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Cat qubits, for which logical j0i and j1i are coherent states j � αi of a harmonic mode, offer a promising
route towards quantum error correction. Using dissipation to our advantage so that photon pairs of the
harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical
states and exponentially increase the bit-flip time of the cat qubit with the photon number jαj2. A large two-
photon dissipation rate κ2 ensures fast qubit manipulation and short error-correction cycles, which are
instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here, we introduce
and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a
lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a
parametric pump, and it reaches a rate κ2=2π ≈ 2 MHz. With such a strong two-photon dissipation, bit-flip
errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild
impact on phase-flip errors. In addition, we illustrate how the phase of a quantum superposition between jαi
and j − αi can be arbitrarily changed by driving the harmonic mode while keeping the engineered
dissipation active.
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Quantum error correction is instrumental in building
useful quantum processors. It is based on the gathering of
many physical quantum systems in order to form protected
logical qubits. The number of required physical systems
can be daunting, but strategies involving harmonic oscil-
lators instead of qubits promise to reduce that number by a
large factor [1–6]. A prominent example is the cat qubit,
whose computational states are coherent states j � αi of a
harmonic oscillator, such as a superconducting microwave
cavity [1,7–9]. These states can be stabilized through
measurement-based feedback [10–12], Hamiltonian engi-
neering [13–16], or reservoir engineering [17–22]. The
latter strategy prevents the state of that memory cavity
from leaking out of the cat qubit subspace by engineering
its coupling to the environment, with the key feature that
photon pairs are lost at a rate κ2. The bit-flip time TX then
increases exponentially with the photon number jαj2 at the
modest expense of a linear deterioration of the phase-flip
rate ΓZ ∝ jαj2 [19]. Reaching large values of the two-
photon rate κ2 is critical in this strategy. First, to ensure

exponential bit-flip protection, it should overcome any
parasitic processes affecting thememory, such as dephasing,
thermal excitation, the Kerr effect, frequency shifts due to a
thermally populated ancilla qubit [19,23], or gate drives.
Second, its value sets a higher bound on the cat qubit gate
speed and needs to be large compared to the residual single-
photon loss rate κ1, the main cause of phase-flip errors [24].
The remaining phase-flip errors could then be corrected
using a repetition code made of a chain of cat qubits under
the condition κ2=κ1 ≳ 102 [24–26]. Introducing a new
nonlinear design called the autoparametric cat, our experi-
ment benefits from a stronger three-wavemixing interaction
compared to the four-wave mixing interaction of previous
schemes. We demonstrate κ2 rates as high as 2 × 2π MHz,
about 150 times larger than κ1. As we increase the photon
number, we observe an improvement of the bit-flip time by
more than a factor 25,000, reaching 0.36� 0.15 s, while the
phase-flip rate degrades by less than a factor of 6. In
addition, we demonstrate a Z gate of the cat code with a
fidelity of 96.5� 2% in 28 ns.
To achieve two-photon coupling between the memory

and its environment, an intermediary mode with single-
photon coupling κb to the environment acts as a buffer, and
a two-to-one photon exchange Hamiltonian Ĥ¼ℏg2m̂2b̂†þ
H:c: is activated with a rate g2. The operators m̂ and b̂
are the annihilation operators of the memory and buffer
mode, respectively. In the limit where g2 is small enough
compared to κb, the two-photon dissipation rate reads
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κ2 ¼ 4g22=κb. This interaction has been engineered in the
past by parametrically pumping a four-wave mixing non-
linearity [Fig. 1(a)], such as a single junction or an
asymmetrically threaded squid (ATS), at the frequency
matching condition ωp ¼ 2ωm − ωb. However, although
the two-to-one photon exchange rate g2 scales with the
pump amplitude, increasingly larger pump powers are
known to affect coherence times and activate higher
nonlinear terms in the Hamiltonian [18]. In practice,
the limited range of κ2 rates that could be obtained with
pumped nonlinearities prevents surpassing the self-Kerr
rate or the dispersive coupling rate between the transmon
and memory [18,19,27]. In this work, we use three-wave
mixing instead [Fig. 1(b)], thus alleviating the need for a
pump to mediate the two-photon interaction as in the 1989
proposal in Ref. [28]. The frequency matching condition
then becomes 2ωm ¼ ωb. This condition is characteristic
of autoparametric systems, so the buffer field passively
performs a parametric driving of the memory [29].
Remarkably, the resulting exchange rate g2 is much larger
than what can be reached for four-wave mixing (see
comparison in Appendix J).
The mixing element of the autoparametric cat consists of

two main Josephson junctions with energy EJ symmetri-
cally arranged within a superconducting loop that is
threaded with an external magnetic flux ϕext [Fig. 1(c)].
These two junctions, in a parallel configuration, have a
common mode serving as a memory mode and a differ-
ential mode, associated with the flux degree of freedom of
the loop and serving as a buffer mode (see Appendix A).
In order to lower the relatively high frequency of the buffer
mode and increase its flux tunability, a third Josephson
junction with energy EW is added in the loop, making its
configuration similar to previously realized circuits [30–34].
In addition, it endows the memory mode with a frequency
sweet spot, provided EW < EJ=

ffiffiffi
2

p
. By symmetry, the

memory mode does not participate in this third junction,
which plays no role in the two-to-one photon exchange
Hamiltonian. To tune the mode frequencies and participa-
tion in the mixing element, the superconducting loop is
further integrated within a linear microwave network that
preserves the mode symmetries [Fig. 1(c)]. A single
input line [green in Fig. 1(d)] then couples to the circuit
in order to provide fast flux bias and to drive the buffer.
The frequency tunability makes it difficult to engineer
a filter that protects the memory lifetime. Instead, we
leverage the symmetries of the circuit [Fig. 1(d)] and
position the input line such that it does not impact the
memory quality factor while preserving a strong coupling to
the buffer (see Appendix C). We achieve a buffer coupling
rate κb=2π ≈ 40 MHz and a much lower memory loss rate
κ1=2π ≈ 14 kHz. Note that an rf-SQUID or a SNAIL [35]
could be used as a three-wavemixing element. However, we
favor this design because of the existence of a flux sweet spot
and the possibility to leverage the circuit symmetries to

preserve the memory quality factor. Finally, a transmon
qubit is inductively coupled (see Appendix C 2) to the
memory with χ=2π ¼ 170 kHz to perform the Wigner

(a)

(c)

(e)

(d)

(b)

FIG. 1. (a) Four-wavemixing coupler, such as a transmonorATS,
swapping pairs of photons of a memory mode at ωm for single
photons of a buffer mode at ωb at a rate g2 owing to a pump at
jωb − 2ωmj. The buffer loss rate κb thus leads to an effective two-
photon dissipation rate κ2 that scales with pump amplitude. Driving
the buffer mode on resonance at a displacement rate ϵd stabilizes a
cat code fj � αig. (b) Three-wave mixing coupler passively
performing the samephotonexchangewhenωb ¼ 2ωm. (c) Scheme
of the autoparametric cat. The three-wavemixing coupler is a ring of
three Josephson junctions threaded by a flux ϕext ¼ φextφ0, with
φ0 ¼ ℏ=2e, and Josephson energies EW=h ≈ 115 GHz and
EJ=h ≈ 250 GHz. The buffer (green) and memory (blue) mode
geometries are represented as field vectors. (d) Optical and e-beam
images of a clone of the device. False colors highlight the input
buffer-flux line (green), the tomography transmon and its readout
resonator and Purcell filter (red), as well as the three-wave mixing
coupler (purple) (seeAppendixD).An array of holes in the tantalum
(to prevent the apparition of vortices) appears as awhite rectangle in
the larger image. (e) Dots: measured resonance frequency of the
buffer ωb (green) and twice the measured resonance frequency of
the memory 2ωm (blue) as a function of the flux threading the ring.
Dashed lines: flux biaseswhere the circuit operates. Solid lines: best
fit of the circuit parameters (see Appendix B).
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tomography of the memory mode [36–38]. Note that a work
conducted in parallel to ours demonstrates that Wigner
tomography can be performed without the transmon [39].
The mixing element enforces a two-to-one photon

exchange Hamiltonian with strength g2. Around the
memory sweet spot, its value is well approximated by
(see Appendix B)

g2 ≈
EW

ℏ

�
1 −

δφext
2

2

�
φ2
zpf;mφzpf;b; ð1Þ

where δφext ¼ ðϕext − ϕðsweetÞ
ext Þ=φ0 is the distance from the

sweet spot and φzpf;m=b are the zero-point fluctuations of the
phase from the memory and buffer mode, respectively,
across either of the main junctions. In practice, it is hard to
ensure the frequency matching condition precisely at the
sweet spot. In the experiment, g2 is close to its maximum
value at the flux ϕQEC for which the frequency of the buffer
matches twice the frequency of the memory ωbðϕQECÞ ¼
2ωmðϕQECÞ ≈ 2π × 7.896 GHz [see Fig. 1(e)]. Therefore,
the three-wave mixing term performs the desired swap
between pairs of memory photons and single buffer
photons at ϕQEC.
The preparation of a cat state jCαþi ∝ jαi þ j − αi con-

sists in starting from the vacuum state in the memory at
ϕQEC and turning on a drive with an amplitude jϵdj ¼ jαj2g2
[Fig. 1(b)] at twice the memory frequency ωd ¼ 2ωm for a
time of 300 ns. It is shorter than the characteristic time
1=jαj2κ1 of a photon loss yet long enough for the two-
photon dissipation and drive to stabilize the memory into
the cat qubit manifold. From there, one may determine the
two-photon loss rate κ2 by monitoring how the memory
decays once the drive has been turned off. Fitting the
measured Wigner functionWðβÞ at various time steps with
the solution of a Lindblad master equation where κ2 is the
single free parameter allows us to determine κ2=2π ≈
2.16� 0.1 MHz at ϕQEC. The ratio κ2=κ1 ≈ 1.5 × 102 is
much larger than in previous implementations of two-
photon dissipation using four-wave mixing [17,18,23,40].
This procedure is repeated for various flux biases around
ϕQEC in Fig. 2(a), which shows the range of detuning ωb −
2ωm over which the two-photon loss rate decreases. The
discrepancy between experiment and simulation of the
evolution of the Wigner functions [Fig. 2(b)], mainly
visible at 8 ns, can be attributed to the breakdown of the
condition for adiabatic elimination of the buffer mode (see
Appendix G). Indeed, this approximation breaks down
when the frequency 8g2jαj at which single buffer photons
are swapped with pairs of memory photons becomes larger
than the rate κb at which they leak out from the buffer.
Note that Wigner tomography of WðβÞ is performed

using a displacement of the memory mode by D̂ð−βÞ,
followed by a parity measurement that exploits the dis-
persively coupled qubit in a Ramsey-like sequence

(Refs. [36–38]). However, since both displacements and
the dispersive coupling are inhibited by two-photon loss,
these operations are performed at a flux ϕtomo [see Fig. 1(e)]
such that the strong detuning ωb − 2ωm disables two-
photon dissipation, yet without too much nonlinearity,
which would distort the tomography. In practice, the
tomography thus requires us to abruptly change the flux
bias between ϕQEC and ϕtomo (see Appendix E 2). In
addition, we improve the performance of this tomography
by initializing the parity measurement with an idle time of
300 ns at ϕQEC so that all pairs of photons are dumped into
the environment. The parity measurement then boils down
to determining whether or not a single photon remains in
the memory [25,41]. Parity is preserved during this
operation, owing to the large ratio κ2=κ1.
The phase-flip rate ΓZ of the cat code can be measured in

a similar manner as the two-photon loss rate [Fig. 3(a)].
Starting from the quantum superposition jCαþi, the parity,
hence the measured Wð0Þ, decays exponentially with time
at a rate ΓZ while the drive ϵdðαÞ is kept on. In Fig. 3(b), we
show the observed ΓZ rates as a function of photon number

(a)

(b)

FIG. 2. (a) Dots: measured two-photon relaxation rate κ2 as a
function of flux bias close to ϕQEC. Error bars represent statistical
uncertainties. Inset: pulse sequence used for the measurement.
The detuning between the buffer frequency and twice the memory
frequency is indicated on the top axis. (b) Top: measured Wigner
functions of the memory after the decay times indicated on the
figure for jαj ¼ 2.5 and at the flux indicated by the star in panel
(a). Bottom: results of the simulation using κ2=2π ¼ 2.16 MHz.
The buffer mode is adiabatically eliminated in these simulations
to provide an effective value of κ2 (see Appendix G).
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jαj2 in the cat code. As expected, the phase-flip rate
increases linearly as ΓZ ¼ 2jαj2κ1 until it goes above 20
photons.
The bit-flip time TX characterizes how fast the coherent

state jαi decays to an equal mixture of j − αi and jαi. In
order to measure it, the flux is first set to ϕtomo so that a
memory drive can prepare the state jαi. The flux is then
turned back to ϕQEC, and the buffer drive is immediately
turned on with an amplitude ϵdðαÞ [Fig. 3(c)]. We measure
the Wigner functionsWð�αÞ for various waiting times and
fit their difference WðαÞ −Wð−αÞ ∝ e−t=TX . The resulting
bit-flip time is shown in Fig. 3(d), and it rises exponentially
with photon number jαj2 until about 12 photons. There, TX
grows by a scaling factor of about 3.5 per added photon,
smaller than the limit of 7.4 predicted in the case of pure
dephasing alone (solid line) [24].
We explain this discrepancy by the breakdown of the

approximation of adiabatic elimination of the buffer. We
perform simulations of the evolution of the buffer-memory
bipartite system that indeed predict smaller scaling factors
[dashed line in Fig. 3(d) and Appendix I]. Some parameters
we use in the master equation (H1) are experimentally

measured, such as the pure dephasing rate of the memory,
κmφ =2π ¼ 0.16 MHz (Fig. 25); the self-Kerr rate of the
memory, χm;m=2π ¼ 0.22 MHz; and the measured detun-
ing Δm=2π ¼ 3 MHz between half the drive frequency and
ωm. Other parameters are inferred from the circuit model,
and the pure dephasing rate of the buffer κbφ=2π is assumed
to be limited by flux noise like κmφ =2π (see Appendix I).
Note that the simulated bit-flip times strongly depend on
the flux ϕext, and we set a detuning 2ωm − ωb ¼ 2π ×
3.5 MHz in order to better reproduce the measured bit-flip
times. This case corresponds to a flux offset of 3 × 10−4ϕ0,
which could be attributed to flux drifts during the month
separating the measurements of Figs. 2 and 3.
The bit-flip time saturates at 0.36� 0.15 s, which is

reached for jαj2 ≈ 20. We identify three possible mecha-
nisms that present comparable contributions to the bit-flip
rate at large photon numbers. First, varying the dephasing
rates κmφ in simulations leads to an apparent saturation of TX

