a generalized complex detuning. Here, we
introduce the singlet and triplet entangled states

jSi ¼ 1ffiffiffi
2

p ðj01i − j10iÞ; jTi ¼ 1ffiffiffi
2

p ðj01i þ j10iÞ; ð9Þ

respectively, in addition to the unentangled vacuum j00i
and the “doublon” j11i. Equation (7) is the unique two-
qubit steady state for any jΩ=Γj < ∞, and, as jΩ=Γj → ∞,
it approaches a perfect Bell state jψ1i → jSi. Note, how-
ever, that in this limit the dissipative gap closes and a
second impure steady state emerges [7–9].
Going forward, one key goal is to extend this entangle-

ment stabilization to the case where each chain has N ≫ 1
qubits. As we show, this is a priori a nontrivial exercise.
Unlike schemes that use squeezing dissipation, the entan-
glement structure of the N ≫ 1 chain is complicated and
crucially depends on the interplay between the boundary
driving and lattice dynamics. However, this interplay also
gives the N ≫ 1 chain advantages over squeezing-based
schemes by enabling large amounts of entanglement to be
stabilized without requiring Ω ≫ γ. To describe the stabi-
lized state for N ≫ 1, it is useful to use a basis where we
specify the state of each cross chain dimer j. We use
notation like jð01Þji ¼ j0A;j1B;ji to denote the state of the
qubit pair on dimer site j. For example, jSji denotes a Bell
pair spanning qubits Aj and Bj.

C. Boundary-driven dissipative quantum spin chain

A second motivation for our work comes from
the seemingly simpler single-chain system depicted in
Fig. 1(b): a chain of XX-coupled qubits with local loss
and Rabi driving on one boundary site of the chain. The
master equation for this system is

∂tρ̂A¼−i½ĤA; ρ̂A�þγD½σ̂−A;1�ρ̂A;

ĤA¼
Ω
2
σ̂xA;1þ

Δ
2
σ̂zA;1þ

1

2

X
j

Jjðσ̂þA;jσ̂−A;jþ1þH:c:Þ: ð10Þ

As with other boundary-driven spin chain systems, we are
interested in understanding the NESS of this setup. For
weak drives, one expects the NESS to approach a product
state (all qubits in j0i), whereas for strong driving, one
instead expects an infinite-temperature state. How one
interpolates between these limits (and how the correspond-
ing NESS depends on master equation parameters and the
disordered hopping) is at first glance unclear. Surprisingly,
Eq. (10) cannot be mapped to a system of free fermions,
even though this is possible for the Hamiltonian ĤA alone.
As we show in Appendix A, upon making a Jordan-Wigner
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transformation, the Rabi drive in ĤA yields a linear-in-
fermion term, something that can be treated using the
method in Ref. [42]. However, when applied to the full
master equation, this necessarily yields an interacting
fermionic problem. Specifically, the loss dissipator
becomes nonlinear in the fermionic master equation:
∂tρ̂ ¼ −i½Ĥfermi;η; ρ̂� þ γD½ð−1Þη̂†η̂ĉ1�ρ̂, where Ĥfermi;η is a
quadratic fermionic Hamiltonian, ĉ1 is the fermion-
lowering operator on the dissipative site, and η̂ is the
fermionic-lowering operator of an auxiliary mode introduced
per the method in Ref. [42] (see Appendix A for details).
Equation (10), thus, corresponds to an interacting fer-

mionic system without translational invariance (the hop-
pings can be disordered). Surprisingly, we are able to find
an exact analytic description of its NESS. We do this by
first solving for the pure steady state jψi of the double-
chain system in Eq. (1), something that can be done
analytically. If we then focus on the case where the
waveguide is directional from A to B (i.e., ν ¼ 1), simply
tracing out the B chain yields the steady state of the single-
chain system in Eq. (10):

ρ̂A ¼ trBjψihψ j: ð11Þ

This corresponds to a new many-body application of the
coherent quantum absorber technique introduced in Ref. [4]
and extended in Refs. [36,37,43,44]. The existence of this
exact solution implies that the single-chain system has a
“hidden time-reversal symmetry” which enforces Onsager
time symmetry of a certain class of two-time correlation
functions [37].
As presented in more detail in Sec. IV, our exact solution

for this boundary-driven spin chain reveals a number of
surprising features in the NESS, including regimes of
strong long-range correlations and even structures remi-
niscent of charge density wave order.

III. PURE ENTANGLED STEADY STATE
FOR ARBITRARY N AND Ω

We now introduce a key result of this work: The
boundary-driven double spin chain in Eq. (1) has a pure
steady state for arbitrary N, drive strength Ω, and hoppings
Jj. Even though the 1þ 1-qubit system has generically a
unique pure steady state, a priori there is no reason to
expect that this will also be true whenN > 1. Indeed, Fig. 2
shows that, for a generalized version of our 2þ 2 qubit
model, the steady state will be impure if the two hopping
amplitudes differ or if we detune the second pair of qubits
from the drive.
We find surprisingly that these two conditions (mirror

symmetry of hoppings and no detunings of additional
qubits) are enough to guarantee a pure steady state for
arbitrary N and for arbitrary choices of the parameters in
Eq. (1). In the infinite-drive limit, the steady state has a

simple translationally invariant dimerized form that can
be understood from a general replication argument that
we present below (and that applies to many other setups
[16–19]). For finite drives Ω, the steady state has a far more
complicated form that is neither dimerized nor translation-
ally invariant. Our exact analytic expression, nonetheless,
provides a simple picture for the state: It is a condensate of
paired “hole” excitations, where holes correspond to cross-
chain dimers that are in the vacuum jð00Þji state.

A. Ω → ∞ limit: Generic entanglement replication
via XX couplings

The form of this pure state of Eq. (1) becomes extremely
simple in the limit of strong driving Ω:

jψi → jψ∞i ¼ jS1T2S3T4S5T6…ðS=TÞNi: ð12Þ

This is a highly entangled state of the two chains that
factors into a product of Bell pairs on each cross-chain
dimer j. The phase of these pairs alternates from jSi or jTi
as one moves down the chain as indicated. Up to this local
phase variation, the state is translationally invariant. This
result is, in fact, the consequence of a much more general
“entanglement replication” phenomenon associated with
XX couplings and definite-parity dimer states; we explain
this in what follows. This mechanism also explains and
unifies the replication phenomena seen in several previous
works [16–19]. We note that the general nature of the
replication mechanism we present here was not discussed
in earlier works.
Imagine, as in Fig. 3, that we have dissipative

dynamics L̂ acting on a two-qubit system that stabilizes
an arbitrary state jψi with fixed excitation number parity,

FIG. 2. The existence of a pure steady state is special. We
consider two kinds of Hamiltonian perturbations to the N ¼ 2
version of the system in Fig. 1(a), demonstrating that the
emergence of a pure steady state is not generic. We break
the mirror symmetry in the hopping rates via JB ¼ JA þ δ [cf. the
discussion below Eq. (5)]. We also consider the addition of both
equal detunings and opposite detunings to the second site of each
chain: ĤΔ ¼ ðδ=2Þðσ̂zA;2 � σ̂zB;2Þ. The purity of the numerically
computed steady state ρ̂ss ¼ ρ̂ðt → ∞Þ is shown in each case
versus the perturbation strength δ. The steady state is pure only
when δ ¼ 0. We use unperturbed system parameters Ω ¼ 0.5γ,
Δ ¼ 0.1γ, and J ¼ 0.25γ.
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i.e., jψi ¼ aj00i þ bj11i or jψi ¼ aj01i þ bj10i. The
actual method for stabilization is unimportant; only the
state matters. For now, we focus on even-parity states for
concreteness, but the analysis is identical for odd-parity
ones. Note for our specific system, for the N ¼ 1 case and
Ω → ∞, the stabilized state has a definite parity; hence, the
following arguments apply.
Next, imagine passively coupling a second pair of qubits

to the first with an XX Hamiltonian; cf. Eq. (5). For
convenience, we use a different gauge choice for the
B chain (i.e., j1i → −j1i for the B qubits), such that the
XX couplings now have opposite signs in the B chain
versus the A chain. Specifically, if L̂ stabilizes jψ1i ¼
ajð00Þ1i þ bjð11Þ1i, then we are interested in the
Hamiltonian

ĤXX;2 ¼ J
X
s¼A;B

ð−1Þs½σ̂xs;1σ̂xs;2 þ σ̂ys;1σ̂
y
s;2�: ð13Þ

This Hamiltonian now has an extremely convenient feature:
No matter what the parameters a and b, the “replicated,”
dimerized state jψi ¼ jψ1ψ2i is a zero eigenstate, as can be
confirmed by a simple direct computation:

ĤXX;2jψ1ψ2i ¼ 0: ð14Þ

This tells us that jψi ¼ jψi1 ⊗ jψi2 is a steady state of the
four-qubit dynamics defined by

∂tρ̂ ¼ ðL̂ ⊗ 1Þρ̂ − i½ĤXX;2; ρ̂�: ð15Þ

Hence, without changing the dissipative stabilization
mechanism at all, we can use the passive Hamiltonian
interaction to propagate entanglement to a second qubit
pair. Even more strikingly, we can now add a third pair of

qubits (again via mirrored XX couplings). The same
arguments tell us that the steady state will be a replicated
entangled state, i.e., a product of cross-chain dimers, where
each entangled dimer is in the state jψi. Iterating this
argument, we can show that for arbitrary N, if we let

ĤXX;N ¼
XN−1

i¼1

X
s¼A;B

Jið−1Þs½σ̂xs;iσ̂xs;iþ1 þ σ̂ys;iσ̂
y
s;iþ1�; ð16Þ

jψi ¼ ⊗
N

i¼1
½ajð00Þii þ bjð11Þii�; ð17Þ

then jψi is still a steady state of the dynamics

ðL̂ ⊗ 1⊗N−1Þjψihψ j − i½ĤXX;N; jψihψ j� ¼ 0: ð18Þ

The analysis follows in the exact same manner if one uses
odd-parity states instead of even-parity ones. Elsewhere in
this manuscript, we work in a gauge with uniform coupling
signs [so that there is no factor of ð−1Þs in Eq. (5); contrast
with Eq. (16)]. The replication here goes through exactly
the same, where we can make a local sign flip on every
other dimer, moving the relative phase onto the b coef-
ficient in Eq. (17), b → ð−1Þib. Therefore, this replication
argument gives a general proof that Eq. (12) is a pure steady
state of Eq. (1) in the infinite driving limit [as in this limit,
the N ¼ 1 problem has a definite (odd-) parity pure steady
state jS1i] [45]. The change of gauge, thus, explains why
Eq. (12) is a product of staggered jSi and jTi instead of
uniform jSi states.
The fact that the Hamiltonian perfectly replicates fixed-

parity states can be understood intuitively from the fact
that it commutes with Ŝ2s the total spin operator and Ŝzs ¼
σ̂zs;1 þ σ̂zs;2 the collective Z operator of each chain s ¼ A, B.
More details are in Appendix B 1. More generally, one can
demonstrate that, given any arbitrary two-qubit entangled
state, Heisenberg couplings can be used to perfectly
replicate this state down the chain, alleviating the parity
constraint. Details are in Appendix B 2. Moreover, for both
the Heisenberg coupling or XX couplings, significantly
more complex geometries than chains can be used, general-
izing [18]. For more details, see Appendix B 3.

B. Ω < ∞: Pure steady-state condensate
of paired holes

We now turn to the more general (and experimentally
relevant) case of a noninfinite-drive amplitude Ω. For finite
strength driving, the steady state for N ¼ 1 [Eq. (7)] no
longer has definite parity. As such, the replication argument
of the previous section does not apply when we now
consider larger systems, and there are no general arguments
that would guarantee the existence of a pure steady state for
N ≥ 2. Remarkably, we find that, for arbitrary parameters,
Eq. (1) has a pure steady state, albeit one that is far more

FIG. 3. Entanglement replication via passive exchange cou-
plings. Suppose there is some dissipative dynamics L̂ that
stabilizes a two-qubit entangled state jψi on the first pair of
qubits in two exchange-coupled chains. If that state has definite
parity, then the product state jψ1ψ2i is a zero energy eigenstate of
passive exchange couplings ĤXX [cf. Eq. (13)]. Thus, the product
state is a steady state of the stabilization dynamics and exchange
couplings. Therefore, any number of qubit pairs may be added via
exchange couplings, resulting in the tensor product steady state
jψ1ψ2…ψNi, replicating the entanglement on site 1 down a pair
of arbitrarily long chains.
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complicated than the dimerized, translationally invariant
state in Eq. (12). As we now show, this state can be
exactly understood as a condensate of paired “holes.”
Here, a “hole pair” excitation is defined as starting with
the “filled” state in Eq. (12) and then replacing the state
of two adjacent dimers with the vacuum state, i.e.,
jðSÞjijðTÞjþ1i → jð00Þjijð00Þjþ1i.
Certain features of our state can be understood intui-

tively. For finiteΩ, it is reasonable to expect the presence of
holes, i.e., fewer qubit excitations than in the infinite
driving limit. Furthermore, these holes should be delocal-
ized throughout the chain in order to have an eigenstate of
the kinetic energy term ĤXX. This motivates looking for a
pure steady state having delocalized hole excitations (with
the density of holes scaling inversely with drive amplitude).
More unexpected is our finding that, in the steady state,
these holes must be paired on adjacent sites.
To present our solution, it is convenient to map the

double-chain system to a 1D “dimer chain,”where each site
of the new 1D chain has local Hilbert space dimension 4
and corresponds to a dimer of the original system. With this
mapping, we introduce two flavors of “particle” j•ji and
j▪ji and “hole” j∘ji states via

j∘ji≡ jð00Þji; ð19Þ

j•ji≡ 1ffiffiffi
2

p τ̂†j j∘ji ¼
(
jSji j odd;

jTji j even;
ð20Þ

j▪ji≡ 1ffiffiffi
2

p λ̂†j j∘ji ¼
(
jTji j odd;

jSji j even;
ð21Þ

where we implicitly define the dimer ladder operators τ̂†j
and τ̂j that create and destroy the dimer particles j•ji ¼
jðS=TÞji (for j odd or even) when acting on j∘ji or j•ji,
respectively. Similarly, λ̂†j and λ̂j create and destroy the
particles j▪ji ¼ jðT=SÞji (for j odd or even) when acting on
j∘ji or j▪ji, respectively. Note that there is a hard-core
constraint that prevents a j•i and a j▪i from simultaneously
occupying a site. We can neglect the remaining basis state
for each dimer for now, as this state does not appear in the
pure steady state of interest (see Appendix C for more
details). With our new representation, the filled state
Eq. (12) is, thus, jψ∞i ¼ j • • • � � �i.
Using the dimer particle representation defined in

Eq. (20), we introduce an operator that creates a delocalized
hole pair:

Q̂ ¼ 1

2J̄
ffiffiffiffi
N

p
XN−1

j¼1

Jjð−1Þjτ̂jτ̂jþ1: ð22Þ

Here,

J̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1

X
j

J2j

s
ð23Þ

is the rms hopping rate. Acting on the reference filled state
jψ∞i, the operator Q̂ creates a superposition state where
each term corresponds to a pair of adjacent holes at a
different location [46].
At a heuristic level, the phases in Q̂ give each hole pair a

net momentum, allowing them to become zero-energy
eigenstates of the “kinetic energy” ĤXX. More formally,
we show in Appendix D that Q̂ commutes with ĤXX. Its
action on an ĤXX eigenstate, thus, produces another
eigenstate with the same energy. In particular,

ĤXXðQ̂jψ∞iÞ ¼ Q̂ĤXXjψ∞i ¼ 0: ð24Þ

An entire tower of zero-energy ĤXX eigenstates can, thus,
be generated by repeated application of Q̂ to jψ∞i, each
state having an increasing number of hole pairs. The
maximal-hole state in this tower corresponds to the empty
state (if N is even) or a state with a single delocalized
particle j•ji (if N is odd).
Recall that, in general, to obtain a pure steady state we

require a state that is both an eigenstate of the Hamiltonian
and annihilated by relevant dissipators. The family of states
Q̂mjψ∞i provides us with a large class of states that are
compatible with the Hamiltonian and connected to the
pure steady state in the infinite-drive limit. One might
expect that they can be used to construct the steady state
for the finite-drive amplitude system. We find that, apart
from a boundary correction, this is indeed the case. As we
rigorously show in Appendix E, for any set of parameters,
Eq. (1) has a pure steady state jψQi given by the “pair
condensate” state

jψQi ¼
�
1þ Γ

Ω
τ̂1

�
exp

� ffiffiffiffi
N

p

Ω̃2
Q̂

�
jψ∞i; ð25Þ

where τ̂1 is the dimer-lowering operator that removes the
particle on site 1 [cf. Eq. (20)] and the reference state jψ∞i
is given by Eq. (12). The dimensionless drive strength Ω̃
appearing in the exponential is

Ω̃≡ Ωffiffiffiffiffiffi
ΓJ̄

p ; ð26Þ

with Γ given by Eq. (8) and J̄ by Eq. (23). The first few
terms of jψQi are shown in Fig. 4. Up to overall normali-
zation, the coefficients aj can be read off from Eq. (25),
e.g., for a uniform chain (Jj ¼ J̄), a0 ¼ 1, a1 ¼ Γ=Ω ¼ffiffiffiffiffiffiffiffi
Γ=J̄

p
=Ω̃, a2 ¼ 1=Ω̃2, etc.; this is a power series in 1=Ω̃,

with aj ∼ 1=Ω̃j. As we discuss in more detail, this exact
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solution also immediately lets us understand the NESS of
the nontrivial single-chain system in Fig. 1(b).
Finally, we note that there is an equivalent construction

of jψQi that is recursive in the length N of the chains. The
recursive construction enables the efficient numerical
evaluation of expectation values and correlation functions,
e.g., particle density hn̂ji ¼ 1

2
hτ̂†j τ̂ji. Details are provided in

Appendix F.

IV. REAL-SPACE HOLE PAIRING AND
CONSEQUENCES FOR THE STEADY STATE

A. Hole pairing as a kinetic constraint

The hole pairing in jψQi is surprising at first glance, as
there is no attractive interaction or other explicit pairing
mechanism in our model. Hole pairing turns out to be a
consequence of two facts: (i) ĤXX causes j•i and j▪i
particles to change flavor when they hop, and (ii) the
hard-core constraint forbids a j•i and an j▪i to simulta-
neously occupy a site. As shown in Fig. 5(a), with details in
Appendix C, a particle can swap positions with a hole and
change flavor in the process. Two adjacent particles of the
same flavor cannot hop due to the hard-core constraint;
hence, ĤXXj • •i ¼ 0. If we now try to form zero kinetic
energy states (i.e., zero-energy eigenstates of ĤXX) by
delocalizing hole excitations, we find that they must be
paired on adjacent sites. Delocalizing a single hole to get a
zero-energy eigenstate fails due to the flavor-changing
hopping [see Fig. 5(b)], but delocalizing a pair is successful
[see Fig. 5(c)].
The creation of zero kinetic energy eigenstates of ĤXX

via the hole-pairing operator Q̂ [cf. Eq. (22)] is somewhat
analogous to η pairing found in Fermi-Hubbard lattices
[47,48]. In both cases, the pairing operator generates exact
Hamiltonian eigenstates with zero kinetic energy by delo-
calizing a pair of excitations throughout the system. A key

distinction, however, is that in η pairing each paired
excitation is spatially local, i.e., a pair of fermions on
one lattice site, whereas in Q pairing each hole pair
occupies adjacent lattice sites. We also note that the
algebraic structure of η pairing [η̂; η̂† form a closed
representation of SU(2)] is not found in Q pairing: Q̂
and Q̂† do not form a closed SU(2) group.
While not a true symmetry of the Hamiltonian, the hole-

pairing operator has a special relation to the Hamiltonian
of the double-chain system, via a structure that was
introduced in the context of many-body scar states.
Specifically, it constitutes a restricted spectrum-generating
algebra (RSGA) of double-chain Hamiltonian when acting
on jψ∞i [39]. Furthermore, certain terms can be added to
the XX chain to make the model nonintegrable while
preserving this RSGA structure, thus guaranteeing that
Q̂njψ∞i remain exact eigenstates. In Appendix G, we
discuss how this makes the corresponding hole-pairing
states true many-body scar states in a nonintegrable ladder
system (a model related to that studied in Ref. [40]).
Having understood the route to hole pairing in our

model, we can also postulate other Hamiltonian models
where this will occur. For example, a 1D Fermi-Hubbard
chain with a spin orbit interaction can exhibit effective
flavor-changing hopping. For strong interactions, it can,
thus, also exhibit hole pairing in a subset of its eigenstates
(see Appendix D). The fermionic analog of the hole-pairing
operator Q̂ has the same properties, generating eigenstates

(a)

(b)

(c)

FIG. 5. Flavor-change hopping forces hole pairing in zero-
energy eigenstates. (a) ĤXX [cf. Eq. (5)] swaps a particle and a
hole in the dimer chain and changes the particle flavor in the
process. (b) Because of the flavor change in hopping, a single
delocalized hole is not an eigenstate of the chain, because the
final states of a hole hopping to the left and hole hopping to the
right are distinguishable: The j▪i ends up either to the right of
the hole or to the left of the hole, respectively. (c) Adjacent
paired holes can form zero-energy eigenstates via destructive
interference, because the j▪i always ends up sandwiched
between two holes.

FIG. 4. First few terms of the steady state. The expansion of the
steady state in the number of holes added to jψ∞i [cf. Eq. (12)].
The expansion coefficients an ∼ 1=Ω̃n are the weights of the nth-
hole components of the state; they can be found analytically from
Eq. (25). Here, we take uniform Jj ¼ J̄. For nonuniform Jj, the
components of each an term are weighted by factors of Jj=J̄.
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of the 1D chain when acting on a filled state. These hole-
paired eigenstates may be accessible in, e.g., the ultracold
atoms platform proposed in Ref. [38].

B. Density correlations due to hole pairing

The structured hole pairing in Eq. (25) immediately gives
rise to spatial density correlations, something that is most
apparent when the hole density is low, i.e., jΩ̃j≳ 2.
This correlation is directly observable in the single-chain
system in Fig. 1(a) as Zmagnetization correlations between
adjacent sites: hσ̂zA;jσ̂zA;jþ1i ≠ 0. The correspondence
between magnetization and hole density follows from
the fact that the dimer holes j∘i are polarized but the
particles j•i are depolarized [cf. Eqs. (19) and (20)]:

h•jjσ̂zA;jj•ji ¼ 0; h∘jjσ̂zA;jj∘ji ¼ −1: ð27Þ

Thus, ð−σ̂zA;jÞ acts as a local hole number operator when
acting on the steady state. We define the z-magnetization
correlation function for the A chain as

Czzðj; kÞ ¼
hσ̂zA;jσ̂zA;ki − hσ̂zA;jihσ̂zA;kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhσ̂zA;ji þ hσ̂zA;ji2Þðhσ̂zA;ki þ hσ̂zA;ki2Þ
q ; ð28Þ

normalized such that Czzðj; jÞ ¼ 1. See Appendix H for a
discussion of the nonstandard normalization. In Fig. 6, we
show Czzðj; kÞ for fixed distance jk − jj and averaged over
the whole chain. For strong driving, the average correla-
tions between adjacent sites saturates to Czzðj;j�1Þ→0.5,
because, in this regime, a hole on site j is always paired
with a hole on either j� 1 but is unlikely to be correlated
with any other site. In contrast, there are no appreciable
correlations in this regime for larger distances. We note
that the correlation functions Czzðj; kÞ can be measured in
either the double-chain system or the single-chain system.

In either case, the saturation of Czzðj; j� 1Þ ≈ 0.5 for
Ω̃ > 1 is a clear indication of hole pairing.

C. Universal density scaling

There are two dimensionless parameters in our model:
the dimensionless drive amplitude Ω̃ [cf. Eq. (26)] and the
ratio ζ ≡ ffiffiffiffiffiffiffiffi

Γ=J̄
p

. One might naturally expect that bulk
steady-state properties would depend on both these param-
eters. However, the exact result Eq. (25) shows that this is
not the case. We can write this as

jψQi ¼
�
1þ ζ

Ω̃
τ̂1

�
exp

� ffiffiffiffi
N

p

Ω̃2
Q̂

�
jψ∞i; ð29Þ

which suggests that the excitation density in the bulk is
controlled only by Ω̃. We now show explicitly that the
excitation density (i.e., Z magnetization density) is indeed
intensive and scales universally with the single parameter
jΩ̃j in the regime jΩ̃j≳ 2.
Consider first the limit where jζj → 0 while jΩ̃j remains

fixed, such that we can ignore the boundary term in
Eq. (29). We, thus, have jψQi ¼ eαQ̂jψ∞i, where
α ¼ ffiffiffiffi

N
p

=jΩ̃j2. This expression mimics a bosonic coherent
state jαi ¼ eαâ

† j0i, where hole pairs are the bosons, jψ∞i is
the hole-pair vacuum, and Q̂ is the hole-pair creation
operator. As we show in Appendix I, this analogy to
bosonic coherent states can be made precise when N ≫ 1
and the hole density m̄ satisfies

m̄≡ 1

N

X
j

h−σ̂zA;ji ≪ 1: ð30Þ

In this low hole density regime, we may neglect the hard-
core constraint that prevents two hole pairs from occupying
the same sites and can, thus, accurately estimate the total
hole number as

M ¼ 2jαj2 ¼ 2N

jΩ̃j4 ≡ Nm̄: ð31Þ

We, thus, find for large drives an intensive scaling of hole
density. Note that this result immediately implies that, for
an arbitrarily long single-chain system, one needs only
jΩ̃j≳ 2 to approach the infinite-temperature state.
When jζj > 0, the coherent state analogy is still valid,

but there is a boundary correction to Eq. (31). Because site
1 directly sees the dissipation, it can be occupied by an
isolated hole, and, thus, its occupation depends on not
only jΩ̃j, but also jζj. The hole density m̄, thus, obtains a
Oð1=NÞ correction to the intensive universal scaling:

m̄ ¼ 2

jΩ̃j4 þ
2jζj2

NðjΩ̃j2 þ 2jζj2Þ : ð32Þ

FIG. 6. Density correlations on adjacent sites are a direct
observable consequence of hole pairing. The hole density
correlation function Czzðj; kÞ [cf. Eq. (28)] is averaged over
averaged over the entire N ¼ 40 chain while holding jk − jj
fixed. The averaged Czzðj; kÞ is plotted versus drive strength jΩ̃j.
The nearest-neighbor (jk − jj ¼ 1) correlations saturate to 0.5
with increasing jΩ̃j, indicating that, as the filled state jψ∞i is
approached, deviations from jψ∞i in the bulk are due to holes
paired on adjacent sites. For this plot, we hold jΓj ¼ J fixed.
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There is, thus, a transition from universal ∼jΩ̃j−4 scaling to
an N-dependent ∼jΩ̃j−2 scaling at jΩ̃j2 ≈ N=jζj2 or, equiv-
alently, Ω=J̄ ≈

ffiffiffiffi
N

p
. The universal scaling behavior is exact

for any jζj when the dissipative site density is excluded, as
is shown in Fig. 7(a), and the dissipative site corrections for
jζj > 0 are shown in Fig. 7(b).

D. Single-particle “charge density waves”

For Jj ¼ J, the spin chain systems in Fig. 1 are trans-
lationally invariant except for the boundary j ¼ 1 site. For
long chains, one might, thus, expect that the steady-state
density is also translationally invariant, except for edge
effects near j ¼ 1. Surprisingly, this expected translational
invariance is strongly broken in the steady state for weak
drives Ω̃. As a consequence of the hole pair condensate of
Eq. (25), there is a regime where the steady state corre-
sponds to a single excitation that is localized on either the
even-j or odd-j sublattice, i.e., a kind of single-particle
charge density wave (CDW).
As we show, for weak drives, the double spin chain

system’s steady state (for uniform Jj ¼ J̄) is given by the
CDW form:

jΨcdwi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

⌈N=2⌉
p X

j

ð−1Þjj•N−2ji; ð33Þ

where ⌈X⌉ is the ceiling function and j•ji is given by
Eq. (20). This describes a single particle that is delocalized
either across all odd-j sites in odd-length chains or across

all even-j sites in even-length chains. For disordered Jj,
each component j•ji is weighted by an additional factor
ð…Jj−4Jj−2ÞðJjþ1Jjþ3…Þ=J̄⌈ðN−1Þ=2⌉ (and the requisite
correction to the normalization).
For the single dissipative spin chain [Fig. 1(b)], the

nonequilibrium steady state ρ̂A;cdw ¼ trBjΨcdwihΨcdwj is an
equal mixture of vacuum and the single-particle CDW:

ρ̂A;cdw ¼ 1

2
½j0ih0j þ jΦcdwihΦcdwj�; ð34Þ

jΦcdwi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

⌈N=2⌉
p X

j

ð−1Þjσ̂þA;N−2jj0i: ð35Þ

Despite not being a pure state, the single-chain CDW is a
very low entropy state, Sðρ̂A;cdwÞ ¼ ln 2, for which any
particle density necessarily arises from the single coher-
ently delocalized excitation. Here, jΦcdwi is the single-
chain equivalent of jΨcdwi given above, and its components
have the sameweighting factors when the Jj are disordered.
To see why these single-particle states emerge, consider

the steady state, Eq. (29), in the limit jζj → 0: jψQi ¼
e

ffiffiffi
N

p
Q̂=Ω̃2 jψ∞i. In this limit, all holes in the state are created

by some power of Q̂ acting on jψ∞i, with the component
Q̂mjψ∞i having 2m holes. For an N-length chain, Q̂ can,
thus, act up to m ¼ bN=2c times to produce new states,
after which Q̂m>bN=2cjψ∞i ¼ 0. For an even chain, all
2m ¼ N particles can be removed, taking the filled state to
vacuum:

