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Coupled cluster theory is one of the most popular post-Hartree-Fock methods for ab initio molecular
quantum chemistry. The finite-size error of the correlation energy in periodic coupled cluster calculations
for three-dimensional insulating systems has been observed to satisfy the inverse volume scaling, even in
the absence of any correction schemes. This is surprising, as simpler theories that utilize only a subset of the
coupled cluster diagrams exhibit much slower decay of the finite-size error, which scales inversely with the
length of the system. In this study, we review the current understanding of finite-size error in quantum
chemistry methods for periodic systems. We introduce new tools that elucidate the mechanisms behind this
phenomenon in the context of coupled cluster doubles calculations. This reconciles some seemingly
paradoxical statements related to finite-size scaling. Our findings also show that singularity subtraction can
be a powerful method to effectively reduce finite-size errors in practical quantum chemistry calculations for
periodic systems.
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I. INTRODUCTION

In the past few decades, ab initio methods for quantum
many-body systems, such as density functional theory
(DFT), quantum Monte Carlo methods, and quantum
chemistry wave function methods, are becoming increas-
ingly accurate and applied to ever larger range of systems
[1,2]. Unlike molecular systems, periodic systems, includ-
ing solids and surfaces, require calculating properties in the
thermodynamic limit (TDL), a theoretical state in which the
system size approaches infinity. However, the TDL cannot
be directly accessed in practical applications. Finite-sized
computational supercells are employed to approximate this
limit, which introduces finite-size errors into the calcula-
tions. Finite-size errors can significantly affect the accuracy
of calculations, even for systems with thousands of atoms.
An extreme case is a moiré system such as magic angle
twisted bilayer graphene (MATBG), where each computa-
tional unit cell consists of approximately 10 000 atoms, and
the supercell needs to have more than 100 000 atoms to
capture subtle correlation effects [3,4]. Directly tackling
finite-size effects by enlarging the supercell size is
very demanding, even for relatively inexpensive DFT

calculations with modern-day supercomputers. For more
accurate theories, this task is often computationally intrac-
table. Understanding the finite-size scaling, i.e., the scaling
of the finite-size error with respect to the system size, and
employing finite-size error correction schemes are, there-
fore, crucial for obtaining accurate results using moderate-
sized calculations.
The sources of finite-size errors in ab initio calculations

are multifaceted and complex [5–7]. These errors are
influenced by numerous factors, including system charac-
teristics such as whether it is insulating or metallic or
whether it is a three-dimensional bulk system versus a low-
dimensional system. Calculations of electron kinetic
energy, electron-ion interaction energy, Hartree energy,
Fock exchange energy, and electron correlation energy
can all contribute to finite-size errors. The first four types
are predominantly single particle in nature, while the
electron correlation energy is significantly more complex.
To a large extent, electronic correlation is short-ranged, and
this characteristic has spurred the development of local
correlation methods, whose computational cost may scale
linearly with system size. However, for ab initiomethods to
be accurate, they must also effectively account for van der
Waals (vdW) interactions [8]. In solids, the cumulative
effect of weak van der Waals interactions can become a
significant contributor to the energy. The convergence of
vdW energy follows an inverse volume scaling, implying
that the finite-size error is inversely proportional to the
volume of the supercell. The origin of finite-size error is not

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 011059 (2024)

2160-3308=24=14(1)=011059(31) 011059-1 Published by the American Physical Society

https://orcid.org/0000-0001-9456-1754
https://orcid.org/0000-0001-6860-9566
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.011059&domain=pdf&date_stamp=2024-03-28
https://doi.org/10.1103/PhysRevX.14.011059
https://doi.org/10.1103/PhysRevX.14.011059
https://doi.org/10.1103/PhysRevX.14.011059
https://doi.org/10.1103/PhysRevX.14.011059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


solely confined to the characteristics of a physical system.
The finite-size scaling can vary significantly across differ-
ent theoretical frameworks even when applied to the same
physical system. Sometimes, the finite-size scaling can
manifest differently even when using the same theoretical
framework for the same system, simply by altering the
shape of the computational unit cell. All these complexities
require careful analysis under varying scenarios, and this is
important for accurately extrapolating toward the TDL or,
preferably, for devising improved correction schemes
aimed at reducing finite-size errors.
In recent years, there has been a growing interest in

employing quantum chemistry wave function methods,
such as Møller-Plesset perturbation theory and coupled
cluster (CC) theory [9], to compute ground-state and
excited-state properties for periodic systems [7,10–25].
Originally developed to study nuclear physics [26,27],
CC theory has become one of the most popular methods
in quantum chemistry that involves electronic correlation
[28]. The coupled cluster singles, doubles, and perturbative
triples [CCSD(T)] theory is often referred to as the “gold
standard” in molecular quantum chemistry. In these meth-
ods, there are two primary strategies to approximate the
TDL. The first involves expanding the computational
supercells within real space. The second strategy involves
performing calculations using a fixed unit cell and refining
discretization of the Brillouin zone within reciprocal space
using a k-point mesh, such as the Monkhorst-Pack mesh
[29]. This paper focuses on the latter approach, where the
number ofk points is denoted byNk. If theMonkhorst-Pack
mesh includes the Gamma point of the Brillouin zone, this
approach is equivalent to using a supercell comprised ofNk
unit cells. The convergence toward the TDL can be studied
by increasing this single parameter Nk toward infinity. The
computational expense of quantum chemistry methods can
rise sharply with respect to the system size. For example, in
coupled cluster singles and doubles (CCSD) calculations,
the computational cost scaling is OðN6

kÞ in real-space
implementations [9] and OðN4

kÞ in reciprocal-space imple-
mentations [30]. Therefore, even moderate-sized calcula-
tions with Nk ¼ 2 × 2 × 2 or 3 × 3 × 3 can already be
computationally challenging. In CCSD(T) calculations, the
computational cost of the real-space implementation can
escalate to OðN7

kÞ in the worst-case scenario. This implies
that even a moderate refinement of theMonkhorst-Pack grid
by a factor of 2 along each dimension can lead to an increase
in computational cost by ð23Þ7 ≈ 2 million folds. Given this
computational challenge imposed by system size, it is
mostly impractical to estimate the finite-size scaling using
power-law fitting over calculations on increasingly large
systems and then determine the TDL value by extrapolation.
Instead, a more feasible approach is to acquire the exact
finite-size scaling through rigorous mathematical analysis
and subsequently utilize power-law extrapolation to esti-
mate the TDL value.

Although numerous empirical studies have examined the
finite-size scaling of some quantum chemistry methods,
there has been a notable lack of rigorous analysis. To the
best of our knowledge, the first rigorous analysis of finite-
size error in Hartree-Fock (HF) theory and second-order
Møller-Plesset perturbation theory (MP2) for insulating
systems has been conducted only recently [31]. The
principal findings in Ref. [31] include the following.
(1) In the absence of any corrections, the finite-size error

in HF scales as OðN−1=3
k Þ. As Nk is proportional to

the supercell volume, N1=3
k is proportional to the

length of the supercell (we always assume uniform
refinement of the k-point mesh along all three
dimensions for any shaped unit cell). This scaling
is, thus, also referred to as inverse length scaling.

(2) By applying the Madelung constant correction, the
finite-size error in HF improves to OðN−1

k Þ, i.e., the
inverse volume scaling.

(3) The finite-size error of the MP2 correlation energy
also satisfies the inverse volume scaling OðN−1

k Þ.
As can be seen from HF and MP2, the specific finite-size

scaling depends on the level of computational theory and
numerical treatment employed in the calculations. In
addition to confirming the empirically observed scalings,
this rigorous analysis offers significant additional insights.
It elucidates the nature of the singularity of the electron
repulsion integral (ERI) due to the Coulomb kernel and its
impact on finite-size scaling; it explains why the finite-size
error can depend on the shapes and symmetries of the unit
cell; and it has led to the development of new correction
schemes, such as the staggered mesh method, which can
expedite the convergence of HF, MP2, and random phase
approximation (RPA) calculations toward TDL [32,33].
An innovative theoretical observation provided in

Ref. [31] is that the finite-size error can be largely compre-
hended if assuming HF single-particle orbitals can be
acquired exactly at any given k point in the Monkhorst-
Pack mesh. This perspective helps to disentangle the
contribution due to the relativelymanageable single-particle
effects from the collective and more complex electron
correlation effects. Based on this assumption, the finite-size
error can be rigorously examined from a numerical quad-
rature perspective. Specifically, the value of a physical
observable at the TDL can often be written as a multidi-
mensional integral over the Brillouin zone. As the
Monkhorst-Pack mesh forms a uniform grid discretizing
the Brillouin zone, the analysis simplifies to investigating
the quadrature error of certain trapezoidal rule in a periodic
region, a topic widely discussed in numerical analysis
literature. The novelty here lies in the recognition that the
associated integrands possess a unique singularity structure
that is asymptotically of a specific fractional form.
Reference [31], therefore, develops a new Euler-
MacLaurin type of analysis that facilitates the study of
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the finite-size error associated with HF and MP2 methods,
taking into account this fractional form singularity.
Compared to HF and MP2, the finite-size error analysis

and finite-size error correction methods in CC methods
remain nascent. Early works in Refs. [12,34] focus on an
important intermediate quantity called the structure factor
and develop finite-size correction methods based on differ-
ent types of polynomial interpolation of the structure factor
near the Coulomb singularity. Subsequent studies on the
uniform electron gas system [35,36] numerically examine
the power-law scaling of the finite-size error in CC theory,
offering new analytical perspective on the structure factor.
These works also provide new error correction methods,
such as twist-angle techniques [37,38] and structure factor
interpolation [39] for these metallic systems. Very recently,
Ref. [40] replaces the Coulomb kernel in CC calculations
with an averaged Coulomb kernel in each quadrature
element to reduce the finite-size error for anisotropic
systems. Despite these developments, theoretical under-
standing of the finite-size error scaling in CCmethods (with
and without error correction methods) has been lacking.
Recently, by applying a similar approach, we have

expanded the finite-size error analysis to include the
correlation energy of the third-order Møller-Plesset pertur-
bation theory (MP3) and CC theory [41]. The simplest CC
theory is the coupled cluster singles (CCS) theory.
However, due to Thouless’s theorem [42], CCS only rotates
the Slater determinant to another Slater determinant. For a
nondegenerate closed-shell Hartree-Fock reference, the
correlation energy from the CCS theory vanishes.
Therefore, we focus on the coupled cluster doubles
(CCD) theory, which is mathematically the simplest and
representative form of CC theory. From a diagrammatic
perspective, CC diagrams encompass all Møller-Plesset
perturbation diagrams. When the CCD amplitude equation
is solved iteratively with n fixed point iterations [referred to
as the CCDðnÞ scheme], the MP2 and MP3 diagrams can
be generated from CCD(1) and CCD(2), respectively. More
generally, CCDðnÞ consists of a finite subset of Møller-
Plesset perturbation diagrams. It is worth pointing out that
there is a method called CCSD(2) which uses second-order
perturbation to rectify CCSD energies for multireference
and open-shell systems [43], and its meaning should,
therefore, be distinguished from our CCDðnÞ. Our analysis
uncovers that the finite-size error in MP3 and CC is
fundamentally different from that in MP2. Specifically,
theories such as MP2 and RPA incorporate only “particle-
hole” types of diagrams. The integrands corresponding to
these diagrams are singular, but the singularity is relatively
mild. However, starting from MP3, additional perturbative
terms, namely, the “particle-particle” and “hole-hole”
diagrams, must be considered. These terms introduce much
stronger singularities, necessitating the development of new
analytical tools. Our quadrature error analysis adapts the
Poisson summation formula in a new setting and aligns

with a recently developed trapezoidal quadrature analysis
for certain singular integrals [44]. This approach provides
more accurate estimates and can be more applicable than
our previous quadrature analysis based on the Euler-
MacLaurin formula for HF and MP2 in Ref. [31]. In the
absence of finite-size correction schemes and assuming
exact orbital energies at any k point, the study in Ref. [41]
concludes that the finite-size errors of MP3 and CCD both
satisfy the inverse length scaling OðN−1=3

k Þ.
Interestingly, for CCD, earlier numerical calculations did

not provide conclusive evidence regarding its finite-size
scaling, with different studies suggesting either an inverse
volume scaling [15,34] or inverse length scaling [17]. More
recent calculations demonstrate that the electron correlation
energy in periodic coupled cluster calculations should
follow an inverse volume scaling, even in the absence of
finite-size correction schemes. This observation points to a
significant gap in the theoretical understanding of the finite-
size error and prompts the central question we address in
this paper: How can we reconcile the following seemingly
paradoxical facts?
(1) Without finite-size corrections, the finite-size error

in CCD exhibits inverse volume scaling.
(2) Without finite-size corrections, the finite-size error

in MP3 exhibits inverse length scaling. This rate is
sharp and cannot be improved.

(3) All MP3 diagrams are encompassed within the CCD
formulation.

There are several often-cited physical justifications for
expecting that the CCD method, and CC theory more
generally, may exhibit superior behavior when applied to
periodic systems. One such reason stems from the size
extensivity of CC theory. A theory is size extensive when
the total energy of two noninteracting identical systems,
calculated as a combined system, equates to twice the
energy of one system computed independently. Unlike
theories such as truncated configuration interaction meth-
ods, which are not size extensive, truncated CC theory
(such as CCD) possesses this advantageous characteristic.
Another reason is that CC theory can be formulated in such
a way that it does not explicitly depend on orbital energies.
One practical consequence of this is that, upon the con-
vergence of the coupled cluster iterations, the Madelung
constant correction, often used to reduce finite-size effects
in many-body simulations, cancels out naturally. Therefore,
in this scenario, CC without the Madelung constant
correction is equivalent to that with the Madelung constant
correction.
We would like to clarify that neither size extensivity nor

the cancellation of the Madelung constant alone is suffi-
cient to address the aforementioned question. While size
extensivity is indeed a desirable property, many methods
such as HF, MP2, and MP3, among others, are all size
extensive. In fact, given that periodic systems are infinitely
large, size extensivity should be viewed as a necessary
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condition for the applicability of any numerical method to
such systems. However, this property does not provide
insight into the convergence rate of the finite-size error. The
cancellation of the Madelung constant plays a pivotal role
here. Nevertheless, demonstrating that CCD calculation (or
even MP3) with the Madelung constant correction exhibits
inverse volume scaling in finite-size error is itself a
significant challenge. This requires the development of
new technical tools not currently available in existing
literature. Indeed, the development and application of these
tools are the main technical contribution of this paper.
In this paper, we elucidate the origin of the inverse

volume scaling behavior. Our analysis consists of two
steps. First, we investigate the structure of the CCD
amplitude equation. We show that the Madelung constant
correction, commonly used to reduce finite-size errors in
Fock exchange energy and orbital energies, can also be
applied to reduce the finite-size error in ERI contractions
within the CCD amplitude equation. We establish a con-
nection between the Madelung constant correction and a
quadrature error reduction technique known as the singu-
larity subtraction method [45]. By subtracting the leading
singular terms from the integrands in the numerical quad-
ratures, the Madelung constant correction reduces the
finite-size errors in both the ERI contractions and the
orbital energies from OðN−1=3

k Þ to OðN−1
k Þ. Furthermore,

we demonstrate that, with the Madelung constant correc-
tion, the finite-size errors in CCDðnÞ and converged CCD
calculations satisfy the desired inverse volume scaling.
In the second step of our analysis, we observe that, upon

convergence of the CCD amplitude equations, the
Madelung constant corrections to both orbital energies
and ERI contractions perfectly cancel each other out for any

finite-sized system. This cancellation ensures that the CCD
correlation energy remains the same, regardless of whether
the Madelung constant correction is applied. Combining
this result with the first step, we conclude that the finite-size
error of the correlation energy in converged CCD calcu-
lations satisfies the desired inverse volume scaling without
the need for any additional correction schemes. However,
prior to the convergence of the amplitude equations, this
perfect cancellation does not occur, and the finite-size error
of CCDðnÞ calculations remains OðN−1=3

k Þ. A similar lack
of cancellation occurs when the orbital energies take their
exact value at the TDL but the ERI contractions are not
corrected, resulting in anOðN−1=3

k Þ finite-size error for both
converged CCD and CCDðnÞ calculations studied
in Ref. [41].
To validate our theoretical analysis, we perform CCD

calculations on a 3D periodic hydrogen dimer system using
the PYSCF software package [46]. Our numerical results
support the conclusions drawn from the theoretical analysis
and provide further evidence for the finite-size scaling
behavior summarized in Table I.
The paper is organized as follows. Section II introduces

background knowledge and basic notations. Section III first
decomposes the finite-size error in CCDðnÞ calculations
into the errors in four basic components and then describes
how the four components contribute to the overall finite-
size error with the possible Madelung constant correction.
Section IV explains the key ideas of how the Madelung
constant correction can reduce the finite-size error in orbital
energies and ERI contractions from a numerical quadrature
perspective. Section V illustrates the numerical results that
corroborate our error estimate. Lastly, Sec. VI discusses the
implication of our theoretical study and future directions.

