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We propose multilayer moiré structures in strong external magnetic fields as a novel platform for
realizing highly tunable, frustrated Hubbard physics with topological order. Identifying the layer degree of
freedom as a pseudospin allows us to retain SU(2) symmetry while controlling ring-exchange processes
and concurrently quenching the kinetic energy by large external magnetic fields. This way, a broad class of
interacting Hubbard-Hofstadter states and their transitions can be studied. Remarkably, in the limit of
strong interactions the system becomes Mott insulating and we find chiral pseudospin-liquid phases which
are induced by the magnetic field. We find that this topologically ordered state remains exceptionally stable
toward relevant perturbations. We discuss how layer pseudospin can be probed in near-term experiments.
As the magnetic flux can be easily tuned in moiré systems, our approach provides a promising route toward
the experimental realization and control of topologically ordered phases of matter.
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I. INTRODUCTION

Frustrated electronic systems are expected to exhibit
a variety of exotic quantum phases, including fractional
quantum Hall states and spin liquids, which host intrinsic
topological order and emergent gauge fields [1–3]. While
these systems have attracted tremendous theoretical and
experimental interest, the decade long quest for the exper-
imental realization of such long-range entangled states has
been challenged by their fragility. In particular, when
topological order is encoded in the spin degree of freedom,
a characterization and manipulation of the excitations
becomes extremely challenging. Even in theoretical mod-
els, spin liquids often appear only for very specific
parameters, which makes finding good candidate materials
difficult [3,4]. Consequently, conclusive evidence for spin
liquids in solids is hard to find, which makes it essential to
identify tunable solid-state platforms that allow for novel
probes of the spin-liquid states.
The kinetic energy of electrons can be controllably

quenched by large, external magnetic fields in moiré

heterostructures of transition metal dichalcogenides
(TMDs). While these magnetic fields eventually polarize
the electron spin, we can retain an SU(2) symmetry by
considering synthetic layer pseudospins instead of elec-
tronic spins [5–7]. The lowest bands of such systems are
described by effective triangular lattice Hubbard models,
which makes them particularly promising settings to study
the interplay of geometric frustration and strong inter-
actions [8–12]. Here, we show that the magnetic field
induces a particularly rich phase diagram, ranging from
Hofstadter physics for small interactions to spin-liquid
phases in the Mott insulating regime [12–17]. In our
setting, the magnetic field reliably tunes ring-exchange
processes, which stabilize exceptionally robust chiral spin
liquids (CSLs) [17,18]. Because of the large moiré unit
cells it is possible to insert high enough flux to explore
the full spectrum of the Hofstadter butterfly [13,19]. This
enables us to study a large variety of previously inacces-
sible phases, including exotic insulator-to-insulator tran-
sitions between topological charge and spin sectors.
Our work is structured as follows. We introduce the

effective frustrated Hubbard model for twisted TMD
bilayer structures in the presence of a magnetic field in
Sec. II and discuss details of the model in the Appendix.
The stabilized phases are presented in Sec. III. We analyze
the robustness of topologically ordered spin-liquid phases
in Sec. IV. Experimental signatures of the layer pseudospin
liquid are proposed in Sec. V. We provide a discussion and
an outlook in Sec. VI.
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II. FRUSTRATED HUBBARD PHYSICS
IN TWISTED TMD BILAYERS

Heterostructures of two-dimensional (2D) materials
form moiré patterns, either when there is a lattice constant
mismatch between the materials or when some of the layers
are twisted against each other. This commonly results in
honeycomb and triangular structures, which imprint lattices
on the electrons. Motivated by recent work [12,20], we
consider triangular moiré patterns, in which two lattices in
different layers coincide spatially. This can be achieved in
multiple ways: in “sandwich” stacked trilayer systems; for
AB-stacked homobilayers with a twist [12,21], as shown in
Fig. 1(a); via twisted hexagonal boron nitride structures in
proximity to a homobilayer TMD [20,22]; or via electro-
statically imprinted potentials [23]. Depending on the
depth of the lattice potential [24], the lowest-lying moiré
band of the TMD heterostructure can then realize an
effective triangular Hubbard model, with two electronic
degrees of freedom: spin and layer. Here we explore the
phase diagram of these models by tuning the external
magnetic field Bz. For Bz → 0 the system can be described
by a generalized Hubbard model with an approximate
SU(4) symmetry [12]. In the strong magnetic field limit,
the Zeeman effect will fully polarize the electrons.
Consequently, their electronic spin can be discarded and
the TMD system is described by an interacting Hofstadter-
Hubbard model on the triangular lattice with two flavors:

Ĥ ¼ −t
X

hiji;σ¼fT;Bg
eiϕijc†i;σcj;σ þH:c:þ t⊥

X
i

c†i;Tci;B þH:c:

þU
X
i

ni;Tni;B; ð1Þ

where we have assumed that longer-range interactions have
been screened by nearby gates. We discuss the details of
the effective model and subleading contributions in the
Appendix. The operator c† (c) creates (annihilates) spin
polarized fermions and the index σ ∈ fT; Bg labels the top
and bottom layer of the heterostructure; see Fig. 1(a) for an
illustration. Electrons are subject to a hopping term with
strength t and an interlayer tunnel coupling t⊥. In AB
stacking, one of the layers is rotated by 60° which
exchanges the K and K0 points. Because of spin-valley
locking, this strongly suppresses t⊥. For sandwich struc-
tures and twisted h-BN imprinted potentials, t⊥ can be
made vanishingly small via an insulating barrier. In the
following we analyze Eq. (1) and assume t⊥ ¼ 0 through-
out. We interpret electrons in the top (bottom) layer as
having pseudospin þ1=2 (−1=2). The magnetic field does
not couple directly to the pseudospin, and its only effect is
the generation of Peierls phases ϕij. These time-reversal
symmetry breaking phases are crucial for the following
discussion and constitute the main difference compared to
previously proposed setups [10,11].
Hamiltonian Eq. (1) then describes lattice versions of

