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The non-Hermitian skin effect dramatically reshapes the energy bands of non-Hermitian systems,
meaning that the usual Bloch band theory is fundamentally inadequate as their characterization. The non-
Bloch band theory, in which the concept of Brillouin zone is generalized, has been widely applied to
investigate non-Hermitian systems in one spatial dimension. However, its generalization to higher
dimensions has been challenging. Here, we develop a formulation of the non-Hermitian skin effect
and non-Bloch band theory in arbitrary spatial dimensions, which is based on a natural geometrical object
known as the amoeba. Our theory provides a general framework for studying non-Hermitian bands beyond
one dimension. Key quantities of non-Hermitian bands, including the energy spectrum, eigenstates profiles,
and the generalized Brillouin zone, can be efficiently obtained from this approach.
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I. INTRODUCTION

Non-Hermitian Hamiltonians have wide applications in
many branches of physics, ranging from classical wave
phenomena to open quantum systems [1,2]. Among various
non-Hermitian systems, those that have spatially periodic
structures are especially important and extensively studied.
Recently, their interplay with topological physics has
stimulated the fruitful investigations of non-Hermitian
topological states [2,3]. One of the key phenomena
uncovered in this direction is the non-Hermitian skin
effect (NHSE), which refers to the counterintuitive feature
that the nominal “bulk eigenstates” of a non-Hermitian
Hamiltonian are exponentially localized at the boundary
[4–11]. Unlike the topological boundary modes whose
number scales linearly with the boundary area, the number
of skin modes is proportional to the system volume. Among
other consequences, the NHSE implies that the energy
spectra of a non-Hermitian system can be drastically
different under the experimentally favored open boundary
condition (OBC) and the theoretically efficient periodic
boundary condition (PBC). In sharp contrast to the
Anderson localization, the NHSE-induced exponential
localization can occur in pristine non-Hermitian systems
without any disorder.

As a pronounced deviation from the usual Bloch-wave
picture, the NHSE implies that the standard Bloch band
theory is insufficient to characterize a generic non-
Hermitian band. For example, the OBC energy spectrum
cannot be calculated within this framework. To address this
serious issue, a non-Hermitian generalization of the stan-
dard band theory, known as the non-Bloch band theory, has
been introduced and applied to various non-Hermitian
systems [4,12–19]. A central concept in this theory is
the generalized Brillouin zone (GBZ), which is the proper
surrogate for the conventional Brillouin zone (BZ) in
Hermitian bands. The GBZ allows efficient computation
of the continuous OBC energy spectrum of a large system
without the need of diagonalizing a large Hamiltonian
matrix in real space. Meanwhile, the shape of the GBZ
directly tells the information of real-space eigenstates, e.g.,
the skin localization lengths. Moreover, the topological
invariants on the GBZ are able to predict the number of
topological boundary modes of non-Hermitian systems,
whereas the usual BZ-based topological numbers fail to
do so.
So far, the GBZ has been well defined only in one

dimension (1D). Finding a general definition and formula
for GBZ in two and higher dimensions is challenging,
because the well-known 1D approach is not amenable to a
straightforward generalization [4,12,20]. In certain special
cases, the two-dimensional (2D) GBZ has been approx-
imately defined and calculated [21,22]. However, a general
approach without resorting to uncontrolled approximations
has been lacking.
In this paper, we present a general formulation of non-

Hermitian band theory in arbitrary dimensions. Among
other results, it tells how the GBZ and related spectral
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properties are quantitatively determined beyond 1D. In 1D,
our formulation reduces to the well-known GBZ formu-
lation. The formulation is universal in the sense that our
main results are applicable to models in arbitrary spatial
dimensions, and with arbitrary degrees of freedom in a
unit cell.
Our theory is based on a natural geometrical object

called the amoeba by mathematicians [23–27]. Inspired by
the amoeba and related mathematical tools, we formulate a
theory which characterizes the NHSE quantitatively in
arbitrary spatial dimensions. In particular, it is possible
to directly calculate the energy spectrum and density of
states (DOS) in the thermodynamic (i.e., large-size) limit
without the troublesome finite-size errors. We show in a
theorem that the energy spectrum can be obtained from the
shape of the amoeba. We also demonstrate, despite the
geometry-dependent NHSE, the existence of a universal
spectrum (amoebic spectrum) to which the OBC spectrum
under any generic geometry converges. Furthermore, the
amoeba inspires a definition and the associated algorithm
of the GBZ in arbitrary spatial dimensions. Among other
applications, this amoeba-based GBZ provides a starting
point for calculating non-Bloch band topology beyond 1D.
The remainder of this article is arranged as follows. In

Sec. II, we go through the existing method of determining
the GBZ in 1D, and then try to find clues for its higher-
dimensional generalization. In Sec. III, we introduce the
basic mathematical properties of the amoeba and the
associated Ronkin function, which will be useful in
calculating the DOS and the GBZ. In Secs. IV–VI, we
introduce the amoeba formulation for non-Hermitian sys-
tems, and then make use of this formulation and the theory
of Toeplitz matrices to establish a universal way to
determine the DOS as well as the GBZ. Non-Bloch band
topology based on the proposed GBZ theory is studied in
Sec. VII. Finally, in Sec. VIII, several useful inequalities on
the OBC and PBC spectra are proved from the amoeba
approach.

II. MOTIVATION

A. Review of 1D non-Bloch band theory

We start with reviewing the concept of the GBZ in 1D
[4,12,28,29], searching for clues of its higher-dimensional
generalizations.
A general 1D tight-binding Hamiltonian with OBC can

be written as

H ¼
XL
i;j¼1

X
a;b

ji; aiðtj−iÞabhj; bj; ð1Þ

where i, j are the position indices, and a, b are the indices
for intracell degrees of freedom (band indices). Explicitly,
the matrix H looks like

H ¼

0
BBBBBBBBBBBBBBB@

t0 t1 t2 � � � 0

t−1 t0 t1 t2

t−2 t−1 t0 t1
. .
. ..

.

t−2 t−1 t0
. .
.

..

. . .
. . .

. . .
.

t2
t0 t1

0 � � � t−2 t−1 t0

1
CCCCCCCCCCCCCCCA

; ð2Þ

in which each tn stands for a square matrix ðtnÞab. As the
hopping matrix tj−i depends only on the spatial distance
j − i, we have translational symmetry in the bulk. The
Hermiticity condition tn ¼ t†−n is not required since non-
Hermitian Hamiltonians are our focus. A finite hopping
range nc is assumed so that the hopping matrix tn ¼ 0when
jnj > nc. Given this real-space Hamiltonian, the corre-
sponding Bloch Hamiltonian is the Fourier transform
of tn:

hðeikÞ ¼
X
n

tnðeikÞn: ð3Þ

Note that the Bloch Hamiltonian has been written as hðeikÞ
instead of the more frequently used hðkÞ. This simplifies
our notations when the real-valued wave vector k is
generalized to the complex plane, which amounts to
making the substitution eik → eμþik ¼ β (k and μ are
real-valued). Evidently, hðβÞ ¼ P

n tnβ
n is a matrix-valued

Laurent polynomial of β.
To solve the real-space Schrödinger equation

Hjψi ¼ Ejψi, we first note that the equations have iden-
tical form at all spatial coordinates j (except some points
near the boundary):

Eψ j ¼
X
n

tnψ jþn: ð4Þ

Thanks to the translational invariance in the bulk, the
Schrödinger equation is a linear recurrence equation with
constant coefficients. The standard approach is to take a
trial solution ψ j ¼ vβj (v is a vector whose dimension is
the number of bands), and the bulk equation gives

Evβj ¼
X
n

tnvβjþn; ð5Þ

⇔ ½E − hðβÞ�v ¼ 0: ð6Þ

If this trial solution can appear as a component of an
eigenstate wave function, it is necessary that

det½E − hðβÞ� ¼ 0; ð7Þ
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which is called the characteristic equation for this problem.
The most general form of a wave function satisfying the
bulk equations is then a linear superposition of functions
vnðβnÞj, where βn is a solution of det½E − hðβÞ� ¼ 0, and vn
is the corresponding eigenvector. Thus, an eigenstate of
energy E is expressed as

jψi ¼
XL
j¼1

X
a

XMþN

n¼1

cnðvnÞaðβnÞjjj; ai; ð8Þ

where the coefficients cn are to be determined by the
boundary conditions. We expand the characteristic poly-
nomial as det½E − hðβÞ� ¼ a−MðEÞβ−M þ � � � þ aNðEÞβN
with a−MðEÞ, aNðEÞ nonzero, and sort its roots as
jβ1ðEÞj ≤ jβ2ðEÞj ≤ … ≤ jβMþNðEÞj. It has been found
that, in the thermodynamic (large-size) limit, the OBC
boundary condition results in the following simple equation
known as the GBZ equation [4,12,29]:

jβMðEÞj ¼ jβMþ1ðEÞj: ð9Þ

It turns out that all the βM; βMþ1 solutions form a closed
curve called the GBZ on the complex plane of β, which
contains key information about the eigenstate profiles,
including the conventional wave vector k and the spatial
decay rate μ of a skin mode. Once the GBZ is obtained, one
can insert β∈GBZ into Eq. (7) to obtain the OBC energy
spectrum. Furthermore, the topological boundary modes
are dictated by the topological invariants defined in the
GBZ rather than in the BZ. This phenomenon is known as
non-Bloch bulk-boundary correspondence [4,12]. Thus, in
many senses, GBZ plays a similar role as BZ does in
Hermitian systems. Band theory based on the GBZ concept
is known as the non-Bloch band theory.
The condition jβMðEÞj ¼ jβMþ1ðEÞj lies at the heart of

the 1D non-Bloch band theory. It can be intuitively justified
with the simplest example, in which there are only one band
and two β’s, β1 and β2, with jβ1j ≤ jβ2j. Then, Eq. (8) reads
jψi ¼ P

L
j¼1 ψ jjji with ψ j ¼ c1β

j
1 þ c2β

j
2. The open boun-

dary condition amounts to adding fictitious sites j ¼ 0 and
j ¼ Lþ 1 at the left and right ends, with ψ0 ¼ 0 and
ψLþ1 ¼ 0, respectively. At the left end, we find
ψ0 ¼ 0 ⇒ c1 ¼ −c2. Then, at the right end, it is possible
for the two terms to cancel each other only if jβ1j ¼ jβ2j;
otherwise, the βLþ1

2 term would be much larger than the
βLþ1
1 term. In the general case, a rigorous treatment is to

write down the system of linear equations for the boundary
conditions, and it turns out that the coefficient matrix is an
ðM þ NÞ × ðM þ NÞ square matrix. Letting its determinant
vanish results in jβMðEÞj ¼ jβMþ1ðEÞj [12,29].
Unfortunately, we will see that in higher dimensions, the

above treatment relying on the small rank of the coefficient
matrix will become quite intractable. This has been a major
obstacle in the attempt to study GBZ in higher dimensions.

