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Given a renormalization scheme, we show how to formulate a tractable convex relaxation of the set of
feasible local density matrices of a many-body quantum system. The relaxation is obtained by introducing a
hierarchy of constraints between the reduced states of ever-growing sets of lattice sites. The coarse-graining
maps of the underlying renormalization procedure serve to eliminate a vast number of those constraints,
such that the remaining ones can be enforced with reasonable computational means. This process can be
used to obtain rigorous lower bounds on the ground-state energy of arbitrary local Hamiltonians by
performing a linear optimization over the resulting convex relaxation of reduced quantum states. The
quality of the bounds crucially depends on the particular renormalization scheme, which must be tailored to
the target Hamiltonian. We apply our method to 1D translation-invariant spin models, obtaining energy
bounds comparable to those attained by optimizing over locally translation-invariant states of n≳ 100

spins. Beyond this demonstration, the general method can be applied to a wide range of other problems,
such as spin systems in higher spatial dimensions, electronic structure problems, and various other many-
body optimization problems, such as entanglement and nonlocality detection.
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I. INTRODUCTION

A central task in quantum theory is the study of quantum
many-body systems. It is the key problem in condensed
matter, quantum chemistry, and high energy physics. In
addition, the nature of the quantum correlations arising in
such systems is a central topic in quantum information
(entanglement theory), as well as in quantum foundations,
where the validity of physical theories is tested through
the correlations they exhibit (such as Bell experiments, or
experiments testing the limits of quantum theory). However,
solving the quantum many-body problem is extremely
challenging, both analytically and computationally, because
of the rapid growth of the number of parameters that are
required to specify a state of the system—a vector in an

exponentially large Hilbert space—with the number of its
constituents.
However, the vast majority of these parameters are not

relevant for the study of any given system. At a fundamental
level, this is due to locality. In any experiment, we can only
probe a small number of properties, such as expectation
values of local (few-body) operators, correlations, or func-
tions thereof. At the same time, the laws governing physical
systems—encoded in their Hamiltonians—are also written
in terms of local operators. It is thus sufficient to study local
quantities in order to describe and predict the properties of
any given system. This holds true whether we are studying
the ground-state properties of a solid or a molecule, design-
ing a measurement protocol to certify the presence of
entanglement in a quantum computer, or characterizing
the correlations that can arise in a physical theory thatwe aim
to test.
It is thus appealing to drop the description of the system

in terms of an exponentially big state vector altogether and
instead characterize quantum many-body systems in terms
of their relevant observable correlations—the local margin-
als of the full distribution. We can do this, e.g., by working
directly with the set of expectation values of the relevant
observables or by formulating the problem in terms of the
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local reduced density matrices that encode all local expect-
ation values [1–3]. Clearly, this description is significantly
more efficient, as only the few quantities required to predict
the properties of interest need to be captured. However, in
this description, a new difficulty arises: The fact that these
marginals need to be consistent with a global quantum
mechanical wave function imposes highly nontrivial con-
straints on them [4–9]. The simplest such constraint is
likely that, for a spin-1=2 system, the Pauli expectation
values must satisfy hσxi2 þ hσyi2 þ hσzi2 ≤ 1, but signifi-
cantly more subtle constraints arise for many-body sys-
tems. In order to study a system based on its marginals, one
therefore must be able to characterize the set of values they
can—or cannot—take.
In order to get a better understanding of this phenome-

non in the quantum many-body context, let us consider a
concrete example: the antiferromagnetic Heisenberg spin-
1=2 chain H¼P

iðσixσiþ1
x þσiyσ

iþ1
y þσizσ

iþ1
z Þ=4. Its energy

(per site) is fully determined by the two-site reduced
density matrix ρ2. If we only impose that ρ2 itself is
physical (i.e., positive and normalized), we find that the
energy is minimized by the singlet state jΨ−i, with a value
of −0.75. The true ground-state energy per site is, however,
equal to 0.25 − logð2Þ ≈ −0.44. The result we obtained is
thus clearly unphysical. It requires each spin to be in a
maximally entangled singlet state with both of its neighbors
simultaneously, which is well known to be impossible by
the monogamy of entanglement [10].
Remarkably, this simple analysis can still be used to

obtain rigorous estimates for the ground-state energy. On
the one hand, it is clear that when we minimized over all
two-body states above, we disregarded certain constraints
on ρ2 that are needed to make it consistent with a global
state—i.e., we relaxed the problem. We therefore end up
with an energy that is below what can be obtained from any
physical wave function, that is, a lower bound to the true
ground-state energy. At the same time, we can also use the
solution above to construct an explicit Ansatz wave function
by placing the energetically optimal singlet state between
consecutive pairs of adjacent spins jΨ−i⊗jΨ−i⊗jΨ−i⊗…
(and possibly symmetrizing with respect to translation). This
is clearly a physicalAnsatz for themany-bodywave function,
and thus its energy (on average, −0.375 per site) is above the
optimal value—it yields an upper bound to the true ground-
state energy.
Both the upper and lower bounds can be systematically

improved by considering blocks of n sites and minimizing
the energy over all ρn. The resulting optimal energy gives
a hierarchy of increasingly better lower bounds to the
ground-state energy—known as Anderson bounds [11]—
while the Ansatz constructed from the optimal ρn corre-
spondingly gives increasingly better upper bounds. Clearly,
this analysis is not bound to the Heisenberg model but can
be applied to any other ground-state problem. Formally, we
can understand the two approaches as either enlarging

(through relaxation of constraints) or restricting (by speci-
fying an Ansatz) the space of two-body marginals we allow
in the optimization; see Fig. 1 for a detailed discussion.
What is the precision of the energy obtained this way, and

howdoes the computational cost depend on it? The lower and
upper bounds differ precisely by the way in which they treat
the interaction term across the boundary of n-site regions;
thus, the resulting energies per site differ by Oð1=nÞ. The
required computation task, on the other hand, is the diag-
onalization of ann-site system,which scales exponentially in
n. We thus find that the computational cost grows exponen-
tially in the desired accuracy—a rather unfavorable scaling.
This finding raises the question of whether more efficient
methods to obtain both upper and lower bounds exist.
For upper bounds, any variational wave function gives

rise to physically allowed marginals and thus to an upper
bound for the energy. Variational wave functions are
plentiful, tailored to the physics of the system at hand
(such as BCS [12], Laughlin [13], or Gutzwiller-projected
wave functions [14,15]). A particularly powerful and
versatile class of states consists of tensor network wave
functions, such as MPS, PEPS [16], TTNs [17], or MERA
[18], which can be understood as variational Ansätze
arising from various renormalization schemes [19].
Renormalization schemes, by construction, adapt to the
given problem in the way in which they select which
degrees of freedom to keep; correspondingly, variational
tensor network families come with a high degree of
versatility. Their ability to adapt to the problem at hand,
together with efficient numerical algorithms, has made
them the prime tool for the study of many quantum many-
body problems, most prominently in one dimension.
Importantly, the computational cost of tensor network
algorithms typically increases, at most, polynomially with
the desired accuracy, an exponential improvement over the
simple hierarchy introduced above.
For lower bounds, no comparably powerful approaches

are known. The development of semidefinite programming
[20]—an optimization framework that allows positivity
constraints to be imposed on matrices—opened the way to
formulating relaxations that significantly improve on the
Anderson-bounds hierarchy. However, such methods are
typically formulated by first deriving an exhaustive hierarchy
of constraints and thendiscarding all constraints that exceed a
certain level of complexity (e.g., as inRefs. [3,21–24]). Since
the complexity within the hierarchy generally grows expo-
nentially, typically all but the lowest-level constraints have to
be dropped.While for some systems even few constraints can
already produce useful lower bounds (e.g., Refs. [1,3,25]),
and cleverly selecting which constraints to keep from the
different levels of the hierarchy can lead to improvements
[26–28], those methods still exhibit the same exponential
growth of the computational cost with the desired accuracy
and therefore cannot match the performance of state-of-the-
art variational methods.

KULL, SCHUCH, DIVE, and NAVASCUÉS PHYS. REV. X 14, 021008 (2024)
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This situation is all the more unsatisfactory given the
fundamental importance of rigorous lower bounds. First, of
course, they are needed to complement variationally
obtained upper bounds, if one is interested in assigning
rigorous error bounds to numerically obtained estimates.
However, the importance of lower bounds extends to a far
more fundamental level: Any attempt at falsifying a
probabilistic physical theory—be it entanglement witnesses
rejecting a separable (i.e., not entangled) description [29],
Bell inequality violations ruling out a local hidden variable
model [30], or experiments designed to detect a breakdown
of quantum theory [31]—requires us to prove that the
experimentally measured values lie outside of the set of
values compatible with the theory at hand. Precisely such a
proof can be provided by rigorous lower bounds on the
minimum value attainable in the compatible set: An
observation of a lower value proves incompatibility.
Given this fundamental importance of precise and rigorous
lower bounds, the exponential scaling and lack of adapt-
ability of the existing methods for finding such bounds is
all the more pressing.
In this paper,we propose a general framework to construct

efficient relaxations of optimization problems for quantum
many-body systems, such as the ground-state problem. It
yields versatile families of relaxations, which can be con-
tinuously tuned and adapted to the specific scenario.

Crucially, their computation cost scales polynomially with
the desired accuracy and thus overcomes the exponential
scaling of existing methods. The framework’s construction
is guided by renormalization, which allows us to use the
established knowledge on renormalization transformations
of quantum systems to closely adapt the relaxation to the
problem at hand.More generally, our framework can be seen
as a comprehensive way to efficiently and systematically
relax sets of local many-body correlations with specific
global consistency conditions and is thus applicable to a
wide range of problems, including tasks such as entangle-
ment or nonlocality detection.
The key idea of our method is as follows. We start by

expanding the compatibility constraints on the physical
reduced density matrices as a hierarchy of increasingly
complex objects. However, unlike previous approaches,
which truncate this hierarchy at some level n, we first
compress (or “coarse-grain”) the objects in the hierarchy,
such that each of them becomes of constant (or otherwise
tractable) size. Thus, we circumvent the exponential growth
of complexity with the level n in the hierarchy, which allows
us to reach significantly larger values of n. The attainable
accuracy is thus no longer limited by n but rather by the
chosen compression scheme, including the degree of com-
pression. Unlike the static truncation at fixed n, this com-
pression can now be adjusted continuously, and it can be

(a) (b) (c)

FIG. 1. Set of marginals M and its inner (a) and outer (b) approximations. The set M consists of those local variables (e.g., reduced
density matrices on a fixed collection of subsystems) that are compatible with a global quantum state of the whole system, and it is
therefore a subset of the set of all possible local variables S (e.g., all tuples of positive-semidefinite matrices of trace 1). Finding the
ground-state energy E0 of a local Hamiltonian amounts to minimizing a linear function over the set of marginals M. This task is
intractable because the set is very complex. Approximate solutions can be obtained by minimizing the energy over approximations of
M: Variational Ansatz methods (a) minimize the energy function over inner approximations Vk ⊂ M, and produce upper bounds
vk ≥ E0. Relaxation methods (b) minimize the energy over outer approximations Rk ⊃ M, thereby obtaining lower bounds rk ≤ E0.
Numerical methods often feature hierarchies of approximating sets that provide tighter bounds as the level k is increased (e.g., increasing
the number of Ansatz parameters). This increases the computational complexity of the problem, and the efficiency of such methods is
then determined by the trade-off (c) they exhibit between the precision of the bound and the computational complexity of the problem
that has to be solved to produce it.
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tuned to the problemat hand, guided, e.g., by renormalization
ideas. Therefore, the relaxation can be adjusted to the specific
scenario, and much higher accuracies can be obtained.
We present a detailed realization of our method for the

central problemof finding the ground-state energy density of
a one-dimensional (1D) spin chain. We show that, in this
case, both matrix product states (MPS) and tree tensor
networks (TTN) provide suitable coarse-graining schemes,
corresponding toWilson’s numerical renormalization group
and real-space renormalization, respectively [19]. We test
the method on a range of paradigmatic spin chains, both
critical and gapped. We find that our relaxation method
yields lower bounds that are between 1 and 2 orders of
magnitude better than what could be reached with existing
approaches that truncate the hierarchy without compression
(where, for the same accuracy, the exact solution of a
problem involving on the order of 100 spins would be
required). We find renormalization to be a useful guide
for adjusting the coarse-graining scheme to the target
Hamiltonian; that is, using MPS or TTN describing varia-
tionally optimized wave functions for the compression
in our relaxation indeed works rather well. However, we
also demonstrate that further optimizing over these coarse-
graining maps can additionally enhance the accuracy of the
method. Our results provide rigorous lower bounds on the
energy densities of infinite spin chains and significantly
improve upon lower bounds previously obtained for such
systems using reduced-density-matrix theory and similar
approaches [3,24,26].
The method presented can be straightforwardly gener-

alized to ground-state problems in higher dimensions,
different geometries, or fermionic systems by choosing a
suitable renormalization scheme and the corresponding
tensor network Ansatz. The general framework underlying
the method is much broader and can be adapted to handle a
diverse set of problems, ranging from electronic structure
problems in condensed matter and quantum chemistry all
the way to entanglement [32–36] and nonlocality detection
[37–41] in many-body systems, as well as other situations
where the positivity of intractably large matrices, subject to
semidefinite constraints, has to be ensured [42–44].
In the paper, we aim to equally bridge two aspects: on the

one hand, a comprehensive presentation of the general
method, and on the other hand, a tangible discussion of its
application to 1D spin systems. The rest of this work is
structured as follows:
(1) Section II provides a concise summary of the

method: It derives the method specifically for the
case of 1D spin chains with MPS as coarse-graining
maps and provides a brief summary of the central
numerical findings. It is self-contained and can be
read as an “executive summary” of our work. After
reading Sec. II, one should be able to continue
directly to the sections of greatest interest.

(2) Section III introduces the general framework and
demonstrates its range of applicability. The general

formulation is presented in Sec. III A. It is set up
such that it can be particularized to a wide range of
scenarios, as well as to various underlying renorm-
alization schemes. Specific realizations of the gen-
eral framework then follow:
(a) In Sec. III B, we show how a renormalization

procedure based on tree tensor networks gives
rise to yet another family of relaxations for 1D
systems, distinct from the one derived in Sec. II.

(b) The application of the method to lattice spin
systems in higher dimensions is discussed in
Sec. III C.

(c) Section III D shows how our approach can be
implemented within the reduced-density-matrix
theory framework.

(d) Section III E discusses how our approach can be
applied to the problems of nonlocality and
entanglement detection.