quantum Hall systems, which give rise to a large variety of
phases. In the absence of interactions the system realizes
a Hofstadter model that hosts a multitude of topologically
nontrivial electronic bands which are induced by the
magnetic field; see Fig. 1(b) for an example. As solid-
state systems are generically interacting, it is crucial to
study the fate of these bands once electron repulsion is
considered. While some states directly connect to the
Hofstadter model at U ¼ 0, interactions stabilize exotic
phases of matter. One such example is excitonic super-
fluids, which arise when pseudospin symmetry is broken
spontaneously by the interactions. Another, even more

FIG. 1. Setup and schematic phase diagram. (a) Twisted AB-stacked homobilayer TMD setup to realize a triangular Hubbard model.
Top and bottom layers are drawn in blue and red. Electrons with pseudospin up (down) in the effective Hubbard model are depicted as
blue (red) spheres in the bottom panel. (b) Typical topological band structure of the Hofstadter model at π=2 flux and vanishing
interactions. (c) Schematic phase diagram of the half-filled triangular Hubbard model as a function of flux and interactions. Circles
represent iDMRG data obtained on cylinders of circumference Ly ¼ 6 and stars mark phase transitions. Remarkably, for intermediate to
large interactions the dominant fraction of the phase diagram is a chiral spin liquid (CSL). For weak interactions, the magnetic flux gives
rise to a large variety of Hofstadter states, which can directly transition to the CSL. In the limit Φ → 0, the system recovers an
approximate SU(4) symmetry once the intrinsic electronic spin is no longer polarized.
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exciting possibility, is the formation of states with intrinsic
topological order, such as fractional Chern insulators. As
opposed to integer Chern insulators they feature emergent
gauge fields, anyonic excitations, and long-range entangle-
ment [25,26].
As correlated insulating phases give rise to particularly

interesting spin physics, we consider a single electron per
moiré unit cell ne ¼ 1 from now on. This allows the system
to become Mott insulating for strong enough interactions,
which is the natural regime for TMDs [27–29]. This limit is
understood by eliminating the doubly occupied subspace
with a Schrieffer-Wolff transformation [17], leading to the
following effective Hamiltonian,

Ĥeff ¼
1

U

X
ij;σσ0

tijtji
�
c†iσciσ0

��
c†jσ0cjσ

�

−
2

U2

X
tijtjktki

�
c†iσciβ

��
c†kβckα

��
c†jαcjσ

�
þOðt4=U3Þ; ð2Þ

which is equivalent to an effective spin system,

Ĥeff ¼JH
X
hiji

Si ·SjþJχ
X

Si ·ðSj×SkÞþOðt4=U3Þ; ð3Þ

with antiferromagnetic Heisenberg interactions JH and a
chiral spin coupling Jχ . The couplings are related to the
Hofstadter-Hubbard model parameters as follows:

JH ¼ 4t2=U; Jχ ¼ 24 sinðΦÞt3=U2; ð4Þ

whereΦ is the magnetic flux per triangle, which is given by
ϕij þ ϕjk þ ϕki if i, j, k label sites on a single triangle.
Although the triangular lattice is frustrated, the ground

state of the pure Heisenberg model, obtained for U ¼ ∞, is
a coplanar 120 degree (pseudo)magnet [30,31]. However,
when interactions are lowered or the magnetic flux is
increased, the ground state of the fermion system is still a
subject of debate. We will show that Jχ can melt the
120 degree order and give way to an exceptionally stable
CSL. The hallmark of this exotic phase is a fractionaliza-
tion of the spins into spinons fα, which is captured by a
parton ansatz S⃗ ¼ 1

2

P
1
α;β¼0 f

†
ασ⃗αβfβ. Expressing Eq. (3) in

terms of the spinons leads to a Hamiltonian, identical to
Eq. (2) with electrons replaced by the spinons. The price to
pay in this representation is a single occupancy constraintP

α f
†
i;αfi;α ¼ 1which must be imposed on each site i. This

is similar to the Schrieffer-Wolff construction in Eq. (2),
where we projected out double occupancies to describe
the Mott insulator. Spinons evolving with Eq. (2) may
move freely in a correlated fashion if self-consistently
generated hopping terms acquire nonzero expectation

values
P

βhfi;βf†j;βi ≠ 0, but remain confined for

conventional magnetic phases such as the 120 degree order.
A mean-field decoupling around such configurations leads
to simple trial Hamiltonians for the spin liquid:

Htrial ¼
X
hiji;α

t̃ijf
†
iαfjα: ð5Þ

This illustrates one of its key properties: a stable mean-field
solution for the chiral spin liquid exists, when the (self-
consistently determined) hopping matrix t̃ij ∼