Q̂bN=2cjψ∞i ∝ j0i; N even: ð36Þ

However, for an odd chain, all but one of the N ¼ 2mþ 1
particles can be removed. The real-space pairing of holes
on neighboring sites requires that the remaining single j•i
particle is confined to the odd-j sites, resulting in a CDW-
like structure where a single particle is delocalized over the
odd-j sublattice only:

Q̂bN=2cjψ∞i ∝ j • ∘∘∘ � � �i
− j∘∘ • ∘ � � �i þ � � � ; N odd: ð37Þ

Thus, for jζj ≪ 1, there is a regime of sufficiently weak jΩ̃j
for which odd-length chains exhibit a charge density wave
consisting of a single delocalized particle. The emergence
of a CDW in an odd-length chain, and the lack of a CDW in
an even-length chain for the same parameters, is shown in
Fig. 8(a). The particle density n̄ ¼ NjΩ̃j4=8 of the even
chain is found using Eq. (J6) in Appendix J.
The analysis follows analogously in the limit jζj → ∞,

where now jψQi ¼ e
ffiffiffi
N

p
Q̂=Ω̃2

τ̂1jψ∞i (as τ̂j commutes with
Q̂). Site 1, thus, always has a hole, and we repeat the above
analysis on the remaining N − 1 sites. Thus, even chains

(a)

(b)

FIG. 7. Universal scaling of steady-state Z magnetization (hole
density). The Z magnetization and hole density m̄ [cf. Eq. (30)]
are shown for chains of widely varying length as a function of
inverse effective drive strength 1=jΩ̃j. (a) Here, we plot the hole
density, excluding the dissipative site, which shows universal
scaling m̄ ¼ 2=jΩ̃j4 for 1=jΩ̃j≳ 1. (b) Here, we include the
dissipative site and show that m̄ now has deviations ∼1=NjΩ̃j2
appearing when jΩ̃j2 ≈ N=jζj2. For both plots, jζj2 ≡ jΓ=J̄j ¼
0.05 except where indicated otherwise, and we vary only Ω.
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have a CDW-like structure where a single particle is
delocalized over the even-j sites.
The parameter regime in which CDWs emerge can be

found by expanding jψQi to the lowest few orders in jΩ̃j.
Leaving the details to Appendix J, we can show that two
distinct scales emerge: anN-dependent upper limit on drive
strength, jΩ̃j2 ≪ 1=N, and a jζj- and N-dependent lower
limit that differs for even- and odd-length chains:

jζj2
N

≪ jΩ̃j2 ≪ 1

N
; N odd; ð38Þ

1

Njζj2 ≪ jΩ̃j2 ≪ 1

N
; N even: ð39Þ

When jΩ̃j2 > 1=N, many particles can populate the chain,
destroying the CDW ordering, and when jΩ̃j2 < jζj�2=N
(forN odd or even), the average particle density vanishes as
∼jΩ̃j2. Here, Eq. (34) is no longer an equal mixture of j0i
and jΦcdwi but increasingly weighted toward vacuum with

jΩ̃j → 0. The emergence of CDWs, and the dependence
with both N and jζj, is shown in Fig. 8(b).

V. RESOURCE FOR CROSS-CHAIN (REMOTE)
ENTANGLEMENT STABILIZATION

As discussed in Sec. II, the double-qubit chain system in
Fig. 1(a) (where collective loss is provided by passive
couplings to a waveguide) is a potentially powerful setup
for stabilizing large amounts of steady-state remote entan-
glement. The scheme is also very resource efficient: It
foregoes the complication and resource overhead of using
squeezed light in favor of local driving, and it requires only
passive hopping between qubits in each chain. It also does
not require precise fine-tuning of parameters, nor does it
require extremely strong driving to approach maximal
entanglement of the chains. We now use insights obtained
from our exact solution Eq. (25) to better understand this
potential application.
The exact solution tells us that, for any drive strength Ω,

we have a pure steady state with some degree of entangle-
ment between the remote chain-A and chain-B qubits. This
entanglement is maximal in the Ω → ∞ limit, where the
steady state becomes a dimerized product of cross-chain
maximally entangled Bell pairs. A natural question is how
strong must the Rabi drive be to achieve this level of
entanglement. The exact solution provides a succinct and
surprising answer here: One needs only that the effective
drive amplitude jΩ̃j≳ 2, as in this regime the density of
holes is very small, implying the steady state is very close
to the ideal dimerized state. We stress that this condition is
independent of N (even though drives are applied to only
the first qubit in each change) and, furthermore, that
one can achieve this condition even if Ω ≪ γ (the drive
does not need to overwhelm dissipation if hopping is
sufficiently weak).
Of course, these considerations neglect a crucial second

issue: One cares about both the amount of entanglement in
the dissipative steady state as well as the time needed to
prepare this state (i.e., the characteristic system relaxation
time or the inverse dissipative gap). This timescale also
directly determines the susceptibility of our scheme to
additional unwanted dissipative processes (e.g., waveguide
loss, qubit dephasing, and relaxation).
A full study of the effects of waveguide loss and qubit

dissipation on entanglement stabilization in a circuit QED
realization of Fig. 1(a) is presented in a complementary
work [49], but we briefly discuss the basic requirements to
realize the scheme in circuit QED in Appendix K. Here, we
instead focus on a fundamental aspect of the relaxation time
physics in our double-chain scheme. While the qubit-only
version suffers from a fundamental trade-off between speed
and entanglement, we show below that, by generalizing the
local two-qubit scheme introduced in Ref. [8] to a

(a)

(b)

FIG. 8. The emergence of single-particle “CDWs” in finite-
length spin chains. (a) Local particle density hn̂ji is plotted for
each site of 40 and 41 site chains, scaled by length N. For the
given parameters Ω̃ ¼ 0.1 and jζj ¼ 0.005 and taking uniform Jj,
the odd-length chain has a single particle delocalized across all
odd sites; hence, the average particle density is n̄¼1=2N≈0.012.
The even-length chains do not have charge density waves and
have much smaller average density n̄ ¼ NjΩ̃j4=8 ≈ 0.0005. The
modulation of local density across the chain is due to the highly
correlated two-particle state. (b) Particle density n̄ is plotted
versus drive strength jΩ̃j for two odd-length chains (N ¼ 11 and
N ¼ 10 001) in the odd-length CDW driving strength regime
[cf. Eq. (38)] for two different jζj2 ¼ 10−4 and jζj2 ¼ 10−2. In the
limit jζj → 0 (dashed curves), the single-particle CDW persists
for any arbitrarily small jΩ̃j > 0. In both plots, the particle
density is n̄ ¼ ð1=NÞPjhσ̂þA;jσ̂−A;ji.
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multiqubit setup with directional dissipation, we can
dramatically improve this seemingly unavoidable trade-off.

A. Slowdown in large drive limit

Recent works [6–9] on dissipatively preparing entangle-
ment between two remote qubits have observed that the
dissipative gap closes as the target entangled state
approaches a perfect Bell pair [e.g., as the vacuum
component in Eq. (7) vanishes]. References [8,9] showed
that this is a generic property of two-qubit systems and that
it arises due to an approximate conservation of total angular
momentum that becomes an exact symmetry in the infinite
driving limit. In this limit, a second impure steady state
emerges in the subspace orthogonal to the target Bell state.
As one approaches the point of added symmetry, the
transition rate out of the orthogonal subspace and into
the target Bell state becomes extremely small, leading to a
vanishing dissipative gap. We briefly review this argument
in Appendix L.
In the infinite driving limit jΩ=Γj → ∞, the steady state

of the N ¼ 1 double chain is not unique [7–9] but can be
any state of the form ρ̂1 ¼ νjSihSj þ 1

4
ð1 − νÞÎ for any

−1=3 ≤ ν ≤ 1; see Appendix M for details. One can readily
show that the maximally mixed state Î=4 is replicated via
the XX Hamiltonian. Therefore, the near symmetry that
causes a slowdown in the N ¼ 1 system persists for N > 1,
because the near-steady infinite-temperature state is repli-
cated down the chain, and, thus, the chain cannot relax out
of that state except by the very slow dissipative population
transfer at the boundary.

B. Speeding up stabilization with a qutrit

A recent work by Brown et al. [8] theoretically proposed
and experimentally demonstrated that the slowdown asso-
ciated with dissipatively stabilizing two-qubit Bell pairs
can be circumvented by promoting one of the qubits to a
qutrit, in a system for which the dissipation is both local
and reciprocal (i.e., mediated by common coupling to a
damped cavity mode). They demonstrated that the near
symmetry that conserves total angular momentum is no
longer present in a qubit-qutrit system. This makes the
degenerate dark state vanish in the large drive limit.
Here, we show that this scheme can now be extended to

the directional version of our double-chain system by
promoting the downstream qubit B1 to a qutrit; see
Fig. 9(a). This leaves Eq. (25) as the pure steady state
while avoiding the symmetry-induced slowdown and
allows a dramatic stabilization speedup for arbitrary N
without sacrificing the fidelity with the perfect dimerized
entangled state.
More concretely, starting from the double-chain master

equation [cf. Eq. (1)] for N ¼ 1 in the directional limit
ν ¼ 1, we promote qubit B1 to a qutrit and modify its
coupling to the waveguide via

Ĥdrive ¼
Ω
2
ðσxA;1 þ j0ih1jB;1 þ j1ih0jB;1Þ

þ Δ
2
ðσ̂zA;1 − ½j1ih1jB;1 − j0ih0jB;1�Þ; ð40Þ

Ĥdiss ¼
iγ
2
ðσþA;1½j0ih1jB;1 þ ηj1ih2jB;1� − H:c:Þ; ð41Þ

L̂ ¼ ffiffiffi
γ

p ðσ−A;1 þ j0ih1jB;1 þ ηj1ih2jB;1Þ; ð42Þ

for which the master equation now reads ∂tρ̂ ¼ −i½Ĥdrive þ
Ĥdiss; ρ̂� þD½L̂�ρ. Physically, this means that now the qutrit
B1 can produce a photon in the chiral waveguide via either
a 1–0 relaxation event or a 2–1 relaxation event (with
relative matrix elements η). The result is a dissipative
interaction that allows the state j11i to pass a single photon
through the waveguide at a rate ηγ and become j02i,
which can, in turn, decay into the state j01i. The effective
interaction (no jump Hamiltonian) of such a process is
−iηγσ−Aðj2ih1jBÞ. Because this process explicitly breaks the
conservation of angular momentum in the two-qubit sub-
space, it circumvents the slowdown previously observed.

(a)

(b)

FIG. 9. Speeding up entanglement stabilization time of the
nonreciprocal double chain using a qutrit. (a) The nonreciprocal
double chain is modified by replacing the downstream B1 qubit
with a qutrit and engineering the nonreciprocal coupling to
include the 2–1 transition of the qutrit. (b) The numerically
computed relaxation time γτrel (red) and the infidelity of the
steady state to the maximally entangled state jψ∞i [cf. Eq. (12)],
1 − hψ∞jρ̂jψ∞i (black), are shown as functions of the hopping
rate J̄=γ for N ¼ 3, Ω=γ ¼ 10, and Δ ¼ 0. For the qubit-qutrit
scheme, the relaxation time is optimized over η. We also plot the
relaxation time for the single-chain system for comparison. For a
fixed state fidelity of 0.999 (achieved at J̄ ¼ 7γ, dashed line), the
relaxation times are γτ2qb ¼ 2.1 × 104, γτqutrit ¼ 120, and γτsc ¼
14 for the qubit-qubit, qubit-qutrit, and single chain, respectively.
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From here, one can take our qubit-qutrit system and
add back the remaining N − 1 qubits in each chain and the
hopping Hamiltonian ĤXX. We stress that all remaining
qubits are just qubits: It is only B1 where we need to make
use of the higher j2i level. A direct calculation shows that the
steady state found in Eq. (25) is still a zero-energy eigenstate
of the new Ĥdrive þ Ĥdiss, as well as the new jump operator
L̂, and so it remains a dissipative steady state; the only thing
that has changed in adding the third level is the dynamics,
which should now be significantly faster. This is demon-
strated in Fig. 9(b) for an N ¼ 3 system.
Numerically, we observe a significant improvement in

the relaxation timescale τrel (as determined by the inverse
dissipative gap of the full Lindbladian) of a N ¼ 3 system,
when we promote site B1 to a qutrit and optimize over the
qutrit 2 − 1 transition coefficient η. These results are as
shown in Fig. 9(b). Here, we fix all other parameters except
the uniform hopping rate J̄ and show how both the fidelity
with the ideal dimerized entangled state and τrel vary
with J̄. For the all-qubit chain, small J̄ makes jΩ̃j large;
thus, the fidelity to the maximally entangled state jψ∞i
[cf. Eq. (12)] is high, but the relaxation slows down. As
Fig. 9(b) shows, there is a dramatic improvement of the
relaxation time: over 2 orders of magnitude at a state
fidelity of 0.999. The optimized value of η as a function
of J̄=γ, as well as the speedup of anN ¼ 2 system, is shown
in Appendix N. We expect that the qutrit scheme speeds up
the stabilization time for larger N systems as well.

VI. CONCLUSION

Our work presents an exact analytic solution for the
steady state of two different spin chain models with
boundary dissipation and driving. As discussed, these
solutions reveal a number of surprising correlation effects
(e.g., the effective pairing of holes) and lay the groundwork
for a potentially powerful route to dissipative stabilization
of remote multiqubit entanglement. We also elucidated a
general mechanism for “replicating” definite-parity two-
qubit entangled states using passive XX couplings in a
double-qubit chain and demonstrated that the approach
of Ref. [8] for avoiding slowdowns in dissipative entan-
glement stabilization could be extended from a two-qubit
situation to a setup with many qubits and directional
dissipation.
In future work, it will be extremely interesting to explore

whether the ideas introduced here could be extended to
more complex systems, where multiple 1D XX qubit chains
are attached to the same common waveguide. This could
potentially be a source of stabilized multipartite, multiqubit
remote entanglement. It would also be interesting to
explore further the dynamics of our solvable dissipative
spin chain models. As discussed, the solvability of the
nontrivial single-chain model in Fig. 1(a) can be ultimately
traced to a surprising hidden time-reversal symmetry [37].

Understanding how this symmetry constrains the dynamics
and Liouvillian spectrum could be an extremely rich
direction for future research. It would also be interesting
to understand whether the scaling of the dissipative gap
in the two-chain model in Fig. 1(b) could be improved
beyond the usual 1=N3 scaling that is found in a variety of
integrable spin chain models [16,29]. Finally, it would be
interesting to study the spectra and NESS of other two-
chain models. We already demonstrated in Appendix G that
our hole pairing states correspond to many-body scar states
in a closed, nonintegrable ladder system. Adding dissipa-
tion here could be extremely interesting. Furthermore, one
could extend our two-chain model to a ladder system with
Creutz ladder-style couplings [50] along the full length of
the chain. If one tunes the diagonal interchain couplings td
to be equal to the intrachain XX couplings J, then this
system possesses at least N − 1 strong symmetries. It, thus,
has multiple dissipative steady states, making it another
interesting system worthy of further study.