(see Fig. 29). A better tuning of the circuit parameters
would cancel κmφ by matching the flux at which the
autoparametric condition occurs with the memory sweet
spot in Fig. 1(e). A second candidate for the bit-flip
limitation is the thermalization of the buffer mode, which
may come from various origins (see Appendix I 6). In turn,
owing to the breakdown of adiabatic elimination, it limits
the bit-flip time. A mitigation strategy would consist in
adapting the drive frequency for each size α of the cat qubit
to keep Δm ¼ 0. Finally, simulations reveal that while a
single excitation of the transmon no longer limits TX [19],
residual excitations of the transmon’s higher states set a
bound below which the bit-flip time cannot be affected by
the transmon. Despite a relatively small dispersive shift
χ=2π ¼ 170 kHz, these higher excited states of the trans-
mon exit the dispersive regime, yielding a large frequency
shift on the memory comparable to κ2jαj2, effectively
turning off the cat-qubit stabilization and inducing a bit-
flip error. We measure the higher excited states of the
transmon while stabilizing cat qubits of various mean
photon number jαj2 (Fig. 26), and we infer the rate at
which they become populated [red dots in Fig. 3(d)]. The
measured saturation in bit-flip time seems to reach this
bound, indicating that the excitation of transmon higher
states may be a limiting mechanism. This limitation could
be avoided by removing the transmon qubit altogether [39].
With such a large ratio κ2=κ1, it is possible to realize Z

gates in the cat code fjαi; j − αig using quantum Zeno
dynamics [18,42–46]. Starting from jCαþi with the buffer
drive ϵdðαÞ turned on, we continuously drive the memory
on resonance with an amplitude ϵZ [18] [Fig. 4(a)]. The
phase of the latter is chosen so that, without two-photon
loss, the memory drive would induce a displacement
[arrow in Fig. 4(c)] perpendicular to α in the memory
phase space (see calibration procedure in Appendix H).
The measured Wigner functions of the memory are shown
in Fig. 4(c) after three different waiting times. Owing to

(a)

(b)

(c)

(d)

FIG. 3. (a) Pulse sequence of the phase-flip rate measurement.
(b) Dots: measured phase-flip rate ΓZ (linear scale) of the cat code
as a function of photon number jαj2. All values are obtained by
fitting Wð0Þ to an exponential decay in time. Error bars represent
statistical uncertainties (see Appendix I 1). Line: expected rate
2jαj2κ1. (c) Pulse sequence of the bit-flip time measurement.
(d) Dots: measured bit-flip time (log scale) of the cat code as a
function of photon number jαj2. All values are obtained by fitting
the difference WðαÞ −Wð−αÞ to an exponential decay in time.
Error bars represent statistical uncertainties (see Appendix I 1).
Solid black line: expected bit-flip time with κmφ =2π ¼ 0.16 MHz

under the adiabatic elimination of the buffer, e2jαj2=ðjαj2κmφ Þ.
Dashed blue line: simulated bit-flip time with the same κmφ ,
assuming a detuning 2ωm − ωb ¼ 2π × 3.5 MHz. Red dots:
bound below which TX is not limited by excitation of higher
states of the transmon (Fig. 26).
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quantum Zeno dynamics, the combined effects of two-
photon loss and buffer drive keep the memory state in the
qubit space generated by fjαi; j − αig, but the memory
drive ϵZ rotates the phase θ of the quantum superposition
ðjαi þ eiθj − αiÞ=

ffiffiffiffiffi
N

p
, which can be seen as translated

fringes in the Wigner function. The measured Wigner
function Wð0Þ as a function of time in Fig. 4(b) exhibits
decaying oscillations around the Z axis of the cat qubit at a
frequency ΩZ and decay rate κZ.
The rotation frequency is expected to be given by

ΩZ ¼ 4ReðϵZαÞ, which is precisely what we observe in
Fig. 4(d). The decay rate κZ has a more subtle dependence
on photon number jαj2 and memory drive ϵZ as seen in
Fig. 4(e). In the ideal case and for constant ϵZ, the rate is
expected to decay as κZ ¼ 2κ1jαj2 þ κbϵ

2
Z=ð2jαj2g22Þ [25].

The first term corresponds to phase flips at a rate ΓZ while
the second one corresponds to an induced leakage out of the
confined cat qubit Hilbert space when the drive amplitude
ϵZ is too strong to be Zeno blocked. This expression
remains valid even outside of the adiabatic elimination
regime [47].
In practice, the experiment deviates from this simple

picture, owing to the self-Kerr effect on the memory, slight
detuning of the drive frequency, and resonance frequency
detuning induced by drifts in the flux bias. Complete
simulations of κZðαÞ are sensitive to the two-to-one
photon coupling rate g2, so they are used to determine
it. Adjusting this parameter to g2=2π ≈ 6� 0.5 MHz leads
to a good match between measurement and simulations
[see Fig. 4(e)]. With such a coupling, the adiabatic
elimination of the buffer predicts a larger two-photon
dissipation rate, 4g22=κb ≈ 3.6 × 2π MHz, than what is
measured in Fig. 2, which is expected since the condition
8g2jαj < κb is not met for jαj2 ≳ 1 [39]. Interestingly,
despite the observed limitation on TX in the nonadiabatic
regime, it is still possible to improve gate speed and fidelity
by going to large values of g2jαj.
It is possible to infer the Z gate fidelity from the

measured evolution of WðβÞ during the drive. Owing to
the noise bias of the cat code, the Z gate is the least faithful
when applied to Clifford states j � Xi and j � Yi. In
contrast, we measure that j � Zi states are mapped onto
themselves by the Z gate with less than 3 × 10−6 error
probability under the driving conditions of Fig. 4(b) (see
Appendix H 3). The gate fidelity can be estimated to F ¼
1=2þ expð−πκz=ΩzÞ=2 (see Appendix H 4). Using
Gaussian pulses for the memory drive leads to Z gate
fidelities F ¼ 95� 2% in 26 ns for jαj2 ¼ 9.3 and for a
drive amplitude ϵ̄Z=2π ¼ 1.625 MHz. We further improve
the gate fidelity by using square pulses. Indeed, for a fixed
average drive amplitude ϵ̄Z, the square pulse has the
smallest maximum amplitude and hence induces the least
nonadiabatic errors. We then reach F ¼ 96.5� 2% in 28 ns
for the Z gate.
In this work, we show that the autoparametric approach

to two-photon exchange can significantly enhance the two-
photon dissipation rate κ2, exceeding the values obtained
with prior parametric pumping strategies. Remarkably, the
autoparametric scheme does not seem to activate extra
relaxation processes, as indicated by the linear increase of
the phase-flip rate up to 20 average photons. We emphasize
that repetition codes are more lenient with errors than
surface codes [48], which is another benefit of using
strongly noise-biased qubits. Moreover, the associated
photon exchange rate g2 allows us to perform Z gates
with up to 96.5% fidelity in 28 ns. We achieve a notable bit-
flip time TX of up to 0.3 s. Several mechanisms have been
identified as possible limitations, and mitigation strategies
have been proposed for future realizations. The figure of
merit κ2=κ1 ¼ 1.5 × 102 exceeds the error-correction

(a) (c)

(b)

(d) (e)

FIG. 4. (a) Pulse sequence used to perform a Z rotation in the
cat qubit fjαi; j − αig basis. (b) Dots: measured oscillations
of Wð0Þ as a function of time t using the pulse sequence of
Fig. 3(a), where the cat code is stabilized with a photon number
jαj2 ¼ 9.3. An additional displacement drive at ωm starts 240 ns
after the buffer drive is turned on. Here, its amplitude ϵZðtÞ is
Gaussian shaped with a mean amplitude ϵ̄Z=2π ¼ 1.625 MHz,
and its phase is chosen so that the displacement occurs
along the arrow in figure (c). Line: fit to oscillations at a
frequency ΩZ=2π ¼ 19.8 MHz, which are decaying at a rate
κZ=2π ¼ 0.62 MHz. (c) Measured Wigner functions WðβÞ
after a Z rotation of angle θ ¼ 2π, 3π=2, and π from top to
bottom. (d) Dots: inferred rotation frequency ΩZ as a function of
cat code amplitude α, and for various mean drive amplitudes
ϵ̄Z=2π ¼ 0.32, 0.625, 0.965, 1.295, 1.625, 1.955, 2.285, and
2.66 MHz, from bright to dark orange. Lines: expected rotation
frequencyΩZ ¼ 4Reðϵ̄ZαÞ around Z. (e) Dots: inferred decay rate
κZ as a function of jαj for the same drive amplitudes. Lines:
simulated decay rate with g2=2π ¼ 6 MHz as a fit parameter and
the same detuning as in Fig. 3(d).
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threshold for a repetition code based on cat qubits [24].
We foresee that enhancing the memory lifetime by 1 or 2
orders of magnitude—for instance, using a notch filter at
the memory frequency and improving the fabrication
process—could dramatically decrease the phase-flip rate
and bolster the scaling of error correction. Note that the
present design parameters are quite conservative for this first
demonstration. The zero-point fluctuations of the modes in
the junctions (φzpf;m ¼ 0.0305 and φzpf;b ¼ 0.0648) can
safely be increased, which would improve g2. Additionally,
in the future, the large coupling rates of the autoparametric
approach could be leveraged under the frequency matching
condition ωb ¼ 4ωm. This process could then stabilize cat
qubits that are composed of superpositions of the four
coherent states jαi, jiαi, j − αi, and j − iαi, whose autono-
mous stabilization is still missing despite the strong interest
in this approach for quantum error correction [1].
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APPENDIX A: CIRCUIT DESIGN

Our autoparametric circuit can be understood as a limit
case of a degenerate parametric amplifier [49–51]. Such
amplifiers are usually made of a resonatorm connected to a
pump mode c via a nonlinear element such that their
interaction Hamiltonian reads ℏg2m̂2ĉ† þ H:c:
When driving the pump mode c at 2ωm with a large

enough power such that the number of photons in the pump
mode exceeds the threshold nthr ¼ κ2m=ð4g2Þ2, parametric
oscillation occurs. The parametric oscillation threshold
corresponds to the number of photons at which the gain
process compensates the losses of mode m. Above thresh-
old, the number of photons in m stays finite, owing to one
of two possible mechanisms: the Kerr effect or pump
depletion. The mode m then emits radiation with two
possible phases [52–54]. These two phases correspond to
two coherent states jαi and j − αi of the mode m. This
phenomenon can be used to stabilize cat qubits.
The first limiting mechanism is the Kerr effect, which is a

by-product of the nonlinearity used to generate the g2 rate.
As the number of photons increases, the mode resonance
frequency shifts up to a point where the pump at 2ωm is so
detuned that the gain and loss processes balance each other.
This Kerr limitation is the most standard one in Josephson
circuits and is at the origin of so-called Kerr cats [13–16].
The second limiting mechanism is pump depletion, which
is more common at optical wavelengths. The stiff pump

approximation breaks down if the number of photons in the
pump mode is affected by how fast pump photons are
consumed to generate photons in mode m. The rate at
which pump photons are regenerated by the drive is not fast
enough to produce pairs of photons in mode m.
The autoparametric design evades the Kerr limitation and

operates in the pump depletion limit, which engineers the
reservoir of mode m and not its Hamiltonian. Instead of a
far-detuned pump mode, we use the buffer mode b that
resonates at the resonator frequency 2ωm. The high Q limit
of mode a lowers the parametric oscillation threshold to
nthr ≪ 1 while the resonant driving of mode b ensures that
the regeneration rate of pump photons in the buffer mode is
minimal. Therefore, pump depletion is the dominating
mechanism for parametric oscillation stabilization. In the
steady state, the buffer is subject to two opposing driving
forces. The buffer drive and the action of the memory
mode on the buffer via the two-to-one photon exchange
Hamiltonian compensate exactly. The buffer then reaches a
steady state close to the vacuum while the memory state
converges to a superposition of jαi and j − αi.
This realization is at the origin of the autoparametric

circuit design. We start from a superconducting circuit
widely used for degenerate parametric amplification: a
resonator comprising a dc flux biased SQUID that is flux
pumped at twice its frequency and acts as our memory
mode [50]. Other nonlinear elements could be chosen from
the variety of Josephson amplifiers that have been designed
over the past two decades. In this peculiar circuit, there
exists another mode associated with the flux degree of
freedom, which has a differential symmetry with respect to
the SQUID junctions but is often ignored for its very high
frequency [34]. For our purpose, this mode, our buffer
mode, is brought down in frequency while preserving its
symmetry by adding an inductive element in the SQUID
loop (the junction EW) and splitting the capacitance on
either side of the SQUID. The symmetry is preserved and
used advantageously to be able to couple preferentially to
the buffer mode without needing frequency-selective filter-
ing to protect the memory lifetime. This basis structure is
then diluted with open and shorted stubs as described in
Fig. 1 to tune the modes φzpf .
Compared to previously pumped circuits comprising an

ATS [19,23], this design does not ensure that the memory
Kerr nonlinearity vanishes at the working point; in addition,
it is hard to ensure by fabrication that ϕQEC is a local
extremum for the memory frequency, so flux noise affects
the memory pure dephasing rate. However, on the one
hand, it has been shown that the Kerr effect is not
detrimental to cat-qubit stabilization as long as it is smaller
than g2 [27]. This condition is satisfied here by choosing
the modes φzpf adequately. On the other hand, cat-qubit
stabilization is primarily designed to correct against
dephasing [1]. The pure dephasing of the memory mode
is further mitigated by design. Since the memory mode
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does not participate in the central inductive element of the
SQUID, we implement it using a single Josephson junction
acting as a weak link in the loop EW < EJ without
increasing the memory self-Kerr rate. Using a single
Josephson junction instead of a more linear inductance
dramatically increases the buffer susceptibility to flux
compared to the memory; hence, the buffer is responsible
for meeting the frequency matching condition 2ωm ¼ ωb,
and the memory can afford a much weaker dependence on
flux, hence on flux noise. Using a Josephson junction with
a lower Josephson energy EW than the SQUID junctions EJ
creates sweet spots in the memory flux dispersion, and the
circuit parameters are designed such that the frequency
matching condition occurs close to it. We provide further
details on the sweet spot in the next section.