B. The way to the amoeba

To demonstrate the applications of non-Bloch band
theory, we consider the non-Hermitian Su-Schrieffer-
Heeger (SSH) model with the Bloch Hamiltonian [4,5]:

hðeikÞ ¼ ½t1 þ ðt2 þ t3Þ cos k�σx
þ
�
ðt2 − t3Þ sin kþ i

γ

2

�
σy; ð10Þ

or, in terms of β,

hðβÞ ¼
�
t1 þ

t2 þ t3
2

�
β þ 1

β

��
σx

þ
�
t2 − t3
2i

�
β −

1

β

�
þ i

γ

2

�
σy; ð11Þ

where σx;y;z are the Pauli matrices. It is known that the
eigenstates exhibit NHSE under OBC, and consequently,
the OBC and PBC energy spectra are drastically different
[4,5]. As an illustration, the OBC and PBC spectra are
plotted in Fig. 1(a), for parameter values t1 ¼ t2 ¼ 1,
t3 ¼ 0.7, and γ ¼ 4=3. This choice of parameters is in
the topologically nontrivial regime, and therefore topologi-
cal edge modes with E ¼ 0 are found in the OBC energy
spectrum. The characteristic equation Eq. (7) is a quartic
equation of β, and its four solutions are shown in Figs. 1(b)
and 1(c) for E ¼ E1 ¼ −1þ 0.3i and E ¼ E2 ¼ −1,
respectively. Instead of β itself, we show μ ¼ log jβj,
namely, the imaginary part of the wave vector. As stated
in Eq. (9), when and only when jβ2ðEÞj ¼ jβ3ðEÞj, i.e.,
μ2ðEÞ ¼ μ3ðEÞ, will E belong to the OBC energy spectrum.
This is the case for E ¼ E2 [Fig. 1(c)]. The corresponding
β2ðE2Þ and β3ðE2Þ belong to the GBZ.
Remarkably, the GBZ equation, Eq. (9), enables us to

find the OBC energy spectra and other physical quantities
without the need of diagonalizing a large real-space
Hamiltonian whose size grows with the system size. The
thermodynamic-limit quantities are obtained directly from
the GBZ equation. A natural question arises: What is the
higher-dimensional counterpart of Eq. (9)?
To be concrete, we consider a single-band model shown

in Fig. 2(a). With the notation β ¼ ðβx; βyÞ, the correspond-
ing Bloch Hamiltonian is

hðβÞ ¼ tðβx þ β−1x þ βy þ β−1y Þ
þ t0ðβx þ β−1x Þðβy þ β−1y Þ
þ γðβx − β−1x þ βy − β−1y Þ; ð12Þ

in which the γ terms generate nonreciprocal hoppings [see
Fig. 2(a)]. For concreteness, we fix parameters t ¼ 1,
t0 ¼ 0.5, and γ ¼ 0.2. The energy spectra from brute-force
numerical diagonalization are shown in Fig. 1(d).
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We hope to generalize the non-Bloch band theory to 2D,
such that the energy spectrum can be obtained from the
GBZ instead of the real space. The characteristic equation
takes the same form as in 1D (and the reasoning is also the
same):

det½E − hðβÞ� ¼ 0: ð13Þ

For our single-band model, the determinant can be
dropped, and therefore the characteristic equation is simply
E − hðβÞ ¼ 0. Notably, the zero locus of det½E − hðβÞ�,
namely, the β-solution space of det½E − hðβÞ� ¼ 0, is (real)
two dimensional. In fact, the solution space can be locally
parametrized by the complex-valued βx or βy, one of which
is determined by the other via the characteristic equation. In
contrast, the zero locus of E − hðβÞ for a 1D system is zero
dimensional, that is, several isolated β points.
The plausible next step, following the approach in the 1D

non-Bloch band theory, is to select the legitimate β’s by
adding the boundary conditions. For 1D systems with
OBC, the number of constraint equations imposed by the
boundary condition does not grow with the system size L,
which greatly eases the derivation of the GBZ equation,
Eq. (9) [4,12]. For 2D OBC systems (e.g., with square or
disk geometry), however, the number of constraint equa-
tions is proportional to the linear size L. It is therefore
challenging to exploit all these boundary-condition equa-
tions. Consequently, it is difficult to obtain a 2D counterpart
of Eq. (9) from the approach similar to 1D.
Although a straightforward generalization to 2D looks

infeasible, we can still find some clues from the 1D GBZ
construction. Equation (9) and Figs. 1(b) and 1(c) suggest
that the moduli of the solutions to the characteristic
equation contain much useful information about the energy
spectrum. Correspondingly, we plot the solutions to the 2D
characteristic equation, followed by mapping ðμx; μyÞ ¼
ðlog jβxj; log jβyjÞ, in Figs. 1(e) and 1(f). This geometrical
object is known as the amoeba in mathematics literature
(see Sec. III for an introduction) [23–27]. We notice that a
hole exists in the amoeba in Fig. 1(e), for which the energy
E3 does not belong to the OBC spectrum. In contrast, there
is no hole in the amoeba in Fig. 1(f), with energy E4

belonging to the OBC spectrum. Viewed from this amoeba
perspective, 1D non-Hermitian energy spectra also exhibit
similar behaviors. In 1D, the amoeba consists of discrete
points, and the hole is simply the open interval between two
adjacent points. For example, the open interval ðμ2; μ3Þ in
Fig. 1(b) can be viewed as a hole, which closes in Fig. 1(c)
with μ2 ¼ μ3.

(a) (b)

FIG. 2. Illustration of the real-space hopping of the 2D models
used in this article. (a) Single-band model Eq. (12). (b) The non-
Hermitian Chern-band model Eq. (45). All the parameters t, γ, v,
m are real-valued.

(a) (d)

(b) (e)

(c) (f)

FIG. 1. Energy spectra and amoebae. (a) Energy spectrum of
the 1D non-Hermitian SSHmodel Eq. (11) for a chain with length
L ¼ 300, under OBC (blue) and PBC (gray), respectively.
Parameter values are t1 ¼ t2 ¼ 1, t3 ¼ 0.7, and γ ¼ 4=3.
(b),(c) Illustrations of μ ¼ log jβj, where β satisfies the 1D
characteristic equation det½E − hðβÞ� ¼ 0. E is taken to be E1 ¼
−1þ 0.3i in (b), and E2 ¼ −1 in (c). For E2 belonging to the
OBC spectrum, we have μ2ðE2Þ ¼ μ3ðE2Þ. (d) Energy spectrum
of the 2Dmodel Eq. (12). Main figure: disk geometry (OBC) with
diameter L ¼ 140. Inset: torus geometry (PBC). Parameter values
are t ¼ 1, t0 ¼ 0.5, and γ ¼ 0.2. (e),(f) Illustrations of the 2D
amoebae whose points are ðμx; μyÞ ¼ ðlog jβxj; log jβyjÞ, where β
satisfies the 2D characteristic equation det½E − hðβÞ� ¼ 0 of the
model Eq. (12). E3 ¼ −2.5 in (e), and E4 ¼ −1 in (f). Notably,
there is a hole in the amoeba for E3 outside the OBC spectrum,
and no hole for E4 in the OBC spectrum.
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From the above examples, we observe that the absence
(presence) of a hole in the amoeba of the characteristic
polynomial could be an indicator of the energy E being (not
being) in the OBC energy spectrum. This is a key
observation of the present work. To obtain more quanti-
tative results from this observation, it is helpful to know
some mathematical properties about the amoeba.

III. MATHEMATICAL PROPERTIES OF THE
AMOEBA AND RONKIN FUNCTION

In this section, we introduce the basic concept of amoeba
and a closely related analytic tool, the Ronkin function. As
a quite recent concept in mathematics, the amoeba was
introduced by Gelfand et al. in 1994 [23]. Albeit elemen-
tary, the notion of amoeba has deep connections with
various concepts in algebraic geometry, which has stimu-
lated extensive studies in mathematics [24–27].
Let f be a Laurent polynomial of βj, j ¼ 1; 2;…; d,

where d will be identified as the spatial dimension in our
study. The amoeba of f is defined as the log-moduli of the
zero locus of f,

Af ¼ flog jβj∶fðβÞ ¼ 0g ⊂ Rd; ð14Þ

in which we use the notation log jβj ≔ ðlog jβ1j;…;
log jβdjÞ to simplify our expressions. Similar notations
such as eμ ≔ ðeμ1 ;…; eμdÞ are used hereafter. In our case,
the Laurent polynomial in use is det½E − hðβÞ�. We can see
that the geometric objects in Figs. 1(b) and 1(c) and 1(e)
and 1(f) are 1D and 2D amoebae, respectively.
The name amoeba was motivated by its appearance in

2D: It has slim “tentacles” extending to infinity, and
sometimes several “vacuoles” (holes) inside its body.
Importantly, a particular hole plays an important role in
our formulation. It is known that the amoeba in any spatial
dimensions is a closed set, and each hole is a convex
set [25].
A useful analytic tool in the study of amoeba is the

Ronkin function, which is defined as [24,30,31]

RfðμÞ ¼
Z
Td

�
dθ
2π

�
d
log jfðeμþiθÞj; ð15Þ

where the domain of integration is the d-dimensional torus
Td ¼ ½0; 2π�d, and the expression is simplified by the
notations fðeμþiθÞ≔fðeμ1þiθ1 ;…;eμdþiθdÞ, and ðdθ=2πÞd ≔
ðdθ1=2πÞ…ðdθd=2πÞ.
It is beneficial to study the gradient of the Ronkin

function [25,30]. To this end, we can express the integrand
in Rf as log jfj ¼ Re log f. The real part can be taken at the
end of the calculation. It turns out that the integral is real-
valued before taking the real part, and therefore the “Re”
symbol can be discarded. The derivation proceeds as

νj ¼
∂RfðμÞ
∂μj

¼ Re
Z
Td

�
dθ
2π

�
d
∂μj log fðeμþiθÞ

¼ Re
Z
Td

�
dθ
2π

�
d ∂μjfðeμþiθÞ

fðeμþiθÞ

¼ Re
Z
Td

�
dθ
2π

�
d −i∂θjfðeμþiθÞ

fðeμþiθÞ : ð16Þ

In the last line, we use ∂μj ¼ −i∂θj acting on f. We observe
that

wj ¼
1

2πi

Z
2π

0

dθj
∂θjfðeμþiθÞ
fðeμþiθÞ ð17Þ

is the winding number of the phase of f along a circle
parametrized by θj, and therefore it is always real-valued.
Thus, the gradient νj is the average of the winding number
wj on the (d − 1)-dimensional torus parametrized by
ðθ1;…; θj−1; θjþ1;…; θdÞ:

νj ¼
Z
Td−1

dθ1…dθj−1dθjþ1…dθd
ð2πÞd−1 wj: ð18Þ

For example, in 2D, one has ν1 ¼
R
2π
0 ðdθ2=2πÞw1 and

ν2 ¼
R
2π
0 ðdθ1=2πÞw2.

