
Unified Treatment of Light Emission by Inelastic Tunneling:
Interaction of Electrons and Photons beyond the Gap

Unai Muniain ,1 Ruben Esteban,1,2 Javier Aizpurua ,1,3,4 and Jean-Jacques Greffet 5,*

1Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4,
20018 San Sebastián-Donostia, Basque Country, Spain

2Material Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5,
20018 San Sebastián-Donostia, Basque Country, Spain

3IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country, Spain
4Department of Electricity and Electronics, University of the Basque Country,

20018 San Sebastián-Donostia, Basque Country, Spain
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A direct current through a metal-insulator-metal tunneling junction emits light when surface-plasmon
polaritons (SPPs) are excited. Two distinct processes are believed to coexist in this light emission mediated
by surface plasmons: inelastic tunneling, where electrons excite SPPs in the insulator gap, and hot-electron
radiative decay, which occurs in the electrodes after elastic tunneling. Previous theoretical approaches to
study light emission by inelastic tunneling have relied on Bardeen’s approximation where the electronic
wave functions are considered only in the barrier of the junction. In this work, we introduce an extension
to models of inelastic tunneling by incorporating the full quantum device solution of the Schrödinger
equation, which can also account for processes in the metallic electrodes. The extension unveils the
existence of long-range correlations of the current density across the barrier and enables us to establish the
equivalence between two models widely used in the past: (i) a calculation of the inelastic transition rate
between two states across the barrier based on Fermi’s golden rule and (ii) a calculation of the power
transferred to plasmons by current fluctuations. Importantly, the new model accounts for processes that take
place in the metallic electrodes and that could not be described within Bardeen’s approximation. Hence, it
is no longer necessary to invoke a hot-electron mechanism to obtain a dependence on the geometry of
metallic electrodes. The new framework enables to discuss the role of surface plasmons localized in
different metal-insulator interfaces and to include possible nonlocal effects at the interfaces.

DOI: 10.1103/PhysRevX.14.021017 Subject Areas: Condensed Matter Physics,
Nanophysics, Plasmonics

I. INTRODUCTION

The study of metal-insulator-metal (MIM) junctions in
vacuum as a source of electromagnetic radiation has grown
significantly since the pioneering experiment carried out
by Lambe and McCarthy almost half a century ago [1]. In
these systems, light emission originates from the excitation
of surface-plasmon polaritons (SPPs) by electronic injec-
tion when a bias potential is applied between the two planar
metallic electrodes inducing a tunneling current in the
insulator [see Fig. 1(a)]. The first studies of light emission

by MIM junctions were carried out in planar junctions,
which involved introducing some roughness on the surfa-
ces of the electrodes to enable radiation of the SPPs. The
role of the surface roughness to scatter the gap plasmons
was further evidenced by depositing a disordered ensemble
of silver nanoparticles on the upper metallic electrode to
enhance the plasmon scattering [2]. Subsequently, the role
of fast plasmons localized at the vacuum-metal interface,
as opposed to the gap plasmon, was studied by several
authors [3–6]. The interest in light emission by inelastic
tunneling was revived when light emission from a scanning
tunneling microscope (STM) was first measured [7] and the
role of localized plasmons was shown [8]. This localized
light emission process has been used as a spectroscopic
tool to characterize samples with nanometer, and even
subnanometric, spatial resolution by measuring the spatial
variations of the emitted light [9–13]. After these milestone
contributions, light emission in the tunneling regime has
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been a topic of interest because of its many interesting
features for potential applications. It can be used to design
light sources with a very small footprint; it can be driven
electrically and can be modulated at high frequency. Many
recent experimental works have shown how to control the
emission process, of either photons or plasmons, by
controlling the environment using different types of reso-
nant structures [14–21].
Despite the many potential applications of these systems

as optical sources, their development has been hampered
by the extremely low electron-to-SPP conversion rate.
This rate is typically on the order of 10−5 for planar
junctions [2]. It was found later that, with localized
plasmons at the tip of a STM [22] or between the edges
of two cubes [18], the conversion rates are, respectively,
on the order of 10−3 and 10−2. To explain light emission by
tunneling junctions, it has been proposed that inelastic
tunneling takes place in the insulator gap. This process is
illustrated in Fig. 1(b). When a bias voltage VB is applied,
electrons (with charge −e) in one electrode gain an excess
energy of ejVBj. These electrons can tunnel through the
few-nanometer-thick insulator gap between the metals to
occupy an unoccupied state in the other electrode with
lower energy. The excess energy excites a surface plasmon
(with energy ℏω < ejVBj). The plasmon subsequently
relaxes by either absorption or radiation. Since the dom-
inant tunneling process is elastic tunneling generating a

direct current [23,24], the efficiency of the inelastic process
is expected to be low. It can be improved by reducing the
elastic current [25,26].
It is worth mentioning that an effect similar to light

emission by inelastic tunneling has been observed in the
gigahertz regime when studying quantum electronic trans-
port through very small tunneling junctions. This effect,
called dynamical Coulomb blockade of tunneling, is a
quantum effect in which tunneling of charge through
a small junction is modified by the electromagnetic
environment [27,28], which offers radiative decay chan-
nels. Hence, tunneling assisted by emission of gigahertz
photons into the lines connected to the junction becomes
possible. The direct observation of emission has been first
reported in 2011 [29] in the 10 GHz range. The efficiency
of this process can be unity when using superconductors.
Although models based on the inelastic tunneling

mechanism describe many experimental data, they cannot
account for all the reported experiments. For instance,
Kirtley et al. measured light emission from metallic
gratings. In this case, the theory based on inelastic tunnel-
ing underestimated the emitted power by an order of
magnitude [4,19]. Furthermore, it was observed that the
decay of the radiative intensity with the thickness of the top
electrode could not be explained. It was also observed that
emission can be quenched when introducing adsorbants on
the air-metal interface of the electrode [30], an effect that
cannot be explained if emission takes place in the barrier.
To explain these discrepancies between theory and experi-
ment, Kirtley et al. suggested an alternative mechanism of
light emission, known as hot-electron decay [31]. In this
mechanism, electrons first tunnel elastically and become
hot electrons in the second electrode. Then, they thermalize
through interactions with other electrons and with phonons.
Because of the continuous pumping, a population of hot
electrons, not described by a Fermi-Dirac distribution, is
maintained. These hot electrons can relax by emitting
surface plasmons at the air-metal interface. To support this
alternative mechanism, Kirtley et al. performed photo-
luminescence measurements from metals under continuous
laser pumping which produces hot electrons [32]. They
observed similarities of the emitted light under electrical or
optical excitation supporting the hot-electron mechanism.
However, in contrast with the variety of models proposed to
calculate the inelastic tunneling rate, the qualitative hot-
electron emission process is still awaiting the implementa-
tion of a quantitative theoretical model that could be
compared with experiments. To our knowledge, there is
only a qualitative estimation of light emission in a STM
including this hot-electron contribution, which found that
the inelastic tunneling mechanism overcomes the hot-
electron mechanism by a factor of approximately 103 [33].
In summary, the hot-electron picture has mostly remained a
qualitative mechanism, and there is no available model able
to explain the underestimation of the emitted power [4,19],
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FIG. 1. Schematics of the light emission process from a MIM
tunneling junction due to inelastic tunneling. (a) Sketch of a MIM
junction. When a bias potential VB is applied, an electronic
current density j is induced in the system. An electron excites a
plasmon of energy ℏω due to the inelastic tunneling mechanism.
This plasmon decays radiatively by emitting light toward the
detectors. (b) Sketch of the inelastic tunneling processes consid-
ered by Bardeen’s approximation, where the electron decays only
in the insulator gap. (c) Sketch of the inelastic tunneling processes
considered by the quantum device solution (QDS) that we
propose in this paper. The QDS includes inelastic tunneling
processes that may occur (i) in the first metallic electrode, (ii) in
the insulator gap, or (iii) in the second electrode.
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the emitted power dependence on the electrode thickness
[4], and the emission quenching by adsorbants [30].
At this point, we emphasize that many authors have

considered that emission originated in the metallic elec-
trode is necessarily due to the hot-electron process [31,33]
and that inelastic tunneling implies emission originated in
the gap only [Fig. 1(b)] [31,33,34]. In what follows, we
revisit this point of view by considering a more rigorous
description of the inelastic tunneling that indicates how
processes in the metal can also lead to emission, as depicted
schematically in Fig. 1(c), without requiring the hot-
electron mechanism. This new point of view enables to
compute quantitatively the emitted power.
As stated, up to now, all the calculations (except

Refs. [25,35]) assume that the light emission induced by
inelastic tunneling takes place in the barrier. This process is
typically modeled based on Bardeen’s theory of electron
tunneling (Bardeen’s approximation) [36]. In this work, we
abandon Bardeen’s model and the idea that light is emitted
in the barrier. We introduce an extension of the models
of inelastic tunneling that is obtained by solving the
Schrödinger equation in the complete MIM device and
that we denote the full quantum device solution (QDS). We
note that a similar approach [25] has been used to account
for resonant tunneling in a double barrier. The QDS
solution accounts for processes in the metallic electrodes
[Fig. 1(c)]. We show that it enables to reproduce several
features observed experimentally that could not be repro-
duced by Bardeen’s theory. This includes a measured
emitted power larger than what is predicted [31], an
exponential decay of the emitted power on the thickness
of the electrodes with a decay length much larger than the
optical skin depth as predicted by Bardeen’s theory [31].
We also show the importance of light emission at the
air-metal interface due to nonlocal effects, a process that
can be quenched by adsorbants on the air-metal interface of
the electrode [30].
Additionally, within the QDS, we show the equivalence

of the two main approaches that have been used to describe
light emission induced by inelastic tunneling. The first one
is based on the usual picture of radiative emission due to an
electronic transition between two states. Fermi’s golden
rule can then be used to compute the rate of excitation of
SPPs [37,38]. The second one is based on the classical
picture of radiation due to time-dependent currents. It relies
on the calculation of the power radiated by the time-
dependent fluctuations of the current density [35,39]. Laks
and Mills used this viewpoint to model the experiment of
Lambe and McCarthy by calculating the emission effi-
ciency of planar junctions with surface roughness in
Ref. [35]. A summary of these two methods can be found
in the review paper by Parzefall and Novotny [38]. To our
knowledge, no systematic explicit proof of their equiv-
alence has been reported. Here, the cross-spectral density of
the current density is derived in a second quantization

framework within the QDS. This new approach unveils an
unexpected long-range correlation of the current density
across the gap. Using this form of the cross-spectral density,
it is possible to establish the equivalence of both methods.
The structure of this work is as follows. In Sec. II, we

introduce the theoretical formulation of inelastic tunneling.
We first (Sec. II A) present the QDS and use it to explain
elastic tunneling phenomena, comparing the obtained
results with those given by Bardeen’s approximation.
Then, in Sec. II B, we establish the equivalence of the
two different approaches used to describe light emission by
inelastic tunneling, based either (i) on the transition rate of
electrons between two states or (ii) on the calculation of
emission by fluctuating currents. In Sec. III, we calculate
the radiative and nonradiative power due to SPP excitation
in planar junctions. We show that the methods based on the
QDS can explain available experimental observations.
Finally, in Sec. IV, we summarize the conclusions and
discuss further applications of the theory for future work.

II. DESCRIPTIONS OF LIGHT EMISSION
FROM TUNNELING JUNCTIONS

We start by reviewing and comparing the frameworks
that are used to describe electronic transport in a barrier. We
first compare Bardeen’s description of elastic tunneling in
MIM junctions with a textbook solution of the Schrödinger
equation denoted QDS. We then compute the inelastic
tunneling rate using two models. We either use Fermi’s
golden rule or compute the power transferred from the
fluctuating currents to the surface plasmons. To proceed, we
derive and analyze the current density correlation function.
We then establish the equivalence of the two models.

A. Elastic tunneling

In order to describe the dynamics of the electrons
according to the theory of elastic electron tunneling, we
define the electronic Hamiltonian Ĥel as

Ĥel ¼
−ℏ2∇2

2meff
þUðzÞ; ð1Þ

where meff refers to the effective mass of the electrons in
the MIM junction. This Hamiltonian is essentially a free
electron model supplemented with the description of a
potential to account for the barrier. It includes the kinetic
energy of the electrons in the metals (first term in the right-
hand side) and the potential energy UðzÞ (second term in
the right-hand side) [40].
To characterize the potential energy UðzÞ [see sketch in

the inset in Fig. 2(e)], we first consider that the metals
placed on the left and on the right of the insulator gap have
Fermi energies EL

F and ER
F, respectively. If there is no bias

potential applied (VB ¼ 0), the system is at equilibrium and
the Fermi surfaces of both metals are at the same energy,
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which we set as the zero energy level. From this reference,
the lowest values of the potential energy that electrons
can have in the left and right metals are −EL

F and −ER
F,

respectively. The height of the barrier in the gap region is
U0. For applied bias potentials, the energies of all electrons
in one metal are shifted by a value eVB as compared to
those in the other electrode. We maintain the zero energy
reference in the Fermi energy of the left metal, and, thus,
the minimum potential energy remains here as UL ¼ −EL

F.
In the right metal, this minimum energy shifts to the value
UR ¼ −ER

F − eVB, while the energy of the highest occu-
pied state becomes −eVB. This shift of the energy levels
also affects the work functions of the metals, which causes
a modification of the potential inside the insulator barrier.
The potential in this region can be approximated with the

linear function UgapðzÞ ¼ U0 − eVBðz=LgapÞ, where z is
the perpendicular direction to the interfaces of the junction
and Lgap is the thickness of the insulator gap [the potential
UðzÞ with the linear function is indicated by dashed lines in
the inset in Fig. 2(e)]. However, to obtain simple analytical
expressions of the electronic wave functions, we use a
rectangular approximation for the barrier potential, which
takes a constant value determined by the average UgapðzÞ ≈
U0 − ðeVB=2Þ [we show the rectangular potential UðzÞ in
the inset in Fig. 2(e) by solid lines].
With this model of the MIM junction, the electronic

properties of the system are obtained by solving the
Schrödinger equation of Eq. (1). For a fixed energy ℏωel

and parallel wave vector kk, the Hamiltonian of a rectan-
gular barrier contains two degenerate states, of the form

ΨQDS
L ðrÞ ¼

8>>>>><
>>>>>:

1ffiffiffiffi
Lz

p 1ffiffi
S

p ðeikzLz þ rLe−ikzLzÞeikk·rk z ≤ 0;

1ffiffiffiffi
Lz

p 1ffiffi
S

p ðαLekzgapz þ βLe−kzgapzÞeikk·rk 0 < z ≤ Lgap;

1ffiffiffiffi
Lz

p 1ffiffi
S

p tLeikzRze
ikk·rk Lgap < z

ð2Þ

and
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FIG. 2. Comparison of Bardeen’s and QDS approaches for electron tunneling mechanisms. (a) Electronic wave function ΨBA
L

corresponding to the left Hamiltonian ĤL within Bardeen’s approximation. (b) Electronic wave function ΨBA
R corresponding to the right

Hamiltonian ĤR within Bardeen’s approximation. In (a) and (b), solid lines indicate the boundary between the metal considered in the
Hamiltonian ĤL or ĤR and the gap, whereas dashed lines show the boundary between the gap and the metal that is considered absent in
the corresponding Hamiltonian. (c),(d) Schematics of the processes of elastic tunneling (Γel) and inelastic tunneling (Γinel) using the
wave functions corresponding to Bardeen’s approximation (c) and the QDS (d). The wave functions are vertically shifted by their energy,

where ℏωel is the initial electronic energy and ℏωðνÞ
Kk is the energy of a SPP excited by the electron due to inelastic tunneling. (e) Elastic

tunneling rate Γel per unit of surface area S of the metallic interfaces, calculated with Bardeen’s approximation (black dots) and the QDS
(orange line), plotted as a function of the bias potential VB. The inset shows the schematics of the potential energy UðzÞ of electrons in
the MIM junction and the occupied states in each metal. In this inset, the dashed lines represent the potential energyUðzÞ with the linear
function UgapðzÞ for the gap, while solid lines represent the potential energy UðzÞ under the rectangular approximation that we consider
in our calculations. The system considered in this figure is composed by an aluminum and a gold electrode separated by an Al2O3

insulator layer of thickness Lgap ¼ 1 nm.
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ΨQDS
R ðrÞ ¼

8>>>>><
>>>>>:

1ffiffiffiffi
Lz

p 1ffiffi
S

p tRe−ikzLðz−LgapÞeikk·rk z ≤ 0;

1ffiffiffiffi
Lz

p 1ffiffi
S

p ðαRe−kzgapðz−LgapÞ þ βRekzgapðz−LgapÞÞeikk·rk 0 < z ≤ Lgap;

1ffiffiffiffi
Lz

p 1ffiffi
S

p ðe−ikzRðz−LgapÞ þ rReikzRðz−LgapÞÞeikk·rk Lgap < z:

ð3Þ

Lz is the (arbitrary) length of the system in the z
direction, whereas S is the surface of the interfaces in
the rk ¼ ðx; yÞ plane. These two parameters act as nor-
malization constants in the wave functions. Furthermore,

kzLðRÞðωel;kkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meff

ℏ2
ðℏωel − ULðRÞÞ − jkkj2

r
ð4Þ

is the z component of the wave vector of an electron in the
left (right) metal. The spatial decay of the wave function in
the gap region is governed by the value

kzgapðωel;kkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meff

ℏ2
ðUgap − ℏωelÞ þ jkkj2

r
: ð5Þ

The coefficients αLðRÞ, βLðRÞ, rLðRÞ, and tLðRÞ are given in

Appendix A. The wave functions ΨQDS
L ðrÞ in Eq. (2) and

ΨQDS
R ðrÞ in Eq. (3) are the textbook solutions to describe

quantum tunneling from the left metal to the right metal and
vice versa, respectively. rLðRÞ and tLðRÞ give the reflected
and transmitted amplitudes, respectively. Since the wave
functions are calculated in the complete MIM device, we
refer to these wave functions as the QDS.
These expressions can be simplified in an approximation

first carried out by Bardeen [36] that is widely used in
the study of elastic tunneling in MIM junctions. Under
Bardeen’s approximation (BA), the two metals are

considered as two separate entities, and the electronic
states of each metal are not affected by the other
one. We illustrate in Figs. 2(a) and 2(b) with vertical solid
lines the metal-insulator boundary considered in the
Hamiltonians ĤL and ĤR, respectively. The eigenstates
of the system are obtained by solving the Schrödinger
equation with the Hamiltonians ĤL and ĤR separately.
Each of these Hamiltonians includes operators for the
kinetic and the potential energy. The potential energy
operator considers the energy level of the corresponding
metal (UL or UR) and of the barrier (Ugap). However, when
calculating the wave function associated with each elec-
trode, we do not consider the presence of the other one;
i.e., we extend the gap barrier to infinity [we show in
Figs. 2(a) and 2(b) the metal-insulator boundary neglected
in each Hamiltonian by dashed lines]. Following this
procedure, we obtain the wave functions of the left metal
[see Fig. 2(a)] [41]:

ΨBA
L ðrÞ ¼

8>><
>>:

1ffiffiffiffi
Lz

p 1ffiffi
S

p
�
eikzLzþ ikzLþkzgap

ikzL−kzgap
e−ikzLz

�
eikk·rk z≤ 0;

1ffiffiffiffi
Lz

p 1ffiffi
S

p 2ikzL
ikzL−kzgap

e−kzgapzeikk·rk z > 0:

ð6Þ

Equivalently, the wave functions corresponding to the right
metal have the form [see Fig. 2(b)]

ΨBA
R ðrÞ ¼

8>><
>>:

1ffiffiffiffi
Lz

p 1ffiffi
S

p 2ikzR
ikzR−kzgap

ekzgapðz−LgapÞeikk·rk z ≤ Lgap;

1ffiffiffiffi
Lz

p 1ffiffi
S

p
�
e−ikzRðz−LgapÞ þ ikzRþkzgap

ikzR−kzgap
eikzRðz−LgapÞ

�
eikk·rk z > Lgap:

ð7Þ

Under Bardeen’s approximation, the interaction between the two metals is treated at a perturbative level. Each electron of
the left metal is at first in the state jΨBA

L i corresponding to the Hamiltonian ĤL. The rest of the electronic Hamiltonian of
Eq. (1), Ĥel − ĤL, induces transitions to states of the form jΨBA

R i, as schematically shown in Fig. 2(c) by the arrow labeled
with the symbol Γel. The assumption of weak tunneling due to a sufficiently thick gap implies that the transition rate
between two particular left and right states is given by Fermi’s golden rule, as (see derivation in Appendix A)

ΓBA
L→R ¼ 2π

ℏ2
δðωel

L − ωel
RÞjhΨBA

R jĤel − ĤLjΨBA
L ij2

¼ ð2πÞ3ℏ2

4m2
eff

Sδðωel
L − ωel

RÞδðkkR − kkLÞ
����ΨBA�

R ðzÞ ∂Ψ
BA
L ðzÞ
∂z

−ΨBA
L ðzÞ ∂Ψ

BA�
R ðzÞ
∂z

����
z¼Lgap

����2: ð8Þ
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By considering a single incident electron from the left
metal, its tunneling rate ΓBA

L is given by the sum over all
possible unoccupied states jΨBA

R i of the right metal, i.e.,
ΓBA
L ¼ P

kR
ΓBA
L→R. To characterize these electronic states in

the metals, we use the periodic boundary conditions so that
the states are given by wave vectors of the form kLðRÞ ¼
½ð2π= ffiffiffi

S
p Þnx; ð2π=

ffiffiffi
S

p Þny; ð2π=LzÞnzÞ� with integers nx, ny,
and nz. In this context, we can substitute the discrete sumsP

kLðRÞ with the integrals ½LzS=ð2πÞ3�
R
dkLðRÞ, and by

performing the integral of ΓBA
L→R [with the wave functions of

Eqs. (6) and (7)] over the right states indicated by kR, we
obtain the tunneling rate per incident electron given by

ΓBA
L ¼ ℏ

meffLz

16k2zLkzRk
2
zgap

ðk2zL þ k2zgapÞðk2zR þ k2zgapÞ
e−2kzgapLgap : ð9Þ

The transition rate of Eq. (9) has been derived using
Bardeen’s approximation. We now turn to a more rigorous
approach that does not use Bardeen’s approximation.
It is possible to obtain the tunneling rate using the QDS.
Since the electrons under this description are already in an

eigenstate of Ĥel from the beginning, the tunneling proper-
ties are included in ΨQDS

L ðrÞ, as we indicate in Fig. 2(d) by
the arrow with the Γel label. From this wave function, we
can obtain its associated probability current density from
the general definition [42]

jzðrÞ ¼
iℏe
2meff

�
Ψ�ðrÞ ∂ΨðrÞ

∂z
−ΨðrÞ ∂Ψ

�ðrÞ
∂z

�
; ð10Þ

which for Eq. (2) is constant over space with the
value jzðzÞ ¼ −ð1=LzSÞðℏekzR=meffÞjtLj2. Since this
expression gives the amount of charge that crosses the
junction per unit of area and time, the tunneling rate ΓL is
directly calculated as

ΓQDS
L ¼ S

−e
jz: ð11Þ

By introducing the value of the coefficient tL (given in
Appendix A) into Eq. (2) and applying Eq. (10) to calculate
the current density jzðzÞ, we obtain

ΓQDS
L ¼

ℏ
meffLz

16k2zLkzRk
2
zgape−2kzgapLgap

ð1þ e−4kzgapLgapÞðk2zgap þ k2zLÞðk2zgap þ k2zRÞ − 2e−2kzgapLgap ½ðk2zgap − k2zLÞðk2zgap − k2zRÞ − 4k2zgapkzLkzR�
: ð12Þ

The elastic tunneling rate given by Bardeen’s approxi-
mation [Eq. (9)] is identical to the expression that is
obtained from the rate of the QDS [Eq. (12)] under the
assumption of weak tunneling, i.e., for kzgapLgap ≫ 1. To
analyze the validity of this assumption, we focus on an
Al-Al2O3-Au junction as a particular example, which is
typically used to analyze elastic and inelastic tunneling
phenomena. We use numerical values of the Fermi energies
EL
F ¼ 11.5 eV and ER

F ¼ 5.5 eV for Al and Au, respec-
tively [43]. Furthermore, it has been measured that the
effective mass of the electrons in alumina junctions is
meff ¼ 0.23me (where me is the electron mass) [44], and
we fix the height of the barrier on a typical value of
U0 ¼ 2 eV. Since Bardeen’s approximation works accu-
rately for kzgapLgap ≫ 1, the largest mismatch with the QDS
occurs in the regime of very thin layers and of high bias
potentials, where kzgap is smallest according to Eq. (5).
However, even for values of Lgap ¼ 1 nm and VB ¼ 3 V,
we have checked that Bardeen’s approximation under-
estimates the tunneling rate ΓL of the electrons at the
Fermi surface only by a factor of 0.4%. Thus, Bardeen’s
approximation is well justified when considering elastic
tunneling.
Although the tunneling rate per electron allows us

to compare Bardeen’s approximation with the QDS by
means of an analytical expression [Eqs. (9) and (12)],

the measurable quantity in experiments is the intensity of
the electronic current (related to the total tunneling rate Γel)
instead of the tunneling rate per incident electron ΓL.
In order to model these experiments, we calculate Γel by
summing Eqs. (9) and (12) over all occupied initial states of
the left metal that can tunnel to unoccupied states of the
right metal Γel ¼

P
kL

ΓLfLFDðkLÞ½1 − fRFDðkLÞ�. To per-
form this calculation, we have included the probability
that a state is occupied in the left metal and unoccupied
in the right metal. Since the states described by Bardeen’s
approximation are localized in a single metal, these
probabilities are dictated by the Fermi-Dirac occupation
factors of its respective metal

fLðRÞFD ðkLÞ ¼
�
1þ exp

�
ℏωelðkLÞ − ELðRÞ

F

kBT

	�−1

at temperature T, with Boltzmann constant kB. The assign-
ment of a Fermi-Dirac occupation factor is not so straight-
forward in the approach of the QDS, because the
corresponding electronic states are delocalized over the
two metals with different Fermi levels. However, following
a similar argument than for Bardeen’s approximation,
we associate the occupation factor fLFDðkLÞ to the states
ΨQDS

L ðrÞ that originate from the left metal, and accordingly
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the factor ½1 − fRFDðkLÞ� corresponds to the unoccupied
states ΨQDS

R ðrÞ that tunnel from the right to the left metal.
We plot in Fig. 2(e) the elastic tunneling rate Γel per

surface area S as a function of the applied voltage VB for
temperature T ¼ 0 (we have checked that the following
discussion remains also valid for room and larger temper-
atures). We compare the results obtained with Bardeen’s
approximation (black dots) and the QDS (orange line)
for a thin gap of width Lgap ¼ 1 nm. The two approaches
follow a nearly identical trend with a relative error of at
most 2.1 × 10−3 at VB ¼ 3 V. In most experiments, the gap
thickness Lgap is larger, which decreases the error between
the two approaches even more. Therefore, the agreement
between the Bardeen’s and QDS approaches indicates that
associating single-metal Fermi-Dirac occupation factors

fLðRÞFD ðkLÞ to the states of the QDS works accurately,
and, thus, we follow this methodology in the following
subsection, where we turn to the inelastic tunneling current.

B. Inelastic tunneling

The phenomenon of light emission due to inelastic
tunneling has been computed using two different models
in the literature: a calculation based on Fermi’s golden rule
and a calculation of the radiated power due to current
density fluctuations. These two models are based on the
two usual physical pictures of light emission: The quantum
matter picture is based on the radiative relaxation of an
excited state, and the classical electromagnetic picture is
based on the power radiated by a time-dependent current.
In this subsection, we aim to provide a comprehensive

review of the two models and to prove their equivalence
under appropriate conditions. Furthermore, these methods
are often used within the framework of Bardeen’s approxi-
mation, but we emphasize here the consequences of using
them within the QDS. Finally, we compute the inelastic
transition rate leading to surface-plasmon excitation, as this
plasmonic contribution dominates the local density of
electromagnetic states. Once this transition rate is known,
multiplying it by the surface-plasmon radiative decay yield
gives the photon emission rate.