APPENDIX B: HAMILTONIAN DERIVATION

This appendix derives the Hamiltonian of the simplified
version of the circuit, represented in Fig. 5. Since this
circuit operates in the regime of small zero-point fluctua-
tions of the phase across the Josephson junctions, we will
first compute the effective inductance of each junction due
to the flux bias. Next, we will identify the eigenmodes of
the linear part of the Hamiltonian. Finally, we will calculate
the nonlinearities and discuss the impact of junction
asymmetry.

1. Equilibrium phase configuration

First, we compute the effective inductance of the central
mixing element. This element comprises two identical main
junctions with Josephson energy EJ and one weaker
junction with energy EW ¼ βJEJ with βJ < 1. Following
the procedure detailed in Ref. [55], we compute the
equilibrium phase drop across each junction φ̄1, φ̄2, and
φ̄W . Note that we decompose each phase drop φx as a sum
of a constant part φ̄x and a dynamical part φ̃x with zero
mean. Current conservation inside the loop imposes that
φ̄1 ¼ −φ̄2, so we denote φ̄J ¼ φ̄1 the main junction phase
drop. Current conservation further dictates that

φ̄J ¼ arcsinðβJ sin φ̄WÞ: ðB1Þ

The phase drop around the loop φ̄ ¼ φ̄W þ φ̄1 − φ̄2 then
reads

φ̄ ¼ φ̄W þ 2 arcsinðβJ sin φ̄WÞ: ðB2Þ
Moreover, the superconducting loop is threaded by the
external flux ϕext ¼ φextφ0, which leads to the constraint
φ1 þ φW − φ2 ¼ φext. The constraint translates into

φ̄ ¼ φext and φ̃1 þ φ̃W − φ̃2 ¼ 0: ðB3Þ
Finding the configuration of phase drops at equilibrium

thus consists in first determining φ̄WðφextÞ by solving the
equation φext ¼ φ̄ðφ̄WÞ, of which a graphical representation
is shown in Fig. 6(a). Then, one obtains φ̄J from Eq. (B1),
and the effective inductive energies of each junction ĒJ ¼
EJ cosðφ̄JÞ and ĒW ¼ EW cosðφ̄WÞ. The effective induc-
tances follow as L̄J ¼ φ2

0=ĒJ and L̄W ¼ φ2
0=ĒW . If

βJ > 1=2, the function φ̄WðφextÞ is multivalued [55], as
shown in Fig. 6(b). In order to avoid hysteresis effects or
instabilities, we choose βJ < 1=2, which is equivalent to
EW < EJ=2. We can check in Fig. 6(a) that φ̄ðφ̄WÞ is indeed
monotonous in that case.
For βJ ¼ 0.46 (as in our device), at ϕQEC ¼ 0.311ϕ0,

which is slightly offset from the sweet spot (0.40ϕ0),
we find φ̄J ¼ 0.42 and φ̄W ¼ 1.11, leading to ĒJ=h ¼
228 GHz and ĒW=h ¼ 51 GHz. At ϕtomo ¼ 0.168ϕ0, we
find φ̄J ¼ 0.25 and φ̄W ¼ 0.56, leading to ĒJ=h ¼
242 GHz and ĒW=h ¼ 97 GHz.
We further study the mixing element to determine the

value of the flux sweet spot to evade the memory from flux
noise: It is defined as the flux φ0φ

ðsweetÞ
ext , such that

dωm

dφext

����
φðsweetÞ
ext

¼ 0: ðB4Þ

We focus on the casewhereφðsweetÞ
ext ∈ ½0; π� because of the 2π

periodicity of the solutions and by symmetry around
φext ¼ 0. Additionally, we exclude the trivial solution
φext ¼ 0 because we need φ̄J ≠ 0 at the sweet spot to
maintain a nonzero three-wave mixing interaction rate.
The symmetry of the circuit of Fig. 5 implies that the
memory mode, which is the common mode, does not
participate in theweak junction. Hence, the flux dependence
of ωm originates from ĒJðφextÞ ¼ EJ cosðφ̄JÞ. The flux
sweet spot is therefore a local extremum of φ̄JðφextÞ.
From Eq. (B1), φðsweetÞ

ext is therefore close to φ̄W ¼ π=2 since
sinφW is maximal there. Finally, using the condition that
φext < π imposes an upper bound on βJ. Indeed, for
φ̄W ¼ π=2, Eq. (B2) comes down to π=2þ 2 arcsin βJ <
π and thus βJ < 1=

ffiffiffi
2

p
.

Provided EW < EJ=
ffiffiffi
2

p
, a sweet spot will thus be visible

at φðsweetÞ
ext ¼ π=2þ 2 arcsin βJ [blue and orange closed

circles in Fig. 6(b)]. Close to the sweet spot, at first order,

φ̄J is constant and φ̄W ¼ π=2þ δφext, where δφext ¼ φext −
φðsweetÞ
ext is the flux offset from the sweet spot. At second

order, we then have

FIG. 5. Simplified circuit diagram of the device. Only the
modes of the ring of junctions are considered, for simplicity. For
each junction φx ¼ φ̃x þ φ̄x, respectively, the oscillating part and
the equilibrium part.
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φ̄J ¼ arcsin (βJ sinðπ=2þ δφextÞ)

¼ arcsin(
EW

EJ

�
1 −

δφ2
ext

2

�
): ðB5Þ

Note that the single minimum condition βJ < 1=2 that
is verified in the experiment is within in this limit.

The regime 1=2 < βJ < 1=
ffiffiffi
2

p
comprises a sweet spot in

the lowest-energy flux configuration [orange closed circle
in Fig. 6(b)], but the existence of another higher energy
minimum might be detrimental. Finally, for βJ > 1=

ffiffiffi
2

p
,

there exists a sweet spot, but it is not the lowest-energy
phase configuration [green open circle in Fig. 6(b)].

2. Eigenmodes

Now that we have the equilibrium phase differences and
the effective inductive energies ĒJ and ĒW , we can
determine the eigenmodes of the system and compute
the zero-point fluctuation of the phase across each dipole of
the linear equivalent circuit.
The potential energy of the linear system modeling the

circuit readsUlin ¼ ĒJφ̃
2
1=2þ ĒJφ̃

2
2=2þ ĒWφ̃

2
W=2. Hence,

incorporating the constraints of Eq. (B3), we find

Ulinðφ̃1; φ̃2Þ ¼
ĒJ

2
φ̃2
1 þ

ĒJ

2
φ̃2
2 þ

ĒW

2
ðφ̃1 − φ̃2Þ2;

Tð ˙̃φ1; ˙̃φ2Þ ¼
ℏ2

16EC

˙̃φ2
1 þ

ℏ2

16EC

˙̃φ2
2; ðB6Þ

where T is the kinetic energy of the system and EC is the
charging energy of each capacitor. This system can be
readily diagonalized by performing the change of variable

�
φm ¼ φ̃1þφ̃2

2

φb ¼ φ̃1−φ̃2

2
;

where φm and φb correspond to the common and differ-
ential modes of the circuit, respectively denoted as memory
and buffer modes. The potential and kinetic energies of the
circuit then read

Ulinðφm;φbÞ ¼
EL;m

2
φ2
m þ EL;b

2
φ2
b;

Tðφ̇m; φ̇bÞ ¼
ℏ2

8EC
φ̇2
m þ ℏ2

8EC
φ̇2
b;

with EL;m ¼ 2ĒJ and EL;b ¼ 2ĒJ þ 4ĒW . The mode
frequencies and zero-point fluctuations of the buffer and
memory mode are given by

ωb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ECEL;b

p
φzpf;b ¼ ðEC=EL;bÞ1=4;

ωm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ECEL;m

p
φzpf;m ¼ ðEC=EL;mÞ1=4;

so, in second quantization, the linear part of the
Hamiltonian is

Ĥlin=ℏ ¼ ωmm̂†m̂þ ωbb̂
†b̂; ðB7Þ

with annihilation operators defined by their relation to the
phase differences,

(a)

(b)

FIG. 6. Flux sweet spots of the mixing element. (a) Sum φ̄ of
the phase differences across the three junctions as a function of
the phase difference φ̄W across the weak junction, calculated
using Eq. (B2) for βJ ¼ EW=EJ ¼ 0.46 as in the experiment
(blue), βJ < 1=

ffiffiffi
2

p
(orange), and βJ > 1=

ffiffiffi
2

p
(green). A flux bias

imposes φext ¼ φ̄ so that these curves show which values of φ̄W
are possible. (b) Phase differences φ̄J (solid-dotted line) and φ̄W
(dashed-dotted line) as a function of φext. We use the same color
code for the values of βJ as in panel (a). Dotted lines correspond
to extensions of the solutions that are stable but not the lowest-
energy configuration. In panels (a) and (b), the black vertical or
horizontal line corresponds to φ̄W ¼ π=2. In panel (a), it crosses

φ̄ at φðsweetÞ
ext (thin horizontal colored lines). In panel (b), it crosses

φ̄W , where φ̄J has a sweet spot at the same values of φðsweetÞ
ext (thin

vertical colored lines). The blue and orange closed circles
correspond to sweet spots in the lowest-energy configuration.
The open green circle emphasizes that while the sweet spot exists,
it is not the lowest-energy configuration. At this value of φext
(vertical green line), another configuration is favored (green
closed circle), which is not a flux sweet spot.
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φ̂m ¼ φzpf;mðm̂þ m̂†Þ;
φ̂b ¼ φzpf;bðb̂þ b̂†Þ: ðB8Þ

The frequencies of both the memory and buffer modes
depend on ϕext through the dependency of φ̄J and φ̄W . In
the actual circuit, stub resonators are connected to the ring
of junctions so that the mode frequencies and zero-point
fluctuations are modified. Then, ϕext is chosen so that the
condition ωb ¼ 2ωm is matched, defining the value of ϕQEC

as shown in Fig. 1. Numerically, fitting the frequency
dispersion versus flux with the full model gives us φzpf;m ¼
0.0305 and φzpf;b ¼ 0.0648 at ϕQEC.

3. Nonlinearities

Around the dc solution of the system, the full potential

Uðφ̃1; φ̃2Þ ¼ −EJ cosðφ̃1 þ φ̄JÞ − EJ cosðφ̃2 − φ̄JÞ
− EW cosðφ̃2 − φ̃1 þ φ̄WÞ ðB9Þ

can be used to compute the nonlinearities. Using the former
change of variable, we obtain

Uðφm;φbÞ ¼ −2EJ cosðφmÞ cos ðφb þ φ̄JÞ
− EW cos ð2φb − φ̄WÞ: ðB10Þ

The potential energy is represented in Fig. 7 for the circuit
parameters EW=h ≈ 115 GHz and EJ=h ≈ 250 GHz for
several values of the external flux bias ϕext. As expected
from the change of variable, the global minimum is located
at ðφm;φbÞ ¼ ð0; 0Þ for any flux bias φext. Other minima
exist owing to the periodicity of the Josephson potential,
but there is a potential barrier of 2EJ ≈ kB × 22 K to
overcome in order to transit from one solution to the other

as can be seen in Fig. 7. By expanding the sin and cos
functions up to fourth order in the phases, we obtain the
parameters of the Hamiltonian.

a. Third-order terms

We now consider working at ϕQEC and yielding the
condition ωb ¼ 2ωm, and we restrict our analysis to terms
surviving the rotating-wave approximation. The only third-
order term to consider is then

Ĥ3rd=ℏ ¼ EJ sinðφ̄JÞφzpf;bφ
2
zpf;mðb̂m̂†2 þ b̂†m̂2Þ:

This Hamiltonian corresponds to the two-photon
exchange Hamiltonian responsible for converting single
photons in the buffer into pairs of photons in the
memory mode and back. Plugging in the value of φ̄J
around the sweet spot, Eq. (B5), we recover Eq. (1),
ℏg2 ≈ EWð1 − δφ2

ext=2Þφ2
zpf;mφzpf;b. From the frequency

dispersion versus flux, we expect g2=2π ¼ 6.2 MHz, very
close to what is experimentally extracted from Fig. 4.

b. Fourth-order terms

Expanding the Hamiltonian even further to fourth-order
terms leads to the expression of the memory and buffer self-
Kerr rates, as well as the cross-Kerr coupling between these
two modes:

ℏχm;m ¼ ĒJφ
4
zpf;m;

ℏχb;b ¼ ĒJφ
4
zpf;b þ 8ĒWφ

4
zpf;b;

ℏχm;b ¼ 2ĒJφ
2
zpf;mφ

2
zpf;b: ðB11Þ

Note that it is the equivalent Josephson energies ðĒJ; ĒWÞ
that appear and not the bare ones ðEJ; EWÞ. The corre-
sponding Hamiltonian reads

Ĥ4th=ℏ ¼ −
χm;m

2
m̂†2m̂2 −

χb;b
2

b̂†2b̂2 − χm;bðm̂†m̂Þðb̂†b̂Þ:

The effect of these spurious terms is taken into account in
the simulations used in Figs. 3 and 4. The memory self-Kerr
rate is directly estimated at ϕtomo, χm;m=2π ≈ 220 kHz
from the dynamics of a coherent state. The parameters
χb;b and χm;b are not measured in this experiment; they
are instead inferred from the other measured variables using
the expressions above. At ϕQEC, from the frequency
dispersion versus flux, we expect χm;m=2π ¼ 200 kHz,
χb;b=2π ¼ 11.3 MHz, and χm;b ¼ 1.8 MHz.