(3) Section IV contains specialized aspects pertaining to
our numerical implementation, namely, how to opti-
mize coarse-grainers and how to certify solutions.

(4) Section V reports our numerical findings for 1D spin
chains and discusses the results and the methods
used in detail.

Finally, in Sec. VI, we present our conclusions.

II. A CASE STUDY: 1D TRANSLATION-
INVARIANT HAMILTONIANS

In this section, we introduce our method and illustrate its
key ideas by means of a concrete problem. Specifically, we
consider the paradigmatic problem of finding the minimum
energy density of a translation-invariant local Hamiltonian
on a 1D spin chain, also known as the 1D translation-
invariant local Hamiltonian problem. We see that, in this
scenario, a natural choice of coarse-graining maps to
relax the problem is given by translation-invariant MPS.
Remarkably, the same MPS that have been variationally
optimized to upper bound the ground-state energy perform
very well as coarse-graining maps for the lower bound as
well. We conclude the section by providing numerical
results that demonstrate the significant improvement in
accuracy that can be obtained through our method.

A. Setting up the problem
as a hierarchy of constraints

We start by rephrasing the ground-state-energy problem
as a hierarchy of semidefinite constraints. We want to find
the minimum energy density of a translation-invariant
Hamiltonian consisting of an identical nearest-neighbor
interaction term h, acting on every pair of consecutive spins
on an infinite chain. As the Hamiltonian is translation
invariant, we can restrict our minimization to states that
have the same symmetry. Because all the interaction terms
are identical, the energy density can be evaluated in terms
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of the two-body reduced density matrix ρð2Þ. To obtain
the true ground-state energy density of the infinite system,
we need to restrict ρð2Þ to be compatible with a global
translation-invariant (TI) state. We formally represent this
condition by ρð2Þ ← ψTI. (We do not elaborate on what it
means to be a state on the infinite chain, as, from now on,
we will only use rather obvious properties of the reduced
states of ψTI on finite regions.) With this notation, the
problem reads

ETI ≔ min
ρð2Þ;ψTI

Trðhρð2ÞÞ

s:t: ρð2Þ ≥ 0; Trðρð2ÞÞ ¼ 1;

ρð2Þ ← ψTI: ð1Þ

The existence of a global state ψTI implies that all of its
m-body reduced states ρðmÞ also exist and are compatible
with each other in the sense that ρðm−1Þ is obtained from
ρðmÞ by tracing out one spin. Since ψTI is assumed to be
translation invariant, tracing out the leftmost spin gives the
same reduced state as tracing out the rightmost one. We
denote this compatibility condition as

ρðm−1Þ ← ρðmÞ ⇔ ρðm−1Þ ¼ TrLðρðmÞÞ ¼ TrRðρðmÞÞ; ð2Þ

where TrL denotes the partial trace of the leftmost spin (and
similarly TrR). We call a state ρðmÞ with this property locally
translation invariant (LTI):

TrLðρðmÞÞ ¼ TrRðρðmÞÞ ðLTI conditionÞ: ð3Þ

We now rewrite Eq. (1) by explicitly including the
compatibility conditions between the reduced states ρðmÞ
of ψTI for m∈ f2;…; ng in the constraints as follows:

ETI ¼ min
fρðmÞg;ψTI

Trðhρð2ÞÞ

s:t: Trðρð2ÞÞ ¼ 1; ρðmÞ ≥ 0 for allm∈f2;…;ng;
ρð2Þ ← ρð3Þ← ρð4Þ←…← ρðn−1Þ← ρðnÞ ←ψTI: ð4Þ

B. First relaxation: Truncating the hierarchy

Next, we relax Eq. (4) by dropping the condition
requiring the existence of ψTI but keeping all the other
constraints. In other words, we require that the reduced
states ρðmÞ for m ¼ f2;…; ng exist and are compatible in
the sense of Eq. (2). In particular, this implies that ρðnÞ is
LTI. We refer to the resulting problem as the LTI problem
of size n and its solution as ELTIðnÞ:

ELTIðnÞ ≔min
fρðmÞg

Trðhρð2ÞÞ

s:t: Trðρð2ÞÞ ¼ 1;

ρðmÞ ≥ 0; for all m∈ f2;…; ng;
ρðm−1Þ ¼ TrLðρðmÞÞ ¼ TrRðρðmÞÞ;

for all m∈ f3;…; ng: ð5Þ

By removing the constraint ρðnÞ ← ψTI, we allow more
states fρðmÞg to be considered in the minimization and
therefore obtain a lower bound, i.e., ETI ≥ ELTIðnÞ for all
n ≥ 2. The resulting optimization problem, Eq. (5),
involves matrices of finite sizes and can be solved numeri-
cally using semidefinite programming (SDP) [20]. For an
LTI state ρðnþ1Þ, Eq. (3) implies that ρðnÞ is also LTI; we
therefore have that the sequence ðELTIðnÞÞn is nondecreas-
ing. Furthermore, it converges to the exact energy density
in the limit n → ∞.
The analysis so far suggests the following strategy for

solving Eq. (1): Solve Eq. (5) while keeping as many states
ρðmÞ as we can fit in memory, up to some mmax.
Unfortunately, this approach does not lead to accurate
lower bounds because the resources needed to solve the
resulting SDP scale exponentially with mmax.

C. Second relaxation: Applying coarse-graining
to the constraints

So far, we have shown that the LTI problem, Eq. (5), is a
relaxation of the translation-invariant local Hamiltonian
problem, Eq. (1). We also pointed out that, to obtain tight
lower bounds, one has to solve the LTI problem for n ≫ 1,
which is not a tractable task due to the exponentially large
state ρðnÞ appearing in Eq. (5). To overcome this impasse,
we suggest relaxing the hierarchy of constraints appearing
in the LTI problem, which we have formally written as
ρð2Þ ← ρð3Þ ← … ← ρðnÞ, in a smarter way than just trun-
cating it at a low level mmax ≪ n. In particular, we would
like to keep some of the constraints arising due to the state
ρðnÞ rather than discarding them completely. To achieve this
goal, we apply a renormalization procedure to the states
ρðmÞ. We now explain how one constraint of the form
ρðm−1Þ ← ρðmÞ can be relaxed and compressed by applying
a coarse-graining map. In the next subsection, we explain
how this can be iterated to relax and compress the entire
LTI problem, Eq. (5).
To explain the following steps, we rely on graphical

tensor notation, in which the constraints ρðm−1Þ ¼
TrLðρðmÞÞ ¼ TrRðρðmÞÞ appearing in Eq. (5) are written
as follows (we focus on m ¼ 3, 4, 5):

LOWER BOUNDS ON GROUND-STATE ENERGIES OF LOCAL … PHYS. REV. X 14, 021008 (2024)

021008-5



ð6Þ

where the partial trace is represented by connecting the
corresponding legs of the tensor.
Now, consider the first two rows in Eq. (6). The

following steps form the elementary building block of
our procedure and are described in Eq. (7). First, we apply
to both sides of each equation a coarse-graining map
W2∶ Cd ⊗ Cd → Cχ , which maps two spins of dimension
d into one new site of dimension χ, such that, in both rows,
the two central spins of ρð4Þ are acted upon, leading to the
equations in the center of Eq. (7).

ð7Þ

(In the diagrams, d is indicated by thin lines and χ by
thick ones.) Next, we can compress the coarse-grained
relations, as described by the second arrow in Eq. (7): We
notice that after the coarse-graining, ρð3Þ is related only to
the image of ρð4Þ under the coarse-graining map C2ðρð4ÞÞ ¼
ðI ⊗ W2 ⊗ IÞρð4ÞðI ⊗ W†

2 ⊗ IÞ. We can therefore encode
the coarse-grained constraints using a smaller-dimensional
variable ωð4Þ.
We have thus formulated a relaxation of the constraints

on ρð3Þ in terms of a smaller variable. In the example we just
described, the size reduction was not so significant because
we only coarse-grained two spins. However, by iterating
the above coarse-graining and compression steps as we will
now explain, we can drastically reduce the overall size of
the problem.

D. Iterative coarse-graining:
A renormalization procedure

The next step is to iterate the above-described coarse-
graining and compression in order to coarse-grain all the
states ρðmÞ up to m ¼ n for large values of n. To do so, we
require the coarse-graining maps to satisfy certain compat-
ibility conditions that we now explain. Consider the
constraints involving ρð4Þ and ρð5Þ [the last two rows in
Eq. (6)]. In order to compress ρð5Þ, we need to apply a three-
body coarse-graining map W3. We would like to have the
following:

ð8Þ

However, we notice that we may no longer write conditions
involving ρð4Þ as we have already compressed it and
replaced it with ωð4Þ when we treated the first two
constraints. In order to continue, we thus need to be able
to express the left-hand side of Eq. (8) in terms of ωð4Þ,
which appears in Eq. (7). We can achieve this goal if the
coarse-graining maps W3 and W2 are related as follows:

ð9Þ

i.e., if we require the existence of two additional
coarse-graining maps, L2 and R2, that act on the
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output of W2 together with an additional spin on
the left or right side, respectively. Given maps that satisfy
Eq. (9), we can substituteW3 in Eq. (8) with the appropriate
expression, such that W2 acts on the two central spins in

ρð4Þ, as shown in Eq. (10). Then, the left-hand side of
Eq. (8) can be expressed in terms of ωð4Þ and L2

(respectively, R2), and the right-hand side—in terms
of ωð5Þ:

ð10Þ

We can continue in this fashion and coarse-grain all the
states up to ρðnÞ if, for all m ¼ 2;…; n − 3, we have
[analogously to Eq. (9)]

Wmþ1 ¼ Rm ∘ ðWm ⊗ IÞ ¼ Lm ∘ ðI ⊗ WmÞ: ð11Þ

E. Ansatz for the coarse-graining maps:
Matrix product states

We have just shown that we can coarse-grain and
compress all the states ρðmÞ appearing in Eq. (5) consis-
tently if the coarse-graining maps satisfy Eq. (11). There is
a simple way to satisfy Eq. (11): Uniform MPS are
translation-invariant states encoded by a single rank-3
tensor A with dimensions ðD; d;DÞ, where d is the
dimension of each spin and D is the so-called bond
dimension (or virtual dimension). Contracting m copies
of the tensor along the bonds results in a map from m spins

to the bonds at the edges. Representing the MPS tensor A
by a circle and the bond indices by red lines, we define the
maps WA

m as follows (e.g., for m ¼ 3):

ð12Þ

In this case, the coarse-graining dimension χ equals D2.
The maps Lm (and, respectively, Rm) are then chosen to be
the same for all m: Lm ≡ LA (and Rm ≡ RA), and they act
by contracting an additional MPS tensor from the left (and,
respectively, from the right) and as the identity on the
other bond.
With this choice of maps, we apply the above-described

steps to the LTI problem, Eq. (5), to obtain the following
(shown up to m ¼ 5):

ð13Þ
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For m > 5, the last two constraints on the right side of
Eq. (13) are repeated between the pairs of states
ωðm−1Þ;ωðmÞ for m ¼ 6;…; n. The final relaxation is then
obtained by replacing the constraints in Eq. (5) starting

from m ¼ 3 by the ones in the right-hand side of Eq. (13)
and, in addition, demanding ωðmÞ ≥ 0 for m ¼ 4;…; n. For
any MPS tensor A, we obtain the following relaxation
of Eq. (5):

Erelax
MPSðAÞðnÞ ≔ min

ρð3Þ;ωðmÞ
Tr(ðh ⊗ IÞρð3Þ)

s:t: Trðρð3ÞÞ ¼ 1;

ρð3Þ ≥ 0;ωðmÞ ≥ 0; for all m∈ f4;…; ng;
TrLðρð3ÞÞ ¼ TrRðρð3ÞÞ;
WA

2 ⊗ Iðρð3ÞÞ ¼ TrLðωð4ÞÞ;
I ⊗ WA

2 ðρð3ÞÞ ¼ TrRðωð4ÞÞ;
LA ⊗ IðωðmÞÞ ¼ TrLðωðmþ1ÞÞ; for all m∈ f4;…; n − 1g;
I ⊗ RAðωðmÞÞ ¼ TrRðωðmþ1ÞÞ; for all m∈ f4;…; n − 1g; ð14Þ

where WA
2 ð•Þ ≔ WA

2 ð•ÞðWA
2 Þ† and where WA

2 is given by
Eq. (12); similarly, RA and LA act as RAð•ÞðRAÞ† and
LAð•ÞðLAÞ†, respectively [see the last two rows on the right-
hand side of Eq. (13)]. Note that every state ωðmÞ has
dimensions d2D2 × d2D2, where D is the bond dimension
of the MPS, and thus the memory scaling of the relaxation
is Oðnd4D4Þ.
The error of the lower bound obtained with the relaxed

constraints, Eq. (13), depends on the MPS tensor A used to
perform the coarse-graining. In the resulting SDP, the
entries of the MPS tensor appear as hyperparameters,
which can be optimized in order to tighten the lower
bound. The bond dimensionD determines the dimension of
the subspace to which the original constraints are restricted
due to the action of the coarse-graining maps. Increasing D
allows us to keep more constraints.
ViewingMPS as describing coarse-grainingmaps is by no

means a new insight. This idea lies at the heart of the density
matrix renormalization group algorithm [45,46], where the
MPS produced at each iteration serves to coarse-grain the
Hamiltonian in the next one. This connection suggests that an
MPS approximation to the ground state, when used in our
scheme, might give rise to a tight relaxation for the same
Hamiltonian.
Following this reasoning, in our implementation, we used

the tensor describing the MPS ground-state approximation
obtained from a variational algorithm based on a uniform-
MPSAnsatz—thevariational-uniform-MPS (VUMPS) algo-
rithm [47]. The results that we now present demonstrate that
this heuristic choice performed very well. (For further
analysis of the choice of MPS tensor for the relaxation,
refer to Sec. V D below.)

