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First-principles calculations of electron interactions in materials have seen rapid progress in recent years,
with electron-phonon (e-ph) interactions being a prime example. However, these techniques use large
matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and
obscures interpretability. For e-ph interactions, existing interpolation techniques leverage locality in real
space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we
show an efficient way to compress e-ph interactions based on singular value decomposition (SVD), a
widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we
accurately predict material properties related to e-ph interactions—including charge mobility, spin
relaxation times, band renormalization, and superconducting critical temperature—while using only a
small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of
e-ph interactions. Furthermore, they accelerate state-of-the-art first-principles e-ph calculations by about 2
orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of e-ph interactions
can be readily generalized to electron-electron and electron-defect interactions, as well as to other
couplings, advancing quantitative studies of condensed matter.
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I. INTRODUCTION

Electrons in materials are subject to various interactions,
including those with phonons, other electrons, and
defects. Modeling of these interactions follows two main
approaches—analytic treatments that qualitatively capture
the main physics with minimal models using only a few
parameters, and first-principles calculations aiming at quan-
titative accuracy but often requiring specialized workflows,
high computational cost, and large amounts of data. A
middle ground between these extremes would require
formulating models of electron interactions that are eco-
nomical, accurate, and interpretable. Examples of efficient
models exist across domains: in quantum chemistry,
low-rank approximations [1–3] can compress two-electron
integrals to reduce the computational cost of post-Hartree-
Fock calculations [4,5] and extract the critical vibrational
modes in a chemical reaction [6,7]; in correlated-electron
physics, efficient parametrization of electron-electron (e-e)

interactions [8] enables the solution of functional
renormalization-group flow [9,10] and the Bethe-Salpeter
equation [11,12]. However, despite these isolated examples,
it remains challenging to formulate widely applicable
approaches to represent electron interactions both efficiently
and accurately.
Focusing on electron-phonon (e-ph) interactions, ana-

lytic treatments such as deformation potential for acoustic
phonons [13,14] and the Fröhlich model for optical
phonons [15], which use only a few parameters to describe
e-ph interactions, are still widely utilized [16,17]. In recent
years, first-principles calculations of e-ph interactions
using density functional theory (DFT) [18] and its linear-
response variant, density functional perturbation theory
(DFPT) [19], have enabled quantitative studies of proper-
ties ranging from transport to excited state dynamics to
superconductivity [20–33]. Unlike the analytic models, in a
typical first-principles calculation one represents the e-ph
interactions using a multidimensional matrix with millions
or billions of entries. This enormous number of parameters,
which are computed rather than assumed, guarantees a
faithful description of microscopic details such as the
dependence on electronic states and phonon modes of
e-ph interactions. Yet this complexity is also a barrier
toward obtaining minimal models and tackling new phys-
ics. For example, materials with strong or correlated e-ph
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interactions need specialized treatments to capture polaron
effects [28,30,34,35] and electron correlations [36,37].
Reducing the high dimensionality of first-principles e-ph
interactions would allow one to more efficiently describe
this physics while retaining quantitative accuracy. The
development of data-driven methods to tackle the high-
dimensional Hilbert space in the many-electron problem,
including neural network states [38,39] and tensor network
methods [40–43], serves as inspiration.
Here we show a low-rank approximation of first-princi-

ples e-ph interactions which significantly accelerates e-ph
calculations while using only a small fraction (1%–2%) of
the data and preserving quantitative accuracy. This is
achieved by developing singular value decomposition
(SVD) calculations of e-ph matrices in Wannier basis to
achieve a minimal representation of e-ph coupling. We use
our compressed e-ph matrices to compute a range of
properties, including charge transport, spin relaxation, band
renormalization, and superconductivity, in both metals and
semiconductors. Across all benchmarks, the highly com-
pressed e-ph representation achieves a quantitative accuracy
comparable to the standardworkflow,while also providing a
deeper understanding of the dominant patterns governing
e-ph interactions. Principal-component analysis (PCA)
sheds light on the inherent compressibility of e-ph coupling
matrices. Recent interesting work on improving the effi-
ciency of e-ph calculations [44,45] is distinct in method and
scope from our data-driven approach.

II. RESULTS

A. Compression of e-ph interactions

The key quantities in first-principles e-ph calculations
are the e-ph matrix elements gmnνðk; qÞ, which represent the
probability amplitude for an electron in a band state jnki,
with band index n and crystal momentum k, to scatter into a
final state jmkþ qi by emitting or absorbing a phonon with
mode index ν, wave vector q, energy ℏωνq, and polarization
vector eνq [46]:

gmnνðk; qÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2ωνq

s X
κα

eκανqffiffiffiffiffiffiffi
Mκ

p hmkþ qj∂qκαVjnki; ð1Þ

where ∂qκαV ≡P
p e

iqRp∂pκαV is the lattice-periodic e-ph
perturbation potential, given by the change in the DFT
Kohn-Sham potential with respect to the position of atom κ
(with mass Mκ and located in unit cell at Rp) in the
Cartesian direction α. The inset in Fig. 1(a) shows
schematically such an e-ph scattering process. We separate
the e-ph interactions into short- and long-ranged [47–53]:

gmnνðk; qÞ ¼ gLmnνðk; qÞ þ gSmnνðk; qÞ: ð2Þ

The long-range part gLmnνðk; qÞ includes dipole (Fröhlich) and
quadrupole contributions, which can be written analytically,
using classical electromagnetism, in terms of Born effective
charges and dynamical quadrupoles obtained from DFPT.
The short-ranged part gSmnνðk; qÞ cannot be written in closed
form and needs numerical quantum mechanics to be com-
puted, a consequence of the nearsightedness of electronic
matter [54]. Because gSmnνðk; qÞ is a smooth function of
electron and phonon momenta, it is short-ranged in a real-
space representation using a localized basis set such as atomic
orbitals [55] or Wannier functions [46,56].
The short-range e-ph coupling matrix in Wannier basis

gκαij ðRe;RpÞ is obtained by transforming DFPT results
computed on a coarse momentum grid ðkc; qcÞ [46]:

gκαij ðRe;RpÞ¼
1

NkcNqc

X
mnkc

X
qc

e−iðkcReþqcRpÞ

×U†
imðkcþqcÞΔVS

mn;καðkc;qcÞUnjðkcÞ; ð3Þ
where U is a unitary transformation from Bloch to Wannier
basis, and ΔVS

mn;καðkc; qcÞ ¼ hmkþ qj∂qκαVSjnki is the
short-ranged part of the perturbation potential in Bloch
basis. To separate acoustic and optical modes, we carry out
a rotation in atomic basis:

gμαij ðRe;RpÞ ¼
X
κ

Aμ
κgκαij ðRe;RpÞ; ð4Þ

where Aκ
μ ¼ exp½ið2π=NatÞκμ� adds a relative phase to

different atoms in the unit cell, and μ∈ ð0;…; Nat − 1Þ
labels phonon modes (Nat is the number of atoms in the unit
cell). This way, μ ¼ 0 corresponds to the acoustic sub-
space, where all the atoms in the unit cell move in phase,
and μ ≠ 0 labels the optical modes. Here and below, we use
a collective index F ¼ ðij; μαÞ to label Wannier orbital
pairs ij and phonon mode and direction μα, simplifying the
notation of the Wannier-basis e-ph matrices to gFðRe;RpÞ.
When viewed as a matrix for each mode and orbital pair,

gFðRe;RpÞ decays rapidly with lattice vectors Re and Rp

and has a typical sizeNRe
× NRp

ranging between 102 × 102

and 103 × 103. After carrying out SVD on gFðRe;RpÞ, we
obtain

gFðRe;RpÞ ¼
X
γ

sFγ uFγ ðReÞvFγ �ðRpÞ; ð5Þ

where sFγ is the singular value (SV) with index γ, and uFγ ðReÞ
and vF�γðRpÞ are the left and right singular vectors, respec-
tively. One can interpret sFγ as the coupling strength between

the generalized electron cloud
P

Re
uFγ ðReÞc†i ðReÞcjð0Þ and

phonon mode
P

Rp
vFγ �ðRpÞ(b†μαðRpÞ þ bμαðRpÞ), where

ðc†; cÞ are creation and annihilation operators for electrons
and ðb†; bÞ for phonons. For each channelF, there is a total of
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minðNRe
; NRp

Þ SVs; we keep only the Nc largest ones,
resulting in a truncated, low-rank e-ph matrix g̃:

g̃FNc
ðRe;RpÞ ¼

XNc

γ¼1

sFγ uFγ ðReÞvFγ �ðRpÞ: ð6Þ

This matrix can be conveniently transformed to momentum
space using

g̃FNc
ðk; qÞ ¼

X
Rp;Re

eikReþiqRp g̃FNc
ðRe;RpÞ

¼
XNc

γ¼1

sFγ uFγ ðkÞvFγ �ðqÞ; ð7Þ

where uFγ ðkÞ¼
P

Re
eikReuFγ ðReÞ and vFγ �ðqÞ ¼

P
Rp

eiqRp×

vFγ ðRpÞ are singular vectors in momentum space. (Note that
the long-range part of the e-ph matrix is added after
interpolation of this short-rangedpart.) Equation (7) provides
a generic parametrization of e-ph interactions, where by
increasing the number of SVs one can systematically tune the
accuracy and computational cost. According to the Eckart-
Young-Mirsky theorem, the truncatedmatrix g̃ obtained from
SVD is an optimal low-rank approximation of e-ph inter-
actions, in the sense that it minimizes the Frobenius-norm
distance between the original and low-rank e-ph matrices
[57]. From a computational viewpoint, Eq. (7) can greatly
accelerate the calculation of e-ph interactions and the
associated material properties, with a speedup by the inverse
fraction of SVs kept in the truncated e-ph matrix. In most
cases, we will keep only 1%–2% of SVs, resulting in a
50–100 times speedup for the key step in e-ph calculations
(see Appendix A for details).