APPENDIX C: MICROWAVE DESIGN

1. Input line

Because the memory mode (respectively, buffer mode) is
symmetric [respectively, antisymmetric; see Fig. 1(c)] with
respect to the circuit symmetry axis (blue in Fig. 8), one can

FIG. 7. Potential energy Uðφm;φbÞ=EW for EW=h ¼ 115 GHz
and EJ=h ¼ 250 GHz at six different flux biases. For each flux
bias, an offset UminðφextÞ is subtracted from Eq. (B10) in order to
set the potential global minimum to 0 and better highlight the
height of the potential barrier.
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use the properties of transmission line modes of the input to
disable the coupling to the memory mode. Memory and
buffer modes only couple to propagating modes having the
same symmetries.
A first input line design that can benefit from these

symmetries is a slotline made of a gap, separating two
ground planes [56]. This transmission line has a single
propagating mode, which is antisymmetric since opposed
currents flow in the two ground planes. When the slotline is
aligned with the circuit symmetry axis, only the buffer
mode is coupled to the transmission line while the memory
mode is protected by symmetry. If this input line design is
optimal from the point of view of memory filtering, it is not
compatible with fast flux bias as it cannot run a dc current
close to the Josephson junction loop.
In contrast, a coplanar waveguide (CPW) transmission

line contains a center track, so it can be used for fast flux
biasing the loop. A CPW transmission line contains two
quasitransverse electromagnetic propagating modes [57].
One is symmetric with respect to the transmission line axis
with identical currents in the ground planes but an opposite
one in the central line. We call it the coplanar waveguide
mode. The other is antisymmetric with respect to the
transmission line axis with opposing currents in the two
ground planes and no current in the central line. We call it

the slotline mode. Importantly, the slotline mode is sup-
pressed by increasing the density of wire bonds that
connect the two ground planes.
When the CPW transmission line is aligned on the

circuit symmetry axis, the buffer (respectively, memory)
mode is only coupled to the slotline mode (respectively,
coplanar waveguide mode) by symmetry. The mutual
inductance of 2 pH that we design for flux biasing sets
the geometry of the input line close to the loop. However,
the position and density of wire bonds can be chosen. In
practice, we tune the buffer coupling rate using wire-bond
positions, as they affect the slotline mode. In contrast,
lowering the memory coupling rate requires another
control parameter.
To this aim, we offset the CPW transmission line away

from the circuit symmetry axis (orange arrow in Fig. 8).
The buffer mode stays dominantly coupled to the slotline
mode whereas the memory mode is coupled to both the
slotline and coplanar waveguide modes. This finding can
be seen in electromagnetic simulations of Fig. 9 by looking
at the currents of the memory mode around the input line.
The memory mode coupling to the coplanar waveguide
(respectively, slotline) mode decreases (respectively,
increases) with the shift length. This finding can be
observed by looking at the dominant geometry of the
memory currents around the input line (see Fig. 9).
The memory coupling rate to the transmission line is

given by the sum of the coupling rates to the coplanar
waveguide and slotline modes, and it can be simulated.
Figure 10 shows the variation of the simulated memory
coupling quality factor Q as a function of the input line
offset. There are two optimal offsets (a positive one,
lþ ¼ 425 μm, and a negative one, l− ¼ −175 μm) for
which the total coupling rate to the slotline and coplanar
waveguide modes is minimized, leading to an enhancement
of the Q factor of the memory. The l− offset has a large
enough mutual inductance (about 2 pH) for fast flux
biasing, and it is the one we choose.

2. Coupling between memory and transmon

The bottom stub of the memory mode in Fig. 8 is
terminated to ground by three elements in parallel: two
identical geometrical inductances L (horizontal lines) and a
Josephson junction of Josephson energy EJ in series with a
capacitor Ct (large pad in pink). The important parts of this
circuit are schematized in Fig. 11. Focusing on the sole
memory mode for the autoparametric circuit, one models it
by an inductor Lm and a capacitor Cm in series. With the
last scheme of Fig. 11, one sees how the small inductance
L=2 inductively couples the memory and transmon modes.
A simple way to compute this coupling term consists in
writing Kirchoff’s law,

ϕ

L=2
¼ −

ϕm

Lm
−
EJ

φ0

sinðϕt=φ0Þ: ðC1Þ

FIG. 8. Optical image of the autoparametric circuit showing its
symmetry axis (blue) and the offset of the input line (green) with
respect to the symmetry axis (orange). Inset: larger view of the
coupler and its connections to the stubs.
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We see that the inductive energy of the small inductance
L=2 reads

UL ¼ ϕ2

L
¼

( L
2Lm

ϕm þ LEJ
2φ0

sinðϕt=φ0Þ)2
L

: ðC2Þ

Expanding this square term leads to a renormalization of
the frequencies of the memory mode and of the transmon

mode, and the cross-product gives the coupling term we
want to compute:

Ĥind ¼
LEJ

2Lm

ϕ̂m

φ0

sinðϕ̂t=φ0Þ ¼ ℏgmt sin θ̂tðm̂þ m̂†Þ; ðC3Þ

where θ̂t ¼ ϕ̂t=φ0 and gmt is given by
ðLEJ=2ℏLmφ0Þφzpf;m up to a factor of order 1. The
coupling rate between the memory and transmon modes,
gmt, is measured from the system’s low-energy spectrum to

FIG. 9. Electromagnetic simulations (using Ansys HFSS) of the current field of the memory mode around the input line for various
offsets of the input line with respect to the circuit symmetry axis. Colors indicate surface currents according to the legend. For large
offsets (−500 μm and 500 μm), the current field is characteristic of a slotline geometry (opposite current in the two ground planes),
indicating that the memory is mostly coupled to the slotline propagating mode. For zero offset, the current field is characteristic of a
coplanar geometry (identical current on the two ground planes and opposite current in the central track) indicating that the memory is
mostly coupled to the coplanar waveguide propagating mode. For the two optimal offsets (−175 μm and 425 μm) leading to the highest
memory coupling quality factor, the current field is a mix of slotline and coplanar geometries.

FIG. 10. Simulated memory (blue) and buffer (green) coupling
quality factors (Q) as a function of the input line offset with
respect to the circuit symmetry axis. The memory Q factor
reaches maximums for two sweet spots defined as offset lengths
of 425 μm and −175 μm.

FIG. 11. Equivalent electronic schemes for the inductive
coupling between the transmon mode and the memory mode.
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be 2π × 225 MHz. This value agrees well with the cou-
pling rate predicted by electromagnetic simulations.

APPENDIX D: CABLING

The transmon qubit, readout resonator, memory, and
buffer modes are driven by pulses whose envelope is
generated using an arbitrary waveform generator (AWG),
an OPX by Quantum Machine in this experiment. These
pulses are, respectively, modulated at ωIF;q=2π¼ 100MHz,
ωIF;r=2π¼75MHz, ωIF;m;tomo=2π¼40MHz or ωIF;m;QEC¼
ðωm;tomoþωIF;m;tomoÞ−ωb;QEC=2, and ωIF;b;QEC ¼

2ωIF;m;QEC. Here, ωIF;m;tomo and ωIF;m;QEC are the modula-
tion frequencies used to respectively drive the memory at
ϕtomo or ϕQEC; ωm;tomo and ωb;QEC are the frequencies of
the memory mode at ϕtomo and the buffer mode at ϕQEC.
The above condition on ωIF;m;QEC and ωIF;b ensures the
phase stability of the encoded cat in the frame rotating at
the memory frequency.
These signals are up-converted using single sideband

mixers for the transmon qubit and readout resonator,
and IQ mixers for the memory and buffer mode, with
radio-frequency signals generated by a four-channel
Anapico APUASYN20. The signals at frequencies ωq,

FIG. 12. Schematic of the setup. Each electromagnetic mode in the circuit is driven by an rf source detuned by the modulation
frequency and whose color matches that of the corresponding mode.
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ωr, and ωm;tomo=ωm;QEC are all combined and then sent via
the readout port of the device using a 6-GHz frequency
diplexer. The memory drive subsequently traverses
the transmon qubit, readout resonator, and its Purcell
filter before reaching the memory cavity. Given this
complex path, employing a room-temperature amplifier
becomes indispensable for achieving displacements
D̂ðβÞ, where β ≥ 2.
The signal driving the buffer mode at ωb is transmitted

through the alternative port of the device. It is combined
with a dc signal directly generated by one DAC of the OPX
using a 3-GHz frequency diplexer, facilitating a swift
transition from ϕtomo to ϕQEC. We attempt to drive the
memory through this port to bypass the previously
described elements; however, the protection from the
symmetry of the nonlinear coupler [Fig. 1(c)] is excessively
effective, and it prevents the achievement of large enough
displacements.
The two reflected signals from the buffer and readout

modes merge at the mixing chamber. The latter is first
preamplified by a traveling-wave parametric amplifier
(TWPA) [58]. Further amplification is performed by a
high electron mobility transistor at the 4-K stage and then
by a room-temperature amplifier. Subsequently, the signal
is down-converted using an image reject mixer, followed by
filtering, amplification, and acquisition by an ADC of the
OPX. With its capacity for real-time digitization and
demodulation, the OPX allows for real-time feedback
and implementation of the transmon qubit reset at the
beginning of each pulse sequence. The complete setup is
depicted in Fig. 12.

APPENDIX E: WIGNER MEASUREMENT OF
CAT STATES

1. Use of a fast flux line

As explained in the main text, the preparation of the cat
state jCαþi ∝ jαi þ j − αi is as simple as starting from the
memory vacuum state at ϕQEC and turning on a drive with
the right amplitude jϵdj ¼ α2g2 at twice the memory
frequency ωd ¼ 2ωm;QEC. This drive, resonant with the
buffer mode, injects photons with energy ℏωb;QEC, which
are converted into pairs of photons in the memory. By
adiabatically eliminating the buffer, we obtain the desired
effective memory dynamics, characterized by the loss
operator

L̂2 ¼
ffiffiffiffiffi
κ2

p ðm̂2 − α2Þ;

with κ2 ¼ 4g22=κb.
Our task is to measure the Wigner function W of the

encoded state. The conventional technique for measuring
WðβÞ [36–38] begins by displacing the memory by
D̂ð−βÞ before applying an unconditional π=2 pulse on
the transmon qubit. The system then remains idle for a

time period of π=χ ≈ 2.8 μs, during which the qubit
gains information about the parity of the number of
photons in the memory. Subsequently, a second π=2 pulse
is applied to map the memory parity into the state jgi or
jei of the qubit.
However, this method would not be effective at ϕQEC due

to the large two-photon dissipation, which would impede
proper displacements D̂ð−βÞ. Moreover, this dissipation
broadens the memory energy levels by κ2 ≫ χ, effectively
neutralizing the dispersive coupling between the memory
and transmon qubit.
To overcome these challenges, the Wigner tomography

is performed at ϕtomo, where ωb;tomo ≠ 2ωm;tomo. At this
flux, two-photon dissipation is inactive because the two-
photon exchange Hamiltonian is not preserved in the
rotating-wave approximation, enabling the usual Wigner
tomography. To rapidly switch between ϕQEC and ϕtomo, we
employ a fast flux line that sets the desired magnetic flux in
approximately 20 ns.
While the memory dynamics at ϕtomo are primarily

dominated by the self-Kerr rate χm;m=2π ≈ 220 kHz, which
only marginally impacts the system during the 20 ns it takes
to switch the flux, it is crucial to keep the drive ϵdðαÞ on
before shifting from ϕQEC to ϕtomo. The memory dynamics
at ϕQEC are indeed dominated by the two-photon dissipa-
tion with a rate κ2, which significantly impacts the system
in 20 ns. To prevent state distortion prior to the Wigner
tomography, the drive ϵdðαÞ is thus maintained during the
flux change. This drive at ωb;QEC does not affect the
memory at ϕtomo, where the frequency matching condition
is no longer satisfied.

2. Phase correction of the stabilized cat

Owing to the change in memory frequency when the flux
is switched between ϕQEC and ϕtomo, a carefully designed
driving sequence must be followed in order to track the
reference frame of the cat qubit. We set a local oscillator at
ωLO;m ¼ 2π × 3.988481 GHz and another one at twice this
frequency, ωLO;b ¼ 2ωLO;m (see Fig. 13). They are gen-
erated using two channels of an Anapico APUASYN20 so
that their phases are locked.
The memory displacement pulse applied for Wigner

tomography at the flux ϕtomo is generated by mixing the

FIG. 13. Repartition of the frequencies of local oscillators
generated by the APUASYN20 synthesizer, intermediate
frequencies generated by the OPX DACs, and resonance frequen-
cies of the device.
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local oscillator at ωLO;m with a pulse generated by the AWG
at exactly ωIF;m;tomo=2π ¼ 40 MHz. In contrast, at the flux
ϕQEC, the cat qubit is stabilized with a buffer drive at a
frequency ωb;QEC ¼ 2ωm;QEC that is not given by
2ðωLO;m − ωIF;m;tomoÞ, owing to the frequency change of
the memory between the two flux working points. The
drive at ωm;QEC is, in fact, generated by mixing the local
oscillator at 2ωLO;m with a pulse generated by the AWG
at ωIF;b;QEC ¼ 2ðωLO;m − ωm;QECÞ ≈ 2π × 120 MHz.
Owing to the detuning of about 20 MHz between

ωIF;b;QEC=2 and ωIF;m;tomo, the stabilized coherent states
j � αi of the cat qubit are offset by a time-increasing
phase in the frame of the displacement pulses used for
Wigner tomography. When trying to perform the desired
displacement D̂ð−βÞ ¼ D̂ð−jβjeiθÞ for the Wigner tomog-
raphy, this accumulated phase induces a displacement with
an angle

θoffsetðtÞ ¼ θ þ ðωIF;b;QEC=2 − ωIF;m;tomoÞt;

where t is the time spent at ϕQEC. This finding can be seen
as cat states whose direction in phase space changes over
time [Fig. 14(a)].
Taking this phase offset into account, we compensate the

accumulated phase directly on the AWG to keep the
orientation of the cat qubit states constant in phase space
when reconstructing its Wigner tomography [Fig. 14(b)].
This case is of particular interest for the measurement of
TX, where we need to measure the evolution of Wð�αÞ,
which can then be done by measuring only two points of
the Wigner function, greatly speeding up this already time-
consuming measurement.

APPENDIX F: DIFFERENT METHODS TO
CALIBRATE MEMORY DISPLACEMENTS

The displacements D̂ðβÞ applied on the memory during
Wigner tomography are performed by applying a drive at
frequency ωm;tomo. We calibrate how the displacement
amplitudes β depend on the voltage amplitude Vd at the
level of the DAC using three methods (Fig. 15). We then
verify how good the match is between the proportionality
factor μ ¼ dβ=dVd they provide.

1. Ramsey interferometry

The first calibration method relies on a Ramsey sequence
[59]. Starting from the memory in its vacuum state, a drive
of amplitude Vd is applied to displace the memory to a
coherent state jβi. Accounting for the residual thermal
occupation of the memory mode, the mean number of
photons is n̄ ¼ β2 þ nth. The dispersively coupled qubit is
then prepared in an equal superposition of ground and
excited states by applying an unconditional π=2 pulse.
After a varying time t, the superposition accumulates a
phase χm̂†m̂t that depends on the memory photon number
m̂†m̂. A second unconditional �π=2 pulse is then applied
on the qubit, which is then measured to give two average

(a)

(b)

FIG. 14. Wigner tomography of the cat state jCþ
α i with α ¼ 2

for three stabilization times: 300, 304, and 308 ns. (a) Evolution
of the cat state when no compensation is applied. (b) Evolution of
the cat when the accumulated phase between the two local
oscillators is taken into account before memory displacement.

