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Nonlinear electromagnetic response functions have reemerged as a crucial tool for studying quantum
materials, due to recently appreciated connections between optical response functions, quantum geometry,
and band topology. Most attention has been paid to responses to spatially uniform electric fields, relevant to
low-energy optical experiments in conventional solid state materials. However, magnetic and magneto-
electric phenomena are naturally connected by responses to spatially varying electric fields due to
Maxwell’s equations. Furthermore, in the emerging field of moiré materials, characteristic lattice scales are
much longer, allowing spatial variation of optical electric fields to potentially have a measurable effect in
experiments. In order to address these issues, we develop a formalism for computing linear and nonlinear
responses to spatially inhomogeneous electromagnetic fields. Starting with the continuity equation, we
derive an expression for the second-quantized current operator that is manifestly conserved and model
independent. Crucially, our formalism makes no assumptions on the form of the microscopic Hamiltonian
and so is applicable to model Hamiltonians derived from tight-binding or ab initio calculations. We then
develop a diagrammatic Kubo formalism for computing the wave vector dependence of linear and
nonlinear conductivities, using Ward identities to fix the value of the diamagnetic current order by order in
the vector potential. We apply our formula to compute the magnitude of the Kerr effect at oblique incidence
for a model of a moiré-Chern insulator and demonstrate the experimental relevance of spatially
inhomogeneous fields in these systems. We further show how our formalism allows us to compute the
(orbital) magnetic multipole moments and magnetic susceptibilities in insulators. Turning to nonlinear
response, we use our formalism to compute the second-order transverse response to spatially varying
transverse electric fields in our moiré-Chern insulator model, with an eye toward the next generation of
experiments in these systems.
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I. INTRODUCTION

The study of optical properties of materials has long been
one of the guiding themes in condensed matter physics.
From the ability of x-ray crystallography to determine
crystal structure to spectroscopic probes of band structure
and collective dynamics, optical response experiments have
served as a vital tool to learn about the structure of solid
state systems. On the theoretical side, sum rules for optical
response functions provide some of the few exact and
experimentally relevant results in quantum many-body

physics [1–4]. Combined with first-principles calculations,
the Kubo formula for linear and nonlinear optical responses
has allowed for an understanding of the electronic proper-
ties of materials [5–10]. More recently, it has come to be
appreciated that optical response functions such as linear
and nonlinear Hall conductivity [11–14], the photogalvanic
effect [15–17], magnetoelectric polarizability [18–22], and
nonlinear magnetoresistance [23–27] all receive large
topological contributions and can be used to both diagnose
and functionalize topological materials.
The fundamental objects of interest for optical responses

are the (nonlinear) conductivity tensors of a material, which
relate the measured current density hjðr; tÞi at position r
and time t that flow in a material in response to an electric
field Eðr; tÞ. Typically, the electric field Eðr; tÞ is intro-
duced via a voltage source or an optical probe. The typical
objects of interest are the experimentally measurable (non-
linear) conductivities
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σμ;ν1;…;νn
ðnÞ ðr; r1;…; rn; t; t1;…; tnÞ; ð1Þ

which determine the measured current via

hjμðr; tÞi ¼
X
n

Z Y
i

dridtiσ
μ;ν1;…;νn
ðnÞ ðr; r1;…; rn; t; t1;…; tnÞEν1ðr1; t1Þ × � � � × Eνnðrn; tnÞ: ð2Þ