B. Error and Pareto-optimal interactions

To test the accuracy of the truncated e-ph matrix and its
convergence with respect to the number of SVs (Nc), we
define a relative error for the e-ph matrix averaged over
electron bands and momenta, and phonon modes and wave
vectors:

ϵgðNcÞ ¼
P

mnν;kqjgmnνðk; qÞ − g̃Nc
mnνðk; qÞj2P

mnν;kqjgmnνðk; qÞj2
; ð8Þ

where g̃Nc
mnνðk; qÞ is the low-rank (approximate) and

gmnνðk; qÞ is the full first-principles e-ph matrix.
Figure 1(a) shows this error as a function of the fraction
of SVs, Nc=NRp

, kept in the approximate matrix. In the
language of model selection [57], the resulting curve of
error versus number of parameters is the Pareto frontier
for modeling e-ph interactions. We find that the error
decreases rapidly with the number of SVs—for example, ϵg
is as low as 1% when using only 2% of SVs, which
achieves a 50× compression of the original e-ph matrix.

This error curve defines a Pareto-optimal region, high-
lighted in Fig. 1(a), where e-ph calculations are both
accurate and parsimonious [57]. This region spans
1%–4% of SVs in most of our calculations—which
corresponds to keeping Nc ≈ 10–50 SVs—and suggests
that many materials may possess only ∼10 dominant
elementary e-ph interaction patterns. Accordingly, the
e-ph coupling strength for each phonon mode [46,58],

DνðqÞ ¼ ℏ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωνqMuc

X
mn

jgmnνðk ¼ Γ; qÞj2=Nb

r
ð9Þ

(whereMuc is the mass of the unit cell and the band indices
m and n run over Nb bands), shown in Fig. 1(b), can be
computed accurately using just the largest 1.5% of SVs,
matching closely results using the full e-ph matrix.

FIG. 1. (a) Error on the compressed e-ph matrix, computed
using Eq. (8), as a function of the fraction of SVs used in the low-
rank approximation. The Pareto-optimal region is shown with a
shaded rectangle. (b) Mode-resolved e-ph coupling strength
computed using the full e-ph matrix (blue) and the low-rank
approximate matrix (orange) for silicon. The full e-ph matrix
elements are computed on a real-space grid with size NRe

¼ 1325

and NRp
¼ 1325, the smallest values to achieve convergence,

setting the electron momentum to k ¼ Γ and using the Nb ¼ 3
highest valence bands. In the SVD calculation, we keep 20 out of
1325 SVs, corresponding to a ∼1.5% fraction of SVs, as noted in
the legend.
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C. Application to transport, spin,
and superconductivity

We showcase the accuracy of the low-rank approximate
e-ph interactions by computing a wide range of material
properties, including charge mobility, spin relaxation,
phonon-assisted superconductivity, and phonon-induced
band renormalization. Figures 2(a) and 2(b) show the
electron and hole mobility in silicon for temperatures
between 100 and 400 K, obtained using the full e-ph
matrix and compared with SVD using 1.5% of the SVs (see
Appendix B). The mobility is overestimated for electrons,
and underestimated for hole carriers, despite the accuracy
of the low-rank e-ph interactions in silicon [Fig. 1(a)]. The
error comes from the acoustic phonons, which interact
weakly with electrons—and therefore are ignored in the
low-rank e-ph matrix—but carry a considerable contribu-
tion to the mobility due to their large thermal occupation.
To improve the treatment of acoustic phonons, we develop
a constrained SVD (cSVD) which preserves the deforma-
tion potential [59] for long-wavelength acoustic phonons in
the compressed e-ph matrix (see Appendix C). When using
cSVD, the mobility computed using only 1.5% of the SVs
is nearly identical to the full-matrix result for both carriers.
We also apply the low-rank approximation to spin-

dependent e-phmatrices governing spin-flip e-ph interactions;

these matrices enable first-principles calculations of spin
relaxation times (SRTs) in centrosymmetric materials via
the Elliot-Yafet mechanism [60] (see Appendix D). The
SRTs for electrons in silicon between 150 and 400 K are
shown in Fig. 2(c). Our results from SVD with Nc ¼ 20