(a)

(c) (d)

(b)

FIG. 15. (a) Ramsey interferometry. Dots: measured signal
Sþ − S− between two Ramsey-like experiments for various
voltages Vd ¼ 0, 10, 20, 30, 40 mV from top to bottom. Lines:
fit of the measurements to Eq. (F1), leading to a photon number
n ¼ 0.01, 0.10, 0.35, 0.81, 1.45. The residual thermal population
is thus nth ¼ 0.01. (b) Measured Wigner function of the memory
in thermal equilibrium with its environment. The conversion
between Vd and jβj used to plot it is made by a Gaussian fit of the
measurement with the Wigner function of a thermal state with
nth ¼ 0.01 photons on average. (c) Dots: cuts of the Wigner
tomography of a stabilized cat qubit along β∈R after 100 μs of
dephasing. Line: theoretical prediction. (d) Same plot along
β∈ iR, 500 ns after the buffer drive is turned on.
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signals S�. The difference between these two signals then
evolves as [59]

Sþ − S− ¼ cos (n̄ sin ðχtÞ)en̄( cos ðχtÞ−1)−t=T2 : ðF1Þ

From this measurement [Fig. 15(a)], we can extract the
cross-Kerr coupling rate χ=2π ¼ 170 kHz between the
memory and transmon qubit. We also obtain the thermal
population nth¼ 0.011�0.002 and μ ¼ 31.33� 0.85 V−1.

2. Thermal-state tomography

Another calibration method is to perform a Wigner
tomography of the memory thermal state using the inde-
pendently measured average occupation nth ¼ 0.01. The
density matrix can be written as a Boltzmann distribution
ρ̂th ¼ P

n½nnth=ð1 þ nthÞnþ1�jnihnj and the associated
Wigner function

WthðβÞ ¼
X
n

nnth
ð1þ nthÞnþ1

WnðβÞ; ðF2Þ

where WnðβÞ ¼ ð−1Þnð2=πÞe−2jβj2Lnð4jβj2Þ is the Wigner
function of Fock state jni. Laguerre polynomials obey the
following rule:

X
n

tnLnð4jβj2Þ ¼
1

1 − t
e4tjβj2=ð1−tÞ:

Therefore, we obtain

WthðβÞ ¼
2

πð1þ nthÞ
e−2jβj2

X
n

�
−nth

1þ nth

�
n
Lnð4jβj2Þ

¼ 2

πð1þ 2nthÞ
e−2jβj2=ð1þ2nthÞ: ðF3Þ

Using a conversion factor μ ¼ 31.31� 0.14 V−1 rescales
the displacement amplitudes from voltages Vd into com-
plex amplitudes β for the measured Wigner function in
Fig. 15(b) in such a way that the standard deviation σ of this
Gaussian distribution is σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2nth
p

=2, with nth ¼ 0.01.

3. Measurement of cat-state fringes

Our last method to calibrate the conversion factor is
based on the Wigner tomography of a cat state [60]. The
particular features of the cat Wigner function allow us to
directly estimate μ, assuming the distortion due to
memory self-Kerr or thermal population is negligible.
The Wigner function of an even cat state of size α, jCþ

α i,
can be written as

Wþ
α ðβÞ ¼

1

π
(e−2jα−βj2 þ e−2jαþβj2

þ 2 cos ð4Imðα�βÞÞe−2jβj2): ðF4Þ

Introducing δVα and δVI, the drive voltages corresponding
to, respectively, a displacement of 2α [distance between
the two Gaussian distributions in Fig. 15(c)] and the
periodicity of the fringes π=2α [seen in Fig. 15(d)], we
obtain

�
2α ¼ μδVα

π
2α ¼ μδVI:

Therefore, μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ðδVαδVIÞ

p
. The values of δVα and

δVI are measured via cuts of the Wigner function in the
direction orthogonal to the cat state [Figs. 15(c) and 15(d)].
The conversion factor obtained via this method is
μ ¼ 31.41� 0.04 V−1, once again compatible with the
previous calibrations. With the conversion factor being
calibrated, this method can actually be used in order to
estimate the cat size by simply looking at the fringes’
periodicity, as has been done in Ref. [60].

4. Calibration

To conclude this section, the three methods are com-
patible with μ ¼ 31.4� 0.1 V−1. We use this value of μ ¼
31.4 V−1 throughout the article.

APPENDIX G: MEASUREMENT OF κ2 AND κ1

1. Determination of κ2 using engineered
relaxation of cat qubits

In order to measure the rate κ2, we first prepare jCþ
α i or

jC−
α i by driving the buffer with a drive ϵdðαÞ at ϕQEC.

Turning off ϵdðαÞ while remaining at ϕQEC then ensures the
memory loses pairs of photons to the environment at the
rate κ2. Then, jC�

α i converges to a state in the manifold
fj0i; j1ig with the same parity as the initial state. An
example of such an evolution starting from jCþ

α i, α ¼ 2.5,
is shown at a few decay times in Fig. 2. The complete list of
measured decay times for this evolution is t ¼ 0, 4, 8, 12,
20, 28, 40, 60, 100, 160, 240, and 320 ns.
In order to extract the rate κ2 from these dynamics, the

initial density matrix describing the memory is approxi-
mated by

ρ ¼ pjCþ
α ihCþ

α j þ ð1 − pÞjC−
α ihC−

α j: ðG1Þ

Here, α is extracted by fitting the initial measured Wigner
tomography, while p is deduced from the value of Wð0Þ
that fully characterizes the parity of the state. However, the
obtained description of the initial density matrix is only an
approximation as it does not take into account possible
leakage out of the code space due to the memory self-Kerr
effect, dispersive coupling to transmon and buffer modes,
or the potential heating effect. From this initial state (G1),
the evolution of the memory state is then simulated using
the Hamiltonian and loss operators,
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Ĥ=ℏ ¼ −
χm;m

2
m̂†2m̂2;

L̂1 ¼
ffiffiffiffiffi
κ1

p
m̂; L̂2 ¼

ffiffiffiffiffi
κ2

p
m̂2: ðG2Þ

The single photon loss rate κ1=2π ∼ 14 kHz is extracted
from the decay of the single photon state j1i → j0i (see
Appendix G 2). Using the memory self-Kerr rate of 2π ×
220 kHz measured at ϕtomo, we take its predicted flux
dependence in Eq. (B11) to estimate that the self-Kerr rate
at ϕQEC is χm;m=2π ∼ 206 kHz. Minimizing the difference
between measured and simulated Wigner functions at all
times t,

X
t

Z
C
jWexpðβ; tÞ −Wsimðβ; tÞjdβ; ðG3Þ

then allows us to fit the value of κ2 that best reproduces the
memory dynamics.
The uncertainty shown in Fig. 2(a) is then calculated

using the result of the minimization method Δκ2 ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tol ×H−1

p
, with tol being the tolerance given for the

convergence of the algorithm and H−1 the inverse of the
Hessian matrix. It should be noted that, due to the condition
for the adiabatic elimination of the buffer,

8g2α < κb; ðG4Þ

not being verified for α≳ 1, we observe a deviation
between the experimental data in Fig. 2(b) and the
evolution predicted by this simple model. Actually, the
buffer mode becomes populated during two-photon dis-
sipation. In turn, the memory sees an effective drive
originating from this buffer population, inducing small
deformations of the Wigner function. Particularly visible at
8 ns where the buffer is close to being maximally
populated, this effect vanishes at 40 ns after the memory
loses enough photons for the system to reenter the adiabatic
regime. This effect can be taken into account in the
simulation by including the buffer dynamics without
adiabatic elimination (Fig. 16). In practice, we use the
same model as in Appendix H 2, apart from the detunings
Δm ¼ 1 MHz and Δb ¼ 0. However, this bipartite evolu-
tion does not provide an effective value of κ2 acting on the
memory mode, hence the benefit of sticking with the
simpler model.
We have tried other methods to estimate κ2, in particular,

by extracting hm̂†m̂i from the measured Wigner function

n̄ ¼
Z
C
WexpðβÞβ2dβ − 0.5 ðG5Þ

and comparing it with the theoretical expression given in
Ref. [61]. However, reconstructing n̄ with this method has
proven quite challenging due to the measurement noise of

the Wigner tomography, which would make it necessary to
use maximum likelihood estimation (MLE) [62] in order to
circumvent this issue.

2. Determination of κ1 using the relaxation
of a single photon

The measurement of κ1 is done by observing the decay
from Fock state j1i to the vacuum. If we prepare the state
jC−

α i in the memory and let it evolve under the action of
two-photon dissipation at a rate κ2 ≫ κ1 [Fig. 17(a)], the
parity of the memory is preserved so that the memory state
ends up in the subspace generated by fj0i; j1ig with the
same parity as jC−

α i: that is, the Fock state j1i. All that is
necessary to measure κ1 is then to monitor the memory
parity πWð0Þ=2 as it evolves towards 1, corresponding to
the vacuum here.
In order to prepare jC−

α i, we prepare jCþ
α i as in Fig. 2 and

then apply a Z gate. Even if the preparation and gate are not
optimized, as in this measurement, the decay rate can still
be extracted with excellent accuracy as it only affects the
initial value of Wð0Þ during the decay from j1i to j0i
[Fig. 17(b)].
The evolution of Wð0Þ in Fig. 17(b) is fitted by an

exponential relaxation at a rate κ1=2π ¼ 14 kHz. Repeating
this measurement over the course of months, we found that
it is not stable. The rate κ1=2π typically varies by �2 kHz
around this average value.

FIG. 16. Evolution of the Wigner functions of the memory
starting close to a cat state jCþ

α i, under the effect of two-photon
dissipation at ϕQEC, without driving the buffer. First and third
lines: measured Wigner functions at various times indicated on
the figure. Second and fourth lines: simulated Wigner functions
of the memory without the adiabatic elimination of the buffer, and
with a two-photon coupling rate g2=2π ¼ 6 MHz [Fig. 3(e)].
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APPENDIX H: CALIBRATION OF THE Z GATE

The quantum operation shown in Fig. 4 consists of a
rotation around the z axis of the cat qubit Bloch sphere
[Fig. 18(a)]. This process is performed by driving the
memory with a drive at frequency ωm, effectively imple-
menting a displacement whose Hamiltonian reads

Ĥz=ℏ ¼ −iϵZeiθzm̂þ H:c:

Here, θz and ϵZ are the drive phase and amplitude.
Applying this drive while simultaneously driving the buffer
at ϕQEC [Fig. 18(b)] implements a quantum Zeno dynamics
of the cavity that is restricted to states in the cat qubit
subspace. The effect of Ĥz on the Wigner function of the

memory then simply consists in shifting the phase of the
interference fringes as seen in Fig. 18(c), effectively
inducing the desired dynamics on the logical qubit.

1. Calibration of the drive phase

The first calibration needed for this scheme is to set the
value of θz to π. This method maximizes the gate speed for
a given drive amplitude ϵZ, improving the gate fidelity by
decreasing the time during which single photon dissipation
affects the memory.
This optimization is done by sweeping the phase of the

memory drive and performing a vertical cut of the memory
Wigner tomography. Looking at how fast the Wigner
function fringes shift over time allows us to extract the
oscillation rate Ωz. Note that measuring Wð0Þ alone would
leave the sign of Ωz undetermined, which is why we
measure a vertical cut of the Wigner function [Fig. 19(a)].
Using this measurement for different value of θz

[Fig. 19(b)] shows an evolution ΩzðθzÞ ∝ cosðθzÞ. This
finding is expected as only the vertical component of the
drive ReðϵzeiθzÞ effectively displaces the fringes of the cat
Wigner function [Fig. 4(c)]. The horizontal component
ImðϵzeiθzÞ is disabled by the two photon dissipation and
does not affect the system, which can be seen as a
cancellation of Ωz for θz ¼ �π=2.

2. Comparison of κZ with the theoretical model

The decay rate κZ of the oscillations around Z (shown in
Fig. 4) is obtained by simulating the master equation

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þD½ ffiffiffiffiffi

κ1
p

m̂�ðρ̂Þ þD½ ffiffiffiffiffiffi
κmφ

p
m̂†m̂�ðρ̂Þ

þD½ ffiffiffiffiffi
κb

p
b̂�ðρ̂Þ þD

h ffiffiffiffiffi
κbφ

q
b̂†b̂

i
ðρ̂Þ; ðH1Þ

whereD½L̂�ρ ¼ L̂ρL̂† − L̂†L̂ρ=2 − ρL̂†L̂=2 is the Lindblad
superoperator. The last four terms, respectively, model the
single photon dissipation of the memory, the pure dephas-
ing of the memory, the single photon dissipation of the
buffer, and the pure dephasing of the buffer. The effective
Hamiltonian of the system takes the form

(a)

(b)

FIG. 17. (a) Measured Wigner functions of the memory starting
close to jC−

α i after the decay times indicated on the figure.
(b) Dots: measured evolution of Wð0Þ as a function of the time t
spent after the memory has been prepared close to jC−

α i. Note the
much longer timescale for this single photon decay compared to
the sub-μs time needed to prepare Fock state j1i in panel (a).
Dashed line: fit of the exponential relaxation to vacuum.

(a) (b)

(c)

FIG. 18. (a) Bloch sphere of the cat qubit, whose computational
basis is jαi; j − αi. The effect of a Z rotation is illustrated by the
blue arrow. (b) Pulse sequence for Z rotation characterization.
(c) Effect of a drive −iϵZeiθzm̂þ H:c: acting on the state jCþ

α i of
the memory.