F. Numerical results

Let us now demonstrate the power of the method through
the numerical study of some selected spin models. The

models presented here serve to demonstrate the general
performance of the method within the framework of this
introductory section; results on a wider range of models,
together with a more detailed discussion of the numerical
findings and an analysis of the performance of the method,
can be found in Sec. V.
In the following, we present results obtained for two

paradigmatic spin-1=2 models: the critical transverse-field
Ising (TFI) model and the isotropic antiferromagnetic
Heisenberg chain. For each model, we solved the relaxation
in Eq. (14) with the coarse-graining maps constructed from
a variationally optimized MPS, A⋆

D, of bond dimensions D,
for various values of n and D. The obtained energies are
denoted by Erelaxðn;DÞ and are equal to Erelax

MPSðA⋆
DÞðnÞ of

Eq. (14). We then determined their deviations from the
exact ground-state energy density ETI: ΔErelaxðn;DÞ ≔
ETI − Erelaxðn;DÞ ≥ 0.
For comparison, we also computed the LTI energy

density ELTIðnÞ of the exact hierarchy truncated at the
nth level, by solving Eq. (5) for attainable values of n, and
the corresponding deviation ΔELTIðnÞ ≔ ETI − ELTIðnÞ
from the exact value. Since our method is a relaxation
of the LTI problem, Eq. (5), it holds that ΔELTIðnÞ ≤
ΔErelaxðn;DÞ for all D.
Figure 2 shows ΔErelaxðn;DÞ for different values of D

(colored dashed and dash-dotted lines), as well asΔELTIðnÞ
(black line with circles) as a function of n for the TFI model
[panel (a)] and the Heisenberg model [panel (b)]. We
observe that the accuracy obtained from the exact hierarchy
truncated at level n, ΔELTI, displays an algebraic decay n−α

with α ≈ 2; however, one is limited to rather small n and
thus low accuracies. The curves obtained from our relax-
ation initially follow the same curve as ΔELTI and in fact
extrapolate it to larger n, and as n is increased, they
eventually saturate at some ΔErelaxðn ¼ ∞; DÞ. It is

KULL, SCHUCH, DIVE, and NAVASCUÉS PHYS. REV. X 14, 021008 (2024)

021008-8



immediately evident from the plots that the accuracy
obtained from our relaxation is between 1 and 2 orders
of magnitude higher than that obtained from the LTI
hierarchy. From the plots, we can estimate the effective
n≡ neffðDÞ required to reach the same accuracy from the
exact LTI hierarchy (by linear extrapolation of the latter in
the log-log plot); we find neffð6Þ ≃ 120 for the critical TFI
model, and neffð7Þ ≃ 60 for the Heisenberg antiferromag-
net, both significantly beyond what can be achieved with-
out the relaxation.
The same features were observed in all other models on

which we tested our method; in fact, for gapped models, the
observed convergence was even more rapid. For an over-
view of all results and a detailed discussion of the various
findings and numerical methods, we refer the reader
to Sec. V.

III. GENERAL METHOD

In Sec. II, we studied the ground-state problem of a 1D
spin chain. We have shown how the constraints imposed on
a local reduced density matrix by a global state can be
organized in a hierarchical fashion due to the many-body
structure of the problem. The hierarchy involves constraints
arising from reduced states of increasing groups of spins.
By applying a renormalization procedure to this hierarchy,
we were able to compress the ground-state-energy problem.
Choosing the renormalization procedure according to the

given target Hamiltonian allowed us to efficiently compute
tight lower bounds on its ground-state energy.
However, the many-body structure of the constraints,

on which our renormalization approach hinges, is not a
property that is particular to 1D spin systems. In this
section, we present the structure of our method in the
most general terms and provide blueprints for its imple-
mentation in a wide range of scenarios. As we will see,
the same ideas that we implemented in the 1D trans-
lation-invariant setting can be applied to lattice systems
in any dimension, or with other connectivity graphs.
They can be applied to fermionic or bosonic particles and
even to systems that do not follow the laws of quantum
mechanics. Furthermore, the renormalization procedure
we followed in Sec. II, by which we coarse-grained the
spin chain one spin at a time, is also just one possible
choice: Other renormalization flows fit within our gen-
eral framework as well, and each such flow gives rise to a
different hierarchy of relaxations.
We first present the general formulation of the method in

Sec. III A. We generalize the procedure we followed in
Sec. II while making minimal assumptions on the structure
or even kind of system. However, the purpose of Sec. III A is
not merely to provide an abstract reformulation of what was
already presented above; rather, the purpose is to highlight
the essential ingredients and the conditions that should be
verified for setting up similar renormalization-based relax-
ations invarious settings. In the rest of this section, we follow
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(b) S=1/2 Heisenberg
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FIG. 2. Distance ΔErelax of the lower bounds to the ground-state energy density, obtained by solving the MPS-based relaxation
outlined in Sec. II, to the true value, for (a) the transverse-field Ising model at the critical point and (b) the spin-1=2 Heisenberg
antiferromagnet. The differently colored dashed and dash-dotted lines show results obtained using MPS with different bond dimensions
D (leading to better relaxations). The black circles give the energy obtained by solving the exact hierarchy up to n sites, whose
computational cost grows exponentially in n; it displays an algebraic scaling. The MPS relaxations approximate its behavior
increasingly well as D increases, at a fraction of the computation cost (which scales algebraically in the effective n), thus allowing us to
reach accuracies between 1 and 2 orders of magnitude higher.
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the prescription outlined in Sec. III A while applying our
general method to different settings.
In Sec. III B, we demonstrate how a block-spin renorm-

alization flow gives rise to yet another relaxation method
for 1D TI systems. In Sec. III C, we discuss how our
method can be applied to higher-dimensional spin-lattice
systems, and we analyze which renormalization flows are
suitable for this purpose. In Sec. III D, we introduce the
reduced-density-matrix-theory (RDMT) relaxation frame-
work, whose scope of application includes any quantum
mechanical system with local interactions, and we show
how to implement our method within this framework.
Finally, in Sec. III E, we explain how our method can be
used to boost the performance of detection and certification
methods in quantum information theory.

A. General correspondence between renormalization
flows and hierarchies of relaxations

Let us abstract what we discussed in Sec. II. Our goal there
was to minimize an objective function, namely, the energy
density of a 1D TI quantum system. This energy density was
a linear function of ρð2Þ, the two-particle reduced density
matrix of the 1D TI spin chain. Correspondingly, the starting
point of a general formulation of the technique described in
Sec. II is a linear functionH of a small number of parameters
of an otherwise large (or infinite) physical system.
Depending on the problem and the representation we

choose to work in, those parameters could be the entries of
a reduced density matrix (as in Sec. II) or a collection of
such reduced density matrices, as in the case whenH is not
translation invariant; they could be several expectation
values that appear in H, e.g., the terms hσx ⊗ σxi,
hσy ⊗ σyi, and hσz ⊗ σzi that appear in the Heisenberg
S ¼ 1=2 Hamiltonian; or they could be some other repre-
sentation of local states. Whatever the case may be, we
denote these local parameters by Θ0.
Like in the 1D example, our goal is to minimize HðΘ0Þ

over all local data Θ0 compatible with some global state Ψ;
we represent this constraint formally by Θ0 ← Ψ and say
that Ψ is a realization of Θ0. The problem we wish to solve
is thus

min
Ψ∈K

HðΘ0Þ
such that Θ0 ← Ψ; ð15Þ

where the optimization is over the set of all “physical
states” Ψ∈K, a notion that is also problem specific: K
could be the entire global Hilbert space; a symmetric
subspace thereof (as in Sec. II, where we restricted the
optimization to translation-invariant states); a convex set of
states with a property of interest, such as a set of separable
(i.e., not entangled) states; or the state space of a certain so-
called general probabilistic theory (not necessarily quan-
tum theory; see Sec. III E below).

In our 1D example, we observed that, if ρð2Þ admits a TI
quantum realization Ψ, then there exists a sequence of
quantum states of increasing size ðρðmÞÞm such that
ρðm−1Þ ¼ TrmðρðmÞÞ. Each such state ρðmÞ is not an arbitrary
matrix; on the contrary, it has to belong to the set SLTI

m of
positive-semidefinite and locally translation-invariant
matrices [see Eq. (3)] of trace one. Note that the proposition
ρðmÞ ∈SLTI

m can be verified efficiently (in polynomial time
in the size of ρðmÞ). We therefore say that SLTI

m is a
tractable set.
In a general setting, we similarly assume that the

constraint “Θ0 ← Ψ, for some physical Ψ” can be broken
down into a (finite or infinite) hierarchy of conditions that
hold between objects of increasing size. More specifically,
we assume that there exists a sequence of (tractable) convex
sets ðSmÞnm¼1 (where we allow n ¼ ∞) and a sequence of
marginalization maps ðTrmÞnm¼1, i.e., maps that discard
information, with the following property: For all Θ0

admitting a physical realization, there exists a sequence
ðΘmÞnm¼1, with Θm ∈Sm, for m ≥ 1, such that

Θ0←
Tr1 Θ1←

Tr2 Θ2←
Tr3

…←
Trn Θn: ð16Þ

Wemight further assume that this hierarchy of conditions is
complete, i.e., that Eq. (16) is both a necessary and
sufficient condition for Θ0 having a physical realization
(this was the case in Sec. II). However, this assumption is
unnecessary for what comes next.
Since the size of Θm might scale badly withm (in the 1D

example, it scales exponentially withm), it is impractical to
optimizeHðΘ0Þ via the hierarchy of conditions (16), as was
proposed in Eq. (4). In the 1D example, we avoided this
predicament by introducing a coarse-graining transforma-
tion Wmð•Þ ≔ Wmð•ÞW†

m that, acting on all the qubits of
ρðmþ2Þ but the first and the last, mapped thism-body density
matrix to the four-partite (and low-dimensional) matrix
ωðmþ2Þ. Our choice of the coarse-graining mapWm ensured
that ωðmþ2Þ is also a state (up to a normalization).
Following the same idea, for a general setting, we require

a sequence of coarse-graining transformations ðCmÞnm¼1,
which map each “state” Θm ∈Sm to some Ωm ∈S0

m, where
S0
m is the set of states of the coarse-grained system. We

choose the sets S0
m such that their dimension grows at most

polynomially with m. The maps Cm are thus to be under-
stood as physical coarse-graining operations. This notion,
of course, depends on the definition of what are valid
states in any given scenario. As we will see, for many
scenarios of interest, the set of physical operations is easy to
characterize.
Our next aim is to find relations between the coarse-

grained variables Ωm that capture some of the relations
between the variables Θm [Eq. (16)]. More precisely, in
order to obtain relaxation of the original problem, we need
to find relations that follow from (and are therefore weaker
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than) Eq. (16). This goal can be achieved by imposing
certain compatibility conditions between the maps Cm and
the marginalization maps Trm. In order to formulate those
conditions in the general setting, we look back at Eq. (10)
and analyze more closely the interplay between coarse-
graining and marginalization maps there.
First, we realized that we need to express W3 as the

composition of I ⊗ W2 (respectively, W2 ⊗ I) with the
coarse-graining map L2 (respectively, R2) [see Eq. (9), and
similarly for all m ≥ 2 in Eq. (11)]. In the general case, we
therefore require that the maps ðCmÞm form a renormaliza-
tion flow, i.e., that each Cmþ1 implements one coarse-
graining step more than its predecessor Cm. Second,
looking at what happens to ρð5Þ in Eq. (10), we note that,
in order to substitute it with ωð5Þ we used the fact that the
partial trace maps commute with ðI ⊗ W3 ⊗ IÞ. Overall,
the relation we used in Eq. (10) can be formally written as

�
I ⊗ R2

L2 ⊗ I

�
∘ ðI ⊗ W2 ⊗ IÞ ∘ TrR=L

¼
�
Tr0R
Tr0L

�
∘ ðI ⊗ W3 ⊗ IÞ; ð17Þ

where TrR=L means TrR or TrL as appropriate [TrR was
used in the first row of Eq. (10) and TrL in the second row]
and where we introduced the Tr0 notation to emphasize that
Tr and Tr0 act on systems of different dimensions.
By analogy, in the general case, we require that, for

m ≥ 1, there exists a coarse-graining map Bm and a
marginalization map Tr0m such that

Bm ∘ Cm ∘ Trmþ1 ¼ Tr0mþ1 ∘ Cmþ1; ð18Þ

where the maps in Eq. (18) are in 1-to-1 correspondence
with those in Eq. (17).
Given maps Cm, Bm, Trm, and Tr0m that satisfy Eq. (18),

we can perform the analogue of the procedure described in
Sec. II D: Namely, we apply each side of Eq. (18) to Θmþ1

and invoke the relation Θm ¼ Trmþ1Θmþ1 on the lhs, which
leaves us with

Bm(CmðΘmÞ) ¼ Tr0mþ1(Cmþ1ðΘmþ1Þ): ð19Þ

Then, by substituting all CmðΘmÞ by the compressed states
Ωm in the above, we obtain the desired relation:

BmðΩmÞ ¼ Tr0mþ1ðΩmþ1Þ: ð20Þ

We can now put everything together. Suppose that
Eq. (16) defines a relaxation of the set of physical local
parameters Θ0 and that we find a renormalization flow with
maps ðCm; BmÞm and marginalization maps ðTr0mÞm satisfy-
ing Eq. (18). Then, if we start with C1 ≔ I (and thus
Ω1 ¼ Θ1), the following optimization problem is a relax-
ation of the original minimization task (15):

min
Θ0;Ωm

HðΘ0Þ;

s:t: Θ0 ∈S0;

Θ0 ¼ Tr01ðΩ1Þ;
BmðΩmÞ ¼ Tr0mþ1ðΩmþ1Þ; ∀m∈ f1;…; n − 1g;
Ωm ∈S0

m; ∀m∈ f1;…; ng: ð21Þ

Since Bm;Tr0m are linear maps and the sets S0;S0
1;S

0
2;…

are convex, we find that the problem variables Θ0; fΩmgm
in Eq. (21) are optimized over a convex region. In addition,
the objective function H is linear (and therefore convex) on
the variables Θ0. The relaxation (21) is thus a convex
optimization problem [48], and, because of the tractability
of the sets S0;S0

1;S
0
2;…, we can use general algorithms

from convex optimization theory to tackle it. If, like in our
1D example in Sec. II, the sets S0;S0

1;S
0
2;… happen to be

defined through affine and positive-semidefinite con-
straints, then Eq. (21) defines a semidefinite program [20].
Note that the coarse-graining mapsCm appear in Eq. (21)

as hyperparameters. The compatibility relation in Eq. (18),
which was the key to arriving at the relaxation in Eq. (21),
typically does not determine the maps Cm completely. On
the contrary, it leaves us with many free parameters that we
can vary in order to tighten the lower bound given by
Eq. (21). In the example in Sec. II, we see that any uniform
MPS gives rise to suitable coarse-graining maps. In
Secs. III B and III C, we show further examples of how
tensor networks provide us with renormalization flows
compatible with Eq. (18).
Equipped with this general prescription, we now use

it to implement further examples of renormalization-based
relaxations.