(corresponding to ∼1.5% of the SVs) match closely the full
e-ph matrix calculations and agree with experimental
results [61,62]. Different from charge transport, standard
SVD gives accurate SRTs in silicon because the optical
phonons govern spin-flip processes. For materials where
acoustic phonons contribute to spin relaxation, our
cSVD approach can be readily extended to the spin-
dependent case.
Calculations of phonon-mediated superconductivity, pre-

sented here using lead (Pb) as an example, can also leverage
our low-rank approximation (see Appendix E). Figure 2(d)
compares the Eliashberg spectral function α2FðωÞ from full
e-ph matrix calculations with SVD results; using only the
first Nc ¼ 5 SVs (here equal to 1.8% of the SVs) suffices to
reproduce the full calculation. We solve the isotropic
Eliashberg equation self-consistently (see Appendix E
for details) and compute the superconducting gap Δ0 as
a function of temperature [Fig. 2(e)] as well as the critical
temperature Tc versus number of SVs [inset of Fig. 2(e)].
The low-rank e-ph matrix with Nc ¼ 5 SVs provides a gap

Electron Hole

a b c

d e f

(a) (b) (c)

(e)(d) (f)

FIG. 2. (a) Mobility of electrons in silicon and (b) mobility of hole carriers in silicon, computed with the full e-ph matrix
(NRe

¼ NRp
¼ 1325) and compared with standard and constrained SVD, in both cases using 1.5% of the SVs. (c) Spin relaxation times

of electrons in silicon, computed with the full e-ph matrix (NRe
¼ NRp

¼ 1325) and using SVD with 1.5% of the SVs. Experimental

data from Refs. [61,62] are shown for comparison. (d) Eliashberg spectral function α2FðωÞ for Pb, comparing full e-ph matrix
(NRe

¼ NRp
¼ 279) with SVD results using 1.8% of the SVs. (e) Superconducting gap Δ0 as a function of temperature, comparing full

e-ph matrix results with SVD using 1.8% of the SVs. The inset shows the convergence of the critical temperature Tc with number of
SVs; the darker (lighter) colored regions indicate 5% (10%) error relative to the full calculation. (f) Band renormalization for electronic
states near the Dirac cone in graphene at 20 K, comparing the full calculation with SVD using 1.5% of the SVs.
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function in good agreement with the full-matrix calcula-
tion, which can be further improved by using a larger
fraction of SVs; the critical temperature for Nc ¼ 5 SVs is
very accurate; Tc ¼ 6.9 K which is within 5% of the Tc ¼
6.6 K value obtained using the full e-ph matrix. This result
implies that as few as five elementary e-ph interactions
determine Tc in Pb. Finally, we compute band renormal-
ization from e-ph interactions [63] ] focusing on the
contribution from the Fan-Migdal e-ph self-energy (see
Appendix F). The Debye-Waller term can also be added
following Ref. [64]. Results for graphene show that band
renormalization near the Dirac cone can be computed
keeping only the five largest SVs; this highly compressed
e-ph matrix correctly predicts the kinks near the Dirac cone
and matches full e-ph matrix results over a 2 eV energy
range. We also carry out convergence tests with respect to
the fraction of SVs included in the calculation for all the
materials studied here (see the Supplemental Material [65]).
The rapid convergence with respect to the fraction of SVs
guarantees that the full e-ph matrix calculation is not
needed, and one can obtain accurate results by converging
the desired property with respect to the fraction of SVs with
minimal computational overhead.
While all the examples discussed above are for materials

with nonpolar bonds, polar materials are even simpler to
study with our compression method because the long-range
(Fröhlich) dipole contribution is dominant and is well
modeled by an analytic formula using Born effective
charges [47–49]. To illustrate this point, we demonstrate
accurate mobility calculations in GaAs and PbTiO3 using
only 1% of the SVs (see the Supplemental Material [65]).

D. Computational speedup from compression

We illustrate the computational speedup achieved by our
compression method using the e-ph coupling constant λ in
doped monolayer MoS2 as a case study [66]. Following
Ref. [66], we employ a grid size of 2882 k and q points for
numerical integration and a Gaussain smearing of
0.002 Ry. We also leverage the improved Brillouin-zone
sampling technique where only electronic states in a small
energy window (0.006 Ry) near the Fermi surface are
included in the calculation. In Fig. 3(a), we show the
convergence of λ with respect to the fraction of SVs. The
shaded region corresponds to an accuracy greater than 95%
compared to the fully converged result. Similar to other
quantities computed in this work, λ converges rapidly with
the fraction of SVs; in particular, using only 1% of the SVs
gives λ within 2% of the converged result. Figure 3(b)
compares the computational wall time for the calculation
employing the full e-ph matrices and for our SVD
compression method with 1% SVs (note that both calcu-
lations use the same improved Brillouin-zone sampling
scheme). Our approach achieves a speedup by 38 times
relative to using the full e-ph matrices; if we count solely
the time for e-ph interpolation, the speedup is 83 times.

This example illustrates the 1–2 orders of magnitude
speedup deriving from compressing the e-ph matrices with
SVD. For a more detailed analysis of computational
complexity, see Appendix A.