1. Fermi’s golden rule

In the description of light emission from tunneling
junctions, it is necessary to include the interaction between
electrons and electromagnetic modes. Among different
points of view to account for this interaction, one of
them is a direct extension of models of elastic tunneling
that involves introducing the light-matter coupling in the
quantum Hamiltonian of Eq. (1). The effects of this
coupling are usually treated under the formalism of
Fermi’s golden rule. This general approach has been used
in a large variety of systems, such as in the analysis of
photon emission from superconducting junctions [28].
Focusing now on the specific case of planar MIM junctions,

the complete Hamiltonian that describes elastic tunneling
together with the interaction between electrons and SPPs is

Ĥel-SPP ¼ Ĥel þ
X
Kk

X
ν

ℏωðνÞ
Kk â

†ðνÞ
Kk â

ðνÞ
Kk −

e
meff

p̂ · Â: ð13Þ

Together with the electronic Hamiltonian Ĥel in Eq. (1), the
second term on the right-hand side of this expression is
the plasmonic Hamiltonian. The superscript ν refers to all
different SPP modes of the system (mostly localized at

different interfaces) whose dispersion ωðνÞ
Kk is a function of

the parallel component of the wave vector Kk. We include

the corresponding creation operator â†ðνÞKk and annihilation

operator âðνÞKk for each vector Kk. The last term corresponds

to the light-matter interaction Ĥint, which, depending on the
system and its mode structure, is described with the vector
potential Â in the Coulomb gauge as Ĥint ¼ −ðe=meffÞp̂ ·
Â or in terms of the scalar potential ϕ̂ as Ĥint ¼ −eϕ̂
[33,37,45]. In this work, we use the former interaction term,
because all transverse modes in planar junctions can be
described entirely with the vector potential. The operator
p̂ ¼ −iℏ∇ acts on the electronic wave functions, whereas
the field operator Â is written after the decomposition into
all plasmonic modes as [46]

Âðr; tÞ ¼
X
Kk

X
ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ε0Sω
ðνÞ
Kk

vuut eiKk·rkuðνÞ
Kk ðzÞâ

ðνÞ
Kke

−iωðνÞ
Kk

t

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0Sω
ðνÞ
Kk

vuut e−iKk·rku�ðνÞ
Kk ðzÞâ

†ðνÞ
Kk e

iωðνÞ
Kk

t
; ð14Þ

where ε0 is the vacuum permittivity and uðνÞ
Kk ðzÞ gives the

spatial dependence of the vector potential along the z
direction for each plasmonic mode, under the condition

iKk · u
ðνÞ
Kk ðzÞ þ ð∂=∂zÞðuðνÞ

KkðzÞ · nzÞ ¼ 0 implied by the

Coulomb gauge (nz is the unit vector of the z direction).
Furthermore, the quantization of each plasmonic modewith

energy ℏωðνÞ
Kk leads to the following normalization condition

of uðνÞ
Kk ðzÞ [46,47]:Z

1

2



∂

∂ω
½ωεðz;ωÞ�juðνÞ

KkðzÞj
2

þ
���� εðz;ωÞjKkj

ω

c
ðuðνÞ

Kk ðzÞ · nzÞ
����2
�
dz ¼ 1; ð15Þ

with c the speed of light in vacuum and where εðz;ωÞ
gives the spatial distribution of the permittivity along the z
direction at frequency ω.
To quantize the plasmon field, losses have been

neglected. This approximation is valid inasmuch as the

UNIFIED TREATMENT OF LIGHT EMISSION BY INELASTIC … PHYS. REV. X 14, 021017 (2024)

021017-7



density of states is not perturbed significantly [46]. It
provides an accurate description of the electron-plasmon
coupling which will be used to compute the plasmon
emission rate. The photon emission rate can be computed
subsequently using the radiative yield of the plasmon. The
Hamiltonian of Eq. (13) is not exactly solvable, in general,
and the usual approach to describe inelastic tunneling is to
treat Ĥint ¼ −ðe=meffÞp̂ · Â as a perturbative term under
the assumption of weak light-matter interaction. It is first
assumed that the electrons come from the left metal and
that there is no excited plasmon. Therefore, the initial state
is of the form jΨLi ⊗ j0pli (note that, if we do not specify
the superscript BA or QDS in the electronic state ΨLðRÞ, the
expression is valid for both of these approaches). Here, the
state j0pli implies that all plasmonic modes ν at all wave
vectors Kk are in the zero occupation number state. The

final plasmonic state is of the form j1ðνÞKk i, where all modes

are unoccupied except for a SPP mode ν of parallel wave

vector Kk with occupation number 1. On the other hand,
the electronic part of the final state can be of the form jΨLi
or jΨRi, depending on the Fermi-Dirac occupation factor
of these states. Because of the applied bias potential, it is
expected that, at low temperatures, the number of unoccu-
pied states will be significantly greater in the right metal
than in the left metal for final energies lower than that of the
initial state. Thus, the transitions to the states of the left
metal are highly suppressed, i.e., ΓL→L ≪ ΓL→R, and in this
formalism we focus on only the transitions of the form
L → R. In other words, we consider only the recombination
of an electron coming from the left to a hole coming from
the right. Specifically, the tunneling rate according to
Fermi’s golden rule reads

ΓL→R ¼ 2π

ℏ2

X
Kk

X
ν

δðωel
L − ωel

R − ωðνÞ
Kk Þ

���MðνÞ
L;R;Kk

���2; ð16Þ

with the matrix element

MðνÞ
L;R;Kk ¼

D
ΨR; 1

ðνÞ
Kk

���Ĥint

���ΨL; 0pl
E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ε0Sω
ðνÞ
Kk

vuut iℏe
meff

Z
VgapþVmet

Ψ�
RðrÞ

h
uðνÞ
Kk ðzÞe−iKk·rk

i
·∇ΨLðrÞdr

¼
�
ΨL; 0pl

���Ĥint

���ΨR; 1
ðνÞ
Kk

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ε0Sω
ðνÞ
Kk

vuut −iℏe
meff

Z
VgapþVmet

ΨLðrÞ
h
uðνÞ
Kk ðzÞe−iKk·rk

i
· ∇Ψ�

RðrÞdr; ð17Þ

where we specify that in the QDS this integral has to be
performed in the volume of the gap Vgap and of the metallic
regions Vmet. We stress that this integral accounts for the
exact spatial dependence of both the electronic wave
functions and the surface-plasmon modes in the gap and
in the metal. Note that, when accounting for metallic layers
with finite thickness, we limit the integration over z but, for
the sake of simplicity, we still use the electron wave

functions given by Eqs. (2) and (3) established for a
semi-infinite reservoir. Since the contributions of the gap
and the metals must be summed, these two terms can
produce interferences, as we discuss in Sec. III.
Furthermore, combining the two equivalent forms of the

matrix element shown in Eq. (17), we can writeMðνÞ
L;R;Kk in

a symmetric form that is similar to the elastic tunneling rate
obtained with Bardeen’s approximation Eq. (9) as

MðνÞ
L;R;Kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ε0Sω
ðνÞ
Kk

vuut iℏe
2meff

Z
VgapþVmet

h
uðνÞ
Kk ðzÞe−iKk·rk

i
· ½Ψ�

RðrÞ∇ΨLðrÞ −ΨLðrÞ∇Ψ�
RðrÞ�dr; ð18Þ

where, in analogy with Eq. (10), thewave functionsΨLðrÞ andΨRðrÞ appear in the form of the inelastic current density as [37]

jL→RðrÞ ¼
iℏe
2meff

½Ψ�
RðrÞ∇ΨLðrÞ −ΨLðrÞ∇Ψ�

RðrÞ�: ð19Þ

The experimentally measurable quantity is the intensity of the emitted light due to the total inelastic tunneling rate Γinel, which
is given by the sum over all occupied initial states in the left metal and unoccupied final states of the right metal, calculated as
Γinel ¼

P
kL

P
kR

ΓL→RfLFDðkLÞ½1 − fRFDðkRÞ�:

Γinel ¼
X
Kk

X
ν

X
kL

X
kR

2π

ℏ2
δ
�
ωel
L − ωel

R − ωðνÞ
Kk

�
fLFDðkLÞ½1 − fRFDðkRÞ�jMðνÞ

L;R;Kk j2: ð20Þ
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The corresponding total power transferred by the tunneling current to the plasmons is given by

P ¼
X
Kk

X
ν

X
kL

X
kR

ℏωðνÞ
KkΓL→R

�
ωðνÞ
Kk

�
fLFDðkLÞ½1 − fRFDðkRÞ�

¼
X
Kk

X
ν

X
kL

X
kR

2π

ℏ2
δ
�
ωel
L − ωel

R − ωðνÞ
Kk

�
fLFDðkLÞ½1 − fRFDðkRÞ�jML;R;Kk j2ℏωðνÞ

Kk : ð21Þ

Following the standard procedure of elastic tunneling,
the calculation of these transition rates is usually done
under Bardeen’s approximation, by evaluating the integral
of the matrix element Eq. (18) just in the gap with the
wave functions from Eqs. (6) and (7). This approximation
assumes that the SPP is excited in the gap due to the
inelastic tunneling processes across the barrier. This
approach also gives an intuitive understanding on how
the optical properties of the MIM junction influence the
light emission process. We first notice that, in typical gaps
of a few nanometers, the variation of the electromagnetic
field is very smooth and it can be considered as constant
in the integration region of Eq. (18). This assumption
implies that the electronic and optical properties of
the junction can be considered separately in Eq. (16).
On the one hand, ΓL→R is proportional to the electronic
matrix element jhΨBA

R jpjΨBA
L i þ hΨBA

L jpjΨBA
R ij2 ¼

j − iℏ
R
ΨBA�

R ðrÞ∇ΨBA
L ðrÞ −ΨBA

L ðrÞ∇ΨBA�
R ðrÞdrj2. On

the other hand, by doing the sum over all plasmonic
modes, the tunneling rate is also proportional to the
projected local optical density of states ρoptðrÞ ¼P

Kk

P
ν δðωel

L − ωel
R − ωðνÞ

Kk Þju
ðνÞ
KkðrÞ · nzj2. Therefore, this

analysis suggests that the light emission can be enhanced
by choosing optical antennas with large ρopt.
However, we emphasize that Eq. (18) includes processes

inside the metals, provided that we use the wave functions
of Eqs. (2) and (3) corresponding to the QDS, whereas
Bardeen’s approximation considers only processes in the
gap. When taking the square modulus of Eq. (18) within the
QDS, we obtain the contributions of the gap, the metal
electrodes and a mixed term which is a quantum interfer-
ence between the two processes. Hence, it appears that
it is not necessary to invoke a hot-electron mechanism to
obtain a contribution of light emission from the metallic
electrodes. Furthermore, we emphasize that the inelastic
tunneling rate is proportional to the projected local optical
density of states only within Bardeen’s approximation. This
is no longer necessarily true when considering the QDS,
due to the interferences between the amplitudes of the SPP
electric field in the gap and in the metal.

2. Energy-loss model and Poynting vector flux
calculation

An alternative model [37] that has been introduced to
describe light emission from tunneling junctions by Davis

is to calculate the rate of energy dissipation by the
electronic current:

P ¼ −
Z
V
drjðr; tÞ ·Eðr; tÞ; ð22Þ

where Eðr; tÞ is the electric field generated by the current
density jðr; tÞ. This method has also been used by other
authors [34,48,49]. A slightly different formulation con-
siders the current density as a source that emits light to the
far field and integrates the flux of the Poynting vector. This
approach was proposed originally by Hone, Mühlschlegel,
and Scalapino in Ref. [39], and, since then, it has been a
popular method starting from the implementation of Laks
and Mills to describe light emission from planar junctions
[35], being followed by many works [6,19,50–53]. We first
show the equivalence of these two points of view using the
electromagnetic energy conservation in a volume V in the
stationary regime:Z

V
drjðr; tÞ ·Eðr; tÞ þ PabsðtÞ þ PradðtÞ ¼ 0; ð23Þ

where Prad is the flux of the Poynting vector across a
surface enclosing the volume V and Pabs is the power
absorbed by the matter within this volume. Within the
approximation of a nonlossy metal, PabsðtÞ ¼ 0. The
radiated power is, thus, equal to the opposite of the power
transferred from the tunneling current to the field. This
equality establishes the equivalence between a calculation
of the Poynting vector and a calculation of the power
transferred from the fluctuating currents to the field. When
accounting for the unavoidable metallic losses, the emitted
power is then derived by multiplying the power P trans-
ferred to the SPPs [Eq. (22)] with the radiative efficiency
ηrad as discussed previously.
To proceed with the evaluation of Eq. (22), we first relate

the electric field to the current density using the Green’s
tensor Gðr; r0;ωÞ of the MIM junction as

Eðr;ωÞ ¼ iωμ0

Z
dr0Gðr; r0;ωÞ · jðr0;ωÞ: ð24Þ

The power P transferred from the current to the field can,
thus, be written explicitly in terms of Sjpjqðr; r0;ωÞ, which
is the pq element of the power cross-spectral density tensor
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of the current density given by jpðr;ωÞjqðr0;ω0Þ ¼
2πδðωþ ω0ÞSjpjqðr; r0;ωÞ:

P ¼
Z

∞

0

dω2ωμ0

Z
dr

×
Z

dr0
X
p;q

Sjpjqðr; r0;ωÞIm½Gp;qðr; r0;ωÞ�: ð25Þ

Under this form, the emitted power has the structure of
the square of the intensity times an impedance proportional
to ImðGÞ. This point of view has been discussed in detail in
Ref. [54]. In particular, the connection between the imped-
ance and the local density of electromagnetic states has
been pointed out. We recover here the point of view
introduced in the dynamical Coulomb blockade where
an impedance accounting for the electromagnetic environ-
ment was introduced. To proceed, it is, thus, necessary to
know Sjpjqðr; r0;ωÞ in the nonequilibrium situation of a
biased junction. In most works [35,39,55], the emitted
power was calculated by using the form

Sjzjzðr; r0;ωÞ ≈
eIel
S2

1 − ℏω
eVB

1 − exp
�
ℏω−eVB
kBT

� δðr − r0Þ ð26Þ

and integrating within the gap only. In many works, the
limit at T ¼ 0 K was used. It predicts a linear spectrum
proportional to eVB − ℏω. This simple form of the current
density correlation was derived from a calculation of the
intensity correlation in the gap and assuming a uniform
and delta-correlated correlation function. This form
assumed that the current density is nonzero along the z
axis normal to the interfaces of the barrier. It was further
assumed that the correlation function is nonzero in the
gap and zero outside.
All these assumptions hindered a comparison of this

model with the Fermi’s golden rule result derived in the
previous section. We report in Appendix B a derivation of
the power cross-spectral density of the current density for a
(nonequilibrium) biased junction that avoids the previous
assumptions. In this derivation, we introduce a quantum
field operator for the current density. As discussed before,
we use either the left or the right reservoir to perform the
statistical average depending on the propagation direction.
This enables us to perform the calculation of the ensemble

average of operators of the form ĉ†1ĉ2ĉ
†
3ĉ4. We obtain

Sjpjqðr;r0;ωÞ¼
X
kL

X
kR

jp;L→RðrÞj�q;L→Rðr0Þ

×2πδðω−ωel
Lþωel

RÞfLFDðkLÞ
h
1−fRFDðkRÞ

i
:

ð27Þ
This correlation function goes beyond the previous

models: (i) It is nonzero in the metallic electrodes, and

(ii) it is correlated for two points belonging each to a
different electrode, in marked contrast with the assumption
of a delta-correlated current. We note that, at equilibrium in
a homogeneous medium, the correlation function is given
by the fluctuation-dissipation theorem. Here, Eq. (27) is
valid for a biased junction. In Sec. II B 3, we use this
explicit form to establish the equivalence with the Fermi’s
golden rule result obtained in Sec. II B 1. We then discuss
in detail the properties of this correlation function. We see
that it has all the properties that were missing in previous
models and motivated the introduction of a hot-electron
mechanism [31].

