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Dynamical perturbations modify the states of classical systems in surprising ways and give rise to
important applications in science and technology. For example, Floquet engineering exploits the possibility
of band formation in the frequency domain when a strong, periodic variation is imposed on parameters such
as spring constants. We describe here Kapitza engineering, where a drive field oscillating at a frequency
much higher than the characteristic frequencies for the linear response of a system changes the potential
energy surface so much that maxima found at equilibrium become local minima, in precise analogy to the
celebrated Kapitza pendulum where the unstable inverted configuration, with the mass above rather than
below the fulcrum, actually becomes stable. Our starting point is a quantum field theory of the Ginzburg-
Devonshire type, suitable for many condensed matter systems, including particularly ferroelectrics and
quantum paralectrics. We show that an off-resonance oscillatory electric field generated by a laser-driven
terahertz source can induce ferroelectric order in the quantum-critical limit. Heating effects are estimated to
be manageable using pulsed radiation; “hidden” radiation-induced order can persist to low temperatures
without further pumping due to stabilization by strain. We estimate the Ginzburg-Devonshire free-energy
coefficients in SrTiO3 using density-functional theory and the stochastic self-consistent harmonic
approximation accelerated by a machine-learned force field. Although we find that SrTiO3 is not an
optimal choice for Kapitza stabilization, we show that scanning for further candidate materials can be
performed at the computationally convenient density-functional theory level. We suggest second harmonic
generation, soft-mode spectroscopy, and x-ray diffraction experiments to characterize the induced order.
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I. INTRODUCTION

The Kapitza effect [1–3] takes place when an anhar-
monic oscillator is dynamically stabilized at unstable
equilibria by driving it at a frequency significantly higher
than its natural frequency. The motion is divided into slow
and fast components, with time averaging over the fast
drive’s short period enabling the analysis of the slow-mode
motion’s stability in terms of an effective potential that
depends on the drive’s amplitude and frequency. The
concept that fast degrees of freedom can modify slow

behavior is not new, as illustrated by the thermal expansion
of solids induced by rapid lattice fluctuations. This extreme
rectification of fast fluctuations into a slowly varying (dc)
behavior embodies the Kapitza engineering idea.
Kapitza engineering has been employed to stabilize

repulsive Bose-Einstein condensates in an optical lattice
[4], periodically driven spin systems [5], a many-body
generalization of the Kapitza pendulum as a periodically
driven sine-Gordon model [6], and a Josephson junction
coupled to a nanomagnet [7]. In each instance, the system is
characterized by a nonlinear equation of motion for an
effective degree of freedom coupled to a generalized field
that induces externally controlled fast oscillations.
In this work, we suggest using Kapitza stabilization to

dynamically control quantum matter near a quantum
critical point (QCP), see Fig. 1 for a diagram of the
proposed setup. To develop this proposal, we use a model
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for the QCP state. As a prototypical example, we consider
incipient ferroelectric (FE) materials like SrTiO3 (STO) [8–
10], where the QCP can be tuned by control parameters
such as strain [11,12], Ca [13,14], and 18O isotope doping
[15]. Incipient displacive FEs offer several advantages,
including the availability of laser-driven electric fields
Eðr; tÞ directly coupled to the polarization. Additionally,
the typical timescales associated with optical phonons
responsible for displacive polarization lie within the femto-
second to picosecond range. We can therefore implement
the Kapitza approach by applying fields in the accessible
few-terahertz regime, as discussed below.
Dynamic control of FEs using infrared laser-driven

radiation represents a broad approach to terahertz manipu-
lation of quantum matter [16–26], including Floquet
engineering [27–30]. The goal is to resonantly couple
the photon to an optically active phonon mode [21–23]
for the most optimal energy transfer and then exploit the
anharmonic inter-ionic potential to excite lower-frequency
phonon modes or cause structural lattice changes. Using
resonant cavities to exploit vacuum fluctuations of hybrid-
ized phonon-photon-plasmon cavity modes has also been
explored [31]. A similar effect was used in another setting
to provide the pairing glue for superconductivity [32–34].
Besides ferroelectricity, ultrashort laser pulses have been
utilized to control magnetization [35] and the Leggett mode
in multiband superconductors [36].
Observing the relatively long-lived polarization in a

nominally paraelectric (PE) state due to applied time-
varying electric fields would be a significant step toward
dynamic control of the quantum state. Pristine STO is a
quantum paraelectric. As an ionic insulator with a strong
coupling between strain and polarization, the ferroelectric
state in STO can have a long lifetime after the terahertz
radiation is turned off. The relaxation of the induced FE
state would occur on longer timescales associated with
strain and lattice coupling. We envisage that this coupling
helps in stabilizing the induced state without energy input
producing Joule heating.
Our approach to QCP under drive follows the general

approach to the Kapitza pendulum. We integrate the fast
harmonics of P and find that new minima of the free energy
for the FE order parameter can emerge, eventually leading to
instability. Tomake a contact with realistic parameterswe use
ab initio analysis for free-energy parameters for paraelectric
state. In this work, we identify three essential features of the
model required to induce the effect: (i) a nonlinear potential,
specifically the Ginzburg-Devonshire (GD) free energy for
the FE order parameter [8,37], (ii) retardation in the response,
and (iii) application of the drive “off resonance,”where, as for
the pendulum, the drive frequency of the applied field is
chosen to be above resonance with the natural frequencies of
the FE order parameter P, but not so high as to induce
excitation above the insulating band gap. For these reasons,
we refer to this approach as “Kapitza engineering,” as
discussed in Ref. [27].

We predict the required orientation of the optical electric
field to observe the induction of QCP, contingent on the
light’s polarization type and the direction of the induced FE
moment. Potential signatures of the induced ferroelectric
order include low-frequency electrical measurements of
displacement current, optical measurements of second
harmonic generation, and x-ray diffraction measurements
of the resulting strain.
The rest of the paper is structured as follows. In Sec. II

we give a rather general exposition of the effective free
energy of the FE and (linear) susceptibility renormalization
in the presence of Kapitza drive from a strong, coherent,
off-resonant light field. Then, focusing on particular crystal
orientation, in Sec. III we analyze the critical electric field
to make the PE state unstable (Sec. III A), the free-energy
gradient landscape under Kapitza drive (Sec. III B), and
control of the QCP with light (Sec. III D). Our ab initio
calculations to extract the GD coefficients for STO are
presented in Sec. III C. We discuss possible detection
schemes in Sec. III E, with the details of the discussion
moved to the corresponding Appendix.