E. Dominant modes and principal-component analysis

To understand the inherent compressibility of the e-ph
matrices, we analyze the SV spectrum in graphene and
silicon [Figs. 4(a) and 4(b)]. In both materials, the SVs
decay rapidly, dropping by 1–2 orders of magnitude from
the largest to the tenth largest SV. In principal-component
analysis [57,67], this decay can be understood as a
consequence of high-variance generalized directions in
the e-ph matrix, gFðRe;RpÞ, which capture the vast
majority of the physics, while other principal components
can be viewed as noise and neglected [67]. We carry out
PCA by treating each row of the matrix gFðRe;RpÞ as a
feature vector, and find that the variance of the two leading
principal components is one order of magnitude greater
than for the tenth or following principal components,

(a)

(b)

4.6 h

0.12 h
(38 ) 

FIG. 3. (a) e-ph coupling constant λ in doped monolayer MoS2
computed with our compression method using different fractions
of SV. The doping concentration is 0.22 electrons per formula
unit. The shaded region corresponds to an accuracy greater than
95% relative to the fully converged calculation. (b) Comparison
of the wall time for computing the e-ph coupling constant λ with
the full e-ph matrices and with our SVD compression technique
using 1% of the SVs. The 38× speedup achieved by the SVD
compression is indicated in red font.

DATA-DRIVEN COMPRESSION OF ELECTRON-PHONON … PHYS. REV. X 14, 021023 (2024)

021023-5



indicating that most of the physical information is already
captured by the first few SVs [see the insets of Figs. 4(a)
and 4(b)]. This analysis reveals that only a few atomic
vibrational patterns dominate e-ph coupling. Although
these dominant modes are not known a priori, they can
be learned efficiently with SVD. We also apply the PCA to
lead (see Fig. S4 in Supplemental Material [65]) and
observe a similar rapid decay of the SVs. We remark that
the dimensionality reduction is general—it occurs in all the
materials studied here, and it is associated to the rapid
decay of the SVs, which we view as a consequence of the
nearsightedness of electronic interactions.
We visualize the atomic vibrations with dominant e-ph

interactions by analyzing the vibrational singular vectors.
To that end, we introduce a modified SVD that includes
Wannier orbitals and phonon modes in the decomposition:

gκαij ðRe;RpÞ ¼
X
γ

sγũγðijReÞṽ�γðκαRpÞ: ð10Þ

In this global SVD, the singular vectors ũ depend only on
electron variables and ṽ only on phonon variables. This
way, the phonon singular vectors ṽ�γðκαRpÞ can be inter-
preted as local vibrational modes (in the Wigner-Seitz cell

associated with the coarse grid [46]) and visualized to study
the dominant e-ph couplings. We show these singular
vectors for the two modes with largest SVs in graphene
and silicon in Figs. 4(c) and 4(d), using arrows on each
atom, with length proportional to the singular vector
ṽ�γðκαRpÞ, to indicate the atomic displacements in the
modes obtained from SVD.
In graphene, where the electronic states consist of pz

orbitals centered on each carbon atom, the dominant mode
resembles a longitudinal optical phonon that brings the pz
orbitals closer together in the unit cell. The second-
strongest mode is a shear vibration resembling a transverse
optical phonon, which spreads over multiple unit cells
[Fig. 4(c)]. For the other modes, we observe that the
vibrational pattern progressively delocalizes over multiple
unit cells for decreasing values of the SVs. In silicon, where
the electronic states consist of sp3-like Wannier orbitals
oriented along the chemical bond directions, the two modes
with dominant e-ph coupling are associated with compres-
sion and stretching of the bonds [Fig. 4(d)]. The intuition
gained from this mode analysis can aid the formulation of
model Hamiltonians in chemically and structurally com-
plex materials, where keeping only the dominant e-ph
interactions can provide effective models of transport and

(a) (b)

(c) (d)

Graphene Silicon

FIG. 4. (a) Decay of the SVs in graphene and (b) decay of the SVs in silicon, shown by plotting the SVs referenced to the largest SV.
Here, s̃i refers to the SVs averaged over Wannier orbitals and vibrational modes, s̃i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
FðsFi Þ2

p
. The respective insets show the real

part of the second versus tenth principal components, obtained from the PCA of the e-ph matrices; in parentheses we give the fraction of
explained variance [67], λ̃i ¼ σ2i =

P
i σ

2
i , where σ2i is the variance of the ith principal component. The red oval shows the standard

deviation of the corresponding principal components, obtained by dropping feature vectors with norm smaller than 10−3 × s̃0.
(c) Atomic vibrations associated with the dominant e-ph interactions in graphene, and (d) the same quantity in silicon, obtained by
analyzing the phonon singular vectors, ṽðκαRpÞ in Eq. (10), for the two largest SVs.
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polaron physics informed by first-principles calculations
[34,68–71].