3. Equivalence of the methods

In order to compute from Eq. (25) the power transferred
from the electronic current to the SPPs, we restrict the
Green’s tensor to the contribution of the surface-plasmon
modes of all branches ν and all wave vectors Kk. Using
the expansion of the Green’s tensor over the plasmonic
modes [56,57], we obtain

Gp;qðr; r0;ωÞ ¼
X
Kk

X
ν

c2�
ωðνÞ
Kk

�
2
− ω2

u�ðνÞp;KkðrÞu
ðνÞ
q;Kk ðr0Þ

S
:

ð28Þ

We then apply the limit limϵ→0Imf1=½α2 − ðωþ iϵÞ2�g ¼
π=ð2αÞδðω − αÞ, which leads to

Im½Gp;qðr; r0;ωÞ�

¼
X
Kk

X
ν

πc2

2ωðνÞ
Kk

u�ðνÞp;Kk ðrÞu
ðνÞ
q;Kk ðr0Þ

S
δðω − ωðνÞ

Kk Þ: ð29Þ

By inserting the above forms of the Green’s tensor
and the current density cross-spectral density into Eq. (25),

we recognize the matrix elements MðνÞ
L;R;Kk and recover

Eq. (21). This establishes the equivalence between the
different models provided that the exact current density
cross-spectral density given by Eq. (27) is used.

4. Current-density correlation

We now turn to a detailed study of the correlation and
consider the same Al-Al2O3-Au system as in Fig. 2. For a
metal, the typical correlation length is expected to be given
by the Fermi wavelength. Surprisingly, we also unveil a
long-range spatial correlation over 10 nm across the barrier.
At this point, we note that the Hamiltonian does not
account for electron-electron and electron-phonon inter-
action so that the model does not include dephasing.
Nevertheless, the coherence length is expected to be larger
than 10 nm at ambient temperatures. For instance, the
dephasing time at ambient temperature in gold is estimated
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to be in the range 10–30 fs [58]. With a Fermi velocity of
1.4 × 10−6 ms−1, we estimate the phase coherence length
to be on the order of 14–42 nm so that our results should be
valid. In Fig. 3(a), we plot Sjzjz calculated with Eq. (27) in
the center of the gap, for different bias potentials and in the

zero temperature limit. For all considered values of VB,
the results obtained with Bardeen’s approximation (dots)
agree almost perfectly with those obtained with the
QDS (lines). Hence, Bardeen’s approximation is a very
accurate approach to describe current fluctuations inside
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FIG. 3. Spatial correlations of the current density jz and charge density ρ for an Al-Al2O3-Au tunneling junction. (a) Cross-spectral
density of the current density fluctuations Sjzjzðr; rÞ in the center of the insulator gap as a function of the energy ℏω, for different bias
potentials VB ¼ 0.5, 1, 1.5, and 2 V. Dots correspond to the calculation with the wave functions obtained within Bardeen’s
approximation, and the solid lines to the QDS. (b) Cross-spectral density Sjzjzðz; z0Þ for points z and z0 at the same position in the parallel
direction ðrk ¼ r0kÞ, for Lgap ¼ 2 nm, VB ¼ 2 V, and ℏω ¼ 1 eV. The insulator gap is located at values of z and z0 between 0 and 2 nm.

Dashed lines highlight the two peaks under the conditions z ¼ z0 and z0 − Lgap ¼ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðER

F þ eVBÞ=EL
F

p
(and its symmetric form).

(c) Cross-spectral density Sjzjzðrk; r0kÞ for varying positions z ¼ z0 and as a function of the distance in the parallel direction x − x0, for the
same parameters as in (b). (d),(e) Cross-spectral density of the current Sjzjzðz; z0Þ and charge densities Sρρðz; z0Þ, respectively. The point
z0 ¼ −3 nm is fixed, and the correlations are calculated for varying second point z (with rk ¼ r0k), in the same system and for same ω as

in (b) and (c).
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the gap. However, we note that a linear behavior with the
voltage is observed only for the smallest bias potential
considered, VB ¼ 0.5 V. For larger bias potentials
(VB ¼ 1.5 and 2.0 V), Sjzjz is not linear with respect
to ω as opposed to the prediction of Eq. (26) at T ¼ 0 K.
Therefore, the exact definition of Eq. (27) must be used
in this approach to calculate the intensity of the
emitted light. This issue has been discussed in two recent
papers [53,59].
We now discuss the spatial dependence of the correlation

between two arbitrary points of the full device, taking
advantage of the QDS to explore the currents in the metals.
With this aim, we plot in Fig. 3(b) the cross-spectral density
Sjzjzðz; z0;ωÞ for fixed values Lgap ¼ 2 nm, VB ¼ 2 V, and
ℏω ¼ 1 eV, by varying the positions z and z0 (for the same
position in the parallel direction, rk ¼ r0k). We observe that
there is a peak at z ¼ z0 with a width of the order of 1 nm,
close to the Fermi wavelengths of the metals, which are
around 0.52 nm for gold and 0.36 nm for aluminum [43].
Therefore, the consideration of delta-correlated currents in
Eq. (26) is accurate enough to describe this feature for most
purposes. Nevertheless, we observe a second weaker and
broader correlation peak for positions z and z0 at opposite
metals. Upon inspection (see Appendix C), this maximum
occurs when the current density jL→R has a similar
phase for all L → R transitions. The equations describing
this condition are (i) ðz0 − Lgap=zÞ ¼ −ðkzR=kzLÞ ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðER

F þ eVB=EL
FÞ

p
, if z is in the left metal and z0 in

the right metal, and (ii) ðz−Lgap=z0Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðER

FþeVB=EL
FÞ

p
if z is in the right metal and z0 in the left metal. Both cases
are indicated by dashed lines in Fig. 3(b).
We further analyze how the currents are correlated for

different points in the direction parallel to the interfaces
rk − r0k ≠ 0, and for different values z ¼ z0, as shown in
Fig. 3(c) (we consider x ≠ x0 but y ¼ y0). The correlations
are oscillatory as a function of the difference x − x0 and
become weaker for distances larger than the Fermi wave-
length. The periodicity of these oscillations is of the order
of 1 nm. We also observe that the width of the peak of
Sjzjzðrk; r0k;ωÞ is not constant for z ¼ z0 close to the
insulator gap and becomes broader inside the gap. This
effect can be easily included in the approximate Eq. (26)
by broadening the delta function δðr − r0Þ in the parallel
direction. Therefore, the assumption of delta-correlated
currents in Eq. (26) needs small corrections to describe
current correlations along the rk direction due to the finite
thickness of the corresponding peak, but the assumption
completely fails to capture the second peak observed for the
correlations along the z direction.
In order to understand the physical origin of the current

correlations in the two metals, we now focus on the
correlations of the electronic charge density fluctuations.
The charge density ρL→R, associated to each transition from
an initial state ΨQDS

L ðrÞ to a final state ΨQDS
R ðrÞ, is obtained

from the current density jL→R of Eq. (19) by using the
continuity equation

∇ · jL→R þ ∂ρL→R

∂t
¼ 0: ð30Þ

The cross-spectral density Sρρ is then calculated with
Eq. (27) after substituting jL→R with ρL→R.
For the analysis, we fix the point z0 ¼ −3 nm in the left

metal and observe the cross-spectral density of the current
density Sjzjz [Fig. 3(d)] and charge density Sρρ [Fig. 3(e)]
for any second position z and for rk ¼ r0k. The latter
correlations oscillate more strongly in space as compared
to those associated to the current density. In the results
of Sρρ, we observe a clear peak in the position z0 ¼ z as
happens for Sjzjz. More importantly, the second peak in the
opposite metal also appears, but, whereas the correlation is
positive for the current density, we obtain negative values
in the case of the charge density. We attribute this result to
the presence of a hole with positive charge and opposite
velocity. In other words, as a negative charge moves toward
the gap in the left electrode, a positive charge also moves
toward the barrier in the right electrode. The double peak in
Sρρ and Sjzjz disappears inside the gap, where the electron
and the hole recombine. These currents in the metal
electrodes give a contribution to the light radiation apart
from the correlations just inside the gap. This physical
phenomenon had not been accounted for so far. It is
included in the full QDS and introduces in a natural
way a contribution of the currents in the metallic electrodes
to the plasmon excitation without the need to invoke hot-
electron mechanisms.

5. Discussion

In closing this theoretical section, we discuss the validity
conditions of the model and its possible extensions. The
discussion has been limited to planar surfaces and to a
linear expansion through the use of the Fermi’s golden
rule excluding nonlinear effects such as two-photon emis-
sion. We stress that the equivalence between the quantum
formalism and the computation of the field radiated by
current fluctuations holds only within this approximation.
We now discuss the extension of the model to provide
guidance to further work.
Superbunching of photons attributed to two-photon spon-

taneous emission has been observed for a highly localized
plasmonic mode between a tip and a surface [60]. This effect
cannot be explained by computing the field radiated by
fluctuating currents. By contrast, Muniz et al. [61] have
shown how to account for two-photon emission using an
interaction Hamiltonian with a quantized field and
going to second order. Since our framework is based on a
quantized form of the plasmon field, the approach used by
Muniz et al. [61] could be implemented. It is expected that
the two-photon emission contribution should increase
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significantly for highly confined fields in the so-called
picocavity regime.
We now discuss how to extend the model discussed in

this paper, which is restricted to planar surfaces, to more
general systems. Under the linear approximation, the
emission can be described using the Green’s tensor and
the current density correlation function. Interestingly, the
transverse correlation length is found to be on the order of
1 nm, confirming the assumption introduced by Laks and
Mills [35]. As a consequence, the emission process is
highly localized. Hence, the correlation model derived in
the plane-plane geometry could be used locally provided
that the local radius of curvature is larger than the trans-
verse coherence length. Computing the emission can then
be done by calculating the Green’s tensor for the actual
geometry and integrating over the surface. This approach
has been used in the past to compute light emission by
gratings [19], where it was assumed that the current density
was delta-correlated in the transverse plane.
In summary, we have revisited the theoretical description

of light emission in tunneling junctions by using the
interaction Hamiltonian Ĥel-SPP of electrons and SPPs with
a quantized form of the electric field of the plasmon mode.
We have used the quantum field operator form of the
current density to derive its correlation function. With this
new formalism, we have established in Sec. II B the
equivalence between the model based on Fermi’s golden
rule and the model based on the energy dissipation by a
current in the linear approximation. We have found that
light is emitted both in the gap and in the electrodes. In
practice, these two contributions depend on the amplitude
of the electric field of the plasmon modes in the gap and
in the electrodes. We explore in the next section how
significant are these contributions for the different plas-
monic modes of the junction.

III. LIGHT EMISSION FROM PLANAR
MIM JUNCTIONS

In this section, we analyze the contribution to
light emission from the different plasmon modes of a
device composed by metallic electrodes of approximately
10–20 nm thickness at both sides of the gap. The slow
mode of the MIM junctions is localized in the insulator gap.
Its electric field is strongly confined, and it is, therefore,
very large so that it couples efficiently to the tunneling
electrons [2,6,38,62]. On the other hand, this mode is
characterized by a small group velocity and has no radiative
losses unless the surface becomes rough or the metal
thickness is small enough to allow for radiative leakage;
thus, it is possible to engineer these radiative losses [19].
Other SPP modes are localized at metal-dielectric interfaces
a few nanometers far from the insulator gap and can also
contribute to radiation [3,31,53]. Their coupling to the
inelastic tunneling mechanism is less efficient, especially
at junctions with thick metallic electrodes, because the

electric field of the SPP of the corresponding interfaces
penetrates weakly into the gap. On the other hand, their
radiative losses can be larger. With the objective to analyze
the contribution to inelastic emission from the gap and from
the metal electrodes, we choose as a representative system a
junction that was considered in the first experiment of light
emission from tunneling junctions, consisting in a planar
junction formed by aluminum and gold electrodes sepa-
rated by a layer of aluminum oxide.