TABLE I. Finite-size scaling of different computational theories with and without corrections to orbital energies
and ERI contractions. The first two rows refer to the finite-size scaling of the Hartree-Fock (HF) exchange energy,
and the remaining rows refer to the finite-size scaling of the correlation energy (excluding the HF exchange). While
we focus on the Madelung constant correction in Ref. [31] and this work, any correction schemes that reduces the
finite-size errors in orbital energies and ERI contractions to OðN−1

k Þ can also be applied, and the conclusions drawn
here remain valid. In particular, exact values of single particle orbital energies at the TDL satisfy the condition
above. N/A means that Madelung constant correction does not apply within the theory.

Theory
Correction to
orbital energies

Correction to
ERI contractions

Finite-size
scaling References

HF N/A ✗ N−1=3
k

[31, Theorem 3.1] and [6,17,47]

HF N/A ✓ N−1
k [31, Theorem 5.1] and [47]

MP2 ✓ N/A N−1
k [31, Theorem 4.1] and [15,34]

RPA, SOSEX, drCCD ✓ N/A N−1
k [33,34]

MP3 ✓ ✗ N−1=3
k

[41]

MP3 ✓ ✓ N−1
k Theorem 1

CCDðnÞ=CCD ✓ ✗ N−1=3
k =N−1=3

k
[41]

CCDðnÞ=CCD ✓ ✓ N−1
k =N−1

k Theorem 1/Theorem 2
CCDðnÞ=CCD ✗ ✓ N−1=3

k =N−1=3
k

Theorem 1/Theorem 2

CCDðnÞ=CCD ✗ ✗ N−1=3
k =N−1

k
Theorem 1/Corollary 3
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II. BACKGROUND

Consider a unit cell and its Brillouin zone denoted as Ω
and Ω�, respectively. Denote the associated real- and
reciprocal-space lattices as L and L�, respectively. To
model such a periodic system, the Brillouin zone Ω� is
commonly discretized using a uniform mesh K of size Nk
(known as the Monkhorst-Pack grid [29]). The orbitals and
orbital energies (also called bands and band energies)
fψnk; εnkg indexed by orbital indices n and momentum
vectors k∈K can be solved by the HF method. As a
common practice, n∈ fi; jg refers to an occupied orbital
and n∈ fa; bg refers to an virtual orbital. Throughout this
paper, we use the normalized ERI:

hn1k1; n2k2jn3k3; n4k4i

¼ 4π

jΩj
X0

G∈L�

1

jqþGj2 ϱ̂n1k1;n3ðk1þqÞðGÞϱ̂n2k2;n4ðk2−qÞð−GÞ;

ð1Þ

where q ¼ k3 − k1 is the momentum transfer vector,
the crystal momentum conservation k1 þ k2 − k3 −
k4 ∈L� is assumed implicitly, and ϱ̂n0k0;nkðGÞ ¼
hψn0k0 jeiðk0−k−GÞ·rjψnki is Fourier representation of the pair
product. The primed summation over G means that the
possible term with qþG ¼ 0 is excluded in the numerical
calculation. Using a finite mesh K, the HF orbital energy
without any correction is computed as

εNk
nk ¼hnkjĤ0jnki

þ 1

Nk

X
ki∈K

X
i

ð2hiki;nkjiki;nki−hiki;nkjnk;ikiiÞ;

ð2Þ

where Ĥ0 refers to the single-particle component of themany
body Hamiltonian.
In this paper, we focus on three-dimensional insulating

systems with an indirect gap, i.e., εaka
− εiki

> 0,
∀ i; a;ki;ka. To simplify the analysis, we assume that
the orbitals are exact at any k point and the number of
virtual orbitals are truncated to a finite number. In addition,
we assume that the exact orbitals and orbital energies in the
TDL are smooth and periodic with respect to their
momentum vector index k∈Ω�. This assumption is a
restriction in our current analysis. For systems free of
topological obstructions [48,49], these conditions may be
replaced by weaker ones using techniques based on Green’s
functions or Hamiltonians defined in the atomic orbital
basis instead of the band basis [50].

A. CCD theory

Based on the reference HF determinant jΦi, the CCD
theory represents the wave function as

jΨi ¼ eT jΦi;

T ¼ 1

Nk

X
ijab

X
ki;kj;ka ∈K

Tijabðki;kj;kaÞa†aka
a†bkb

ajkj
aiki

;

where a†nk and ank are creation and annihilation operators,
respectively, for ψnk, Tijabðki;kj;kaÞ (commonly denoted

as taka;bkb
iki;jkj

in the literature) is the normalized CCD double

amplitude, and kb ∈K is uniquely determined using the
crystal momentum conservation ki þ kj − ka − kb ∈L�.
The amplitude tensor TNk� ¼ fTijabðki;kj;kaÞg is defined
as the root of a nonlinear amplitude equation that consists
of constant, linear, and quadratic terms.
In practice, the amplitude equation can be solved using a

quasi-Newton method [9,51], which is equivalent to apply-
ing fixed point iteration to

T ¼ 1

εNk
ANk

ðTÞ: ð3Þ

Here, εNk denotes a diagonal operator with entries
εNk
iki;jkj;aka;bkb

¼ εNk
iki

þ εNk
jkj

− εNk
aka

− εNk
bkb

, and 1=εNk gives

the diagonal operator with 1=εNk
iki;jkj;aka;bkb

. The operator

ANk
ðTÞ is referred to as the ERI-contraction map (see the

definition in Appendix A). It consists of contractions
between ERIs and T and does not involve orbital energies.
Note that both T and ANk

ðTÞ are tensors indexed by
ði; j; a; bÞ and ðki;kj;kaÞ∈K ×K ×K. The CCD corre-
lation energy is then defined as

ENk
CCD ¼ 1

N3
k

X
kikjka ∈K

X
ijab

Wijabðki;kj;kaÞTijabðki;kj;kaÞ

≔ GNk
ðTNk� Þ;

where Wijabðki;kj;kaÞ denotes the antisymmetrized
ERI 2hiki; jkjjaka; bkbi − hiki; jkjjbkb; akai.
In the TDL with K replaced by Ω�, TNk� ¼

fTijabðki;kj;kaÞg with ðki;kj;kaÞ∈K ×K ×K should
be replaced by t� ¼ ftijabðki;kj;kaÞg, where each
tijabðki;kj;kaÞ is a function of ðki;kj;kaÞ in Ω�×
Ω� ×Ω�. The converged TDL amplitude t� satisfies a
similar amplitude equation

t ¼ 1

εTDL
ATDLðtÞ; ð4Þ

where ATDL can be obtained from ANk
by taking the limit

ð1=NkÞ
P

k∈K → ð1=jΩ�jÞ RΩ� dk with Nk → ∞. For
example, the four-hole–two-particle (4h2p) linear term
in ½ANk

ðTÞ�ijabðki;kj;kaÞ converges in ATDLðtÞ as
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1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkjiTklabðkk;kl;kaÞ

⟶
K→Ω� 1

jΩ�j
Z
Ω�

dkk

X
kl

hkkk; lkljiki; jkjitklabðkk;kl;kaÞ:

ð5Þ

The image of ATDL is a set of functions of ðki;kj;kaÞ
indexed by ði; j; a; bÞ. The CCD correlation energy in the
TDL is defined in a similar way as

ETDL
CCD ¼ 1

jΩ�j3
Z
Ω�×Ω�×Ω�

dkidkjdkaWijabðki;kj;kaÞ

× tijabðki;kj;kaÞ
≔ GTDLðt�Þ:

Applying n steps of fixed point iteration over Eqs. (3)
and (4) with zero initial guess (i.e., t ¼ 0, T ¼ 0), we
obtain the CCDðnÞ amplitude and the CCDðnÞ energy:

ENk
CCDðnÞ ¼ GNk

ðTNk
n Þ ETDL

CCDðnÞ ¼ GTDLðtnÞ
TNk
m ¼ ðεNkÞ−1ANk

ðTNk
m−1Þ → tm ¼ ðεTDLÞ−1ATDLðtm−1Þ

TNk
0 ¼ 0 t0 ¼ 0:

ð6Þ

CCDðnÞ is related to the perturbative description of CCD
and consists of a subset of finite order perturbation energy
terms in the Møller-Plesset perturbation theory. For exam-
ple, CCD(1) can be identified with MP2, and CCD(2)
contains all the terms in MP2 and MP3 and a subset of
terms in MP4.
One main result of this paper is the rigorous analysis of

the finite-size error in CCDðnÞ calculation with any fixed
n > 0. If the fixed point iterations in both the finite and
TDL cases converge to the CCD amplitudes as n → ∞, i.e.,
TNk
n → TNk� and tn → t� (the technical definition of this

convergence is provided in Appendix C), the finite-size
error analysis for CCDðnÞ also applies to the converged
CCD calculation. In other words, we analyze the finite-size
error in CCD calculation using a perturbative approach
based on the analysis on CCDðnÞ.

B. Madelung constant correction

Reference [41] shows that the finite-size errors in
CCDðnÞ and CCD both scale as OðN−1=3

k Þ when assuming
that exact orbital energies are used in the amplitude
equation (3). The same finite-size scaling also appears in
Fock exchange energy and occupied orbital energy calcu-
lations. One common correction to reduce the finite-size
errors in the latter two calculations is to add a Madelung
constant shift [6,47,52] to the Ewald kernel. This shift

introduces a correction to all involved ERIs in the calcu-
lations as

hn1k1; n2k2jn3k3; n4k4i − δn1n3δn2n4δk1k3
δk2k4

Nkξ:

Such a correction is triggered only in ERIs which have fully
matched orbital indices, i.e., n1 ¼ n3; n2 ¼ n4, and zero
momentum transfer, i.e., k1 ¼ k3. The Madelung constant
ξ is defined uniquely by the unit cell and the k-point mesh
K as

ξ ¼
�

1

Nk

X
q∈Kq

−
1

jΩ�j
Z
Ω�

dq

�X0

G∈L�

4π

jΩj
e−σjqþGj2

jqþGj2 −
4πσ

Nk

þ
X0

R∈LK

erfcðσ−1=2jRj=2Þ
jRj ; ð7Þ

where Kq is a uniform mesh that is of the same size as K
and contains q ¼ 0 and LK is the real-space lattice
associated with the reciprocal-space lattice qþG with
q∈Kq;G∈L. Note that ξ does not vary with respect to
σ > 0 [6] and this parameter σ is commonly tuned to
control the lattice cutoffs in the summation over L� and LK
in Eq. (7) when numerically computing ξ.
For finite-size orbital energy calculation in Eq. (2), the

Madelung constant correction gives

εNk;ξ
nk ¼

�
εNk
nk þ ξ n is occupied;

εNk
nk n is virtual:

ð8Þ

For the ERI contractions in ANk
ðTÞ, this correction

should be applied to six linear amplitude terms (see
Appendix B 2). For example, the 4h2p linear term in
Eq. (5) should be modified to

1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkjiTklabðkk;kl;kaÞ

− ξTijabðki;kj;kaÞ: ð9Þ

Collecting the corrections to all six terms together, ANk
ðTÞ

is modified to

ANk;ξðTÞ ¼ ANk
ðTÞ þ 2ξT: ð10Þ

In the finite-size CCDðnÞ and converged CCD calculations,
the Madelung constant correction can be applied to the
orbital energies, ERI contractions, or both in the amplitude
equation (3). As a result, we may have three correction
schemes compared to the standard calculation without any
correction.
Particularly, applying the Madelung constant correction

to both components gives the amplitude equation
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T ¼ 1

εNk þ 2ξ
½ANk

ðTÞ þ 2ξT� ¼ 1

εNk;ξ
ANk;ξðTÞ: ð11Þ

It can be easily verified that this amplitude equation has the
same solution as Eq. (3) without any correction. Its CCD
solution is, thus, identical to the one without correction.
However, the associated CCDðnÞ calculation differs and
can be interpreted as solving the original amplitude
equation (3) using a quasi-Newton method that has a 2ξ-
diagonal shift to the Jacobian matrix.

III. MAIN STATEMENTS

We start our error analysis with the CCDðnÞ calculation
with a fixed number of iterations n > 0 and then general-
ize the analysis to the fully converged CCD calcu-
lation. In CCDðnÞ, the finite-size error is quantified by
ETDL
CCDðnÞ − ENk

CCDðnÞ. According to Eq. (6), this error can be

traced back to two sources: the difference in energy oper-
ators, GTDL versus GNk

, and the difference in amplitudes, tn
versus TNk

n . Recall that tn and T
Nk
n are the amplitudes of the

system in TDL and finite-size cases, respectively. Let us
consider the evaluation map, denoted by MK. This map
evaluates a tensor valued function, initially defined on the
product space Ω� × Ω� ×Ω�, on a finite-sized grid
K ×K ×K. Consequently, the values of the TDL amplitude
tn on this finite-sizegrid,K ×K ×K, are given byMKtn and
are approximated by the finite-size amplitude TNk

n .
By applying the triangle inequality, we can decompose

the finite-size error into two distinct sources: the errors
arising from the discretized energy calculation using the
exact amplitude MKtn and the errors stemming from the
amplitude calculation itself:

jETDL
CCDðnÞ−ENk

CCDðnÞj
≤ jGTDLðtnÞ−GNk

ðMKtnÞjþjGNk
ðMKtnÞ−GNk

ðTNk
n Þj

≤ jGTDLðtnÞ−GNk
ðMKtnÞj

þ C
N3

k

X
ijab

X
ki;kj;ka∈K

j½MKtn−TNk
n �ijabðki;kj;kaÞj: ð12Þ

Here, we use the fact that jWijabðki;kj;kaÞj can be upper
bounded uniformly by a constant.
To further break down the error in amplitude calculation,

we note that tn and TNk
n are recursively constructed by

Eq. (6) with initial values t0 ¼ 0 and TNk
0 ¼ 0. As a result,

the error in the CCDðnÞ amplitude calculation can
also be recursively decomposed using the same strategy
above as

MKtn−TNk
n ¼ 1

εTDL
½MKATDLðtn−1Þ−ANk

ðMKtn−1Þ�

þANk
ðMKtn−1Þ

�
1

εTDL
−

1

εNk

�

þ 1

εNk

h
ANk

ðMKtn−1Þ−ANk
ðTNk

n−1Þ
i
: ð13Þ

The three error terms from this dissection can be interpreted
as the errors in ERI contractions using exact CCDðn − 1Þ
amplitudes, orbital energies, and CCDðn − 1Þ amplitude
calculation composed with ANk

, respectively. For the

last term, it can be shown that entries in ANk
ðMKtn−1Þ −

ANk
ðTNk

n−1Þ have the same scaling with respect to Nk as

those in MKtn−1 − TNk
n−1. Replacing the last term by

MKtn−1 − TNk
n−1 and applying the dissection recursively,

we find that the error in the CCDðnÞ amplitude calculation
is determined by those in the ERI contractions and orbital
energies, i.e., the first two terms in Eq. (13).
Overall, the finite-size error of CCDðnÞ calculation

can be decomposed into errors in three basic factors:
(i) energy calculation using exact CCDðnÞ amplitude,
(ii) ERI contractions using exact CCDðn − 1Þ amplitude,
and (iii) orbital energies. This error decomposition is also
valid when applying the Madelung constant correction to
orbital energies [Eq. (8)] or ERI contractions [Eq. (10)]. By
analyzing these three error sources with or without cor-
rections separately, we can obtain the finite-size error
estimate for CCDðnÞ with various correction schemes.
The Madelung constant correction can reduce the finite-

size error in orbital energies from OðN−1=3
k Þ to OðN−1

k Þ.
This correction is at the HF level. Onemain technical result
of this work is to show that the Madelung constant
correction can also reduce the finite-size error in most
(but not all) entries of the ERI contraction [note that

MKATDLðtÞ −ANk
ðMKtÞ is a tensor] from OðN−1=3

k Þ to
OðN−1

k Þ; see Sec. IV B. As a result, when applying the
Madelung constant correction to both orbital energies and
ERI contractions in the CCDðnÞ calculation, the overall
finite-size error can be successfully reduced to OðN−1

k Þ.
Theorem 1. In CCDðnÞ calculation, the finite-size error

in the correlation energy scales as OðN−1=3
k Þ in each of the

following scenarios: (i) there is no finite-size correction,
(ii) the Madelung constant correction is applied only to the
ERI contraction ANk

, and (iii) the Madelung constant

correction is applied only to the orbital energy εNk
nk.