II. MODEL AND GENERAL FRAMEWORK

We suppose that both the thermodynamics and the slow
dynamics of the FE polarization P are governed by an
effective action Γ½P� expressed as in integral over imagi-
nary time τ (sum over conjugate Matsubara frequency
νn ¼ 2nπ=T, where we choose units where kB ¼ ℏ ¼ 1) of
the free energy [38]. The effective action is composed of
three terms—a harmonic term Γ0, an anharmonic term Γah,
and linear coupling to the applied electric field E [39]:

Γ½P� ¼ Γ0 þ Γah

−
Z

1=T

0

dτ
Z

d3x(Pðx; τÞ ·Eðx; τÞ): ð1aÞ

FIG. 1. Diagram of the setup. A coherent laser field (blue line
corresponding to electric field vector) is incident in the ½001�
crystal direction. The electric field is in the a-b crystal plane at an
angle ϕ. The incident light can have a possible polarization phase
δ, depicted by a spiral.
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The harmonic part Γ0 is given via the inverse susceptibility
tensor of the unpolarized FE. Assuming translation invari-
ance, it is best expressed in momentum-frequency space,

ε0Γ0

P2
0

¼ 1

2

X
q≡ðq;iνnÞ

½χ̂Mq �−1i;j
ðP̄−qÞi
ζi

ðP̄qÞj
ζj

; ð1bÞ

where ðP̄qÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT=L3Þ

p R 1=T
0 dτ

R
d3xeiðνnτ−q·xÞP̄jðx; τÞ is

the Fourier transform with a wave vector q and a bosonic
Matsubara frequency νn, and P̄j ¼ Pj=P0 is the dimension-
less polarization scaled by some convenient unit P0

pertaining to the crystal. Starting from cubic symmetry,
we scale down to tetragonal (orthorhombic) symmetry by
scaling each component P̄i by a suitable scaling factor ζi.
A prototypical Ansatz for the ionic inverse susceptibility
tensor is that of a Lorentzian diagonal in the orthorhombic
crystal axes and with transverse propagation,

½χ̂Mq �−1i;j ¼
�
αðT; gÞ − ðiνnÞ2 þ 2irðiνnÞ

ω2
0

�
δi;j

þ c2s
ω2
0

½ðq · qÞδi;j − qiqj�; ð1cÞ

where αðT; gÞ is the homogeneous, zero-frequency part,
and coincides with the quadratic term of the Ginzburg-
Devonshire free energy [9,40–42]. It is a function of
temperature T, and, possibly, any parameters g that control
the proximity to a QCP. Since it determines the inverse
square of the correlation length, the zero-temperature
characteristic exponent is 2ν. Mean-field theory predicts
ν ¼ 1=2, and other choices corresponding to a proximity
to a QCP are considered in Sec. III D. We model the
finite temperature dependence by another nonuniversal
exponent n:

αðT; gÞ ≃
�
csΛ
ω0

�
2
���� ggc − 1

����2νsgnðg − gcÞ þ
�
T
T0

�
n
: ð1dÞ

For a classical paraelectric n ¼ 1 in accordance with the
Curie-Weiss law. At low temperatures, a more convenient
choice is n ¼ 2 corresponding to a quantum paraelectric.
There are more complicated cases [43], but this Ansatz is
sufficient for illustration purposes. The parameters cs and r
are the sound propagation speed and damping, respectively,
and ω0 is a reference frequency (for example, the room-
temperature value of the TO phonon frequency at the Γ
point ωq¼0). The results can be extended to include any
dynamical exponent z [44,45]. We choose the simplest case
of a Gaussian theory with z ¼ 1 for the rest of the paper.
The anharmonic action Γah is just a space-time integral

over the (local) GD quartic free-energy density terms:

Γah ¼
Z

1=T

0

dτ
Z

d3xF ah(Pðx; τÞ); ð1eÞ

ε0F ahðP̄Þ
P2
0

¼ β1
4

X3
i¼1

�
P̄i

ζi

�
4

þβ2
2

X
1≤i<j≤3

�
P̄i

ζi

�
2
�
P̄j

ζj

�
2

: ð1fÞ

If α < 0, the FE would undergo a PE-FE phase transition
along one of the main crystal axes. According to Eq. (1d),
for g < gc, the Curie-Weiss temperature is given by
TCWðgÞ ¼ T0ðcsΛ=ω0Þð1 − g=gcÞ2ν=n. We assume the
dynamics are governed by a particular optical phonon mode
with a dispersion relation whose q ¼ 0 frequency is

ffiffiffi
α

p
ω0.

Because it is a polynomial, the susceptibility Eq. (1c) has a
trivial analytic continuation from the experimentally meas-
urable retarded susceptibility χ̂retq¼ðq;ωÞ. Other Ansätze, more

suitable for proximity to a quantum critical point with an
anomalous dynamic exponent z, may be used, but a pre-
scription for the homogeneous q ¼ 0, zero-Matsubara-fre-
quency term ought to be given. The anharmonic termEq. (1f)
is the most general local quartic term consistent with cubic
symmetry, and the scale factors ζi account for lowered
symmetry. Here, we focus on the dynamics in a plane
perpendicular to the c axis below the antiferrodistrotive
transition [46–50].
The equation of motion for the qth Fourier mode is

obtained by extremizing Eq. (1a):

ε0ðEqÞi
P0

¼ ½χMq �−1i;j ðP̄qÞj

þ
ffiffiffiffiffiffi
T
L3

r Z
d4xe−iðq·xÞ

∂

∂P̄i

�
ε0F ah(P̄ðxÞ)

P2
0

�
: ð2Þ

Expanding the anharmonic term in Eq. (2) up to linear
order in P̄q around a reference static and uniform polari-
zation hPi, continuing analytically from Matsubara
frequencies to the upper complex half-plane in ω, we
obtain the effective linear susceptibility:

½χeffðq; z; hPiÞ�−1i;j ¼ ½χeffðq; zÞ�−1i;j þ
∂
2

∂P̄i∂P̄j

�
ε0F ahðhP̄iÞ

P2
0

�
:

ð3Þ

The retarded effective susceptibility determines the real-
time response under an applied electric field with compo-
nents along the principal crystal axes (refer to Fig. 1 for a
clarification of the introduced parameters)

EðtÞ ¼ E0hcosðϕÞ cosðωtÞ; sinðϕÞ cosðωt − δÞ; 0i. ð4Þ

This gives rise to an oscillating component of the dimen-
sionless polarization ˜̄pi [π ¼ hcosðϕÞ; sinðϕÞeiδ; 0i]:
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˜̄piðtÞ ¼
1