Note added.—Recently, we became aware of a related but
independent work on autonomously stabilizing many-qubit
entanglement; unlike our study, the setup in this work
used squeezed light and explicitly directional qubit-qubit
couplings [51].
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APPENDIX A: INTERACTING FERMION MODEL
OF THE DISSIPATIVE SPIN CHAIN

Given a boundary driven or dissipative spin chain, often
the first step toward obtaining a solution is performing a
Jordan-Wigner transform into free fermions [52]. Define
the canonical (Dirac) fermions:

ĉj ¼
�Yj−1

i¼1

σ̂zi

�
σ̂−j : ðA1Þ

Then, we can rewrite the spin Hamiltonian [cf. ĤA in
Eq. (10)] as
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Ĥfermi ¼
Ω
2
ðĉ1 þ ĉ†1Þ þ Δĉ†1ĉ1 −

1

2

XN−1

j¼1

Jjðĉ†j ĉjþ1 þ H:c:Þ:

ðA2Þ

The Hamiltonian is a sum of quadratic and linear fermion
terms and can be exactly diagonalized (using the procedure
outlined in Ref. [42]).
We are, of course, interested in the dissipative dynamics.

The full master equation in terms of fermions is then

˙̂ρ ¼ −i½Ĥfermi; ρ̂� þ γD½ĉ1�ρ̂: ðA3Þ

It also has both quadratic and linear fermion terms. While
one might assume that this master equation is exactly
solvable, this is not the case. If the fermionic Lindbladian
contains both a Hamiltonian term linear-in-fermion oper-
ators, along with linear dissipation, then this generically
corresponds to an interacting problem. The easiest way to
see this is simply to compute the equation of motion for the
linear expectation value of a fermionic operator under just
the dissipative dynamics. Because the Hamiltonian has a
linear term, the even and odd moments are dynamically
connected, and so we must consider these linear expect-
ation values:

∂thĉji ¼ γhD½ĉ1�†ĉji ¼
γ

2
hĉ†1½ĉj; ĉ1� þ ½ĉ†1; ĉj�ĉ1i ðA4Þ

¼ −
γ

2
h4ĉ†1ĉ1ĉj þ δ1;jĉji: ðA5Þ

We see that these first moments are coupled to third
moments. In a similar manner, one can observe that all
odd moments of degree n couple to odd moments of
degree nþ 2, and so the equations of motions do not close
on themselves, signifying that this is not a simple free
fermion model.
More formally, one could try and use the standard

diagonalization technique for a linear fermionic
Hamiltonian [42] and introduce a fictitious fermion η̂ to
homogenize the Hamiltonian and make everything quad-
ratic. This is equivalent to rewriting the Hamiltonian
Eq. (A2) as

Ĥfermi;η ¼
Ω
2
ðĉ1 þ ĉ†1Þðη̂ − η̂†Þ þ Δĉ†ĉ

−
1

2

XN−1

j¼1

Jjðĉ†j ĉjþ1 þ H:c:Þ: ðA6Þ

Now, the Majorana ðη̂þ η̂†Þ is conserved by the
Hamiltonian, and so if this were a closed system, we
would be done, as the two Hamiltonians Ĥfermi;η and Ĥfermi

would be isospectral (with Ĥfermi;η doubly degenerate).
However, this is an open system, and we need to consider

the dissipation. In this case, the Majorana ðη̂þ η̂†Þ con-
stitutes only a weak symmetry [53] of the Lindbladian, as it
anticommutes with the jump term:

fη̂þ η̂†; ĉ1g ¼ 0: ðA7Þ

This is problematic, as, without further modification, the
dissipation will cause unphysical jumps between the two
conserved sectors of Ĥfermi;η.
To correct this problem, we must also modify the linear-

in-fermion jump operator so that these unphysical jumps
do not occur. Formally, we must make the conservation of
ðη̂þ η̂†Þ a strong symmetry [53]. This is achieved by the
master equation

˙̂ρ ¼ −i½Ĥfermi;η; ρ̂� þ γD½ð−1Þη̂†η̂ĉ1�ρ̂: ðA8Þ

Note that this is ultimately equivalent to first introducing an
auxiliary spin in Eq. (10) (preceding the first lattice site)
and then performing the Jordan-Wigner transform. Note
that the jump operator is now cubic, and, therefore, the
system is explicitly interacting. We also note that this
procedure is consistent with the general rules outlined in
Ref. [42]: When introducing the auxiliary fermion η, all
linear-in-fermion operator terms must be modified to
ensure that they have the correct matrix elements in the
expanded space. This rule must be applied to the jump
operator ĉ1, as the action of the superoperator D½ĉ1� cannot
be written solely in terms of the quadratic operator ĉ†1ĉ1.
As a final confirmation that the single-chain qubit system

is not equivalent to free fermions, in Fig. 10, we plot the full
Liouvillian spectrum (eigenvalues λ) for the N ¼ 2 version
of the master equation (10). For Ω ¼ 0 (left), the eigen-
values have the normal mode structure expected for a free
fermion Lindblad master equation (as can be found using
third quantization [24]). This implies, e.g., that eigenvalues

FIG. 10. Lindblad spectrum of a single chain with two qubits.
We plot the eigenvalues λ of the single-chain master equation (10)
for N ¼ 2, Δ ¼ 0, and J ¼ γ. Left: In the absence of any drive
Ω ¼ 0, the spectrum has the normal mode form expected for a
quadratic fermionic Lindblad master equation. Right: For a
nonzero drive Ω ¼ 0.6γ, the normal mode structure is lost;
e.g., summing single-excitation eigenvalues does not correctly
predict higher-lying eigenvalues. This provides a direct confir-
mation that, with driving and loss, the single-chain problem is not
equivalent to a quadratic fermionic Lindbladian.
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corresponding to two-particle excitations are formed by
summing eigenvalues associated with single-particle exci-
tations. With a nonzero drive (right), this structure is clearly
lost. The Lindblad spectrum with both drive and loss no
longer has the form expected for a free fermion
Lindbladian, consistent with our conclusions above.

APPENDIX B: REPLICATION

1. Intuition for fixed-parity states

The fact that the passive XX couplings can replicate
fixed-parity states is simple enough to check but is not

immediately intuitive. To get some more intuition, let us
write the Hamiltonian for a pair of dimers as

Ĥ ¼ σ̂xA;1σ̂
x
A;2 þ σ̂yA;1σ̂

y
A;2 − ðσ̂xB;1σ̂xB;2 þ σ̂yB;1σ̂

y
B;2Þ: ðB1Þ

We can immediately observe that ½Ĥ;Ŝ2A;B�¼ ½Ĥ;ŜzA;B�¼0,
and so we can diagonalize it in terms of the singlet and
triplet states jsA;mAi ⊗ jsB;mBi, where s and m are the
standard quantum numbers of total spin and z-angular
momentum, respectively. It is quite easy to observe that

ðσ̂x1σ̂x2 þ σ̂y1σ̂
y
2Þjs;mi ¼ δm;0ð−1Þsþ1js;mi ðB2Þ

⇒ ĤjsA;mAi ⊗ jsB;mBi ¼ ðδmA;0ð−1ÞsAþ1 − δmB;0ð−1ÞsBþ1ÞjsA;mAi ⊗ jsB;mBi ðB3Þ

⇒ ĤjsA;mAi ⊗ jsB;mBi ¼ 0: ðB4Þ

The only remaining piece of the puzzle is the observation
that tensoring together two copies of a fixed- (even-) parity
state jψi is diagonal in this spin basis:

jψi ¼
X

i∈ f0;1g
ψ ijiiA ⊗ jiiB ðB5Þ

⇒ jψi1 ⊗ jψi2 ¼
X

i;j∈ f0;1g
ψ iψ jjijiA ⊗ jijiB ðB6Þ

¼
X
s;m

cs;mjs;mi ⊗ js;mi; ðB7Þ

where in the last line we go from the computational basis in
Eq. (B6) to the total spin basis in Eq. (B7). Since the
coefficient ψ iψ j is a symmetric tensor, it is diagonal in the
spin basis; intuitively, this is because the spin states are all
either symmetric (s ¼ 1) or antisymmetric (s ¼ 0). Thus,
the tensor product of s ¼ 0 with s ¼ 1 is antisymmetric,
which multiplied by a symmetric tensor is identically zero.
However, the product of two symmetric or two antisym-
metric tensors will not be. This can also be checked very
straightforwardly by direct computation. j00i in the com-
putational basis is j1;−1i in the total spin basis already, and
vice versa for j11i ↔ j1; 1i. Thus, it requires only checking
the cross terms. Denote jSi ¼ j0; 0i ¼ ðj01i − j10iÞ= ffiffiffi

2
p

the singlet state and jTi ¼ j1; 0i ¼ ðj01i þ j10iÞ= ffiffiffi
2

p
the

triplet. Then,

j01i⊗ j01iþ j10i⊗ j10i

¼ 1

2
ðjSiþ jTiÞ⊗ ðjSiþ jTiÞþ1

2
ðjSi− jTiÞ⊗ ðjSi− jTiÞ

¼ jSi⊗ jSiþ jTi⊗ jTi; ðB8Þ
as expected.

Going to a fixed- (odd-) parity state can be deduced in
the same manner by observing that (defining a bit flip
operation via jīi≡ j1 − ii ¼ σ̂xjii)

jψi ¼
X
i

ψ ijiiA ⊗ jīiB ðB9Þ

⇒ jψi1 ⊗ jψi2 ¼
X
i;j

ψ iψ jjijiA ⊗ jī j̄iB ðB10Þ

¼
X
s;m

cs;mjs;mi ⊗ js;mi: ðB11Þ

However, bit flip on the entire B chain leaves the
Hamiltonian invariant:

σ̂xB;1σ̂
x
B;2Ĥσ̂xB;1σ̂

x
B;2 ¼ Ĥ; ðB12Þ

and, hence, the argument still holds.
This shows that the XX Hamiltonian annihilates every

tensor product of identical fixed-parity states. Thus, we
can repeat this argument for an arbitrarily long chain of
identical, fixed-parity states. If we denote ĤXX;i as the XX
Hamiltonian acting on the i and iþ 1 pair of spins, then the
total Hamiltonian would be

ĤtotaljΨitotal ¼
�XN−1

i¼1

JiĤXX;i

�
jψi⊗N

¼
XN−1

i¼1

jψi1…ðJiĤXX;ijψiijψiiþ1Þ…jψiN

ðB13Þ

¼ 0; ðB14Þ

ANDREW LINGENFELTER et al. PHYS. REV. X 14, 021028 (2024)

021028-14



so the total 2N-site XX Hamiltonian has a many-body zero-
energy eigenstate composed of N copies of an arbitrary
fixed-parity two-qubit state.

2. Heisenberg couplings

To observe that Heisenberg couplings can replicate
any state, it is first important to observe that, given a
fixed- (even-) parity state jψi ¼ uj00i þ vj11i, then

ðσ̂zA;1σ̂zA;2 − σ̂zB;1σ̂
z
B;2Þjψi ⊗ jψi ¼ 0: ðB15Þ

Combining this with the fact that, as shown in the previous
section, this state is annihilated by the XX couplings, we
see that it is annihilated by any XXZ Hamiltonian.
From here, we point out that, given an arbitrary state jϕi,

then by the Schmidt decomposition there exist local
unitaries Û1 and Û2 such that

ðÛ1 ⊗ Û2Þjϕi ¼ uj00i þ vj11i≡ jψi ðB16Þ

for some u and v. Let us define ĤH to be the isotropic
Heisenberg Hamiltonian. Then, we have that

ĤHjϕi ⊗ jϕi ¼ ĤHðU†
1 ⊗ U†

1ÞA ⊗ ðU†
2 ⊗ U†

2ÞBjψi⊗ jψi:
ðB17Þ

Since the isotropic Heisenberg Hamiltonian is invariant
under uniform local unitary rotations, it can be commuted
through to annihilate the fixed-parity state:

ĤHjϕi ⊗ jϕi ¼ 0 ðB18Þ

as desired.

3. Replication in more complicated graphs

We now demonstrate the claim made in the main text that
the replication mechanism can work on more complicated
graphs than a 1D chain. In fact, states can be replicated
down any treelike structure (i.e., with no closed loops) that
has exactly one symmetry axis.
The proof is a simple generalization of what we have

already shown: We show that, given two dissipatively
stabilized qubits, one can attach an arbitrary number of
qubit pairs off of these using symmetric XX couplings. This
generates one level of the tree graph, and then simple
bootstrapping shows that arbitrary trees are possible.
Let us assume once again that there exists a Liouvillian

operator L0 acting on qubits at site A0, B0 that stabilizes a
fixed-parity state jψi, L0ðjψihψ jÞ ¼ 0. Next, we extend
this to the next layer in the graph by defining the next set of
qubits on sites A1;…; An and B1;…; Bn, so that the full
system Liouvillian is now

L ¼ L0 ⊗ 1⊗n − i½ĤXX;n; ·�; ðB19Þ

ĤXX;n ¼
X
s¼A;B

Xn
i¼1

sgnðsÞJiðσxs;0σxs;i þ σys;0σ
y
s;iÞ; ðB20Þ

where we define sgnðAÞ ¼ 1 and sgnðBÞ ¼ −1. Now, at
this point, defining jΨi ¼ jψi⊗nþ1, it is simple to observe
that, since the Hamiltonian is simply a sum of terms acting
independently on the different dimers, ĤXX;njΨi ¼ 0 by the
exact same logic as presented before.
Thus, a single qubit can sustain any number of pairs

branching off of it. However, this means that each of those
are now dissipatively stabilized fixed-parity states, and so
we can repeat the argument to branch more qubits off,
generating trees.
At this point, it is crucial to note that, since there are

multiple qubits branching off a single pair, now it is
important that the Ji terms are all distinct if you want a
unique steady state. If there are degeneracies in the Ji
parameters, then one generates a permutation symmetry
where there are multiple degenerate pairings between A
qubits and B qubits, and so the steady state will necessarily
be degenerate.

APPENDIX C: DIMER REPRESENTATION

Each dimer chain site can be described as a pair of
noncommuting spin-1’s embedded in the spin- 1

2
× spin- 1

2

Hilbert space which sharem ¼ �1 states but have orthogo-
nal m ¼ 0 states. The m ¼ −1 state is the two-qubit
vacuum j00i, the m ¼ þ1 state is the double-excited state
j11i, and the orthogonal pair of m ¼ 0 states are jSi ¼
ðj01i − j10iÞ= ffiffiffi

2
p

and jTi ¼ ðj01i þ j10iÞ= ffiffiffi
2

p
.