A. Structure of plasmonic modes of the system

In order to study the intensity of light emission due to the
process of inelastic tunneling in Al-Al2O3-Au junctions
(where electrons tunnel from the Al electrode to the
Au electrode), we first analyze the properties of the
SPPs of the system. These modes are obtained by assuming
that the insulators have a nondispersive permittivity, with
ε ¼ 3.1 for aluminum oxide in the gap. Furthermore, the
aluminum layer is deposited over a glass substrate with a
representative permittivity ε ¼ 2.5, and the insulator in
the opposite direction is set to be vacuum. The two metals
are represented by a Drude permittivity of the form ε¼
ε∞−ω2

p=ω2, with parameters ωp¼14.7 eV and ε∞¼1 for
aluminum [63], whereas we choose ωp ¼ 9.065 eV for
gold [64]. Furthermore, we consider interband transitions
in gold by setting ε∞ ¼ 9. The losses in the Drude model
are neglected in the calculation of the SPP excitation rates
to ensure that the energies of the modes are real and their
respective electric fields can be normalized following the
quantization rule from Eq. (15). We have checked that the
dispersion relations in the range of energies considered
change only slightly after including losses in the permit-
tivities. Furthermore, we fix the metal thickness of the
aluminum layer at LAl ¼ 10 nm and that of the gold layer
at LAu ¼ 20 nm (unless stated otherwise). Since these two
thicknesses are on the order of the electron mean free paths
of their respective metal [65], we assume that the electronic
wave functions given in Sec. II A are valid in the whole
metallic regions. A sketch of the system is shown in the
inset in Fig. 4(a).
This system contains three different modes of SPPs,

typically referred to as the fast, intermediate velocity, and
slow modes, based on their group velocities according to
the dispersion relations [shown in Fig. 4(a)] [66]. The
group velocities of the fast and the intermediate velocity
modes are very close to the speed of light in vacuum and in
the glass, respectively, while it is much smaller for the slow
mode. Among these three modes, the slow mode [brown
line in Fig. 4(a)] has received significant attention in studies
of quantum tunneling due to its large electric field in the
gap region. Figure 4(b) illustrates the large sensitivity of the
group velocity on the gap thickness. The normalized

electric field distribution uðsÞ
Kk of the slow mode at energy

ℏωðsÞ
Kk ¼ 2 eV and thickness Lgap ¼ 3 nm is shown in
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Fig. 4(c), where we plot the field components in the
directions (top) parallel and (bottom) perpendicular to
the interfaces. Since we neglect losses in the permittivities
of the metals, these fields are real (or purely imaginary) in
the whole space. It is apparent that the slow mode is
strongly confined in the gap. However, it is worth noting
that the electric fields also penetrate in the metals, which
can contribute to the coupling of the electric field with the
electronic alternating current and modify the excitation rate
when considering processes in metals within the framework
of the QDS, as discussed below.
Together with the slow mode, the finite thicknesses of

the metals lead to the existence of two additional modes

localized at the other two metal-insulator interfaces. The
fast and intermediate velocity modes are SPPs mostly
localized at the gold-vacuum and aluminum-substrate
interfaces, respectively. These modes follow the typical
dispersion relations of SPPs calculated with semi-infinite
Drude metals [67], and the materials at a distance of a few
nanometers from these interfaces cause only slight mod-
ifications to the dispersion relations.
The dispersion relation [Figs. 4(a) and 4(b)] and the field

distribution of the modes [Figs. 4(c)–4(e)] are useful to
analyze which mode may contribute to light emission. The
field distributions of the fast and intermediate velocity
modes suggest a smaller electromagnetic energy stored in
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FIG. 4. SPPs in Al-Al2O3-Au tunneling junctions. (a) Dispersion relation of the fast (yellow), intermediate velocity (gray), and slow
(brown) plasmonic modes for Lgap ¼ 3 nm. The dark blue area indicates the light cone in vacuum, and the light blue area highlights the
light cone in the glass substrate. The inset shows a sketch of the device, including the thicknesses of the layers considered in the rest of
this figure and in most of the calculations throughout the manuscript. On the right of the structure, we show schematically the field
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brown for the slow mode). (b) Dispersion relation of the slow mode for different gap thicknesses Lgap ¼ 1, 2, 3, and 4 nm (from the

darkest to the lightest brown). (c)–(e) Electric field distributions at energy ℏωðνÞ
Kk ¼ 2 eV of the slow (c), fast (d), and intermediate

velocity (e) modes, for Lgap ¼ 3 nm. The top shows the distribution of the electric field component oriented along the direction parallel

to the interfaces of the junction uðνÞk;Kk
, and the bottom shows the component in the z direction uðνÞz;Kk . Dashed lines in (c)–(e) indicate the

positions of the metal-insulator interfaces.
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the gap compared to the slow mode (shown for ℏωðsÞ
Kk ¼

ℏωðmÞ
Kk ¼ ℏωðfÞ

Kk ¼ 2 eV and Lgap ¼ 3 nm), which results in

a smaller excitation rate due to a weaker coupling with
tunneling electrons. However, despite its small excitation
rate, only the fast mode may contribute to light emission
through leakage in the glass, because it is the only mode
whose dispersion relation is inside the light cone of the
glass [Fig. 4(a)]. On the other hand, if the gold-vacuum
interface is rough [39] or periodically structured [19], the
slow mode can be coupled into vacuum, and it can
dominate the light emission process due to its far larger
excitation efficiency. In the following subsections, we
analyze the effect of the electric field distributions on
the theoretical prediction of light emission from the gap
and the metal regions for the fast and slow modes. For
completeness, the analysis of the intermediate velocity
mode is included in Appendix D.

B. Excitation rate of the slow mode

In this section, we explore the excitation rate of the slow
mode. Within Bardeen’s approximation, this calculation
amounts to computing an overlap integral between the
current density and the plasmon field in the gap [i.e., the
integral in Eq. (18) is calculated only inside the gap volume
Vgap]. Within the QDS model, we also need to explore the
contribution to the excitation rate from the processes in the
metal regions and from the quantum interferences between
the gap and the metal contributions.

1. Gap contribution to the slow mode excitation

We start by using Bardeen’s approximation and the
formalism of inelastic tunneling (described in Sec. II B) to

calculate the excitation rate ΓðsÞ
inel of the slow mode [from

Eq. (20)]. We plot ΓðsÞ
inel (where the superscript s refers to the

slow mode) in the inset in Fig. 5(a) as a function of the bias
potential for a fixed gap thickness of Lgap ¼ 3 nm. As VB

increases, the transition rate grows due to an exponential
increase of the matrix element and a linear raise of the
number of initial and final states. For instance, increasing
the bias potential from 0.6 to 2.4 V causes the number of
excited SPPs to increase by 3 orders of magnitude, from
3.8 × 1018 to 1.2 × 1021 SPPs per second and square meter.
However, the elastic tunneling rate also increases signifi-
cantly with VB, which means that the efficiency of the
tunneling junctions, corresponding to the number of
excited slow SPPs per tunneling electron, raises only
slightly from 10−4 to 2 × 10−4 for the range of VB
considered. We also check numerically that the efficiency
of the junction improves for thinner gaps because the
density of states of the slow mode is larger [as can be
deduced from the dispersion relations shown in Fig. 4(b)].
For example, at Lgap ¼ 1 nm, we obtain an efficiency of
around 8 × 10−4 SPPs excited per tunneling electron.

Therefore, the efficiency of the planar junctions according
to the inelastic tunneling process is not expected to exceed

the ratio ΓðsÞ
inel=Γel ¼ 10−3, even for narrower gaps that are

experimentally considered in typical light-emission experi-
ments with planar junctions.

2. Metal contribution to the slow mode excitation

To determine whether the inelastic tunneling in the gap
can fully account for the excitation of the slow mode, we
include the contribution of the metal electrodes according
to the QDS model, as explained in Sec. II B. After

analyzing the SPP excitation rate ΓðsÞ
inel in the inset in

Fig. 5(a), we now focus on the power PðsÞ transferred
by the current to excite this mode [given by Eq. (21)]. With
this purpose, we show in Fig. 5(a) the spectral contribution

PðsÞðℏωðsÞ
KkÞ at each energy ℏωðsÞ

Kk, which is related to

the total nonradiative power PðsÞ and to the slow SPP-

excitation rate ΓðsÞ
inel as PðsÞ ¼ R

PðsÞðℏωðsÞ
Kk Þdðℏω

ðsÞ
Kk Þ ¼R

ℏωðsÞ
Kk ½dΓ

ðsÞ
inel=dðℏωðsÞ

Kk Þ�dðℏω
ðsÞ
KkÞ. We use the electronic

states of the QDS [Eqs. (2) and (3)] to calculate the spectral

power PðsÞ
QDS according to the processes in the whole MIM

device [performing the integral of Eq. (18) in the volumes
Vgap of the gap and Vmet of the metals], and we compare it
with the contribution of the gap according to Bardeen’s

approximation, PðsÞ
BA [performing the integral of Eq. (18)

just in Vgap].
For bias potentials VB ¼ 0.6, 1.2, or 1.8 V, the results of

the full QDS (solid line) are nearly identical to those from
Bardeen’s approximation (dots) for all energies, with a
largest mismatch of 5% in the integrated nonradiative
power PðsÞ. Indeed, for all these values of VB, the negative
permittivity of the metals is large for all energies

ℏωðsÞ
Kk ≤ eVB, resulting in limited penetration of the electric

field within these regions. Furthermore, at energies

ℏωðsÞ
Kk > eVB, the spectral power vanishes completely,

because we assume zero temperature in all this paper
and the Fermi-Dirac occupation factors of the metals
do not allow any transition between states at those
energies (for T > 0 K, it is possible to excite SPPs at

ℏωðsÞ
Kk > eVB [68], but we set T ¼ 0 K for simplicity,

because the main results of this work remain very similar
otherwise). Since the calculation within Bardeen’s approxi-
mation agrees with high accuracy with the calculation

of the full QDS at all ℏωðsÞ
Kk , one can conclude that the

consideration of the inelastic processes just in the insulator
gap would be accurate enough to describe the excitation of
the slow SPP in the range of VB considered.
For VB ¼ 2.4 V, both calculations still agree with high

accuracy at low energies, but one can observe differences
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for ℏωðsÞ
Kk ≳ 1.8 eV. In this region, PðsÞðℏωðsÞ

Kk Þ is dominated

by a peak, where the plasmonic density of states increases
considerably [see the dispersion relation in Fig. 4(b)].
At this peak, the spectral power according to the calculation

of the QDS, PðsÞ
QDS, is generally larger than the value

obtained within Bardeen’s approximation, PðsÞ
BA, suggesting

that the metal contribution gains importance under these
conditions.
To further showcase the importance of the metal con-

tribution in the high-energy regime, we plot in Fig. 5(b) the

ratio PðsÞ
QDS=P

ðsÞ
BA for varying energies and gap thicknesses

under a larger bias potential of VB ¼ 3 V. Two distinct
regions are observed: one at thin gaps or low energies,
where the contribution within the metals reduces the

excitation power of the slow mode (PðsÞ
QDS < PðsÞ

BA), and
another at thick gaps and high energies, where it increases

(PðsÞ
QDS > PðsÞ

BA). To clarify this phenomenon, the spatial
distribution of the electric field of the slow mode is shown
in Figs. 5(c)–5(e) (brown line and background), together
with the inelastic current Reðjz;L→RÞ associated with a
L → R transition for an electron initially at the highest
occupied energy level of aluminum (blue lines), for values

of Lgap and ℏωðsÞ
Kk indicated by white dots in Fig. 5(b). For

thin gaps [Figs. 5(c) and 5(d) for Lgap ¼ 1 nm], the electric
field is highly concentrated inside the gap, with some
penetration into the metals near the gap. Because of the
phase difference of the electric field between the insulator
and the metal, the metal contributions tend to interfere
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FIG. 5. Analysis of the power transferred by the tunneling current to the slow mode. (a) Spectral power PðsÞðℏωðsÞ
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of the junction, with thicknesses Lgap ¼ 3 nm, LAl ¼ 10 nm, and LAu ¼ 20 nm [see the sketch in Fig. 4(a)] and bias potentials

VB ¼ 0.6 (orange), 1.2 (red), 1.8 (purple), and 2.4 V (blue). Dots correspond to the gap contribution to the power, PðsÞ
BAðℏωðsÞ

Kk Þ,
according to Bardeen’s approximation, and the solid lines to the joint contribution of processes in the gap and in the metals calculated

using the QDS, PðsÞ
QDSðℏωðsÞ

Kk Þ. The inset shows the total inelastic tunneling rate Γ
ðsÞ
inel per surface area in logarithmic scale as a function of

the bias potential, obtained within Bardeen’s approximation. Colored squares correspond to the values of VB that we choose in the main
figure. (b) Ratio between the spectral power contributions obtained within the QDS and Bardeen’s approximation,

PðsÞ
QDSðℏωðsÞ

Kk Þ=P
ðsÞ
BAðℏωðsÞ

Kk Þ, as a function of the gap thickness Lgap and SPP energy ℏωðsÞ
Kk of the Al-Al2O3-Au planar system. The

applied bias voltage is VB ¼ 3 V. The color bar is in linear scale. (c)–(e) Distributions along the z direction of the fluctuating electronic
current density Reðjz;L→RÞ for an electron initially in the highest occupied energy level (blue) and of the electric field Ez (brown) of the

slow mode. In each panel, we consider the gap thickness Lgap and energy ℏω
ðsÞ
Kk indicated by each of the dots in (b): (c) ℏω

ðsÞ
Kk ¼ 1.6 eV

and Lgap ¼ 1 nm; (d) ℏωðsÞ
Kk ¼ 2.5 eV and Lgap ¼ 1 nm; and (e) ℏωðsÞ

Kk ¼ 2.5 eV and Lgap ¼ 4 nm. The wavelength of the electronic

current density and the decay length of the SPP are indicated in each panel.
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destructively with the gap contribution. Accordingly, the
calculation of the QDS in the full device predicts a smaller
excitation rate than Bardeen’s approximation, as shown by

the region of PðsÞ
QDS < PðsÞ

BA in Fig. 5(b). The effect is more
significant at large energies, where the negative electric
field in the metal becomes even more concentrated close to
the gap, leading to a stronger destructive interference [as

can be observed by comparing Fig. 5(d) for ℏωðsÞ
Kk ¼ 2.5 eV

with Fig. 5(c) for ℏωðsÞ
Kk ¼ 1.6 eV].

On the other hand, the inelastic electronic current jL→R
oscillates in space. For larger Lgap, these oscillations can
give not only destructive interferences between the proc-
esses in the gap and the metals, but also constructive ones
under adequate circumstances. Because of the oscillations
of jL→R [whose wavelength varies between 5 and 9 nm in
the energy range considered in Fig. 5(b)], the integrand of
the matrix element of Eq. (18) has the same sign in some
regions of the metal as in the gap, leading to a constructive
interference. Since the contribution close to the gap leads
to a destructive interference, the wavelength of the elec-
tronic current should be small compared to the SPP decay
length to have an overall constructive interference, which
happens for large Lgap [Fig. 5(e)], because the SPP decay
length increases with the gap thickness. After accounting
for all constructive and destructive interferences within
the metal according to the QDS, the interference averages
to be constructive for all electrons in junctions with

Lgap ≳ 1.6 nm, and the excitation power at ℏωðsÞ
Kk ¼

2.5 eV can be even twice as high as that predicted by
Bardeen’s approximation. At larger energies, the slow
mode contains significant losses, and, thus, the description
based on nonlossy Hermitian Hamiltonians that we present
in this work loses its accuracy.
In general, Fig. 5(b) illustrates that Bardeen’s approxi-

mation can underestimate or overestimate the slow mode’s
excitation power up to a factor of 2. Importantly, while the
slow mode is nonradiative in perfectly planar junctions, it
can dominate light emission in other systems, such as in
localized gap tunneling junctions [33], commonly used in
STM, or in planar junctions with sufficient surface rough-
ness. In these systems, the QDS gives a more appropriate
description of radiation than Bardeen’s approximation that
considers only the gap contribution.