When the Madelung constant correction is applied to
both ANk

and εNk
nk in the CCDðnÞ calculation, the overall

finite-size error scales as OðN−1
k Þ.

As a special case, the same conclusion applies to MP3
calculations.
Proof. See Appendix B. ▪
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Now what happens to the finite-size error of the CCD
calculation as n → ∞? For gapless and small-gap systems,
it has been observed in practice that the fixed point iteration
might not converge or the amplitude equation might have
multiple solutions. While we focus on systems with an
indirect gap, it is worth noting that, even in such favorable
scenarios, the existence and uniqueness of solutions to the
CCD amplitude equations in both finite and TDL cases
remain an open question and are beyond the scope of
this paper.
To study the finite-size error of CCD via the above

results on CCDðnÞ, we make additional technical assump-
tions (see Appendix C) that can guarantee the convergence
of CCDðnÞ to CCD. Under these assumptions, we show
that the finite-size scaling of CCD calculation is upper
bounded by those of its associated converging CCDðnÞ
calculations. Numerical observations (see Sec. V) further
show that this finite-size scaling estimate through CCDðnÞ
is asymptotically sharp for CCD calculation with the
Madelung constant correction applied to orbital energies,
ERI contractions, or both.
Theorem 2 (informal). Under additional conditions on

the convergence of CCDðnÞ to CCD, the finite-size error of
the CCD correlation energy scales as OðN−1=3

k Þ in each of
the following scenarios: (i) the Madelung constant correc-
tion is applied only to the ERI contraction ANk

, and (ii) the
Madelung constant correction is applied only to the orbital
energy εNk

nk.
When the Madelung constant correction is applied to

bothANk
and εNk

nk in the CCD calculation, the overall finite-
size error scales as OðN−1

k Þ.
Compared to Theorem 1, Theorem 2 does not address the

finite-size error of the CCD calculation when no finite-size
correction is applied. The natural conclusion from Theorem
1 is that this finite-size scaling should beOðN−1=3

k Þ as well.
However, this error estimate is loose and inconsistent with
the numerical observations which suggest an inverse
volume scaling. To obtain a tight estimate, we now use
the observation that the CCD calculation without any
correction is equivalent to the CCD calculation with the
Madelung constant correction applied to both ERI con-
tractions and orbital energies. Specifically, when applying
the Madelung constant corrections Eqs. (8) and (10), the
CCD amplitude equation in Eq. (11) can be formulated as

ðεNk þ 2ξÞT ¼ ANk
ðTÞ þ 2ξT ⇔ εNkT ¼ ANk

ðTÞ:

With 2ξT on both sides canceling each other, this refor-
mulation is exactly reduced to the original amplitude
equation (3) without corrections. Therefore, the roots of
the two amplitude equations with and without the correc-
tions are the same, and the correlation energy in converged
CCD calculation without any corrections is the same as that
with the Madelung constant correction. In other words,
when investigating the finite-size error of CCD calculation
without corrections, we should apply Theorem 2 with the
Madelung constant correction applied to bothANk

and εNk
nk .

This yields a sharp estimateOðN−1
k Þ and explains the origin

of the inverse volume scaling of the finite-size error.
Corollary 3. Under the same additional conditions as in

Theorem 2, the finite-size error of the CCD correlation
energy without finite-size correction scales as OðN−1

k Þ.
We provide the proof of Theorem 2 in Appendix C, and

Corollary 3 follows directly from Theorem 2 and the
reasonings above.

IV. KEY IDEAS

As demonstrated in the previous section, the finite-size
errors in CCDðnÞ and CCD calculations can be reduced to
the errors in three simpler basic calculations: energy
calculation using exact amplitudes, ERI contraction using
exact amplitudes, and orbital energies. A key observation is
that the finite-size errors in all three calculations can be
interpreted and analyzed from a numerical quadrature
perspective.
For a function g over a hypercube V, we denote a

(generalized) trapezoidal rule using a uniform mesh X of V
and its quadrature error as

QVðg;XÞ ¼ jVj
jX j

X
x∈X

gðxÞ;

EVðg;XÞ ¼
Z
V
dxgðxÞ −QVðg;XÞ:

Under the assumption of exact orbitals at any k point in
finite-size calculation, the errors in (i) orbital energy,
(ii) energy, and (iii) ERI contraction ANk

can be, respec-
tively, formulated by their definitions as

εTDLnk − εNk
nk ¼ 1

jΩ�j EΩ�

�X
i

Wininðki;k;kiÞ;K
�
;

GTDLðtÞ − GNk
ðMKtÞ ¼

1

jΩ�j3 EΩ�×Ω�×Ω�

�X
ijab

Wijabtijabðki;kj;kaÞ;K ×K ×K
�
;

MKATDLðtÞ −ANk
ðMKtÞ ¼

1

jΩ�j EΩ�

�X
kl

hkkk; lkljiki; jkjitklabðkk;kl;kaÞ;K
�
þ � � � : ð14Þ
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For ERI contraction in the last line, the error is denoted by a
tensor with indices ði; j; a; b;ki;kj;kaÞ, and the error for
the 4h2p linear term Eq. (5) is detailed with kk being the
integration variable. Meanwhile, terms not shown account
for errors from computing other linear and quadratic
amplitude terms. From a numerical quadrature perspective,
all three finite-sized calculations approximate the corre-
sponding integrals in the TDL using the trapezoidal rule
and a finite mesh K to discretize Ω�. Therefore, their finite-
size errors can be estimated systematically by quadrature
error analysis.
In general, the quadrature error associated with a

trapezoidal rule is influenced by the integrand’s smoothness
and boundary conditions. If we take Δh as the mesh size
along each dimension, the quadrature error for a smooth
integrand is typically of order OðΔh2Þ. Interestingly, if the
integrand is also periodic, the error diminishes much more
rapidly than it does in a nonperiodic scenario. The decay
rate is faster than any finite power of Δh, showcasing a
superalgebraic decay [53]. However, for an integrand
periodic but marked by singularities, its quadrature error
tends to taper off at a slower rate.
For quadrature errors in Eq. (14), the involved integrands

are all periodic across their integration domains. However,
many of these integrands have singularities within the
domains, affecting the scaling of their quadrature errors. As
demonstrated next, these integrands include point singu-
larities arising from both ERIs and amplitudes, resulting in
low-order power-law decay of the corresponding quad-
rature errors as Nk increases.

A. Singularity structure and quadrature
error estimate

All the quadrature errors in Eq. (14) have integrands
comprising of either ERIs or contractions between ERIs
and exact CCDðnÞ amplitudes. The integration variables
are momentum vectors sampled in the Brillouin zone Ω�.
Consequently, understanding the singularity structure of
ERIs and exact CCDðnÞ amplitudes with respect to their
momentum vector indices is crucial in comprehending the
singularity structure of these integrands and ultimately
estimating the quadrature error in the three basic
calculations.
First, consider a generic ERI hn1k1; n2k2jn3k3; n4k4i

with fixed band indices ðn1; n2; n3; n4Þ and treat it as a
function of k1, k2, and q ¼ k3 − k1 in Ω�. By its
definition, the ERI can be separated as

hn1k1;n2k2jn3k3;n4k4i

¼ 4π

jΩj
ϱ̂n1k1;n3ðk1þqÞð0Þϱ̂n2k2;n4ðk2−qÞð0Þ

jqj2

þ 4π

jΩj
X

G∈L�nf0g

ρ̂n1k1;n3ðk1þqÞðGÞρ̂n2k2;n4ðk2−qÞð−GÞ
jqþGj2 : ð15Þ

Since we assume all orbitals ψnk periodic and smooth with
respect to k∈Ω�, this ERI has a point singularity at q ¼ 0
only due to the first fraction term. Specifically, this term is of
fractional formfðk1;k2;qÞ=jqj2with a smoothnumeratorf.
As can be verified by direct calculation, such a fraction term
can have its point singularity at q ¼ 0 described by the
following general concept called algebraic singularity.
Definition 4 (informal). A function fðxÞ has algebraic

singularity of order γ ∈R at x0 ∈Rd if every lth-order
derivative near x0 is bounded asymptotically by jx − x0jγ−l,
i.e., ���� ∂

α

∂xα fðxÞ
���� ≤ Cjx − x0jγ−jαj; ∀ α ≥ 0;

where α denotes a non-negative d-dimensional derivative
multi-index. For brevity, f is said to be singular at x0 with
the order of γ. See Definition 8 in Appendix B for the
rigorous mathematical definition.
A representative example of such a singular function of

order γ is gðxÞ=jxj2, where gðxÞ is smooth and scales as
Oðjxj2þγÞ near x ¼ 0. Using orbital orthogonality, the
generic ERI exhibits singularities at q ¼ 0 with the order
of 0 when band indices mismatch (n1 ≠ n3, n2 ≠ n4), −1
when they partially match (n1 ¼ n3; n2 ≠ n4 or n1 ≠ n3;
n2 ¼ n4), and −2 when they fully match (n1¼n3;n2¼n4).
We can now characterize the singularity structure of

integrand
P

i Wininðki;k;kiÞ defined by orbital energy
εTDLnk in Eq. (14). Fixing ðn;kÞ, the leading singularity in
each Wininðki;k;kiÞ (as a function of ki) comes from the
exchange term hiki; nkjnk; ikii which has algebraic sin-
gularity at ki ¼ k of order 0 when i ≠ n and −2 when
i ¼ n. In computing εTDLnk , the overall integrand is, thus,
singular at ki ¼ k of order 0 for a virtual band n and −2 for
an occupied band n.
For such periodic functions with one point of algebraic

singularity, the conventional textbook analysis of the
trapezoidal rule is overly pessimistic. A key technical tool
in this work is Lemma 5 below, which provides a rigorous
and sharp quadrature error estimate linking its error scaling
to the singularity order. (See Lemma 22 in Appendix D for
a more general statement.)
Lemma 5. Let fðxÞ be periodic with respect to V ¼

½− 1
2
; 1
2
�d and smooth everywhere except at x ¼ 0 with

singularity order γ ≥ −dþ 1. At x ¼ 0, fðxÞ is set to 0.
The quadrature error of a trapezoidal rule using anmd-sized
uniform mesh X that contains x ¼ 0 can be estimated as

jEVðf;XÞj ≤ Cm−ðdþγÞ:

If fð0Þ is set to an Oð1Þ value in the calculation, it
introduces additional Oðm−dÞ quadrature error.
Combining this error estimate with the integrand singu-

larity structure for orbital energies (with m ¼ N1=3
k , d ¼ 3,

and γ ¼ −2; 0 for occupied and virtual orbitals, respec-
tively), we obtain the finite-size error estimate for orbital
energy calculation as
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����εTDLnk − εNk
nk

���� ≤ C

�
N−1=3

k n is occupied;

N−1
k n is virtual:

ð16Þ

To adapt the above approach for examining energy and
ERI-contraction calculations with exact amplitude, we need
to characterize the singularity structure of the exact
CCDðnÞ amplitude entries. First, we note that the exact
CCD(1) amplitude is just the MP2 amplituden

haka; bkbjiki; jkjiðεTDLiki;jkj;aka;bkb
Þ−1

o
:

As a function of ðki;kj;kaÞ, each CCD(1) amplitude entry
indexed by ði; j; a; bÞ has the same singularity structure as
the included ERI term, which is singular at ka − ki ¼ 0 of
order 0. It turns out that the exact CCDðnÞ amplitude with
any n > 0 all has the same singularity structure
as haka; bkbjiki; jkji.
Lemma 6 (singularity structure of the amplitude,

Lemma 4 in Ref. [41]). In CCDðnÞ calculation with
n > 0, each entry of the exact double amplitude tn ¼
f½tn�ijabðki;kj;kaÞg belongs to the following func-
tion space:

TðΩ�Þ ¼ ffðki;kj;kaÞ∶ f is periodic with respect to ki;kj;ka ∈Ω�;

f is smooth everywhere except at ka ¼ ki with algebraic singularity of order 0;

f is smooth with respect to ki;kj at the singularity ka ¼ kig:

Combining the above singularity structure characterizations of ERIs and exact CCDðnÞ amplitudes, we are able to
analyze the integrands for energy and ERI-contraction calculations in Eq. (14). Take the CCDðnÞ exchange energy term as
an example whose finite-size error can be formulated as

−
1

jΩ�j3 EΩ�×Ω�×Ω�

�X
ijab

hiki; jkjjbkb; akaitijabðki;kj;kaÞ;K ×K ×K
�
;

with integration variables ðki;kj;kaÞ. For each set of
ði; j; a; bÞ, both the associated ERI and exact amplitude
in the integrand exhibit an algebraic singularity of order 0 at
ka − kj ¼ 0 and ka − ki ¼ 0, respectively. For such a
product of two functions with algebraic singularities, we
also provide a rigorous quadrature error estimate similar to
Lemma 5. Specifically, for all the integrands in the energy
and ERI-contraction calculations, their quadrature errors
are determined by the most singular product components in
the integrand. The quadrature error still scales as m−ðdþγÞ
similar to Lemma 5 but with γ denoting the minimum
algebraic singularity order of all ERIs and exact ampli-
tudes.
For the exchange term above, all involved ERIs and

exact amplitudes have point singularities of order 0 and
similar for the direct term. Thus, we can get the finite-size
error estimate for the energy calculation using exact
CCDðnÞ amplitude as

jGTDLðtÞ − GNk
ðMKtÞj ≤ CN−1

k : ð17Þ

Similar analysis is also applicable to ERI contractions
using exact amplitudes. The key distinction lies in the fact
that the ERI contractions involve integrands formed by
ERIs with stronger singularities, such as those defined by
particle-particle or hole-hole diagrams. A prominent exam-
ple is the 4h2p linear term in Eq. (5), where the involved
ERI hkkk; lkljiki; jkji exhibits an algebraic singularity of

order −2 at kk ¼ ki when k ¼ i and l ¼ j. Consequently,
as per the above analysis, the finite-size error in the 4h2p
linear term calculation alone scales asOðN−1=3

k Þ. This error
turns out to dominate the overall finite-size error in the ERI-
contraction calculation, and we have

���½MKATDLðtÞ −ANk
ðMKtÞ�ijabðki;kj;kaÞ

���
≤ CN−1=3

k ; ∀ i; j; a; b; ∀ki;kj;ka ∈K: ð18Þ

B. Madelung constant correction as a quadrature
error reduction method

To reduce the quadrature error for a singular integrand,
one common numerical quadrature technique is the singu-
larity subtraction method [45]. Essentially, this method
involves constructing an auxiliary function h that possesses
the same leading singularity as the integrand g. The integral
is then approximated as