2

�
ε0E0

P0

�
½e−iωtχreteffðω; hPiÞ�i;jπj

þeiωt½χreteffð−ω; hPiÞ�i;jπ�j �: ð5Þ

The second moments over the rapidly oscillating polari-
zation fields [remembering that χ̂retð−ωÞ ¼ ðχ̂retðωÞÞ�]
evaluate to

h ˜̄pj ˜̄pki ¼
1

2

�
ε0E0

P0

�
2

Re½χ̂reteffðω; hPiÞ · fπ; π�g

· (χ̂reteffðω; hPiÞ)†�j;k: ð6Þ

Using Eq. (6), we can express the equation of motion for
the uniform and stationary solution hPi ¼

ffiffiffiffiffiffiffiffiffiffiffi
T=L3

p
Pq¼0

from Eq. (2) for q ¼ 0 by averaging over the period of fast
motion:

0 ¼ ∂

∂P̄i

�
ε0F effðhPiÞ

P2
0

�

¼ 1

ζi
ðχM0 Þ−1i;j

hP̄ij
ζj

þ ∂

∂P̄i

�
ε0F ahðhPiÞ

P2
0

�

þ 1

2
h ˜̄pj ˜̄pki

∂
3

∂P̄i∂P̄j∂P̄k

�
ε0F ahðhPiÞ

P2
0

�
: ð7Þ

III. RESULTS

Equations (3), (6), and (7) are valid for any general linear
susceptibility and anharmonic free-energy density, and for
arbitrary optical polarization π. For a quartic anharmonic
free energy, the third derivative in Eq. (7) is linear in hPi,
and, thus, the Kapitza effect amounts to renormalization of
the zero-Matsubara-frequency inverse susceptibility,

½χMeff;0ðhPiÞ�−1i;j ¼ 1

ζiζj
fðχM0 Þ−1i;j þ ½ΠðhP̄iÞ�i;jg; ð8aÞ

where

Πi;i ¼ 3β1
h ˜̄pi ˜̄pii
ζ2i

þ β2
X
j≠i

h ˜̄pj ˜̄pji
ζ2j

; ð8bÞ

Πi;j ¼ 2β2
h ˜̄pi ˜̄pji
ζiζj

; i ≠ j: ð8cÞ

We note that, for a nonzero hPi, the second moments
Eq. (6) are functions of hPi, so the term ½χM0;effðhPiÞ�−1i;j hPij
in the gradient of the free energy is still a highly nonlinear
function of hPi. The logic behind going to Eqs. (8) from
Eq. (7) and the detailed form of the third derivative are
expounded in Appendix A.

A. Instability of the paraelectric state

We start by investigating the stability of the PE (hPi ¼ 0)
point, by considering the sign of the eigenvalues of
Eqs. (8), using Eq. (6). Because of Eq. (3), the retarded
susceptibility is not renormalized in the PE state.
For definiteness, the plane of optical polarization is

chosen to be the a-b plane. In that case, all the second
moments h ˜̄pi ˜̄p3i are zero for i ¼ 1, 2, 3. This decouples the
P3 mode from the a-b plane modes. Furthermore, in the
tetragonal phase ζ1 ¼ ζ2 ¼ 1. Then ½χMeff;0�−13;3 in the c
direction is not renormalized. For the correction of the
zero-Matsubara-frequency susceptibility in the a-b plane,
we have a 2 × 2 submatrix,

σ̂0 þ
Ē2

2

�
3β1 þ β2

2α
σ̂0 þ ðd⃗ϕ · ˆσ⃗Þ

�
; ð9aÞ

d⃗ϕ ¼
�
β2
α
cosðδÞ sinð2ϕÞ; 0; 3β1 − β2

2α
cosð2ϕÞ

	
; ð9bÞ

where Ē ¼ ðε0jχretðωÞjE0Þ=P0 is a dimensionlessmeasure of
the amplitude of the electric field of laser light. We also note
here that incoherent light with randomizedϕ (and δ) will lead
to averaged matrix Eqs. (8) having vanishing off-diagonal
components, corresponding to a zero d⃗ϕ in Eq. (9b), and
inhibiting the possibility of Kapitza stabilization.
The eigenvalue of the tensor Eq. (9) that can become

negative has a polarization direction p̂FE ¼ hcosðψÞ;
sinðψÞ; 0i, where

cosð2ψÞ ¼ −
ðdϕÞ3
j dϕ
!j

; ð10aÞ

sinð2ψÞ ¼ −
ðdϕÞ1
j dϕ
!j

; ð10bÞ

and the condition for instability is

E2

2

�
jd⃗ϕj −

3β1 þ β2
2α

�
≥ 1: ð10cÞ

The smallest magnitude Ē that fulfills the instability
condition Eq. (10c) is in the direction ϕ for which the term
in the square brackets acquires the largest positive value.
From Eq. (9b), it is easy to see that the angular-dependent
part of that expression is

jd⃗ϕj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
β2
α
cosðδÞ

�
2

sin2ð2ϕÞ þ
�
3β1 − β2

2α

�
2

cos2ð2ϕÞ
s

:

Depending on whether ðjβ2j=αÞjcosðδÞj or j3β1 − β2j=2α
is greater, the optimal direction for the electric field is
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ϕopt ¼ π=4 (direction ½110�), or ϕopt ¼ 0 (direction ½100�).
Then, Eq. (10c) has two cases:

ðĒ½110�Þ2
2

�
jcosðδÞj jβ2j

α
−
3β1 þ β2

2α

�
≥ 1; ð10dÞ

ðĒ½100�Þ2
2

�j3β1 − β2j
2α

−
3β1 þ β2

2α

�
≥ 1: ð10eÞ

The condition corresponding to Eq. (10d) is fulfilled when
the term in the square brackets is positive. This delimits three
regions for the parameter β2: β2 < −3β1=ð1þ 2jcosðδÞjÞ,
regardless of the value of cosðδÞ; 0 < β2 < 3β1=ð1 −
2jcosðδÞjÞwhen jcosðδÞj < 1=2; and β2 > 3β1=ð2jcosðδÞj −
1Þ when jcosðδÞj > 1=2. The case for negative β2 is
unfeasible on grounds that the quartic GD free energy
Eq. (1f) for the tetragonal phase is not bounded from below
in the polarization direction ½110� for β2 < −β1 [which
explains the lower diagonal limit in Fig. 2(a)]. We still have
to verify that jβ2jjcosðδÞj > j3β1 − β2j=2when β2 > 0. This

limits β2 to 0 < 3β1=ð1þ 2jcosðδÞjÞ < β2 < 3β1=ð1 −
2jcosðδÞjÞ when jcosðδÞj < 1=2, and to β2 >
3β1=ð2jcosðδÞj þ 1Þ when jcosðδÞj > 1=2. We see that the
constraints when jcosðδÞj < 1=2 are contradictory.
Conversely, the conditions in the case jcosðδÞj > 1=2 reduce
to the most stringent condition β2 > 3β1=ð2jcosðδÞj − 1Þ,
which is depicted by the green dashed line in Fig. 2(a).
The first region is delimited by a dashed green line in