C. Excitation rate of the fast mode

The formalism of inelastic tunneling predicts that the
excitation of the fast mode is far less efficient than that of
the slow mode, due to the considerably weaker electric field
inside the gap for the former [see Fig. 4(d)]. In particular, as

shown in Fig. 6(a), the spectral power PðfÞ
BA of the fast mode

at VB ¼ 0.6 V is of the order of 1011 s−1m−2, which is 107

times smaller than PðsÞ
BA for the slow mode. However, the

study of the excitation rate of the fast mode is important,
because in perfectly planar junctions it is the only process
that leads to radiation. It was estimated that, in gratings
with a periodicity of hundreds of nanometers, the emission
of the fast mode may overcome the emission by the slow
mode by a factor of 102 [3]. Indeed, the main discrepancy
between the theory of inelastic tunneling and experiments
was first observed for gratings [4,5]. The results that we
present for planar junctions can be generalized to describe
the contribution of Bardeen’s approximation and the QDS
in other structured tunneling junctions where the fast mode
can be the leading mechanism of light emission.

1. Metal contribution to the fast mode excitation

Interestingly, when the QDS is applied, we already
observe a difference from Bardeen’s approximation at
VB ¼ 0.6 V in the calculation of the spectra of the radiative
power, PðfÞ. Although this variation is only 18% in the
integrated power PðfÞ, it is considerably larger than for the
slow mode at the same bias potential. This suggests that
including the metal contribution is significant for the fast
mode as pointed out by Kirtley et al. [31]. Note that the
metal contribution is obtained without using the hot-
electron mechanism. The discrepancy between Bardeen’s
approximation and the QDS increases considerably for
VB ¼ 1.2 V [Fig. 6(b)] and continues to grow with VB.
Furthermore, at VB ¼ 1.8 V [Fig. 6(c)], local minima and

maxima in PðfÞ
QDS are observed at different energies, which is

related to the oscillatory behavior of the inelastic current
density for each electron, as shown in the inset in Fig. 6(c)
together with the electric field of the fast mode. The
wavelength of the oscillations inside the metal depends
on the energy of the electrons, leading to constructive or
destructive interference with the contribution of the insu-
lator gap in the integral of Eq. (18), which relates the
current density according to Eq. (19) with the field
distribution of the mode [Eq. (14)]. However, we do not
expect these oscillations to be as predominant in experi-
ments, because the position of the maxima and minima in

the spectra PðfÞ
QDS is very sensitive to the thicknesses of the

metals and the gap. In real systems, metallic surfaces
present small roughness, and, thus, the contribution of
different thicknesses cancels out these oscillations and the
measured power would be the average between thick-
nesses. Finally, we remind that the calculation of the matrix
element uses a very simple model of electronic wave
functions which may produce artifacts. Specifically, to
compute the overlap integral between the electronic wave
function and the plasmon mode, we use the electronic wave
function computed for an infinite metal and perform the
integral over a finite thickness.
The increased importance of the metal contribution to

light emission at larger energies becomes more evident in
Fig. 6(d). The comparison between the results obtained
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with Bardeen’s approximation (blue dots) and QDS (blue
solid line) for VB ¼ 2.5 V demonstrates that, for most
energies, the results of the latter calculation are signifi-
cantly larger than for the former. Therefore, despite the
oscillations in the calculation for the full system, the

integrated power PðfÞ
QDS is notably larger than PðfÞ

BA.
The role of the thickness of the metallic electrodes is also

highlighted in Fig. 6(d). The inset indicates the result PðfÞ
BA

according to Bardeen’s approximation for LAu ¼ 10 nm,
LAu ¼ 20 nm, and LAu ¼ 30 nm (the values of LAu ¼
20 nm are the same as in the main figure). Bardeen’s

approximation predicts that PðfÞ
BA decreases significantly

when increasing LAu, because the overlap between the gap
and the fast SPP field decreases. Therefore, the decrease of
the inelastic tunneling rate is dictated by the decay length
of the SPP. However, experimental measurements from
Ref. [4] indicate that the intensity of the light emitted by the
fast mode decreases with LAu more slowly than the decay
length of the SPP. To assess if the QDS can account for this
experimental result, we plot in Fig. 6(d) the radiative power
for the same thicknesses LAu ¼ 10, 20, and 30 nm. The
obtained radiative power decreases more slowly as a
function of LAu than expected from Bardeen’s approxima-
tion. In general, Figs. 6(a)–6(d) show that, under different
circumstances, the QDS can lead to a value of the power
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FIG. 6. Analysis of the radiative power due to the excitation of the fast mode. (a)–(c) Spectral radiative power PðfÞðℏωðfÞ
Kk Þ per

surface area S of the junction, with thicknesses Lgap ¼ 3 nm, LAl ¼ 10 nm, and LAu ¼ 20 nm [sketch in Fig. 4(a)] and bias potentials
VB ¼ 0.6 (a), 1.2 (b), and 1.8 V (c). Dots indicate the contribution of the gap according to Bardeen’s approximation, and the solid lines
refer to the full results of the QDS. The inset in (c) shows the electric field of the fast mode at energy 1.8 eVand the oscillating inelastic

current density of one electron along the z direction. (d) Spectral radiative power PðfÞðℏωðfÞ
Kk Þ per surface area S under bias potential

VB ¼ 2.5 V. We compare the results obtained using Bardeen’s approximation (dots) and the QDS (solid line) for LAu ¼ 20 nm. Dashed
lines indicate the results according to the QDS for LAu ¼ 10 nm and LAu ¼ 30 nm. The inset shows the results within Bardeen’s
approximation for LAu ¼ 10, 20, and 30 nm. (e) Spectral radiative power per surface area S including nonlocal effects (colored lines) for
different distances z0 from the boundary between the gold and vacuum permittivity (corresponding to the position of the centroid of
charge) to the boundary of the ionic-positive background. z0 is indicated in the inset and changes in steps of size 0.5 Å. We consider that
the boundary between permittivities is inside the ionic background. The results obtained within the QDS without considering nonlocal
effects (z0 ¼ 0) and within Bardeen’s approximation are indicated by the black dashed line and by the gray dots, respectively. All the
calculations in (e) are done for a junction with an aluminum and a gold layer of thicknesses LAl ¼ LAu ¼ 5 nm placed between a glass
substrate and vacuum, with parameters Lgap ¼ 2 nm and VB ¼ 0.5 V.
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PðfÞ
QDS 2 or 3 times larger than PðfÞ

BA for intermediate bias
potentials or even an order of magnitude larger at high
energies and thick metallic layers.

2. Nonlocal contribution to the fast mode excitation

Together with the inelastic processes inside the metallic
regions, Kirtley et al. argued that processes at the vacuum-
metal interfaces placed far from the insulator barrier could
also contribute significantly to the excitation of the fast
mode [31]. The importance of this interface was also shown
by experiments, notably when demonstrating experimen-
tally that the presence of adsorbants under ultrahigh
vacuum could quench the signal [30]. It is seen in
Fig. 4(d) that the electric field changes drastically from
the bulk metal to vacuum at the interface due to dielectric
screening. Therefore, one could expect that, under a non-
local description of the electromagnetic response, the
tunneling electrons could interact efficiently with an
unscreened electric field of the fast SPP outside the metal
over a distance given by the screening length.
To estimate the possibility of plasmon excitation at the

interface enhanced by nonlocal effects, we examine a
system composed of an aluminum electrode and a gold
electrode of thicknesses LAl ¼ LAu ¼ 5 nm separated by
an insulator gap of thickness Lgap ¼ 2 nm. These values are
taken from Ref. [53], where it was noted that the gap
contribution alone does not explain all the light emitted by
the fast mode of this system, even at low bias potentials. We
show in Fig. 6(e) the spectral radiative power PðfÞ of the
fast SPP of the mentioned junction for VB ¼ 0.5 V. In these
circumstances, the calculation of the excitation power with

the QDS PðfÞ
QDS and in the absence of any nonlocal effect

(dashed line) is very similar to the gap contribution PðfÞ
BA

according to Bardeen’s approximation (dots), because (i) at
such low bias potentials, the field penetration is small at all

energies ℏωðfÞ
Kk < eVB due to the large negative permittiv-

ities of the metals, so that the fields at the gap are
comparatively large; and (ii) at so thin metallic layers,
the space to excite the fast SPP in the metals is not large
compared to the gap where the electric fields are confined.
However, the performed calculations assume that the
electron density is nonzero only up to the interfaces
between the gold and vacuum permittivities, where the
limits of the integrals in Eq. (18) are set.
According to microscopic descriptions of metallic sur-

faces, the electronic density in real metals may surpass the
position of the interface considered in classical electro-
magnetism [10,69–73]. We now consider that the electronic
current shifts by a maximum distance z0 with respect to the
boundary between permittivities, as shown in the inset in
Fig. 6(e), according to the simple model of nonlocality
detailed in Appendix E. This simple model results in
electrons tunneling from the first electrode and reaching

positions near the metal-vacuum interface of the second
electrode where the electric field is strong, which efficiently
boosts the coupling to electrons. Specifically, we consider
that electrons can interact with the electric field outside the
junction in a region of different widths z0 ¼ 0.5, 1, 1.5, 2,
2.5, and 3 Å [from brown to yellow lines in Fig. 6(e)]. The
power transferred to the fast SPP becomes considerably
larger for increasing z0. For example, for z0 ¼ 3 Å, the

QDS predicts an excitation power PðfÞ
QDS 3 times larger than

PðfÞ
BA. We have, thus, shown that the QDS can account not

only for processes in the gap and in the bulk metal, but also
for those at the interface. The model is, thus, able to
describe systems where any contribution, and not only from
inelastic tunneling processes in the gap, is relevant.

IV. CONCLUSIONS

In this paper, we have introduced a theoretical approach
to describe light emission from biased planar tunnel
junctions. We stress that previous works mostly used
Bardeen’s approximation. We revisited the two models that
have been used so far to describe the inelastic tunneling
mechanism: a Hamiltonian description of light-matter
interaction based on Fermi’s golden rule and the calculation
of the power radiated by fluctuating currents. The latter
model requires the cross-spectral density of the fluctuating
electronic current. These models were used independently
in the past. Here, we derived the form of the cross-spectral
density of the current density for a biased junction. We
found that the electronic current density is strongly corre-
lated in the opposite metals. These long-range correlations
can be interpreted as an electron-hole pair that recombines
in the gap and were missing in previous models. They
provide a model that includes electronic and photonic
interactions in the metallic electrodes. With this long-range
correlation function, we have been able to establish explic-
itly the equivalence of the approach based on the Fermi
golden rule and the approach based on the calculation of the
power radiated by the current density fluctuations.
A detailed analysis of the effect of the long-range

correlations showed that they hardly contribute to the
excitation rate of the slow plasmonic mode of a planar
junction. This is in good agreement with the fact that
Bardeen’s approximation is valid to describe light emission
in planar tunneling junctions and also for STM light
emission. By contrast, we have found that this correction
is the major contribution for the fast mode excitation which
often dominates in the case of periodically corrugated
planar junctions.
Using the QDS model of light emission by inelastic

tunneling, we have been able to reproduce numerically
three experimental observations that could not be explained
by the previous models. First, it had been reported that
the existing models underestimated the measured emitted
power. We found that the QDS model increases the emitted
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power up to an order of magnitude. Second, we find that
the QDS model predicts a decay of the power when the
thickness of the metal increases slower than the exponential
decay of the fast SPP. Finally, we introduced an effective
model of nonlocality that accounts for a large excitation
of the fast mode at the vacuum-metal interface and also for
the quenching of light emission due to adsorbants. On the
whole, it does no longer appear necessary to invoke an
alternative process based on the existence of hot electrons.
In addition to these previously unexplained observations

that motivated our analysis, the QDS opens new possibil-
ities. Optimizing the choice of the material and thickness of
the metallic layer sustaining a fast plasmon mode could
lead to a large coupling due to nonlocal effects. Another
very interesting direction for future work is the modeling
and optimization of two-photon spontaneous emission
which leads to bunching as reported recently [60]. The
two-photon emission process can be computed using an
interaction Hamiltonian with a quantized field and a
second-order contribution [61]. Hence, the formalism
introduced in this paper based on a quantized plasmon
could be applied. Finally, the framework introduced in this
paper could be applied to light emission by quantum cascade
structures in the LED regime. So far, many systems expected
to produce electroluminescence assisted by plasmonic
emission are operating in the incandescence regime. The
experiments have been guided by a theoretical approach
based on two points of view: The plasmon is an electronic
collective excitation, and its excitation is described by a
deterministic injection. Here, the plasmon is treated as a
quantized electromagnetic field and the injection is treated as
a tunneling through a barrier separating the quantum well
from a medium with a well-defined Fermi level.
In summary, we have introduced a new theoretical

framework to account for light emission by inelastic
tunneling. It enables one to model experimental observa-
tions that were out of reach of the available models. The
new framework also appears to be a useful tool to address
important issues such as two-photon emission by inelastic

tunneling or spontaneous emission in electrically biased
cascade structures.
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APPENDIX A: DERIVATION OF THE ELASTIC
TUNNELING RATE

In order to compute the elastic tunneling rate that leads to
the intensity-voltage curves of the tunneling junction [as
plotted, for example, in Fig. 2(e)], we start by focusing on
Bardeen’s approximation (in this appendix, we omit the
superscript BA in the wave functions for brevity) to recover
the result that he discovered originally in Ref. [36]. We
consider the transition rate from a particular state jΨLi of
the left metal (with energy ℏωel

L and parallel component of
the wave vector kkL) to another state of the right metal jΨRi
(with respective values ℏωel