Here and throughout, we use Greek indices μ, ν ¼ 1, 2, 3 to
index spatial components of vectors, and the Einstein
summation convention is used for repeated indices. Since
we work entirely in flat space time, there is no functional
distinction between upper and lower indices; we try to
choose the index arrangement that makes expressions
easiest to parse. Equation (2) parametrizes the current
density order by order in powers of the external electric
field. At the order of n ¼ 1, we recover the familiar
generalized Ohm’s law with σμν1 ðr;r1;t;t1Þ¼σμνðr;r1;t−t1Þ
being the linear conductivity tensor. Note that in writing
Eq. (2) we have not assumed that our system is transla-
tionally invariant.
Because the speed of light is large compared with typical

velocity scales in a solid state material and because the
typical energy scales of interest are in the microwave,
terahertz, and optical regimes, the typical wavelength of the
probe electric field (on the order of thousands of angstroms
for visible light all the way up to the order of meters for ac
fields) is significantly larger than the typical lattice spacing
of crystals (on the order of nanometers). This means that,
for most experimentally relevant situations, we can ignore
the spatial variation of the electric field [28]. In this
approximation, we can introduce the uniform optical
conductivities σμ;ν1;…;νn

n ðt; t1;…; tnÞ which depend on time
and not space and which determine the spatially averaged
current density hjðtÞi via

hjμðtÞi ¼
X
n

Z Y
i

dtiσ
μ;ν1;…;νn
n ðt; t1;…; tnÞ

Y
i

EνiðtiÞ: ð3Þ

Equation (3) follows from Eq. (2) after assuming the
electric field is spatially uniform.
The uniform optical conductivities can be computed using

generalizations of the Kubo formula, in terms of correla-
tion functions of the electronic velocity operator v.
Recent theoretical work [29–33] has developed stream-
lined and efficient analytical machinery for computing
σμ;ν1;…;νn
n ðt; t1;…; tnÞ for a variety of interesting materials,

for finite systems, continuum crystalline systems, and
crystalline systems in the tight-binding approximation. For
noninteracting electron systems, recent work has shown how
the Kubo formula for the uniform optical conductivities can
be interpreted in terms of the quantumgeometry of electronic
wave functions in the systems [34–36]. This theoretical
work has been complemented by advances in nonlinear
spectroscopy, which have seen signatures of intriguing

topological and band-geometric effects in quantum
materials [37,38].
That said, there are limitations to focusing on the

uniform optical conductivity. First, the uniform optical
conductivity captures response to spatially uniform electric
fields but does not capture response to magnetic fields. To
understand this, we can see from Faraday’s law

∇ ×E ¼ −
∂B
∂t

ð4Þ

that a spatially uniform and time-varying magnetic
field generates a spatially inhomogeneous (transverse)
electric field. Magnetic and magnetoelectric responses
are thus encoded in the gradient expansion of
σμ;ν1;…;νn
ðnÞ ðr; r1;…; rn; t; t1;…tnÞ. Such a gradient expan-

sion has been carried out to low orders to obtain, for
instance, the Streda formula relating the Hall conductivity
to the magnetization density [39,40], the Kubo formula for
the magnetoelectric polarizability [41], and optical gyro-
tropy [42]. Similarly, a gradient expansion of the second-
order (n ¼ 2) longitudinal optical conductivity yielded
diagrammatic Kubo formulas for electric quadrupole tran-
sitions in periodic crystals [43]. Lastly, the study of electron
hydrodynamics has brought renewed attention to the
connection between the viscosity tensor of a Galilean-
invariant electron fluid and the (linear) optical conductivity
expanded to second order in gradients [44–50]. Attempts to
generalize this relationship to periodic solids have yielded
unintuitive results [51].
Second, the explosion of interest in moiré materials

[52–61] gives cause to reevaluate the focus on the uniform
optical conductivity. In systems such as twisted multilayer
graphene, twisted transition metal dichalcogenides, and
lattice-mismatched van der Waals interfaces, the effective
moiré lattice constant can be several orders of magnitude
larger than the atomic spacing in individual layers. In such a
system, the wavelength of optical frequency light can be an
appreciable fraction of the moiré lattice spacing. Thus, we
can expect that optical properties such as Kerr and Faraday
rotation, as well as nonlinear shift current and second-
harmonic generation, may obtain measurable corrections
from the spatial inhomogeneity of the applied optical
electric field. Recent advances in ultrafast spectroscopy
have put the study of nonlinear optical effects in moiré and
van der Waals materials within reach of modern experi-
ments [50,62,63].