Fig. 2(a).
The magnitude of the critical electric field is obtained by

the value that saturates the inequality Eq. (10d):

ðĒ½110�Þcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α

β2ðj2 cosðδÞj − 1Þ − 3β1

s
;

jcosðδÞj > 1

2
: ð10fÞ

From Eqs. (10a) and (10b), we see that the instability
polarization direction is ψ ¼ −π=4 (direction ½1̄10�), which
is perpendicular to the direction of the applied electric field
vector.
A similar analysis can be performed for the condition

corresponding to Eq. (10e). The expression in the square
brackets is positivewhen β2 < 0. We still have to verify that
jβ2 − 3β1j=2 > jβ2jjcosðδÞj when β2 < 0. This does not
pose any more stringent constraints on β2 for
jcosðδÞj < 1=2, but it poses β2 < −3β1=ð2jcosðδÞj − 1Þ <
−3β1, which is outside the region of thermodynamic
stability. The magnitude of the critical electric field is then

ðĒ½100�Þcr ¼
ffiffiffiffiffiffiffiffi
2α

−β2

s
;

jcosðδÞj < 1

2
; ð10gÞ

and the instability polarization direction is ψ ¼ π=2 (direc-
tion ½010�), again, perpendicular to the applied electric field
vector.
The intensity plot of these optimal fields is plotted in

Fig. 2(a).
For directions of the applied field other than the optimal

direction, the critical electric field magnitude is larger than
the optimal, and Figs. 2(b) and 2(c) depict the angular
dependence of the magnitude of the critical electric field
scaled by its value at the optimal angle (red lines) for a
representative point of the upper (lower) triangular regions
in Fig. 2(a) (white cross and white plus, respectively). We
see that there are asymptotic bounds around the optimal
directions, and the gray regions of the polar plot indicate
combinations of direction and magnitude of the applied
electric field that ought to stabilize an FE state.
We note that for sufficiently small magnitudes of the

cross-coupling term β2 in Eq. (1f) [the excluded white

FIG. 2. Dependence of critical electric field on GD parameters
for δ ¼ 0. (a) Optimalmagnitude of the dimensionless electric field
Ē ¼ ε0jχretðωÞjE0=P0 (color of the intensity plot) in anharmonic-
parameter space. The lower triangular region has the optimal field
direction along f1; 0; 0g, while the upper triangular region has the
optimal field direction along f1; 1; 0g. (b) Angular dependence of
the critical field scaled by its value at the optimal angle for a
representative point [white cross in (a)], β1=α ¼ 0.5, β2=α ¼ 2.5.
The shaded region depicts electric fields that stabilize the FE state.
(c) Same as (b), for a representative point [white plus in (a)],
β1=α ¼ 0.5, β2=α ¼ −0.25.
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region in Fig. 2(a) between the two allowed triangular
regions], we cannot have Kapitza stabilization.

B. Ferroelectric fixed points

Fixing the electric field beyond its critical value, we
focus on the gradient field of the effective free
energy Eq. (7).
For the same choice of parameters labeled in Fig. 2 by

the white plus for the ½100� direction and by the white
cross in the ½110� direction, the corresponding gradient
field is depicted in Fig. 3. As predicted by the analysis in
Sec. III A, Eqs. (10a) and (10b), the instability direction is
in the a-b plane in a perpendicular direction to the applied
electric field. We note that in both plots the PE point
(P ¼ 0) becomes a saddle point, because in the direction of
the applied electric field, there is only mode stiffening. This
behavior of the gradient of the effective free energy is quite
different than for the free energy in the absence of driving
fields, which further reinforces the finding that cross-
coupling of different polarization directions is crucial for
Kapitza stabilization within this model. Additionally, the
stable (saddle) points of the GD free energy,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−α=β1

p ½100�
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α=ðβ1 þ β2Þ

p ½110�, are no longer extremal points of
the effective free-energy density.

C. Estimation of GD parameters
from ab initio calculations

We estimate the coefficients in the GD free-energy
density expression for the case of STO. The harmonic part

of the GD free energy is given by the q ¼ 0 contribution
in Eq. (1b), remembering that Γ0 ¼ ðL3=TÞF 0, and
Pq¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
L3=T

p
P. The anharmonic part takes the form

of Eq. (1f). The fitting model then has the form

FGD ¼ α0

2

X
i

P2
i þ

β01
4

X
i

P4
i þ

β02
2

X
i<j

P2
i P

2
j ; ð11aÞ

α0 ¼ α

ε0
; ð11bÞ

β0i ¼
βi

ε0P2
0

ði ¼ 1; 2Þ: ð11cÞ

We begin by using density-functional theory (DFT) to
relax the internal coordinates of cubic and tetragonal (includ-
ing antiferrodistortive rotations of the oxygen octahedra) unit
cells, both in their centrosymmetric reference structures as
well aswith a displacement of the Ti atoms added in the [100]
or [110] directions. The displacements break the symmetry
and lead to a polarization in the respective directions. The
size of the polarization is calculated based on the atomic
displacements and fixed Born effective charges. The free-
energy density as a function of polarization is then obtained
by interpolatingbetween the corresponding centrosymmetric
and polar structures, and is shown in Fig. 4. The details of the
DFT calculation are given in Appendix D.
One challenge is that standard DFT does not include

temperature or quantum ion effects, and so predicts STO to
be ferroelectric, yielding a negative quadratic term Eq. (11b).