B. Block-spin renormalization: Relaxations using
tree tensor networks

In this section, we give another example of a renormal-
ization flow that gives rise to a relaxation hierarchy, in line
with the general correspondence that we described in
Sec. III A. We consider a block-spin renormalization pro-
cedure and apply it to the same 1DLTI problem from Sec. II.
In Sec. V, we present the full benchmarking results of both
relaxationvariants—theMPS-based one fromSec. II as well
as the block-spin (or tree-tensor-network) based relaxation
that we now develop. The relaxation based on block-spin
renormalization is presented here for the 1D case, but it
admits straightforward generalizations to higher spatial
dimensions. We discuss this point further in Sec. III C.
We first consider the exact n-body LTI constraint that

was our starting point in Sec. II: ρð2Þ ← ρðnÞ, but this time
we start from n ¼ 2N and break the constraint down into a
different sequence of constraints, one that relates states that
double in size at each step:
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ρð2Þ ← ρð4Þ ← ρð8Þ ← … ← ρð2N−1Þ ← ρð2NÞ: ð22Þ

If we keep the full LTI symmetry of the state ρð2NÞ, we
would have to impose the equivalence of all of the ways in
which ρð2N−1Þ can be obtained from ρð2NÞ (there are 2N−1 þ 1
of them). However, since in this renormalization schemewe
will iteratively map each pair of spins into one blocked
spin, we will not be able to keep the LTI property fully:
After blocking two spins, we can only consider translation
by two sites, after blocking twice, by four, and so on.
Our starting point for this scheme is therefore a relax-

ation of the 2N-body LTI problem where we impose only
the constraints that are compatible with the block coarse-
graining; namely, we require that for all k ¼ 2;…; N − 1,
the following three ways of obtaining ρð2k−1Þ from ρð2kÞ are
equivalent (see also the left side of Fig. 3):

ρð2k−1Þ ¼ TrABðρð2kÞÞ ¼ TrADðρð2kÞÞ ¼ TrCDðρð2kÞÞ; ð23Þ

where TrAB and TrCD trace out half of the spins on the left
(1;…; 2k−1) and on the right (2k−1 þ 1;…; 2k), respec-
tively, and TrAD traces out everything but the 2k−1 spins in
the middle.
Next, we coarse-grain each state ρð2kÞ by applying k − 2

layers of block coarse-grainingmapsVðk−2Þ
8→4 ∘ … ∘ Vð1Þ

2k→2k−1
,

where, at each layer, the system’s size is halved (as indicated

by the subscript 2k → 2k−1) until we end upwith a four-body
state. Each layer is composed as follows:

VðlÞ
2k→2k−1

¼ ⊗
2k−1

j¼1
WðlÞ; ð24Þ

withWðlÞ a completely positive map that maps two (possibly
already blocked) spins into one blocked spin; i.e.,WðlÞ maps
states onCDl−1 ⊗ CDl−1 to states onCDl , whereD0 ¼ d is the
dimension of the physical spins and Dl is the dimension of
the blocked spins after l layers of coarse-graining.We denote
by ωð2kÞ the resulting states, which are all four-partite states
with local dimensions Dk−2,

ωð2kÞ ¼ Vðk−2Þ
8→4 ∘ … ∘ Vð1Þ

2k→2k−1
ðρð2kÞÞ: ð25Þ

Each state ωð2kÞ satisfies the LTI property TrLðωð2kÞÞ ¼
TrRðωð2kÞÞ [as in Eq. (3)], which captures the invariance
of ρð2kÞ with respect to translations by 2k−2 spins.
To obtain a relaxation in terms of ðωð2kÞÞk, we follow the

prescription in Sec. III A, where the key step is making sure
that Eq. (18) is satisfied. We now turn to this equation.
Having chosen the coarse-graining maps Cm as in Eq. (25)
and the marginalization maps Tr as in Eq. (23), we see that
Eq. (18) in our setting is to be understood as follows:
Taking the partial trace of ωð2kÞ with respect to, say, the
leftmost two blocked spins should give the same result as

FIG. 3. Graphical representation of the tree-tensor-network-based relaxation scheme for n ¼ 16. The left side of the figure shows the
constraints from Eq. (23) before coarse-graining is applied: Each state ρð2kÞ is obtained from the state above it in three different ways by
tracing out the appropriate spins, as indicated by the curved black arrows. On the right side, the coarse-grained four-partite states ωð2kÞ

are represented by the dashed rectangles. Each ωð2kÞ is obtained from ρð2kÞ by applying the Ck maps that consist of layers of 2-to-1
coarse-graining maps indicated by inverted “Y” shapes; see Eq. (24). The maps Bk−1 then implement an additional coarse-graining step

on ωð2kÞ. The relaxed constraints between the states ωð2kÞ, Eq. (27), are indicated by ¼! .
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first tracing out the 2k−1 leftmost spins in ρð2kÞ and then
coarse-graining the resulting state until only two blocked
spins remain. The equivalence between the two different
orders of operations (first partial trace and then coarse-grain
or vice versa) can be ensured by choosing the maps WðlÞ

composing each layer VðlÞ to be completely positive and
trace preserving (CPTP) rather than just completely posi-
tive. In this setting, Eq. (18) thus reads

ðWðk−2Þ ⊗ Wðk−2ÞÞ ∘ ðVðk−3Þ
8→4 ∘ … ∘ Vð1Þ

2k−1→2k−2
Þ ∘

0
B@

TrAB
TrAD
TrCD

1
CA

¼

0
B@

Tr0AB
Tr0AD
Tr0CD

1
CA ∘ ðVðk−2Þ

8→4 ∘ … ∘ Vð1Þ
2k→2k−1

Þ; ð26Þ

where Tr0AB;Tr
0
AD, and Tr

0
CD act on the four-body state ωð2kÞ

and trace out spins (1, 2),(1, 4), and (3, 4), respectively. The
constraints on ωð2kÞ are then obtained according to Eq. (20)
and read

ðWðk−2Þ ⊗ Wðk−2ÞÞωð2k−1Þ ¼ Tr0ABðωð2kÞÞ; ð27Þ

where, because of the LTI property of ωð2kÞ, it does not
matter whether we use Tr0AB, Tr

0
AD, or Tr

0
CD.

Figure 3 shows the initial states ρð2kÞ for k ¼ 2, 3, 4 and
the constraints between them [Eq. (23)]. The figure further
shows how the constraints between the coarse-grained
states ωð2kÞ are obtained through Eq. (26). We thus arrive
at the following relaxation:

Erelax
TTNðWÞð2NÞ ≔ min

ρð4Þ;ωð2kÞ
Tr(ðh ⊗ IÞρð4Þ)

s:t: Trðρð4ÞÞ ¼ 1;

ρð4Þ ≥ 0; ωð2kÞ ≥ 0; for all m∈ f3;…; Ng;
TrLðρð4ÞÞ ¼ TrRðρð4ÞÞ; TrLðωð2kÞÞ ¼ TrRðωð2kÞÞ; for all m∈ f3;…; Ng;
ðWðk−2Þ ⊗ Wðk−2ÞÞωð2k−1Þ ¼ Tr0ABðωð2kÞÞ; for all m∈ f3;…; Ng; ð28Þ

which depends on the choice of coarse-graining mapsWðlÞ.
In our numerical implementation, we solved the relaxation
in Eq. (28) starting with coarse-graining maps constructed
from variationally optimized tree-tensor-network states
obtained with the algorithm in Refs. [17,49]. We then
further optimized the maps following the procedure de-
scribed in Sec. IV B. The results of the implementation of
this method are presented in Sec. V. In Appendix A, we
explain how we constructed the initial coarse-graining
maps for this scheme (which have to be CPTP maps) from
variational tree-tensor-network states.

C. Spin systems in higher spatial dimensions

Our applications of the method in the 1D setting suggest
straightforward generalizations to higher dimensions. First,
consider the case of a square 2D lattice. The most obvious
generalization of our 1D implementation in Sec. II is to use
projected entangled-pair states (PEPS)—the 2D analogue
of MPS—for the coarse-graining. However, this approach
would quickly run into the following problem: As we
coarse-grain larger and larger regions R by contracting
more PEPS tensors, the coarse-graining dimension grows
as Dj∂Rj, where j∂Rj is the length of the boundary of R.
Thus, after applying the coarse-graining procedure, we
would still end up with a problem that grows exponentially

in size as the region R is increased. Moreover, the smallest
region for which coarse-graining with PEPS would reduce
the dimension, i.e., for which djRj > Dj∂Rj, is itself rather
large (for both D and d equal to 2, one would need to start
from a 5 × 5 square), making the problem intractable for
standard SDP software.
The tree-tensor-network variant of the method does not

suffer from this drawback. The scheme we presented for the
1D case can be directly applied in the setting of a square 2D
lattice if in Eq. (23) we replace the states supported on
chains of spins f1;…; 2kg with ones supported on rec-
tangles fði; jÞji¼ 1;…;2k; j¼ 1;…;2k

0g. Coarse-graining
maps can then be constructed from 2D TTN states [17] and
applied to patches of different sizes and geometries.
Higher-dimensional tree coarse-graining schemes can sim-
ilarly be implemented.
Another relaxation approach that is applicable to

higher-dimensional systems originates in quantum chem-
istry and is called reduced-density-matrix theory. This
approach has so far been the most successful in treating
2D lattice systems [26,28]. We will introduce this
approach in Sec. III D and dedicate that section to
explaining how our renormalization approach can be
applied there. Lattice systems in 2D would be an appro-
priate setting to test whether this leads to an advantage
over current approaches.
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Implementing these ideas goes beyond the scope of
this paper as our focus is on introducing the renormaliza-
tion approach and benchmarking it in 1D as a proof of
concept. However, to get an idea of what to expect when
dealing with 2D systems, in Appendix B, we provide some
preliminary results concerning the 2D LTI problem. In that
section, we show that, similarly to the 1D case, the 2D LTI
relaxation exhibits a clear scaling of the accuracy of the
lower bound, ΔE2D

LTIðnÞ, with the system size n. This
finding can be used as a benchmark for relaxation methods
in 2D: One could infer from it the effective system size
corresponding to a bound with a given accuracy, similarly
to our estimate of neff from the scaling of the LTI energy in
1D in Sec. II F.
We further demonstrate that both ways of encoding the

2D LTI constraints presented in Fig. 4, using either square
regions or triangular ones, lead to the same scaling of
accuracy with system size. We then show that by applying
one coarse-graining step to the 2D LTI constraints, we can
recover the energy corresponding to the next level in the
hierarchy already with coarse-graining dimensions as low
as D ¼ 3. This process leads to precision that would
have been unattainable without coarse-graining and is
comparable to state-of-the-art results [26,28]. Finally, we
discuss further possible coarse-graining schemes applicable
in 2D.

D. Reduced-density-matrix theory

RDMT is a relaxation method that is best known for its
application in quantum chemistry, where it has been used
to accurately compute the shape of the potential-energy
curve of molecules [1,2,50–55] (see Ref. [56] for further
references). The same method has also been applied to
lattice systems and has appeared in the literature under
several different names [3,24,26,28,57–61]. RDMT also

underlies recently proposed so-called bootstrap methods
that can constrain spectral properties beyond the ground-
state energy [44,62]. Viewed more generally, RDMT
can be seen as the noncommutative generalization of the
Lasserre—or sum-of-squares—hierarchy from polynomial
optimization [22,63,64] and therefore underlies approxi-
mation algorithms in quantum complexity theory [65,66].

1. RDMT in a nutshell

The basic idea of this approach is based on exactly the
same reasoning that led us to the formulation of Eq. (5) in
Sec. II: namely, to constrain the two-body reduced density
matrix—which determines the energy of the system—by
requiring its compatibility with larger and larger physical
states. The implementation of this idea within the RDMT
approach is, however, more general than Eq. (5), where
physical states were simply n-body reduced density matri-
ces, and it hinges on a slightly more abstract representation
of quantum states.
Mathematically, a quantum state is simply a function

that assigns expectation values to observables g (that is,
g ↦ tr½ρg�). More precisely, a state is a linear functional
L∶A → C on the algebra of observables of the systemA. In
addition, any physical state must be a positive functional;
i.e., it should assign non-negative numbers to observables
of the form g†g, where g∈A is any global observable.
Demanding global positivity is of course an intractable

task when we are dealing with a many-body system. In
Sec. II, this required optimizing over global wave functions
Ψ [equivalently, global functionals LΨðgÞ ≔ hΨjgjΨi]. We
then relaxed this global positivity constraint by requiring
the existence of a smaller, and thus tractable, positive object:
an n-body state ρðnÞ ≥ 0. In other words, we demanded a
functional defined on the algebra of localn-body observables
LðnÞ∶ An → C satisfying a weaker—local rather than

(a) (b)

FIG. 4. Constraints defining the 2D LTI hierarchies for square (a) and triangular (b) regions. Each shape depicts a state on a 2D region
containing the spins that are indicated by black circles. Each equality sign between two shapes defines a constraint demanding that the
application of partial traces on the spins marked by red ×s on both sides results in the same state. Symmetry with respect to rotations of
the lattice by 90° is assumed. Higher levels in each hierarchy are formulated similarly. Both formulations lead to the same scaling of
ΔE2D

LTIðnÞ with n, as shown in Fig. 9 in Appendix B.
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global—positivity condition: For all gn ∈An ⊂ A, we
have LðnÞðg†ngnÞ ≔ Trðg†ngnρðnÞÞ ≥ 0.
RDMT generalizes this idea as follows. Let O be a set of

operators, and letM ¼ fmigsi¼0 be a finite set of monomials
(products) of operators from O (with m0 ¼ I). Instead of
considering a global functional L acting on the entire
algebra of observables, we can now define L only on the
subspace spanðM†MÞ ≔ spanfm†

i mjji; j ¼ 0;…; sg and
demand its positivity there, i.e., that Lðg†gÞ ≥ 0 for every
g∈ spanðMÞ.
If the Hamiltonian we are studying,H, is in spanðM†MÞ,

then the energy of the system can be evaluated in L and is
given by LðHÞ. We can then formulate a relaxation of the
ground-state-energy problem in terms of L with the relaxed
positivity condition Lðg†gÞ ≥ 0∀ g∈ spanðMÞ. This relax-
ation turns out to be an SDP as the condition that L is
positive can be expressed by the positivity of ΓðLÞ, the so-
called moment matrix of L:

ΓðLÞij ≔ Lðm†
i mjÞ; for all i; j ¼ 0;…; s: ð29Þ

ΓðLÞ ≥ 0 ⇔ Lðg†gÞ ≥ 0 for all g∈ spanðMÞ: ð30Þ

The normalization condition for the state reads LðIÞ ¼ 1.
The linearity of L means that it is defined by its values on a
basis of spanðM†MÞ, i.e., in terms of dim spanðM†MÞ ≤
ðsþ 1Þ2 parameters xi ≔ LðXiÞ, where fXig is a fixed
chosen basis of spanðM†MÞ with X0 ¼ I. In terms of the
xis, the moment matrix of L is given by ΓðLÞ ¼ P

l xiAi,
where f½Al�ijgl are the coefficients of m†

i mj in the basis

fXlg: m†
i mj ¼

P
l½Al�ijXl.