Z
V
dxgðxÞ≈ jVj

jX j
X
x∈X

ðg−hÞðxÞþ
Z
V
dxhðxÞ

¼ jVj
jX j

X
x∈X

gðxÞþ
�Z

V
dx−

jVj
jX j

X
x∈X

�
hðxÞ: ð19Þ
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This approximation consists of the numerical quadrature of
g − h and the exact integral of h (which can be computed
analytically or numerically with high precision). It is also
equivalent to adding a correction EVðh;XÞ to the numerical
quadrature of g. By this correction, the quadrature
error changes from EVðg;XÞ to EVðg − h;XÞ. Since h
removes the leading singularity of g in the subtraction
g − h, EVðg − h;XÞ can be asymptotically smaller than
EVðg;XÞ.
The Madelung constant defined in Eq. (7) can be

reformulated using an arbitrary σ > 0 as

ξ ¼ −
1

jΩ�j
�Z

Ω�
dq −

jΩ�j
Nk

X
q∈Kq

� X
G∈L�

4π

jΩj
e−σjqþGj2

jqþGj2

þOðN−1
k Þ: ð20Þ

Compared to Eq. (19), this representation connects ξ to the
singularity subtraction correction defined by an auxiliary
function

hσðqÞ ¼
X
G∈L�

4π

jΩj
e−σjqþGj2

jqþGj2 :

The effectiveness of the Madelung constant correction to
reduce the finite-size error can be rigorously explained by
this connection.
Taking the occupied orbital energy εnk as an example, its

exchange portion leads to the dominant finite-size error,
and the associated Madelung constant correction modifies
the calculation as (with a change of variable ki → k − q)

1

Nk

X
q∈Kq

�X
i

hiðk − qÞ; nkjnkiðk − qÞi
�
− ξ:

Comparing this calculation with Eqs. (19) and (20), the
Madelung constant correction exactly uses the auxiliary
function hσðqÞ to remove the leading singularity (i.e.,
4π=jΩjjqj−2) of the target integrand and, thus, reduces
the associated finite-size error asymptotically to OðN−1

k Þ.
One major technical contribution of this paper is to

rigorously prove the effectiveness of the Madelung constant
correction for reducing the finite-size error in the ERI-
contraction calculations following the same singularity
subtraction interpretation. For instance, consider the
4h2p linear term calculation in Eq. (5) with any fixed
entry index ði; j; a; b;ki;kj;kaÞ. Using the change of
variable kk → ki − q, this term with the Madelung con-
stant correction can be detailed as

1

Nk

X
q∈Kq

�X
kl

hkðki − qÞ; lðkj þ qÞjiki; jkjitklabðki − q;kj þ q;kaÞ
�
− ξtijabðki;kj;kaÞ: ð21Þ

The leading singularity of the integrand comes from the
product with ðk; lÞ ¼ ði; jÞ. In this product, the ERI is
singular at q ¼ 0 of order −2, and the amplitude is singular
at q ¼ ki − ka of order 0. The correction in Eq. (21)
defines a singularity subtraction with an auxiliary function
hσðqÞtijabðki;kj;kaÞ. This auxiliary function shares ex-
actly the same leading singularity as the integrand at q ¼ 0
due to the ERI term, i.e.,

4π

jΩj
1

jqj2 tijabðki;kj;kaÞ:

Similar to the orbital energy analysis, the finite-size error in
this 4h2p linear entry can be reduced toOðN−1

k Þ. However,
the key difference here is that this error reduction is the case
only for most but not all the amplitude entries. The
exception is when the amplitude singularity q ¼ ka − ki

is close or equal to the ERI singularity q ¼ 0, i.e., when
computing an ERI-contraction entry whose momentum
vector indices ki and ka are close or identical. In the worst
case when ki ¼ ka, the two singularities overlap and the
finite-size error of such a 4h2p linear entry can be shown to

be still of scale OðN−1=3
k Þ. Similar analysis also applies to

other terms in the ERI-contraction calculation.
In summary, the Madelung constant correction does not

uniformly reduce the finite-size errors in the ERI-contrac-
tion tensor. This is the case for the 4h2p linear term and
also for other terms in the ERI contraction. More precisely,
we have the following technical error estimate (see Lemma
11 in Appendix B for the general statement and proof).
Lemma 7 (error in ERI contractions). The finite-size

error in the ERI contractions using exact CCDðnÞ ampli-
tude tn with the Madelung constant correction in Eq. (10)
satisfies

���½MKATDLðtnÞ −ANk;ξðMKtnÞ�ijabðki;kj;kaÞ
���

≤ C

(
1

jqiaj2 N
−1
k qia ≠ 0;

N−1=3
k qia ¼ 0;

where qia ¼ ka − ki þG0 with G0 ∈L� chosen such that
qia ∈Ω�.
As a result of this nonuniform error reduction, the

maximum entrywise finite-size error in the CCDðnÞ
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amplitude calculation MKtn − TNk
n with the Madelung

constant correction remains OðN−1=3
k Þ. However, the aver-

age entrywise error satisfies the bound

1

N3
k

X
ijab

X
ki;kj;ka ∈K

j½MKtn − TNk
n �ijabðki;kj;kaÞj ≤ CN−1

k :

From the error decomposition in Eq. (12), such a refined
bound is sufficient for our finite-size error analysis.
Therefore, the Madelung constant corrections to the ERI

contractions and the orbital energies effectively reduce the
finite-size error in the overall CCDðnÞ energy calculation
to OðN−1

k Þ.

V. NUMERICAL EXAMPLES

To validate the above theoretical analysis, we conduct
CCD and CCDðnÞ calculations on a 3D periodic system of
hydrogen dimers. One hydrogen dimer is positioned at the
center of each cubic unit cell with an edge length of 6 bohr
in the x direction and a separation distance of 1.8 bohr. For
each uniform mesh K, we perform an HF calculation on K
to obtain the orbitals and orbital energies. We then perform
CCD and CCDðnÞ calculations under four distinct settings,
each with a different combination of the Madelung constant

correction to the orbital energies and the ERI contractions
in the amplitude equation. Specifically, we compute CCD
and CCDðnÞ with both corrections, the correction to the
orbital energies alone, the correction to the ERI contrac-
tions alone, and without any corrections. All the calcu-
lations are carried out using the PYSCF package [46] with a
minimal basis set gth-szv.
Figure 1 illustrates the numerical results of the CCD(1),

CCD(2), CCD(3), and converged CCD calculations. For
CCD(1), which is identical to MP2, we have T0 ¼ 0, and
the Madelung constant correction to the ERI contractions
has no effect. As a result, the curves for the calculations
with and without this correction are identical. For CCD(2)
and higher, the four correction settings produce distinct
curves. Only the CCDðnÞ calculation with both corrections
exhibits a convergence rate of OðN−1

k Þ, while the other

three calculations have convergence rates of OðN−1=3
k Þ.

This highlights the importance of taking into account the
Madelung constant correction to both the orbital energies
and ERI contractions in higher-level CCDðnÞ calculations.
As CCDðnÞ converges to CCD, the difference between the
calculation with both corrections and the one without any
corrections gradually diminishes to zero, and the finite-size
error satisfies the inverse volume scaling.
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FIG. 1. Convergence of the CCD(1), CCD(2), CCD(3), and CCD correlation energies for a 3D periodic system of hydrogen dimers
with increasingNk. The settings are distinguished by the presence or absence of the Madelung constant correction to the orbital energies
(“εNk;ξ

nk ”) and the ERI contraction (“ANk;ξ”). In (a)–(d), the dashed curves show the power-law fitting using C0 þ C1N
−1=3
k and data

points N1=3
k ¼ 3, 4, 5 for the two cases with partial Madelung constant correction. (e)–(h) plot the curve fittings using N−1=3

k and N−1
k

over the calculations with correction to both components, numerically corroborating the inverse volume scaling.
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VI. DISCUSSION

Recent years have witnessed significant progresses in
leveraging wave function methods to study solids. One
important driver of this trend is the potential of thesemethods
to provide systematically improvable results. Among the
simplest post-HFmethods,MP2 has been applied to increas-
ingly large periodic systems along with the development of
efficient implementations utilizing density fitting and paral-
lelization techniques [16,23]. Notably, the next-order
method, MP3, has also been applied to periodic systems
recently for the first time [24]. Though computationally
muchmore expensive,CC theory has also gainedmomentum
in this context. It is being increasingly employed to com-
pute ground state and band structures for a variety of
solid materials including insulators and metallic systems
[17–19,22,25]. Furthermore, related theories such as equa-
tion-of-motion coupled cluster theory, GW method, and
algebraic diagrammatic construction theory also start their
utilizations in computing excited state properties of solids
[20,21,24]. Because of the omnipresence of finite-size
effects, aswave functionmethods continue to be increasingly
applied to periodic systems, the importance of developing a
thorough understanding of finite-size effects becomes even
more pronounced.
In this work, we fill a gap in understanding the finite-size

error in periodic coupled cluster calculation for insulating
systems. Notably, we reveal an unexpected inverse volume
scaling of this error in CCD calculation. This behavior
manifests even in the absence of any finite-size correction
schemes, owing to an error cancellation. Our findings,
together with the methodologies employed in this study,
provide valuable insights for practitioners, method devel-
opers, and theorists.
For practitioners, when applying computational quantum

chemistry methods to periodic systems, reducing finite-size
errors using techniques such as power-law extrapolation
requires an in-depth understanding of the error scaling.
This is particularly important when calculations are con-
strained to small-sized systems due to the steep increase of
the computational cost with respect to the system size and
limited resources. Many production-level quantum chem-
istry packages that support periodic systems use certain
finite-size corrections to reduce errors in the HF exchange
energy calculation and the HF orbital energies. For in-
stance, the truncated Coulomb correction scheme [54,55]
can be applied to insulating systems, so that the finite-size
error in orbital energies decays superalgebraically with
respect to Nk. However, our analysis shows that if this
correction is applied only to the orbital energy but without
any correction to ERI contractions, the finite-size error of
the correlation energy deteriorates from inverse volume
scaling to inverse length scaling. This is also a finding
consistent with numerical observations.
For method developers, a key aspect of our result is the

connection between the Madelung constant correction and

the singularity subtraction method. This relationship serves
not just as a crucial element in our theoretical proof but also
points toward new methods for further finite-size error
reduction. The Madelung constant correction operates as a
one-shot correction, while the singularity subtraction
method can be systematically improved to reduce the
finite-size error. Our analysis and correction schemes can
also be extended to more advanced coupled cluster theories
such as CCSD, and coupled cluster singles, doubles, and
triples (CCSDT). Exploring the finite-size error in lower-
dimensional systems, such as MATBG that requires a
different form of the Coulomb kernel [4,56], can lead to
different finite-size scaling patterns and novel correction
schemes. Going beyond finite-size corrections, the singu-
larity structure of the amplitude, as outlined in Lemma 6,
may be of independent interest. The singularity structure
imposes important analytic constraints that should be taken
into account when developing efficient numerical methods
for compressing the CC amplitude tensor.
For theorists, several critical questions persist: How can

finite-size error analysis be integrated with the study of
complete basis limits to tackle basis set dependence? How
should the finite-size error behavior in metallic systems be
analyzed, especially when the orbital energy difference in
the denominator could vanish? Can the scope of finite-size
analysis be broadened to include more complex systems
like disordered systems and finite-temperature alloys?
These questions present a fertile ground for future research.
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APPENDIX A: CCD AMPLITUDE EQUATION

In this section, we use a capital letter to denote an index
pair consisting of the orbital index and the k index. For
instance, I ¼ ði;kiÞ, J ¼ ðj;kjÞ, A ¼ ða;kaÞ, etc. We use
P∈ fI; J; K; Lg to refer to occupied orbitals (also known as
holes) and P∈ fA; B;C;Dg to refer to unoccupied orbitals
(also known as particles). Any summation

P
P refers to
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summing over all occupied or virtual orbital indices p
and all momentum vectors kp ∈K, while the crystal
momentum conservation is enforced according to the
summand. This notation is used only in this section to
simplify the notation and also to connect the equations to
those in the molecular case [9] for better readability.

Using a finite mesh K of size Nk, the normalized
CCD amplitude TNk� ¼ fTijabðki;kj;kaÞg ≔ ftABIJ g with
ki;kj;ka ∈K is defined as the solution of the amplitude
equation

tABIJ ¼ 1

εNk
IJAB

½ANk
ðTNk� Þ�IJAB

¼ 1

εNk
IJAB

�
hABjIJi þ P

�X
C

κACt
CB
IJ −

X
K

κKI t
AB
KJ

�
þ 1

Nk

X
KL

χKLIJ tABKL þ 1

Nk

X
CD

χABCDt
CD
IJ

þ P
�

1

Nk

X
KC

ð2χAKIC − χAKCI ÞtCBKJ − χAKIC tBCKJ − χAKCJ t
BC
KI

��
; ∀ I; J; A; B; ðA1Þ

where εNk
IJAB ¼ εNk

iki
þ εNk

jkj
− εNk

aka
− εNk

bkb
, ½ANk

ðTÞ�IJAB ¼ ½ANk
ðTÞ�ijabðki;kj;kaÞ, and P is a permutation operator defined

as Pð� � �ÞABIJ ¼ ð� � �ÞABIJ þ ð� � �ÞBAJI . This reformulation of the CCD amplitude equation is derived from the CCSD amplitude
equation in Ref. [30] by removing all the terms related to single amplitudes and normalizing the involved ERIs and
amplitudes (which gives the extra 1=Nk factor in the equation and the intermediate blocks). The intermediate blocks in the
equation are defined as

κAC ¼ −
1

N2
k

X
KLD

ð2hKLjCDi − hKLjDCiÞtADKL;

κKI ¼ 1

N2
k

X
LCD

ð2hKLjCDi − hKLjDCiÞtCDIL ;

χKLIJ ¼ hKLjIJi þ 1

Nk

X
CD

hKLjCDitCDIJ ;

χABCD ¼ hABjCDi;

χAKIC ¼ hAKjICi þ 1

2Nk

X
LD

ð2hLKjDCi − hLKjCDiÞtADIL − hLKjDCitDA
IL ;

χAKCI ¼ hAKjCIi − 1

2Nk

X
LD

hLKjCDitDA
IL ;

and their momentum vector indices also assume the crystal momentum conservation

κQP → kp − kq ∈L�;

χRSPQ → kp þ kq − kr − ks ∈L�:

In the TDL, the amplitude equation for the exact amplitude t� ¼ ftijabðki;kj;kaÞg ≔ ftABIJ g as functions of
ki;kj;ka ∈Ω� can be formulated by letting K in Eq. (A1) converge to Ω� as

tABIJ ¼ 1

εTDLIJAB
½ATDLðt�Þ�IJAB

¼ 1

εTDLIJAB

�
hABjIJi þ P

�X
C

κACt
CB
IJ −

X
K

κKI t
AB
KJ

�
þ 1

jΩ�j
Z
Ω�

dkk

X
kl

χKLIJ tABKL þ 1

jΩ�j
Z
Ω�

dkc

X
cd

χABCDt
CD
IJ

þ P
�

1

jΩ�j
Z
Ω�

dkk

X
kc

ð2χAKIC − χAKCI ÞtCBKJ − χAKIC tBCKJ − χAKCJ t
BC
KI

��
; ∀ I; J; A; B; ðA2Þ
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where the intermediate blocks in the TDL are defined as

κAC ¼ −
1

jΩ�j2
Z
Ω�×Ω�

dkkdkl

X
kld

ð2hKLjCDi − hKLjDCiÞtADKL;

κKI ¼ 1

jΩ�j2
Z
Ω�×Ω�

dkcdkd

X
lcd

ð2hKLjCDi − hKLjDCiÞtCDIL ;

χKLIJ ¼ hKLjIJi þ 1

jΩ�j
Z
Ω�

dkc

X
cd

hKLjCDitCDIJ ;

χABCD ¼ hABjCDi;

χAKIC ¼ hAKjICi þ 1

2jΩ�j
Z
Ω�

dkl

X
ld

ð2hLKjDCi − hLKjCDiÞtADIL − hLKjDCitDA
IL ;

χAKCI ¼ hAKjCIi − 1

2jΩ�j
Z
Ω�

dkl

X
ld

hLKjCDitDA
IL :

APPENDIX B: PROOF OF THEOREM 1

Restatement of Theorem 1. In CCDðnÞ calculation, the
finite-size error in the correlation energy scales as
OðN−1=3

k Þ in each of the following scenarios: (i) there is
no finite-size correction, (ii) the Madelung constant cor-
rection is applied only to the ERI contraction ANk

, and
(iii) the Madelung constant correction is applied only to the
orbital energy εNk

nk .
When the Madelung constant correction is applied to

both ANk
and εNk

nk in the CCDðnÞ calculation, the overall
finite-size error scales as OðN−1

k Þ.
As a special case, the same conclusion applies to MP3

calculations.