FIG. 3. Plots of the vector field, colored by its magnitude, of the gradient of the effective free energy Eq. (7) under periodic drive for
values of the parameters β1;2=α, together with the corresponding optimal electric field direction and critical electric field, corresponding
to the white plus (a) and white cross (b), respectively, on the parameter diagram Fig. 2(a). The magnitude of the drive is E0=E0;cr ¼ 3.0,
and the frequency of the drive is ω=ω0 ¼ 3.0 with a small damping r=ω0 ¼ 0.05. We have checked that the choice of exact harmonic
ratio of frequencies does not drastically alter the effect. The vector field is scaled according to the nonlinear scaling
vi ¼ sgnðviÞð1 − e−jvij=v0Þ, with a suitable scaling factor v0. The white plus (cross) indicates the saddle point of the paraelectric
phase, while the red points are the new stable fixed points.
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To capture the experimental quantum paraelectric behavior,
and a positive quadratic termEq. (11b), we use the stochastic
self-consistent harmonic approximation (SSCHA) in combi-
nation with machine learning (ML) force fields to include
these effects in anab initio description of STOat a reasonable
computational cost [51]. The details of these calculations are
explained in Appendixes E and F.
To obtain a corresponding energy versus polarization

curve within the SSCHA method, for which the structure
relaxes as expected to the nonpolar phase, we calculate the
SSCHA energies for the DFT-calculated polar or centro-
symmetric structures scaled to the experimental lattice
parameters [52]. The results are shown in Fig. 4. We
present the fit parameters in Table I. As expected, the
quadratic term in the DFT case is negative, indicating a
characteristic double well potential with a ferroelectric
instability from the nonpolar phase. SSCHA, on the other
hand, successfully yields a positive quadratic term. It also
provides values for β02 and β

0
1 which are both positive, but in a

ratio of considerably less than the three required [Fig. 2(a)]
for the Kapitza effect. Searches for other materials must
therefore be undertaken. Interestingly, the quartic coeffi-
cients obtained with DFT and SSCHA are similar, with β1
almost identical, and β2 reduced by ∼30% in SSCHA

compared with DFT. We therefore expect that scans for
further suitable materials with appropriate β values can be
performed at the DFT level, with SSCHA used to check the
values for the most promising candidates.

D. Control of the quantum critical point with light

The homogeneous, zero-Matsubara-frequency inverse
susceptibility α has characteristic scaling with temperature
T for finite temperature or a control parameter g at zero
temperature. Whenever it changes sign signals a critical
point, either thermal or quantum critical. Conversely, one
can utilize α as a scaling variable to model the temperature
or control parameter. Therefore, a helpful way to visualize
the effect of the applied electric field is to plot the stable
fixed point hPi=P0 as a function of α=β1 and electric field
magnitude ε0E0=P0 for a particular choice of the ratio of
quartic coefficients, as is done in Fig. 5(a). For negative α,
we see that applying an electric field enhances the value of
the FE order. For positive α (PE state), there is a critical
region in the α-E plane where the stable order is zero. The
line is simply the condition that the smaller eigenvalue of
Eq. (9a) becomes zero, and we depict the power-law scaling
of this curve in Fig. 5(b). The deviation of the exponent
from 2 is due to the dependence of the susceptibility on α.
For small values of α, it is well approximated by 2.
We attribute the shift of the critical value for αwith E as a

shift of the critical transition point induced by light
irradiation. This suggests a convenient parametrization of
the dependence of the critical field E ¼ Ecrðα̃Þ on a control
parameter T or g as a function of α̃ in Eqs. (10f) and (10g),
and inverting by inverting Eq. (1d) with respect to T or g as
a function of the parameter
(1) Thermal transition at finite temperature and for the

control parameter g < gc. From Eq. (1d), we can
read off [note that αð0; gÞ < 0 for g < gc]

ΔTCWðg; α̃Þ
TCWðg; 0Þ

¼
�
1 −

α̃

αð0; gÞ
�
1=n

− 1: ð12aÞ

(2) Quantum phase transition at zero temperature and
for a control parameter g > gc. Again, from Eq. (1d),
we can read off

Δgcðα̃Þ
gcð0Þ

∝ α̃1=2ν: ð12bÞ

FIG. 4. Energy versus polarization curves for the [110] (con-
tinuous line) and [100] (dashed line) directions calculated with
DFT for the tetragonal (blue) and cubic (orange) phase and with
SSCHA (green) for the tetragonal phase. The calculated results
are presented as dots, while the fits to the data, which yielded the
parameters listed in Table I, are shown as lines. The energies are
plotted relative to the energy of the nonpolar structure.

TABLE I. Fit parameters of the model Eqs. (11) resulting from the curves shown in Fig. 4.

Structure Method α0 × 10−8 (J mC−2) β01 × 10−10 (Jm5 C−4) β02 × 10−10 (J m5 C−4)

Cubic DFT −1.0 1.6 0.47
Tetragonal DFT −1.7 1.9 0.60
Tetragonal SSCHA 2.8 1.4 0.35
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Both of these scalings are depicted in Fig. 5(c). For small
values of α̃, the power-law dependence of the critical
temperature is 2, regardless of the values of the nonuni-
versal exponent n, whereas the power-law dependence

of the critical value of the control parameter
is 1=ν.

E. Experimental signatures of the polarized state

Concerning experimental observations of the proposed
effect, we suggest the following experimental tests: (a) con-
ventional dielectric measurements, (b) optical second
harmonic generation, and (c) x-ray diffraction.
(a) In the case of an electrical measurement, one performs

a poling measurement of the accumulated charge
across a capacitor in an unbiased setup. The charge
saturates during the irradiation and should vanish
when irradiation is interrupted. The displacement
current, which is the derivative of the charge, should
show oppositely directed peak signals during the start
and end of the irradiation. A sketch of the proposed
setup and expected time traces of the signal are
presented in Appendix B.

(b) In this case, a second harmonic to a weak signal at a
frequency different than the drive frequency is gen-
erated when the sample is FE, with signal strength
proportional to the induced polarization and specific
angular dependence. Using the quantum effective
action Eq. (1), we have obtained an expression for
the nonlinear susceptibility tensor, and the details are
discussed in Appendix C.

(c) X-ray diffraction [53] measures directly the lattice
strain associated with FE polarization and is nowadays
routinely performed at free electron lasers with femto-
second time resolution. The experiment here will
involve pumping the sample with terahertz radiation
and then measuring the position of the principal Bragg
peaks as a function of the time between the pump
pulse and the x-ray pulse. Because of the tensor
character of the strain, which is mirrored in the
resulting displacements of different Bragg peaks, it
will be possible to reconstruct the full strain tensor as a
function of experimental parameters such as terahertz
pulse length and amplitude.