R and kkR). This rate is calcu-
lated by Fermi’s golden rule with the interaction
Hamiltonian Ĥel − ĤL [Eq. (1)]:

ΓL→R ¼ 2π

ℏ2
δðωel

L − ωel
RÞjhΨRjĤel − ĤLjΨLij2: ðA1Þ

We first compute the matrix element of the interaction
Hamiltonian. Although the wave functions depend on the
three spatial coordinates as ΨLðRÞðrÞ ¼ ΨLðRÞðzÞeikkLðRÞ·rk ,
the interaction Hamiltonian depends only on z, which
enables to separate the integral into spatial coordinates:

jhΨRjĤel− ĤLjΨLij2¼
�Z

Ψ�
RðzÞe−ikkR·rk ðĤel− ĤLÞ½ΨLðzÞeikkL·rk �dr

	�Z
Ψ�

Lðz0Þe−ikkL·r0k ðĤel− ĤLÞ½ΨRðz0ÞeikkR·r0k �dr0
	

¼
����
Z

Ψ�
RðzÞðĤel− ĤLÞΨLðzÞdz

����2
Z Z

e−iðkkR−kkLÞ·ðrk−r0kÞdrkdr0k

¼
����
Z

Ψ�
RðzÞðĤel− ĤLÞΨLðzÞdz

����2ð2πÞ2δðkkR−kkLÞS: ðA2Þ

Since the Hamiltonian ĤL is equal to the complete electronic Hamiltonian Ĥel in the regions of the left metal and
the insulator gap, the integral over z in Eq. (A2) has to be done just in the right metal. In this region, the complete
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Hamiltonian Ĥel is equal to ĤR, and, following the procedure of Bardeen in Ref. [36], we can add the vanishing term
−ΨLðzÞðĤel − ĤRÞΨ�

RðzÞ to obtain a symmetrical form inside the integral:Z
∞

−∞
Ψ�

RðzÞðĤel − ĤLÞΨLðzÞdz ¼
Z

∞

Lgap

Ψ�
RðzÞðĤel − ĤLÞΨLðzÞ − ΨLðzÞðĤel − ĤRÞΨ�

RðzÞdz

¼
Z

∞

Lgap

Ψ�
RðzÞðĤel − ℏωel

LÞΨLðzÞ −ΨLðzÞðĤel − ℏωel
RÞΨ�

RðzÞdz

¼
Z

∞

Lgap

Ψ�
RðzÞ

�
−
ℏ2∇2

2meff
þUðzÞ

	
ΨLðzÞ −ΨLðzÞ

�
−
ℏ2∇2

2meff
þ UðzÞ

	
Ψ�

RðzÞdz

¼ −
ℏ2

2meff

Z
∞

Lgap

�
Ψ�

RðzÞ
∂
2ΨLðzÞ
∂z2

−ΨLðzÞ
∂
2Ψ�

RðzÞ
∂z2

	
dz: ðA3Þ

Here, we take into account that the energies ℏωel
L and ℏωel

R must be equal so that Eq. (A1) leads to a nonzero value.
By noticing that the functionsΨLðzÞ and ∂ΨLðzÞ=∂z vanish at infinity, we solve the integral using the method of integration
by parts:

Z
Ψ�

RðzÞðĤel − ĤLÞΨLðzÞdz ¼ −
ℏ2

2meff

�
Ψ�

RðzÞ
∂ΨLðzÞ

∂z

����∞
Lgap

−
Z

∞

Lgap

∂ΨLðzÞ
∂z

∂Ψ�
RðzÞ
∂z

dz − ΨLðzÞ
∂Ψ�

RðzÞ
∂z

����∞
Lgap

þ
Z

∞

Lgap

∂ΨLðzÞ
∂z

∂Ψ�
RðzÞ
∂z

dz

	

¼ ℏ2

2meff

�
Ψ�

RðzÞ
∂ΨLðzÞ

∂z
−ΨLðzÞ

∂Ψ�
RðzÞ
∂z

	����
z¼Lgap

: ðA4Þ

Equations (A1), (A2), and (A4) lead to the following transition rate between left and right states:

ΓL→R ¼ ð2πÞ3ℏ2

4m2
eff

Sδðωel
L − ωel

RÞδðkkR − kkLÞ
����
�
Ψ�

RðzÞ
∂ΨLðzÞ
∂z

−ΨLðzÞ
∂Ψ�

RðzÞ
∂z

����
z¼Lgap

	����2: ðA5Þ

According to Eq. (A5), together with the energy, the
parallel component of the wave vector kk must also be
conserved in the transition due to the homogeneity of
the system in the rk direction. Furthermore, the electronic
wave functions appear in the expression of the transition
rate in the form jBarðzÞ ¼ ðiℏe=2meffÞ½Ψ�

RðzÞ∂zΨLðzÞ −
ΨLðzÞ∂zΨ�

RðzÞ�nz (where nz is the unit vector in the z
direction) evaluated in the boundary between the gap and
the right metal. In the original work by Bardeen, this term
was associated to the transition current density of elastic
tunneling, due to its similar form of the probability current
density jðrÞ ¼ ðiℏe=2meffÞ½Ψ�ðrÞ∇ΨðrÞ −ΨðrÞ∇Ψ�ðrÞ�
of a quantum state.

The current density measured in an experiment is due to
all possible transitions from occupied states of the left
metal to unoccupied states of the right metal. Thus, the rate
ΓL→R must be summed for all these transitions. We first
consider the sum over all final states, which leads to the
transmission probability for each incident electron through
the junction. By using the Sommerfeld model of free
electrons with periodic boundary conditions to define the
states in each metal, all the states in the right metal have
a wave vector kR associated. Considering the large
number of states, the discrete sum ð1=LzSÞ

P
kR

can be
converted into the integral ½1=ð2πÞ3� R dkR, which leads to
the expression

ΓL ¼
X
kR

ΓL→R ¼ Lz

2π

S
ð2πÞ2

Z
ΓL→R

dkzR
dωR

el
dkkRdωel

R

¼ LzS2ℏ2

4m2
eff

dkzR
dωel

R

����
ωel
R¼ωel

L

����
�
Ψ�

RðkkL;ℏωel
LÞ
ðzÞ

∂ΨLðkkL;ℏωel
LÞðzÞ

∂z
−ΨLðkkL;ℏωel

LÞðzÞ
∂Ψ�

RðkkL;ℏωel
LÞ
ðzÞ

∂z

����
z¼Lgap

	����
2

: ðA6Þ
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The effect of the integral over the final states in Eq. (A6)
is, thus, to impose that the left and right states have
the same parallel wave vector kkL and energy ℏωel

L, as
expected for an elastic process. Furthermore, the term

ðdkzR=dωR
elÞ ¼ ðmeff=ℏkzRÞ includes the density of states

in the metal on the right.
The total tunneling rate is then obtained by summing ΓL

over all initial states of the left metal:

Γel ¼
Xocc
kL

ΓL ¼ Lz

2π

S
ð2πÞ2

Z
∞

0

dωel
L

Z
min

j∈ fL;Rg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meff
ℏ2

ðℏωel
L−UjÞ

q
0

dkkL

�
fLFDðkLÞ½1 − fRFDðkRÞ�ΓLðℏωel

L; kkLÞ2πkkL
dkzL
dωel

L

�
: ðA7Þ

We notice that, for each energy ℏωel
L, there are electronic

states with wave vectors up to a maximal value of

jkkLðRÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2meff=ℏ2Þðℏωel

L −ULðRÞÞ
q

in the metal on

the left and on the right. Because of the conservation
of kk, a transition is valid only if both metals have an
electronic state for a vector kkLðRÞ. Thus, the integral has
to be calculated up to the minimum between the two
extremal values jkkLðRÞj that accept a state in both metals.
Furthermore, in Eq. (A7) we impose that the initial state of
wave vector kL must be occupied [with probability given
by the Fermi-Dirac occupation factor fLFDðkLÞ] and that the

final state of wave vector kR must be unoccupied [with
probability 1 − fRFDðkRÞ]. Under Bardeen’s approximation,
the tunneling rate per electron is obtained by replacing the
wave functions from Eqs. (6) and (7) into Eq. (A6), which
gives Eq. (9). Then, the elastic tunneling rate plotted in
Fig. 2 (black dots) is obtained by performing the integral of
Eq. (A7) with the expression of ΓL of Eq. (9).
Alternatively, the elastic tunneling rate can be calculated

using the QDS. By solving the Schrödinger equation with
the Hamiltonian Ĥel, the wave functions follow the
expressions of Eqs. (2) and (3). For the states of the left
metal, the coefficients are

rL ¼ −
e2kzgapLgapðkzgap þ ikzLÞðkzgap − ikzRÞ − ðkzgap − ikzLÞðkzgap þ ikzRÞ
e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ

; ðA8Þ

αL ¼ −
2ikzLðkzgap þ ikRÞ

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
; ðA9Þ

βL ¼ −
2ikzLðkzgap − ikRÞe2kzgapLgap

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
; ðA10Þ

tL ¼ −
4iekzgapLgape−ikRLgapkzgapkzL

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
; ðA11Þ

and for the right metal

rR ¼ −
e2kzgapLgapðkzgap − ikzLÞðkzgap þ ikzRÞ − ðkzgap þ ikzLÞðkzgap − ikzRÞ
e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ

; ðA12Þ

αR ¼ −
2ikzRðkzgap þ ikLÞ

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
; ðA13Þ

βR ¼ −
2ikzRðkzgap − ikLÞe2kzgapLgap

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
; ðA14Þ

tR ¼ −
4iekzgapLgape−ikLLgapkzgapkzR

e2kzgapLgapðkzgap − ikzLÞðkzgap − ikzRÞ − ðkzgap þ ikzLÞðkzgap þ ikzRÞ
: ðA15Þ

In this approach, we can directly evaluate the probability current density associated to each electronic state as
jðzÞ ¼ −ð1=LzSÞðℏekzR=meffÞjtLj2nz. This value is related with the tunneling rate per electron using Eq. (11). In order
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to calculate the total transition rate, we repeat the procedure
of Bardeen’s approximation and obtain Eq. (12). Therefore,
the results plotted in Fig. 2 for the QDS (orange line) are
obtained from the integral of Eq. (A7) using the corre-
sponding expression for ΓL [Eq. (12)].

APPENDIX B: DERIVATION OF THE CURRENT
DENSITY CROSS-SPECTRAL DENSITY

We start by introducing the form of the field operator
for an arbitrary number of electrons in the conduction
band [74]:

Ψ̂ðr; tÞ ¼
X
n

ψnðrÞĉnðtÞ: ðB1Þ

Here, the subscript n ¼ ðk; lÞ, where l ¼ L, R labels the
state with wave vector k and propagation coming from
the left or the right metal. ĉn is the Fermionic annihilation
operator of the n state. The current density is then given
by [74]

ĵðr;tÞ¼ iℏe
2meff

½Ψ̂†ðr;tÞ∇Ψ̂ðr;tÞ− Ψ̂ðr;tÞ∇Ψ̂†ðr;tÞ�: ðB2Þ

The time dependence of each Fermionic operator can be
cast in the form

ĉnðtÞ ¼ ĉn expð−iωntÞ; ðB3Þ

where ℏωn ¼ ðℏ2k2=2meffÞ þULðRÞ. It follows that the
current density in frequency domain is

ĵðr;ωÞ ¼
X
n;n0

jðr; n; n0Þ2πδðω − ωnn0 Þĉ†nĉn0 ; ðB4Þ

where jðr; n; n0Þ ¼ ðiℏe=2meffÞ½ψ�
nðrÞ∇ψn0 ðrÞ −

ψn0 ðrÞ∇ψ�
nðrÞ� and ωnn0 ¼ ωn − ωn0 .

We can now compute the ensemble average of the

current density ĵpðr;ωÞĵqðr0;ω0Þ, where p and q stand
for the Cartesian components of the current density. To
proceed, we assume that the system is a statistical mixture
and use the commutation relations satisfied by Fermionic
operators fĉn; ĉn0g ¼ 0; fĉ†n; ĉ†n0 g ¼ 0; fĉ†n; ĉn0 g ¼ δn;n0 ,
where fâ; b̂g ¼ â b̂þb̂ â. We have to evaluate terms of

the form ĉ†n1 ĉn2 ĉ
†
n3 ĉn4 ¼

P
r Prhrjĉ†n1 ĉn2 ĉ†n3 ĉn4 jri, where r

denotes a particular Fock state and Pr is the canonical
probability that the system is in state r. Given that
hrjcnjri ¼ hrjc†njri ¼ 0 and hrjc†ncnjri ¼ fFDðnÞ, where
fFDðnÞ is the Fermi-Dirac distribution evaluated at energy
ℏωn, the correlation is of the form

ĉ†n1 ĉn2 ĉ
†
n3 ĉn4 ¼ δn1;n2δn3;n4ð1 − δn1;n3ÞC1

þ δn1;n4δn3;n2ð1 − δn1;n2ÞC2

þ δn1;n2δn1;n3δn1;n4C3: ðB5Þ

Here, C1¼fFDðn1ÞfFDðn3Þ, C2¼fFDðn1Þ½1−fFDðn2Þ�,
and C3 ¼ fFDðn1Þ. We note that the terms C1 and C3

contribute only to a zero frequency [because Eq. (B4)
implies the condition n1 ≠ n2 and n3 ≠ n4 to have nonzero

ω and ω0 frequencies in the ĵpðr;ωÞĵqðr0;ω0Þ average] so
that only the contribution C2 proportional to fFDðn1Þ½1 −
fFDðn2Þ� yields a nonzero contribution to the radiated field.
Furthermore, considering that the Fermi level on the left
side is larger than the Fermi level on the right side, Eq. (B4)
selects the terms where n1 ¼ ðkL; LÞ and n2 ¼ ðkR; RÞ so
that ω ¼ ωn1 − ωn2 ¼ ωel

L − ωel
R > 0. Hence, the statistical

average is nonzero only if there is an electron-hole pair with
an electron in a state L and a hole in a state R. Finally, we
obtain the cross-spectral density of the current density:

Sjpjqðr; r0;ωÞ ¼
X
kL

X
kR

jp;L→RðrÞj�q;L→Rðr0Þ2πδðω − ωel
L þ ωel

RÞfLFDðkLÞ½1 − fRFDðkRÞ�: ðB6Þ

APPENDIX C: ORIGIN OF THE STRONG
CURRENT CORRELATIONS

AT OPPOSITE METALS

In Fig. 3(b) in the main text, we plot the cross-spectral

density Sjzjzðz; z0;ωðνÞ
Kk Þ associated with the spatial corre-

lations of the current density due to electrons tunneling
through a narrow gap. This calculation is performed by
introducing the wave functions of the QDS in the definition

of Sjzjzðz; z0;ωðνÞ
Kk Þ from Eq. (27) and then solving the

integral over kL and kR numerically. We discussed that the
electronic currents are strongly correlated for z ¼ z0 but
also for points satisfying the condition z0 − Lgap ¼
−z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðER

F þ VB=EL
FÞ

p
at opposite metals. In this appendix,

we analyze analytically the origin of the strong correlations.