III. DISCUSSION AND CONCLUSION

The accuracy of the low-rank e-ph matrices implies that
current brute-force first-principles calculations overpara-
metrize e-ph interactions, falling too far on the right side of
the Pareto-optimal region in Fig. 1(a). Conversely, textbook
approaches such as Holstein and Fröhlich models, which
use only a handful of e-ph couplings, may fall short of
achieving quantitative accuracy by using too few param-
eters. Our SVD compression in Wannier basis (followed by
interpolation) provides a systematic route to achieve
Pareto-optimal calculations. These optimal models enhance
interpretability and enable a deeper understanding because
they concentrate all the relevant e-ph physics in just a few
parameters—in our case, the leading SVs and singular
vectors, which represent dominant e-ph interactions.
In summary, our results unveil the hidden low-

dimensional nature of e-ph interactions. While accurate,
current first-principles calculations overparametrize these
interactions due to a lack of a priori knowledge of the
dominant atomic vibrational patterns governing e-ph cou-
pling. We have shown that when this optimal representation
is achieved via SVD, using only 10–20 parameters (for each
orbital pair and vibrational mode) is sufficient to obtain
results with state-of-the-art accuracy. Surprisingly, this is
only a small fraction (1%–2%) of the typical size of first-
principles e-ph matrices. Compressing e-ph interactions
significantly accelerates calculations of material properties
ranging from transport to spin relaxation to superconduc-
tivity. Future work will extend these ideas to other electronic
interactions, with the goal of advancing “precise but parsi-
monious” quantummany-body calculations in realmaterials.
Our approach works equally as well for small systems with a
few atoms and for large systemswith tens of atoms in the unit
cell (see Fig. S5 in Supplemental Material [65]). In addition,
as we plan to show elsewhere, our method enables many-
body e-ph calculations that are currently inaccessible with
standard Wannier interpolation, including the development
of first-principles diagrammatic Monte Carlo simulations,
which sum e-ph diagrams to all orders from first principles,
thus providing a gold standard for quantitative e-ph studies.
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APPENDIX A: COMPUTATIONAL
COMPLEXITY ANALYSIS

From a computational viewpoint, Eq. (7) can greatly
accelerate the calculation of e-ph interactions and the asso-
ciated material properties. The key bottleneck in these
calculations is obtaining the e-ph matrix elements on fine-
momentum grids, gmnνðkf; qfÞ, starting from the Wannier
representation, with a cost scaling as OðNRp

NkfNqfÞ for an
optimal implementation [46] (for a fixed number of Wannier
functions and atoms in the unit cell), where Nkf and Nqf are
the number of points in the fine-momentum electron and
phonon grids, with typical values of order Nkf ≈ Nqf ≈ 106.
In contrast,whenusingSVD, this interpolation step costs only
OðNcNkfNqfÞ, with a speedup by a factor NRp

=Nc, the
inverse fraction of SVs kept in the truncated e-ph matrix. In
most cases, we will keep only 1%–2% of SVs, resulting in a
50–100 times speedup for the key step in e-ph calculations.
We show specific timing comparisons for all the materials
studied in this work in Fig. S1 of the Supplemental Material
[65]. In all cases, our algorithmachieves a speedup close to the
ideal value of NRp

=Nc. The memory improvement is also
dramatic.Aconverged transport calculation in silicon requires
a k grid of 1003 and q grid of 503 points [46]; on these fine
grids, the memory required to store the entire e-ph matrix
gmnνðkf; qfÞ is 700TB, while thememory needed to store the
singular vectors uFγ ðkfÞ and vFγ ðqfÞ is only 128 GB when we
retain 1.5% of SVs, which guarantees accurate results as we
show in Figs. 2(a) and 2(b). This efficiency removes the key
bottleneck in first-principles e-ph calculations.

APPENDIX B: MOBILITY CALCULATIONS

The first-principles mobility calculations in silicon
follows our previous work [51]. We include the quadrupole
contribution analytically for silicon. The quadrupole tensor
can be written as

QSi;αβγ ¼ ð−1Þκþ1QSijϵαβγj; ðB1Þ
where ϵαβγ is the Levi-Civita tensor and the value of QSi ¼
13.67 is taken from Refs. [72,73].
We compute the phonon-limited mobility at temperature

T using the Boltzmann transport equation (BTE) in the
relaxation time approximation [46]. We first obtain the e-ph
scattering rate Γnk using Fermi’s golden rule, which is
equivalent to using the imaginary part of the lowest-order
e-ph self-energy [74]:

Γnk ¼
2π

ℏ
1

N q

X
mνq

jgmnνðk; qÞj2

× ½ðNνq þ 1 − fmkþqÞδðϵnk − ϵmkþq − ℏωνqÞ
þ ðNνq þ fmkþqÞδðϵnk − ϵmkþq þ ℏωνqÞ�; ðB2Þ
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whereN q is the number of q points and δ is the Dirac delta
function. Then we obtain the mobility from the BTE by
summing over contributions from different electronic states
and scattering processes [46]:

μαβðTÞ ¼
e

ncΩN k

Z
dE

�
−
∂f
∂E

�X
nk

τnkv
α
nkv

β
nkδðE − ϵnkÞ;

ðB3Þ

where Ω is the volume of the unit cell, τnk ¼ ðΓnkÞ−1 are
relaxation times, nc is the carrier concentration, f is the
Fermi-Dirac distribution, andN k is the number of k points;
ϵnk and vnk are electron energies and band velocities,
respectively. Our calculations in silicon use a uniform grid
with 2003 k points and a uniform random grid with 105 q
points, where k and q are electron and phonon momenta,
respectively. The delta function is approximated as a
Gaussian with a 10 meV smearing [46].