We define the lowering operators τ̂j and λ̂j on each site j
that each destroy one of jSji or jTji. The τ̂j destroy
jSj¼1;3;5;…i and jTj¼2;4;6;…i—the j•i particles—and the λ̂j
destroy the opposite m ¼ 0 states—the j▪i particles.
Explicitly, in terms of the qubit operators, the lowering
operators are

τ̂j ≡ σ̂−B;j þ ð−1Þjσ̂−A;j

¼
ffiffiffi
2

p (
j00jihSjj − jSjih11jj j odd;

j00jihTjj − jTjih11jj j even;
ðC1Þ

λ̂j ≡ σ̂−B;j − ð−1Þjσ̂−A;j

¼
ffiffiffi
2

p (
j00jihSjj þ jSjih11jj j even;

j00jihTjj þ jTjih11jj j odd:
ðC2Þ

Each ladder operator and its adjoint forms a spin-1
representation of SU(2), with the same Ŝzj completing
the algebra for each. That is, the commutation relations
½τ̂†j ; τ̂k� ¼ ½λ̂†j ; λ̂k� ¼ 2Ŝzjδjk are simultaneously satisfied for
the operator
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Ŝzj ¼
1

2
ðσ̂zA;j þ σ̂zB;jÞ ¼ j11jih11jj − j00jih00jj: ðC3Þ

The two flavors of ladder operators on each site j do not
commute with each other:

½τ̂†j ; λ̂j� ¼ ½λ̂†j ; τ̂j� ¼ σ̂zB;j − σ̂zA;j

¼ 2ðjSjihTjj þ H:c:Þ: ðC4Þ
Notice that these commutators are Hermitian and act to
change flavor on a given dimer site. Finally, products of
same-site ladder operators are

τ̂2j ¼ −λ̂2j ¼ −2ð−1Þjj00jih11jj; ðC5Þ

τ̂jλ̂j ¼ 0: ðC6Þ

This completes the dimer algebra.
We use the following notation of states in the dimer

representation: j∘ji and jð11Þji are the vacuum and double-
excited state, respectively. The single-excited states are
j•ji ¼ ð1= ffiffiffi

2
p Þτ̂†j j∘ji and j▪ji¼ 1ffiffi

2
p λ̂†j j∘ji. Finally, we define

the steady-state subspace

Hs ¼ span

	X
j

j∘ji; j•ji



ðC7Þ

(so-called because jψQi∈Hs), which contains all states
with only j•ji and j∘ji. The projector into Hs is given by

P̂s ¼ ⊗
j
ðj∘jih∘jj þ j•jih•jjÞ: ðC8Þ

Now we rewrite Eq. (1) in the dimer representation. The
collective loss operator [cf. Eq. (3)] is simply

ĉ ¼ λ̂1; ðC9Þ

which makes immediately obvious that its dark subspace
on site 1 is spanned by j∘1i and j•1i, since λ̂1jð11Þ1i ¼ffiffiffi
2

p j▪1i and λ̂1j▪1i ¼
ffiffiffi
2

p j∘1i. The Hamiltonian terms
[cf. Eqs. (4)–(6)] are

ĤXX ¼ 1

4

XN−1

j¼1

Jj
�
τ̂†j λ̂jþ1 þ λ̂†j τ̂jþ1 þ H:c:

�
; ðC10Þ

Ĥdrive ¼
Ω
2

�
λ̂†1 þ H:c:

�
−
Δ
2
½λ̂†1; τ̂1�; ðC11Þ

Ĥdiss ¼
1

4
iνγ

�
λ̂†1τ̂1 − H:c:

�
: ðC12Þ

ĤXX becomes a flavor-changing exchange interaction, and
the Rabi drives become a single drive acting on the j▪i
flavor. The drive detuning in Ĥdrive and the nonreciprocity-
induced exchange in Ĥdiss appear in different ways to
achieve the same effect: a flavor change that swaps j•1i
and j▪1i. Note that the commutator in Ĥdrive is Hermitian,
which can be seen using Eq. (C4).

APPENDIX D: HOLE PAIRING AND XX
EIGENSTATES IN QUBIT CHAINS AND

FERMI-HUBBARD CHAINS

1. Hole-pairing operator

The hole-pairing operator Q̂ defined by Eq. (22) is a
central character in the analytical description of the steady
state of Eq. (1). Here, we prove that it acts on eigenstates
of ĤXX [cf. Eq. (5)] within the steady-state subspace Hs

[cf. Eq. (C7)] to produce new eigenstates of ĤXX with the
same energy and also in Hs. We prove this at the operator
level by showing that, when Q̂ acts on states within the
steady-state subspace Hs, it commutes with both ĤXX and
the projector into the subspace P̂s [cf. Eq. (C8)]:

½Q̂; ĤXX�P̂s ¼ 0; ðD1Þ

½Q̂; P̂s�P̂s ¼ 0: ðD2Þ

Together, these imply that, for a given ĤXX eigenstate
jϕi∈Hs with energy E, the action of Q̂ on jϕi produces
another eigenstate with energy E:

ðĤXX − EÞðQ̂jϕiÞ ¼ 0; Q̂jϕi∈Hs: ðD3Þ

In this way, we find that, by repeated application of Q̂ on an
ĤXX eigenstate, a tower of some finite number n0 < ∞ of
degenerate eigenstates is returned.
In general, the commutators ½Q̂;ĤXX�≠0 and ½Q̂;P̂s�≠0.

A direct computation using Eqs. (C8) and (C10) yields the
commutators

½Q̂; ĤXX� ¼
1

8
ffiffiffiffi
N

p
X
j

ð−1Þj
�
J2j
J̄
½τ̂j; λ̂†j �ðτ̂2jþ1 − τ̂2j−1Þ − 2

JjJj−1
J̄

Ŝzj
�
τ̂jþ1λ̂j−1 − τ̂j−1λ̂jþ1

��
; ðD4Þ

½Q̂; P̂s� ¼ −
1ffiffiffiffi
N

p
X
j

ðJj=J̄Þð−1Þj ⊗
k≠j;jþ1

ðj∘kih∘kj þ j•kih•kjÞ

× ½j •j ∘jþ1ihð11Þj •jþ1 j þ j∘j•jþ1ih•jð11Þjþ1j þ j •j •jþ1ihð11Þjð11Þjþ1j�: ðD5Þ
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Noting that τ̂2j j•ji ¼ λ̂jj•ji ¼ 0 and τ̂2j j∘ji ¼ λ̂jj∘ji ¼ 0, we
immediately see that, within the steady-state subspace,
½Q̂; ĤXX�P̂s ¼ 0. By inspection, ½Q̂; P̂s�P̂s ¼ 0.

2. Hole pairing in a Fermi-Hubbard model

The hole pairing observed in the dimer chains is not
unique to that system. The requirements for a 1D tight-
binding chain to have eigenstates of paired holes (or some
suitable paired excitation) are that (i) there exist two flavors
or species of excitation, (ii) the exchange couplings change
the flavor when the particles hop, and (iii) there is a hard-
core constraint preventing double occupation on a site. The
Fermi-Hubbard tight-binding chain with on-site repulsion
U can, in the hard-core interaction limit U → ∞, fulfill
these requirements, albeit in a nonstandard basis. A recent
work by Mamaev et al. [38] introduced a proposal of a
Fermi-Hubbard model with a staggered laser drive that flips
spin on each site. This laser drive induces an effective spin-
orbit coupling that causes spin-flip (flavor-change) hopping
in an appropriate excitation basis. In the hard-core repul-
sion limit, hole-paired states emerge as eigenstates of the
Hamiltonian.
The model introduced in Ref. [38] is of a 1D Fermi-

Hubbard lattice with an added spin-orbit coupling (SOC)
laser drive, Ĥ ¼ Ĥ0 þ ĤSOC, where

Ĥ0 ¼ J
X
j;σ

�
ĉ†j;σ ĉjþ1;σ þ H:c:

�
þ U

2

X
j

n̂j;↑n̂j;↓; ðD6Þ

ĤSOC ¼ Ω
2

X
j

ð−1Þj
�
ĉ†j;↑ĉj;↓ þ H:c:

�
: ðD7Þ

Here, J is the hopping rate (taken to be uniform, for
simplicity, but can be generalized to nonuniform J, like
the spin chains), U is the Hubbard potential, Ω is the laser
Rabi drive strength, and n̂j;σ ¼ ĉ†j;σ ĉj;σ . As in Ref. [38], we
define a new set of fermion operators:

âj;↑ ¼ 1ffiffiffi
2

p ðĉj;↑ þ ð−1Þjĉj;↓Þ; ðD8Þ

âj;↓ ¼ 1ffiffiffi
2

p ðĉj;↑ − ð−1Þjĉj;↓Þ; ðD9Þ

which obey the canonical anticommutation relations
fâj;σ; âk;τg ¼ δjkδστ. In this basis, the Hamiltonian is

Ĥ ¼ J
X
j;σ

�
â†j;σâjþ1;σ̄ þ H:c:

�
þ U

2

X
j

n̂j;↑n̂j;↓

þ Ω
2

X
j

�
n̂j;↑ − n̂j;↓Þ; ðD10Þ

where σ̄ denotes the spin flip of σ and now n̂j;σ ¼ â†j;σâj;σ.
We, thus, have the desired spin-flip hopping. Also note
the energy splitting Ω between spin-up and spin-down
particles, thus making this a good basis with respect to the
SOC laser drive.
Whereas Ref. [38] explores the physics in the limit

Ω ¼ U → ∞, here we wish to consider a slightly different
limit: U → ∞ with Ω; J < ∞. This effects the on-site hard-
core repulsion between opposite spins; thus, we have the
effective model

Ĥ∞¼Ω
2

X
j

ðn̂j;↑− n̂j;↓Þ

þJ
Y
k

ð1− n̂k;↑n̂k;↓Þ
X
jσ

�
â†j;σâjþ1;σ̄þH:c:

�
: ðD11Þ

With the hard-core repulsion, the N-particle ferromagnetic
states jΞ↑i ¼ j↑↑↑ � � �i and jΞ↓i ¼ j↓↓↓ � � �i are eigen-
states of Ĥ∞, with energies þNðΩ=2Þ and −NðΩ=2Þ,
respectively. We now introduce the fermionic hole-pairing
operators (one for each spin)

Q̂σ ¼
1ffiffiffiffi
N

p
X
j

ð−1Þjâj;σâjþ1;σ; ðD12Þ

that create pairs of adjacent holes with staggered phases,
in perfect analogy with Eq. (22). We also denote by P̂σ the
projector into each spin subspace, in analogy with Eq. (C8).
Just as with the dimer spin chain case, we find that the

hole-pairing operators here commute with the tight-binding
Hamiltonian when restricted to the appropriate subspace,
but the total energy changes due to the removal of two
particles:

½Q̂↑;Ĥ∞�P̂↑¼−ΩQ̂↑; ½Q̂↓;Ĥ∞�P̂↓¼þΩQ̂↓: ðD13Þ

Thus, when acting on their respective jΞσi, powers of Q̂σ

produce towers of Hamiltonian eigenstates with energies
ranging from �NðΩ=2Þ to either 0 or �ðΩ=2Þ for either
even-length or odd-length chains, respectively. Notice that,
due to the SOC energy splitting, Q̂σ raises or lowers the
eigenstate energy by a multiple of the SOC drive strength
Ω=2, furthering the analogy with η pairing [47,48], for
which η-paired states have energy splitting that are a
multiple of the Hubbard potential U.

APPENDIX E: EXISTENCE PROOF FOR THE
PURE STEADY STATE

Here, we rigorously prove that jψQi [Eq. (25)] is indeed
a pure steady state of Eq. (1). For jψQi to be a pure steady
state, it is sufficient for it to be an eigenstate of the
Hamiltonian and a dark state of the dissipation [54]. The
latter property is satisfied, as ĉj•1i ¼ ĉj∘1i ¼ 0 and jψQi
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has only those components on site 1. It remains to show that
jψQi is an eigenstate of Ĥ, which we do by way of a
variational ansatz.
We consider a two-parameter variational ansatz jψ 0½α; β�i

and show that it is an exact eigenstate for a set of uniquely
determined variational parameters α and β. First, note that,
for N ¼ 1, the steady state [cf. Eq. (7)] is

jψ1i ¼
�
1þ Γ

Ω
τ̂1

�
j•i: ðE1Þ

This is a zero-energy eigenstate of the boundary
Hamiltonian

Ĥ1 ≡ Ĥdrive þ Ĥdiss ðE2Þ
[cf. Eqs. (C11) and (C12)]. Thus, we construct a variational
ansatz which includes this wave function in theN ¼ 1 case,
but we replace Γ=Ω with a variational parameter β for
generality. This correction to jψ∞i cannot be enough for
N > 1, because the hole on site 1 will be delocalized
throughout the chain in order to have an eigenstate of ĤXX.
One might expect that a linear combination of zero-energy
ĤXX eigenstates with all possible numbers of hole pairs is
needed. A “hole-pair condensate,” i.e., the exponential of Q̂
acting on jψ∞i, is a simple way to achieve that; thus, we
make the ansatz

jψ 0½α; β�i ¼ ð1þ βτ̂1ÞeαQ̂jψ∞i: ðE3Þ

Evaluating Ĥjψ 0½α; β�i, there are three nonzero terms:

Ĥjψ 0½α; β�i ¼ ½Ĥ1 þ βĤ1τ̂1 þ β½ĤXX; τ̂1��eαQ̂jψ∞i; ðE4Þ

as ĤXXeαQ̂jψ∞i ¼ 0. In what follows, we use the fact that
eαQ̂jψ∞i∈Hs [cf. Eq. (C7)] contains no j▪i or doublon
states j11i. Thus, we may always write eαQ̂jψ∞i ¼
P̂seαQ̂jψ∞i [cf. Eq. (C8)]. Evaluating the boundary
Hamiltonian restricted to the steady-state subspace yields

ĤdriveP̂s ¼
Ω
2
λ̂†1 −

Δ
2
λ̂†1τ̂1; ðE5Þ

ĤdissP̂s ¼
1

4
iνγλ̂†1τ̂1: ðE6Þ

So we have Ĥ1P̂s ¼ 1
2
Ωλ̂†1 −

1
2
Γλ̂†1τ̂1, where Γ is defined

in Eq. (8). Likewise, the commutator is given by
½ĤXX; τ̂1�P̂s ¼ 1

4
J1λ̂

†
1τ̂1τ̂2. Thus, we have

Ĥjψ 0½α; β�i

¼
�
1

2
Ωλ̂†1 þ β

1

4
J1λ̂

†
1τ̂1τ̂2 þ

1

2
ðβΩ − ΓÞλ̂†1τ̂1

�
eαQ̂jψ∞i:

ðE7Þ

Commuting everything past the exponential eαQ̂, one can
readily show that ½λ̂†1τ̂1; Q̂�P̂s ¼ ½λ̂†1τ̂1τ̂2; Q̂�P̂s ¼ 0. The
only nonzero commutator is

½λ̂†1; eαQ̂�P̂s ¼ −αðJ1=2J̄
ffiffiffiffi
N

p
ÞeαQ̂λ̂†1τ̂1τ̂2: ðE8Þ

This commutator is evaluated by first noting that
½λ̂†1; Q̂�P̂s ¼ −ðJ1=2J̄

ffiffiffiffi
N

p Þλ̂†1τ̂1τ̂2 and ½λ̂†1τ̂1τ̂2; Q̂�P̂s ¼ 0.
Thus, ½½λ̂†1; Q̂�; Q̂�P̂s ¼ 0. Then, we can use the general
results that for two operators Â and B̂ satisfying
½½Â; B̂�; B̂� ¼ 0, the commutator ½Â; eαB̂� ¼ α½Â; B̂�eαB̂ ¼
αeαB̂½Â; B̂�. Using the hard-core constraint, we also have
λ̂†1jψ∞i ¼ 0; hence, the action of Ĥ on the variational
ansatz reduces to the following two terms:

Ĥjψ 0½α;β�i

¼ eαQ̂
�
J1
4

�
β−α

Ω
J̄

ffiffiffiffi
N

p
�
λ̂†1τ̂1τ̂2þ

1

2
ðβΩ−ΓÞλ̂†1τ̂1

�
jψ∞i:

ðE9Þ

Since both terms involve the creation of a j▪1i, the
eigenstate must have eigenvalue 0, and each term must
vanish separately as they remove differing numbers of j•ji.
Immediately, we see that letting β ¼ Γ=Ω [as predicted by
Eq. (E1)] and α ¼ ffiffiffiffi

N
p

ΓJ̄=Ω2 yields jψQi as desired.
We conclude this appendix with an important comment

on uniqueness. While we do not have a proof that this is the
unique steady state of the master equation for any N > 1,
we have reason to expect that it is unique so long as
jΩ̃j < ∞. As noted above, the originalN ¼ 1 problem does
have a unique steady state jψ1i [cf. Eq. (7)] for any finite
driving strength jΩ=Γj < ∞. Numerical exact diagonaliza-
tion of the Liouvillian for up to N ¼ 4 finds Eq. (25) to be
the unique steady state. Moreover, there is no obvious
symmetry in the problem that would allow for a steady-
state degeneracy (except in the limit Ω → ∞; see Sec. V),
and, thus, we expect this steady state to be generically
unique.