The strong coupling between strain and electric polari-
zation is an important feature of the titanates and other
(near) ferroelectrics. Generically, the latter builds up first,
followed by the appearance of strain [53,54], which in turn
stabilizes the polarization [22,23,55]. This has two benefits:
the first is that there is no need for a continuous power
supply to maintain the FE state, and the second is that there
is ample time to probe whether an FE state has actually
been realized experimentally.
As far as an order-of-magnitude estimate for the necessary

electric field magnitude, we use the following estimates for
the GD free-energy parameters (see Table I in Supplemental
Material in Ref. [9]): a ¼ α ¼ 5.1 × 10−5, b ¼ β1=P2

0.
Taking β1=α¼0.5 implies P0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβ1=αÞa=b
p ¼1.9μC=cm2.

Then, using a magnitude of a complex permittivity ε̃ω ¼
−60þ i40 at a drive frequency of around ω=2π ¼ 3.8 THz,

(a)

(b)

(c)

FIG. 5. Control of PE-FE transition with applied light. We
choose a ratio of the quartic coefficients β2=β1 ¼ 5.0 with the
optimal polarization direction of the electric field vector in the
½1̄10� and linearly polarized light (δ ¼ 0). (a) Stable FE order hPi
as a function of the magnitude of light’s electric field E0 and
quadratic coefficient α. The dashed line in the hPi ¼ 0 plane
indicates a critical line. (b) The critical line from (a) presented on
a log-log plot, with a linear fit indicated by a dashed line with the
corresponding power. (c) Scaling of the critical temperature [left
vertical axis (red)] or critical control parameter gc [right vertical
axis (blue)] for several values of n and ν in Eq. (1d).
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which is twice the frequency of the soft-mode phonon [56],
and a dimensionless critical field of the order of Ēcr ¼ 2.8
(see Fig. 2), we get an absolute electric field magni-
tude E0;cr ¼ ĒcrP0=ðε0jχretðωÞjÞ ¼ 830 kV=cm.
For the estimate of the heat deposited in the sample by the

laser field, we use the Joule heating power density
q ¼ σωE2

0=2, where σω ¼ ωε0ε
00
ω is the electric conductivity

of the sample, which is estimated to be around 8.5×
103Ω−1m−1, giving an estimate for q ¼ 29 W=μm3. To
get an estimate of the heat fluence ϕq, one has to remember
that the electric field attenuates in the sample with a
characteristic length scale ð1=λωÞ ¼ ðω=cÞIm½ ffiffiffiffiffi

ε̃ω
p �, λω ¼

0.18 μm. The integrated power density over the sample
thickness t and pulse duration τ gives ϕq ¼ 2λωτð1−
e−t=2λωÞq0. Assuming sample thickness much larger than
2λω, and pulse duration of at least 10 periods of the light
field, the estimate for the fluence is ϕq ¼ 2.7 mJ=cm2.
It is important to acknowledge that the necessary power

levels per unit volume may not be practically feasible in
continuous-wave setup. As previously mentioned, we must
rely on coupling to strain to maintain polarization after the
Kapitza “pump” has been removed.Notably, experiencewith
dynamically induced nucleation and growth (at resonance)
suggests that the relevant timescales for growth and decay lie
within the femtosecond to picosecond range. Consequently,
terahertz radiation pulses lasting around 1 ps and resulting in
a net energy dissipation of 3 pW=μm3 should be sufficient to
observe the predicted effects.

IV. CONCLUSION

In this study, we extend the ideas of Kapitza engineering
to the effective field theory near a quantum critical point to
show how the incipient order can be induced by the off-
resonance drive. As a specific example, we considered the
case of the strong off-resonance photon field applied to
stabilize the ferroelectric phase in an incipient displacive
FE.We find that it could be feasible to induce the FE phase if
the material is close to a QCP and has a sufficiently large
cross-coupling term in the anharmonic portion of the free
energy.
We predict that the critical light field will exhibit a

sensitive dependence on the direction and phase of the
polarization axis. When field intensities surpass the critical
field, the polarization will develop along an axis in the plane
of the light’s polarization and perpendicular to the applied
electric field.
To make contact with materials we have developed

detailed ab initio microscopic models that enable us to
evaluate the realistic parameters of the Ginzburg-Devonshire
action, such as β1, β2 coefficients, and force fields in SrTiO3.
The advantage of the proposed approach is in combining
realisticmaterials parameterswith the effectiveGDmodeling
of Kapitza engineering of FE state. While Kapitza engineer-
ing in SrTiO3 would be a challenge based on the estimated

parameters, we stress that we present the general framework.
Our results are as follow.
(a) We establish a clear-cut numerical procedure that takes

into account quantum-mechanical zero-point motion
effects that render STO a quantum paraelectric.

(b) The obtained numerical estimates demonstrate a
deviation from isotropy (which corresponds to
β2 ¼ β1) and are not far off from the required stability
criterion. The parameters are of the same order on the
“wrong side” of the inequality Fig. 2(a), yet they are
close. We draw the conclusion that the working regime
in a similar class of quantum paraelectrics is possible.
It is also possible that the choice of the functional
would affect the relation between β2, β1 and would
bring them in the desired range, where Kapitza
stabilization would be possible.

(c) These results together with the ab initio work serve as
a guide for a well-defined process to be followed in
different perovskite materials and under varying con-
straints in the search for suitable materials and optimal
experimental constraints to make Kapitza stabilization
possible.

We propose experimental signatures, such as poling
measurements of accumulated polarization charge in an
unbiased capacitor, second harmonic generation in response
to a weak probe pulse with an appropriate frequency and
polarization axis, and x-ray diffraction measurements of the
resulting strain. We also discuss the role of the Joule heating
that would make the proposed setup impractical for the
continuous-wave conditions. On the other hand, we estimate
that finite-duration pulses with slow-strain dynamics could
facilitate the stabilization of these phases.
Our proposed approach can be extended to other

quantum-critical orders, including magnetism and super-
conductivity. We anticipate that factors like linear versus
quadratic coupling to drive fields will depend on the order’s
symmetry. The necessary resonant field strengths can be
achieved with current experimental capabilities, making
this mechanism a complementary method for manipulating
quantum matter using terahertz light.

Note added. Recently, we became aware of Ref. [57] that is
related to our work.