The cross-spectral density Sjzjzðz; z0;ωðνÞ
Kk Þ depends on

the expression of the current density jL→R associated to
each particular transition [Eq. (19)]. We consider the QDS
and, thus, use Eq. (2) for the wave function ΨLðrÞ of a state
in the left metal and Eq. (3) for the right metal. The final
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state ΨRðrÞ has a lower energy than the initial state ΨLðrÞ. By introducing their corresponding expression in Eq. (19),
we obtain the following expressions for the z component of the current density. For z ≤ 0:

jz;L→RðzÞ ¼
iℏe
2meff

1

LzS
t�Re

−ik−zLLgap

h
eiðk

þ
zLþk−zLÞziðkþzL − k−zLÞ − rLe

−iðkþzL−k−zLÞziðkþzL þ k−zLÞ
i

≈
ℏe

2meff

1

LzS
t�Re

−ik−zLLgaprLe
−iðkþzL−k−zLÞzðkþzL þ k−zLÞ: ðC1Þ

For 0 < z ≤ Lgap:

jz;L→RðzÞ ¼
iℏe
2meff

1

LzS

h
ðkþzgap þ k−zgapÞα�RαLeðk

þ
zgap−k−zgapÞzek−zgapLgap − ðkþzgap þ k−zgapÞβ�RβLe−ðk

þ
zgap−k−zgapÞze−k−zgapLgap

− ðkþzgap − k−zgapÞα�RβLe−ðk
þ
zgapþk−zgapÞzek−zgapLgap þ ðkþzgap − k−zgapÞβ�RαLeðk

þ
zgapþk−zgapÞze−k−zgapLgap

i
: ðC2Þ

For z > Lgap:

jz;L→RðzÞ ¼
iℏe
2meff

1

LzS
tL
h
eiðk

þ
zRþk−zRÞze−ik

−
zRLgap iðkþzR − k−zRÞ þ r�Re

iðkþzR−k−zRÞzeik
−
zRLgap iðkþzR þ k−zRÞ

i

≈ −
ℏe

2meff

1

LzS
tLr�Re

iðkþzR−k−zRÞzeik
−
zRLgapðkþzR þ k−zRÞ: ðC3Þ

In these expressions, the superscripts þ and − in kzL, kzR,
and kzgap mean that these wave vectors are associated to
the state of the initial state (at higher energy) or to the
final state (at lower energy), respectively. Furthermore,
in Eqs. (C1) and (C3), we assume that kþzLðRÞ þ k−zLðRÞ ≫
jkþzLðRÞ − k−zLðRÞj.
To calculate the cross-spectral density Sjzjzðz; z0;ωðνÞ

KkÞ,
we need to integrate the product of the current density of
Eqs. (C1)–(C3) at two points z and z0, over all initial (with

wave vector kL) and final (with wave vector kR) states, as
indicated by Eq. (27). Crucially, to obtain strong correla-
tions at different points z and z0, the relation between the
phases of the current density jz;L→RðzÞ at these two points
must be equal for all transitions between ΨLðzÞ and ΨRðzÞ
states, so that contributions with different phases do not
cancel out with each other. For each transition, we obtain
the following phase relations of the current density over
space [75]:

argfjz;L→RðzÞg ≈

8>><
>>:

argðt�RÞ þ argðrLÞ − k−zLLgap − ðkþzL − k−zLÞz z ≤ 0;

const 0 < z ≤ Lgap;

π þ argðtLÞ þ argðr�RÞ þ k−zRLgap þ ðkþzR − k−zRÞz Lgap < z;

ðC4Þ

where arg indicates the argument (or phase) of a complex
number. In the length scales of usual insulator gaps, the
argument of Eq. (C2) changes very slightly, and, thus,
we have considered in the derivation of Eq. (C4) that
it is constant over the gap region. Importantly, the
phase of the current density changes linearly with z
in the metals, due to the exponential terms e−iðk

þ
zL−k

−
zLÞz

and eiðk
þ
zR−k

−
zRÞz in Eqs. (C1) and (C3), respectively.

Furthermore, the continuity of the wave functions
ΨLðzÞ and ΨRðzÞ implies that jz;L→RðzÞ must be also
continuous. By defining ζ as the argument of the current
density in the two metal-insulator boundaries at the gap,
we rewrite Eq. (C4) as

argfjz;L→RðzÞg

≈

8>><
>>:

ζ − ðkþzL − k−zLÞz z ≤ 0;

ζ 0 < z ≤ Lgap;

ζ þ ðkþzR − k−zRÞðz − LgapÞ Lgap < z:

ðC5Þ

An important consequence of Eq. (C5) is that the values
of argfjz;L→RðzÞg are related in the two metals. Indeed, at
two points z and z0 satisfying the condition

z ¼ −
kþzR − k−zR
kþzL − k−zL

ðz0 − LgapÞ; ðC6Þ
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the current density has the same argument. Considering a transition from an initial state of energy ℏωel and parallel wave

vector kþ
k to a final state of corresponding values ℏωel − ℏωðνÞ

Kk and k−
k , the denominator of Eq. (C6) is evaluated as

kþzL − k−zL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffðℏωel þ EL

FÞ
ℏ2

− jkþ
k j2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffðℏωel − ℏωðνÞ

Kk þ EL
FÞ

ℏ2
− jk−

k j2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffEL

F

ℏ2

r 0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ℏωel −
ℏjkþ

k j2
2meff

EL
F

vuut
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ℏωel − ℏωðνÞ
Kk −

ℏjk−
k j2

2meff

EL
F

vuut
1
CCA

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffEL

F

ℏ2

r
ℏωðνÞ

Kk þ
ℏðjk−

k j2−jkþ
k j2Þ

2meff

EL
F

; ðC7Þ

where in the last step we make a first-order Taylor
expansion under the assumption that the electronic energies
ℏωel − ðℏjkþ

k j2=2meffÞ are considerably smaller than

the Fermi energy EL
F in the transitions considered.

Following the same calculation for kþzR − k−zR, we obtain
the same expression of Eq. (C7) with the substitution
EL
F → ER

F þ eVB. Accordingly, we can evaluate the frac-
tion in Eq. (C6), which leads to the condition

z ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EL
F

ER
F þ eVB

s
ðz0 − LgapÞ: ðC8Þ

Notably, under the approximations considered in this appen-

dix, Eq. (C8) does not depend on the transition frequencyωðνÞ
Kk

and on the parallel wave vectors kþ
k and k−

k of the initial
and final quantum states. This means that, for all possible
transitions from a state ΨLðzÞ to a state ΨRðzÞ, the current
density has a similar argument at points z and z0 that satisfy
Eq. (C8). Therefore, all transitions act constructively in the
integral of Eq. (27) at these two points, leading to a strong
peak in the correlations of the current density.
Last, we note that in Eq. (C6) we assume that the positions

satisfy the conditions z < 0 and z0 > 0. Thus, Eq. (C8) is
valid only in this region, as can be observed in Fig. 3(b). For
the z > 0 and z0 < 0 regions, on the other hand, we can
follow a similar argument starting from Eq. (C5), and we
obtain the second expression shown in Fig. 3(b), i.e.,

z0 ¼ −ðz − LgapÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EL
F

ER
F þ eVB

s
: ðC9Þ

APPENDIX D: EXCITATION RATE OF THE
INTERMEDIATE VELOCITY MODE

Figure 7 shows the emission rate of the intermediate
velocity SPP mode under varying bias potentials

(VB ¼ 0.6, 1.2, 1.8, and 2.4 V), for a junction with
thicknesses LAl¼10 nm, LAu¼20 nm, and Lgap ¼ 3 nm.
The goal is to complete the results obtained for the fast and
slow SPP modes in the main text. The calculation with the

QDS (PðmÞ
QDS, results shown by solid lines) in the complete

device reveals some oscillations as a function of the SPP
energy. These oscillations are due to constructive or
destructive interferences between the metal and gap con-
tributions, as we have already discussed for the slow and
fast modes. Curiously, the QDS predicts an overall smaller
power transferred to the intermediate velocity mode than

0.0 0.5 1.0 1.5 2.0 2.5
0.0 � 1016

0.5 � 1016

1.0 � 1016

1.5 � 1016

(s
-1
��m

-2
)

(eV)

Quantum device solution
Bardeen's approximation

(x4)

(x42)
(x43)

= 0.6 V

= 1.2 V

= 1.8 V

= 2.4 V

FIG. 7. Spectral nonradiative power PðmÞðℏωðmÞ
Kk Þ per surface

area S of the junction caused by the excitation of the
intermediate velocity SPP mode, with thicknesses LAl ¼
10 nm, LAu ¼ 20 nm, and Lgap ¼ 3 nm [sketch in Fig. 4(a)]
and bias potentials VB ¼ 0.6 (orange), 1.2 (red), 1.8 (purple),
and 2.4 V (blue). Dots indicate the calculation using Bardeen’s
approximation, and the solid lines refer to the full calculation
within the QDS.
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Bardeen’s approximation (PðmÞ
BA , results shown by dots).

This is the opposite behavior found for the slow and
fast modes (Figs. 5 and 6), where the QDS generally gives
a larger contribution than Bardeen’s approximation.
Furthermore, the intermediate velocity mode excitation
rate is much smaller than the slow mode excitation rate.
In addition, it can be coupled only radiatively by roughness
as opposed to the fast mode. Therefore, the intermediate
velocity mode is likely negligible regarding light emission
by a planar junction, so that the contribution of the metallic
electrodes can be expected to increase the total emission
rate once all SPP modes are considered.

APPENDIX E: SURFACE CONTRIBUTION IN
THE EXCITATION OF THE FAST MODE

In the QDS approach to calculate the SPP excitation rate
in planar junctions, we need to calculate the integral of
Eq. (18). The regions of this integral are delimited by the
volumes of the insulator gap (Vgap) and of the metals
(Vmet). In most of the calculations of the main text [except
in Fig. 6(e)], we consider a local approach of electro-
magnetism to calculate the electric field of the SPPs.
This perspective implies that in the metallic regions
(inside the volume Vmet) the system has a Drude permit-
tivity and that outside this region the permittivity is
constant and positive. Accordingly, the electromagnetic
fields drop strongly exactly at the interface between these
two regions, so that the electronic current interacts with
the electric field in the gap and the weaker electric field
inside the metallic regions, while it does not interact with
the strong electric fields in vacuum and in the substrate
(see Fig. 4).
However, according to the nonlocal theory of optical

response of metals, the tunneling electrons could interact
with the strong electric fields close to the metal-vacuum
boundary. To visualize this, we show in Fig. 8(a) a sketch
of the electronic density distribution close to this boun-
dary. As an example, we consider a simple jellium model
for the metal, where the ions create an uniform density of
positive charge (indicated by the blue area). This uniform
background leads to the calculation of the electronic
ground state density ρ0ðzÞ that decays gradually at the
boundary between the jellium charge density and vacuum
(gray region). ρ0ðzÞ indicates the region where the wave
functions of the tunneling electrons are well defined.
Regarding the fields at optical frequency, the disconti-
nuity of the normal fields takes place across a finite but
narrow region where an oscillating charge density is
induced. This region of strong induced charges is called
the centroid of charge. The position of the centroid
of charge does not coincide with the interface between
the jellium and vacuum. It can be either inside [case 1
indicated by ρind1ðzÞ, brown curve] or outside [case 2
indicated by ρind2ðzÞ, green curve] the jellium edge,

depending on the metal (inside for noble metals including
d-band excitations, such as Au or Ag, and outside for
s-like metals such as Na or Al). The positions of the
centroid of the charge density are highlighted by vertical
dashed lines in the figure. From the optical point
of view, a simple model to obtain the optical response
amounts to shifting the position of the metal interface to
the position given by the charge centroid. This shift is
given by the so-called Feibelman parameters [69–72].
The key point regarding the interaction between tunnel-
ing electrons and optical modes is that in case 1 (brown
curve) the tunneling electrons (present in the jellium) can
interact with an electric field lying outside the centroid of
charge and, therefore, much larger.
To account for this interaction, we use a very simple

approach. We consider that the electronic current is defined
in the region delimited by the metallic volume Vmet of the
ionic background in the jellium model, as shown by the
blue curve (current density jz;L→R) and the blue area (ionic
background) in Fig. 8(b). On the other hand, when
calculating the electric fields of the SPPs, we assume that
the boundary between the metallic permittivity εmetalðωÞ
and the vacuum permittivity is given by the centroid of the
induced charge density (as shown by brown and green).
Importantly, the boundary between permittivities generally
does not coincide with the integration boundary of Eq. (18)
given by Vmet (blue area), and the difference z0 between
them lies within a few angstroms (in our calculations, Vmet
extends outside the boundary between permittivities).
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FIG. 8. (a) Schematics of the ground state density ρ0ðzÞ (gray)
and the induced charge densities for two different possible metals
[ρind1ðzÞ in brown and ρind2ðzÞ in green]. The dashed lines
indicate position of the centroid of the induced charge density
of the same color. The blue area indicates the steplike positive
charge background that is considered in the jellium model of
metals. (b) Schematics of the distribution of the electronic current
density jz;L→RðzÞ considered in the calculations (solid blue line),
up to the boundary of the ionic positive background. We also
show the spatial distribution of the permittivities (εmetal for the
metal and εins for the insulator) considered in our nonlocal
approach for each ρindðzÞ distribution shown in (a).
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In the calculations for Fig. 6(e), we perform the integral in
Eq. (18) by increasing its boundary along the z axis with
respect to the boundary between the metallic and vacuum
permittivities, and we show that with an increase of just a
few angstroms the calculated excitation rate of the fast
mode increases significantly.
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