(a) (b)

FIG. 19. (a) Measured Wigner functionWðβÞ of the memory as
a function of β∈ iR and time t. The displacement drive
parameters are ϵ̄Z=2π ¼ 1.25 MHz and θz ¼ π=2. (b) Measured
oscillation frequency Ωz around the z axis of the Bloch sphere as
a function of θz.
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Ĥ
ℏ
¼ Δmm̂†m̂þ Δbb̂

†b̂ −
χm;m

2
m̂†2m̂2 −

χb;b
2

b̂†2b̂2

− χm;bm̂†m̂b̂†b̂þ g2ðm̂2 − α2Þb̂† þ H:c:

þ iϵZe−iθzm̂† − iϵZeiθzm̂;

where Δb ¼ ωb − ωd is the detuning of the drive with
respect to the buffer frequency, and Δm¼ωm−ωb=2þ
Δb=2. Here, the Gaussian drive envelope reads

ϵZðtÞ ¼ ϵ̄Z
6ffiffiffiffiffiffi
2π

p exp
�
−
ðt − T=2Þ2

2w2

�
;

where the time window of the pulse is set to w ¼ T=6, with
T being the total time of the pulse and ϵ̄Z corresponding to
the average drive amplitude. The case of a square pulse is
easily extended by choosing ϵZðtÞ ¼ ϵ̄Z over the same time
window. As for the experiment, we fit the decaying
oscillations of the photon number parity to extract the
rotation frequencies ΩZ and decay rate κZ corresponding to
each drive amplitude ϵZ.
We numerically observe that the value of κZ is mostly

sensitive to the loss rate κ1, the ratio 4g22=κb, the self-Kerr
rate χm;m, and the effective detuning Δm. We have inde-
pendently measured χm;m=2π¼0.22MHz, κ1=2π¼ 14 kHz,
and κb=2π ¼ 40 MHz, which leaves us with two fit
parameters, g2 and Δm. Let us estimate the uncertainty
on Δm. As we have measured Δb=2π ¼ −3 MHz (see
Fig. 25), this process leads to Δm=2π ¼ ωm − ωb=2−
1.5 MHz. The resonance condition 2ωm ¼ ωb being sen-
sitive to the external flux threading the loop, we estimate
that j2ωm − ωbj < 5 MHz from the width of the peak
κ2ðφextÞ in Fig. 2(a), leading to Δm=2π¼−1.5�2.5MHz.
From the fit of the frequencies of the system and the

formula derived in Appendix B, we estimate χðmodelÞ
m;b =2π≈

1.6 MHz, χðmodelÞ
b;b =2π≈10MHz, and gðmodelÞ

2 =2π≈6.5MHz.
Interestingly, the decay rate κZ strongly depends on g2, and
we use it to extract this parameter experimentally. For
perfect frequency matching 2ωm ¼ ωb, the best fit to the
simulation is obtained for g2=2π ¼ 6 MHz (solid line
in Fig. 20).
To illustrate the sensitivity of the simulations to the value

of g2, we also compute κZðαÞ for g2=2π ¼ 5.5 MHz and
g2=2π ¼ 6.5 MHz. The clear deviations in Fig. 20(a) show
that, under the assumption that 2ωm ¼ ωb, g2 can be
determined with a much better precision than 2π ×
0.5 MHz from the measured decay rates κZ.
The uncertainty on g2 is actually dominated by the values

it can take over the range of conceivable detunings Δm. In
order to get a higher bound on this uncertainty, we choose
three values for the resonance condition, ð2ωm − ωbÞ=2π ¼
−5, 0, and 5 MHz, and search for the rate g2 that best
reproduces the experiment. The fitted g2 rates are between

2π × 6.0 MHz and 2π × 6.5 MHz [Fig. 20(b)]. We there-
fore claim that g2=2π ¼ 6� 0.5 MHz.
Note that in the simulations of the bit-flip time (Fig. 3)

and in the simulations of the Z gate (Fig. 4), we have used
the value g2=2π ¼ 6 MHz, which best fits the gate rates and
decay rates for the detuning ð2ωm − ωbÞ=2π ¼ 3.5 MHz.

3. Bias-preserving nature of the Z gate

In order to preserve the benefit offered by bit-flip
protection in cat qubits, it is crucial for logical gates to
be bias preserving [63], meaning they do not convert phase-
flip errors into bit-flip errors.
In order to verify the bias-preserving nature of the Z gate,

we measure the dependence of TX when continuously
driving the memory with a varying drive amplitude ϵZ.
Similarly to the measurement presented in Fig. 3, the flux is
first set to ϕtomo and the memory displaced by D̂ðαÞ in order
to prepare the desired state jαi. The flux is then changed to
ϕQEC, and two drives are sent to the buffer and memory

(b)

(a)

FIG. 20. (a) Triangles: measured decay rate κZ of the oscil-
lations around Z as a function of jαj2 for four drive amplitudes ϵZ
corresponding to distinct colors as in Fig. 4(d). Lines: simulated
decay rates κZ using Eq. (H1) with three values of the rate g2=2π
indicated as an inset. (b) Triangles: same measurement as above.
Lines: simulated κZ for three values of the detuning between the
buffer and the memory ð2ωm − ωbÞ=2π ¼ −5, 0, and 5 MHz
covering the uncertainty range, and the corresponding optimal
values of g2=2π ¼ 6.5, 6.0, and 6.0 MHz.
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modes, with amplitudes of ϵdðαÞ and ϵZ. The role of the
drive acting on the buffer is to stabilize the cat qubit,
preventing bit-flip errors from happening, while the drive
acting on the memory performs the desired Z gate. The
Wigner function Wð�αÞ is then finally measured for
various waiting times, and their difference WðαÞ −
Wð−αÞ ∝ e−t=TX is fitted to extract TX [Fig. 21(a)].
The measured dependence of TX on ϵ̄Z is shown in

Fig. 21(b) for different amplitudes α. Despite a rather large
measurement uncertainty, no visible decrease of TX can be
observed for jϵ̄Z=2πj < 6 ðMHzÞ, after which the displace-
ment becomes strong enough to overcome the stabilization
provided by the two-photon dissipation. This process
induces an increased number of bit-flip errors, leading to
a decrease of TX.
The Z rotation presented in Fig. 4(a) is measured with

ϵ̄Z=2π ¼ 1.625 MHz. It can thus be assumed that the drive
did not induce additional bit-flip errors. Comparing the
measured TX ∼ 10 ms for α2 ¼ 9.3 with the ZðπÞ gate
duration, we can estimate that bit-flip errors alone would
then limit the gate fidelity to about 99.9997%. The obtained
gate fidelity of 96.5% thus primarily originates from phase-
flip errors.

4. Fidelity of the Z gate

To evaluate the fidelity of the Z gate, we use the
evolution of WðβÞ shown in Fig. 4(c) and directly estimate
the evolution of the logical hσ̂x;Li, hσ̂y;Li, and hσ̂z;Li from
the Wigner functions. These operators are defined in the cat
encoding as

σ̂x;L ¼ jCþ
α ihCþ

α j − jC−
α ihC−

α j;
σ̂y;L ¼ jCþi

α ihCþi
α j − jC−i

α ihC−i
α j;

σ̂z;L ¼ jαihαj − j − αih−αj;

with jC�
α i¼ðjαi�j−αi= ffiffiffi

2
p Þ and jC�i

α i¼ ðjαi� ij−αi=ffiffiffi
2

p Þ. The measured evolution of the three logical Bloch
vector coordinates is shown in Fig. 22(a). Interestingly, the

evolution of hσ̂z;LiðtÞ during the gate shows no visible
evolution [Fig. 22(b)], which is expected from its bias-
preserving property [Fig. 21(b)].
Using the formalism of the standard process matrix χ

[64], the impact of the Z gate on an initial density matrix ρ̂
is modeled as

EZðρ̂Þ ¼
X
m;n

χmnÊmρ̂Ê
†
n; ðH2Þ

where the fixed set of operators is chosen as fÊmgm ∈
f1; σ̂x;L; σ̂y;L; σ̂z;Lg. Furthermore, owing to the demon-
strated negligible bit flips occurring during the Z gate,
we assume that no term causing a bit-flip type of error
appears in Eq. (H2), and we only consider the simpler error
model that provides a lower bound on the fidelity by
neglecting the χz;1 and χ1;z terms,

EZðρ̂Þ ¼ ð1 − εÞσ̂z;Lρ̂σ̂z;L þ ερ̂: ðH3Þ

The parameter χz;z ¼ ð1 − εÞ then corresponds to the gate
fidelity, owing to the definition F ¼ TrðχχoptÞ. Indeed, the
matrix χopt is the χ matrix describing an ideal Z gate, with
all its terms null except for χz;z ¼ 1. Using the general
form of a density matrix describing a qubit from its Bloch
vector ðxyzÞT,

ρ̂ ¼ 1

2
ð1þ xσ̂x;L þ yσ̂y;L þ zσ̂z;LÞ;

(a)

(b) (c) (d)

FIG. 22. (a) Trajectory of the cat qubit during the Z gate
estimated from the Wigner functions of Fig. 4(c). (b) Dots: mean
value of σ̂z;L as a function of the gate time. Line: linear fit of
hσ̂z;LiðtÞ. (c) Dots: mean value of σ̂x;L as a function of the gate
time. Line: fit used in Fig. 4(b) to oscillations at a frequency
ΩZ=2π ¼ 19.8 MHz, decaying at a rate κZ=2π ¼ 0.62 MHz. A
scaling factor of π=2 is applied with respect to the relation
Wð0Þ ¼ 2hσ̂x;Li=π. (d) Dots: mean value of σ̂y;L as a function of
the gate time. Line: fit used in panel (c) dephased by π=2.

(a) (b)

FIG. 21. (a) Pulse sequence for the TX measurement, while
continuously applying the Z gate on the memory with an average
drive amplitude ϵ̄Z. (b) Dots: measured TX as a function of the
average memory drive amplitude ϵ̄Z for different cat qubit sizes
α ¼ 2, 2.4, and 2.7 (yellow to brown). Lines: measured
TX at ϵ̄Z ¼ 0.
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the density matrix, after application of the gate, reads

EZðρ̂Þ ¼
1

2
ð1 − xð1 − 2εÞσ̂x;L

− yð1 − 2εÞσ̂y;L þ hσ̂z;Liσ̂z;LÞ:

The parameters ε can then be estimated with the evolution
of hσ̂x;LiðtÞ and hσ̂y;LiðtÞ. We first check that the evolution
of hσ̂x;Li ¼ Wð0Þπ=2 and hσ̂y;Li matches the fit of Wð0Þ
used in Figs. 4(b) and 4(c), up to a scaling factor and a
dephasing. Finally, we compute F ¼ 1=2þ e−πκz=Ωz=2 ¼
95� 2% for the 26-ns-long Gaussian pulse with jαj2 ¼ 9.3
and for a drive amplitude ϵ̄Z=2π ¼ 1.625 MHz. The same
expression for the measured decaying oscillations of parity
in the case of square pulses leads to a slightly better fidelity
of F ¼ 96.5� 2% in 28 ns. Note that the infidelity in the
preparation of jCþ

α i is due to a preparation time of 500 ns
starting from j0i, similar to the phase-flip time of the cat
qubit 1=ΓZ ≈ 500 ns for jαj2 ¼ 9.3. This time should be
optimized in future measurements.

APPENDIX I: COMPLEMENTARY DATA AND
ANALYSIS ABOUT BIT-FLIP AND PHASE-FLIP

RATES

1. Measurement of TX, ΓZ

Figure 3 shows the measured Tx and ΓZ for various cat
sizes α. An example of a phase-flip rate and bit-flip time
measurement is shown in Fig. 24 for α ≈ 2.6.
The phase-flip rate corresponds to the loss of coherence

of the cat qubit, through which any superposition
of j � αi decays to a mixture of these two coherent states.
In order to probe it, a cat state jCþ

α i is first prepared in the
memory by applying a drive ϵdðαÞ at ϕQEC, starting from
an empty cavity. The cat qubit decoherence towards
ðjαihαj þ j − αih−αjÞ=2 is then monitored by simply
measuring Wð0Þ. Fitting this evolution with an exponen-
tial decay at a rate ΓZ gives the value of the phase-flip rate
[Fig. 23(a)].
The bit-flip time TX characterizes the typical time it

takes for the populations in jαi and j − αi to equilibrate.
We measure this value for various amplitudes α by first
displacing the memory at ϕtomo to prepare jαi, before
applying a drive ϵdðαÞ at ϕQE. The state jαi is then
protected by the Zeno dynamics. We monitor the values
ofWðαÞ andWð−αÞ over time and fitWðαÞ −Wð−αÞ with
an exponential decay at a rate 1=TX, which gives the value
of the bit-flip time [Fig. 23(b)].

2. Dependence of TX and ΓZ on photon number for
various buffer-drive frequencies

The cat stabilization works by driving the buffer on
resonance at ϕQEC. What happens if we drive it off
resonance?

Figure 24(a) shows the measured Wð0Þ as a function of
flux and drive frequency ωd after 5 μs of stabilization. The
red regions where Wð0Þ ≈ 2=π correspond to a memory
unaffected by the drive, so it is in the vacuum state. In
contrast, a white region where Wð0Þ ≪ 1 corresponds to
regions where a mixture of coherent states has formed in
the memory. The figure is reminiscent of an avoided level
crossing, and it is actually an autoparametric version of that
between ωbðϕextÞ and 2ωmðϕextÞ.
The dependence of Tx and ΓZ on mean photon number

α2 is measured for four buffer-drive frequencies at ϕQEC

[dots in Fig. 24(a)]. A similar behavior for Txðα2Þ can be
seen for the four different drive frequencies, with an initial
exponential increase before reaching a maximum for some
optimal cat size [Fig. 24(b)]. This optimal bit-flip time
strongly depends on the chosen drive frequency, with the
curve shown in Fig. 3(d) corresponding to the frequency
that gives us the largest measured bit-flip time TX.
Note that the 1D cuts of the Wigner functions WðβÞ,

from which the bit-flip times are extracted (not shown
here), exhibit a broadening of the Gaussian distribution
around �α with increasing α and with increasing drive
detuning. This broadening can result from a distortion of
the cat qubit manifold and/or a thermalization of the
memory. As discussed in Appendix I 6, based on

(a)

(b)

FIG. 23. Determination of Tx and ΓZ for α2 ≈ 6.5. (a) Dots:
measuredWð0Þ as a function of cat stabilization time t. Solid line:
fit with an exponential decay e−Γzt. Inset: associated pulse
sequence. (b) Dots: measured Wð−αÞ, WðαÞ and WðαÞ −
Wð−αÞ as a function of cat stabilization time t. Solid line: fit
with an exponential decay of the measured data, with the bit-flip
time deduced from the fit of WðαÞ −Wð−αÞ. Inset: associated
pulse sequence.
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reasonable assumptions, we show numerical evidence that
both the smaller bit-flip times at other detuning and the
broadening of the Wigner distribution can originate from
the dephasing and the self-Kerr effect of the buffer mode.
The dependence of ΓZðα2Þ is measured for the same four

drive frequencies [Fig. 24(c)]. The same initial behavior
can be seen for all four curves with an initial linear increase
of the phase-flip rate. The slope of the linear increase is
given by ΓZ ¼ 2jαj2=T1;eff, with T1;eff the effective memory
lifetime. This effective lifetime matches the memory life-
time measured by looking at the decay from j1i to j0i at the
optimal drive frequency (see Appendix G 2). The effective
memory lifetime drastically deteriorates as the drive-
frequency detuning increases.