The supporting DFT, force field, and SSCHA calcula-
tions for this article are openly available in the materials
cloud entry [58].
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APPENDIX A: RENORMALIZATION OF THE
ZERO-FREQUENCY SUSCEPTIBILITY

Going from Eq. (7) to Eq. (8) relies on the fact that the
anharmonic free energy is a quartic function of polarization
hPi, and, so, its third derivative that enters in the third term
in Eq. (7) is a linear function of hPi that we can ascribe to a
renormalization of the coefficient in terms of the linear
term, which is the first term in Eq. (7). Having in mind the
specific form of Eq. (1f), we can write the third derivatives
in the following form:

∂
3

∂P̄1∂P̄j∂P̄k

�
ε0F ah

P2
0

�
¼ 2

ζiζjζk

�
3β1

P̄i

ζi
δj;iδk;i þ β2

�
P̄k

ζk
δj;ið1 − δk;iÞ þ

P̄j

ζj
ð1 − δj;iÞδk;iþ

P̄i

ζi
ð1 − δi;jÞδj;k

��
: ðA1aÞ

This third derivative Eq. (A1a) gets contracted by h ˜̄pj ˜̄pki in the second term on the right-hand side of Eq. (7). We get

1

2

X
j;k

h ˜̄pj ˜̄pki
∂
3

∂P̄1∂P̄j∂P̄k

�
ε0F ah

P2
0

�
¼ 1

ζi

�
3β1

h ˜̄pi ˜̄pii
ζ2i

P̄i

ζi
þβ2

�X
j≠i

h ˜̄pj ˜̄pji
ζ2j

P̄i

ζi
þ 2

X
j≠i

h ˜̄pi ˜̄pji
ζiζj

P̄j

ζj

��

¼ 1

ζi

X
j

Πi;j
P̄j

ζj
; ðA1bÞ

where we used a shorthand notation Πi;j for every coefficient in front of a P̄j=ζj term. These are different for i ¼ j, and for
i ≠ j, and their form is given in Eqs. (8b) and (8c).

APPENDIX B: DIAGRAM
OF THE POLING SETUP

For completeness, we illustrate the electrical measure-
ment for detecting polarization. The schematic setup is
presented in Fig. 6(a).
The expected measurement involves the measurement of

accumulated charge on the capacitor plates when the FE
develops a polarization P. The displacement current should
show oppositely directed peaks at the turning on and
turning off of the induced polarization, as schematically
presented in Fig. 6(b).

APPENDIX C: SECOND HARMONIC
GENERATION CALCULATION DETAILS

Here we present the theory for calculating the nonlinear
susceptibility tensor χð2Þ in the presence of a nonzero
polarization hPi. We outline the steps to arrive at nonlinear
susceptibility. We leave specific features, that depend on
experimental setup, for a separate discussion.
Susceptibility is a rank-three tensor that is defined as the

third (functional) derivative of the cumulant-generating
function W½E�:

FIG. 6. (a) Sketch of the unbiased poling measurement with a
galvanometer (G) of an irradiatedFE (blue sample) in a capacitative
setup (gold electrodes). (b) Illustrations of time traces for the
accumulated charge and displacement current during irradiation.
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χð2Þi;j;kðx; τ1;x2; τ2;x3; τ3Þ

¼ −
δ3W½E�

δEiðx1; τ1ÞδEjðx2; τ2ÞδEkðx3; τ3Þ
: ðC1Þ

Keeping in mind the Legendre transform relation,

−Γ½P� þ ðP;EÞ ¼ −W½E�; ðC2Þ

where ðP;EÞ is a shorthand for a space-time integralR
d4xPðxÞ ·EðxÞ, it is easily verified that the variational

derivative of the effective action Γ½P� satisfies the equation
of motion:

δΓ½P�
δPiðx; τÞ

¼ Eiðx; τÞ: ðC3Þ

In its Fourier form, this is the same equation as Eq. (2) for
an FE sample.

The linear susceptibility is related to the second derivative. We can easily verify the following identities for the second
derivative:

ε0χ
M
i;jðx1; τ1;x2; τ2Þ ¼

δPiðx1; τ1Þ
δEjðx2; τ2Þ

¼ −
δ2W½E�

δEiðx1; τ1ÞδEjðx2; τ2Þ

¼
�
δEiðx1; τ1Þ
δPjðx2; τ2Þ

�
−1

¼
�

δ2Γ½P�
δPiðx1; τ1ÞδPjðx2; τ2Þ

�
−1
: ðC4Þ

Using the chain rule, the third derivative Eq. (C1) can be expressed as

−
δ3W½E�

δEiðx1; τ1ÞδEjðx2; τ2ÞδEkðx3; τ3Þ
¼ −

Z
d4x6

δ

δPpðx6; τ6Þ
�

δ2W½E�
δEiðx1; τ1ÞδEjðx2; τ2Þ

�δPpðx6; τ6Þ
δEkðx3; τ3Þ

¼Eq:ðC4Þ
Z

d4x6
δ

δPpðx6; τ6Þ
��

δ2Γ½P�
δPiðx1; τ1ÞδPjðx2; τ2Þ

�
−1
�
δPpðx6; τ6Þ
δEkðx3; τ3Þ

¼ −
Z Z Z

d4x4d4x5d4x6

�
δ2Γ½P�

δPiðx1; τ1ÞδPmðx4; τ4Þ
�
−1

×
δ3Γ½P�

δPmðx4; τ4ÞδPnðx5; τ5ÞδPpðx6; τ6Þ
�

δ2Γ½P�
δPnðx5; τ5ÞδPjðx2; τ2Þ

�
−1 δPpðx6; τ6Þ

δEkðx3; τ3Þ

¼Eq:ðC4Þ
− ε30

Z Z Z
d4x4d4x5d4x6χMi;mðx1; τ1;x4; τ4Þ

δ3Γ½P�
δPmðx4; τ4ÞδPnðx5; τ5ÞδPpðx6; τ6Þ

× χMn;jðx5; τ5;x2; τ2ÞχMp;kðx6; τ6;x3; τ3Þ; ðC5Þ

where in the third line we used the matrix derivative identity:

∂M̂−1

∂λ
¼ −M̂−1 ·

∂M̂
∂λ

· M̂−1:

Having in mind that the anharmonic free energy is local, the third variational derivative actually contains two Dirac delta
functions:

FIG. 7. A Feynman diagram for the expression Eq. (C8),
assuming q1 ¼ q2 ¼ 0 on the external labels. The triangle is
the third derivative of the anharmonic free energy and is
frequency independent. The circles are linear susceptibilities at
the corresponding frequency.
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δ3Γ½P�
δPmðx4; τ4ÞδPnðx5; τ5ÞδPpðx6; τ6Þ

¼ 1

ε0P0

∂
3

∂P̄m∂P̄n∂P̄p

�
ε0F ahðhPðx4; τ4ÞiÞ

P2
0

�
δ4ðx5 − x4Þδ4ðx6 − x4Þ: ðC6Þ

Plugging Eq. (C6), and expanding the susceptibilities in Fourier modes, assuming the developed polarization is uniform and
does not break translation symmetry, we get