P
βhfi;βf†j;βi

breaks time-reversal symmetry and induces topological
Chern bands. The ground state of the CSL can be thought
of as a Chern insulator composed of spinons. Projecting out
double occupancies to satisfy the single occupancy con-
straint then gives the spinons anyonic character [1,17].
Despite the fragility of the CSL at zero flux and the fact that
a Mott state retains a nonzero (but small) fraction of double
occupancies, we will show that magnetic fields strongly
favor the formation of a quantum spin liquid; see Fig. 1(c)
for a schematic phase diagram.
As a topologically ordered state, the CSL is robust to any

small perturbation. We study the stability of the CSL to the
most relevant subleading contributions to our model, includ-
ing longer-range interactions, layer SU(2) symmetry break-
ing, and intersite ferromagnetic exchange interactions; see
Sec. IV. For realistic estimates of these subleading contri-
butions, we find that the CSL remains remarkably stable.
This is a consequence of the explicit time-reversal symmetry
breaking by the external magnetic field.
While this discussion assumed strong magnetic fields to

fully polarize the electronic spin, we point out that rich
physics also arises when Zeeman splittings are small. Then,
the system has additional approximate symmetries which
have been proposed to give rise to more exotic SU(4) spin
liquids, while the 120 degree state is replaced by stripe
order, plaquette order, or SU(4) symmetry broken trimer
states [12,32]. This regime is highlighted in the bottom of
Fig. 1(c). How this and other phases interplay with the
Hofstadter states is an interesting open question, which is
beyond the scope of this work.
Furthermore, our discussion based on the effective spin

model neglects higher order ring-exchange processes,
which become increasingly important close to the Mott
transition. In order to fully capture the properties of the
system, we instead study the electronic Hamiltonian of
Eq. (1) directly, without projecting out the higher energy
subspace [33]. In the following, we emphasize the rich
physics of the model by studying a subset of phase
transitions from Hofstadter states to the CSL.

III. PHASES OF THE PSEUDOSPIN
HOFSTADTER-HUBBARD MODEL

We consider in detail the half-filled triangular Hubbard
model deep inside the Hofstadter butterfly regime with two
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fluxes Φ∈ fπ=3; π=2g. These flux values correspond to
total filling factors of νT ¼ 2πne=2Φ∈ f3; 2g, where 2Φ is
the flux per unit cell and ne is the number of electrons per
unit cell (ne ¼ 1 at half filling, which is what we consider
throughout this work). For these flux values various exotic
phases of matter can be stabilized. For example, at weak
interactions the system could realize gapped bilayer integer
quantum Hall (IQH) and gapless excitonic insulators,
respectively. For large interactions, these phases compete
with magnetic ordering and exotic spin liquids. Given the
insights from the effective spin model in Eq. (3), the precise
value of the external flux only determines the ratio of
Jχ=JH in the Mott insulator. However, in the quantum
Hall regime its value is essential, as it determines charge
gap. In order to determine which phases are stabilized by
the microscopic Hofstadter-Hubbard model, we resort to
numerical methods.
Method. Studying fermions in magnetic fields poses a

significant numerical challenge. Here, we use matrix
product states (MPSs) to obtain an unbiased variational
approximation of the many-body wave function. This
ansatz allows for an expansion in terms of the entangle-
ment, that is controlled by the maximal bond dimension χ
of the MPS. If both the quantum Hall states and the CSL
are gapped, they can be efficiently represented in terms
of an MPS on a cylindrical lattice, that is finite in one
direction but infinite in the other, because the total amount
of entanglement is finite for such lattice geometries. This
method has been successfully applied to phases with
intrinsic topological order, which lead to a better under-
standing of fractional quantum Hall (FQH) and frac-
tional Chern insulators; see, e.g., Refs. [34–36]. We
variationally optimize the MPS by infinite density matrix
renormalization group (iDMRG), implemented via the
TENPY library [37]. Since the bond dimension, and hence
the numerical costs, grow exponentially with the cylinder
circumference, in this work we focus on Ly ¼ 6, which
fits both fluxes Φ ¼ π=2; π=3 with periodic boundary
conditions.
Working in the infinite limit along the x direction, we

can directly obtain the correlation functions as well as
the correlation length from the transfer matrix of the
corresponding MPS unit cell. We use these methods to
determine the ground state phase diagram of the
Hofstadter-Hubbard model given by Eq. (1). Even though
the precise points of the phase transitions may shift
depending on the cylinder circumference, we expect the
structure of the phase diagram to be similar in the two-
dimensional limit [33]. To be able to perform the simu-
lations with high bond dimensions and therefore small
truncation errors, we utilize the Uð1Þ × Uð1Þ symmetries
generated by the z component of pseudospin

P
i S

z
i ¼P

i n̂
T
i − n̂Bi and particle conservation

P
i n̂

T
i þ n̂Bi as well

as translation symmetry along the y direction [38,39], which
determine the Sz,Q, and ky quantum numbers, respectively.

Quantum phase transition at Φ ¼ π=2. For Φ ¼ π=2
flux per triangle and small U=t the system is in a bilayer
IQH state, defined by a fully filled topological band with
Chern number C ¼ 1 for each pseudospin; see Fig. 1(b).
We find signatures of a phase transition by studying the
ground state correlation length as a function of interactions
U=t, which is shown for operators carrying the quantum
numbers ðSz;Q; kyÞ ¼ ð0; 0; 0Þ in Fig. 2. As interactions
are increased, the correlation length grows significantly
with bond dimension around a critical interaction strength
of Uc ∼ 10.5t, which indicates a gap closing phase tran-
sition. In contrast to the bilayer IQH state, identifying the
phases for U > Uc is more subtle. The most relevant
competing states are 120 degree spin order, tetrahedral
spin order, excitonic insulators, and the chiral spin liquid.
We shed light on the large U phase by noting that the

enhanced correlation length is accompanied by a simulta-
neous reorganization of the half-cylinder entanglement
spectrum, shown in Figs. 3(a) and 3(b). The entanglement
spectrum directly encodes the energy levels of the edge
theory on a half-infinite cylinder, which are distinct for the
bilayer IQH and the other candidate phases. The edge
theory of the bilayer IQH for small U=t is given by two
chiral modes, one for each layer. Their excitations are
understood as follows: For ky ¼ 0 there is a unique state
where neither of the edge modes is excited, leading to a
single dominant entanglement eigenvalue. To create a
momentum ky ¼ 1 × 2π=Ly excitation, one can shift the
lowest-lying electron by one momentum quanta, and
promote it to the state just above the Fermi level. As this
can be done in both layers, we find two such excitations,
leading to two entanglement eigenvalues. In the appropriate
basis these excitations decouple completely and corres-
pond to total-density and spin-density wave excitations.