The next fact we see is that the Ronkin function is
exactly linear on each connected component of the comple-
ment of the amoeba. We call each of these components
(either bounded or unbounded) a hole of the amoeba. In
fact, when μ is not in the amoeba, fðeμþiθÞ ≠ 0 is satisfied
in the entire Td parametrized by ðθ1;…; θdÞ. It follows that
wj is a constant integer as fθ1;…; θj−1; θjþ1;…; θdg vary,
and therefore the average νj is the same integer. Thus, we
can assign to each amoeba hole an integer tuple
ν ¼ ðν1;…; νdÞ dubbed the order of the hole. The orders
of two different holes cannot be the same [25]. Crucially,
there exists at most one hole with order ν ¼ ð0;…; 0Þ,
which we call the central hole. Because the order is zero,
the Ronkin function is a constant in this hole. Moreover, the
Ronkin function is convex in the entire μ space; i.e.,
Rf(λμ1 þ ð1 − λÞμ2) ≤ λRfðμ1Þ þ ð1 − λÞRfðμ2Þ is satis-
fied for any two points μ1;2 and 0 < λ < 1 [24,30]. An easy
corollary of the convexity is that a Ronkin function
converges everywhere: If it were −∞ at one point, con-
vexity would imply that it is −∞ everywhere.
In 1D, the Ronkin function is closely related to Jensen’s

formula in complex analysis [32], which reads

1

2π

Z
2π

0

dθ log jgðReiθÞj ¼ log jgð0Þj þ
Xl

k¼1

log

���� Rzk
����; ð19Þ
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where g is a holomorphic function with gð0Þ ≠ 0,
and zk (k ¼ 1;…; l) are the zeros of g enclosed by the
circle jβj ¼ R. Jensen’s formula can be readily obtained
from Eq. (16) with d ¼ 1, in which case the gradient
ν ¼ w (the index j ¼ 1 is redundant). In fact, the left-hand
side of Eq. (19) is exactly the Ronkin function Rgðlog jRjÞ.
To calculate it, we order the zeros of g as jz1j ≤ jz2j ≤
jz3j ≤ � � �. According to Eqs. (16) and (17), the gradient
ν ¼ ½∂Rg=∂ðlog jRjÞ� equals the winding number of g along
the circle jβj ¼ R, which counts the number of enclosed
zeros. Therefore, we have ν ¼ 0 for log jRj < log jz1j, and
ν ¼ k for log jzkj < log jRj < log jzkþ1j. It follows that,
when the circle jβj ¼ R encloses l zeros,

Rgðlog jRjÞ ¼ log jgð0Þj þ log
jz2j
jz1j

þ 2 log
jz3j
jz2j

þ 3 log
jz4j
jz3j

þ � � � þ l log
jRj
jzlj

¼ log jgð0Þj þ
Xl

k¼1

log

���� Rzk
����; ð20Þ

which is exactly Jensen’s formula Eq. (19).
We now apply the explicit formula of the Ronkin

function to det½E−hðβÞ�¼a−MðEÞβ−Mþ���þaNðEÞβN ,
whose roots are jβ1ðEÞj ≤ jβ2ðEÞj ≤ … ≤ jβMþNðEÞj. We
rewrite it as det½E − hðβÞ� ¼ fðβÞgðβÞ with fðβÞ ¼
a−MðEÞβ−M, so that gðβÞ has no pole in the complex plane
and gð0Þ ¼ 1. Applying Eq. (20) to g, we have

RdetðE−hÞðμÞ ¼ RfðμÞ þ RgðμÞ

¼ log ja−Mj −Mμþ
Xl

k¼1

ðμ − log jβkjÞ ð21Þ

for log jβlj ≤ μ ≤ log jβlþ1j. Thus, RdetðE−hÞ is a piecewise
linear function of μ in 1D. To relate to the concept of amoeba,
we note that each log jβkj is a component of the amoeba, and
each interval ðjβkj; jβkþ1jÞ is an amoeba hole. Particularly, the
open interval ðjβMj; jβMþ1jÞ is exactly the central hole on
which the Ronkin function is flat, because taking a derivative
on Eq. (21) we find ∂RdetðE−hÞ=∂μ ¼ −M þM ¼ 0.
Therefore, Eq. (9) means that an energy E belongs to the
OBCbulk spectrumwhen the central hole shrinks to zero size.
Thus, the Ronkin function provides crucial information about
the energy spectra. Figures 3(a) and 3(b) are two examples of
the 1D Ronkin function. The Ronkin function is flat in the
central hole of Fig. 3(a) corresponding toE outside the energy
spectrum, and the hole shrinks to a point in Fig. 3(b)
corresponding to E in the energy spectrum.
In 2D and higher dimensions, it is challenging to obtain a

closed form for the Ronkin function. Nevertheless, regard-
less of the spatial dimensions, the Ronkin function is
always globally convex, and is linear in the amoeba holes,

i.e., connected components of the complement of the
amoeba. If there is a central hole, the Ronkin function
takes minimum in the entire hole; namely, the function has
a flat bottom in this hole [Fig. 3(c)], otherwise the Ronkin
minimum is reached at a single point in the amoeba
[Fig. 3(d)].
In view of the aforementioned relation between the GBZ

and Ronkin function in 1D, it is natural to ask whether there
is a deep connection between the non-Hermitian energy
spectra and the Ronkin function in higher dimensions. In
fact, we have already seen some numerical clues for such a
connection. Our observation about 2D non-Hermitian
systems at the end of Sec. II can be rephrased in terms
of the Ronkin function: If and only if the minimum of the
Ronkin function RdetðE−hÞ is reached at a single point
μminðEÞ, instead of in a hole with nonzero size, will E
be in the OBC bulk spectrum.
In 1D, the single point where the Ronkin function takes

the minimum is μminðEÞ ¼ log jβMðEÞj ¼ log jβMþ1ðEÞj.
Note that jβMðEÞj ¼ jβMþ1ðEÞj is the decay factor of an
OBC eigenstate. Thus, the location of the minimum of the
Ronkin function precisely determines the decay factor of an
OBC eigenstate. In other words, the Ronkin function tells
the shape of the GBZ.We propose that this reformulation of
GBZ in terms of the Ronkin function is generalizable to
non-Hermitian systems in higher dimensions, which is
justified in the following sections.

(a)

(b)

(c)

(d)

FIG. 3. The Ronkin function in (a),(b) 1D and (c),(d) 2D, taken
at energies (a) E1, (b) E2, (c) E3, and (d) E4 stated in Fig. 1. The
Bloch Hamiltonian is Eq. (11) for (a),(b); it is Eq. (12) for (c),(d).
The parameter values are the same as stated in Fig. 1. In both 1D
and 2D, the Ronkin function is strictly linear on each component
(hole) of the complement of the amoeba, where the gradient
equals the integer index. The Ronkin function is always convex.
Consequently, when the central hole exists, the minimum is
reached on the central hole; otherwise, the minimum is reached at
a single point in the amoeba.
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IV. ENERGY SPECTRA AND DENSITY OF STATES

We now introduce the amoeba formulation of non-
Hermitian energy band theory in d spatial dimensions.
One of our main objectives is to calculate the DOS
associated with the energy spectrum, which is defined as
the number of states per area on the complex energy plane,
divided by the volume of the system, in the thermodynamic
limit. Because the DOS has anOðLdÞ volume denominator,
only the bulk states are relevant in the thermodynamic limit.
All contributions from edge states, bound states, etc.,
vanish in the thermodynamic limit. For example, the
number of possible surface states grows with the size as
OðLd−1Þ, which contributes Oð1=LÞ that vanishes in the
thermodynamic limit. Thus, we focus on the bulk spectrum.

A. Statement of the proposal

To describe the DOS of complex energy, it is convenient
to use the language of electrostatics. Let us assign electric
charge −1=N to each energy eigenvalue ϵn, where N ∼ Ld

is the total number of unit cells (in this convention, the
total charge sums up to the number of energy bands,
which is independent of the size N). In terms of Dirac’s δ
function, the DOS of complex energy can be written as
ρðEÞ ¼ limN→∞

P
nð1=NÞδðE − ϵnÞ, which is just the

absolute value of electric charge density.
Given the electric charge, the corresponding Coulomb

potential ΦðEÞ is given by

ΦðEÞ ¼ 1

N

X
ϵn

log jE − ϵnj⟶
N→∞

Z
d2E0 log jE − E0jρðE0Þ:

ð22Þ

Conversely, the DOS, or the absolute value of the charge
density in the electrostatics language, can be readily
obtained from the Coulomb potential by taking the
Laplacian on the complex energy plane:

ρðEÞ ¼ 1

2π
ΔΦðEÞ; ð23Þ

whereΔ ¼ ½∂2=∂ðReEÞ2� þ ½∂2=∂ðImEÞ2�, and theN → ∞
limit is taken for ΦðEÞ.
One of our main proposals is that the Coulomb potential

ΦðEÞ, in the N → ∞ limit, can be obtained from the
Ronkin function,

ΦðEÞ ¼ ϕðEÞ; ð24Þ

where ϕðEÞ is the minimum of the Ronkin function of
detðE − hÞ by varying μ:

ϕðEÞ ¼ min
μ

RdetðE−hÞðμÞ; ð25Þ

or ϕðEÞ ¼ RdetðE−hÞðμminÞ, where μmin minimizes the func-
tion. Therefore, the DOS can be directly obtained from the
Ronkin function,

ρðEÞ ¼ 1

2π
ΔϕðEÞ: ð26Þ

In the special cases that the spectrum is a 1D object
consisting of lines or curves in the complex energy plane, it
is more preferable to define the DOS as states per length
rather than states per area. In fact, the states per area will
diverge in these cases, while states per length is in general
finite. This is the case for 1D non-Hermitian systems, and
higher-dimensional systems with real spectrum. In a small
neighborhood of a segment of the 1D spectrum, suppose
that n is a normal vector to the segment. From the
electrostatic analogy and Eq. (26), it is easy to see that
the DOS per length denoted by ρ1D is given by

ρ1D ¼ 1

2π

����
�
∂ϕ

∂n

�
þ
−
�
∂ϕ

∂n

�
−

����; ð27Þ

where the two derivatives are taken on opposite sides of the
curve segment.

B. Numerical evidence

Before diving into a thorough analytic approach, we
provide numerical evidence for the Ronkin-function-based
formula, Eq. (26). We take the model Eq. (12) [Fig. 2(a)] as
an example. In Fig. 4, we numerically compare the DOS
derived from the Ronkin function, via Eq. (26), and that
from diagonalizing the OBC Hamiltonian. The Laplacian is
implemented by discretizing the complex energy plane into
grid points. The DOS obtained from the Ronkin function
agrees well with that from real-space Hamiltonians, though
there are some differences that can be naturally attributed to
the finite-size nature of the real-space calculations. First,
the spectra from real-space diagonalization in Figs. 4(b)
and 4(c) are slightly narrower in the ImE direction than the
one derived from the Ronkin function in Fig. 4(a). Second,
the eigenvalues from real-space diagonalization seem more
likely to concentrate on the real axis. These differences can
be explained by the non-Bloch PT symmetry, which
features a unique size dependence of non-Hermitian spectra
in two and higher dimensions [33]. In fact, our real-space
Hamiltonian [see Eq. (12) and Fig. 2(a)] has real-valued
hoppings and therefore commutes with the complex con-
jugation operator: ½H;K� ¼ 0. Combined with the NHSE,
it means that the model has non-Bloch PT symmetry,
which implies real energy spectra when the size is small.
As the size L grows to infinity, the proportion of real
eigenenergies diminishes to zero [33]. Since the length L
adopted in Figs. 4(b) and 4(c) is finite, the PT symmetry
breaking is incomplete, leaving a nonzero proportion of
real eigenenergies.
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We emphasize that the Ronkin function tells the unique
universal spectrum and universal DOS of the OBC system,
the precise meaning of which we explain below. It is evident
that the amoeba and the Ronkin function do not use
information about the shape (e.g., square or disk) or
boundary details (e.g., clean or locally perturbed) of the
OBC system. The Ronkin function yields the same DOS
regardless of geometrical details. Therefore, this approach
intrinsically assumes a detail-independent (therefore, uni-
versal) spectrum with a universal DOS, which is supported
by our numerical calculation. Indeed, our numerical results
indicate that the DOS of an OBC system with an arbitrary
shape converges in the large-size limit to the same universal
DOS, at least when certain random local perturbations are
added to the boundary [e.g., in Fig. 4(b)]. Note that the DOS
thus obtained is independent of the specific forms of
boundary randomness [34]. In generic cases, even the
boundary randomness is not necessary to ensure the con-
vergence to the universal DOS. For example, the DOS of
disk geometry without boundary random potential already
resembles the universal DOS [Fig. 4(c)]. In contrast, for a
polygon geometry (e.g., a square), boundary randomness
significantly helps the DOS to converge to the universal
DOS. Without the boundary randomness, the polygon
geometry can exhibit the geometry-dependent non-
Hermitian skin effect, by which different polygons may
have different DOS [35]. Our intuitive understanding of this
phenomenon is as follows. The boundary of a polygon
consists of straight line segments, which are perfectly
reflective in the sense that the wave vector (momentum)
parallel to the line segment is conserved during wave
reflection. Thus, the boundary fails to fully mix waves with
different wave vectors, and therefore the Hamiltonian can be
viewed as fine-tuned rather than generic. As such, the
spectrum exhibits the fingerprint of specific geometry rather
than the universal spectral properties of the Hamiltonian.