MCKAY, MAHMOOD, and BRADLYN PHYS. REV. X 14, 011058 (2024)

011058-2



Thus, in order to study both generalized magnetoelectric
responses and optical properties of moiré materials, it
would be desirable to have a complete theory of spatially
inhomogeneous electromagnetic response applicable to
periodic systems. From the Kubo formula, we know that
σμ;ν1;…;νn
ðnÞ ðr; r1;…; rn; t; t1;…; tnÞ can be computed from a

retarded correlation function of n current operators jðrÞ.
When the full microscopic Hamiltonian H0 for a system of
interest is known, the operator jðrÞ can be identified via
minimal coupling, by replacing the momentum of each
particle pi by the covariant combination pi − ēAðxiÞ,
where AðxiÞ is the electromagnetic vector potential as a
function of the position operator xi of particle i and ē is the
charge of particle i [64,65]. Denoting by HA the
Hamiltonian we obtain after minimal coupling, we can
define the current operator as

jAðrÞ ¼ −
δHA

δAðrÞ ; ð5Þ

where δ=δAðrÞ denotes a variational derivative with respect
to the vector potential. This allows us to write

HA ¼ H0 −
Z

drjðrÞ ·AðrÞ; ð6Þ

from which the nonlinear conductivities can be extracted
via standard response theory upon identifying (in this
gauge [64,65]) the electric field E ¼ −∂A=∂t. Crucially,
the current defined via Eq. (5) manifestly obeys the
continuity equation (charge conservation equation)

∂tρðrÞ þ ∇ · jAðrÞ ¼ 0; ð7Þ

where ρðrÞ is the charge density operator. Equation (7)
reflects the conservation of electric charge and is equivalent
to gauge invariance.
While this gives an in-principle complete procedure for

computing σμ;ν1;…;νn
ðnÞ ðr; r1;…; rn; t; t1;…; tnÞ, it has one

main drawback: In most situations in solid state physics,
we do not have access to the full microscopic Hamiltonian
but instead only an effective low-energy model for the
degrees of freedom of interest. This can arise due to an
approximate treatment of relativistic effects of core elec-
trons in a solid (as in, e.g., a density functional theory
calculation) or via the use of a tight-binding model that
describes only the low-energy subset of states in the full
Hilbert space of a material. When only an effective or
approximate Hamiltonian is known, the minimal coupling
substitution H0 → HA cannot be carried out uniquely.
One common approach [41,42,66–68] to circumvent this

problem in nonrelativistic materials is to assume that the
full and unknown microscopic electronic Hamiltonian has
the form

H0 ¼!
X
i

jpij2
2m

þ VðxiÞ − λ⃗ðxiÞ · ðp × σ⃗Þ

þ 1

2

X
i≠j

Uðxi − xjÞ; ð8Þ

where m is the electron mass, V is the periodic potential of
the ions in the system, λ⃗ is the approximate spin-orbit
potential (usually expressed in terms of gradients of V), σ⃗ is
a vector of Pauli matrices acting on electron spins, and U is
the Coulomb potential. With this assumption, the mini-
mally coupled current operator can be evaluated exactly.
In the absence of the external electromagnetic field, it is
given by

jminðrÞ≡ −
δHA

δAðrÞ
����
A¼0

¼
X
q

eiq·rjq;min; ð9Þ

where the Fourier components jq;min can be expressed in
two equivalent and often used forms:

jq;min ¼
ē
2

X
i

fe−iq·xi ; vig ¼ j̃q ð10Þ

¼ ē
X
i

e−iq·xi=2vie−iq·xi=2 ¼ jmid;q; ð11Þ

where vi ¼ i½H;xi� is the velocity operator for particle i
and ē is the charge of the particles (which for convenience
we assume to be the same for all particles throughout this
work). The customary approach is to then take either
Eq. (10) or Eq. (11) as the definition of the current operator
in the low-energy effective model and use that to compute
optical response functions.
There are two problems with this approach. The first is