C

I

FIG. 2. Ground state correlation length for Φ ¼ π=2. We show
the correlation length in the charge sector ðSz;Q; kyÞ ¼ ð0; 0; 0Þ
as a function of U=t for different values of the bond dimension χ.
Around U ≃ 10.5t the correlation length grows with bond
dimension, which is indicative of phase transition melting the
bilayer quantum Hall state. The dotted gray line serves as a guide
to the eye.
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Continuing this counting, one finds that the momentum-
resolved entanglement spectrum for increasing momenta ky
is given by (1; 2; 5; 10;…) entanglement eigenvalues in
each spin sector; see Fig. 3(a). These density- and spin-
wave modes are arranged in a representation of an under-
lying Uð1Þ ⊗ SUð2Þ1 algebra, as expected for the boundary
of a double copy of an IQH state. For U > Uc, on the other
hand, the ground state loses several edge excitations; see
Fig. 3(b). This is natural once the system turns Mott
insulating, at which point density waves acquire a finite
energy cost. The spectrum then consists only of spin
waves described by a representation of the SUð2Þ1 algebra,
which leads to a (1; 1; 2; 3; 5;…) counting. The edge is
therefore captured by a chiral SUð2Þ1 Wess-Zumino-Witten
model, which matches the edge theory of the chiral spin
liquid [40,41].
We further analyze the topological character of the

bilayer IQH and the suspected CSL by inserting fluxes
through our cylinder, which realizes Laughlin’s charge
pump [42,43]. The IQH state responds to the insertion of 2π
magnetic flux by transferring a single charge from one
end of the cylinder to the other in each layer, illustrated in
Fig. 3(c) (red markers). To couple to the charge-neutral spin

edge modes, one has to thread opposite fluxes in the two
layers. The IQH state then pumps one electron in the top
and one hole in the bottom layer, each carrying a spin of
1=2, leading to a pseudospin transfer of unity; see Fig. 3(c)
(blue markers). Combining these results, we infer that the
excitations carry both charge and spin.
For U > Uc the system no longer pumps electric charge

when threading magnetic fluxes, consistent with a Mott
insulating state. However, it still exhibits quantized spin
transfer for oppositely inserted fluxes; see Fig. 3(d).
Inserting π flux for the electrons corresponds to a 2π flux
insertion in the effective spin Hamiltonian Eq. (3). From
this point of view we pump a single spin after threading 4π
spin flux, realizing a fractional spin-Hall effect. This can be
intuitively understood via the Kalmeyer-Laughlin construc-
tion, where the spin system is mapped to a half-filled Bose-
Hubbard model in the presence of a fictitious background
magnetic field [15]. Our observed spin pumping is then
explained by the formation of a ν ¼ 1=2 bosonic FQH state
which is identified as the chiral spin liquid in the spin
picture. As such, excitations of the CSL are semions, which
are Abelian anyons with a statistical phase θ ¼ π=2. This
leads to a doubly degenerate ground state on cylinders in

E

M M

P

I I

P

P

(a) (b)

(c) (d)

FIG. 3. Topological properties forΦ ¼ π=2. Edge properties and charge pumping forΦ ¼ π=2 forU ¼ 5t (a),(c) andU ¼ 15t (b),(d).
(a) Ground state entanglement spectrum in the IQH phase for χ ¼ 10 000 and charge Q ¼ 0. The spectrum obeys a ð1; 2; 5; 10;…Þ
counting rule characteristic for an edge theory of two chiral bosons, which suggests an IQH state in both the top and bottom layer.
(b) Ground state entanglement spectrum in the CSL for χ ¼ 10 000 and charge Q ¼ 0. The spectrum obeys the ð1; 1; 2; 3; 5;…Þ
counting rule for the edge theory of the CSL phase. (c),(d) Pumped charge under flux insertion through the cylinder. Red and blue dots
indicate flux that is inserted equally and oppositely in the two layers. While the pumping in (c) is a direct consequence of two charge-
carrying edge modes of the bilayer IQH state, the charge pumping in the CSL regime (d) vanishes entirely, consistent with the separation
of spin and charge degrees of freedom while the spin remains quantized.
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the thermodynamic limit Ly ¼ ∞, which reside in the
ky ¼ 0 and ky ¼ π momentum sectors, respectively. In our
geometry, the ground state energies in these sectors
approach each other and cross shortly after the transition,
which is a finite size effect of our simulations [18,33].
The same conclusion can be reached starting from a
purely fermionic model, although the discussion is more
involved [1]. The fractional spin-Hall effect and the
absence of charge transport therefore serves as a direct
signature of a fractional Hall state for spin. Putting these
findings together we identify the phase into which the
bilayer IQH phase transitions when increasing interactions
to U > Uc as a CSL.
Competition between Hall states and spin liquids at