Boundary or bulk randomness breaks the wave vector
conservation and couples waveswith different wave vectors,
which generates a more generic energy spectrum. An
analogous phenomenon is the critical non-Hermitian skin
effect in 1D [36,37]. In the zero-coupling limit of two
coupled 1D chains, the straightforward application of the
GBZ equation, Eq. (9), does not yield the correct OBC
energy spectrum [38]. The zero-coupling limit represents a
fine-tuned point, and a small interchain coupling brings the
spectrum to that predicted by theGBZ theory [36,37]. In 2D,
our numerical results suggest that theHamiltonian should be
viewed as fine-tuned for polygon shapes, and a small
randomness restores the universal spectrum characterized
by the universal DOS.
To summarize, there exists a geometry-independent uni-

versal spectrum that can be calculated from the amoeba and
Ronkin function. By nature, it can be called the “amoebic
spectrum.” The DOS of an OBC system with a generic shape
always approaches the universal DOS in the large-size limit.
When theDOS of anOBC systemwith a certain (nongeneric)
shape appears to deviate from the universal DOS, this
deviation can be eliminated by adding a small random local
perturbation. From an experimental point of view, the
universal spectrum is particularly significant because disor-
ders are often unavoidable in realistic systems.

C. Derivation

We establish the proposal Eq. (26) in a few steps. We
begin with Szegő’s limit theorem for the determinant of a
large Toeplitz matrix. Before doing so, it is appropriate here
to introduce the terminology of Toeplitz matrices [39,40].
A matrix A determined by Aij ¼ aj−i is called a Toeplitz
matrix; i.e., the matrix element Aij depends on the differ-
ence j − i only. It is associated with a symbol, which is a
complex-valued function σðeiθÞ ¼ P

n ane
inθ, θ∈ ½0; 2π�.

(a) (b) (c)

FIG. 4. DOS from the Ronkin function and diagonalization of the real-space Hamiltonian. The Hamiltonian used here is Eq. (12)
[Fig. 2(a)], with parameter values t ¼ 1, t0 ¼ 0.5, and γ ¼ 0.2. (a) DOS from the Ronkin function via Eq. (26). (b) DOS from
diagonalizing the real-space Hamiltonian on a square with side length L ¼ 130. An on-site random potential distributed uniformly in
½−0.5; 0.5� is added at each boundary site. (c) DOS from diagonalizing the real-space Hamiltonian on a disk with diameter L ¼ 140
(without random potential at the boundary). The insets show the Coulomb potential, ϕðEÞ in (a), and ΦðEÞ in (b) and (c). To facilitate
comparison with (a), the DOS in (b) and (c) is also obtained from the Coulomb potential via Eq. (23), in which ΦðEÞ is generated by
diagonalizing the real-space Hamiltonian.
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AToeplitz matrix is often expressed in terms of its symbol
as A ¼ T ½σ�. By definition, the elements of a Toeplitz
matrix are the Fourier components of the symbol:

T ½σ�j1j2 ¼
Z

2π

0

dθ
2π

σðeiθÞeiðj1−j2Þθ: ð28Þ

The language of Toeplitz matrices is very useful in
addressing tight-binding Hamiltonians. For example, a
single-band real-space OBC Hamiltonian H in 1D is a
Toeplitz matrix, and the Bloch Hamiltonian is its symbol;
conversely, we say H is generated by the Bloch
Hamiltonian. In addition, one can generalize the series
fang from numbers to square matrices. Such a matrix A is
called a block Toeplitz matrix, which corresponds to a
multiband Hamiltonian. One can also generalize the indices
i; j;… from integers to integer tuples with several compo-
nents; for example, in 2D we take i ¼ ðix; iyÞ. The
corresponding matrix A is called a multilevel Toeplitz
matrix, which can be viewed as the real-space Hamiltonian
of a higher-dimensional lattice model. For simplicity, we
call them all Toeplitz matrices hereafter.
Szegő’s limit theorem was originally established for 1D

Hermitian Toeplitz matrices [41], but thereafter generalized
by Widom et al. to multiband [42,43] and higher-dimen-
sional [44,45] models. To state the theorem, let us consider
a subspace Ω of the d-dimensional Euclidean space. Let

σðeiθÞ ¼
X
n

tnein·θ ¼
X

n1;…;nd

tn1;…;nde
iðn1θ1þ���þndθdÞ

be a symbol, which generates the Toeplitz matrix T ½σ� inΩ.
For example, if we take Ω to be the d-dimensional sphere
with diameter L (radius R ¼ L=2), then each block (or
element, in the single-band cases) of T ½σ� is T ½σ�ij ¼ tj−i,
with i ¼ ði1;…; idÞ and j ¼ ðj1;…; jdÞ satisfying ði1Þ2 þ
� � � þ ðidÞ2 ≤ R2 and ðj1Þ2 þ � � � þ ðjdÞ2 ≤ R2. Szegő’s
limit theorem reveals the asymptotic behavior of the
Toeplitz determinant in the L → ∞ limit:

log det T ½σ� ¼ N
Z
Td

�
dθ
2π

�
d
log det σðeiθÞ þOðLd−1Þ;

ð29Þ

where N is the number of lattice points in Ω, which is
proportional to Ld (L stands for the linear size), and Td ¼
½0; 2π�d is the d-dimensional torus. There are two con-
ditions for Eq. (29) to hold: (i) σðeiθÞ must be invertible for
any θ on the torus Td, i.e., det σðeiθÞ ≠ 0. (ii) The winding
number of the phase of det σðeiθÞ along any circle in Td

must be zero, so that a matrix logarithm for σðeiθÞ is well
defined. A heuristic proof of Szegő’s limit theorem is
available in Appendix A. Notably, when σðeiθÞ and T ½σ�
are Hermitian, this theorem is consistent with the fact that

the OBC bulk spectrum is asymptotically the same as the
PBC spectrum. In fact, the left-hand side of Eq. (29) yields
the logarithm of the product of all OBC eigenvalues of
T ½σ�, while the right-hand side yields the PBC counterpart,
and these two quantities should be almost equal. Szegő’s
limit theorem tells us that a similar relation remains valid
under the aforementioned conditions even though T ½σ� is
non-Hermitian.
Now we apply this theorem to our non-Hermitian prob-

lem. Specifically, we consider σðeikÞ ¼ E − hðeikÞ, then the
generated Toeplitz matrix is T ½E − hðeikÞ� ¼ E −H, in
which H ¼ T ½hðeikÞ� is the real-space Hamiltonian corre-
sponding to the Bloch Hamiltonian hðeikÞ. The motivation
to consider E −H is the simple identity

ΦðEÞ ¼ 1

N
log j detðE −HÞj; ð30Þ

in whichΦðEÞ is the Coulomb potential defined in Eq. (22).
We observe that this expression bears resemblance to the
left-hand side of Eq. (29),which hints useful formulas for the
Coulomb potential. Before exploiting Eq. (29), however, we
notice that its application relies on the aforementioned two
conditions. For example, it would be troublesome if
det½E − hðeikÞ� ¼ 0, and therefore the symbol is not invert-
ible at certain k points. To use Eq. (29), we perform a
similarity transformation D−1HD to the Hamiltonian, with
Dx;y ¼ δx;yeμ·x. It adds an eμ·ðy−xÞ factor toHx;y, the hopping
from y to x, i.e., ðD−1HDÞx;y ¼ Hx;yeμ·ðy−xÞ. As such, the
corresponding Bloch Hamiltonian hðeikÞ transforms into
hðeμþikÞ. In the language of Toeplitz matrices, we have
D−1HD ¼ T ½hðeμþikÞ�. In fact, given hðeikÞ ¼ P

n tne
ik·n,

we have hðeμþikÞ ¼ P
n tne

μ·neik·n, fromwhich we can read
that T ½hðeμþikÞ�x;y ¼ ty−xeμ·ðy−xÞ ¼ Hx;yeμ·ðy−xÞ. The trans-
formation of E −H can be written as

D−1T ½E − hðeikÞ�D ¼ T ½E − hðeμþikÞ�; ð31Þ

or D−1T
�
E − hðeikÞ�D ¼ T ½E − hðβÞ� with β ¼ eμþik. It

follows from Eq. (31) that the matrix T ½E − hðβÞ� has the
same spectrum as T ½E − hðeikÞ� for an arbitrary value of μ.
Therefore, we have detðE −HÞ ¼ det T ½E − hðβÞ� regard-
less of the value of μ. We can freely choose μ such that
σðβÞ ¼ E − hðβÞ satisfies the conditions required in apply-
ing Eq. (29), even if the original symbol E − hðeikÞ (with
μ ¼ 0) does not. In fact, when μ locates in the central hole of
the amoeba of detðE − hÞ, we have det½E − hðβÞ� ≠ 0, and
thewinding number of det½E − hðβÞ� along any kj circle is 0
(recall the mathematical preparation in Sec. III). Thus, we
can apply Eq. (29) to σðβÞ ¼ E − hðβÞ and take the real part,
resulting in
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1

N
log j det T ½E − hðβÞ�j

¼
Z
Td

�
dk
2π

�
d
log j det½E − hðβÞ�j þOðL−1Þ; ð32Þ

where β ¼ eμþik with μ fixed in the central hole of the
amoeba of E − hðβÞ. As has been explained, the left-hand
side of Eq. (32) is ð1=NÞ log j det ðE −HÞj. Notably, the
integral on the right-hand side is exactly the Ronkin function
of detðE − hÞ. Thus, Eq. (32) can be written as

1

N
log j det ðE −HÞj ¼ RdetðE−hÞðμÞ þOðL−1Þ; ð33Þ

in which μ locates in the central hole of the amoeba. Since
the Ronkin function takes its minimum in the central hole,
Eq. (33) reduces to Eq. (24) in the N → ∞ limit.
So far, this proof of Eq. (24) is incomplete because the

existence of the central hole of the amoeba is assumed.
When the central hole does not exist, Szegő’s limit theorem
Eq. (29) cannot be applied in its original form. Here, we
propose a generalization of Eq. (29) to remove this
limitation. The generalization makes essential use of the
Ronkin function. The proposed generalization is

log det T ½σ� ¼ N
Z
Td

�
dk
2π

�
d
logdet σðβÞ þOðLd−1Þ;