APPENDIX C: cSVD ALGORITHM

Let us briefly describe our cSVD algorithm. Similar to
the acoustic sum rule (ASR) for the dynamical matrix [19],
we formulate an ASR for the e-ph matrix elements:

gνAðk; q ¼ 0Þ ¼ 0; ðC1Þ

where νA labels the acoustic modes, and we omit band
indices for simplicity. The rationale for this e-ph ASR is
that a rigid translation of the lattice will not change the
electronic band structure. The real-space version of this
e-ph ASR reads

X
κ;Rp

gκαij ðRe;RpÞ ¼
X
Rp

gμ¼0;α
ij ðRe;RpÞ ¼ 0; ðC2Þ

where gμ¼0;α
ij ðRe;RpÞ accounts for the acoustic subspace of

the e-ph matrix defined in Eq. (4). With this ASR, the
e-ph matrix for long-wavelength acoustic phonons can be
approximated to first order in q as

lim
q→0

gμ¼0;αðRe; qÞ ¼ lim
q→0

X
Rp

gμ¼0;αðRe;RpÞeiqRp

≈ iq ·AαðReÞ; ðC3Þ

where we defined a real-space deformation potential, which
in general can be anisotropic, as

AαðReÞ≡
X
Rp

Rpgμ¼0;αðRe;RpÞ: ðC4Þ

In the limit of jqj → 0, g̃μ¼0;αðRe; qÞ vanishes linearly in jqj,
but the phonon occupation number diverges as 1=jqj;
therefore, in the long-wavelength limit acoustic phonon

scattering is often important. This acoustic phonon con-
tribution is challenging to preserve when using the com-
pressed e-ph matrices because standard SVD primarily
captures large entries in the e-ph matrix. To address this
point, we compress the e-ph matrix while conserving
AαðReÞ by imposing the following constraint:

X
Rp

Rpg̃
μ¼0;α
Nc

ðRe;RpÞ ¼ AαðReÞ: ðC5Þ

Satisfying this set of linear equations leads to a constrained
low-rank approximation [75], a more general optimization
problem.
The cSVD is applied only to the acoustic subspace,

which corresponds to F ¼ ðij; μ ¼ 0αÞ, resulting in a
compressed e-ph matrix of rank Nc:

g̃FNc
ðRe;RpÞ ¼ g̃FNc−3ðRe;RpÞ

þ
X

ββ0 ∈ ðx;y;zÞ
(δAαðReÞ)βλββ0 ðRpÞβ0 ; ðC6Þ

where g̃FNc−3ðRe;RpÞ is the truncated SVD of the e-ph
matrix with Nc − 3 singular values [see Eq. (6)]; δAα is the
residual term for g̃FNc−3ðRe;RpÞ, defined as

δAαðReÞ ¼ AαðReÞ −
X
Rp

Rpg̃
μ¼0;α
Nc−3 ðRe;RpÞ; ðC7Þ

and λββ0 is the inverse of the overlap matrix between Rp

vectors:

X
β0
λββ0

X
Rp

ðRpÞβ0 ðRpÞβ00 ¼ δββ00 : ðC8Þ

Using this approach, the compressed e-ph matrix
g̃FNc

ðRe;RpÞ gives the same deformation potential as the
full e-ph matrix in Eq. (C4), and its rank is smaller than or
equal to Nc. This cSVD workflow requires only a minimal
computational overhead relative to standard SVD.

APPENDIX D: SPIN RELAXATION TIMES

The first-principles calculation of SRTs in silicon fol-
lows our recent work [60]. The spin-flip relaxation time
τflipnk , for a band electron in state jnki, accounts for the
Elliott-Yafet spin relaxation mechanism and is computed
using [60,76,77]

1

τflipnk

¼ 4π

ℏ

X
mνq

jgflipmnνðk; qÞj2

× ½ðNνq þ 1 − fmkþqÞδðϵnk − ϵmkþq − ℏωνqÞ
þ ðNνq þ fmkþqÞδðϵnk − ϵmkþq þ ℏωνqÞ�: ðD1Þ
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The key ingredients in this equation are the spin-flip e-ph
matrix elements,

gflipmnνðk; qÞ ¼ hmkþ q⇓jΔV̂νqjnk⇑i; ðD2Þ

with ⇓ and ⇑ denoting nearly spin-down and nearly spin-
up states, respectively. These matrix elements describe the
probability amplitude to flip the spin of a band electron due
to a particular phonon mode νq. The macroscopic spin
relaxation time τsðTÞ is a thermal average over electronic
states of the spin-flip scattering rates [60]:

τsðTÞ ¼
�

1

τflipnk

�
−1

T

¼

0
B@
P

nk
1

τflipnk

ð− dfnk
dE ÞP

nkð− dfnk
dE Þ

1
CA

−1

: ðD3Þ

The SRT calculations employ a uniform grid with up to
1403 k points and a 5 meV Gaussian smearing for the delta
functions.