Φ ¼ π=3. For νT ¼ 3, we no longer expect a quantized Hall
conductance as the Landau bands are partially filled. This
opens the possibilities for other charge liquids, such as
excitonic superfluids. Here, we choose unit cells of size
Lx ¼ 3, which allows us to reliably prepare states with
fixed momenta along the y direction; see Supplemental
Material [44].
We find that for smallU=t the system does not exhibit any

quantized pumping; see Supplemental Material [44].
Although it is suggested by the continuum limit, we do
not find long-range ferromagnetic correlations of the Hall
liquid, which may be a feature of the Hofstadter-Hubbard
model at half filling. While we cannot uniquely identify the
nature of this state, its response is consistent with a
featureless Hall state [45]. However, once interactions are
raised, a sharp transition occurs around U ≃ 8.5t, as evi-
denced by the growing correlation length; see Fig. 4.
We find that the transition (on finite cylinders) occurs in

steps. First, for small U=t the ground state is found at zero
momentum. As U increases, the correlation length in the
ky ¼ π sector diverges. Then, quickly after this divergence
the ky ¼ π state becomes the new ground state of the
system. Afterward the energy splitting between the two
states remains roughly constant [44].
There are several possible candidate states once the

system becomes insulating. Following the analysis of the
previous section we can identify the phase forU ≥ 8.5t as a
CSL [44]. In particular, the state exhibits a fractional spin-
Hall effect and shows the characteristic half-cylinder entan-
glement spectra. Although the ky ¼ 0 state is higher in
energy than the ky ¼ π state for U ≥ 8.5t, the edge theories
of both states are in good agreement with the SUð2Þ1 Wess-
Zumino-Witten model describing the boundary of the CSL.
While the robust spin liquid is a universal feature of the

large U phase for both fluxes, the charge to spin liquid
transitions are clearly distinct for νT ¼ 2 and νT ¼ 3. Most
notably for νT ¼ 3 the CSL appears already for much
weaker interactions compared to νT ¼ 2. This indicates that
the charge liquid at νT ¼ 3 is less stable than the νT ¼ 2
bilayer IQH state. A sketch of the expected phase bounda-
ries is shown in Fig. 1(c). This behavior is reminiscent of

the competition between Wigner crystals and Hall states in
electron gases, where integer and fractional quantum Hall
states extend further into the gapped crystalline phase than
their gapless counterparts [29,46].

IV. ROBUSTNESS OF THE CSL TO
PERTURBATIONS

Gapped topological phases are roubst toward perturba-
tions. Here, we characterize the robustness of the CSL to
subleading corrections to the effective Hamiltonian Eq. (1).
Nearest-neighbor interactions. Nearest-neighbor inter-

actions V, which are naturally present in 2D materials
due to strong Coulomb repulsion, may destabilize the
CSL. We now study the robustness of the observed CSL
phases toward longer-range interactions. To this end, we
include repulsive longer-ranged interaction terms in the
Hamiltonian, which then reads:

Ĥ¼−t
X

hiji;σ¼fT;Bg

�
eiϕijc†i;σcj;σ þH:c:

�þU
X
i

ni;Tni;B

þV
X
hiji

�
ni;Tnj;T þni;Bnj;Bþni;Tnj;Bþni;Bnj;T

�
: ð6Þ

In the Mott insulating limit U;V ≫ t, the nearest-neighbor
interactions indeed reduce the effective Heisenberg cou-
pling in second-order degenerate perturbation theory,

JH ¼ 4t2=U → 4t2=ðU − VÞ; ð7Þ

C

I

FIG. 4. Transition for Φ ¼ π=3. The ground state correlation
length for operators in the sector ðSz;Q; kyÞ ¼ ð0; 0; 0Þ. In the
lowest energy ky ¼ π state, the correlation length strongly
increases around U ≃ 8.5t, indicating a sharp transition to a
chiral spin liquid. The energy crossing of the k ¼ 0 and k ¼ π
states is indicated by the vertical lines and is a finite size effect.
The two momentum states are expected to be the degenerate
ground states of the CSL in the thermodynamic limit.
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which points to a destabilization of the CSL. To study the
robustness of the spin-liquid phase, we determine the
ground state of Eq. (6) using iDMRG, with a conservative
estimate of U=V ¼ 6 and U=t ¼ 17; see the Appendix.
Having assumed a constant value for U=V, we signifi-
cantly overestimate V for smaller twist angles (i.e., larger
moiré lattice constants), where the Hubbard model with
local interactions only is an excellent approximation.
The topological features of the CSL remain for U=V ≥ 6,
as shown in Fig. 5. Our analysis therefore reveals a
favorable experimental regime for the observation of
spin-liquid states at intermediate twist angles, as high-
lighted in the bottom panel of Fig. 8 in the Appendix.
We note that the CSL regime could be enhanced even
further by engineering the dielectric environment to
maximize electronic screening as commonly assumed
in the literature [11,12].
Layer SUð2Þ symmetry breaking. While symmetries are

not essential ingredients for the CSL, the extent to which
SU(2) can be broken before the spin liquid is destabilized is
not clear a priori. Although it can be electrostatically
ensured that

P
ihSzðiÞi ¼ 0, strain can induce hopping of

different strengths in the two layers. The minimal model
to study these perturbations is given by the following
Hamiltonian:

Ĥ ¼ −
X
hiji

�
eiϕij tTc

†
i;Tcj;T þ eiϕij tBc

†
i;Bcj;B þ H:c:

�

þ U
X
i

ni;Tni;B; ð8Þ

where tT ¼ tþ δ (tB ¼ t − δ) label the tunneling strengths
in the top (bottom) layer. The IQH state is expected to be
robust as the wave function is close to a direct product of the
two layers. For the CSL, the situation is less clear, as the two
layers are correlated due to interactions. We find the leading
order correction to the effective spin model describing the
CSL by performing a Schrieffer-Wolff transformation, which
yields the effective spin Hamiltonian:

Ĥeff ¼ 4
t2 þ δ2

U

X
hiji

Si · Sj þ 8
δ2

U

X
hiji

SziS
z
j þO

�
t3

U2
;
δ3

U2

�
;