1. Proof outline

The main context of this paper has provided a brief
description of the main proof idea. In this proof, we recap
some of the equations and concepts discussed before to
make it self-contained. The proofs of Theorem 1 for
CCDðnÞ calculations with various types of corrections
are based on the error splitting in Eqs. (12) and (13), i.e.,

����ETDL
CCDðnÞ − ENk

CCDðnÞ
��� ≤ jGTDLðtnÞ − GNk

ðMKtnÞj

þ CkMKtn − TNk
n k1; ðB1Þ

MKtn − TNk
n ¼ 1

εTDL
½MKATDLðtn−1Þ−ANk

ðMKtn−1Þ�

þANk
ðMKtn−1Þ

�
1

εTDL
−

1

εNk

�

þ 1

εNk
½ANk

ðMKtn−1Þ−ANk
ðTNk

n−1Þ�: ðB2Þ

Note that the amplitude error here is measured in the
average norm as

kTk1 ¼
1

N3
k

X
ki;kj;ka ∈K

X
ijab

jTijabðki;kj;kaÞj:

The finite-size error in CCDðnÞ calculation is, thus,
decomposed into the error in energy calculation using
exact amplitude, the error in ERI contractions, the error in
orbital energies, and the error accumulated from previous
iteration. The latter three errors together make up of the
error in amplitude calculation. The error in energy calcu-
lation using exact amplitude is studied previously in
Ref. [41]. For completeness, we provide a brief review
of the main results below.

a. Brief review of error in energy calculation
with exact amplitude

One basic observation is that this error in CCDðnÞ
calculation can be interpreted as the quadrature error of
a specific trapezoidal rule as

jGTDLðtnÞ − GNk
ðMKtnÞj

¼
���� 1

jΩ�j3 EΩ�×Ω�×Ω�

�X
ijab

ðWijab½tn�ijabÞ;K ×K ×K
�����:
ðB3Þ

Since both Wijab and ½tn�ijab are periodic with respect to
ki;kj;ka ∈Ω�, the asymptotic scaling of this quadrature
error depends on the smoothness of these two components
that constitute the integrand.
A general ERI hn1k1; n2k2jn3k3; n4k4i can be viewed

as a function of momentum vectors k1 and k2 and its
momentum transfer vector q ¼ k3 − k1. This function is
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periodic with respect to each variable in Ω�, and its
definition in Eq. (1) can be decomposed as

4π

jΩj
ϱ̂n1k1;n3ðk1þqÞð0Þϱ̂n2k2;n4ðk2−qÞð0Þ

jqj2 þ 4π

jΩj
X

G∈L�nf0g

� � �
jqþGj2 :

ðB4Þ

The numerators of all the fractions are smooth with respect
to k1, k2, and q [note the assumption that ψnkðrÞ is smooth
with respect to k]. Therefore, this ERI example is smooth
with respect to k1 and k2 and has one point singularity in
Ω� with respect to q at q ¼ 0, which is due to the first
fraction term. For any fixed ki and kj, this point singularity
can be characterized using the concept of algebraic
singularity of certain orders.
Definition 8 (algebraic singularity for univariate func-

tions). A function fðxÞ has algebraic singularity of order
γ ∈R at x0 ∈Rd if there exists δ > 0 such that���� ∂α
∂xαfðxÞ

����≤Cα;δjx−x0jγ−jαj; ∀0< jx−x0j<δ; ∀α≥0;

where the constant Cα;δ depends on δ and the non-negative
d-dimensional derivative multi-index α. For brevity, f is
also said to be singular at x0 of order γ.
The numerator of the first fraction in Eq. (B4) scales as

OðjqjsÞ with s∈ f0; 1; 2g near q ¼ 0 using the orbital
orthogonality. The value of s depends on the relation
between orbital indices ðn1; n2Þ and ðn3; n4Þ. As a result,
the algebraic singularity of the ERI example above at
q ¼ 0 with any fixed k1 and k2 has order in f−2;−1; 0g.
In addition, to connect this singularity with varying
k1;k2 ∈Ω�, we introduce the algebraic singularity with
respect to one variable for a multivariate function.
Definition 9 (algebraic singularity for multivariate

functions). A function fðx; yÞ is smooth with respect to

y ∈VY ⊂ Rdy for any fixed x and has algebraic singularity
of order γ with respect to x at x0 ∈Rdx if there exists δ > 0
such that

���� ∂
α

∂xα

�
∂
β

∂yβ
fðx; yÞ

����� ≤ Cα;β;δjx − x0jγ−jαj;

∀ 0 < jx − x0j < δ; ∀ y ∈VY; ∀α; β ≥ 0;

where constant Cα;β;δ depends on δ, α, and β. Compared to
the univariate case in Definition 4, the key additions are the
shared algebraic singularity of partial derivatives over y at
x ¼ x0 of order γ and the independence of Cα;β;δ on y ∈VY .
By this definition, the ERI hn1k1; n2k2jn3k3; n4k4i is

smooth everywhere with respect to ki;kj;q∈Ω� except
at q ¼ 0, and the singularity order γ ∈ f−2;−1; 0g.
Specifically, γ equals to −2, −1, and 0, respectively, when
the orbital indices are fully matched, i.e., n1 ¼ n3; n2 ¼ n4,
partially matched, i.e., n1 ¼ n3;n2 ≠ n4 or n1 ≠ n3;n2¼ n4,
and not matched, i.e., n1 ≠ n3; n2 ≠ n4. If treating the ERI
example as a function of k1, k2, k3 instead, we equiv-
alently claim that the function is singular at k1 ¼ k3 of
order γ.
One key result in Ref. [41] is the singularity structure

characterization for the exact CCDðnÞ amplitude tn,
which is essential for estimating the quadrature error in
Eq. (B3). It turns out that each exact amplitude entry
½tn�ijabðki;kj;kaÞ with any n > 0 has one point of
algebraic singularity of order 0 at ka − ki ¼ 0, sharing a
similar singularity structure as the ERI hiki; jkjjaka;
bkbi or the exact MP2/CCD(1) amplitude entry
ðεTDLiki;jkj;aka;bkb

Þ−1haka; bkbjiki; jkji.
Restatement of Lemma 6 (singularity structure of the

amplitude, Lemma 4 in Ref. [41]). In CCDðnÞ calculation
with n > 0, each entry of the exact double amplitude tn
belongs to the following function space:

TðΩ�Þ ¼ffðki;kj;kaÞ∶ f is periodic with respect to ki;kj;ka ∈Ω�;

f is smooth everywhere except at ka ¼ ki with algebraic singularity of order 0;

f is smooth with respect to ki;kj at the singularity ka ¼ kig:

Based on the above singularity structures of ERIs and
exact amplitudes, the integrand in the energy calculation in
Eq. (B3) consists of products of periodic functions where
each has one point singularity of order 0. (Recall thatWijab
is the antisymmetrized ERI and consists of two ERIs that
can be treated separately.) We provide a sharp quadrature
error bound for trapezoidal rules over periodic functions in
such a product form, and its application to Eq. (B3) gives
the following lemma.

Lemma 10 (energy error with exact amplitude, Lemma 5
in Ref. [41]). In CCDðnÞ calculation with any n > 0, the
finite-size error in the energy calculation using the exact
amplitude tn can be estimated as

jGTDLðtnÞ − GNk
ðMKtnÞj ≤ CN−1

k ;

where the constant C depends on tn.
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b. Error in amplitude calculation

Based on the error splitting in Eq. (B2), analysis of the
error in amplitude calculation is reduced to estimating the
two main error terms MKATDLðtÞ −ANk

ðMKtÞ and
εTDLnk − εNk

nk and understanding how ANk
amplifies the

amplitude errorMKtn−1 − TNk
n−1 from the previous iteration.

Like the energy calculation, the errors in ERI contrac-
tions and orbital energies consist of specific quadrature
errors. In both cases, we can show that the Madelung
constant correction is connected to certain singularity
subtraction methods and can significantly reduce the
corresponding dominant quadrature errors.
Lemma 11 (error in ERI contractions). In CCDðnÞ

calculation with any n > 0, the finite-size error in the
entries of the ERI contractions using the exact amplitude tn
without any corrections can be bounded as

���½MKATDLðtnÞ −ANk
ðMKtnÞ�ijabðki;kj;kaÞ

��� ≤ CN−1=3
k :

ðB5Þ

The Madelung constant correction reduces this error to

���½MKATDLðtnÞ −ANk;ξðMKtnÞ�ijabðki;kj;kaÞ
���

≤ C

(
1

jqj2 N
−1
k q ≠ 0;

N−1=3
k q ¼ 0;

ðB6Þ

where q ¼ ka − ki þG0 with G0 ∈L� chosen such that
q∈Ω�. In both cases, the constantC depends on tn but not on
the entry index ði; j; a; bÞ and ðki;kj;kaÞ∈K ×K ×K.
Remark 12. The prefactor 1=jqj2 in the above estimate is

important when q∈Kq is near the origin. For example, if
ki;ka ∈K are adjacent to each other, jqj is of scale
OðN−1=3

k Þ and the estimate in Lemma 11 suggests an error

bound of scale OðN−1=3
k Þ.

Lemma 13 (error in orbital energies). The finite-size
error in orbital energies without any corrections is
bounded as

���εTDLnk − εNk
nk

��� ≤ C

�
N−1=3

k n is occupied;

N−1
k n is virtual:

The Madelung constant correction reduces this error to

���εTDLnk − εNk;ξ
nk

��� ≤ CN−1
k :

In both cases, the constant C is independent of the entry
index n;k∈K.
Note that there are three multipliers for the three error

terms in the amplitude error splitting Eq. (B2). These
prefactors are bounded by constants independent of Nk.

First, the orbital energy difference in Eq. (B2) satisfies
jεTDLiki;jkj;aka;bkb

j ≥ 2εg by the assumed indirect gap

εTDLaka
− εTDLiki

≥ εg > 0. Second, since ANk
ðTÞ consists of

constant, linear, and quadratic terms of T, a straightforward
estimate shows (e.g., using Lemma 7 in Ref. [41]) that

max
ijab;ki;kj;ka ∈K

j½ANk
ðMKtnÞ�ijabðki;kj;kaÞj

≤ Cmax
ijab

k½tn�ijabk2L∞ðΩ�×Ω�×Ω�Þ;

where the L∞-norm of ½tn�ijab is finite according to
Lemma 6.
Based on the above estimates of these multipliers, we

have that the summation of the first two error terms in
Eq. (B2) is dominated by the error in the ERI contractions
and the orbital energies discussed in Lemmas 11 and 13. If
applying the Madelung constant correction to both orbital
energies and ERI contractions, the summation of the first
two error terms has its entries bounded asymptotically the
same as Eq. (B6). Otherwise, its entries are bounded
asymptotically as in Eq. (B5). Lastly, for the third error
term in Eq. (13), the application of ANk

=ANk;ξ can be
proved to maintain the entrywise error scaling obtained in
Lemma 11.
Lemma 14. Consider two arbitrary bounded amplitude

tensors T; S∈Cnocc×nocc×nvir×nvir×Nk×Nk×Nk and assume their
entrywise upper bound independent of Nk. If the difference
between T and S satisfies an estimate similar to that in
Eq. (B5), i.e.,

j½T − S�ijabðki;kj;kaÞj ≤ CN−1=3
k ;

the ERI-contraction map without any corrections ANk

satisfies

j½ANk
ðTÞ −ANk

ðSÞ�ijabðki;kj;kaÞj ≤ CN−1=3
k :

If the difference between T and S satisfies an estimate
similar to that in Eq. (B6), i.e.,

j½T − S�ijabðki;kj;kaÞj ≤ C

(
1

jqj2 N
−1
k q ≠ 0;

N−1=3
k q ¼ 0;

the ERI-contraction map with Madelung constant correc-
tion ANk;ξ satisfies

j½ANk;ξðTÞ−ANk;ξðSÞ�ijabðki;kj;kaÞj≤C

(
1

jqj2N
−1
k q≠0;

N−1=3
k q¼0:

Combining the estimates of the three error terms in
Eq. (13) and the initial conditionMKt0 ¼ TNk

0 ¼ 0 in both
cases with and without Madelung constant correction, we
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can obtain the entrywise estimate of the error in the
CCDðnÞ amplitude calculation recursively. First, for the
CCDðnÞ calculation without any corrections or with partial
Madelung constant corrections to either orbital energies or
ERI contractions, we have

j½MKtn − TNk
n �ijabðki;kj;kaÞj ≤ CN−1=3

k : ðB7Þ
Accordingly, the average entrywise error can be esti-
mated as

kMKtn − TNk
n k1

¼ 1

N3
k

X
ki;kj;ka ∈K

X
ijab

j½MKtn − TNk
n �ijabðki;kj;kaÞj

≤ CN−1=3
k :

Second, for the CCDðnÞ calculation with the Madelung
constant correction to both orbital energies and ERI
contractions, we have

j½MKtn−TNk
n �ijabðki;kj;kaÞj≤C

(
1

jqj2N
−1
k q≠0;

N−1=3
k q¼0:

ðB8Þ

Accordingly, the average entrywise error can be esti-
mated as

kMKtn −TNk
n k1

¼ 1

N3
k

X
ki;kj∈K

X
q∈Kq

X
ijab

j½MKtn −TNk
n �ijabðki;kj;kiþqÞj

≤ C
1

Nk

X
q∈Kqnf0g

1

jqj2N
−1
k þC

1

Nk
N−1=3

k

≤ CN−1
k :

Plugging the above estimate and the error estimate for
energy calculation in Lemma 10 into Eq. (12) then finishes
the proof of Theorem 1.
Remark 15. In our previous work [41], we use the

maximum entrywise norm to characterize the finite-size
error in the amplitude calculation, which loosens the
average entrywise norm used in the error splitting in
Eq. (B1) as

kTk1 ≤ kTk∞ ≔ max
ijab;ki;kj;ka ∈K

jTijabðki;kj;kaÞj:

Without the Madelung constant correction, the maximum
norm suffices since all entries in the amplitude error are of
the same scale, as shown in Eq. (B7). However, this norm is
no longer sufficient for the calculation with the Madelung
constant correction, bounded in Eq. (B8). Because the

maximum entrywise error is now of scale OðN−1=3
k Þ, while

most entries are of scale OðN−1
k Þ. In this case, the average

entrywise norm provides a necessary and tighter estimate of
amplitude error.