ð34Þ

in which β ¼ eμminþik with μmin being the minimum location
of the Ronkin function; i.e., Rdet σðμÞ takes its minimum at
μmin. Note that the left-hand side of Eq. (34) can be taken as
log det T ½σ� ¼ log det T ½σðeμþikÞ� with an arbitrary μ.
This is because a similarity transformation of the real-
space Hamiltonian does not change its determinant [see the
discussion below Eq. (31)]. The location μmin can be
determined by the vanishing of gradient ∂μjRdet σ ¼ 0 for
all j’s (or simply written as ∂μRdet σ ¼ 0).
When the amoeba of det σðβÞ contains a central hole,

Eq. (34) can be established by the same approach that leads
to Eq. (33). When there is no central hole, we may
intuitively view the minimum location μmin as an “infini-
tesimal central hole,” which is consistent with the fact that
the Ronkin function takes the minimum in the central hole.
Although we do not find a rigorous proof of Eq. (34) in
these general cases, our numerical results support its
validity (see below). In fact, taking σðβÞ ¼ E − hðβÞ in
Eq. (34) and extracting the real part lead to

1

N
log j det ðE −HÞj ¼ RdetðE−hÞðμminÞ þOðL−1Þ ð35Þ

or

ΦðEÞ ¼ ϕðEÞ þOðL−1Þ; ð36Þ

which becomes Eq. (24) in the large-size limit L → ∞. To
confirm this, we numerically calculate the Coulomb poten-
tialΦðEÞ for different system sizes, and compare it with the
Ronkin minimum ϕðEÞ. In Fig. 5, we plot the maximal
difference maxE jϕðEÞ −ΦðEÞj as a function of the system
size L. Note that the size dependence comes solely from
that of ΦðEÞ, while ϕðEÞ is independent of the size.
Regardless of the shape of the OBC system, the maximal
difference is in good agreement with the L−1 behavior, and
converges to 0 when extrapolated to the L → ∞ limit.
These behaviors are exactly what Eq. (36) tells.
For Hermitian bands, the DOS of the OBC system

determined by our formulation using the Ronkin function
is consistent with the familiar fact that the OBC bulk
spectrum and the PBC spectrum are asymptotically iden-
tical. This can be proved as follows. Since the eigenener-
gies belong to the real axis R, one can determine the DOS
by Eq. (27), for which knowing ϕðEÞ for E ∉ R is
sufficient. For an arbitrary E ∉ R, det½E − hðeikÞ� ≠ 0

always holds for all k∈ ½0; 2π�d because of the
Hermiticity of hðeikÞ. Thus, μ ¼ 0 does not belong to
the amoeba of det½E − hðβÞ�. In other words, it belongs to
one of the amoeba holes. Furthermore, the phase winding
number of det½E − hðeikÞ� along every kj circle is zero.
Therefore, the order νj ¼ 0 (j ¼ 1;…; d) at μ ¼ 0, mean-
ing that μ ¼ 0 locates in the central hole. It follows
that the Ronkin minimum is reached at μ ¼ 0, i.e.,
ϕðEÞ ¼ RdetðE−hÞð0Þ. On the other hand, one can readily
see that RdetðE−hÞð0Þ by definition is the Coulomb potential
of the PBC energy spectrum. Therefore, the OBC DOS
obtained from Eq. (27) is the same as the PBC DOS in the
Hermitian cases.

(a) (b)

FIG. 5. The maximal difference maxE jϕðEÞ −ΦðEÞj between
the OBC-spectrum-based and Ronkin-function-based Coulomb
potentials as a function of the linear size L. The adopted
Hamiltonian is Eq. (12) [Fig. 2(a)]. The straight line is a linear
fitting from data points with L ≥ 55. (a) The real space is a square
of side length L, with disorders added on the boundary [the same
as in Fig. 4(b)]. Each data point comes from averaging over six
disorder configurations. (b) The real space is a disk of diameter L,
without disorder [the same as in Fig. 4(c)].
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V. AMOEBA HOLE CLOSING
AND SPECTRAL BOUNDARY

We are now able to prove a powerful theorem about the
range of the OBC spectrum in the complex energy plane. It
uses only the topology of the amoeba, without having to
evaluate the Ronkin function. Hence, it is more efficient
when one only wants to know the range of the spectrum.
We denote by Λ the set of E where the amoeba of

det½E − hðβÞ� does not possess a central hole. We prove the
following theorem:

ρðEÞ ¼ 0; E ∉ Λ: ð37Þ

Thus, at a certain E, if the amoeba has a central hole, the
DOS is zero at this E. In other words, the bulk spectrum is
restricted inside Λ.
With the results of the DOS in the previous section, the

proof of this theorem is now simple. When an energy E0 is
outside Λ, one must choose μ in the central hole so that
Eq. (33) holds. Because the shape of the central hole varies
continuously as E varies, the central hole should still
contain this μ for E sufficiently close to E0. Therefore,
there exists a neighborhood of E0 denoted by V, such that
for any E∈V, the same μ is in the central hole of the
amoeba of detðE − hÞ. Thus, for any E∈V, the Ronkin
minimum is ϕðEÞ ¼ RdetðE−hÞðμÞ. Recalling the definition
of amoeba, we see that det½E − hðeμþikÞ� is nowhere zero in
V for any k∈Td ¼ ½0; 2π�d. Furthermore, the Ronkin
function can be expressed as

RdetðE−hÞðμÞ ¼
Z
Td

�
dk
2π

�
dX

i

log jE − EiðβÞj ð38Þ

in which fEiðβÞg are the eigenvalues of hðβÞ (β ¼ eμþik as
usual). Because detðE − hÞ ≠ 0 implies jE − EiðβÞj ≠ 0, we
haveΔ½Pi ln jE − EiðβÞj� ¼ 0, and therefore its integration
over Td vanishes, leading to ρðEÞ ¼ ΔϕðEÞ=2π ¼ 0. This
ends our proof of the theorem Eq. (37). Note that this proof
makes use only of the original version of Szegő’s theorem
Eq. (29), without invoking the generalized version Eq. (34).
When E∈Λ, the DOS is generally nonzero since

nothing forces it to vanish. Thus, the boundary of Λ, on
which the central hole closes, coincides with the boundary
of the energy spectrum. In fact, if we assume the validity of
the conjecture Eq. (34) and therefore Eq. (24), we have
ρðEÞ ¼ ΔϕðEÞ=2π, which is generally nonzero in Λ. In
other words, the support of the DOS is exactly Λ.
In Fig. 6, we illustrate the amoeba-hole closing for the

model Eq. (12). Starting from an energywell above the band
top (maximum of the real part of the eigenenergies), we
decrease the energy along the real axis. For E larger than a
certain energy, the central hole of amoeba exists, though its
size shrinks as E decreases. At E ¼ Et ≈ 5.959 95, the
central hole closes. According to our proposal, this

hole-closing point is identified as the band top. Similarly,
the entire spectral boundary can be delineated by the hole
closing.
In Fig. 7, we compare the results obtained from the

amoeba formulation and numerical calculations. We
numerically diagonalize the real-space Hamiltonian with
increasing sizes and obtain the values of the band top,
which are then extrapolated to infinite size [Fig. 7(a)]. The
results are strikingly close to the predictions of the amoeba
theory [Figs. 7(a) and 7(b)]. We also do a similar com-
parison for the band bottom (minimum of the real part of
the eigenenergies) [Figs. 7(c) and 7(d)]. Note that the band
top and band bottom exhibit different scaling behavior
when L → ∞: the finite-size correction ΔEt ∝ L−2 for the
former [Fig. 7(a)], and ΔEb ∝ L−1 for the latter [Fig. 7(c)].
It turns out that the former scaling is more accurately
obeyed here. Therefore, the error of extrapolation is larger
for the latter. Despite larger numerical error, the numerical
results are still in good agreement with the amoeba-
theoretic prediction.

VI. GENERALIZED BRILLOUIN ZONE

In this section, we establish another proposal mentioned
at the end of Sec. III, namely, the location of the Ronkin
minimum determines the complex momenta and hence the
GBZ. According to Eq. (37), the DOS can be nonzero only
when the central hole of the amoeba of detðE − hÞ is
absent. Thanks to the convexity of the Ronkin function, the

FIG. 6. Amoebae for several energies near the band top of the
model Eq. (12). As we decrease the energy along the real axis, the
central hole of amoeba closes at E ¼ Et ≈ 5.959 95. Parameter
values are t ¼ 1, t0 ¼ 0.5, and γ ¼ 0.2, for which the energy
spectrum on a disk is shown in Fig. 1(d).
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minimum location μmin must be unique in these cases, and
therefore the proposal is unambiguous.
TheGBZ essentially determines the exponential behavior

of the eigenstates of a non-Hermitian lattice Hamiltonian.
According to our proposal, an eigenstatewith eigenenergyE
is expressed asymptotically in the bulk as [46]

ψEðxÞ ¼
X
k

ck exp
	½ikþ μminðEÞ� · x



; ð39Þ

where the sum is over all k satisfying
det½E − hðeμminþikÞ� ¼ 0, and ck are certain E-dependent
coefficients.Here,μmin plays the role of the imaginary part of
the wave vector if we define a complex-valued wave vector

k̃ ¼ k − iμmin: ð40Þ

Equivalently, we can use the variable β ¼ eik̃ (or
k̃ ¼ −i log β), so that ψEðxÞ ¼

P
β cβ

Q
d
j¼1ðβjÞxj . In our

theory, the GBZ consists of all points β subject to

det½E − hðβÞ� ¼ 0;

ðlog jβ1j;…; log jβdjÞ ¼ μminðEÞ: ð41Þ

For a d-dimensional non-Hermitian system, the GBZ is a
d-dimensional subspace of the β spacewhose real dimension

is 2d. In fact, there are 2dþ 2 real unknowns in Eq. (41),
namely, the real and imaginary parts of ðβ; EÞ. Equation (41)
then imposes dþ 2 constraints, meaning that the solution
space is d dimensional. Equation (41) provides a general
approach to calculate the GBZ for higher-dimensional non-
Hermitian systems. In practice, we often parametrize the
GBZ by k, treating μmin as its function. This vectorial
function μminðkÞ is a complete representation of the GBZ.
As an application of our theory, the GBZ thus obtained for
our model Eq. (12) is shown in Fig. 8(a).
Now we provide evidence for Eqs. (39) and (41). First,

we show that an eigenstate jψi subject to Hjψi ¼ Ejψi
shares the same exponential behavior with the Green’s
function GðEÞ ¼ ðE −HÞ−1. To see this, we decompose
the OBC Hamiltonian into its eigenstates:

H ¼
X
n

ϵnjnRihnLj; ð42Þ

where the sum is over all eigenstates; jnRi and hnLj are the
right and left eigenstates, respectively, which satisfy

(a) (b)

(c) (d)

FIG. 7. Band top Et and bottom Eb obtained from amoeba
formulation and numerical calculations. The model is Eq. (12),
with t ¼ 1, t0 ¼ 0.5 fixed. In (a),(c), γ is fixed to 0.2. (a) Band top
obtained from diagonalizing the real-space Hamiltonian on the
disk with diameter L. The extrapolation to L → ∞ agrees well
with the amoeba-hole-closing point marked as the orange square.
(b) Band top as a function of γ, for increasing L values. The
extrapolation to L → ∞ is shown as black dots, which are in
excellent agreement with the amoeba-hole-closing points marked
as orange squares. The PBC result is shown as the dotted line.
(c),(d) The counterparts of (a),(b) for the band bottom. The linear
fitting in (c),(d) is based on data from L∈ ½80; 240�. Error bars
indicate 95% confidence intervals.