ð9Þ
where chemical potential terms of the form ∼tðδ=UÞ ×
ðnT − nBÞ have already been compensated by external
electric fields. SU(2) breaking terms appear only at order
Oðδ2=UÞ which introduce some anisotropy. This is in
accordance with the result of our DMRG simulations for
δ ¼ 0.1t and a flux of Φ ¼ π=2, for which we find very
similar phase boundaries, as shown in Fig. 6(a). The
entanglement spectra shown in Fig. 6(b) show well-defined
chiral edge modes that match the expected counting rules
of the Chern insulator and the CSL, respectively. Because of
the topological protection of the quantized Hall response,
the edge theory remains well defined and retains its SU(2)
multiplets even for sizable perturbations δ.
Ferromagnetic intersite exchange interactions. In addi-

tion to the previously discussed nearest-neighbor inter-
actions V and SU(2) symmetry breaking, we also explore
the robustness of the CSL under nearest-neighbor intersite
exchange interactions X:

Ĥ → Ĥ þ X
X
hiji

σ;σ0 ∈ fT;Bg

c†i;σc
†
j;σ0ci;σ0cj;σ: ð10Þ

The exchange term was argued to be relevant in typical
moiré heterostructures and favors ferromagnetic spin
exchange [24,47]. This is reflected in the direct contribu-
tion to the effective Heisenberg coupling,

JH ¼ 4t2=U − 2X; ð11Þ

where X > 0 for repulsive Coulomb interactions. Hence,
for an estimate similar to the one discussed in the Appendix
and with a conservative choice of parameters, one usually
finds a ferromagnetic spin exchange JH < 0. In stark
contrast, experimental measurements of the magnetization

E P

M I

P

P

FIG. 5. Effect of nearest-neighbor interactions on the entanglement spectrum and charge pumping. For both panels Φ ¼ π=2,
U=V ¼ 6, and U ¼ 17t. Left: entanglement spectrum for χ ¼ 10 000. The symmetry-resolved spectrum and its degeneracies agree with
the CSL prediction even for sizable nearest-neighbor interactions. Right: the system pumps an integer pseudospin under flux insertion,
confirming the topological nature of the spinon bands.
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at half filling are consistent either with weak antiferro-
magnetic order [48,49] or no magnetic order [50] consistent
with JH=t≳ 0. In Fig. 7, we map out the X −U phase
diagram for a flux ofΦ ¼ π=2. We find that for large values
of U, tuning the exchange X leads to a transition from
the CSL into a ferromagnetic phase as expected from
the second-order expansion of JH. Remarkably, in the

experimental regime where JH=t≳ 0 (lower left-hand part
of the phase diagram), we find a robust CSL phase with
clear signatures in the entanglement spectrum. We note
that at this point, the spin liquid is not stabilized by
the frustration of nearest-neighbor antiferromagnetic spin
exchange on a triangular lattice but by the strong magnetic
field that explicitly breaks time-reversal symmetry.

C E

M

(a) (b)

FIG. 6. Triangular lattice Hubbard model with broken SU(2) symmetry. Ground state properties of the triangular lattice Hubbard
model for δ ¼ 0.1 at Φ ¼ π=2 flux on an infinite cylinder with Ly ¼ 6. (a) Ground state correlation length in the charge sector
ðSz;QÞ ¼ ð0; 0Þ. As for the SU(2)-symmetric model, the correlation length is enhanced around U=t ≃ 10.5. (b) Panels 1 and 2 show the
ground state entanglement spectrum for χ ¼ 10 000 and charge Q ¼ 0 at small and large U=t, respectively. We find the characteristic
eigenstate countings of a ν ¼ 2 Chern insulator and the CSL, respectively. The degenerate SU(2) multiplets remain well defined on the
edge, although the underlying Hubbard model is no longer symmetric.

I

E

S

M
I

B

FIG. 7. Phase diagram with intersite exchange X at Φ ¼ π=2 flux. The ground state phase diagram (left) as a function of the intersite
exchange X and on-site interaction U of the triangular lattice Hubbard model reveals a ferromagnetic (FM) phase for large values of X
and U. At vanishing spin exchange JH ¼ 0 (dashed line), the CSL phase is prevailing. Marked points are iDMRG data for Ly ¼ 6 and
maximal bond dimension χ ¼ 8000. For U=t ¼ 16 and X=t ¼ 0.16 (1) spin-spin correlations along the lattice vector direction R1

saturate at a finite positive value, indicating long-range ferromagnetic order. At U=t ¼ 13.5 and X=t ¼ 0.15 (2), i.e., JH=t ≈ 0, the
entanglement spectrum shows the characteristic counting of the CSL.
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V. SIGNATURES OF LAYER PSEUDOSPIN