that, although Eqs. (10) and (11) are equivalent for the
microscopic Hamiltonian Eq. (8), they will, in general, give
different results when applied to any effective model. This
raises the question of which, if either, of them should be
used to compute optical response functions. Additionally,
neither Eq. (10) nor Eq. (11) coincides with the minimally
coupled current jAðrÞ when relativistic corrections to the
kinetic energy are incorporated, which may be important
for core electrons in solid state systems. Even more severe,
we show below that generally neither Eq. (10) nor Eq. (11)
satisfies the continuity equation (7) even when A ¼ 0.
When used in the context of effective low-energy models
for even nonrelativistic systems, this means that Eqs. (10)
and (11) represent non-number-conserving approximations
to the minimally coupled current. Thus, neither Eq. (10) nor
Eq. (11) provides a satisfactory starting point for the
computation of optical response functions in low-energy
models of quantum materials.
In what follows, we develop a theory of spatially

inhomogeneous linear and nonlinear optical response that
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manifestly obeys the continuity equation (7) when
applied to arbitrary effective models of condensed matter
systems. First, in Sec. II, we show how to construct
the position-dependent current operator for a generic
Hamiltonian that manifestly respects the continuity equa-
tion. Crucially, our construction makes no assumptions on
the form of the Hamiltonian and is applicable to non-
relativistic, semirelativistic, and approximately tight-
binding Hamiltonians. We show that our current agrees
with Eqs. (10) and (11) to linear order in the wave
vector q, implying that our theory gives the same linear
response to uniform electric and magnetic fields as in
Refs. [18,41,42,66]. We also show how to define the
diamagnetic current such that the continuity equation is
satisfied order by order in the electromagnetic vector
potential.
Next, in Sec. III, we set out the Feynman diagrammatic

rules for evaluating the spatially inhomogeneous conduc-
tivity in Fourier space as a function of frequency and wave
vector (where the uniform optical conductivities corre-
spond to the limit of zero wave vector). Focusing on the
linear conductivity, we derive a modified f-sum rule
relating the diamagnetic conductivity to the density-density
response function. In Sec. V, we explore various observable
phenomena that arises from our wave-vector-dependent
response theory at the linear response level, applied to
noninteracting electron systems in a periodic potential. As a
proof of concept, we examine the wave vector dependence
of the Hall conductivity in a time-reversal-breaking Weyl
semimetal model first. We then show how our formulation
of the wave-vector-dependent linear conductivity can be
applied to compute the Kerr rotation and ellipticity in a
model of a moiré-Chern insulator. We compare our pre-
dictions with an analogous calculation using the current
operators in Eqs. (10) and (11), showing that our gauge-
invariant formulation predicts a measurably different Kerr
response on the order of arcseconds to arcminutes for
typical moiré length and energy scales. We round off this
section by examining the magnetic properties of insulators.
We analyze the relationship between magnetic susceptibil-
ity and transverse conductivity, present expressions for the
magnetic quadrupole moment, and give a new derivation of
the Streda formula for the Hall conductivity.
Then, in Sec. VI, we move on from phenomena derived

from linear conductivity and evaluate the diagrammatic
Kubo formula for the second-order electromagnetic con-
ductivity for noninteracting electrons in a periodic poten-
tial. We then focus on the component of the second-order
conductivity that is second-harmonic generation in fre-
quency, and self-focusing in wave vector, which is relevant
to future ultrafast optical experiments. We show how to
compute this component of the conductivity for our model
of a moiré-Chern insulator. Finally, we conclude our
paper by summarizing the key results and suggesting
new directions in Sec. VII.