2. Proof of Lemma 11: Error in ERI contractions

According to the singularity structure of exact CCDðnÞ
amplitude in Lemma 6, we consider the ERI contraction
using an arbitrary exact amplitude t∈ TðΩ�Þnocc×nocc×nvir×nvir .
Fixing a set of entry index ði; j; a; bÞ and ðki;kj;kaÞ∈
K ×K ×K, the error in the indexed ERI-contraction
entry can be detailed as [by comparing Eqs. (A1)
and (A2)]

½MKATDLðtÞ−ANk;ξðMKtÞ�ijab;kikjka
¼ 1

jΩ�j
�
EΩ�

�X
kl

hkkk; lkljiki; jkjitklabðkk;kl;kaÞ;K
�
þ jΩ�jξtijabðki;kj;kaÞ

�

þ 1

jΩ�j2 EΩ�×Ω�

�X
klcd

hkkk; lkljckc; dkditijcdðki;kj;kcÞtklabðkk;kl;kaÞ;K×K
�

þ � � � ; ðB9Þ

where the constant terms cancel with each other, the first
term is the error in the 4h2p linear term calculation with the
Madelung constant correction, and the second term is the
error in the 4h2p quadratic term calculation. The neglected
ones are the errors in remaining linear and quadratic term
calculations, which can all be similarly formulated as
quadrature errors of specific trapezoidal rules.
In the error analysis for CCD calculation without

corrections in ERI contractions [41], it has been shown

that without the Madelung constant correction the error
entry in the ERI contractions is uniformly bounded as

���½MKATDLðtÞ −ANk
ðMKtÞ�ijab;kikjka

��� ≤ CN−1=3
k : ðB10Þ

More specifically, all the quadratic terms and part of the
linear terms that contain only ERIs with mismatched orbital
indices contribute at most OðN−1

k Þ errors in both Eqs. (B9)
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and (B10). The dominant error in Eq. (B10) comes from the
calculation of the following six linear terms:

1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkjitklabðkk;kl;kaÞ;

1

Nk

X
kc ∈K

X
cd

haka; bkbjckc; dkditijcdðki;kj;kcÞ;

−
1

Nk

X
kk ∈K

X
kc

haka; kkkjckc; ikiitkjcbðkk;kj;kcÞ;

−
1

Nk

X
kk ∈K

X
kc

hbkb; kkkjckc; jkjitkicaðkk;ki;kcÞ;

−
1

Nk

X
kk ∈K

X
kc

haka; kkkjckc; jkjitkibcðkk;ki;kbÞ;

−
1

Nk

X
kk ∈K

X
kc

hbkb; kkkjckc; ikiitkjacðkk;kj;kaÞ;

which contain ERIs with fully or partially matched orbital
indices. The Madelung constant correction in Eq. (B9) is
only triggered in these six terms. In this proof, we focus on
the error estimate for the 4h2p linear term (the first term
above) with the correction, and similar analysis can be
applied to all the other five terms.
Denote the ERI-amplitude product in the 4h2p linear

term with orbital indices ðk; lÞ as

Fklðq1Þ ¼ hkðki − q1Þ; lðkj þ q1Þjiki; jkji
× tklabðki − q1;kj þ q1;kaÞ

¼ Hkl
eriðq1ÞHkl

ampðq1Þ;

where q1 ¼ ki − kk is the momentum transfer vector of the
ERI. The 4h2p linear term calculation with the Madelung
constant correction using a finite mesh K can be reformu-
lated as

1

Nk

X
kk ∈K

X
kl

Fklðki − kkÞ − ξHij
ampð0Þ

¼ 1

Nk

X
q1 ∈Kq

X
kl

Fklðq1Þ − ξHij
ampð0Þ;

using the change of variable kk → ki − q1 and the perio-
dicity of Fklðq1Þ. The error of this calculation compared to
its TDL value, i.e., the first error term in Eq. (B9), can be
written as

1

jΩ�j
�X

kl

EΩ�ðFklðq1Þ;KqÞ þ jΩ�jξHij
ampð0Þ

�
:

Previously, in Ref. [41], the quadrature error for Fklðq1Þ
with varying ðk; lÞ is estimated as

jEΩ� ðFklðq1Þ;KqÞj ≤ C

8>><
>>:

N−1
k k ≠ i; l ≠ j;

N−2=3
k k ¼ i; l ≠ j or k ≠ i; l ¼ j;

N−1=3
k k ¼ i; l ¼ j;

∀ i; j; a; b; ∀ki;kj;ka ∈K: ðB11Þ

As demonstrated next, in the case of partially matched orbital indices (e.g., k ¼ i, l ≠ j), this error estimate turns out to be
loose when ki ≠ ka and can be further improved as

jEΩ� ðFilðq1Þ;KqÞj ≤ C

(
1
jqjN

−1
k q ≠ 0;

N−2=3
k q ¼ 0;

∀ i; j; a; b; ∀ ki;kj;ka ∈K; ðB12Þ

where q ¼ ka − ki þG0 with G0 ∈L� chosen to make q∈Ω�. In the case of fully matched orbital indices (k ¼ i, l ¼ j),
the Madelung constant correction is triggered in the ERI evaluation and can help remove the leading quadrature error when
ki ≠ ka as

jEΩ� ðFijðq1Þ;KqÞ þ jΩ�jξHij
ampð0Þj ≤ C

(
1

jqj2 N
−1
k q ≠ 0;

N−1=3
k q ¼ 0;

∀ i; j; a; b; ∀ ki;kj;ka ∈K: ðB13Þ

In the following discussion, we prove these two error estimates Eqs. (B12) and (B13) respectively at ki ≠ ka.
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a. Error estimate for linear terms with partially
matched orbital indices

Consider a fixed set of ði; j; a; bÞ and ki;kj;ka ∈Kwith
ki ≠ ka. Assume k ¼ i and l ≠ j. Our target is a sharper
estimate of EΩ�ðFilðq1Þ;KqÞ. Since Kq and Ω� are both
inversely symmetric over q1 ¼ 0, the quadrature error can
be symmetrized as

EΩ� ðFilðq1Þ;KqÞ ¼
1

2
EΩ� ðHil

eriðq1ÞHil
ampðq1Þ

þHil
erið−q1ÞHil

ampð−q1Þ;KqÞ:

This symmetrized integrand can be further decomposed
into two terms:

½ðHil
eriðq1Þ þHil

erið−q1ÞÞHil
ampðq1Þ�

− ½Hil
erið−q1ÞðHil

ampðq1Þ −Hil
ampð−q1ÞÞ�: ðB14Þ

For the first term in Eq. (B14), we note that the ERI term
can be detailed as

Hil
eriðq1Þ ¼

4π

jΩj
ϱ̂iðki−q1Þ;iki

ð0Þϱ̂lðkjþq1Þ;jkj
ð0Þ

jq1j2

þ 4π

jΩj
X

G∈L�nf0g

� � �
jq1 þGj2 :

The ERI nonsmoothness with q1 ∈Ω� comes from the first
fractional term whose numerator is smooth and scales as
Oðjq1jÞ near q1 ¼ 0 using orbital orthogonality. It can be
verified directly that Hil

eriðq1Þ is singular at q1 ¼ 0 of order
−1, and after symmetrization Hil

eriðq1Þ þHil
erið−q1Þ is

singular at q1 ¼ 0 of order 0. Meanwhile, the amplitude
Hil

ampðq1Þ is smooth everywhere inΩ� except at q1 ¼ −q of
order 0 according to Lemma 6. An error estimate lemma in
Ref. [41] (restated as Lemma 24 in Appendix D) provides a
quadrature error estimate for periodic functions in such a
product form and can show that

jEΩ� ððHil
eriðq1Þ þHil

erið−q1ÞÞHil
ampðq1Þ;KqÞj ≤ CN−1

k ;

where constant C is independent of i, j, a, b and
ki;kj;ka ∈K.
For the second term in Eq. (B14), direct application of

Lemma 24 leads to error estimate of scale OðN−2=3
k Þ, since

Hil
erið−q1Þ is singular at q1 ¼ 0 of order −1. However, note

that Hil
ampðq1Þ is smooth at q1 ¼ 0 [recall that Hil

ampðq1Þ is
singular only at q1 ¼ −q ≠ 0], and, thus, the subtraction
Hil

ampðq1Þ −Hil
ampð−q1Þ scales as Oðjq1jÞ near q1 ¼ 0.

Multiplication by this extra Oðjq1jÞ term improves the
algebraic singularity of Hil

eriðq1Þ at q1 ¼ 0, and the overall
product can be shown to be singular at q1 ¼ 0 of order 0.

Intuitively, this improved algebraic singularity at q1 ¼ 0
can lead to asymptotically smaller quadrature errors. To
rigorously justify this statement, we generalize Lemma 24
to estimate the quadrature error for this special case.
Lemma 16. Let fðxÞ ¼ f1ðxÞf2ðxÞ, where f1ðxÞ and

f2ðxÞ are periodic with respect to V ¼ ½− 1
2
; 1
2
�d and

(i) f1ðxÞ is smooth everywhere except at x ¼ z1 ¼ 0 of
order γ ≤ −1,

(ii) f2ðxÞ is smooth everywhere except at x ¼ z2 ≠ 0 of
order 0,

(iii) ∂
α
xf2ð0Þ ¼ 0 for any derivative order jαj ≤ s.

Assume γ > −d for fðxÞ to be integrable in V and γ þ
sþ 1 ≤ 0 so the leading algebraic singularity of fðxÞ is at
x ¼ 0. Consider an md-sized uniform mesh X in V.
Assume that X satisfies that z1, z2 are either on the mesh
orΘðm−1Þ away from any mesh points andm is sufficiently
large that jz1 − z2j ¼ Ωðm−1Þ. At x ¼ z1 and x ¼ z2, fðxÞ
is set to 0. The trapezoidal rule usingX has quadrature error

jEVðf;XÞj ≤ CHdþ1
V;z1

ðf1ÞHdþ1
V;z2

ðf2Þjz1 − z2j−ðsþ1Þ

×m−ðdþγþsþ1Þ:

Remark 17. The two factors Hdþ1
V;z1

ðf1Þ and Hdþ1
V;z2

ðf2Þ
characterize the algebraic singularities of the two functions,
and their exact definition can be found in Appendix D.
Proof of Lemma 16 is provided in Appendix D 2.
In order to utlize this result, we further decompose the

second term in Eq. (B14) into

½Hil
erið−q1ÞðHil

ampðq1Þ −Hil
ampð0ÞÞ�

þ ½Hil
erið−q1ÞðHil

ampð0Þ −Hil
ampð−q1ÞÞ�:

Applying Lemma 16 to both terms with γ ¼ −1 and s ¼ 0
gives

jEΩ� ðHil
erið−q1ÞðHil

ampðq1Þ−Hil
ampð−q1ÞÞ;KqÞj≤C

1

jqjN
−1
k ;

where constant C is independent of i, j, a, b and
ki;kj;ka ∈K. Combining the above quadrature error
estimates for the two terms in Eq. (B14), we prove a
tighter error estimate at q ≠ 0 shown in Eq. (B12) while the
previous result in Eq. (B11) at q ¼ 0 still holds.

b. Error estimate for linear terms with fully
matched orbital indices

Let k ¼ i, l ¼ j and ki ≠ ka and consider the corre-
sponding calculation in the 4h2p linear term. The
Madelung constant correction is applied in the ERI
evaluation at kk ¼ ki or, equivalently, at q1 ¼ 0, and the
calculation can be written as
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1

Nk

X
q1 ∈Kq

Fijðq1Þ − ξHij
ampð0Þ

¼ 1

Nk

X
q1 ∈Kq

�
Hij

eriðq1ÞHij
ampðq1Þ − hσðq1ÞHij

ampð0Þ
�

þ 1

jΩ�j
Z
Ω�

dq1hσðq1ÞHij
ampð0Þ þOðN−1

k Þ;

which uses the expansion of the Madelung constant with an
arbitrary fixed parameter σ > 0 in Eq. (20). Note that the
prefactor in the OðN−1

k Þ remainder term above depends
only on σ. The right-hand side of the above reformation is
equivalent to a singularity subtraction method that decom-
poses the original integrand into two terms:

Fijðq1Þ ¼ Hij
eriðq1ÞHij

ampðq1Þ

¼
�
Hij

eriðq1ÞHij
ampðq1Þ − hσðq1ÞHij

ampð0Þ
�

þ hσðq1ÞHij
ampð0Þ;

and then computes the numerical quadrature of the first
term and the exact integral of the second term. The
Madelung-corrected calculation, thus, has quadrature error
only from the first term as

1

jΩ�j EΩ� ðFijðq1Þ;KqÞ þ ξHij
ampð0Þ

¼ 1

jΩ�j EΩ�

�
Hij

eriðq1ÞHij
ampðq1Þ − hσðq1ÞHij

ampð0Þ;Kq

�
þOðN−1

k Þ:

Following a similar approach as in the partially matched
case, the effective integrand after the Madelung constant
correction above can be split into two terms as�

ðHij
eriðq1Þ − hσðq1ÞÞHij

ampðq1Þ
�

þ ½hσðq1ÞðHij
ampðq1Þ −Hij

ampð0ÞÞ�: ðB15Þ

For the first term in Eq. (B15), the subtraction part can be
detailed as

Hij
eriðq1Þ − hσðq1Þ

¼ 4π

jΩj
ϱ̂iðki−q1Þ;iki

ð0Þϱ̂jðkjþq1Þ;jkj
ð0Þ − e−σjq1j2

jq1j2

þ 4π

jΩj
X

G∈L�nf0g

� � �
jq1 þGj2 ;

where the numerator of the first fraction scales as Oðjq1jÞ
near q1 ¼ 0. This subtraction is, thus, singular at q1 ¼ 0 of

order −1 and shares a similar form as the ERI with partially
matched orbital indices. Using the earlier inversion sym-
metry analysis for partially matched case, the quadrature
error of the first term in Eq. (B15) when ki ≠ ka can be
estimated as

���EΩ� ððHij
eriðq1Þ − hσðq1ÞÞHij

ampðq1Þ;KqÞ
��� ≤ C

1

jqjN
−1
k :

For the second term in Eq. (B15), we exploit the
inversion symmetry of Kq and Ω� again, and its quadrature
error equals to that of its symmetrized version as

1

2
hσðq1ÞðHij

ampðq1Þ − 2Hij
ampð0Þ þHij

ampð−q1ÞÞ:

This formula uses hσðq1Þ ¼ hσð−q1Þ after symmetrization.
Note that hσðq1Þ is singular at q1 ¼ 0 of order −2, while the
term in the parentheses scales asOðjq1j2Þ near q1 ¼ 0 using
the smoothness ofHij

ampðq1Þ atq1 ¼ 0. Therefore, the overall
function above is singular at q1 ¼ 0 of order 0. To fit the
integrand form in Lemma 16, we further decompose the
symmetrized integrand above into

½hσðq1ÞðHij
ampðq1Þ−Hij

ampð0Þ − q1 ·∇Hij
ampð0ÞÞ�

þ ½hσðq1ÞðHij
ampð−q1Þ−Hij

ampð0Þ− ð−q1Þ ·∇Hij
ampð0ÞÞ�:

Applying Lemma 16 to these two terms separately with γ ¼
−2 and s ¼ 1 gives����EΩ�

�
1

2
hσðq1ÞðHij

ampðq1Þ− 2Hij
ampð0ÞþHij

ampð−q1ÞÞ;Kq

�����
≤C

1

jqj2N
−1
k :

Combining the above quadrature error estimates for the
two terms in Eq. (B15), we prove a tighter error estimate at
q ≠ 0 shown in Eq. (B13) while the previous result in
Eq. (B11) at q ¼ 0 still holds.
The same error estimate can be obtained for all the six

linear terms that trigger the Madelung constant correction,
and the remaining linear and quadratic terms contribute at
most OðN−1

k Þ quadrature error. Gathering the error esti-
mates for all these terms together and plugging into
Eq. (B9), we finish the proof.