Potentially the biggest challenge in spin-liquid physics
is to find experimental signatures for their existence.
Many of the previously proposed detection schemes of
electronic spin-liquid states—such as a quantum thermal
Hall effect—are readily generalized to layer-spin systems.
However, layer pseudospin is easier to manipulate and
probe, which presents a crucial advantage and opens new
avenues to detect the spin liquid. (I) By turning on an
external magnetic field Bz the ground state changes from a
120 degree Néel state at Bz ¼ 0 to the CSL, as sketched
in Fig. 1(c). Associated experimental signatures are the
temperature dependence of the pseudospin susceptibility
χðTÞ. At high temperatures, it follows the net-Weiss law
∝ ðT − θCWÞ−1, with negative Curie-Weiss temperature
θCW due to antiferromagnetic interactions. At low temper-
atures, the Néel phase has a broad peak and approaches a
constant value toward T ¼ 0. By contrast, the CSL has a
spin gap ΔS, which leads to exponential decay of χðTÞ
below kBΔS. As we discuss below, χðTÞ can be measured
optically, which makes these signatures accessible in
present-day experiments. (II) In stark contrast to intrinsic
electronic spin, pseudospin can be electrically addressed,
which allows one to couple the two pseudospin states
to different electric fields [cf. discussion surrounding
Figs. 3(c) and 3(d)]. This enables counterflow measure-
ments, which will exhibit a fractionally quantized Hall
response, a hallmark of a CSL. While sample inhomoge-
neity and the difficulty in electrical isolation of the two
layers render such a measurement rather demanding, it
would be able to uniquely identify the topological order of
the chiral layer pseudospin liquid and distinguish it from
all other phases in the phase diagram [12]. (III) Topological
properties of the CSL are encoded in the gapless modes
on its edge [51]. In addition to spin modes, one can
measure the decay of electron correlation functions
hc†σðx; tÞcσ0 ð0; 0Þi on the edge, which serve as additional
probes of the spinons.
While observing fractional pseudospin Hall conductivity

requires transport experiments, other signatures of the CSL
could be obtained using all-optical measurements, which
overcome several obstacles through tight focusing of the
probe lasers into regions where the moiré potential is
uniform. The spin susceptibility at finite field Ez can be
extracted via the attractive polaron resonance strength of
each layer, which measures how many electrons the exciton
can form a bound trion state with and thereby directly
depends on the electron density [52,53]. Probing the
pseudospin magnetization hSzi is then possible since each
layer generically has a different exciton resonance (this is
true also for twisted homobilayer structures where strain
lifts the degeneracy of the exciton resonance). As outlined
above, measurement of magnetization as a function of Ez at
low temperatures kBT ≪ Δs should show the existence of a
spin gap. The appearance of the charge gap in turn is

evidenced by the cusps in attractive and repulsive polaron
resonances, indicating the modification of dynamical
screening of excitons by electrons [9]. Such local probes
are particularly relevant for near-term devices as they are
readily accessible and largely insensitive to large-scale
disorder. Further, direct evidence for the emergence of a
gauge field could be verified using optical Hall measure-
ments. It has been demonstrated that effective electric fields
can be imprinted on excitons using crossed magnetic and
time-dependent electric fields [54]. A combination of such
an effective dipole electric field and the emergent gauge
field should result in layer-contrasting Hall effect [55],
which can be measured by determining the spatial depend-
ence of the attractive polaron resonance in each layer along
the axis that is orthogonal to the dipole electric field.
Furthermore, novel momentum-resolved techniques unique
to 2D materials could also allow for the measurement of
ARPES-like spectra [56] which can provide signatures of
spinon excitations in quantum spin liquids [57].
Complementary insights could be obtained by measuring

hSzq¼0ðtÞSzq¼0ð0Þi using correlations between resonantly
scattered photons on the attractive polaron resonance. If
coherent optical Raman manipulation of layer pseudospin
is possible, then suppression of spin noise along all axes for
kBT ≪ Δs can be measured [58].

VI. CONCLUSIONS AND OUTLOOK

We have shown how a large class of quantum phases and
transitions can be studied in multilayer TMDs. In particular,
topologically ordered CSLs can be stabilized by magnetic
fields utilizing the layer degree of freedom as a synthetic
spin [7,12,59]. The absence of a magnetic Zeeman effect
for the pseudospin allows us to target topological states
by controlling the strength of ring-exchange processes
using large external magnetic fields. For weak interactions
a variety of Hofstadter states can be prepared by sweeping
Bz, while a CSL forms for intermediate interaction
strengths. At specific fluxes, our model realizes topological
insulator-insulator Mott transitions. Understanding the
details of these transitions is an interesting direction for
future work and will help us to better understand the phase
boundaries of the CSL. Remarkably, the field induced CSL
is found to be exceptionally robust and occupies a large
region of the phase diagram. Combined with the electric
tunability and layer-selective readout of layer pseudospin,
this makes TMD heterostructures particularly promising
platforms to study spin-liquid physics. Novel probing
schemes unique to the pseudospin degree of freedom offer
an additional advantage of these systems over conventional
spin-liquid candidates. Competing spin and charge ordered
phases can be more easily identified, while counterflow
measurements [12] directly probe the topology of the spin
liquid. It is also possible to find fingerprints of the spin-
liquid phase with all optical measurements, which provide
local probes that are crucial for near-term devices.
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Our results open up several theoretical and experimental
avenues to study topological order and exotic phase
transitions. For one, Mott insulators can be stabilized at
fractional fillings by longer-ranged interactions, leading to
spin systems with different lattice geometries and more
exotic states for small interaction strengths. More specifi-
cally, for Φ ¼ π=3 densities of ne ¼ 1=3; 1=9;… realize
excitonic insulator candidates and FQH states, respectively,
both of which eventually transition to frustrated spin states
in Mott-Wigner insulators at large U=t. This poses inter-
esting questions about the nature of quantum phase
transitions between topological order in the charge and
spin sectors. Furthermore, in the weak field limit a variety
of interesting competing states emerge, and their interplay
is largely unexplored. Most notably, this regime is expected
to feature Hofstadter physics, quantum Hall ferromagnet-
ism, and SU(4) spin liquids [12].

Data analysis and simulation codes are available on
Zenodo upon reasonable request [60].