II. THE CURRENT OPERATOR

Motivated by recent efforts to obtain a complete
spatially inhomogeneous electromagnetic response theory
[43,51,66,68], our goal in this section is to derive the
Fourier components of the conserved current operator in a
model-independent fashion. Measurable phenomena such
as conductivities, optical response, and magnetization can
be accurately modeled only in terms of a charge-conserving
current operator. As we show, the conventionally defined
current densities Eqs. (11) and (10) fail to satisfy the
continuity equation (7) for generic Hamiltonians.
To find the conserved current density, let us consider a

general Hamiltonian

H0 ¼
X
i

TðpiÞ þ Vðxi;piÞ þ
1

2

X
i≠j

Uðxi − xjÞ ð12Þ

for a (possibly interacting) system of electrons. Here, i ¼
1…N indexes the particles of the system, pi is the
momentum operator for particle i, and xi is the position
operator for particle i. Also, TðpiÞ is the kinetic energy
operator for the ith particle. Although this kinetic operator
is usually quadratic in momenta, it can extend to semi-
relativistic systems. For example, the kinetic energy could
take the form

TðpiÞ ≈
jpij2
2m

þ jpij4
8m3c2

þ � � � ; ð13Þ

which is relevant for all-electron ab initiomodeling of spin-
orbit coupled materials [69]. Our results hold for arbitrary
TðpiÞ. The single-particle potential Vðxi;piÞ includes both
the momentum-independent external potential as well as
momentum-dependent external potential terms such as the
spin-orbit potential. Finally, Uðxi − xjÞ is the interaction
potential, which we take to be momentum independent for
simplicity (we expect this is a good assumption for most
models of interest; however, for long-range interacting
models of Mott insulators that have recently attracted
attention, this assumption must be checked [70]). We
assume that the potential V has discrete translation sym-
metry such that

T†
RHTR ¼ eiR·

P
i
piHe−iR·

P
i
pi

¼
X
i

TðpiÞ þ Vðxi þR;piÞ þ
1

2

X
i≠j

Uðxi − xjÞ

¼ H; ð14Þ
where R is a Bravais lattice vector.
The globalUð1Þ symmetry ofH0 implies that the density

operator

ρðrÞ ¼ ē
X
i

δðr − xiÞ ð15Þ
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satisfies the continuity equation (7), where all particles
have charge ē. We can rewrite the continuity equation in the
Heisenberg picture as

∂tρðrÞ ¼ i½H0; ρðrÞ� ¼ −∇ · jminðrÞ; ð16Þ
where we work in natural units where ℏ ¼ c ¼ 1 unless
stated otherwise. In the presence of an external elec-
tromagnetic field with scalar potential A0 and vector
potential A, we have that the minimally coupled
Hamiltonian becomes

H0 → HA ¼
X
i

T½pi − ēAðxiÞ� þ V½xi;pi − ēAðxiÞ�

− ēA0ðxiÞ þ
1

2

X
i≠j

Uðxi − xjÞ: ð17Þ

We can take the functional derivative with respect to the
scalar potential to arrive at

ρAðrÞ ¼ −
δH

δA0ðrÞ
¼ ρðrÞ; ð18Þ

where ρAðrÞ indicates the density operator in the presence
of the electromagnetic field, ρðrÞ is defined in Eq. (15), and
we have made use of the identity

δA0ðxiÞ
δA0ðrÞ

¼ δðr − xiÞ: ð19Þ

Furthermore, we have that

∂tρAðrÞ ¼ i½HA; ρAðrÞ� ¼ −∇ · jAðrÞ; ð20Þ

where by evaluating the commutator we find

jμAðrÞ ¼ −
δHA

δAμðrÞ
: ð21Þ

Equation (21) allows us to define the current in terms of
the Hamiltonian HA minimally coupled to the external
electromagnetic field. In particular, we can find the
unperturbed current operator jminðrÞ from Eq. (16) as

jμminðrÞ ¼ −
δHA

δAμðrÞ
����
A¼0

: ð22Þ

However, in order to utilize Eq. (22), we need to know the
explicit microscopic form of the Hamiltonian in Eq. (12). In
many cases of interest, we do not have this information
available. For instance, in modeling electronic systems we
often have access to only Wannier-based tight-binding
models, or other effective Hamiltonians, that are pro-
jected into a subset of bands of interest. For an effective
Hamiltonian, it is not possible to implement the minimal
coupling of Eq. (17) in a model-independent fashion. One
possible way to circumvent this complication is to make