APPENDIX F: RECURSIVE STEADY-STATE
CONSTRUCTION

1. Steady-state recursion relation

The steady state jψi given by Eq. (25) can alter-
natively be constructed recursively in the length of the
chains N. While this construction does not lead to
further analytic insights into the structure and properties
of the steady state beyond what can be obtained from
Eq. (25), it does allow for the numerically amenable
calculation of expectation values and correlation func-
tions. In what follows, it is convenient to define the
dimensionless parameters
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ζ ≡
ffiffiffi
Γ
J̄

r
; ηj ≡ Jj

J̄
: ðF1Þ

The two ζ and Ω̃ [cf. Eq. (26)] are sufficient to describe
overall properties of the steady state (i.e., jψi can be
written using only these two parameters when the fJjg
are hidden away in Q̂), and the set of fηjg encodes all
intrachain hopping disorder.
The starting point for the recursive construction is

the pair of steady states jψ1i and jψ2i for the N ¼ 1
and N ¼ 2 chains, respectively. The N ¼ 1 steady state
jψ1i [cf. Eq. (7)] is given in terms of Ω̃ and ζ by

jψ1i ¼
1

N 1

� ffiffiffi
2

p ζ

Ω̃
j∘1i þ j•1i

�
; ðF2Þ

N 2
1 ¼

2jζj2
jΩ̃j2 þ 1; ðF3Þ

where N 1 is the normalization. For later use in computing
correlation functions, it is crucial that the states be
normalized. The N ¼ 2 steady state is

jψ2i ¼
1

N 2

�
η1

N 1Ω̃2
j∘1∘2i − jψ1i ⊗ j•2i

�
; ðF4Þ

N 2
2 ¼

η21
N 2

1jΩ̃j4
þ 1: ðF5Þ

By construction, this is a dark state of the dissipation, and
one can readily verify that it is a zero-energy eigenstate of
the Hamiltonian Ĥ2 ¼ Ĥ1 þ ĤXX;2.
For all n ≥ 3, the steady state is given recursively by

jψni ¼
1

N n

�
ηn−1

N n−1Ω̃2
jψn−2i ⊗ j∘n−1∘ni

þ ð−1Þbn=2cjψn−1i ⊗ j•ni
�
; ðF6Þ

N 2
n ¼

η2n−1
N 2

n−1jΩ̃j4
þ 1: ðF7Þ

One readily verifies that this is an eigenstate of the
Hamiltonian Ĥn ¼ Ĥ1 þ ĤXX;n using the induction
hypotheses Ĥn−1jψn−1i ¼ Ĥn−2jψn−2i ¼ 0. The hypothe-
ses hold for jψ1i and jψ2i, thus completing the inductive
proof that Ĥnjψni ¼ 0. Notice that the pairing of holes in
the steady state appears clearly in the recursion relation.
The strong Ω̃ limit jψi → j • • • � � �i is also evident by
neglecting terms at least Oð1=Ω̃Þ in small 1=Ω̃ ≪ 1.

2. Correlation functions

The recursive construction of jψi provides a convenient
way to numerically compute correlation functions. Using
Eq. (25) directly presents some analytic challenges that are
avoided in the recursion. For the sake of clarity, we focus
here on the dimer particle number n̂j ≡ 1

2
τ̂†j τ̂j. Since the

recursion relation for jψni is in the chain length n, it is
necessary to denote the chain length for which expectation
values are taken, e.g.,

hn̂jin ¼
1

2
hψnjτ̂†j τ̂jjψni: ðF8Þ

Here, the state is normalized by construction: hψnjψni ¼ 1.
Using the recursion relation Eq. (F6), we expand hn̂jin in
terms of the expectation values evaluated for n − 1 and
n − 2 length chains:

hn̂jin ¼
η2n−1

N 2
nN 2

n−1jΩ̃j4
hn̂jin−2 þ

1

N 2
n
hn̂jin−1; ðF9Þ

where N k are the normalization factors given by Eq. (F7).
This expression tells us that the expectation value hn̂jin,

evaluated for a chain of length n, is given in terms of the
expectation value evaluated on chains of length n − 1 and
n − 2, which are similarly given by the recursive expression
Eq. (F9). This recursion terminates at the expectation value
hn̂jij, i.e., for a length n ¼ j chain. The termination hn̂jij is
readily evaluated using Eq. (F6) directly and is

hn̂jij ¼ hψ jjn̂jjψ ji ¼
1

N 2
j
: ðF10Þ

Any expectation value or correlation function can be
evaluated in a similar way.

APPENDIX G: RESTRICTED
SPECTRUM-GENERATING ALGEBRA

AND RELATION TO SCARRING

Here, we briefly demonstrate that Q̂ and jψ∞i
[cf. Eq. (12)] constitute an RSGA and show that these
states have area-law entanglement entropy across a par-
ticular bipartition and, thus, are scar states of a simple
ladder model.

1. RSGA in a nonintegrable model

In Ref. [39], a restricted spectrum-generating algebra of
the order of M for a system with Hamiltonian Ĥ is defined
by an operator η̂† and a state jψ0i satisfying (i) Ĥjψ0i ¼
E0jψ0i, (ii) Ĥ1jψi¼Eη̂†jψ0i, Ĥnjψ0i¼0 ∀ n;2≤n≤M,
and (iv) Ĥn ≠ 0; n ≤ M, Ĥn ¼ 0; n ¼ M þ 1. Here, Ĥn ¼
½Ĥn−1; η̂†� are successive commutators with η̂†, and
Ĥ0 ¼ Ĥ is the system Hamiltonian. Then, the states
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ðη̂†Þnjψ0i are eigenstates of Ĥ with equally spaced energies
E0 þ nE for all n for which ðη̂†Þnjψ0i ≠ 0.
We consider a simple nonintegrable ladder model,

specifically the model discussed in Ref. [40] of two XX
chains with an XXZ interaction on each rung (to which we
add a term Ĥδ):

Ĥ ¼ ĤXX þ Ĥrung þ Ĥδ; ðG1Þ

Ĥrung ¼
XL
j¼1



g
�
σ̂xA;jσ̂

x
B;j þ σ̂yA;jσ̂

y
B;j

�þ μσ̂zA;jσ̂
z
B;j

�
;

Ĥδ ¼ δ
XL=2
i¼1

�
σ̂þA;2iσ̂

−
B;2i þ H:c:

�
: ðG2Þ

This model is nonintegrable (even for μ ¼ 0), and it
conserves total Z-axis magnetization [40]:

M̂ ¼
X
j

σ̂zA;j þ σ̂zB;j: ðG3Þ

The rung terms split the jSi and jTi states—ĤrungjSi ¼
−2gjSi, ĤrungjTi ¼ þ2gjTi—and acts as a chemical
potential by giving an energy cost to adding either holes
or particles: Ĥrungj∘i ¼ μj∘i, Ĥrungjð11Þi ¼ μjð11Þi. The
added Ĥδ splits the two reference states jψ∞i ¼ jSTST…i
and jψ̃∞i ¼ jTSTS…i via ĤδjS2ii ¼ −2δjS2ii and
ĤδjT2ii ¼ 2δjT2ii, to lift some degeneracies between the
hole-paired states and other eigenstates of the system.
It is straightforward to see that the Q̂ operator con-

structed in Appendix D and the reference state jψ∞i
[cf. Eq. (12)] form an RSGA of the order of 2 under this
Hamiltonian. In particular, we have

Ĥjψ∞i ¼ E0jψ∞i;

E0 ¼
	
0 L even;

−g L odd;

Ĥ1jψ∞i ¼ 2μQ̂jψ∞i;
Ĥ2jψ∞i ¼ 0; Ĥ3 ¼ 0; ðG4Þ

where Ĥn ¼ ½Ĥn−1; Q̂� with Ĥ0 ¼ Ĥ. Equation (G4)
implies that the set of hole-paired states

jψni ¼ Q̂njψ∞i; ðG5Þ

Ĥjψni ¼ ðE0 þ 2nμÞjψni ðG6Þ

are a tower of exact eigenstates of the nonintegrable
ladder, with equal energy spacing En − En−1 ¼ 2nμ, for
all n < L=2.

Similar calculations show that Q̂† acting on jψ∞i is also
an RSGA of the order of 2, but this time creating particle
[i.e., jð11Þji] pairs. Similarly, if we define a Q̃ which is

identical to Q̂ but with the replacement τ̂jτ̂jþ1 ↦ λ̂jλ̂jþ1

and a new reference state jψ̃∞i ¼ jTSTSTS…i, we also
find that Q̃ and Q̃† with jψ̃∞i form order-2 RSGAs,
creating hole and particle pairs, respectively.

2. Scarring in a nonintegrable ladder model

For the hole-paired states to be true quantum scars in the
ladder model, it is not enough that they are generated from a
restricted spectrum-generating algebra. A key hallmark
of quantum scarring is the existence of eigenstates of a
nonintegrable system which are highly anomalous in some
observable quantities when compared to other eigenstates
of similar energy and, thus, violate the strong eigenstate
thermalization hypothesis, which one would otherwise
naively expect to hold [55]. One common quantity to
compare is the entanglement entropy (EE) across some
bipartition of the quantum system. Generically, eigenstates
of nonintegrable systems have volume-law EE across a
given bipartition; in a 1D system, we thus expect S ∼ L for
a generic eigenstate.
In the ladder model, we consider the bipartition

defined by cutting the system lengthwise at site L=2
(letting the partitions α and β be the left and right
halves of the chain, respectively). It is clear that the
reference states jψ∞i and jψ̃∞i have zero EE across the
bipartition, as they are tensor products of a Bell state on
each dimer site. Furthermore, as we show rigorously
below, the EE of hole-paired states follows an area law
in the limit L → ∞: Sα ∼ L0; thus, these eigenstates are
quantum scars.
To demonstrate the anomalously low EE of the hole-

paired states, we perform numerical exact diagonalization
of Eq. (G1) for a length L ¼ 8 chain (i.e., 16 total spins)
using QuSpin [56]. For two fixed magnetization sectors,
M ¼ −2;−4, we plot the EE of each eigenstate across
the central bond versus eigenstate energy in Fig. 11. We
find that, as is typical of nonintegrable systems, the
typical energy eigenstate near the center of the band has
high EE (which we expect to be ∼L). The hole-paired
states, identified by stars in the figure, are states in the
middle of the eigenspectrum and clearly have anoma-
lously low EE.

3. Area-law entanglement entropy
of hole-paired states

For completeness, we rigorously show that the entangle-
ment entropy of the hole-paired states across the central cut
at L=2 of the length L chain follows an area law, scaling as
Sðρ̂α;nÞ ∼ L0, where ρ̂α;n ¼ trβ½Q̂njψ∞ihψ∞jQ̂†n�. Here, we
denote the partitions by α and β; the α partition contains the
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first L=2 qubits of each chain A and B. First, we split the Q̂
operator into three terms:

Q̂ ¼ Q̂α þ Q̂β þ Q̂L=2; ðG7Þ

where the first term acts only on the α partition (sites 1
through L=2) and the second on the β partition and the
last term Q̂L=2 ∝ τ̂L=2τ̂L=2þ1 places a hole pair across the
central cut. Now, using the fact that the Q states are
orthogonal,

hψ∞jQ̂†mQ̂njψ∞i ∝ δnm; ðG8Þ

specifically that this relation holds term by term, and that
Q̂2

L=2 ¼ 0, we can write a generic Q state as

Q̂njψ∞i ¼ ðQ̂α þ Q̂βÞnjψ∞iαjψ∞iβ
þ ðQ̂α þ Q̂βÞn−1Q̂L=2jψ∞i: ðG9Þ

Because Q̂α=β act only on their respective halves of the
chain, the terms ∝ ðQ̂α þ Q̂βÞnjψ∞i can always be written
Q̂k

αjψ∞iα ⊗ Q̂n−k
β jψ∞iβ. Similarly, for the ∝ Q̂L=2 terms,

the only entangling operator is Q̂L=2, with all powers of
Q̂α=β acting only on their halves of the chain. Thus, we can
efficiently perform the partial trace over the β partition of
the density matrix. In particular, terms with unique powers
of Q̂β and Q̂L=2 are orthogonal; thus, the partial trace over
the β partition is

ρ̂α;n¼ trβ
h
Q̂njψ∞ihψ∞jQ̂†n

i

¼
Xn
k¼0

�
n
k

�
2

kQ̂n−k
β jψ∞iβk2Q̂k

αjψ∞iαhψ∞jQ̂†k

þ
Xn−1
k¼0

�
n−1

k

�
2

kQ̂n−1−k
β j∘ψ∞iβk2Q̂k

αjψ∞∘iαhψ∞∘jQ̂†k:

ðG10Þ

Here, j∘ψ∞iβ is the β partition of Q̂L=2jψ∞i, which has a
hole on site L=2þ 1.
For a given fixed n, when we take the limit L → ∞, we

have kQ̂n
α=βjψ∞iβk2 ∼ ðL=2Þn, as each half of the chain has

≈L=2 places where each hole pair can be placed. Thus,
tr½ρ̂α;n� ∼ ðL=2Þnð2nn Þ þOðLn−1Þ. Denoting the probabil-
ities of terms where a hole pair does not span the central
cut by pk and denoting the probabilities of terms with a
hole pair spanning the cut by p̃k, we find

pk ∼
�
n
k

�
2
��

2n
n

�
; p̃k ∼ L−1

�
n − 1

k

�
2
��

2n
n

�
:

ðG11Þ

We can neglect the p̃k for L → ∞ (keeping n fixed), so the
entanglement entropy of a hole-paired state is area law:

Sðρ̂α;nÞ ≈ −
X
k

pk lnpk ∼ L0: ðG12Þ

Note that this argument holds only for a 2n-hole state when
taking L → ∞ with n fixed.