APPENDIX E: ELIASHBERG SPECTRAL
FUNCTION AND SUPERCONDUCTING GAP

We carry out DFT calculations on lead using the
generalized gradient approximation [78] in the QUANTUM

ESPRESSO code [79]. The ground state and electron wave
functions are computed on a 14 × 14 × 14 k-point grid with
a kinetic energy cutoff of 90 Ry, and the lattice constant is
set to 4.88 Å. We use DFPT to calculate the phonon
frequencies and eigenvectors, and the e-ph matrix elements
gmnνðk; qÞ, on coarse 6 × 6 × 6 k- and q-point grids. We
Wannierize the four bands near the Fermi surface using the
WANNIER90 code [80], and obtain the e-ph matrices in
Wannier basis using PERTURBO [46]. The Eliashberg
spectral function is computed as

α2FðωÞ ¼ 1

2

X
νq

ωνqλνqδðω − ωνqÞ;

with λνq ¼
1

NðϵFÞωνq

X
mnk

jgmnνðk; qÞj2

× δðϵnk − ϵFÞδðϵmkþq − ϵFÞ; ðE1Þ

where NðϵFÞ is the density of states at the Fermi energy
(ϵF). The Eliashberg function α2FðωÞ encodes the isotropic
and retarded effective attraction between electronic
states on the Fermi surface. Using α2FðωÞ, we obtain
the gap function by solving the isotropic Migdal-Eliashberg
equation [81]:

ZðiωjÞ¼ 1þπkBT
ωj

X
j0

ωj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
j0 þΔ2ðiωjÞ

q λðωj−ωj0 Þ;

ZðiωjÞΔðiωjÞ¼ πkBT
X
j0

Δðiωj0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
j0 þΔ2ðiωj0 Þ

q

× ½λðωj−ωj0 Þ−μ�c�; ðE2Þ

where T is the temperature, ωj ¼ ð2jþ 1ÞπkBT is the
Matsubara frequency, μ�c is the screened Coulomb poten-
tial, ZðiωjÞ is the mass renormalization function, ΔðiωjÞ
is the superconducting gap function, and λðωjÞ ¼R
∞
0 dωα2FðωÞð2ω=ω2

j þ ω2Þ is the isotropic e-ph coupling
strength.
For the numerical integrations in Eq. (E1), we employ a

k-point grid consisting of 400 000 quasirandom Sobol
points (generated using SCIPY [82]) and a q-point grid
with 30 000 uniformly distributed random points; the delta
functions are approximated as Gaussians with a 30 meV
smearing for electrons and 0.1 meV smearing for phonons.
Using the converged α2FðωÞ function, we set μ�c ¼ 0.1 and
solve Eq. (E2) iteratively for a range of temperatures. The
critical temperature Tc is obtained as the temperature where
Δo ¼ Δðiωj ¼ iπkBTÞ extrapolates to zero.

APPENDIX F: BAND STRUCTURE
RENORMALIZATION

The DFT ground state calculation in graphene uses the
local density approximation with a norm-conserving pseu-
dopotential from PseudoDojo [83]. We employ a 90 Ry
plane wave kinetic energy cutoff, a 60 × 60 × 1 k-point
grid, and a 2.46 Å lattice constant. For the DFPT calcu-
lation, we use coarse grids with 36 × 36 × 1 k points for
electrons and 18 × 18 × 1 q points for phonons. The band
structure renormalized by e-ph interactions ϵ̃nk is obtained
as the DFT band structure plus the real part of the e-ph self-
energy evaluated on shell:

ϵ̃nk ¼ ϵnk þ ReΣnkðE ¼ ϵnk; TÞ: ðF1Þ

We use the lowest-order (Fan-Migdal) e-ph self-energy,

ΣnkðE; TÞ ¼
1

N q

X
νqm

jgmnνðk; qÞj2

×

�
Nνq þ 1 − fmkþq

E − ϵmkþq − ℏωνq − iη

þ Nνq þ fmkþq

E − ϵmkþq þ ℏωνq − iη

�
; ðF2Þ

where η is a Lorentzian smearing [84]. We employ 107

uniform random q points for the numerical integration in
Eq. (F2) and set the Lorentzian smearing to 15 meV.
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For more accurate band renormalization calculations,
one could use Wannier function perturbation theory to
overcome errors resulting from finite number of Wannier
functions [85].
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