χð2Þi;j;kðx1; τ1;x2; τ2;x3; τ3Þ ¼
�
T
L3

�
2X
q1;q2

e−i½q1ðx1−x2Þþq2ðx1−x3Þ�χð2Þi;j;kðq1; q2; hPiÞ; ðC7Þ

χð2Þi;j;kðq1; q2; hPiÞ ¼ −½χMq1þq2;eff
ðhPiÞ�i;m

∂
3

∂P̄m∂P̄n∂P̄p

�
ε0F ahðhPiÞ

P2
0

�
½χMq1;effðhPiÞ�n;j½χMq2;effðhPiÞ�p;k: ðC8Þ

The Feynman diagram corresponding to Eq. (C8) is presented in Fig. 7. For light, the wave vector is close to q1 ¼ q2 ¼ 0,
and Eq. (C8) is only a function of frequency. Because there is no frequency-dependent term in the third derivative (triangle
vertex), it has a simple analytic continuation in the upper complex half-plane to get the retarded nonlinear susceptibility:

χð2Þi;j;kðω1;ω2; hPiÞ ¼ −½χreteffðω1 þ ω2; hPiÞ�i;m
∂
3

∂P̄m∂P̄n∂Pp

�
ε0F ahðhPiÞ

P0

�
½χreteffðω1; hPiÞ�n;j½χreteffðω2; hPiÞ�p;k: ðC9Þ

APPENDIX D: DFT CALCULATIONS

We perform DFT calculations using the projector aug-
mented-wave method [59] implemented in the Vienna
ab initio simulation package [60,61] version 6.3. The
workflow management software atomate2 [62] is employed
to organize and analyze the calculations. Our choice of
pseudopotentials follows the standards of the materials
project and atomate2. We select the Perdew-Burke-
Ernzerhofer functional for solids [63] as our exchange-
correlation functional for its good balance between accurate
geometries and relatively low cost [64]. A plane wave
cutoff of 550 eV is chosen together with automatically
generated Gamma-centered k-point grids with a density of
50000 for the static calculations. We converge the static
calculations to an energy difference of 1 × 10−8 eV and
forces during geometry optimizations to 1 × 10−4 eV=Å.
All further calculation parameters can be found in the
atomate2 json files provided in Ref. [58].

APPENDIX E: SSCHA CALCULATIONS

The SSCHA theory [65–69] is designed to describe
thermodynamics of crystal structures including temperature
and quantum and anharmonic effects of the ions. The free
energy at fininte temperature of the crystal structure is
modeled in terms of the N-body density matrix of the ions.
The latter is parametrized as a Gaussian in terms of average
atomic positions and quantum and thermal fluctuations
[69]. The details of the implementation can be found in
Ref. [69]. Observables within SSCHA are calculated as
Monte Carlo averages, which require the calculation of
ensembles of supercells of a crystal structure. We employ
the force field described in Appendix F to calculate these

ensembles using an ensemble size of 4000 3 × 3 × 3
supercells. The SSCHA minimization was run at 0 K,
including quantum but not thermal effects, with default
parameters besides a reduced minimization step size for the
dynamical matrix (MIN STEP DYN ¼ 0.05). The struc-
tures were kept fixed to evaluate the energies at the desired
polarization values.

APPENDIX F: ML FORCE FIELDS

We employ neural equivariant interatomic potentials
(NequIP) to model the STO Born-Oppenheimer energy
surface. These are equivariant message passing networks,
and the details of their implementation can be found in
Ref. [70]. The networks were trained and tested using the
data from Ref. [51]. We split the training data from
Ref. [51] into a training set of 563 systems and a validation
set of 63 systems. The network was trained until no further
improvements in the loss could be found during the last 50
epochs. Using the same test set as discussed in the
Supplemental Material of Ref. [51] we obtain energy
and force root mean square errors of 0.21 meV=atom
and 2 meV=Å versuss 0.18 meV=atom and 37 meV=Å
in Ref. [51]. This is an 18-fold improvement in the force
errors while retaining a comparable energy error. We used a
cutoff radius of 6 Å, 4 message passing steps, and a
maximum order of l ¼ 2 for the equivariant message
passing. The input config and output files of NequIP
including the model are available at Ref. [58].
As the force field was trained using data created with

slightly different DFT input parameters [51], we confirmed
that the fit parameters obtained using solely the force field
are sufficiently similar to the ones obtained with the DFT
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parameters used in this work. Using the force field for the
tetragonal cells, we obtain α0 ¼ −2.8 × 108 JmC−2,
β01 ¼ 2.0 × 1010 Jm5 C−4, and β02 ¼ 0.57 × 1010 Jm5 C−4.
While the double well becomes deeper with the force field,
the quartic coefficients and their ratio stay nearly
unchanged.

APPENDIX G: UNCERTAINTY IN THE FIT
PARAMETERS

While the standard errors for the fit parameters are all at
least one order of magnitude smaller than the parameters
themselves, associating an exact uncertainty with the fit
parameters is challenging, as many choices quantitatively
influence the parameters. Examples include the direction of
polarization chosen for the curves, the number of directions
included in the fit, and whether the curves are calculated at
constant or relaxed volume. Other factors are whether
constant Born charges are assumed, and the choice of DFT
parameters. We demonstrate the impact of some of these
choices and the robustness of the results with respect
to them.
Allowing for different volumes in the nonpolar or polar

structure and interpolating between them changes the ratio
β01=β

0
2 to 2.5 (3.2 at fixed volume) for the DFT calculations

on the tetragonal structure and to 3.5 (4.0 at fixed volume)
for the SSCHA calculations.
We fitted the data in both polarization directions with a

single linear fit. An alternative approach is to perform a
separate fit of the [100] direction to obtain parameters for
the quartic and square terms, followed by fitting the cross
term for the [110] direction. For, e.g., the cubic DFT
calculations, this change yields α0 ¼ −0.94 × 108 JmC−2,
β01 ¼ 1.6 × 1010 Jm5 C−4, and β02 ¼ 0.44 × 1010 Jm5 C−4.
This difference demonstrates that more data in different
polarization directions would be optimal to obtain more
accurate fitting parameters; however, the difference is also
sufficiently small to not influence the conclusions.
In a final test, we use different Born charges calculated

with the atomate2 dielectric workflow for the nonpolar
tetragonal structure. This changes the fitting parameters to
α0 ¼ −1.35 × 108 JmC−2, β01 ¼ 1.4 × 1010 Jm5 C−4,
and β02 ¼ 0.40 × 1010 Jm5 C−4.
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