3. Dephasing-rate measurement

The memory pure dephasing rate κmφ , used for numerical
simulations of the bit-flip time evolution, is measured with
a Ramsey-like experiment. A state close to ðj0i þ j1iÞ=2 is
prepared in the memory by first displacing the memory to
the coherent state jαi, with α ¼ 2.1, and letting it decay
under the loss operator L̂2 ¼ ffiffiffiffiffi

κ2
p

m̂2. By the Zeno effect,
the two-photon loss constrains the memory dynamics to the
fj0i; j1ig manifold, hence acting as a qubit whose basis
states are zero and one photon in the memory. This state is
then left idle for a time t, during which it rotates around the
Z axis of the Bloch sphere at the detuning Δm between
the memory drive frequency and ωm;QEC, in the frame of the
drive frequency. The memory state evolves under the
Hamiltonian and loss operator,

Ĥ=ℏ¼−
Δm

2
ðj1ih1j− j0ih0jÞ;

L̂1¼
ffiffiffiffiffi
κ1

p j0ih1j; L̂φ ¼
ffiffiffiffiffiffi
Γφ

2

r
ðj1ih1j− j0ih0jÞ: ðI1Þ

Note that the dephasing operator on the memory when the
Zeno blockade is disabled reads

ffiffiffiffiffiffi
κmφ

p
m̂†m̂. The correspon-

dence is thus κmφ ¼ 2Γφ.
For readout, the obtained state is then mapped into the

fjαi; j − αig manifold by driving the buffer mode with a
drive ϵdðαÞ, mapping the eigenvectors of ðj1ih0j þ j0ih1jÞ
to the two coherent states. The Wigner function Wð�αÞ
(Fig. 25) is then measured, and the data are fitted to extract
the detuning Δm ¼ 3 MHz and dephasing rate of the
memory κmφ =2π ≈ 0.16 MHz.

4. Population of the higher excited states
of the transmon

The transmon used for the Wigner tomography, dis-
persively coupled to the memory mode, has been shown to
be one of the main factors limiting the bit-flip time TX at
large photon numbers. In this experiment, the two-photon
dissipation rate κ2 is much greater than the dispersive shift
κ2 ≫ χ. This feature ensures that the population in the qubit

(a)

(b)

(c)

FIG. 24. (a) Anticrossing of the autoparametric memory-buffer
system. We show the measuredWð0Þ after applying a buffer drive
at ωd for 5 μs while at ϕext. (b) Dots: measured Tx as a function of
α2 for four different drive frequencies. The color matches with the
dots shown in panel (a). (c) Dots: measured ΓZ as a function of α2

for four different drive frequencies. Dashed line: linear fit of the
measured data with ΓZ ¼ 2jαj2=T1;eff , where the fit parameter
T1;eff is shown in the inset.

FIG. 25. Ramsey-like experiment on the fj0i; j1ig memory
manifold. Dots: measured Wigner tomography Wð�αÞ. Dashed
line: fit used to extract the dephasing rate κmφ ¼ 2Γφ.
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first excited state only has a negligible detrimental impact
on the cat-qubit stabilization and does not introduce addi-
tional bit-flip errors [19,23].
However, simulations show that populations of higher

excited states of the transmon have an impact on the bit-flip
time. The transmon populations are probed by measuring
the transmon state, while a cat qubit is stabilized in the
memory mode. The drive frequency of the readout reso-
nator is chosen in order to resolve the transmon states up to
its fifth excited state. In contrast, the readout frequency
used everywhere else in this work was optimized to
distinguish between the transmon ground and first excited
states. A cutoff is then calibrated to separate the states
j0i; j1i; j2i; j3i, and j4i from the others, allowing us to
measure the transmon population for each amplitude α of
the cat qubit [Fig. 26(b)].
As can be seen in Fig. 26(c), the transmon populations in

states of higher energy than j3i get excited for jαj2 > 10.
This increase in transmon higher excitations is clearly
correlated with the occupation of the memory mode. Note
that it is not a Boltzmann distribution.
We attribute the increase of the occupation of transmon

states above j3i to a resonance between the memory and the
higher levels of the transmon. The negative anharmonicity
ω12 − ω01 ¼ −2π × 181 MHz of the transmon results in a
transition frequency between the sixth and seventh excited

states being close to that of the memory. Note that such a
resonance usually occurs when the resonator frequency is
below that of the transmon. This phenomenon, which also
happens with a simple Duffing oscillator, was recently
investigated theoretically in Ref. [65] and experimentally in
Ref. [66]. As the number of photons in the resonator
increases, the states below and above the sixth and seventh
states of the transmon also hybridize. In the steady state, we
expect these hybridized states to be equally populated
[65,67] and this population to increase with the number
of photons in the resonator. This qualitative signature
of a growing number of hybridized states is observed in
Fig. 26(c). Note that this is in contrast to an overall increase
in the temperature, where one would expect the hierarchy
of populations to roughly follow the Boltzmann distribu-
tion. Below, we study how a finite population of these
hybridized states sets an upper bound on the bit-flip
time TX.

5. Impact of high excited states of the transmon
on bit-flip time

Populating the higher excited states of the transmon can,
in turn, result in a shift of the memory frequency. If this
shift exceeds the tolerance of the stabilization scheme, even
a small population could limit a bit-flip time that is as high
as hundreds of milliseconds. Below, we evaluate the
magnitude of the frequency shifts that can be reached
when the memory field drives the transmon.
In our system, the transmon is inductively coupled to the

memory and capacitively coupled to a readout resonator.
For simplicity, we neglect the Purcell filter of the readout
resonator. The Hamiltonian of the system we consider reads

Ĥ ¼ 4ECðn̂t − ngÞ2 − EJ cos θ̂t þ ℏωmm̂†m̂þ ℏωcĉ†ĉ

þ ℏgmt sin θ̂tðm̂þ m̂†Þ − iℏgctntðĉ − ĉ†Þ; ðI2Þ

where n̂t and θ̂t are the transmon charge and phase
operators, ng is the offset charge, ĉ is the annihilation
operator of the readout resonator, ωc is the frequency of
the readout resonator, and gmt=2π and gct=2π are the
coupling rates between the memory and the transmon and
between the readout resonator and the transmon. We find
the values of charging energy EC=h ¼ 169.4 MHz and
Josephson energy EJ=h ¼ 22.85 GHz, as well as the
values of the coupling rates gct=2π ¼ 67 MHz and
gmt=2π ¼ 225 MHz, by fitting the measured low-energy
spectrum of the system, which includes frequencies,
anharmonicity, and dispersive shifts of the system.
Although we are concerned with the interaction of the
memory and transmon, we include the readout resonator
to correctly fit the spectrum of the system.
By diagonalizing the Hamiltonian in Eq. (I2), one can

obtain the values of the frequency shifts on the cavity as a
function of the transmon state and the number of photons in

(a)

(c)

(b)

FIG. 26. (a) Histogram of 107 measurements of the readout
quadratures when the transmon and memory are in thermal
equilibrium with the cold environment. (b) Same histogram when
a cat qubit space is stabilized for 100 μs with a mean photon
number jαj2 ≈ 30. (c) Dots: measured occupation of the transmon
states as a function of the stabilized mean number of photons in
the memory. Excitation numbers are indicated by colors of
increasing brightness. Black dotted line: sum of the populations
in states higher than j3i.
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the resonator (see Fig. 27). In the inset, one recognizes
the dispersive shift χ=2π ¼ 0.170 MHz when the trans-
mon is in its first excited state j1i, which is used for the
Wigner tomography. While populating one of the first
three excited states of the transmon causes small enough
frequency shifts of the memory (inset) so that they are
handled by the stabilization scheme, populating higher
excited states can result in frequency shifts as large as
30 MHz. Such large frequency shifts are due to the
nonperturbative hybridization of the transmon states, thus
exiting the dispersive regime of the coupling between
transmon and memory.
For small frequency shifts, the state remains confined

to a manifold spanned by two coherent states, although
the cat size might change slightly. Indeed, using a semi-
classical analysis [Eq. (S22) of Ref. [23] ], in the limit
where κ1 ≪ jΔmj and κb ≫ jΔbj, the photon number reads
jαΔj2 ¼ jα0j2 − ðjΔmjκb=4jg2j2Þ, where jα0j2 is the photon
number at zero detuning at the same drive amplitude. This
equation has a solution if jΔmj < 4jg2j2jα0j2=κb. Using the
measured and extracted values of κb=2π ¼ 40 MHz and
g2=2π ¼ 6 MHz, we obtain jΔmj < 3.6jα0j2 MHz, that is,
the minimal condition for a 2D manifold to be stabilized.
The impact on the bit-flip time of the detuning Δm induced
by the transmon higher excitation is illustrated in Fig. 28,
where the bit-flip time is plotted for various detunings as a
function of the drive amplitude. The drive amplitude is
converted to the photon number corresponding to the
detuning Δm=2π ¼ 2.75 MHz.
The detuning associated with the first and second excited

states (below 20 photons) is less than 1 MHz, making the
condition jΔmj < 3.6jα0j2 MHz largely satisfied. This
finding is numerically verified in Fig. 28. In this case,
the bit-flip rate becomes T−1

X ¼ P
i;jΔij<Δmax

piT−1
X ðΔiÞ. The

small detunings associated with the first and second excited
states make the weighted contribution piT−1

X ðΔiÞ; i ¼ 1, 2
negligible compared to p0T−1

X ðΔ0Þ.

However, detunings as large as 30 MHz become
difficult for the dissipation scheme to compensate. For
jΔmj ¼ 30 MHz, the minimal condition to generate a cat
state in the cavity is jα0j2 > 8.5 photons. Moreover, even if
the memory becomes populated, this large detuning comes
with a large displacement on the buffer mode, β ∼
Δm=2g2 ¼ 2.5 (see next section). Combined with its
dephasing noise and large Kerr nonlinearity, the resulting
bit-flip time of such a cat qubit is low. This case is
illustrated in Fig. 28, where the bit-flip time corresponding
to a detuning of 9 MHz does not improve over the bare
memory lifetime until jα0j2 ¼ 12.5. For simplicity, we
assume that a bit flip occurs every time the system is
subject to such a large detuning for the range of photons
considered here, which represents the worst-case scenario.
From the analysis of the transmon, it is likely that

populating the layer of hybridized states will result in a
large detuning and therefore a bit flip. This result allows
us to derive a simple upper bound on the induced bit-flip
time TX from the measured values of the state population:
It is given by the inverse of the rate at which this layer of
states is populated, γhyb. Let us call phyb the population
of the hybridized states, represented as a black dotted
line in Fig. 26, and p1 the population of the first excited
state. Note that state j2i merges with the rising plateau of
states around jαj2 ¼ 20 photons. The rate at which the
hybridized layer becomes populated thus reads γhyb ¼
γhyb→1phyb. Using the measured γ−11→0 ¼ 18 μs and assum-
ing γhyb→1 ≈ γ2→1 ¼ 2γ1→0, we obtain the red dotted line
in Fig. 3(b).

FIG. 27. Dots: computed memory frequency shift as a function
of mean photon number n̄ in the memory for various transmon
states. The vertical lines are due to state mistracking. Inset: zoom
on the small dispersive shifts for low transmon excitation.

FIG. 28. Effect of memory detuning Δm on the bit-flip time TX.
The bit-flip time is plotted as a function of the drive amplitude
for several values of Δm. The drive amplitude is converted
to the corresponding photon number at Δm ¼ 2.75 MHz, which
approximately corresponds to the detunings set for Fig. 3(b).
The simulations are performed under the assumption that
κmφ =2π ¼ 0.16 MHz, κbφ ¼ 60 × κmφ , χm;m=2π ¼ 0.22 MHz, and
χm;b=2π ¼ 1.6 MHz, and without any self-Kerr on the buffer
mode. The crosses indicate the experimentally measured bit-flip
times shown in Fig. 3(d).

AUTOPARAMETRIC RESONANCE EXTENDING THE BIT-FLIP … PHYS. REV. X 14, 021019 (2024)

021019-23



6. Main limitation of the bit-flip time

Before studying other possible limiting factors on the
bit-flip time, let us first briefly review the experimental
data that cannot be explained solely by the heated trans-
mon. As a reminder, the transmon higher excited state
population may have been a limitation for bit-flip times
above the red dots in Fig. 3(d). However, measurements
taken at various drive detunings reveal earlier saturation of
the bit-flip time, almost 2 orders of magnitude lower than
0.3 s [see Fig. 24(b)], which cannot be explained by the
presence of a transmon.
In this section, we show that the self-Kerr effect of the

memory steers the system away from resonance as the
photon number increases, resulting in a smaller bit-flip
time, which corroborates the dependence of the bit-flip time
on the drive detuning.
Furthermore, we discuss possible mechanisms that could

limit the bit-flip time even when the drive is on reso-
nance (Δm ¼ 0).

a. Impact of memory self-Kerr on bit-flip time TX

The protection against the bit flip is diminished away
from resonance. Thememory self-Kerr results in an effective
detuning on the memory as the photon number increases.
Each cat size corresponds to an optimal drive detuning for
which the resulting effective detuning on the memory
cancels. This case is illustrated in Fig. 29(a), which shows
the bit-flip times extracted from the simulation of Eq. (H1),
at the values of the drive detunings Δb corresponding to the
experimental values of Fig. 24(b) and beyond.We observe a
qualitatively similar behavior between simulations and
measurement of the bit-flip times, in particular, for the
curves corresponding to larger detunings.
Note that the self-Kerr rate of the buffer mode (not

measured) is omitted here, as otherwise we observe that
the required Hilbert space dimension for accurate enough
simulations becomes prohibitively large for even moder-
ate jαj.
An effective detuning results in a displacement of the

buffer mode, and the computation of this displacement can
be used to estimate the effective detuning. In the interaction
picture, the master equation on the memory mode,
Eq. (H1), reads

dm̂
dt

¼ −iΔmm̂ − i2χm;mm̂†m̂2 − iχm;bm̂b̂†b̂

−
κmφ þ κ1

2
m̂ − i2g2m̂†b̂:

Assuming a steady-state solution of the form
ρ ¼ jαihαj ⊗ jλihλj, with α ≠ 0, and taking the trace of
the above equation, we obtain

λ ¼ ei2θm
−Δm − 2χm;mjαj2 − χm;bjλj2 þ iðκmφ þ κ1Þ=2

2g2
;

where θm ¼ argðαÞ.