APPENDIX H: HOLE-PAIR CORRELATION
FUNCTION

Here, we derive the correlation function Eq. (28) and
discuss its nonstandard normalization. It is natural to
measure hole correlations using the dimer operators τ̂j
defined in Eq. (C1), as τ̂zj ¼ ½τ̂†j ; τ̂j� has the matrix elements
h∘jjτ̂zjj∘ji ¼ −2 and h•jjτ̂zjj•ji ¼ 0 (and zero off-diagonal
matrix elements) within the steady-state subspace fj∘ji;
j•jig. Thus, we define the hole-pair correlation function as

FIG. 11. Hole-paired states as scars in the double XX chain
ladder model. The entanglement entropy of the ladder model
eigenstates [cf. Eq. (G1)] of the α partition (i.e., sites 1 to L=2)
is plotted versus the eigenstate energy. Here, we consider a
length L ¼ 8 ladder (16 total spins) and plot the eigenstates in
theM ¼ −2 magnetization sector (i.e., two-hole sector) and the
M ¼ −4 (four-hole) sector. The hole-paired states are denoted
with stars; in each magnetization sector, there are two states
corresponding to hole pairs created in each reference state jψ∞i
and jψ̃∞i. For both plots, the parameters are μ=J ¼ 0.2,
g=J ¼ 0.5, and δ=g ¼ 0.3.

EXACT RESULTS FOR A BOUNDARY-DRIVEN DOUBLE SPIN … PHYS. REV. X 14, 021028 (2024)

021028-21



Czzðj; kÞ ¼
hτ̂zj τ̂zki − hτ̂zjihτ̂zkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhτ̂zjτzji − hτ̂zji2Þðhτ̂zkτ̂zki − hτ̂zki2Þ
q ; ðH1Þ

which is a standard connected correlation function nor-
malized by the on-site fluctuations. To relate this to
measurable quantities in the single A chain alone, we first
note that τ̂zj ¼ σ̂zA;j þ σ̂zB;j and that, within the steady-state
subspace, h∘jjσ̂zs;jj∘ji ¼ −1 and h•jjσ̂zs;jj•ji ¼ 0, for
s∈ fA;Bg. Thus, when evaluating the correlation functions
for an arbitrary state within the steady-state subspace, we
have hσ̂zA;ji ¼ hσ̂zB;ji, and for j ≠ k, it is readily shown that
all hσ̂zs;jσ̂zs0;ki are equivalent for any s; s0 ∈ fA;Bg.
Therefore, the connected correlation function for j ≠ k
can be expressed in A-chain observables as

hτ̂zjτ̂zki − hτ̂zjihτ̂zki ¼ 4ðhσ̂zA;jσ̂zA;ki − hσ̂zA;jihσ̂zA;kiÞ: ðH2Þ

For j ¼ k, the expectation values hσ̂zs;jσ̂zs0;ji are not all
equivalent. The connected correlation functions can be
reduced to

hτ̂zj τ̂zji − hτ̂zji2 ¼ 2þ 2hσ̂zA;jσ̂zB;ji − 4hσ̂zA;ji2: ðH3Þ

As a final step, we find that, within the steady-state
subspace, the nonzero matrix elements of σ̂zA;jσ̂

z
B;j are

h∘jjσ̂zA;jσ̂zB;jj∘ji ¼ 1 and h•jjσ̂zA;jσ̂zB;jj•ji ¼ −1. Thus, when
restricted to this subspace, the expression 2þ 2hσ̂zA;jσ̂zB;ji
has the same matrix elements as −4hσ̂zA;ji. While these are
not equivalent as operators, we, thus, have the expectation
value equivalence

2þ 2hσ̂zA;jσ̂zB;ji ¼ −4hσ̂zA;ji ðH4Þ

in the steady-state subspace. Therefore, the correlation
function defined above in terms of τ̂zj is equivalent to
Eq. (28) when evaluated on the steady state (and any state
in the steady-state subspace, generally).

APPENDIX I: APPROXIMATE COHERENT
STATES OF HOLE PAIRS

The analogy we make to bosonic coherent states in
Sec. IV can be made precise for large N ≫ 1. For the sake
of clarity, we consider the limit ζ → 0 to focus only on the
exponential of Q̂ in jψi [cf. Eq. (29)]. We seek to show
that the probability distribution of finding m hole pairs in
the chain is a Poisson distribution when m ≪ N; hence,
jψi ¼ eαQ̂jψ∞i approximates a coherent state with dis-
placement α ¼ ffiffiffiffi

N
p

=Ω̃2 from the “hole vacuum” jψ∞i.
Each power of Q̂ acting on jψ∞i adds one more hole pair

to the state. Thus, the probability pðmÞ for having m hole
pairs in the state is

pðmÞ ¼ 1

Z
ð ffiffiffiffi

N
p

=jΩ̃j2Þ2m
ðm!Þ2 hψ∞jQ̂†mQ̂mjψ∞i; ðI1Þ

where Z is an overall normalization. The crucial step
here is to compute the state norms kQ̂mjψ∞ik2 ¼
hψ∞jQ̂†mQ̂mjψ∞i. If the state norms for small m≪N
are kQ̂mjψ∞ik2 ≈m!, then we have the Poisson
distribution

pðmÞ ≈ e−N=jΩ̃j4 ðN=jΩ̃j4Þm
m!

; ðI2Þ

and, therefore, the average number of holes in the state is
hM̂i ¼ 2N=jΩ̃j4 (twice the number of hole pairs). We, thus,
arrive at the result that, for hM̂i ≪ N, the density of holes is
intensive:

m̄ ¼ 1

N
hM̂i ¼ 2

jΩ̃j4 ðI3Þ

and depends on only Ω̃. It remains only to compute the state
norms and verify kQ̂mjψ∞ik2 ≈m!.
The m-hole-pair state norms kQ̂mjψ∞ik2 are found by

simply counting the configurations of m hole pairs in a
length N chain. First consider a single hole pair. There are
ðN − 1Þ=1! unique configurations for a single hole pair in
the chain, and each of those configurations has an ampli-
tude ð1!Þ2; thus, the state norm for one hole pair is

kQ̂jψ∞ik2 ¼
1

N
N − 1

1!
ð1!Þ2 ≈ 1!; ðI4Þ

with an Oð1=NÞ correction. Moving to two hole pairs, we
see that there are still N − 1 configurations for the first pair,
but now due to the hard-core constraint there are onlyN − 3
configurations for the second. Note that, here, we neglect
the rare configurations in which the first pair limits
the second pair to N − 4 configurations (i.e., when the
first pair is one site from the boundary). Thus, there are
≈ðN − 1ÞðN − 3Þ=2! unique configurations of two hole
pairs, each with amplitude ð2!Þ2; thus, the state norm is

kQ̂2jψ∞ik2 ≈
1

N2

ðN − 1ÞðN − 3Þ
2!

ð2!Þ2 ≈ 2!: ðI5Þ

We may proceed in this way for larger m, noting that
the number of unique configurations for m holes is
≈Nm=m!þOð1=NÞ. Therefore, for m ≪ N we have
kQ̂mjψ∞ik2 ≈m!, the desired result.
We pause here to note that this line of argument certainly

breaks down when m ∼ N, as the hard-core constraint
allows significantly fewer unique configurations of m hole
pairs than Nm=m!. A more careful analysis of the errors
suggests that the breakdown of the analogy may occur for
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an even tighter constraint m ∼
ffiffiffiffi
N

p
; nevertheless, direct

numerical computation of the hole density using the exact
solution shows a remarkable adherence to the estimate
m ≈ N=jΩ̃j4 for much higher hole densities than would be
reasonably expected from this analysis. The precise reason
for this is not yet understood.
Finally, having established the coherent state analogy in

the jζj → 0 limit, we consider the general case. All of the
analysis above proceeds in exactly the same way, but now
the dissipative site has extra probability of containing a
hole due to the ∝ ζ term in Eq. (29). The state can be
written as the sum of a hole coherent state on all sites and a
hole coherent state on sites 2 through N with an isolated
hole on site 1:

jψi ¼ eαQ̂jψ∞i þ
ffiffiffi
2

p
ζ

Ω̃
eαQ̂

0 j∘1ψ 0
∞i; ðI6Þ

where Q̂0 and jψ 0
∞i denote those objects defined on sites 2

through N and where α ¼ ffiffiffiffi
N

p
=Ω̃2. For large N ≫ 1,

the state norms are approximately equal: keαQ̂jψ∞ik2 ≈
keαQ̂0 j∘1ψ 0

∞ik2. Using this fact and that the term propor-
tional to ζ has one more hole than the ζ-independent term,
we find the number of holes in the state to be

hM̂i ¼ 2N

jΩ̃j4 þ
2jζj2

jΩ̃j2 þ 2jζj2 : ðI7Þ

The first term is extensive and recovers the universal
scaling m̄ ¼ 2=jΩ̃j4 of the hole coherent state, and the
second term is independent of N and reflects the additional
hole density on site 1, which approaches one additional
hole in the limit jζj → ∞.

APPENDIX J: EMERGENCE OF CHARGE
DENSITY WAVES

Here, we derive the drive strength regime in which the
single-particle CDWs emerge, i.e., Eqs. (38) and (39).

1. ζ-independent upper bound

We first consider the limit jζj → 0 in which odd-length
chains have CDWs. We estimate the particle density of
even- and odd-length chains by expanding jψi to second
order in jΩ̃j:

jψi ≈ Q̂bN=2c−1jψ∞i þ
ffiffiffiffi
N

p

Ω̃2

1

bN=2c Q̂
bN=2cjψ∞i: ðJ1Þ

For even chains, the particle numbers of the two terms are 2
and 0, respectively, while for odd chains the particle
numbers are 3 and 1. Thus, the total chain particle numbers
are (using subscripts e and o for even- and odd-length
chains, respectively)

hN̂ie ¼
2

1þ 4
NjΩ̃j4

kQ̂N=2jψ∞ik2
kQ̂N=2−1jψ∞ik2

; ðJ2Þ

hN̂io ¼
3þ 4

NjΩ̃j4
kQ̂bN=2cjψ∞ik2
kQ̂bN=2c−1jψ∞ik2

1þ 4
NjΩ̃j4

kQ̂bN=2cjψ∞ik2
kQ̂bN=2c−1jψ∞ik2

: ðJ3Þ

The onset of the CDW scale occurs when these particle
numbers start to diverge from each other—hN̂ie vanishes
with decreasing Ω̃, whereas hN̂io saturates to one particle.
We, thus, need to estimate the ratio of state norms.
We do not need to estimate the absolute magnitude of

the state norms but only their ratios. Ignoring any
boundary effects and assuming that all hole configurations
of each state are equally likely, the state norm of Q̂kjψ∞i
can be given as AðkÞ × ð#configs of k hole pairsÞ, where
AðkÞ is an amplitude weighting function. Dropping the
floor notation for simplicity, for the nearly empty chains,
each configuration of Q̂N=2−1jψ∞i produces up to one
configuration of Q̂N=2jψ∞i [neglecting the Oð1=NÞ rare
configurations of three adjacent particles in odd chains]
with a permutation factor N=2. Thus, AðN=2Þ ¼
ð1=NÞðN=2ÞAðN=2 − 1Þ, where the extra 1=N comes from
the normalization of Q̂ [cf. Eq. (22)].
For even chains, there are ðN=2ÞðN=2 − 1Þ=2 configu-

rations of N=2 − 1 hole pairs (i.e., two particles), of which
N=2 produce the vacuum state (i.e., N=2 hole pairs). Thus,
the state norm ratio for even chains is

kQ̂bN=2cjψ∞ik2e
kQ̂bN=2c−1jψ∞ik2e

≈
1
N ðN=2ÞAðN=2−1ÞðN=2Þ
AðN=2−1ÞðN=2Þ2=2 ¼ 2

N
: ðJ4Þ

Similarly, for odd chains, there are ðN=2ÞðN=2þ 1Þ
ðN=2þ 2Þ=6 configurations of N=2 − 1 hole pairs (i.e.,
three particles), of which ðN=2 − 1ÞðN=2Þ=2 produce
configurations of N=2 hole pairs (i.e., one particle
CDW); thus,

kQ̂bN=2cjψ∞ik2o
kQ̂bN=2c−1jψ∞ik2o

≈
1
N ðN=2ÞAðN=2 − 1ÞðN=2Þ2=2

AðN=2 − 1ÞðN=2Þ3=6 ¼ 3

N
:

ðJ5Þ
From these state norms, we immediately obtain the

particle numbers

hN̂ie ≈
1

4
N2jΩ̃j4; ðJ6Þ

hN̂io ≈ 1þ 1

6
N2jΩ̃j4; ðJ7Þ

which are valid when we assume the drive strength satisfies

jΩ̃j ≪ 1ffiffiffiffi
N

p : ðJ8Þ
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Thus, we have the upper bound on jΩ̃j below which CDWs
emerge in odd-length chains in the jζj ¼ 0 limit.
This analysis is essentially identical in the jζj → ∞ limit

via the same reasoning used to explain the emergence of
single-particle states in even-length chains. Because site 1
always has a hole, we may basically neglect it and consider
chains of length N − 1 in an effective jζj ¼ 0 limit, thus
obtaining exactly the same CDW emergence scale. The
only difference here is that even chains have CDWs and
odd chains do not.