The following SDP is thus a relaxation of the ground-
state problem:

min
x
LðHÞ ¼

X
i

hixi

such that LðIÞ ¼ x0 ¼ 1;

ΓðLÞ ¼
X
i

xiAi ≥ 0; ð31Þ

where the size of the matrix ΓðLÞ is ðsþ 1Þ × ðsþ 1Þ
(sþ 1 is the number of elements in M).
As an example, consider a system composed of n spin-

1=2 particles, and let H be any two-local Hamiltonian

H ¼
X
i>j

hði;jÞ; ð32Þ

where each term hði;jÞ acts on spins i and j. If we choose the
set M to include all the single-site Pauli operators M ¼
fm0 ¼ Ig ∪ fmðj;aÞ ¼ σðjÞa gj¼1;:…;n

a¼x;y;z , where σðjÞx ; σðjÞy , and

σðjÞz are the Pauli x, y, and z operators acting on the jth

spin, we have thatH∈ spanðM†MÞ, and we can thus obtain
a lower bound on its ground-state energy by solving
Eq. (31). Enlarging the set M to include higher-degree
monomials, i.e., products of k ≥ 2 Pauli operators,Q

k
i¼1 σ

ðjiÞ
ai , will improve the lower bound; however, this

would cause the size of Γ to grow exponentially with k.
Thus, we see that the RDMT approach is limited by the

same problem of exponential scaling that we highlighted in
Sec. II. For spatially local Hamiltonians, this can be
mitigated to some extent, as realized in Refs. [26,28]. In
those works, the operators in the set M are chosen
according to their locality: Products of k Pauli operators
are included only if all the spins on which they act are
within a region of size rk, with rk quickly decreasing to
zero with k. Within this approach, one could also optimize
the choice of the regions depending on the given
Hamiltonian (in analogy to the ideas proposed in Ref. [27]
for state ensembles).
However, this framework is still rather rigid, as the

choice is between a discrete set of parameters. Furthermore,
as we have demonstrated in Sec. II, relaxation schemes
based only on locality [e.g., the relaxation in Eq. (5), which
is only defined by a length scale n] include a vast number of
constraints that are irrelevant for a given target Hamiltonian
and could thus be further relaxed without compromising
the precision of the resulting energy.
Given the generality and scope of applicability of

RDMT, any method to boost its performance would be a
highly welcome development. We now outline how our
renormalization procedure can be implemented within the
RDMT framework, enhancing it with the continuous
degree of tunability provided by the coarse-graining maps
that compose the renormalization flow. We leave the
implementation of the proposed scheme for future work,
as we expect that extensive numerical investigations will be
needed to properly assess its performance on challenging
many-body problems.

2. Extending reduced-density-matrix theory
through renormalization

The relaxations obtained through the RDMT approach
possess a hierarchical structure and thus fit naturally
within the general framework outlined in Sec. III.
Analogous to Eq. (16), the global positivity constraint
Lðg†gÞ ≥ 0∀ g∈A can be broken down into a sequence of
constraints, defined on an increasing sequence of sets of
operators Mk ⊂ Mkþ1. For each set in the sequence, we
define a functional LðkÞ on spanðM†

kMkÞ and demand its
positivity LðkÞðg†gÞ ≥ 0∀ g∈ spanðMkÞ. As the sets Mk
form an increasing sequence, the domain on which each
Lðkþ1Þ is defined includes that of its predecessor LðkÞ. Since
all of the functionals LðkÞ are supposed to refer to the same
state, we demand the consistency condition
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Trkþ1ðLðkþ1ÞÞ ≔ Lðkþ1ÞjspanðM†
kMkÞ ¼ LðkÞ: ð33Þ

Thus, we arrive at the analogue of Eq. (16), the starting
point for the application of our renormalization approach:

Lð0Þ←
Tr1 Lð1Þ←

Tr2 Lð2Þ←
Tr3

…←
Trn LðnÞ: ð34Þ

As we have demonstrated in the previous sections, for a
given system, there could be several possible ways of
choosing such a sequence depending on the renormaliza-
tion procedure we seek to implement. Our general method
in Sec. III A hinged on choosing the sequence in Eq. (16)
and the renormalization flow in a compatible way, as
expressed in Eq. (18). We now give an example satisfying
this compatibility relation and derive—following the pre-
scription in Sec. III A—a compressed relaxation of the
ground-state problem within the RDMT framework.
For this demonstration, we consider a system of n qubits

with a Hamiltonian allowing for interactions between every
pair of qubits [Eq. (32)]. For this setting, we propose the
following renormalization procedure. We start from spins 1
and 2 and coarse-grain them into a system labeledQ2; next,
we coarse-grain Q2 and spin 3 into Q3, and so on. If we
denote those coarse-graining maps by BðQk−1;kÞ→Qk

(acting
only on systems Qk−1 and k, and mapping them to Qk), the
maps Cj we choose are

Ck ¼BðQk−1;kÞ→Qk
∘… ∘BðQ3;4Þ→Q4

∘BðQ2;3Þ→Q3
∘Bð1;2Þ→Q2

:

ð35Þ

In order for the sequence in Eq. (34) to be compatible
with this coarse-graining, we choose the sets Mk to consist
of a full Pauli basis for every group of kþ 1 spins that
contains spins 1 through k, plus one further spin:
f1;…; k; lgl>k, i.e.,

Mk ¼
�
σðlÞa

Yk
j¼1

σðjÞbj

����l > k; a; bj ¼ 0; x; y; z

�
; ð36Þ

where fσðjÞa ga¼x;y;z are the Pauli matrices acting on spin j

and σðjÞ0 ¼ I.
For large k, the specification of LðkÞ requires too many

parameters. To relax the SDP optimization over LðkÞ, we
need to define their compressed counterparts, which we
denote as ΛðkÞ ≔ Ck−1ðLðkÞÞ, where Ck−1 is our coarse-
graining map specified in Eq. (35) (with C1 ≔ I). To see
what the compressed state functional ΛðkÞ should be,
consider the action of the map Ck−1 on the physical spins:
After the map Ck−1 is applied, spins 1;…; k − 1 have been
compressed into the system Qk−1. As ΛðkÞ should represent
a state on the coarse-grained system, we define it on a space
of compressed operators span(ðM0

kÞ†M0
k), where

M0
k ¼ fσ̃ðQk−1Þ

q σðkÞa σðlÞb jl > k; a; b ¼ 0; x; y; z; q ¼ 1;…; dimðQk−1Þ2g; ð37Þ

and where ðσ̃ðQkÞ
q Þq is a basis of operators of the system Qk.

For any operator of the form RðQk−1Þ ⊗ SðkÞ ⊗ σðlÞ†b ⊗ σðl
0Þ

b0

on the system ðQk−1; k; l; l0Þ, the action of ΛðkÞ is given in
terms of LðkÞ and Ck−1 as

ΛðkÞðRðQk−1ÞSðkÞσðlÞ†b σðl
0Þ

b0 Þ
≔ LðkÞ(C�

k−1ðRðQk−1ÞÞSðkÞσðlÞ†b σðl
0Þ

b0 ); ð38Þ

where themapC�
k−1 denotes the adjoint ofCk−1: IfCk−1maps

states of spins ð1;…; k − 1Þ to states of systemQk−1 through
Ck−1ð·Þ ¼

P
i Wið·ÞW†

i , then C
�
k−1 maps operators onQk−1

to operators on spins ð1;…; k − 1Þ through C�
k−1ð·Þ ¼P

i W
†
i ð·ÞWi. Note that C�

k−1ðRðQk−1ÞÞSðkÞσðlÞ†b σðl
0Þ

b0 can be
evaluated inLðkÞ becauseMk includes a full basis of operators
for spins ð1;…; kÞ.
Defining Q1 ≔ 1, we note that BðQk−1;kÞ→Qk

ðΛðkÞÞ is a
functional on the set of monomials ðM00

kÞ†M00
k , with

M00
k ¼ fσ̃ðQkÞ

q σðlÞa jl > k;a ¼ 0; x; y; z;q ¼ 1;…;dimðQkÞ2g:
ð39Þ

Noticing that M00
k ⊂ M0

kþ1, we arrive at the analog of
Eq. (18):

BðQk−1;mÞ→Qk
∘ Ck−1 ∘ Trkþ1 ¼ Tr0kþ1 ∘ Ck; ð40Þ

with Tr0kþ1 defined as restricting Λðkþ1Þ to spanððM00
kÞ†M00

kÞ:

Tr0kþ1ðΛðkþ1ÞÞ ≔ Λðkþ1ÞjspanððM00
kÞ†M00

kÞ: ð41Þ

Our proposed relaxation for the Hamiltonian minimiza-
tion problem in Eq. (31) is therefore
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min
ðΛðkÞÞk

Λð2ÞðHÞ

such that Λð2ÞðIÞ ¼ 1;

ΓðΛðkÞÞ ≥ 0; for all k ¼ 2;…; n;

BðQk−1;kÞ→Qk
ðΛðkÞÞ ¼ Tr0kþ1ðΛðkþ1ÞÞ; for all k ¼ 2;…; n − 1: ð42Þ

Similarly to L in Eq. (31), each ΛðkÞ is determined by a
vector of parameters xðkÞ specifying the values of ΛðkÞ on a
basis of span(ðM0

kÞ†M0
k). The moment matrices ΓðΛðkÞÞ are

also linear functions of those parameters xðkÞ: ΓðΛðkÞÞ ¼P
i x

ðkÞ
i AðkÞ

i as in Eq. (31). Finally, as both BðQk−1;kÞ→Qk
and

Tr0kþ1 act as linear transformations on ΛðkÞ and Λðkþ1Þ, we
can represent them as matrices Bk and Tkþ1 acting on xðkÞ

and xðkþ1Þ, respectively. The relaxation in Eq. (42) can then
be expressed explicitly in terms of the vectors xðkÞ.

E. Quantum information theory: Entanglement
and nonlocality detection

The general method described in Sec. III A also leads to
sound relaxations when the variables Θm, Ωm and the
transformations Trm, Cm are interpreted not as representa-
tions of many-body quantum states and transformations
thereof but as representations of the many-body states of
generalized probabilistic theories (GPTs) [67–70] and
maps transforming such states. As observed in Ref. [71],
key problems in quantum information theory, such as
entanglement and nonlocality detection in many-body
systems, can be interpreted as determining the existence
of a state in a GPT.
The formalism of GPTs was introduced to describe

physical theories of all conceivable sorts: quantum,
classical, or other. A GPT is specified by a list of physical
system types, together with composition rules that detail
the type one must use to describe composite systems. In
quantum mechanics, system types are specified by the
system’s Hilbert space dimension, and the tensor compo-
sition rule tells us that the type of composite system
consisting of a subsystem with dimension d1 and a
subsystem with dimension d2 is d1d2. Each system type
T comes with a state space ST , namely, a convex set of
vectors, each of which describes a possible state of system
T. The composition rule must also specify how to derive the
marginals of a composite system, given a description of its
overall state, as well as how to represent independent
system preparations in a joint system description.
Transformations in a GPT correspond to linear maps that,
acting on part of the state of a bipartite system, always
return a valid bipartite state. In other words, the linear map
M, transforming systems of type T into systems of type T 0,
is physical if, for all system types U and all states
sUT ∈SUT , ðIU ⊗ MTÞðsUTÞ∈SUT 0 . In Ref. [71], such

transformations are called connectors. In the case of
quantum theory, this is just the complete positivity
condition.
Consider, for example, the entanglement marginal prob-

lem [72], i.e., deciding if the observed state ensemble
fρIgI ∈ I of a many-body system corresponds to the
marginals of a fully separable quantum state. This decision
problem is equivalent to deciding if fρIgI ∈ I are the
marginals of a global state in the GPT SEP defined in
Ref. [71], whose state spaces are, precisely, the sets of fully
separable quantum states. More generally, the GPT mar-
ginal problem would ask if the ensemble of GPT states
Θ0 ¼ fρIgI ∈ I arises as marginalizations of a global GPT
state Ψ∈K, where K is the cone of global states of the
GPT. The dual of this problem can be called the GPT local
Hamiltonian problem, and it can be cast in exactly the same
form as Eq. (21):

minHðfρIgIÞ;
s:t: fρIgI∈I ; admit a global GPT state realization: ð43Þ

Finding a tight lower bound to Eq. (43) then allows us to
use the Hamiltonian H as a witness for the presence of the
property of interest, e.g., entanglement. (In the standard
marginal problem setting, the detected property is incom-
patibility with a global state: An energy value lower than
the ground-state energy indicates that the state ensemble
with that energy is incompatible with a global state.)
Clearly, Eq. (21) corresponds to a lower bound on the

GPT local Hamiltonian problem, Eq. (43), if we regard
Θ0;Ωm as ensembles of states of a GPT, Trð·Þ and Tr0ð·Þ as
the marginalization maps provided by the GPT’s compo-
sition rule, Bm as connectors, and the sets S0;S0

m as the
corresponding GPT state spaces.