(a) (b)

(c) (d)

FIG. 8. (a) The generalized Brillouin zone of model Eq. (12).
Because of the symmetry of interchanging x and y in this model,
we have ðμminÞx ¼ ðμminÞy ≡ μ, which is plotted as a function of
the real part of the wave vector k ¼ ðkx; kyÞ. (b) Typical profile of
a bulk eigenstate that exhibits the non-Hermitian skin effect. The
eigenstate is taken at E ¼ −0.003þ 0.056i. The system is a
square of length L ¼ 130, with certain random on-site disorders
on the boundary. (c),(d) Comparison between μmin and the
exponential decay rate of the Green’s function. The latter is
defined by linearly fitting μx, μy from loghxjðE −HÞ−1j0i∼
μxxþ μyy, in which μx ≈ μy for our model, and therefore we
present the average μ ¼ ðμx þ μyÞ=2. Here, H is a real-space
Hamiltonian defined on a disk with diameter L, with random on-
site disorder (distributed uniformly in ½−0.5; 0.5�) on the boun-
dary. Each circle represents the result from a disorder configu-
ration. In the fitting, we discard x’s that are within distance 20
from the boundary. In (c), we fix L ¼ 400. In (d), we vary L at
fixed E ¼ 1, 3, 5; the corresponding μmin’s are shown as
horizontal lines.
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HjnRi ¼ ϵnjnRi; hnLjH ¼ ϵnhnLj: ð43Þ

They are orthonormalized as hmLjnRi ¼ δmn. Suppose that
x and 0 are real-space locations far from the boundary. The
Green’s function is related to the eigenstates in the
following way:

I
C

dE0

2πi
hxjðE0 −HÞ−1j0i

¼
X
n

hxjnRihnLj0i
I
C

dE0

2πi
1

E0 − ϵn

¼
X
ϵn¼E

hnLj0ihxjnRi; ð44Þ

where C is an infinitesimal counterclockwise contour
centered at E. We emphasize that E is taken in the
OBC energy spectrum, otherwise the integral in Eq. (44)
would vanish. The right-hand side of Eq. (44) is a linear
combination of all eigenstates with energy E. As our
objective is to obtain μ, it suffices to keep both the
eigenstates and the Green’s functions to the exponential
level. Assuming that the Green’s function does not change
abruptly with respect to E, we conclude that these eigen-
states share the same exponential behavior as the Green’s
function hxjðE −HÞ−1j0i. We would also like to remark
that,while the above argument assumes that theHamiltonian
is diagonalizable, the result is general enough to hold even in
the presence of exceptional points [47].
Suppose that the asymptotic behavior is hxjðE−HÞ−1j0i∼

expðPd
j¼1μjxjÞ. To validate Eqs. (39) and (41), we need to

show that μj ¼ ðμminÞj. We numerically confirm this relation
in Figs. 8(c) and 8(d). Note that in principle one may also
validate Eqs. (39) and (41) by the exponential behavior of
eigenstates themselves. However, our detour of calculating
the Green’s function is computationally more accurate and
less expensive, enabling calculation for larger L within
reasonable time.

VII. NON-BLOCH BAND TOPOLOGY

It has been found recently that the topological numbers
defined on the conventional Brillouin zone fail to character-
ize the topological edge states and bulk-boundary corre-
spondence in non-Hermitian systems. To correctly account
for the topological edge modes, the non-Bloch topological
invariants defined on the GBZ have been proposed. In
practice, most of their applications are restricted to 1D,
because a general calculable formulation of GBZ in higher
dimension has been lacking. Based on the amoeba formu-
lation, we are now able to address the non-Bloch band
topology in higher dimensions. Specifically, the non-Bloch
Chern number, which was previously calculated only by
continuum approximation, can now be calculated in the
entire GBZ as is.

To be concrete, we consider the following non-Hermitian
Chern-band model [21]:

hðeikÞ ¼ ðv sin kx þ iγÞσx þ ðv sin ky þ iγÞσy
þ ðm − t cos kx − t cos kyÞσz: ð45Þ

The real-space Hamiltonian reads

H ¼
X
x

X
j¼x;y

jxi
�
−
i
2
vσj −

1

2
tσz

�
hxþ ejj þ H:c:

þ
X
x

jxiðmσz þ iγσx þ iγσyÞhxj; ð46Þ

where x are 2D integer coordinates, and ej is the unit vector
in the jth direction [see Fig. 2(b)]. We set t ¼ v ¼ 1 for
simplicity.
This model is known to have a Chern insulator phase as

well as a trivial insulator phase in the Hermitian limit
(γ ¼ 0) [48]. It has Chern number C ¼ 1 when 0 < m < 2,
C ¼ −1 when −2 < m < 0, and C ¼ 0 otherwise. We
focus on the phase boundary between C ¼ 0 and C ¼ 1.
When we turn on the non-Hermitian term (γ ≠ 0), the phase
boundary extends into a curve in the m-γ plane, which
should be predicted by the non-Bloch band theory. In
particular, the number of chiral edge modes in each phase is
given by the non-Bloch Chern number evaluated on the
GBZ, which is a two-dimensional subspace of the four-
dimensional β space. Alternatively, we may take k̃ ¼ k −
iμ ¼ log β as the coordinate system, in which the GBZ is
two dimensional because μ is treated as a function of k, so
that the GBZ can be parametrized by k. Thus, the non-
Bloch Chern number can be viewed as the conventional
Chern number of hðeik̃Þ, with k̃∈GBZ. For a band labeled
by α, the non-Bloch Chern number reads

C ¼ 1

2πi

Z
T2

dkxdkyϵij∂i

�
k̃; α; L

����∂j
����k̃; α; R

�
; ð47Þ

where ϵxy ¼ −ϵyx ¼ 1, ∂j refers to ∂=∂kj, and hk̃; α; Lj and
jk̃; α; Ri are the left and right eigenstates of the α band,
respectively. We focus on the “valence band” (ReE < 0),
labeled as α ¼ −.
More intuitively, the non-Bloch Chern number can

be expressed as the change of Berry phase along circular
sections of the GBZ in the y direction, i.e., C ¼ ð1=2πÞR
2π
0 ½dWyðkxÞ=dkx�dkx ¼ ½Wyð2πÞ −Wyð0Þ�=2π, in which
the Berry phase

WyðkxÞ ¼ −i
Z

2π

0

�
k̃;−; L

����∂ky
����k̃;−; R

�
dky

¼ −
Z

2π

0

hx∂kyhy − hy∂kyhx
2h̄ðh̄þ hzÞ

dky; ð48Þ
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where we write the Bloch Hamiltonian as h ¼ hxσx þ
hyσy þ hzσz, and h̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y þ h2z

q
. Here, hx;y;z can be

extracted from Eq. (45) by the substitution k → k̃: hx ¼
v sin k̃x þ iγ, hy ¼ v sin k̃y þ iγ, and hz ¼ m − t cos k̃x−
t cos k̃y.
In Fig. 9, we show the energy spectrum and the non-

Bloch Chern number for the Chern-band model. As an
example, we fix γ ¼ 0.4, and take m ¼ 2.6 and m ¼ 1.2.
From Figs. 9(b) and 9(d), we read for each case that C ¼ 0
and C ¼ 1, respectively. In Fig. 9(c), topological edge
states are indeed seen, being consistent with the nonzero
non-Bloch topological invariant C ¼ 1.
For the present model, the precise phase boundary can

even be analytically determined by the amoeba formu-
lation. In the m-γ plane, the phase boundary between the
C ¼ 0 and C ¼ 1 phases is a curve, which can be viewed as
a functionmcðγÞ; i.e., the phase transition point ismcðγÞ for
a fixed γ. On the phase boundary, the energy gap about
E ¼ 0 closes, and E ¼ 0 belongs to the energy spectrum.
Thus, we can findmc by inspecting when the central hole of
the amoeba at E ¼ 0 closes. The exact formula for mc is
found to be

mc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
: ð49Þ

A perturbative formula for mc was obtained in Ref. [21],
and recently a result to the sixth order of γ was reported
in Ref. [49]. Our derivation of Eq. (49) is as follows.
We focus on the special solution of the characteristic
equation that satisfies βx ¼ βy ≡ β, as the symmetry
of the model allows. The characteristic equation det½E −
hðβx; βyÞ� ¼ 0 becomes

ðm − β − β−1Þ2 − 2

�
γ −

β − β−1

2

�
2

¼ 0: ð50Þ

In a neighborhood of the phase transition, we numerically
notice that the four roots of the above quartic equation are
all real, and that the second-largest and third-largest (the
middle two) roots, under the logarithm, are on the boundary
of the central hole of the amoeba. Hence, requiring the
central hole to vanish is equivalent to requiring the middle
two roots to be equal. Solving this requirement leads to the
final result Eq. (49).
Equation (49) is verified up to high precision by numeri-

cally locating where the central hole closes, as listed in
Table I. From the amoeba-based approach, Fig. 10 illus-
trates locating the critical value mc for the case γ ¼ 0.4. In
practice, it is convenient to search for mcðγÞ by iteration:
(1) Plot the amoebae at a consecutive sequence of m’s.
(2) Find the interval with the smallest central-hole area

(closest to hole closing).
(3) Terminate if the desired accuracy is reached.
(4) Otherwise, on this new interval, assign a new

sequence of m’s and go back to step 1.
On the other hand, mc can also be determined by numeri-
cally diagonalizing the real-space Hamiltonian and finding
where the band gap closes [21]. We compare the amoeba-
based and numerical-diagonalization results, which agree
well with each other.

(a) (c)

(b) (d)

FIG. 9. Energy spectrum and band topology of the non-
Hermitian Chern-band model Eq. (45). (a) Energy spectrum
by diagonalizing the real-space Hamiltonian on a square of side
length L ¼ 60, with random on-site disorders on the boundary.
Parameters are taken in the topologically trivial regime: m ¼ 2.6,
γ ¼ 0.4. (b) The Berry phase WyðkxÞ along a circle in the ky
direction (kx ¼ const). The non-Bloch Chern number
C ¼ ½Wyð2πÞ −Wyð0Þ�=2π ¼ 0. Parameter values are the same
as in (a). (c) Energy spectrum by diagonalization, calculated
under the same setting as in (a). Parameters are taken in the
topologically nontrivial regime: m ¼ 1.2, γ ¼ 0.4. Topological
edge states are observed. (d) The Berry phase as a function of kx,
with Wyð2πÞ −Wyð0Þ ¼ 2π and therefore C ¼ 1. Parameter
values are the same as in (c).

TABLE I. Topological phase boundary mc as a function of γ.
The decay factor μ (equal in both x and y directions) at E ¼ 0 and
“mc amoeba” is determined using the amoeba method, with
numerical error <1 × 10−6. “mc numerical” is adopted from
Ref. [21], which is obtained by numerical diagonalization of the
real-space Hamiltonian with numerical error <3 × 10−4.

γ μ mc amoeba mc numerical

0.00 0.000 000 2.000 000 2.0000
0.05 0.049 979 2.002 498 2.0025
0.10 0.099 834 2.009 975 2.0100
0.15 0.149 443 2.022 375 2.0225
0.20 0.198 690 2.039 608 2.0400
0.25 0.247 466 2.061 553 2.0625
0.30 0.295 673 2.088 061 2.0885
0.35 0.343 222 2.118 962 2.1200
0.40 0.390 035 2.154 066 2.1540
0.45 0.436 050 2.193 171 2.1940
0.50 0.481 212 2.236 068 2.2360
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In the amoeba formulation, an exact expression for the
decay factor μx ¼ μy ≡ μ at the band-closing point E ¼ 0
can also be obtained:

μ ¼ log
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 1

q
þ γ

�
: ð51Þ

This result is very close to the μ values listed in Table I,
which are numerically obtained by locating the amoeba-
hole-closing points. We remark that a first-order approxi-
mation μ ¼ γ þ oðγÞ was reported in Ref. [21].