3. Proof of Lemma 13: Error in orbital energies

In the TDL, the orbital energy εNk
nk with any fixed n and

k∈K converges to

εTDLnk ¼ hnkjĤ0jnki þ
1

jΩ�j
Z
Ω�

dki

X
i

ð2hiki; nkjiki; nki

− hiki; nkjnk; ikiiÞ:
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Comparing this exact orbital energy with its finite-size
calculation in Eq. (2), the finite-size error without any
corrections can be written as

εTDLnk −εNk
nk ¼

2

jΩ�jEΩ�

�X
i

hiki;nkjiki;nki;K
�

−
1

jΩ�jEΩ�

�X
i

hiki;nkjnk;ikii;K
�
: ðB16Þ

For the first quadrature error in Eq. (B16), i.e., the finite-
size error in the direct term, the ERI with each i can be
specified as

hiki; nkjiki; nki ¼
4π

jΩj
X

G∈L�nf0g

ρ̂iki;iki
ðGÞρ̂nk;nkð−GÞ
jGj2 :

Note that the momentum transfer vector of this ERI is
always zero and the singular fraction term in this ERI is set
to 0 by definition. As a result, the integrand is periodic and
smooth with respect to ki ∈Ω�. Therefore, the quadrature
error of the direct term calculation, thus, decays super-
algebraically according to Lemma 20 as����EΩ�

�X
i

hiki; nkjiki; nki;K
����� ≤ ClN−l

k ; ∀ l > 0:

For the second quadrature error in Eq. (B16), i.e., the
finite-size error in the exchange term, the ERI with each i
can be written as

hiki; nkjnk; ikii ¼
4π

jΩj
ρ̂iki;nkð0Þρ̂nk;iki

ð0Þ
jqj2

þ 4π

jΩj
X

G∈L�nf0g

ρ̂iki;iki
ðGÞρ̂nk;nkð−GÞ
jqþGj2 ;

which is singular at q ≔ k − ki ¼ 0 of order −2 when n ¼
i and 0 otherwise. An error estimate lemma in Ref. [41]
(restated as Lemma 22 in Appendix D) gives a tight
quadrature error estimate for such periodic functions with
one point of algebraic singularity, and its application to the
above integrand gives

jEΩ� ðhiki; nkjnk; ikii;KÞj ≤ C

(
N−1=3

k n ¼ i;

N−1
k n ≠ i:

Combining the estimates of the two error terms in
Eq. (B16), we obtain the overall finite-size error estimate
for orbital energies without any corrections as

���εTDLnk − εNk
nk

��� ≤ C

(
N−1=3

k n is occupied;

N−1
k n is virtual:

From the above analysis, the dominant finite-size error in
an occupied orbital energy lies in the calculation of the
exchange term with i ¼ n. In the Madelung-corrected
orbital energy εNk;ξ

nk , the correction is applied to this
exchange term as (ignoring the prefactor −jΩ�j−1)

QΩ�ðhnki; nkjnk; nkii;KÞ → QΩ�ðhnki; nkjnk; nkii;KÞ
− jΩ�jξ:

Applying the change of variable ki → k − q and using the
periodicity of the ERI with respect to ki, this corrected
calculation can be reformulated as

QΩ�ðhnki; nkjnk; nkii;KÞ − jΩ�jξ
¼ QΩ� ðhnðk − qÞ; nkjnk; nðk − qÞi − hσðqÞ;KqÞ

þ
Z
Ω�

dq1hσðq1Þ þOðN−1
k Þ;

using the expansion of the Madelung constant with any
fixed σ > 0 in Eq. (2). The quadrature error after the
correction can be written as

EΩ�ðhnki; nkjnk; nkii;KÞ þ jΩ�jξ
¼ EΩ� ðhnðk − qÞ; nkjnk; nðk − qÞi − hσðqÞ;KqÞ
þOðN−1

k Þ:

The effective integrand above after the correction can be
detailed as

hnðk − qÞ; nkjnk; nðk − qÞi − hσðqÞ

¼ 4π

jΩj
jϱ̂nðk−qÞ;nkð0Þj2 − e−σjqj2

jqj2 þ 4π

jΩj
X

G∈L�nf0g

� � �
jqþGj2 :

The integrand singularity comes from the first fractional
term and is of order −1, since the ERI and hσðqÞ share the
same leading singular term. Similar to the analysis in the
ERI contraction, we can then combine this singularity
subtraction with the inverse symmetry of Ω� and Kq to
show that

jEΩ� ðhnðk − qÞ; nkjnk; nðk − qÞi − hσðqÞ;KqÞj ≤ CN−1
k :

Combining this estimate with the above estimate for all
the remaining direct and exchange terms in εNk;ξ

nk , we obtain
the finite-size error estimate for orbital energies with the
Madelung constant correction as

���εTDLnk − εNk;ξ
nk

��� ≤ CN−1
k :
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4. Proof of Lemma 14: Error from previous iteration

Fixing a set of entry index ði; j; a; bÞ and ðki;kj;kaÞ∈K ×K ×K, the ERI-contraction entry ½ANk;ξðTÞ�ijab;kikjka
can

be detailed as

½ANk;ξðTÞ�ijabðkikjkaÞ ¼ haka; bkbjiki; jkji þ
1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkjiTklabðkk;kl;kaÞ

þ 1

N2
k

X
kkkc ∈K

X
klcd

hkkk; lkljckc; dkdiTijcdðki;kj;kcÞTklabðkk;kl;kaÞ

þ � � � þ 2ξTijabðki;kj;kaÞ;

where the neglected terms are all the other linear and quadratic terms and the Madelung constant corrections to different
terms are collected together at the end.
In the subtractionANk;ξðTÞ −ANk;ξðSÞ, the constant terms cancel each other. The subtraction between the two Madelung

constant correction terms can be estimated directly as

j2ξ½T − S�ijabðki;kj;kaÞj ≤ CN−1=3
k

(
1

jqj2 N
−1
k q ≠ 0;

N−1=3
k q ¼ 0;

using the fact that ξ ¼ OðN−1=3
k Þ.

The subtraction between the two 4h2p linear terms can be formulated and bounded as

���� 1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkji½T − S�klabðkk;kl;kaÞ
����

≤
�

1

Nk

X
kk ∈Knfki;kag

þ 1

Nk
δkk;ki

þ 1

Nk
δkk;ka

�����X
kl

hkkk; lkljiki; jkji½T − S�klabðkk;kl;kaÞ
����: ðB17Þ

For the term with kk ¼ ki (i.e., δkk;ki
), we have

1

Nk

����X
kl

hkki; lkjjiki; jkji½T − S�klabðki;kj;kaÞ
���� ≤ 1

Nk

X
kl

CN−1=3
k ≤ CN−4=3

k ;

where the ERI definition at zero momentum transfer skips the singular fraction and is Oð1Þ, and according to the
assumption on T − S it always holds that

max
ijab;ki;kj;ka ∈K

j½T − S�ijabðki;kj;kaÞj ≤ CN−1=3
k : ðB18Þ

For the term with kk ¼ ka (i.e., δkk;ka
), its estimate is the same as the term above when ka ¼ ki. When ka ≠ ki ∈K, we

have jqj ≥ CN−1=3
k and

1

Nk

����X
kl

hkka; lkbjiki; jkji½T − S�klabðka;kb;kaÞ
���� ≤ 1

Nk

X
kl

C
jqj2 N

−1=3
k ≤ C

1

jqjN
−1
k :

For the first summation term in Eq. (B17), we introduce the change of variable kk → ki − q1 and write it as

1

Nk

X
q1 ∈Kqnf0;−qg

����X
kl

hkðki − q1Þ; lðkj þ q1Þjiki; jkji½T − S�klabðki − q1;kj þ q1;kaÞ
����:

When q ¼ 0, this term can be further bounded using Eq. (B18) by
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ð�Þ ≤ 1

Nk

X
q1 ∈Kqnf0g

C
jq1j2

N−1=3
k ≤ C

Z
Ω�

dq1

1

jq1j2
N−1=3

k ≤ CN−1=3
k :

When q ≠ 0, this term can be further bounded as

ð�Þ ≤ C
1

Nk

X
q1 ∈Kqnf0;−qg

1

jq1j2
X
G∈L�

0

1

jq1 þ qþGj2 N
−1
k

≤ CN−1
k

Z
Ω�

dq1

X
G∈L�

0

1

jq1j2
1

jq1 þ qþGj2

≤ CN−1
k

X
G∈L�

0

1

jqþGj2 ≤ C
1

jqj2N
−1
k ;

where L�
0 denotes the set of 27 lattice vectors in L

� around the origin. The first inequality is based on the lemma assumption
on T − S that

j½T − S�klabðki − q1;kj þ q1;kaÞj ≤ C
1

jq1 þ qþG0j2
N−1

k ≤ C
X
G∈L�

0

1

jq1 þ qþGj2N
−1
k ;

where G0 ∈L�
0 is the unique lattice vector that makes q1 þ qþG0 ∈Ω�. The third inequality can be obtained from the

nonsmoothness characterization of function

fðzÞ ¼
Z
Ω�

dq1

1

jq1j2
1

jq1 þ zj2 :

Using Lemma 11 in Ref. [41], fðzÞ is singular only at z ¼ 0 of order −2, and its value at z∈Ω�nf0g is bounded by Cjzj−2.
Based on the above estimates of the first term in Eq. (B17), we obtain the estimate of the error accumulation in the 4h2p

linear term calculation as

���� 1

Nk

X
kk ∈K

X
kl

hkkk; lkljiki; jkji½T − S�klabðkk;kl;kaÞ
���� ≤ C

� 1
jqj2 N

−1
k q ≠ 0;

N−1=3
k q ¼ 0:

The same analysis can be applied to all the similar linear terms that contain ERIs with matched orbital indices. For other
linear terms, the analysis can be done similarly, and they all contribute at most OðN−1

k Þ error to the overall subtraction.
Taking the subtraction between the following 3h3p linear terms as an example, it can be formulated and bounded as

���� 1

Nk

X
kk ∈K

X
kc

haka; kkkjiki; ckci½T − S�kjbcðkk;kj;kbÞ
����

≤ C

�
1

Nk

X
kk ∈Knfkbg

X
kc

þ 1

Nk
δkk;kb

�
j½T − S�kjbcðkk;kj;kbÞj

≤ C

�
1

Nk

X
q1 ∈Kqnf0g

1

jq1j2
N−1

k þ 1

Nk
N−1=3

k

�
≤ CN−1

k :

For the subtraction between quadratic terms, we consider the 4h2p quadratic term as an example. The subtraction
between the two 4h2p quadratic terms can be formulated and bounded as
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���� 1

N2
k

X
kkkc ∈K

X
klcd

hkkk; lkljckc; dkdiðTijcdðki;kj;kcÞTklabðkk;kl;kaÞ − Sijcdðki;kj;kcÞSklabðkk;kl;kaÞÞ
����

≤ C
1

N2
k

X
kkkc ∈K

X
klcd

jTijcdðki;kj;kcÞ½T − S�klabðkk;kl;kaÞ þ ½T − S�ijcdðki;kj;kcÞSklabðkk;kl;kaÞj

≤ C
1

N2
k

X
kkkc ∈K

X
klcd

j½T − S�klabðkk;kl;kaÞj þ C
1

N2
k

X
kkkc ∈K

X
klcd

j½T − S�ijcdðki;kj;kcÞj

≤ CN−1
k :

Similar analysis can be done to all the remaining quadratic terms, and they all contribute at mostOðN−1
k Þ error to the overall

subtraction. Gathering all the estimates above together, we finish the proof.

APPENDIX C: PROOF OF THEOREM 2

To guarantee the convergence and control the regularity
of CCDðnÞ calculations with n → ∞, we introduce addi-
tional technical assumptions similar to those in Ref. [41].
One key difference is that Ref. [41] measures the error in
the amplitude calculation using the maximum entrywise
norm. When Madelung constant correction is used, the
error of the amplitude should be measured by the average
entrywise norm (related to the L1 norm) instead, which is
denoted by

kTk1 ¼
1

N3
k

X
ki;kj;ka ∈K

X
ijab

jTijabðki;kj;kaÞj;

ktk1 ¼
1

jΩ�j3
Z
Ω�×Ω�×Ω�

dkidkjdka

X
ijab

jtijabðki;kj;kaÞj;

where T and t denote a generic amplitude computed using
mesh K and in the TDL, respectively.
Assume that the CCD amplitude equations using a

sufficiently fine mesh K (with or without the Madelung
constant correction) and in the TDL have unique solutions
and denote the solutions as TNk� and t�, respectively.
Convergence of the CCDðnÞ amplitudes to the CCD
amplitude is defined in the k·k1-norm sense as

lim
n→∞

kTNk
n − TNk� k1 ¼ 0 and lim

n→∞
ktn − t�k1 ¼ 0:

We impose a sufficient condition that guarantees the
convergence of fixed point iterations by requiring the target
mapping to be contractive in a domain that contains both
the solution point and the initial guess.
Assumption 18. For Nk sufficiently large, the following

statements hold.

(1) The exact CCDðnÞ amplitude tn converges to the
CCD amplitude t� pointwisely as n → ∞, i.e.,

lim
n→∞

½tn�ijabðki;kj;kaÞ
¼ ½t��ijabðki;kj;kaÞ; ∀ i;j;a;b;ki;kj;ka: ðC1Þ

(2) ðεNkÞ−1ANk
is a contraction map in some domain

BNk
⊂ Cnocc×nocc×nvir×nvir×Nk×Nk×Nk that contains TNk�

and the initial guess 0, i.e.,

ðεNkÞ−1ANk
ðTÞ∈BNk

; ∀T ∈BNk
;

kðεNkÞ−1ðANk
ðTÞ −ANk

ðSÞÞk1
≤ LkT − Sk1; ∀T; S∈BNk

; ðC2Þ

with a Lipschitz constant L < 1.
(3) The exact CCDðnÞ amplitude tn and the domain BNk

above satisfy that

MKtn ∈BNk
; ∀ n > 0: ðC3Þ

(4) For all the amplitudes ftng, there exists a constant C
such that

kMKATDLðtnÞ −ANk;ξðMKtnÞk1
≤ CN−1

k ; ∀ n > 0;

kMKATDLðtnÞ −ANk
ðMKtnÞk1

≤ CN−1=3
k ; ∀ n > 0: ðC4Þ

Note that, when we consider the finite-size calculation with
Madelung constant correction, the components εNk or ANk

in the second assumption need to be changed to εNk;ξ or
ANk;ξ accordingly.
Remark 19. The second assumption guarantees that

fTNk
n g lies in BNk

and converges to TNk� . For the third
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assumption, Theorem 1 shows that with each fixed n > 0

the amplitude TNk
n converges to tn in the sense of

lim
Nk→∞

kMKtn − TNk
n k1 ¼ 0;

suggesting that fTNk
n g ⊂ BNk

converges to tn with
K → Ω�. Therefore, BNk

and MKtn should be related to
each other, which leads to the third assumption.
For the last assumption, we note that the two related error

estimates in Lemma 11 have the prefactor C dependent on
the amplitude tn. The assumption here is stronger in the
sense that C needs to be independent of tn.
Rigorous statement of Theorem 2. Under Assumption

18, the finite-size error of the CCD correlation energy
scales as OðN−1=3

k Þ in each of the following scenarios:
(i) the Madelung constant correction is applied only to
the ERI contraction ANk

and (ii) the Madelung constant

correction is applied only to the orbital energy εNk
nk. When

the Madelung constant correction is applied to both ANk

and εNk
nk in the CCD calculation, the overall finite-size error

scales as OðN−1
k Þ.