IV. OPTIMIZING THE COARSE-GRAINING MAPS
AND CERTIFYING NUMERICAL SOLUTIONS

In this section, we discuss two further numerical aspects
of the optimization algorithms. First, we show that it is
possible to include an optimization over the coarse-graining
maps in the algorithm. This optimization takes the form of
an SDP; thus, the entire optimization can be carried out as a
sequence of alternating SDPs. Second, we discuss how the
use of the dual SDP allows us to certify numerical
solutions, yielding fully rigorous lower bounds.
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A. Dual SDP

Both methods rely on the dual SDP of the relaxation in
Eq. (21), which we now introduce.
Recall that, in Eq. (21), the variables are restricted to the

sets of physical states: Θ0 ∈S0 and Ωm ∈S0
m. In the cases

we are considering, those sets are given by the intersection
of a cone of positive-semidefinite matrices with a subspace
defined by a linear constraint (e.g., the LTI condition),
where, for Θ0, we also have an additional normalization
constraint. In the dual SDP, we need to study the dual cones
S0�

m. Let S ¼ fΩ ≥ 0jLðΩÞ ¼ 0g be the intersection of the

cone Ω ≥ 0 with the subspace defined in terms of a linear
operator L as LðΩÞ ¼ 0. Its dual cone, i.e., the set of
Hermitian matrices Z satisfying TrðZΩÞ ≥ 0 for all Ω∈S,
is given by S� ¼ fY þ L�ðXÞjY ≥ 0; X ¼ X†g, where L� is
the adjoint of L and X is any Hermitian matrix. A constraint
of the form Z∈S� can thus be written as a positivity
constraint: Z − L�ðXÞ ≥ 0 for some X. We denote by λm the
Lagrange multiplier of the mth constraint in Eq. (21). We
further write the normalization constraint explicitly as
TrðΘ0Þ ¼ μ and denote its Lagrange multiplier by ε.
With this notation, the dual of Eq. (21) is

max
ε;λm;Xm

ε

s:t: H þ λ0 −
ε

μ
− L�

0ðX0Þ ≥ 0

B�
mðλmÞ − Tr0�mðλm−1Þ − L�

mðXmÞ ≥ 0; ∀ m ¼ 1;…; n − 1;

− Tr0�n ðλn−1Þ − L�
nðXnÞ ≥ 0

Xm ¼ X†
m ∀m ¼ 1;…; n; ð44Þ

where ð·Þ� denotes the adjoint of an operator. The solution
of Eq. (44) is always a lower bound to the solution of
Eq. (21), and the two are equal when strong duality
holds [20].

B. Optimizing over the coarse-graining maps

In both of our implementations, we used tensor networks
as an Ansatz for the coarse-graining maps, and we have
provided heuristic arguments for constructing them from a
variational ground-state approximation when formulating
our relaxation. Our numerical results show that, while there
is merit to this heuristic, the results can be improved by
optimizing the coarse-graining maps. In the MPS-based
method [Eq. (14), Sec. II], this process was not necessary as
the results obtained using the MPS ground-state approxi-
mation were very good. In the tree-tensor-network-based
variant [Eq. (28), Sec. III B], there was more room for
improvement. We therefore implemented the following
procedure to optimize the coarse-graining maps used in
the tree-tensor-network-based variant.
The form of the dual problem in Eq. (44) suggests a

simple scheme to optimize over the maps ðBmÞm. Namely,
first solve the problem Eq. (44) with the initial maps,

hence obtaining the solution εð1Þ; ðλð1Þm Þm. Next, choose

j∈ f1;…; n − 1g, fix the variable λj ¼ λð1Þj , and solve
Eq. (44), optimizing over ε; Bj; ðXmÞm and ðλmÞm≠j with
additional positive-semidefinite and linear constraints on
the Choi representation of Bj to ensure it is completely
positive and trace preserving. This step provides a solution

εð2Þ; ðλð2Þm Þm; Bð2Þ
j with an objective value at least as high as

the previous one, i.e., εð2Þ ≥ εð1Þ. Next, we can either fix

Bj ¼ Bð2Þ
j and optimize again over all variables ðλmÞm and ε

or choose another index j0 and optimize Bj0 , fixing λj0 . By
conducting coordinate descent in this fashion, it is possible
to improve the lower bound obtained with the initial coarse-
graining maps.
We implemented this procedure in the tree-tensor-

network-based example. In this setting, there is an addi-
tional issue as the maps Bm are always of the form
WðlÞ ⊗ WðlÞ [recall Eq. (27)]. This form presents a problem
since WðlÞ ⊗ WðlÞ is not linear in WðlÞ. To overcome this

issue, we parametrize Bm in terms of two maps WðlÞ
1 and

WðlÞ
2 as follows:

B̃lþ1ðWðlÞ
1 ;WðlÞ

2 Þ ¼ 1

2
ðWðlÞ

1 ⊗ WðlÞ
2 þWðlÞ

2 ⊗ WðlÞ
1 Þ: ð45Þ

This parametrization is linear in bothWðlÞ
1 andWðlÞ

2 . We can
then optimize over one map while holding the other one
fixed and alternate between the two. This more general
form of the maps ðBmÞm corresponds to a modified choice

of the layers VðlÞ
2k→2k−1

comprising the block-coarse-graining
procedure in Eq. (27):

ṼðlÞ
2k→2k−1

¼1

2
⨂
2k−2

j¼1

ðWðlÞ
1 ⊗WðlÞ

2 Þþ1

2
⨂
2k−2

j¼1

ðWðlÞ
2 ⊗WðlÞ

1 Þ; ð46Þ

which is still a valid relaxation of the LTI problem: Each
such layer preserves the LTI symmetry corresponding to its
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length scale, and the maps ṼðlÞ
2k→2k−1

defined in Eq. (46) and

B̃lþ1ðWðlÞ
1 ;WðlÞ

2 Þ defined in Eq. (45) satisfy the required
relation Eq. (26).
We note that as an alternative to the procedure described

above, one could also pursue other methods to optimize over
the coarse-graining maps, such as gradient-descent methods
obtained by differentiating the SDP solution with respect to
the entries of the tensors as described in Refs. [73,74].

C. Rigorous bounds from finite solver precision

In theory, a solution to the relaxation in Eq. (21) provides
a rigorous lower bound to the problem in Eq. (15).
However, when performing the numerical optimization,
the solution will always be accurate up to some finite
precision. Furthermore, for large-scale problems, some
SDP solvers exhibit slow convergence, and one might
wish to obtain a rigorous result from the last computed
iteration and not wait for full convergence. According to
basic SDP theory, any feasible point of the dual of an SDP
gives a lower bound to the primal optimal value [20]. To
obtain a rigorous bound from a numerically obtained
solution, it is sufficient to take the dual variable produced
by the solver and modify it to make it strictly feasible.
In our scheme, we can achieve this goal by using the

structure of the dual problem in Eq. (44). Starting from a
candidate solution ðε; fλmg; fXmgÞ produced by the solver,
which is not known to be feasible, we can check if it
satisfies the constraints in Eq. (44) by exact diagonalization
of the matrices involved (each one of them is typically of
modest size). If it is not feasible, we can correct it as
follows: Starting from the last constraint, we replace
λn−1 ↦ λ̃n−1 ¼ λn−1 − en−1I, where en−1 is the minimal
eigenvalue of the left-hand side of the last constraint,
−Tr0�n ðλn−1Þ − L�

nðXnÞ. After this substitution, the last
constraint is satisfied because the adjoint of the partial
trace Tr0n simply inserts tensor products with identity terms
[e.g., for a bipartite system AB: Tr�AðXBÞ ¼ IA ⊗ XB].
We then proceed to compute en−2, the minimum eigen-

value of the second to last constraint after the substitution
with λ̃n−1, and replace λn−2 ↦ λ̃n−2 ¼ λn−2 − en−2I. We
proceed in this way until the last step, where we add the
minimum eigenvalue of H þ λ̃0 − ðε=μÞ − L�

0ðX0Þ to ε, the
objective energy function, thereby satisfying all constraints
with a modified set of variables and a possibly lower bound
on the ground-state energy.

Note that after the substitution λm ↦ λ̃m ¼ λm − emI, a
term emB�

mðIÞ is added to the previous constraint which
can inflate the next required correction em−1. However, if
the maps Bm satisfy B�

mðIÞ ≤ I, i.e., if Bm are chosen to be
trace nonincreasing, then the errors of all the individual
corrections at most add up in the final step, where the
energy ε is corrected. In our MPS-based implementation,
this condition on Bm can be satisfied by transforming the
MPS into, e.g., the left gauge (see Ref. [47] for details)
before constructing the coarse-graining maps. In the tree-
tensor-network-based implementation, this condition is
always satisfied as the maps used there are trace preserv-
ing. In theory, gauge transformations of the MPS should
not change the value of the relaxation in Eq. (14) as
the constraints before and after changing the gauge are
related by an invertible map. In practice, however, the
numerical result can be affected by the choice of gauge if
the map implementing the gauge transformation is poorly
conditioned.
Finally, note that depending on the specific scenario,

there might be other ways to modify the dual solution to
make it strictly feasible. In our examples, shifting the ðλmÞm
variables by a constant is the straightforward choice since
the ðXmÞm variables correspond to the LTI constraint; in
other words, they appear in the equations as L�

mðXmÞ ¼
I ⊗ Xm − Xm ⊗ I, and shifting them by a constant does not
affect the constraints.

V. BENCHMARKING THE METHOD
ON 1D HAMILTONIANS

In this section, we present numerical results obtained
with our relaxation method on a broad range of models,
where we have implemented the two variants of the
method: the MPS-based variant presented in Sec. II and
the TTN-based variant presented in Sec. III B. In addition
to the results themselves, we also provide a detailed
analysis of the performance of the method.

A. Studied models

We have studied the following 1D spin models: the
critical Ising model, the Heisenberg antiferromagnet, the
XX model, the XXZ model in the symmetry-broken Ising
phase (the last three all being instances of the XXZ chain),
the critical spin-1=2 J1-J2 model, and the spin-1 Haldane
chain. The precise Hamiltonians used are

HTFIðhzÞ ¼ −
X
i

SXi S
X
iþ1 −

hZ
2

X
i

SZi transverse-field Ising model ðTFIÞ

HS
XXZðΔÞ ¼

X
i

SXi S
X
iþ1 þ SYi S

Y
iþ1 þ ΔSZi SZiþ1 XXZ spin S chain

HJ1-J2ðJ1; J2Þ ¼
X
i

J1S⃗i · S⃗iþ1 þ J2S⃗i · S⃗iþ2 J1 − J2 Heisenberg spin-1=2 chain ð47Þ
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(with S⃗i · S⃗j ≔ SXi S
X
j þ SYi S

Y
j þ SZi S

Z
j , and SXi ; S

Y
i ; S

Z
i the

spin operators acting on site i of the chain, with eigenvalues
�1=2 for spin 1=2). An overview of all the models and the
corresponding parameters is given in Table I. The short-
hand names used for the models in the following (espe-
cially in Fig. 5) are typeset in boldface in the table.

B. Numerical results

For all of the above models, we solved the MPS-based
relaxation, Eq. (14), with coarse-graining maps constructed
from variationally optimized MPS tensors. For models
(a)–(d), we solved the tree-tensor-network-based relaxation,
Eq. (28), with maps first constructed from variationally
optimized tree tensors, and then further optimized as
described in Sec. IV B. For each model, we solved the
relaxations for various values of n and bond dimensions D.
We denote the obtained energy densities byErelax

MPS=TTNðn;DÞ:
(i) For the MPS-based method, Erelax

MPSðn;DÞ ≔
Erelax
MPSðA⋆

DÞðnÞ from Eq. (14), where A⋆
D is the varia-

tionally optimized MPS with bond dimension D
obtained with the VUMPS algorithm [47].

(ii) For the TTN-based method, Erelax
TTNðn;DÞ ≔

Erelax
TTNðWopt

D ÞðnÞ from Eq. (28), where ðWoptðlÞ
D Þl are

the optimized maps resulting from applying the
procedure described in Sec. IV B to initial maps
constructed from a variational TTN with dimension
D, which was obtained with the TTN algorithm in
Refs. [17,49].

For both variants, the solutions have been certified as
described in Sec. IV C.
For comparison, we have also computed the LTI

energy density ELTIðnÞ of the exact SDP hierarchy trun-
cated at the nth level, Eq. (5). Since both variants of our
method are relaxations of the LTI problem, it holds
that Erelax

MPS=TTNðn;DÞ ≤ ELTIðnÞ.
For certain systems, the optimization with VUMPS can

fail to converge for specific bond dimensions D for a
single-site unit cell (see Ref. [47]). In some cases, this
problem could be remedied by a sublattice rotation

[specifically, a π rotation around the z axis on every second
spin, which transforms H1=2

XXZðΔÞ to −H1=2
XXZð−ΔÞ]. How-

ever, VUMPS would not converge for all values of D,
leading to missing data points [D ¼ 5, 7 in model (c) and
D ¼ 2, 3 in models (d) and (f)].
Figure 5 shows the distance of the obtained lower

bounds from the actual ground-state energy density ETI,
denoted by ΔErelax

MPS=TTNðn;DÞ≔ ETI −Erelax
MPS=TTNðn;DÞ and

ΔELTIðnÞ ¼ ETI − ELTIðnÞ, respectively, for all six models.
Where known, we used the exact ground-state energy
density for ETI [models (a)–(e)]; otherwise [model (f)],
we used a high-accuracy estimate obtained using VUMPS
with a much larger MPS bond dimension 200; note that in
the latter case, the deviation of our relaxations from the true
energy density is strictly smaller than the error ΔE shown
in Fig. 5 (due to the variational nature of the obtained
energy density). In addition, for comparison, we also
provide the distance ΔEvarðDÞ of the energy of the
variationally optimized MPS that we employed for the
coarse-graining, i.e., the precision of the corresponding
upper bound; it is shown in the column to the right of each
panel. [Note that the MPS data for models (a) and (b) has
already been shown in Fig. 2.]
The first feature observed in all plots is the linear decay

(on a log-log scale) of the LTI energy (black line with
circles), ΔELTIðnÞ ∝ n−α, with an exponent α ≈ 2 through-
out all models. The MPS curves ΔErelax

MPSðn;DÞ for different
D (colored dotted and dash-dotted lines) initially follow the
(extrapolated) LTI line and eventually flatten out and
converge to a constant value ΔErelax

MPSðn ¼ ∞; DÞ as n
becomes larger. AsD is increased, the LTI slope is followed
for longer, and the attainable energy is improved.
A closer inspection of this behavior for the gapped

models (c) and (e) reveals that the curves obtained from our
relaxation in fact fall below the linear extrapolation of the
LTI line (whether for even or odd n); the same behavior was
observed for the TFI model in its gapped phase (not
shown). Since ΔErelax

MPSðn;DÞ ≥ ΔELTIðnÞ, we see that the
LTI energy actually converges superalgebraically (or at
least with a larger slope) in gapped models. This improved

TABLE I. Models on which we benchmarked the method. The Hamiltonians of the models are specified in
Eq. (47). In the main text and in the figures, we refer to each model by (a)–(f) and the abbreviated name appearing in
boldface in the table. See Ref. [75] for the phase diagram of the S ¼ 1=2 XXZ Hamiltonian [models (b)–(d)], and
Ref. [76] for that of model (f).