VIII. SPECTRAL INEQUALITIES

As one of the applications of the amoeba formulation, we
prove a general inequality about the spectral radius. For a
matrix or operator H, the spectral radius ρðHÞ is defined to
be the largest absolute value of the eigenvalues. Our
spectral inequality states that for a non-Hermitian lattice
Hamiltonian with translational symmetry in the bulk, the

OBC spectral radius is less than or equal to its PBC
counterpart:

ρðHOBCÞ ≤ ρðHPBCÞ: ð52Þ

Note that we are interested in the thermodynamic limit in
which all edge-state contribution vanishes. It is evident that
Figs. 1(a) and 1(d) satisfy the inequality. The motivation of
considering this inequality is a neat inclusion relation in
1D, which states that the OBC spectrum is in the interior of
the PBC spectrum [29,50]. As the non-Bloch band theory
(which the 1D theorem is based on) aligns with the amoeba
formulation in 1D, it is natural to ask if a parallel statement
can be established in higher dimensions.
We begin the proof with a simple fact about the

electrostatic potential. Suppose that a Coulomb potential
Φ is generated by a DOS (charge) distribution ρ in the 2D
complex plane, i.e.,

ΦðEÞ ¼
Z

d2E0 log jE − E0jρðE0Þ: ð53Þ

We are interested in the average potential on a circle, say,
jEj ¼ R, which reads

Φ̄ ¼ 1

2π

Z
2π

0

dθΦðReiθÞ: ð54Þ

To calculate this average, one just needs to treat all charges
inside the circle as distributed uniformly on the circle, and
all charges outside as they are. Because of the additivity of
the potential, one needs only to prove this property for a
single point charge. The contribution of a point charge q
with radial coordinate r < R is Φ̄ ¼ q logR, while that of a
point charge with r > R is Φ̄ ¼ q log r. This can be readily
proved using Jensen’s formula Eq. (19). Taking gðReiθÞ ¼
Reiθ − reiα in Eq. (19), the left-hand side of the equation is
the average potential generated by a point charge at
E0 ¼ reiα, and Eq. (19) becomes

Φ̄ ¼
�
logR; r < R;

log r; r > R:
ð55Þ

Now we proceed with the spectral radius inequality.
From Sec. IV, we know that the Coulomb potential
generated by the OBC DOS is equal to the minimum of
the Ronkin function ΦOBCðEÞ ¼ minμ RdetðE−hÞðμÞ. On the
other hand, we can also write the Coulomb potential
generated by the PBC DOS in terms of the Ronkin function
at μ ¼ 0:

ΦPBCðEÞ ¼ RdetðE−hÞð0Þ: ð56Þ

FIG. 10. The amoeba-based procedure of locating the phase
boundary in Table I. The figures show the amoebae focused on
the central hole, with γ ¼ 0.4 fixed andm varied. The central hole
closes at exactly one point m ¼ mc ≈ 2.154 066, which is where
the topological phase transition occurs.
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Hence,

ΦOBCðEÞ ≤ ΦPBCðEÞ: ð57Þ

It follows that the average satisfies

Φ̄OBC ≤ Φ̄PBC: ð58Þ

Taking a circle jEj ¼ R that surrounds the whole PBC
spectrum, the average potential on this circle is Φ̄PBC ¼
Q logR, where Q is the total charge, which is equal to the
number of bands of the specific lattice model. Since the
total charge of the OBC DOS is alsoQ, the aforementioned
electrostatic fact implies that Φ̄OBC ≥ Q logR, with “¼”
reached when the charge density vanishes outside the
circle. Combining this with Eq. (58), we obtain the identity
Φ̄OBC ¼ Q logR. Consequently, the OBC DOS is zero
outside the circle, which means that the OBC spectral
radius is no larger than the PBC counterpart.
An alternative proof of the spectral inequality is based on

Eq. (37). We denote the PBC spectral (outer) boundary as
S, which consists of one or several closed curves (note that
the spectrum may also have an inner boundary, which is not
included in S; for example, an annulus-shaped spectrum
has an outer and an inner boundary). Consider an energy E
outside S. Since E is not in the PBC spectrum, μ ¼ 0 must
belong to the complement of the amoeba of detðE − hÞ.
Furthermore, one can see that μ ¼ 0 locates in the central
hole. In fact, in the jEj → ∞ limit (with μ ¼ 0 fixed), the
phase of det½E − hðβÞ� is determined solely by E and
independent of k, and therefore, the phase winding number
along each kj circle is zero [cf. Eqs. (16) and (17)]. It
follows that, for sufficiently large jEj, the order ν ¼ 0 at
μ ¼ 0, i.e., μ ¼ 0 locates in the central hole. For any E
outside S, one may connect E to infinity by a path that does
not intersect S. Since μ ¼ 0 is always in the same amoeba
hole as E varies along this path, this amoeba hole must be
the central hole. Thus, for any E outside S, μ ¼ 0 locates
in the central hole of the amoeba. It follows from Eq. (37)
that the OBC DOS ρOBCðEÞ ¼ 0 outside S. Therefore, the
OBC spectrum is enclosed by the PBC spectral boundary.
This statement is slightly stronger than the spectral inequal-
ity Eq. (52). Particularly, when the energy spectrum is not
convex in the complex plane, this statement implies
Eq. (52) but not vice versa.
We can further extend the above result as follows. Taking

μ to be any value other than 0, we readily find that the OBC
spectrum is enclosed by any TBCðμÞ spectrum, where
TBCðμÞ refers to a PBC Hamiltonian generated by symbol
hðeμþikÞ, i.e., a Hamiltonian under “twisted” periodic
boundary condition. We also mention that the develop-
ment of our theorem is reminiscent of a similar theorem in
1D [50], as they both rely on the winding numbers of the
symbol.

A corollary is immediately implied: The spectral range
of the real (or imaginary) part of the OBC bulk spectrum is
within its PBC counterpart. To be specific, one has the
following general inequalities:

max Reðϵn;OBCÞ ≤ max Reðϵn;PBCÞ; ð59Þ

max Imðϵn;OBCÞ ≤ max Imðϵn;PBCÞ; ð60Þ

min Reðϵn;OBCÞ ≥ min Reðϵn;PBCÞ; ð61Þ

min Imðϵn;OBCÞ ≥ min Imðϵn;PBCÞ: ð62Þ

In view of the significance of the energy spectrum, the
spectral inequalities have various implications, some of
which have already been exploited. In one dimension,
Eq. (60) has played an important role in the directional
amplification [51–53]. In the context of open quantum
systems, the spectral inequalities are closely related to the
boundary sensitivity of Liouvillian gap and relaxation
time [54–56]. Our general statement and proof of the
spectral inequalities lay the groundwork for their higher-
dimensional applications.

IX. CONCLUDING REMARKS

In this work, we have formulated an amoeba theory of
the non-Hermitian skin effect and non-Bloch band theory in
arbitrary spatial dimensions. It provides a theoretical
framework for studying periodic non-Hermitian systems
without the serious dimensional limitation. Among other
applications, our theory offers a general yet efficient
approach to compute the key physical quantities of non-
Hermitian systems, such as the energy spectrum, density of
states, and generalized Brillouin zone.
Although the initial version of non-Bloch band theory

was formulated under the OBC, the concept of GBZ in 1D
is also generalizable to other boundary conditions such as
the domain-wall cases [57]. Nevertheless, it seems that the
amoeba approach, as we now understand, naturally corre-
sponds to the standard OBC systems. Thus, we have
focused on the OBC case throughout the present paper.
Compared to other boundary conditions, the OBC is
especially important in many senses. First, the OBC is
experimentally the most relevant because realistic systems
often have an OBC. Second, taking the OBC enables the
investigation of both bulk and boundary physics, while
other boundary conditions including the PBC are blind to
boundary phenomena. Third, even certain measurable
physical quantities far from the boundary can be naturally
expressed in terms of the GBZ from the OBC rather than
the conventional BZ associated with the PBC [13,58],
though it is in principle free to choose the boundary
condition when investigating the physics deep in the bulk.
In this sense, the OBC seems to be an advantageous choice
even for studying certain bulk physics.
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We would also like to remark that not all aspects of this
work are mathematically rigorous. Although numerical
evidence is supplied whenever a mathematically strict
derivation is unavailable, a fully rigorous proof of all
our main results is of course desirable.
In view of the ubiquity of periodic structures in both

natural and synthetic systems, it is hoped that our theory
can find wide applications in the abundant non-Hermitian
phenomena. For example, our formulation can be naturally
applied to open quantum systems in the free-particle limit,
for which the energy spectrum of the non-Hermitian
Liouvillian superoperator determines the dynamics and
relaxation [54,55]. Our theory immediately enables calcu-
lating the relevant quantities beyond 1D. Furthermore, for
many-body non-Hermitian systems, our amoeba theory
may still be a good starting point for including the
interaction effects, which will be left for future work.
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APPENDIX A: A BRIEF PROOF OF SZEGŐ’S
LIMIT THEOREM

In this appendix, we sketch a physicist-oriented proof for
Szegő’s limit theorem Eq. (29), along with an estimation of
the inverse of a Toeplitz matrix. We derive concrete
conditions for the theorem to hold and explain their
intuitions. This proof is inspired by a parallel treatment
for translationally invariant differential operators [44,59].
However, the specificity of Toeplitz matrices on lattice
requires additional topological constraints, as stated below.
Let us consider a subspace Ω of the d-dimensional

Euclidean space. The number of unit cells in Ω is then
OðLdÞ, and the number of unit cells on the boundary is
OðLd−1Þ, where L is the linear scale of Ω (e.g., the side
length of a square, or the diameter of a disk).
Consider two (block-)Toeplitz matrices T ½σ1� and T ½σ2�

defined in Ω. Both of them are N × N block matrices,
where N is the number of unit cells (labeled by integer-
valued coordinates) in Ω. We first establish the following
relation:

kT ½σ1σ2� − T ½σ1�T ½σ2�k1 ¼ OðLd−1Þ; ðA1Þ

where we use the Schatten norm for operators: kTkp is the
p norm of all singular values fsng of T,

kTkp ¼
�X

n

spn

�
1=p

: ðA2Þ

For this kind of relation, we use the notation
T ½σ1σ2� ≈ T ½σ1�T ½σ2�. The ðx; yÞ matrix element of
T ½σ1σ2� − T ½σ1�T ½σ2� reads

X
z∉Ω

t1ðz − xÞt2ðy − zÞ; ðA3Þ

where x, y, and z are integer coordinates; t1;2 are the
hopping coefficients that appear in T ½σ1;2�:

t1;2ðnÞ ¼
Z
Td

�
dθ
2π

�
d
σ1;2ðeiθÞe−in·θ: ðA4Þ

Note that in Eq. (A3) x; y∈Ω while z∈Ωc, where Ωc is the
complement of Ω in the Euclidean space. The termsP

z∈Ω t1ðz − xÞt2ðy − zÞ appear in both T ½σ1σ2� and
T ½σ1�T ½σ2� and therefore do not contribute to their
difference.
It is clear that each term in Eq. (A3) can be nonzero only

when both x and y are near the boundary (see also Fig. 11).
Thus, it is intuitive that the matrix norm of T ½σ1σ2� −
T ½σ1�T ½σ2� is of order OðLd−1Þ. A more formal proof is
based on Hölder’s inequality for matrix norms, which states
that kABk1 ≤ kAkpkBkq holds for all p∈ ½1;∞� and q
satisfying 1=pþ 1=q ¼ 1. Defining ðT1Þx;z ¼ t1ðz − xÞ
that maps Ωc to Ω and ðT2Þz;y ¼ t2ðy − zÞ that maps Ω
to Ωc, we see that Eq. (A3) becomes ðT1T2Þx;y. According
to Hölder’s inequality, we have

kT1T2k1 ≤ kT1k2kT2k2; ðA5Þ

and we are left only with showing kTjk22 ¼ OðLd−1Þ for
j ¼ 1, 2. Recalling that the singular values of T1 are the

eigenvalues of
ffiffiffiffiffiffiffiffiffiffi
T1T

†
1

q
, kT1k22 by definition equals the trace

of T1T
†
1, whose elements read

�
T1T

†
1

�
x;x0 ¼

X
z∈Ωc

t1ðz − xÞt†1ðz − x0Þ: ðA6Þ

FIG. 11. Illustration of Eq. (A3). The matrix entries of
T ½σ1σ2� − T ½σ1�T ½σ2� are nonzero only when x and y are in a
neighborhood of the boundary of Ω.