Proof. The finite-size error in the CCD energy calcu-
lation with or without the Madelung constant correction
can be estimated as

���ETDL
CCD − ENk

CCD

��� ¼ jGTDLðt�Þ − GNk
ðTNk� Þj

≤ jGNk
ðMKt�Þ − GNk

ðTNk� Þj
þ jGTDLðt�Þ − GNk

ðMKt�Þj
≤ CkMKt� − TNk� k1 þ CN−1

k ; ðC5Þ

where the last inequality uses the boundedness of jWijabj in
GNk

and Lemma 10. To first estimate the above amplitude
error when the Madelung constant correction is applied to
both orbital energy and ERI contractions, we consider the
error splitting Eq. (B2) for the amplitude calculation at the
nth fixed point iteration as

kMKtn − TNk
n k1 ≤

���� 1

εTDL
½MKATDLðtn−1Þ −ANk;ξðMKtn−1Þ�

����
1

þ
����
�

1

εTDL
−

1

εNk;ξ

�
ANk;ξðMKtn−1Þ

����
1

þ
���� 1

εNk;ξ
½ANk;ξðMKtn−1Þ −ANk;ξðTNk

n−1Þ�
����
1

≤ CN−1
k þ L

���MKtn−1 − TNk
n−1

���
1
;

where the last estimate uses the assumption in Eq. (C4) for
the first term and the assumptions of contraction maps in
Eq. (C2) and MKtn−1 ∈BNk

in Eq. (C3) for the third term.
Since the initial guesses in the finite and the TDL cases
satisfy kMKt0 − TNk

0 k1 ¼ 0, we can recursively derive that

kMKtn − TNk
n k1 ≤ C

1 − Ln

1 − L
N−1

k ;

and, thus, the first assumption Eq. (C1) gives

kMKt� − TNk� k1 ¼ lim
n→∞

kMKtn − TNk
n k1 ≤ CN−1

k :

Plugging this estimate into Eq. (C5) then finishes the
proof for the scenario when the Madelung constant cor-
rection is applied to both orbital energies and ERI con-
tractions.
For the two scenarios with partial Madelung constant

correction, a similar analysis as above gives

kMKtn − TNk
n k1 ≤ CN−1=3

k þ L
���MKtn−1 − TNk

n−1

���
1
;

where the dominant CN−1=3
k error comes from uncorrected

orbital energy or uncorrected ERI-contraction term.
Recursively, we can obtain the amplitude error estimate as

kMKt� − TNk� k1 ≤ CN−1=3
k ;

which finishes the proof for the two scenarios with partial
correction. ▪

APPENDIX D: QUADRATURE ERROR
ESTIMATE FOR PERIODIC FUNCTIONS

WITH ALGEBRAIC SINGULARITY

This section presents a collection of lemmas that provide
quadrature error estimates for trapezoidal rules over peri-
odic functions with specific algebraic singularities, which
are used in this paper. Most of the lemmas are proven in
Ref. [41] and are restated here for completeness. In
addition, we introduce and prove a new quadrature error
estimate that is critical in describing the efficacy of the
Madelung constant correction and inverse symmetry in
reducing the quadrature error in orbital energies and ERI
contractions.
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The lemmas presented in this section provide the
asymptotic scaling of the quadrature errors and also a
quantitative relationship between the prefactors in the
estimate and the algebraic singularities of the integrand.
In addition to the singularity order, we further

quantitatively characterize the algebraic singularity as
follows. For a univariate function fðxÞ that is smooth
everywhere in V except at x ¼ x0 with algebraic singu-
larity of order γ, we define a constant

Hl
V;x0

ðfÞ ¼ min

�
C∶j∂αxfðxÞj ≤ Cjx − x0jγ−jαj; ∀ jαj ≤ l; ∀ x∈Vnfx0g

	

¼ max
jαj≤l

���ð∂αxfðxÞÞ=jx − x0jγ−jαj
���
L∞ðVÞ

:

For a multivariate function fðx; yÞ that is smooth everywhere in VX × VY except at x ¼ x0 with algebraic singularity of
order γ, we define a constant

Hl
VX×VY;ðx0;·ÞðfÞ ¼ min

n
C∶j∂αx∂βyfðx; yÞj ≤ Cjx − x0jγ−jαj; ∀ jαj; jβj ≤ l; ∀x∈VXnfx0g; y ∈VY

o
¼ max

jαj≤l

���ð∂αx∂βyfðx; yÞÞ=jx − x0jγ−jαj
���
L∞ðV×VÞ

;

where “·” in the subscript “ðx0; ·Þ” is a placeholder to indicate the smooth variable. Using these two quantities, we have the
following function estimates that are extensively used in this section:

j∂αxfðxÞj ≤ Hl
V;x0

ðfÞjx − x0jγ−jαj; ∀ l ≥ jαj; ∀x∈Vnfx0g;
j∂αx∂βyfðx; yÞj ≤ Hl

VX×VY;ðx0;·ÞðfÞjx − x0jγ−jαj; ∀ l ≥ jαj; jβj; ∀x∈VXnfx0g; y ∈VY:

1. Existing results from Ref. [41]

Lemma 20. Let fðxÞ be smooth and periodic in
V ¼ ½− 1

2
; 1
2
�d. The quadrature error of a trapezoidal rule

using an md-sized uniform mesh X in V decays super-
algebraically as

jEVðf;XÞj ≤ Clm−l; ∀ l > 0:

Remark 21. If we replace fðxÞ by fðx; yÞ defined in
V × VY which is smooth and periodic with respect to x for
each y ∈VY and satisfies supx∈V;y ∈VY

j∂αxfðx; yÞj < ∞ for
any α ≥ 0, Lemma 20 can be generalized as

jEVðfð·; yÞ;XÞj ≤ Clm−l; ∀ l > 0; ∀ y ∈VY;

where constant Cl is independent of y ∈VY .
Lemma 22. Let fðxÞ be periodic with respect to V ¼

½− 1
2
; 1
2
�d and smooth everywhere except at x ¼ 0 of order

γ ≥ −dþ 1. At x ¼ 0, fðxÞ is set to 0. The quadrature error
of a trapezoidal rule using an md-sized uniform mesh X
that contains x ¼ 0 can be estimated as

jEVðf;XÞj ≤ CHdþmaxð1;γÞ
V;0 ðfÞm−ðdþγÞ:

If fð0Þ is set to an Oð1Þ value in the calculation, it
introduces an additional Oðm−dÞ quadrature error.
Remark 23. If we replace fðxÞ by fðx; yÞ defined in

V × VY which is smooth everywhere in V × VY except at
x ¼ 0 of order γ, Lemma 22 can be generalized to

jEVðfð·; yÞ;XÞj ≤ CHdþmaxð1;γÞ
V×VY;ð0;·Þ ðfÞm−ðdþγÞ; ∀ y ∈VY;

where the prefactor applies uniformly across all y ∈VY .
Lemma 24. Let fðxÞ ¼ f1ðxÞf2ðxÞ, where f1ðxÞ and

f2ðxÞ are periodic with respect to V ¼ ½− 1
2
; 1
2
�d and

(i) f1ðxÞ is smooth everywhere except at x ¼ z1 ¼ 0 of
order γ ≤ 0 and

(ii) f2ðxÞ is smooth everywhere except at x ¼ z2 ≠ 0 of
order 0.

Consider anmd-sized uniformmeshX in V. Assume thatX
satisfies that z1, z2 are either on the mesh or Θðm−1Þ away
from any mesh points and m is sufficiently large that
jz1 − z2j ¼ Ωðm−1Þ. At x ¼ z1 and x ¼ z2, fðxÞ is set to
0. The trapezoidal rule using X has quadrature error

jEVðf;XÞj ≤ CHdþ1
V;z1

ðf1ÞHdþ1
V;z2

ðf2Þm−ðdþγÞ:

If fðz1Þ and fðz2Þ are set to arbitrary Oð1Þ values, it
introduces an additional Oðm−dÞ quadrature error.
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Remark 25. If we replace fiðxÞ with i ¼ 1, 2 by fiðx; yÞ
defined in V × VY which is smooth everywhere in V × VY
except at x ¼ zi of order γ and 0, respectively, Lemma 24
can be generalized to

jEVðf1ð·; yÞf2ð·; yÞ;XÞj
≤ CHdþ1

V×VY;ð0;·Þðf1ÞH
dþ1
V×VY;ð0;·Þðf2Þm−ðdþγÞ; ∀ y ∈VY;

where the prefactor applies uniformly across all y ∈VY .

2. A new quadrature error estimate

Here, we prove Lemma 16, which is used in the
quadrature error estimate of the ERI contractions with
the Madelung constant correction in Appendix B 2. This
lemma is a generalization of the existing result in Lemma
24 with an additional condition.
Restatement of Lemma 16. Let fðxÞ ¼ f1ðxÞf2ðxÞ,

where f1ðxÞ and f2ðxÞ are periodic with respect to V ¼
½− 1

2
; 1
2
�d and

(i) f1ðxÞ is smooth everywhere except at x ¼ z1 ¼ 0 of
order γ ≤ −1,

(ii) f2ðxÞ is smooth everywhere except at x ¼ z2 ≠ 0 of
order 0, and

(iii) ∂
α
xf2ð0Þ ¼ 0 for any derivative order jαj ≤ s.

Assume γ > −d for fðxÞ to be integrable in V and γ þ
sþ 1 ≤ 0 so the leading algebraic singularity of fðxÞ is at
x ¼ 0. Consider an md-sized uniform mesh X in V.
Assume that X satisfies that z1, z2 are either on the mesh
orΘðm−1Þ away from any mesh points andm is sufficiently
large that jz1 − z2j ¼ Ωðm−1Þ. At x ¼ z1 and x ¼ z2, fðxÞ
is set to 0. The trapezoidal rule usingX has quadrature error

jEVðf;XÞj ≤ CHdþ1
V;z1

ðf1ÞHdþ1
V;z2

ðf2Þjz1 − z2j−ðsþ1Þ

×m−ðdþγþsþ1Þ:

Proof. For z1 ¼ 0 and any z2 ∈V, we can introduce a
proper translation fðxÞ → fðx − x0Þ to move both the
singular points z1 and z2 to the smaller cube ½− 1

4
; 1
4
�d in

V. The target quadrature error can be correspondingly
reformulated as

EVðfð·Þ;XÞ ¼ EVþx0ðfð· − x0Þ;X − x0Þ
¼ EVðfð· − x0Þ;X − x0Þ;

which is the quadrature error of the translated function
fðx − x0Þ. Without loss of generality, we assume such a
translation has been applied to fðxÞ and X and both
singular points z1 and z2 lie in ½− 1

4
; 1
4
�d.

Define a cutoff function ψ ∈C∞
c ðRnÞ satisfying

ψðxÞ ¼
�
1; jxj < 1

4
;

0; jxj > 1
2
:

Denote the distance between the two singular points as
δz ¼ jz2 − z1j and define two local cutoff functions that
isolate the two singular points as

ψδz;1ðxÞ ¼ ψ

�
x − z1
δz

�
; ψδz;2ðxÞ ¼ ψ

�
x − z2
δz

�
;

whose supports are both inside V. The target integrand can
be split into three parts as

fðxÞ ¼ fðxÞψδz;1ðxÞ þ fðxÞψδz;2ðxÞ
þ fðxÞð1 − ψδz;1ðxÞ − ψδz;1ðxÞÞ:

All three terms satisfy the periodic boundary condition on
∂V. The first term is smooth everywhere except at x ¼ z1
of order γ þ sþ 1, the second term is smooth everywhere
except at x ¼ z2 of order 0, and the last term is smooth
everywhere. Application of Lemmas 20 and 22 to these
terms suggests that

jEVðfψδz;1;XÞj ≤ CHdþ1
V;z1

ðfψδz;1Þm−ðdþγþsþ1Þ; ðD1Þ

jEVðfψδz;2;XÞj ≤ CHdþ1
V;z2

ðfψδz;2Þm−d; ðD2Þ

jEVðfð1−ψδz;1−ψδz;2Þ;XÞj

≤Cjαj

�Z
V
dxj∂αxfð1−ψδz;1−ψδz;2Þj

�
m−jαj; ∀ jαj>d:

ðD3Þ

Note that the last estimate means a superalgebraic decaying
error and constant Cjαj depends only on V and jαj (see
Eq. (H.6) in Ref. [41] for the derivation of this detailed
prefactor for Lemma 20). Since γ þ sþ 1 ≤ 0, the three
estimates together prove that the quadrature error of fðxÞ
scales asymptotically asm−ðdþγþsþ1Þ asm → ∞. In order to
describe the extreme case where the two singular points are
only Oðm−1Þ away from each other for a given mesh X ,
i.e., δz ¼ Oðm−1Þ, we provide a precise description of the
three prefactors in the estimates above using δz.
For the prefactor in Eq. (D1), it is defined by

Hl
V;z1

ðfψδz;1Þ
¼ max

jαj≤l

���ð∂αxfðxÞψδz;1ðxÞÞ=jx − z1jγþ1−jαj
���
L∞ðVÞ

;

∀ l > 0:

For any derivative order jαj ≤ l, we have
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j∂αxðf1ðxÞf2ðxÞψδz;1ðxÞÞj ≤ C
X

α1þα2þα3¼α

j∂α1x f1ðxÞjj∂α2x f2ðxÞjj∂α3x ψδz;1ðxÞj

≤ C
X

α1þα2þα3¼α

Hl
V;z1

ðf1Þjx − z1jγ−jα1jj∂α2
x f2ðxÞjδz−jα3jδjx−z1j<1

2
δz

≤ C
X

α1þα2þα3¼α

Hl
V;z1

ðf1Þjx − z1jγ−jα1j−jα3jj∂α2x f2ðxÞjδjx−z1j<1
2
δz: ðD4Þ

The last inequality uses jx − z1j ≤ 1
2
δz by noting that ∂α3x ψδz;1ðxÞ is zero when jx − z1j > 1

2
δz. Next, we estimate j∂α2x f2ðxÞj

in the ball jx − z1j ≤ 1
2
δz. When jα2j ≤ s, we have

j∂α2x f2ðxÞj ¼
���� X
jβj¼sþ1−jα2j

sþ 1 − jα2j
β!

ðx − z1Þβ
Z

1

0

ð1 − tÞs−jα2j∂α2þβ
x f2ðz1 þ tðx − z1ÞÞdt

����
≤ Cjx − z1jsþ1−jα2j sup

jx−z1j≤1
2
δz;jβj¼sþ1

j∂βxf2ðxÞj

≤ Cjx − z1jsþ1−jα2jHsþ1
V;z2

ðf2Þδz−ðsþ1Þ:

The first equality applies the Taylor expansion of ∂α2x f2ðxÞ at x ¼ z1 with the assumption that ∂βxf2ðz1Þ ¼ 0 for any jβj ≤ s.
The last inequality uses the algebraic singularity of f2ðxÞ at x ¼ z2. When jα2j > s, we have

j∂α2x f2ðxÞj ≤ sup
jx−z1j<1

2
δz
j∂α2x f2ðxÞj ≤ CHl

V;z2
ðf2Þδz−jα2j ≤ CHl

V;z2
ðf2Þjx − z1jsþ1−jα2jδz−ðsþ1Þ:

Plugging the estimates of j∂α2x f2ðxÞj above into Eq. (D4), we obtain

j∂αxðf1ðxÞf2ðxÞψδz;1ðxÞÞj ≤ CHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδz−ðsþ1Þjx − z1jγþsþ1−jαj; l ≥ dþ 1;

which suggests that

Hl
V;z1

ðfψδz;1Þ ≤ CHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδz−ðsþ1Þ; ∀ l ≥ dþ 1:

Similar analysis can also be applied to the prefactor in Eq. (D2) to obtain

Hl
V;z2

ðfψδz;2Þ ≤ CHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδz−ðsþ1Þ; ∀ l ≥ dþ 1:

For the estimate of the third term in Eq. (D3) with any jαj ¼ l ≥ dþ 1, the prefactor can be bounded as

Z
V
dxj∂αxfðxÞð1 − ψδz;1ðxÞ − ψδz;2ðxÞÞj

≤ C
X

α1þα2þα3¼α

Z
V
dxj∂α1x f1ðxÞjj∂α2x f2ðxÞjj∂α3x ð1 − ψδz;1ðxÞ − ψδz;2ðxÞÞj

≤ CHl
V;z1

ðf1ÞHl
V;z2

ðf2Þ
X

α1þα2þα3¼α

Z
V
dxjx − z1jγ−jα1jjx − z2j−jα2jj∂α3x ð1 − ψδz;1ðxÞ − ψδz;2ðxÞÞj:

For the integral with each set of ðα1;α2;α3Þ, we consider two cases.
(i) α3 ¼ 0. The integral can be bounded by

ð�Þ ≤
Z
VnðBðz1;14δzÞ∪Bðz2;14δzÞÞ

dxjx − z1jγ−jα1jjx − z2jjα1j−jαj ≤ Cð1þ δzγþd−jαjÞ;

using the Hölder-inequality technique developed in the proof of Lemma 24 in Ref. [41].
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(ii) α3 > 0. The integral can be bounded by

ð�Þ ≤ C
Z
ðBðz1;12δzÞnBðz1;14δzÞÞ∪ðBðz2;12δzÞnBðz2;14δzÞÞ

dxjx − z1jγ−jα1jjx − z2j−jα2jδz−jα3j ≤ Cδzγþd−jαj:

Collecting these two terms together, the error estimate in Eq. (D3) with any jαj ¼ l ≥ dþ 1 can be further bounded as

jEVðfð1 − ψδz;1 − ψδz;2Þ;XÞj ≤ ClHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδzγþd−lm−l

≤ ClHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδz−ðsþ1Þm−ðγþsþ1þd−lÞm−l

≤ ClHl
V;z1

ðf1ÞHl
V;z2

ðf2Þδz−ðsþ1Þm−ðγþsþ1þdÞ;

where the second inequality uses the assumption δz ¼ Ωðm−1Þ and γ þ sþ 1þ d − l ≤ 0. Gathering the above prefactor
descriptions for Eqs. (D1)–(D3), we obtain

jEVðf;XÞj ≤ CHdþ1
V;z1

ðf1ÞHdþ1
V;z2

ðf2Þδz−ðsþ1Þm−ðγþsþ1þdÞ;

which finishes the proof. ▪
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