Model name Hamiltonian Gapped/Critical

(a) Critical TFI HTFIð1Þ Critical
(b) Isotropic antiferromagnetic S ¼ 1=2 Heisenberg H1=2

XXZð1Þ Critical

(c) S ¼ 1=2 symmetry-broken XXZðΔ ¼ 2Þ H1=2
XXZð2Þ Gapped

(d) S ¼ 1=2 XX model H1=2
XXZð0Þ Critical

(e) Isotropic antiferromagnetic S ¼ 1 Heisenberg H1
XXZð1Þ Gapped

(f) S ¼ 1=2 J1-J2 Heisenberg HJ1-J2ð4.15; 1Þ Critical
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FIG. 5. The error of the lower bounds to the ground-state energies of the models listed in Table I obtained by solving theMPS-based and
TTN-based relaxations, Eqs. (14) and (28), of the translation-invariant (TI) local Hamiltonian problem Eq. (1). Both methods are
relaxations of the LTI problem, Eq. (5). The error of the LTI lower bound,ΔELTIðnÞ ≔ ETI − ELTIðnÞ, is plotted by the solid black linewith
circles. The dotted and dash-dotted lines plot ΔErelax

MPSðn;DÞ ≔ ETI − Erelax
MPSðn;DÞ obtained from the MPS-based implementation, and the

solid blue lines correspond to the TTN-based variant and plotΔErelax
TTNðn;DÞ, both of which are shown for various sizes n and various bond

dimensionsD. In the TTN-based method the coarse-graining maps were optimized numerically as described in Sec. IV B. The bar to the
right of each panel shows the precision of the variational upper bound,ΔEvar, corresponding to theMPS used in theMPS-based relaxation.
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convergence rate could not have been inferred from the LTI
results themselves, as they are limited to small n; it was
only possible using the data obtained from our relaxation.
In all the critical models [all but (c) and (d)], the line

traced by the tightest result obtained with our relaxation for
each n coincides with the linear extrapolation of the LTI
results in the log-log plot. (The relaxation results were
computed for even values of n, and the slope obtained from
a linear fit to those points lies between the even-n and odd-
n LTI slopes.) From this extrapolation, we can determine
the effective LTI problem size neffðDÞ required to obtain the
same accuracy as the one achievable with a given D
ΔErelax

MPSðn ¼ ∞; DÞ. We find that for the critical TFI model
(a), neffð6Þ ≃ 120; for the Heisenberg model (b),
neffð7Þ ≃ 60; and for models (d) and (f), neffð7Þ ≃ 40. In
all cases, it lies significantly above the n reachable for the
LTI problem, whose complexity grows exponentially in n.
More generally, the effective n exhibits an algebraic scaling
neffðDÞ ∝ Dκ, with a slope κ consistent with the well-
known correlation length vs bond dimension scaling for
MPS, κ ¼ 6=(cð ffiffiffiffiffiffiffiffiffiffi

12=c
p þ 1Þ) (with c the central charge)

[77–80]. Together with the n−2 scaling of the LTI accuracy,
this finding gives a scaling prediction ΔErelax

MPS ∝ D−2κ

attainable with the MPS-based relaxation for a given D.
A remarkable feature is that the distance of the lower

bounds from the true energy ΔErelax
MPSðn ¼ ∞; DÞ is gen-

erally comparable to the upper bounds obtained from the
variationally optimized MPS ΔEvarðDÞ and, in some cases,
even better by up to half an order. This feature is rather
surprising, given that the MPS has been explicitly opti-
mized to give the optimal upper bound while we have
simply used the same MPS for the coarse-graining for the
lower bound, without optimizing over the MPS in any way
to obtain optimal lower bounds. This finding seems to hint
that a good renormalization-based variational Ansatz also
forms a good basis for a coarse-graining relaxation, a
connection that deserves further study. Motivated by this,
we have carried out additional numerical studies on the
correlation between the precision of the lower and upper
bounds, on which we report in Sec. V D below.
In addition, Fig. 5 reports data obtained using the tree-

tensor-network-based method for different D (blue lines).
The tree-tensor-network-based variant did not perform as
well as the MPS-based one; nevertheless, it improved upon
the precision attainable by solving the LTI problem. That
this variant performed less well than the MPS-based one
was partly to be expected because the TTN-based method
started from the constraints in Eq. (23), which were already
a relaxation of the LTI problem as explained in Sec. III B.
In this variant, we have included the optimization over the
coarse-graining maps described in Sec. IV B; the data
reported in Fig. 5 are the optimized data. Through this
optimization, we were able to decrease the error of the
lower bound by factors ranging from 2 to 6. [For example,
in the TFI model with D ¼ 3 and n ¼ 64, the error was

ΔErelax
TTNð64; 3Þ ¼ 0.0006 prior to optimizing, and 0.000096

afterwards.] Let us note that the way we construct the initial
CPTP maps from the tree tensors for this relaxation is
ad hoc and could certainly be improved. Alternatively, one
could pursue other methods to optimize over the coarse-
graining maps, such as the gradient-descent methods
described at the end of Sec. IV B.
The even-odd steps displayed both by the LTI energy and

its approximation through the MPS relaxation for all
models but the Ising model merit further discussion. All
those models have antiferromagnetic couplings, suggesting
that the origin of those steps could be traced back to
magnetic frustration occurring in XXZ rings [81–83]. To
understand this idea, note that the LTI problem on n sites
can be obtained from the ground-state problem on any
periodic chain of size m ≥ n by omitting some constraints:
The LTI energy density ELTIðnÞ is thus upper bounded by
the smallest ground-state energy density for any ring of size
m ≥ n, minm≥n EPBCðmÞ. For models (b)–(f), the ground-
state energy density of the periodic chain shows an
oscillatory behavior, with the odd-m energy density being
higher due to frustration. Thus, the upper bound
minm≥n EPBCðmÞ shows precisely the same steplike behav-
ior as observed for ELTIðnÞ in Fig. 5. It is thus plausible that
the steplike behavior of ELTIðnÞ has the same origin.
Remarkably, we find that for models (b)–(f), as well as
in all spin-1=2 XXZ models with Δ∈ ½−2; 2�, ELTIðnÞ ¼
minm≥n EPBCðmÞ (up to solver precision); i.e., the solution
of the LTI problem for even n is in fact equal to EPBCðnÞ.
This finding is certainly remarkable, as the LTI problem is a
relaxation of the PBC problem, and it deserves further
study. Let us note that this equality, however, breaks down
for more general models (e.g., in the XYZ family) and thus
must be rooted in some special properties of the models
considered.

C. Efficiency analysis

Let us now assess the performance of the method, that is,
the way in which the resources required to solve the
problem scale with the precision of the lower bound. To
this end, we compare in Fig. 6 the improvement in
precision as a function of the number of variables in the
problem, Nvars., for the MPS-based relaxation [Eq. (14)]
and the exact LTI problem [Eq. (5)], using the entire data
set obtained for all the models (see Table I) on which we
tested our method. In Fig. 6, the dotted lines represent the
LTI problem and the solid lines our MPS-based relaxation,
for each of the models (a)–(f) (shown in different colors).
We observe that LTI lines become increasingly flat; indeed,
from the exponential scaling Nvars(LTIðnÞ) ∝ d2n, together
with the observed ΔELTIðnÞ ∝ n−α, we expect it to scale as
− logð·Þ in the log-log plot. Our relaxation results, on the
other hand, seem to follow a clear linear trend in the plot,
which demonstrates that our method results in algebraic
convergence of the energy as a function of the size of the

KULL, SCHUCH, DIVE, and NAVASCUÉS PHYS. REV. X 14, 021008 (2024)

021008-22



SDP. The observed rates of convergence for the different
models scale as N−β

vars with β∈ ½0.59; 0.74�, depending on
the model; this finding is in line with the different
exponents for neffðDÞ ∝ Dκ and the n−2 scaling of the
energy accuracy.

D. Correlation between upper and lower bounds

A remarkable observation was how well variationally
optimized MPS performed when used as coarse-graining
maps for our relaxation, resulting in lower bounds of
comparable precision. To further investigate this issue,
we have numerically studied the relation between the
quality of the upper and lower bounds obtained from a
given MPS. To this end, we have generated random MPS
tensors and applied the VUMPS algorithm to them for a
number of iterations between 0 and 64; this way, we could
sample MPS that provide variational upper bounds of
increasing accuracy. The resulting data are shown in
Fig. 7. For each tensor, the upper bound was obtained
by evaluating the energy density of the corresponding
MPS; its distance from the ground-state energy, ΔEVUMPS,
is shown on the x axis. The lower bound for each tensor was
obtained by solving the MPS-based relaxation, Eq. (14),
using the coarse-graining maps constructed from the given
MPS. The corresponding error ΔErelax of the lower bound
is shown on the y axis.
Figure 7 shows a clear correlation between the precision

of the upper and the lower bounds. It also shows that while
the variationally obtained MPS does not always give rise
to the tightest lower bound attainable with that bond

dimension, the difference between the best lower bound
and that obtained from the MPS variationally optimized
with VUMPS for a given bond dimension is small when
compared to the improvement obtained when going to a
larger bond dimension.

E. Comparison with existing methods

We give a brief overview of related works and compare
their results with ours where relevant. The only results that
can be compared directly are those of Ref. [26], where
translation-invariant XXZ models on infinite lattices in 1D
and 2D are treated. The errors of the bounds they obtained
for H1=2

XXZðΔÞ are 2 × 10−3 for Δ ¼ 1, 3 × 10−3 for Δ ¼ 2,
and below 10−4 for Δ ¼ 0 (i.e., the XX model, which is
equivalent to a system of free fermions). We obtained
3 × 10−4, 2 × 10−4, and 3 × 10−4, respectively. Several
further works have implemented relaxation methods based
on RDMT or very similar approaches. However, they dealt
with periodic spin chains and therefore did not provide
rigorous bounds on the infinite-system value. [We already
mentioned above that the energy density on a ring of size n,
EPBCðnÞ, is lower bounded by the LTI energy ELTIðnÞ;
furthermore, one can show that ELTIðnÞ ≥ EPBCðnÞ − c=n
for a constant c.] Reference [3] gives lower bounds for
translation-invariant spin Hamiltonians: For the spin-1=2
Heisenberg model on periodic chains of sizes up to 50, they
obtained energy densities 10−2 below the true infinite-
system value. In Ref. [24], a method based on correlation
matrices, equivalent to RDMT [84], was applied to finite
periodic spin chains. For the critical Ising model and XXZ
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FIG. 6. The precision of the tightest lower bound obtained for a given memory budget (the number of variables in the problem) by
solving the MPS-based relaxation Eq. (14) (solid lines), as well as the LTI problem Eq. (5) (dotted lines) for the models listed in Table I.
The LTI lines follow a logarithmic curves whereas the MPS-relaxation data follow linear trends. The slopes of the lines were found to be
between −0.59 and −0.74 depending on the model.
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models with Δ∈ ½0; 2�, they obtained errors of the order
10−2 and 10−1, respectively. Reference [28] applied RDMT
to bound the ground-state energy, as well as ground-state
correlation functions in the Heisenberg model with nearest-
neighbor and next-nearest-neighbor interactions in periodic
1D and 2D lattices. They obtained an error of 4 × 10−4 for
the Heisenberg model on a periodic chain of length 100.

F. Numerical implementation

We conclude this section with some details regarding our
numerical implementations. The sample code is available in
Ref. [86]. We used predominantly general-purpose soft-
ware packages to solve the SDPs involved. We used
YALMIP [87] for modeling the problems and solved
primarily using MOSEK [88]. The unfavorable memory
scaling of interior-point methods (see, e.g., Ref. [89])
prevented us from going to bond dimensions higher than
7 in the MPS-based variant and 5 in the tree-tensor-
network-based variant. To overcome this issue, we tried
to use the splitting conic solver (SCS) [90], which is a first-
order method that requires less memory, but we observed
slow convergence and were not able to improve the results
in any of the models, with the exception of the S ¼ 1
Heisenberg chain. In this model, we used our own matrix-
free implementation of SCS (where the constraint matrix is
not explicitly constructed as a sparse matrix but only
implicitly applied, which provides significant savings
due to the tensor-network structure of the constraints) to

produce the results for bond dimensions 6 through 9. In
addition, SCS was used to solve the larger instances of the
LTI problem, Eq. (5), where it performed very well.
We have not explored further methods beyond the ones

mentioned. We believe the results we presented could be
markedly improved upon by using custom-tailored solvers.
The chain structure of the constraints in the relaxed
problem, Eq. (14) [and, more generally, Eq. (21)], suggests
that splitting methods [91] other than the one employed by
SCS could lead to an advantage. Combining these with
matrix-free solvers would further reduce the complexity
and allow us to perform computations for larger system
sizes n and bond dimensions D.
Finally we note that the presence of local symmetries

can be naturally accounted for within our method. In
Appendix C, we explain how, by using suitable coarse-
graining maps, one ends up with a relaxation involving
symmetric states, thus reducing the problem’s complexity.