ACKNOWLEDGMENTS

We thank M. Drescher, K. Fai Mak, J. Feldmeier,
J. Hauschild, F. Pollmann, J. Shan, T. Smolenski, and
A. Young for fruitful discussions. We acknowledge
support from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy-EXC-2111-390814868 and DFG
Grants No. KN1254/2-1 and No. KN1254/1-2, the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 851161), as well as the Munich
Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern
Plus. The work at ETH Zurich was supported by the
Swiss National Science Foundation (SNSF) under Grant
No. 200021-204076. C. K. was supported by an ETH
Zurich Doc.Mobility Fellowship.

APPENDIX: DETERMINING THE EFFECTIVE
HUBBARD MODEL

We derive the parameters of the Hubbard model from
microscopic properties of the TMDs, following the pro-
cedure outlined in Ref. [61]. In the setup discussed in the
main text, holes in the two doped TMD layers feel a
potential energy variation VMðrÞ which is well approxi-
mated by the lowest few harmonics fgjjj ¼ 1;…; 6g in the
limit of small twist angles,

VMðrÞ ¼
X6
j¼1

vgje
igj·r; ðA1Þ

where the lowest harmonics of the potential are specified by
vg1 ¼ v0eiψ . In the low-doping limit, we approximate the

valence band dispersion of the TMDs as parabolic and
solve the corresponding Schrödinger equation to determine
the moiré bands and Bloch functions unðqÞ. The hopping
parameter t in the Hubbard model is determined by fitting a
tight-binding dispersion to the lowest-lying moiré band.
We calculate the interaction parameter U by employing a
projective construction [62,63] to determine a complete set
of localized Wannier functions for the lowest band wRn

ðrÞ,
where Rn labels the position of the unit cell. This yields

U ¼
Z

d2x
Z

d2yjwRn
ðxÞj2VCðx − yÞjwRn

ðyÞj2; ðA2Þ

and a similar expression for the strength of nearest-
neighbor interactions,

V ¼
Z

d2x
Z

d2yjwRn
ðxÞj2VCðx − yÞjwRnþ1

ðyÞj2: ðA3Þ

Where we assume an electrostatic Coulomb potential,

VCðrÞ ¼
e2

4πϵ0ϵ

�
1

jrj −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4d2
p

�
; ðA4Þ

which takes into account the dielectric constant of the
environment ϵ and that electrons induce mirror charges in a

FIG. 8. Hubbard model parameters. U=t and V=U for a WSe2
system as a function of lattice constant aM, assuming d ¼ 2 nm,
ψ ¼ −94° and ϵ ¼ 7. Favorable regimes for the CSL are shaded
in red. Top: increasing aM drives the system deeper into the
Mott phase which eventually gives rise to a 120 degree magnet
once JH dominates (upper dashed line), while the system tends
to form an integer quantum Hall state for U=t ≤ 10 (lower
dashed line), which we determine from our numerical simu-
lations. Middle: nearest-neighbor interactions are strongly
suppressed for large aM. We find numerically that the CSL
remains robust when V=U ≤ 1=6 as indicated by the dashed
line. Bottom: resulting phase diagram as a function of aM,
indicating the regime for which both on-site and nearest-
neighbor interactions are favorable for the CSL as determined
from the t −U − V Hubbard model.
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metallic gate separated by a distance d, which screens the
Coulomb law down to dipolar interactions VDðr ≫ dÞ ≈
2e2d2=4πϵ0ϵjrj3 when their separation is much larger than
the distance to the gate. Longer-range interaction terms
beyond U and V can be neglected as they are strongly
suppressed for the parameters we consider. For concrete-
ness, we focus on a trilayer WSe2=MoSe2=WSe2 setup in
the following and assume a hole mass of m� ¼ 0.35 [64], a
potential strength v0 ≃ 10 meV, and ψ ¼ −94°, as sug-
gested by density functional theory calculations [61],
although our results do not depend strongly on the precise
values of v0 and ψ , and apply qualitatively also to the other
setups discussed in the main text. We consider a dielectric
constant of ϵ ¼ 7, which is relatively small and thus
realistic for the encapsulation with h-BN. The functional
dependence of U=t and V=U on the moiré lattice constant
aM is shown in Fig. 8, for d ¼ 2 nm. For U=t ≳ 25
(aM ≳ 7 nm) the Heisenberg coupling dominates and the
system forms a 120 degree state [65]. In the limit of small
lattice constants, or larger twist angles, the system even-
tually forms a bilayer IQH state. For intermediate lattice
constants our numerical analysis suggests the CSL is stable
over a sizable regime even in the t − U − V Hubbard
model. The robustness of the CSL to perturbations is
studied in detail in Sec. IV of the main text.
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Lett. 128, 157602 (2022).

[12] Y.-H. Zhang, D. N. Sheng, and A. Vishwanath, SUð4Þ chiral
spin liquid, exciton supersolid, and electric detection in
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h-BN moiré superlattice, Phys. Rev. B 99, 205150
(2019).

[64] A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V.
Zólyomi, N. D. Drummond, and V. Fal’ko, k · p theory
for two-dimensional transition metal dichalcogenide semi-
conductors, 2D Mater. 2, 022001 (2015).

[65] A. Wietek and A.M. Läuchli, Chiral spin liquid
and quantum criticality in extended s ¼ 1

2
Heisenberg

models on the triangular lattice, Phys. Rev. B 95,
035141 (2017).

CHIRAL PSEUDOSPIN LIQUIDS IN MOIRÉ … PHYS. REV. X 14, 021013 (2024)

021013-13

https://doi.org/10.1103/PhysRevLett.129.037401
https://doi.org/10.1103/PhysRevLett.129.037401
https://doi.org/10.1038/s41467-023-37644-0
https://doi.org/10.1038/s41467-023-37644-0
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.99.205150
https://doi.org/10.1103/PhysRevB.99.205150
https://doi.org/10.1088/2053-1583/2/2/022001
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.95.035141