In the limit κmφ ; κ1 ≪ jΔm þ 2χm;mjαj2 þ χm;bjλj2j, the
amplitude λ becomes

λ ¼ −ei2θm
Δm þ 2χm;mjαj2 þ χm;bjλj2

2g2
: ðI3Þ

The displacement amplitude on the buffer depends on the
effective memory detuning, which in turn depends linearly
on the cat photon number due to the self-Kerr effect. In
Fig. 29(b), we show the amplitudes of the buffer mode
corresponding to the curves of Fig. 29(a). For a given cat
size, the drive detuning giving the optimal bit-flip time
corresponds approximately to the smallest buffer amplitude
and therefore to the smallest effective detuning.

(a)

(c)

(b)

FIG. 29. (a) Simulated bit-flip times for various values of the
drive detuning Δb ¼ ωb − ωd [color code shown as an inset in
panel (b)], among which are the values of Fig. 24(b). The memory
detuning from the buffer is 2ωm − ωb ¼ 2π × 3.5 MHz. As a
reference, we indicate the measured optimal bit-flip times (black
crosses) and the bound independently set by the transmon (red
circles). (b) Corresponding amplitudes of the buffer mode in the
steady state as a function of average photon number jαj2 in the
memory for the same detunings. (c) Simulated probability
distributions of the quadrature defined by the direction of α in
the memory phase space PðReðβÞÞ ¼ jhReðβÞjψij2, plotted for
several values of jαj2 (arbitrary units and offset for each α). The
detuning is set to Δb=2π ¼ −4 MHz. As the photon number
increases, the distribution broadens. All the simulations are
performed under the assumption that κmφ =2π ¼ 0.16 MHz,
κbφ ¼ 60 × κmφ , χm;m=2π ¼ 0.22 MHz, and χm;b=2π ¼ 1.6 MHz,
and without any self-Kerr on the buffer mode.
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b. Impact of memory dephasing on bit-flip time TX

We expect pure dephasing on the memory
(Tm

φ ¼ 1=κmφ ¼ 1 μs; see Fig. 25) to impact the bit-flip
time TX. In the adiabatic regimewhere 8jαjg2 ≪ κb, the bit-
flip time scales as Tm

φ jαj−2 expð2jαj2Þ [1]. However, in our
case, the adiabaticity criteria are not met for jαj≳ 1. As
illustrated in Fig. 30, the memory dephasing noise limits
the scaling of TX with the photon number but does not lead
to a saturation (dashed lines).
Moreover, if one assumes the dephasing rates of the

memory and buffer modes are limited by flux noise, we can
estimate the buffer dephasing rate as

κbφ ¼ κmφ
j ∂ωb
∂ϕext

ðϕQECÞj
j ∂ωm
∂ϕext

ðϕQECÞj
≈ 60κmφ :

Using the measured value κmφ =2π ¼ 0.16 MHz, we esti-
mate κbφ=2π ¼ 9.6 MHz. When taking this large dephasing
rate into account, the bit-flip time is predicted to saturate
even without the transmon (solid lines in Fig. 30).

c. Impact of buffer thermalization on bit-flip time TX

During the stabilization, the driven buffer ideally stays in
the vacuum state. However, the coupling to the environ-
ment may lead to the thermalization of the buffer and
memory bipartite system, which induces bit-flip errors.
Indeed, we note the following:

(i) If the buffer state becomes thermal, buffer photons
are converted to memory photons by the two-photon
exchange term, thus creating a heating term of the
form m̂†2 on the memory, thus affecting the bit-flip
time TX [27].

(ii) The cross-Kerr effect (χm;b) between memory and
buffer modes leads to an effective dephasing rate of
the memory. For instance, we estimate that, with 0.2
thermal photons in the buffer, the memory dephasing
rate increases by 0.5 MHz [68].

We envision the following origins for the thermalization.
(i) When the buffer is displaced to a finite amplitude

λ ¼ hb̂iss ≠ 0 due to drive detuning [see Fig. 29(b)],
dephasing noise on the buffer can be up-converted to
thermal photons via the drive. Indeed, dephasing
noise can be seen as small random rotations in
phase space resulting in a small diffusion of a
coherent state along the circle of radius jhb̂issj. This
diffusion competes with single photon loss of
the buffer, resulting in an effective temperature of
nbth ¼ κbφjhb̂issj2=κb, where κbφ is the dephasing rate
of the buffer. We find nbth ¼ 0.24jλj2. In Fig. 29(c),
we show the marginals of the Wigner functions of
the steady state in the memory as a function of jαj2.
The memory heating can be seen as a broadening of
the Gaussian distribution.

(ii) The large expected self-Kerr rate of the buffer
χbb=2π ≈ 10 MHz results in a small squeezing on
the buffer when it is displaced. The single photon
loss channel on a squeezed buffer yields an addi-
tional effective thermal occupation given by
nbth ¼ sinh2ðrÞ, where r is the effective squeezing
parameter.

APPENDIX J: COMPARISON BETWEEN
CAT-QUBIT STABILIZATION SCHEMES

To better understand the strengths and weaknesses of the
autoparametric scheme compared to other experimental
demonstrations, we show a comparison of key figures and
constraints in Table I. In this table, ϵ0 is the dimensionless
pump amplitude on the ATS [see Eq. (S3) in Ref. [19] ]. As
can be seen in the table, the autoparametric cat performs
better than other schemes on most figures, including the
number of required microwave lines. The symmetry
requirements are stronger than in other schemes if the
buffer-flux line position is optimized to prevent memory
leakage, but they do not preclude the feasibility of a
repetition code based on this circuit. Note that a notch
filter on the drive line can be used to enhance or replace the
protection provided by symmetry. We do not include the
earlier scheme of a transmon qubit used as a coupler
[17,18] since no exponential scaling could be demon-
strated, owing to parasitic Hamiltonian terms.
The saturation due to the transmon higher excited states

that we observe in TX could be canceled by using the
technique introduced in Ref. [39] on an ATS where the
readout transmon is removed. Finally, the main remaining
caveat seems to be the buffer thermalization that limits the
bit-flip scaling time in the autoparametric cat. We note that

FIG. 30. Simulated bit-flip times as a function of the memory
dephasing rate κmφ for two values of the buffer dephasing rate,
κbφ=2π ¼ 0 MHz (dashed lines) and κbφ=2π ¼ 9.6 MHz (solid
lines). The simulations are performed under the assumption that
χm;m=2π ¼ 0.22 MHz and χm;b=2π ¼ 1.6 MHz, and without any
self-Kerr on the buffer mode.
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detuning the buffer drive by the right amount for a given cat
qubit size should cancel out this effect (see Fig. 29).

APPENDIX K: CNOT GATE

In order to correct the remaining phase-flip errors of the
autoparametric cat, one can use a chain of coupled
autoparametric cats in order to perform phase-flip error
correction using a 1D repetition code. Such an error-
correction code needs a two-qubit gate between cat qubits.
Here, we propose using a CNOT gate and explain how it
would operate.
A CNOT gate can be performed between two autopara-

metric cats (named control and target) as long as they are
coupled through a four-wave mixing element (Josephson
junction, SQUID, ATS, quarton [71],…; see AppendixK 1).
A scheme for a repetition code coupling autoparametric cats
with four-wave mixers is shown in Fig. 31.
A CNOT gate between two cat qubits should act on

coherent states as

ÛCNOTjαc;�αti ¼ jαc;�αti;
ÛCNOTj−αc;�αti ¼ j−αc;∓ αti;

TABLE I. State of the art in key figures of the autoparametric cat, cats stabilized by an ATS, and Kerr-cat qubits.

Metric Kerr cats [14,15] ATS stabilized cat [19,39] Autoparametric cat

g2 Irrelevant g2 ¼ EJϵ0φzpf;bðφzpf;mÞ2
¼ 2π × 0.76 MHz g2 ¼ EJsinðφ̄JÞ

zfflfflffl}|fflfflffl{≫ϵ0

φzpf;bðφzpf;mÞ2
¼ 2π × 6 MHz

Number of rf/dc/both lines 2=1=0 3=0=2 1=0=1

Ẑðπ=2Þ gate time (ns) π
2Reð4αϵZÞ

24 ns 118 ns 14 ns

Ẑðπ=2Þ gate fidelity
F ¼ 1=2þ e−πκz=2Ωz=2

85.7% 85.3% 98%a

CNOT gate Theoretical proposal [69] Theoretical proposal [26]
and experimental
implementation on
coherent states [70].

See Appendix K.

κ2=κ1 Irrelevant 0.9 × 102 Adiabatic elimination limits it
to 1.5 × 102.

Maximal TX Up to about a ms, then an
observed decrease for
larger jαj2 likely due to

non-RWA terms.

Unknown up to 10 s
demonstrated.

Up to 0.3 s limited by excitation
of transmon higher states or

buffer thermalization.

Geometrical constraint Translation symmetry [15] Junction symmetry Junction symmetry

Memory protection Bandpass filter Notch filter In situ protection by symmetry.
Notch filter is optional.

TX scaling in photon number Increase by successive steps.
No clear observation of
exponential scaling yet.

Exponential scaling.
Limited by breakdown of
the adiabatic elimination.

Exponential scaling. Limited by
breakdown of the adiabatic

elimination and buffer
thermalization.

aHere, the gate fidelity is given for a π=2 gate instead of the π gate in the main text in order to better compare with other works.

FIG. 31. Possible layout for a repetition code using the
autoparametric cat. The coupling between two neighboring cats
is provided by a four-wave mixing element (such as a Josephson
junction, SQUID, ATS, or quarton) driven at the frequency of the
control cat to perform a CNOT gate.
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where αc and αt are the control and coherent state
amplitudes of the target cat qubit. Thus, the CNOT gate
can be viewed as a π rotation of the target coherent state
conditioned on the control state. However, an interesting
feature of the bosonic code, key to implementing bias-
preserving gates, is the ability to redefine the logical basis
so that the computational basis before and after a gate can
differ [26,72]. Using this feature, one can define a CNOT

gate as

ÛCNOTjαc;�αti ¼ jαc;�αteiπ=2i; ðK1Þ
ÛCNOTj−αc;�αti ¼ j−αc;�αte−iπ=2i; ðK2Þ

with the change of basis fjαti; j − αtig → fjiαti; j − iαtig
for the target cat code. The CNOT then becomes a rotation
by �π=2 of the target coherent state conditioned on the
control state. If the target cat stabilization is turned off, such
a gate can be performed using the following Hamiltonian:

Ĥ ¼ ℏgCNOTðjαcihαcj − j − αcih−αcjÞâ†t ât:

In addition, it can be approximated by

Ĥ ¼ ℏgCNOTðeiϕc â†c þ e−iϕc âcÞâ†t ât; ðK3Þ

where âc and ât are annihilation operators of the target and
control memory, and ϕc ¼ argðαcÞ.

1. CNOT Hamiltonian engineering

The Hamiltonian we propose for the CNOT gate is
generated using a four-wave mixing interaction coming
from a nonlinear coupler. One can write this interaction as

Ĥ ¼ ℏg4ðξðtÞ þ ϕcðâ†c þ âcÞ þ ϕtðâ†t þ âtÞÞ4; ðK4Þ
where g4 is the four-wave mixing interaction strength, ϕc
(respectively, ϕt) the phase zero-point fluctuations of the
control (respectively, target) memory across the nonlinear
coupler, âc (respectively, ât) the annihilation operator of the
control (respectively, target) memory, and ξðtÞ the ampli-
tude of an rf drive on the nonlinear coupler.

Using a drive amplitude ξðtÞ ¼ ξ0 cosðωctÞ at the fre-
quency of the control memoryωc and in the frame rotating at
the control memory frequency ωc, the Hamiltonian (K4)
under the rotating-wave approximation leads to the
interaction

Ĥ ¼ 12ℏg4ϕcϕ
2
t ðξ0â†c þ ξ⋆0 âcÞâ†t ât; ðK5Þ

which can be written as

ĤCNOT ¼ ℏgCNOTðei argðξ0Þâ†c þ e−i argðξ0ÞâcÞâ†t ât; ðK6Þ
with gCNOT ¼ 12g4ϕcϕ

2
t jξ0j. To obtain the Hamiltonian of

Eq. (K3), one has to tune the phase of ξ0 such that
argðξ0Þ ¼ argðαcÞ. We note that the larger two-photon
coupling rate g2 of the autoparametric cat would permit us
to increase the drive amplitude ξ0 without affecting the
stabilization of the control cat qubit. Ultimately, we expect
larger gate fidelities and lower gate times owing to the
autoparametric cats.

2. CNOT sequence

The CNOT gate described by Eqs. (K1) and (K2) can be
performed with the following sequence:
(1) Turn off the stabilization of the target cat, which can

be done by turning off the buffer drive and moving
away from the ϕQEC flux point.

(2) Turn on the CNOT Hamiltonian, Eq. (K3), by driving
the nonlinear coupler at ωc during a time Tg ¼
π=ð4jαcjgCNOTÞ.

(3) Turn the stabilization of the target back on with a
buffer drive phase shifted by π such that the stabilized
subspace is fjiαti; j − iαtig. The stabilization has to
be kept during a time larger than 1=jαtj2κ2;t, where
κ2;t is the target two-photon dissipation rate, such that
the target memory state is projected onto the cat qubit
manifold fjiαti; j − iαtig.

APPENDIX L: DEVICE PARAMETERS

A summary of all the relevant device parameters is
provided in Table II.

TABLE II. Estimated parameters of the device and the associated measurement method.

Parameter Value Method of determination

Two-photon dissipation flux ϕ2ph 0.312 ϕ0 Memory and buffer spectroscopies
Tomography flux ϕtomo 0.168 ϕ0 Optimization of the memory displacements D̂ðβÞ
Sweet spot ϕðsweetÞ

ext 0.4 ϕ0 Memory and buffer spectroscopies
Memory frequency ωmðϕ2phÞ=2π 3.948 GHz Memory and buffer spectroscopies
Buffer frequency ωbðϕ2phÞ=2π 7.896 GHz Memory and buffer spectroscopies
Transmon frequency ωq=2π 5.387 GHz Ramsey interferometry at ϕtomo

(Table continued)
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