VI. CONCLUSION

In this paper, we have introduced a general method to
obtain rigorous lower bounds for a wide range of mini-
mization problems in a quantum many-body setting. As a
prime application, we demonstrated how our method can be
applied to lower bound the ground-state energy of quantum
spin systems. At the same time, the method lends itself to a
wide range of other optimization problems with a similar
structure, such as the certification of entanglement and
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FIG. 7. Precision of the lower bound obtained by solving the MPS-based relaxation Eq. (14) as a function of the precision of the
variational upper bound corresponding to the MPS that was used to construct the coarse-graining maps for the relaxation. For each
i∈ f0; 1; 2; 4; 8;…; 64g 300 random MPS tensors with bond dimension D were generated and updated by i iterations of the VUMPS
algorithm. Each tensor was then used to obtain a lower bound using our relaxation scheme, and an upper bound by evaluating the energy
density of the uniform MPS generated by the tensor.
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nonlocality in quantum information theory. The method
achieves this by providing a systematic and customizable
way to obtain outer approximations to the set of physical
quantum correlations; it is thus suggestive that it can also
provide new ideas on how to relax other numerical methods
based on positivity constraints, such as reduced-density-
matrix theory or various bootstrap techniques.
The key idea of our method is to relax the convex

set of few-body density matrices or other correlations that
are physical—that is, compatible with a global quantum
state—in two steps. In a first step, the global compatibility
constraint is decomposed into a hierarchy of constraints
between increasingly complex objects. A first relaxation
can then be obtained by truncating the hierarchy at a finite
level n. Approaches of this kind have been pursued
previously in various settings; however, they suffer from
the exponential growth of the involved objects, which
severely limits the level of the hierarchy that one
can reach.
The key novelty of our method lies in the second

relaxation: We apply a coarse-graining procedure to all
objects in the hierarchy, in a way that compresses them
down to objects of a fixed (or otherwise tractable) size. This
compression must be chosen such as to keep the relevant
degrees of freedom, which can be accomplished, e.g., by
employing renormalization-based ideas. At the same time,
any such compression scheme must act in a consistent way
across all levels of the hierarchy, a demand yet again met by
renormalization-based coarse-graining maps.
By utilizing this compression, we can effectively reach

very large levels n of the original hierarchy and thus
achieve results with much improved accuracy. At the same
time, the optimization problem remains a semidefinite
program (SDP) and can thus be efficiently solved. In
addition, the possibility to smoothly adjust the coarse-
graining maps to best suit the problem at hand, and to
optimize them as well in the course of the optimization,
makes our relaxation much more tunable than existing
approaches, which are based on discrete, and thus rigid,
hierarchies. Moreover, insights from renormalization pro-
cedures can be used as a guide in choosing those maps.
We have worked out our method in detail for 1D

quantum spin chains and demonstrated its power through
the explicit numerical study of a range of relevant models.
We have employed two coarse-graining schemes, both of
which are motivated by renormalization-based variational
Ansätze: one based on MPS, and one on TTN. In the latter
case, we have additionally implemented an optimization
over the coarse-grainers. In both cases, we observed that the
variationally optimized wave function also provides a very
good coarse-graining map for the relaxation of the hier-
archy, in line with the intuition that the coarse-graining
should keep low-energy degrees of freedom, akin to
renormalization schemes. We have tested both approaches
on a wide range of gapped as well as critical models. We

found that both schemes clearly outperform the exact
truncated hierarchy, with the MPS approach generally
performing noticeably better. Specifically, using the
MPS-based relaxation, we were able to gain between 1
and 2 orders of magnitude in precision in energy, on par
with sizes of the truncated hierarchy between n ≈ 40 and
n ≈ 120 (while the exact hierarchy was limited to n ¼ 13).
Overall, we observed that the resources required for our
method scaled polynomially in the targeted energy pre-
cision, as opposed to the exponential scaling of the exact
truncated hierarchy.
The general framework presented in this paper can be

applied to a much broader range of problems than those
that we used as a demonstration. First, the method opens
avenues to obtain provable lower bounds on ground-state
energies for two-dimensional systems, where good varia-
tional upper bounds—e.g., using tensor networks—are
much harder to obtain and where the performance of those
methods is less well understood. It can also be applied to
reduced-density-matrix theory and related approaches
based on correlation matrices, and thus to problems
without an underlying locality notion, such as in quantum
chemistry. Finally, at its heart, our relaxation presents a
way to certify when a (very large or even infinite) matrix
that satisfies a set of linear and convex constraints on its
entries (such as having certain two-body marginals or few-
point correlations, or being a separable state) cannot be
chosen to be positive; as such, it is also applicable to
problems such as entanglement or nonlocality detection,
as well as to the so-called bootstrap approach to many-
body problems.
A key challenge in generalizing our method is the right

choice of coarse-graining maps. In this regard, we have
demonstrated that maps based on tensor networks—which
can, in most cases, be interpreted as variational wave
functions underlying different renormalization schemes
[19]—are a suitable option. It is reasonable to expect that
tensor network Ansätze will work in higher-dimensional
problems as well. Moreover, given the often excellent
performance of tensor networks beyond quantum lattice
problems, it is likely that suitably chosen tensor network
Ansätze will also make good coarse-grainers in scenarios
other than energy minimization. Remarkably, tensor net-
works optimized to derivevariational upper boundsgenerally
performed surprisingly well when used as coarse-grainers in
our relaxation scheme; a better understanding of this con-
nection, as well as of the ways in which different tensor
networks can be used as coarse-graining maps, remains an
open problem for future work.
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APPENDIX A: CONSTRUCTING
COARSE-GRAINING MAPS FROM

TREE TENSOR NETWORKS

Recall that in Sec. II, we constructed the coarse-graining
from a variational MPS ground-state approximation. In the
same spirit, here we construct the coarse-graining maps

WðlÞ
2 composing each coarse-graining layer in Eq. (24) from

the output of a TTN variational algorithm [49], which
optimizes the three-legged tensors making up the tensor
network layer by layer. The entire tensor network describes
a pure state on a ring of size 2L, where L is the number of
layers. Each layer l is composed of tensor products of
a single partial isometry Tl from two sites at the lower
layer to one site in the layer above it. The output of
the algorithm thus consists of L partial isometries
Tl∶ CDl−1 ⊗ CDl−1 → CDl , where D0 ¼ d is the dimension
of the physical spins, and for all the other layers, Dl ≤ D,
where D is an input to the algorithm. At the last layer,
DL ¼ 1 such that TL describes a pure two-body state
on CDL−1 ⊗ CDL−1 .
Next, recall that in order to satisfy Eq. (26), we need the

maps WðlÞ
2 to be trace preserving. As the TTN algorithm

outputs partial isometries ðTlÞl, we cannot simply use them

to constructWðlÞ
2 ð·Þ as Tlð·ÞT†

l as such maps do not preserve
the trace. To make trace-preserving maps from the partial
isometries Tl, we start with T1 and increase the output
Hilbert space dimension by one, CD1 ↦CD1 ⊕Hg≅CD1þ1,
where Hg is spanned by one vector jgi. Then, for every
vector jki∈ kerðT1Þ, we define the Kraus operator Kk ¼
jgihkj. The following map is then CPTP:

Wð1Þ
2 ðXÞ ¼ T1XT

†
1 þ

Xdim kerðT1Þ

k¼1

KkXK
†
k:

At the next layer, we need to construct a mapWð2Þ
2 acting on

states on ðCD1 ⊕ HgÞ⊗2. We use T2 to define the first

Kraus operator of Wð2Þ
2 acting on the CD1 ⊗ CD1 subspace

and mapping it into the CD2 subspace in CD2 ⊕ Hg0 .
Then, for every jki in kerðT2Þ ⊕ ðCD1 ⊗ HgÞ ⊕
ðHg ⊗ CD1Þ ⊕ ðHg ⊗ HgÞ, we construct a Kraus operator
jg0ihkj mapping jki to jg0i in CD2 ⊕ Hg0 . We iterate the last

step using Tl to make WðlÞ
2 for l ¼ 3;…; L.

APPENDIX B: SCALING OF THE LOCAL
TRANSLATION-INVARIANT ENERGY IN 2D

We solved the first few levels of the 2D LTI hierarchy
(see Fig. 4) for the Heisenberg and XX models on a square
lattice. In addition, we computed the Anderson bounds [11]
for square regions of sizes up to 5 × 5 by exact diagonal-
ization of the Hamiltonian term acting on each region.
The LTI condition in 2D can be formulated for regions of

different shapes. The conditions for square-shaped regions
and triangle-shaped ones are depicted in Fig. 4. In the case
of square-shaped regions, optimizing over a state on a 4 × 4
square is beyond the capability of the computer and
software that we used (on a machine with 512 GB of
RAM, we could solve systems of up to 13 spins using the
SCS solver). In the case of triangular regions, we could go
up to a triangle with side length 4.
Next, by applying a single coarse-graining step, we

obtained relaxations of the 4 × 4 squares and the side-
length-5 triangle LTI problems that we were still able to
solve. The relaxations employed a single coarse-graining
map that was applied to the central square or triangle of side
length 2 within the 4 × 4 square or the side-length-5
triangle, respectively. The relaxed constraints are shown
in Fig. 8. The map we chose for the coarse-graining was a
partial isometry consisting of the D lowest-energy eigen-
vectors of the Hamiltonian term on the patch of side length
2 (square or triangle, respectively).
The results are shown in Fig. 9. The figure shows the

error of the lower bounds with respect to energies computed
by extrapolating quantum Monte Carlo results (Ref. [92]
for the Heisenberg model and Ref. [93] for the XX model)
ΔE ¼ EQMC − Erelax as a function of the number of spins n,
on a log-log scale. The relaxation energies Erelax were
obtained using each of the above-mentioned methods: the
Anderson bound for square regions, the LTI bound for
square or triangular regions, and the relaxations of the latter
using one coarse-graining step with coarse-graining dimen-
sions D ¼ 1, 2 and, in the triangle case, also D ¼ 3. In
addition, we plotted the linear extrapolation of the results
for the Anderson and LTI bounds.
There are several things to note about the results in

Fig. 9. First of all, we see the markedly steeper slope of
the LTI bounds as compared with the Anderson bounds.
(The fitted values for the Heisenberg model are −0.86 for
the Anderson bounds, −1.69 for the LTI bounds for
squares, and −1.68 for LTI triangles; for the XX model,
the values are −1.02;−1.77, and −1.66, respectively.) A
similar difference between the LTI and Anderson slopes
was observed in all the 1D models (not shown in Fig. 5).
Second, the slopes of the LTI square and LTI triangle
bounds are very close in both models. It seems that the LTI
conditions for the two different shapes have similar power
in terms of “constraints per spin.”When comparing the LTI
slopes of the 2D models with those observed in 1D, we
notice that the convergence is faster in 1D (where the
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scaling was n−2). Finally, as expected, for increasing
coarse-graining dimension D, the value of the lower bound
from the relaxation defined in Fig. 8 converges towards the
extrapolation of the LTI line. (The compression would be

lossless forD ¼ 8 in the case of triangles andD ¼ 16 in the
case of squares.)
These results demonstrate that our method can be used in

2D to push beyond what is possible using the LTI hierarchy.

(a) (b)

FIG. 8. Relaxation of the constraints defining the 3rd and 4th levels of the 2D LTI hierarchies for square-shaped (a) and triangular
(b) regions respectively. The previous levels of each hierarchy are depicted in Fig. 4. The notation is the same as in Fig. 4, where
spins are indicated by black circles and partial traces by red ×s. In addition, on the right-hand side of each equality sign the spins
absent from the dash-dotted central region have been compressed into aD-dimensional system, which is denoted by a big blue circle. On
the left-hand side, the shaded region denotes a coarse-graining map that is applied to the spins within that region, mapping them to the
D-dimensional system denoted by the blue circle.
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FIG. 9. Two-dimensional LTI results. We show the error ΔE of the lower bounds to the ground-state energies of the Heisenberg and
XX models on a 2D square lattice obtained by solving the first two levels of the 2D LTI hierarchy for square-shaped regions [Fig. 4(a)],
the first three levels for triangle-shaped regions [Fig. 4(b)], and the relaxations with coarse-graining dimension 1 ≤ D ≤ 3 of the next
level for both squares and triangles [Figs. 8(a) and 8(b), respectively]. In addition, Anderson bounds for square-shaped regions of sizes
up to 5 × 5 are shown. The error ΔE is plotted against the number of spins n in the largest region appearing in the problem (before
compression) on a log-log scale, and it was computed with respect to energies obtained from quantum Monte Carlo computations
(Refs. [92,93]). For each of the series—LTI squares, LTI triangles, and Anderson squares—a linear extrapolation is plotted by
a dotted line.
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The bounds we obtained with this rudimentary demon-
stration are already very close to the best lower bounds we
are aware of for those systems (given in Ref. [26]). From
the linear extrapolation in Fig. 9, we can read off which
region sizes have to be reached in a relaxation scheme
based on the 2D LTI hierarchy in order to achieve a desired
accuracy. The SDPs we solved to produce these results are
very simple and are easy to set up using SDP modeling
software packages (50–100 lines of code). A sample code is
available in Ref. [86]. Larger coarse-graining dimensions
could be handled by implementing matrix-free SCS for this
problem.
We also demonstrate the challenges of applying our

approach to relax the 2D-LTI hierarchy: To preserve the
LTI symmetry of the problem when formulating the next
level of the hierarchy, we must increase the size of the patch
of side length l by 2lþ 1 spins in the case of squares and by
lþ 1 spins in the case of triangles. In addition, even after
coarse-graining, we end up with a system consisting of all
the spins on the boundary of the patch, which quickly
becomes too large. Finally, it is not obvious how to
implement the composition properties required from the
coarse-graining maps if we would like to continue with a
further coarse-graining step that is compatible with the LTI
symmetry (maps based on PEPS would work, but they
result in a coarse-graining dimension that is too large).
We already mentioned in the main text in Sec. III C that

those difficulties can be overcome by using a tree coarse-
graining procedure or by first formulating the problem
within the RDMT framework and applying the procedure
described in Sec. III D. Another way would be to give up
the explicit LTI symmetry in our relaxation and instead
relax a chain of constraints in which one increases the
triangular region by at most two spins at each step, such
that an additional side-length-2 triangle can fit in it. The
region already covered can then be coarse-grained with an
MPS using a snake pattern in order to cover triangles of
increasing size. In this scheme, the system size still grows
from one step to the next, but it requires only lþ 1 spins to
be kept to relax the 2D LTI problem for a side-length-l
triangle. We can use the extrapolation of the LTI bounds in
Fig. 9 to estimate the precision we hope to achieve by
implementing this scheme. For example, in order to
improve the current best result for the Heisenberg model
(Ref. [26]) by an order of magnitude, we would need to

solve for a triangular region of side length l≳ 11, which is
still a tractable SDP. We leave this for future work.

APPENDIX C: ACCOUNTING FOR SYMMETRIES

If the Hamiltonian has a symmetry, we can simplify the
ground-state-energy problem by restricting the search to
symmetric states. Such states can be represented with fewer
variables than general states that do not observe the
symmetry. In Sec. II, we already used translation symmetry
when formulating the relaxation of the translation-invariant
problem by expressing everything in terms of one state of
each size.
Hamiltonians of interest often possess further sym-

metries. Consider a Hamiltonian that is invariant under
the action of a group G simultaneously on all spins:
½Ug;H� ¼ 0, where Ug ≔ ð⊗i ugÞ and u∶G ↦ LðHÞ is a
unitary group representation of G on the local spin Hilbert
space H. We now describe how one can incorporate such
symmetries in our relaxation scheme.
Consider the MPS-based relaxation scheme in the 1D

setting, Eq. (14). In this case, we can construct coarse-
graining maps from symmetric MPS. Symmetric MPS have
the property that they intertwine between the representation
ug on the physical Hilbert space and a representation on the
virtual degrees of freedom (vg ⊗ v̄g) [94]. Now, consider,
for example, the symmetry constraint on a four-body state
ρf1;2;3;4g. When we compress this variable using a coarse-
graining map constructed out of a symmetric MPS, we can
use the intertwining property of the MPS tensor to obtain a
symmetry condition for the compressed variable ωf1;ol;or;4g
as shown in Fig. 10. Thus, we can formulate our relaxation
in terms of symmetric states that can have significantly less
free parameters than general states. One could similarly use
symmetric tree tensor networks [95] when formulat-
ing Eq. (28).
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