2. ζ-dependent lower bound

With the upper bound of the CDW regime established,
we now turn to the jζj-dependent lower bound. This bound
is characterized by the point at which the particle number of
chains with CDWs starts to fall below 1. Note that the
CDWs persist below the lower bound but with a particle
number that vanishes as ∼jΩ̃j2; i.e., there is less than one
particle in the chain on average.
Here, we focus on the case of odd chains for jζj ≪ 1—as

above, the even chain in the jζj ≫ 1 regime follows
analogously. We expand the odd chain state to first order
in jΩ̃j as

jψio ¼ Q̂N=2jψ∞i þ
ζ

Ω̃
τ̂1jψ∞i: ðJ9Þ

These two terms are the CDW and vacuum, respective.
Note that only one configuration of the CDW can be
acted upon with τ̂1 to produce vacuum; hence, we immedi-
ately obtain the state norm ratio kQ̂N=2jψ∞ik2=
kQ̂N=2τ̂1jψ∞ik2 ¼ N=2. Thus, computing the particle num-
ber yields

hN̂io ¼
1
2
Njζj2jΩ̃j2

1þ 1
2
Njζj2jΩ̃j2 ; ðJ10Þ

from which we immediately derive the lower bound on the
single-particle CDW for odd chains:

jΩ̃j ≫ jζjffiffiffiffi
N

p : ðJ11Þ

Note that, for the even chain, we have the same condition
but with the inverse jζj−1. Finally, we note that if jζj ≈ 1,
the CDWs of either parity chain will not be particularly
pronounced, because the vacuum will be reached before the
two- and three-particle states are fully suppressed.

APPENDIX K: NOTES ON EXPERIMENTAL
REALIZATION IN CIRCUIT QED

Here, we briefly describe the necessary components and
setup to realize on a circuit QED platform both the two-
chain model (for remote entanglement stabilization) and the

single-chain model. For the remote entanglement scheme, a
detailed study of waveguide and qubit losses will be given
in a complementary work [49].

1. Remote entanglement realization

We consider two chains of N qubits each, with nearest-
neighbor capacitive coupling (one may use tunable cou-
plings [57]), and Rabi drives applied to qubit 1 of each
chain:

Ĥ ¼
X
s;j

ωq
s;j

2
σ̂zs;j þ

X
s;j

J
2
σ̂xs;jσ̂

x
s;jþ1 þ

X
s

Ω
2
cosðω0tÞσ̂xs;1:

ðK1Þ

Here, ωq
s;j are the qubit frequencies, J is the hopping rate,

Ω is the Rabi drive strength, and ω0 is the common Rabi
frequency. We take qubits 2 through N of each chain to be
resonant with each other and with the Rabi drives; thus,
ωq
s;j>1 ¼ ω0. If the driven qubits of each chain are not

resonant with the other qubits, they must be oppositely
detuned from ω0: Δ≡ jωq

s;1 − ω0j. Note that the scheme is
perfectly robust to any disorder in the hopping rates along
the two chains, so we can replace J with Jj in Eq. (K1).
Moving to a common rotating frame at ω0 and making a
rotating wave approximation, we arrive at the desired
Hamiltonian:

Ĥ ¼ Δ
2
ðσ̂zA;1 − σ̂zB;1Þ þ

Ω
2
ðσ̂xA;1 þ σ̂xB;1Þ

þ 1

2

X
s;j

Jjðσ̂þs;jσ̂−s;jþ1 þ H:c:Þ ðK2Þ

[cf. Eqs. (4) and (5)]. Now it remains to engineer the
collective dissipation.
In a remote circuit QED realization, the collective

dissipation is engineered using a waveguide that links
the two remote chains together. In the main text, we
consider both bidirectional and unidirectional waveguides.
The driven qubits are coupled to the waveguide with rate γ.
To realize the collective dissipation using a bidirectional
waveguide, the qubits must be properly positioned along
the waveguide a distance Δx ¼ nλ0=2 apart, i.e., an integer
number of half-wavelengths of the drive frequency ω0 [7].
Precise spacing control of qubits along a waveguide has
been demonstrated in state-of-the-art waveguide QED
experiments [58,59]. A unidirectional waveguide can be
constructed using microwave circulators that couple the
output fields of the qubits to only one propagating direction
of the waveguide. Here, there is no spacing requirement
to get collective loss. Moreover, the nonreciprocity of the
waveguide automatically induces the dissipative exchange
Hamiltonian Ĥdiss [cf. Eq. (6)] [41]. Combined with the

ANDREW LINGENFELTER et al. PHYS. REV. X 14, 021028 (2024)

021028-24



Hamiltonian derived above, we arrive at the desired master
equation [Eq. (1)].

2. Qubit dephasing

Any experimental realization of a scheme must contend
with unwanted dissipation, and the remote entanglement
stabilization scheme is no exception. We consider a super-
conducting circuit realization using transmon qubits. The
dominant source of dissipation affecting this scheme is
unwanted qubit dephasing, as dephasing quickly degrades
the coherence of the entangled states. Other sources of
dissipation, namely, qubit relaxation and losses in the
waveguide, will be discussed in more detail in a comple-
mentary work [49]. Here, we provide an estimate for how
much transmon dephasing can be tolerated using realistic
driving, hopping, and dissipation rates. A heuristic for
determining how much qubit dephasing can be tolerated is
to compare the typical qubit coherence time T2 to the
stabilization time τrel of the ideal system (i.e., the relaxation
time of the slowest Liouvillian eigenmode). When
τrel ≪ T2, the qubit dephasing has relatively small effects
on the steady state, but when τrel ≈ T2, the performance of
the scheme is rapidly degraded.
Based on previous waveguide QED experiments [59–61],

engineered collective dissipation rates have been demon-
strated ranging from γ=2π ¼ 20 MHz to γ=2π ¼ 100 MHz.
Here, we take a rather conservative set of parameters
γ ¼ Ω ¼ J̄ ¼ 2π × 3 MHz. In the dephasing-free system
with 3þ 3 qubits, these parameters lead to 90% fidelity to
the ideal tensor product of Bell states jSTSi. We find the
stabilization rate numerically to be τrel ≈ 156=γ ¼ 9 μs. This
is considerably faster than the typical qubit coherence time,
which has been shown to be typically at least T2 ∼ 20 μs
[59] up to T2 ∼ 1 ms [62]. Moreover, as discussed in Sec. V,
utilizing the natural third level of transmon accelerates the
dissipation process by orders of magnitude. For a 3þ 3
system with optimal qutrit coupling, here, instead, we aim
for higher Bell state fidelity of 99% with γ ¼ 2π × 3 MHz,
and Ω ¼ J̄ ¼ 2π × 10 MHz. We numerically find the sta-
bilization time to be τrel ≈ 50=γ ¼ 2.7 μs. Thus, even
the modest parameter values considered here render the
scheme experimentally feasible and robust against unwanted
dephasing.

3. The single spin chain realization

The single-chain model [cf. Eq. (10)] is readily imple-
mented in a variety of platforms including circuit QED. In
the circuit QED case, the realization of the dynamics is
essentially identical to that of the remote entanglement
scheme: Starting from a 1D chain of capacitively coupled
qubits, we tune all qubits j ≥ 2 into resonance with a
coherent Rabi drive applied on the j ¼ 1 qubit. The
dissipation on the first qubit can be implemented in any
number of standard ways including coupling the qubit to a

heavily damped photonic mode. The nearest-neighbor
hopping rates can be arbitrarily disordered, and the driving
and dissipation rates can be tuned freely.
The single-chain nonequilibrium steady state is sensitive

to local qubit dephasing like the remote entanglement
scheme, but it has two advantages that make it a more
forgiving experiment to perform. First, as we find in Fig. 9,
the single-chain relaxation time is typically much shorter
than the double chain, even for strong driving (in Fig. 9,
Ω=γ ¼ 10). Second, we find numerically that the relaxation
time of the single chain is shortest when γ ∼Ω ∼ J̄, which
is precisely the parameter regime in which the correlation
effects in the NESS are strongest. In this parameter regime,
jΩ̃j ∼ 1, which is where many of the magnetization
correlations are strongest, as we find in Fig. 6. Using a
similar set of parameters as in the remote entanglement
case, γ ¼ Ω ¼ J̄ ¼ 2π × 3 MHz, we find that a seven-
qubit chain has a relaxation time of τrel ≈ 2.6 μs. Even if the
relaxation time scales as N3, we expect that somewhat
longer chains could still be experimentally feasible with
typical transmon T2.

APPENDIX L: STABILIZATION SLOWDOWN
DUE TO CONSERVATION OF ANGULAR

MOMENTUM

The necessary and sufficient conditions for the existence
of a pure steady state L̂jψihψ j ¼ 0 are Ĥjψi ¼ 0 and
L̂jψi ¼ 0 [54]. Here, L̂ is the entanglement-stabilizing
jump term; in our scheme, L̂ ¼ ĉ [cf. Eq. (3)]. The
uniqueness of this state also requires that the transition
rate from the Hilbert space orthogonal to jψi to the steady
state must be nonzero [5]. To see what in particular is
required for the transition rate to be nonzero, we consider
the time evolution of the overlap of a generic initial state ρ̂
with the steady state:

d
dt

hψ jρ̂jψi ¼ −ihψ j½Ĥ; ρ̂�jψi þ hψ jD½L̂�ðρ̂Þjψi ðL1Þ

¼ hψ jL̂ ρ̂ L̂†jψi: ðL2Þ

If L̂†jψi ¼ 0, then the transition rate from any state ρ̂ to jψi
is zero: ∂thψ jρ̂jψi ¼ 0. In other words, the steady state is
completely disconnected from its orthogonal space. Thus,
we require L̂†jψi ≠ 0 to guarantee a unique two-qubit
steady state (and, thus, a finite dissipative gap of the
dynamics).
The origin of the vanishing dissipative gap can be traced

to the conservation of total angular momentum [8,9].
Suppose we have some dissipative dynamics L̂ that
stabilizes an ideal Bell state which, without loss of general-
ity, we take to be jSi ¼ ðj01i − j10iÞ= ffiffiffi

2
p

. Suppose the
jump operator L̂ is restricted to linear combinations of spin
operators L̂ ¼ cþ1 σ̂

þ
1 þ c−1 σ̂

−
1 þ cþ2 σ̂

þ
2 þ c−2 σ̂

−
2 , as is the
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case in the schemes in Refs. [4–7]. The steady-state
condition L̂jSi ¼ 0 further confines the form of jump
operator L̂ ¼ c−Ŝ− þ cþŜþ, where Ŝ− ¼ σ̂−1 þ σ̂−2 is the
collective spin-lowering operator. Therefore, it commutes
with the total angular momentum ½L̂; Ŝ2� ¼ ½L̂†; Ŝ2� ¼ 0.
Thus, total angular momentum is conserved in the jump
process, and the singlet subspace is decoupled from triplet
subspace, i.e.,

L̂†jSi ¼ 0: ðL3Þ

Stabilizing a perfect Bell state in finite time is, thus, not
possible when the dissipation is a linear sum of raising and
lowering operators. One may readily extend this argument
to the remaining three Bell states via the appropriate unitary
transformations.

APPENDIX M: STRONG DRIVING
STEADY-STATE DEGENERACY

Here, we derive the degenerate steady state that emerges
for jΩ=Γj → ∞ in the N ¼ 1 (two-qubit) system
[cf. Eq. (1)]. For concreteness, we consider Δ ¼ 0 and
ν ¼ 1, but the result generalizes in a straightforward
manner. When taking strong driving limit Ω=γ → ∞,
one cannot simply ignore the dissipation, because the
Hamiltonian dynamics alone never has a unique steady
state (for any γ > 0, the dissipation is required to pick out a
unique pure steady state).
We start by (nearly) diagonalizing the Hamiltonian

Ĥ ¼ Ĥdrive þ Ĥdiss [cf. Eqs. (4) and (6)], which can be
done using a pair of equal but opposite π=2 qubit rotations
about the y axes:

Û ¼ exp

�
iπ
4
σ̂yA;1

�
exp

�
−
iπ
4
σ̂yB;1

�
: ðM1Þ

The Hamiltonian is, thus,

Ĥ0 ¼ Û Ĥ Û† ¼ Ω
2
ðσ̂zA;1 − σ̂zB;1Þ þOðγ=ΩÞ; ðM2Þ

where we neglect the small γ=Ω ≪ 1 corrections; it is safe
to ignore these here, because, as one can show, they will
contribute only Oðγ=ΩÞ corrections to the final degenerate
steady state. The dissipation [cf. Eq. (3)] transforms as

ĉ0 ¼ Û ĉ Û† ¼ 1

2
ðσ̂zA;1 − σ̂zB;1Þ −

i
2
ðσ̂yA;1 þ σ̂yB;1Þ: ðM3Þ

Now, we move into the rotating frame of the two qubits, set
by the detunings �Ω=2, and find that the dissipation has
three sets of terms, each rotating at a different frequency:
0;�Ω. We may, therefore, make a rotating wave approxi-
mation and split the dissipator:

D½ĉ0� ≈D½L̂z� þD½L̂þ� þD½L̂−�; ðM4Þ

where L̂z ¼ σ̂zA;1 − σ̂zB;1, L̂þ ¼ σ̂þA;1 − σ̂−B;1, and

L̂− ¼ σ̂−A;1 − σ̂þB;1.
Now, we find that the maximally mixed state I=4

becomes a dark state of the dissipation up to Oðγ=ΩÞ
corrections and, thus, becomes a steady state of the
dynamics. Going back to the lab frame, we, thus, have
the degenerate steady state

ρ̂ν ¼
1

4
ð1 − νÞÎ þ νjSihSj; ðM5Þ

where −1=3 ≤ ν ≤ 1 to ensure ρ̂ν is a valid density matrix.

APPENDIX N: DISSIPATIVE GAP
OPTIMIZATION OVER COUPLING

TO THIRD LEVEL

We provide further details here on the approach intro-
duced in Sec. V B that lets us dramatically speed up
entanglement preparation by introducing a single qutrit.
As discussed, the entangled steady state is independent of
the parameter η in our extended master equation (42),
where η is the asymmetry between the coupling of the 2–1
and 1–0 transitions of the B1 qutrit to the unidirectional
waveguide. Thus, for all other model parameters fixed, we
optimize (via the Nelder-Mead method) the choice of η to
yield the smallest relaxation time (i.e., largest dissipative
gap of the full Lindbladian). The optimal choice of η
corresponding to parameters in Fig. 9 are shown in Fig. 12.
We also present results analogous to those shown in

Fig. 9 in the main text but now for a smaller system where
each chain has N ¼ 2 sites, with B1 again being a qutrit.
The key features seen in Fig. 9(b) in the main text are also
apparent here; in particular, the optimized qutrit scheme

FIG. 12. Optimized value of coupling asymmetry in the qutrit
scheme. As discussed in Sec. V B, replacing qubit B1 with a
qutrit in our double-chain setup allows for a dramatic accel-
eration of entanglement stabilization. Here, we plot the opti-
mized value of the coupling parameter η [cf. Eq. (42)] that
minimizes the relaxation time, for each value of hopping rate
J̄=γ. Parameters correspond to Fig. 9 in the main text. For large
J̄, we find that η ∝ J̄.

ANDREW LINGENFELTER et al. PHYS. REV. X 14, 021028 (2024)

021028-26



allows an order-of-magnitude speedup versus the qubit-
only scheme.
Finally, we find that the even-odd physics discussed in

the main text (that emerges for weak Ω̃) also has an impact
for timescales. In Fig. 13, we see that for large J̄
(corresponding to small Ω̃) the relaxation time for the full
double-chain system approaches the timescale for the
single-chain system. In contrast, for the N ¼ 3 system in
Fig. 9, this is not the case.
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