AMOEBA FORMULATION OF NON-BLOCH BAND THEORY IN … PHYS. REV. X 14, 021011 (2024)

021011-17



Hence,

kT1k22 ¼ tr T1T
†
1

¼
X

x∈Ω;z∈Ωc

tr t1ðz − xÞt†1ðz − xÞ

¼
X

x∈Ω;z∈Ωc

kt1ðz − xÞk22

¼
X
u

kt1ðuÞk22volððΩþ uÞ ∩ ΩcÞ: ðA7Þ

In the last line, we substitute z − x by u. The volume
accounts for the multiplicity of the term kt1ðuÞk22, which is
the number of lattice points in the overlap of Ω translated
by u and the complement Ωc. It is roughly juj times the
surface area of Ω denoted by j∂Ωj. For short-ranged
Toeplitz matrices, we have tjðuÞ ¼ 0 when juj is beyond
the hopping range. Therefore, only a boundary layer
contributes to the summation over u, which means

kT1k22 ¼ OðLd−1Þ: ðA8Þ

A similar estimation holds for T2. These two estimates
together prove Eq. (A1). Notably, Eq. (A1) holds even if we
add disorders (which is considered in Sec. IV) on the
boundary of T ½σ1� and T ½σ2�, since the difference on the
left-hand side is still localized near the boundary.
A caveat arises when either T ½σ1� or T ½σ2� is not short

ranged, meaning, e.g., t1ðuÞ is nonzero even for large juj.
For a large system size, Eq. (A7) is less than

X
u

kt1ðuÞk22jujj∂Ωj: ðA9Þ

Thus, a necessary condition for Eq. (A1) and all the
following theorems to hold is that

X
u

jujktðuÞk22 < ∞ ðA10Þ

is satisfied for all Toeplitz matrices in consideration. This
tells us that our theorems also hold for certain long-ranged
Hamiltonians, as long as the hopping decays sufficiently
fast at long distance.
Now let σ1 ¼ σ, σ2 ¼ σ−1 and assume that σ is invert-

ible, we have

kI − T ½σ�T ½σ−1�k1 ¼ OðLd−1Þ; ðA11Þ

where I is the identity matrix. Intuitively, multiplying
T ½σ�−1 on the left, we would expect the following asymp-
totic inversion formula:

��T ½σ�−1 − T ½σ−1���
1
¼ OðLd−1Þ: ðA12Þ

Nevertheless, this multiplication should not be done with-
out discretion. To be precise, we use Hölder’s inequality
again,

��T ½σ�−1 − T ½σ−1���
1
≤ kT ½σ�−1k∞kI − T ½σ�T ½σ−1�k1:

ðA13Þ

Therefore, a condition for Eq. (A12) is that kT ½σ�−1k∞,
which is the largest of its singular values, is finite in the
thermodynamic limit L → ∞. This amounts to asking if
T ½σ� itself has a zero singular value when L → ∞. Since
most of its singular values form bulk bands and have a finite
gap from zero, the zero singular values should be of certain
topological origin. They are intimately related to the index
theorem, or the bulk-boundary correspondence in free
systems. If the symbol has a nontrivial topological index,
then the corresponding Toeplitz matrix has either nonempty
kernel or nonempty cokernel. Either case implies that
T ½σ�T ½σ�† is not fully ranked and has a zero eigenvalue.
As to 1D Toeplitz matrices, the topological index is well
known to be the negative of the winding number of
det σðeiθÞ [60]. To ensure that the Toeplitz matrix does
not have zero singular values, we impose a condition that
the symbol σ is homotopically trivial [61]. This means that
there exists a continuous path in the space of invertible
symbols subject to Eq. (A10), connecting the symbol σðeiθÞ
to the constant symbol σconstðeiθÞ ¼ 1. This requirement
may be too strong for now, but we see in a moment that it
arises again when defining the matrix logarithm.
The asymptotic inversion formula Eq. (A12) aims at

finding a good surrogate for the inverse of T ½σ� in the bulk
T ½σ−1�, which is calculable by integration alone. We
remark that Widom also proposed an explicit expression
for the subleading term in T ½σ�−1 ¼ T ½σ−1� þOðLd−1Þ þ
oðLd−1Þ in one-dimensional case [43,59], and also in
higher-dimensional continuous case [44]. It is not used
in the current paper and therefore omitted. Szegő’s limit
theorem also naturally inherits an expression for the
subleading term OðLd−1Þ.
Next, we move on to Szegő’s limit theorem Eq. (29).

Since log detA ¼ tr logA, it is equivalent to the following
trace formula:

tr log ðT ½σ�Þ ¼ N
Z
Td

�
dθ
2π

�
d
tr log ½σðeiθÞ� þOðLd−1Þ;

ðA14Þ

where N is the number of lattice points in Ω. In order to
properly define a logarithm for the symbol, we must rely on
the homotopy path imposed earlier. Let σλðeiθÞ be one of
these paths, which is a continuous function from λ∈ ½0; 1�
to the space of invertible symbols. To ensure the path
independence of the integral in Eq. (A16) below, we further
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require that ½σ0λ; σ−1λ � ¼ 0. For example, a possible con-
struction of such a homotopy path in the context of taking
σðeiθÞ ¼ E − hðeμþiθÞ is as follows. We can find a con-
tinuous path Eλ connecting E0 ¼ E and E1 ¼ ∞ that
avoids the spectral range of hðeμþiθÞ (with Eλ ≠ E − 1),
then the path of symbol can be taken as

σλðeiθÞ ¼
Eλ − hðeμþiθÞ
Eλ − Eþ 1

: ðA15Þ

A consequence of trivial homotopy is that the winding
number of σ along any circle on Td is identically zero.
Moreover, it is an interesting question what role is played
by point-gap topological invariants other than the winding
numbers Eq. (17). Our current conjecture is that the (1D)
winding numbers are all that are related to the appearance
of NHSE. Mathematically, it means that Szegő’s limit
theorem holds even if other topological numbers are
nonzero. For example, the 3D winding number can protect
topological surface states in non-Hermitian band systems,
but it does not induce NHSE [62]. Possibly the subleading
terms in Szegő’s limit theorem will be helpful in quantify-
ing such surface states.
The logarithm in Szegő’s limit theorem is now defined as

log σ ¼
Z

1

0

σ0λσ
−1
λ dλ; ðA16Þ

log T ½σ� ¼
Z

1

0

T ½σ0λ�T ½σλ�−1dλ; ðA17Þ

where a prime denotes a derivative with respect to λ. Using
Eqs. (A12) and (A1), we deduce

log T ½σ� ≈
Z

1

0

T ½σ0λ�T ½σ−1λ �dλ

≈
Z

1

0

T ½σ0λσ−1λ �dλ

¼ T ½log σ�: ðA18Þ

The reason why we focus on the 1-norm becomes clear
now, since trA ≤ kAk1 for any matrix or operator A. Taking
the trace on both sides, Szegő’s limit theorem is proved,
because the trace of the matrix on the last line is by
definition

tr T ½log σ� ¼
X
x∈Ω

Z
Td

�
dθ
2π

�
d
tr log ½σðeiθÞ�

¼ N
Z
Td

�
dθ
2π

�
d
tr log ½σðeiθÞ�: ðA19Þ

APPENDIX B: INVARIANCE UNDER CHANGE
OF BASIS

An advantage of our method exploiting the amoeba and
the Ronkin function is that they are invariant under linear
transformations on the basis of the reciprocal space. This
fact guarantees that all physical outcomes are independent
of a specific choice of basis in the Brillouin zone. We show
this invariance in this appendix.
We examine the effect of changing the basis in the

reciprocal lattice. Let a basis of the reciprocal lattice be
fb1;…; bdg. An equivalent basis fb0jg is then related to
fbjg by

�
b1;…; bd

� ¼ �
b01;…; b0d

�
U: ðB1Þ

To ensure that the new basis spans the entire lattice, we
require all elements of Ud×d to be integers, and
detU ¼ �1. Thus, U is an element drawn from GLðd;ZÞ.
Let the real-space Hamiltonian be

H ¼
X
x;y

jxity−xhyj; ðB2Þ

where we suppress the intracell indices for notational
simplicity, but they can be restored without effort. The
Bloch Hamiltonian (also known as the symbol) then reads

hðβ1;…; βdÞ ¼
X
n

tnβ
n·b1
1 …βn·bdd : ðB3Þ

We may write it alternatively as a function of the complex
momentum k̃j ¼ −i log βj:

hðeik̃1 ;…; eik̃dÞ ¼
X
n

tn exp i
�
k̃1n · b1 þ � � � þ k̃dn · bd

�
:

ðB4Þ

After a U transformation, the new Bloch Hamiltonian
becomes

h0ðeik̃01 ;…; eik̃
0
dÞ ¼

X
n

tn exp i
�
k̃01n · b01 þ � � � þ k̃0dn · b0d

�
:

ðB5Þ

We immediately see that hðeik̃1 ;…; eik̃dÞ ¼ h0ðeik̃01 ;…; eik̃
0
dÞ

as long as k̃1b1 þ…k̃dbd ¼ k̃01b01 þ…k̃0db0d. In other
words, h is an invariant scalar function. It follows that h
is invariant if the wave vector transforms as

0
BBB@

k̃01

..

.

k̃0d

1
CCCA ¼ U

0
BBB@

k̃1

..

.

k̃d

1
CCCA: ðB6Þ
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Therefore, the amoeba (coordinates being μj ¼ −Im k̃j)
undergoes the same linear transformation U when we
change the basis. Its properties of physical importance,
especially the existence of the central hole, are hence
unchanged under a change of basis. Furthermore, for the
Ronkin function the following identity holds:

RdetðE−hÞðμÞ ¼ RdetðE−h0ÞðUμÞ; ðB7Þ

where μ stands for the column vector ðμ1;…; μdÞT. This is
because, by definition,

RdetðE−h0ÞðUμÞ ¼
Z
Td

�
dθ
2π

�
d
log j det ðE − h0ðeUμþiθÞÞj:

ðB8Þ

Renaming θ → Uθ and noting that the integration measure
is unchanged, we find the right-hand side to be equal
to RdetðE−hÞðμÞ.
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