use of a Peierls substitution to couple a Wannierized
effective model to the vector potential, provided the
Wannier orbitals are sufficiently well localized and the
vector potential varies sufficiently slowly [4]. However,
defining the current via a Peierls substitution requires
making choices for how to evaluate path integrals of the
vector potential between Wannier centers that are not
necessarily natural. It also requires assuming that the vector
potential varies slowly on the length scale of the Wannier
function localization length, which may not be appropriate
for all models (especially for models of moiré or topologi-
cally nontrivial systems). Finally, the Peierls substitution
cannot be used to define the current when a Wannierized
tight-binding model has not been explicitly constructed.
In order to circumvent these issues, we derive an

alternative expression for the current jðrÞ that is manifestly
conserved and that does not require detailed knowledge of
the microscopic Hamiltonian. To do so, let us first recast the
continuity equation [Eq. (16)] in momentum space. We
introduce the Fourier-transformed density

ρq ¼
Z

dre−iq·rρðrÞ ¼ ē
X
i

e−iq·xi : ð23Þ

In Fourier space, the continuity equation reads

∂tρq ¼ i½H0; ρq� ¼ −iq · jq; ð24Þ

where

jq ¼
Z

dre−iq·rjðrÞ: ð25Þ

Rather than attempt to evaluate the commutator in Eq. (24)
directly, we take a more general approach. In the
Heisenberg picture, we see that ρq in Eq. (23) depends
on time implicitly through the operators xi. Defining the
single-particle velocity operators

vi ≡ ∂txi ¼ i½H0;xi�; ð26Þ

we can write

ρqðtþ δtÞ ¼ ēe−iq·xiðtþδtÞ ≈ ēe−iq·ðxiðtÞþδtviðtÞÞ: ð27Þ

Thus, using the definition of the derivative, the rate of
change of the density operator is

∂tρq ¼ ē lim
δt→0

e−iq·ðxiþδtviÞ − e−iq·xi

δt
: ð28Þ

To simplify this further, we make use of a general result
of Karplus and Schwinger [71], who showed that, for any
operators A and B,

eAþδtB ¼ eA þ δt
Z

1

0

dλeð1−λÞABeλA þO½ðδtÞ2�: ð29Þ
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We prove this result in Appendix A. Inserting Eq. (29) with
A ¼ −iq · xi and B ¼ −iq · vi into Eq. (28), we find that

∂tρq ¼ ē
X
i

Z
1

0

dλe−ið1−λÞq·xið−iq · viÞe−iλq·xi : ð30Þ

Comparing with the continuity equation in Eq. (24), we can
identify

jq ¼ ē
X
i

Z
1

0

dλe−ið1−λÞq·xivie−iλq·xi : ð31Þ

Equation (31) has several desirable features. Most
importantly, it is manifestly conserved. Second, for non-
relativistic Hamiltonians [where vðp;xÞ is a linear function
of p], a short calculation (see Appendix B) shows that jq
coincides with the minimally coupled current. Note that,
since the Hamiltonian H0 commutes with the projection
operator onto a set of low-energy bands, the projected
low-energy density operator satisfies Eq. (16) with the
conserved current given by the low-energy projection of
Eq. (31). Thus, for nonrelativistic systems with micro-
scopic Hamiltonians of the form of Eq. (8), Eq. (31) is the
approximation to the minimally coupled current in Eq. (5)
that is manifestly conserved in any low-energy approxi-
mation to the Hamiltonian. However, we emphasize that a
choice is made in going from Eq. (30) to Eq. (31): We can
add any operator δjq that is purely transverse (q · δj ¼ 0)
to Eq. (31) without changing the continuity equation (16).
Different choices of δj correspond to different definitions
for the (orbital) magnetization current, which do not
contribute to transport and are not constrained by gauge
invariance. As such, it is, in principle, not possible to fix δj
unambiguously from effective Hamiltonians alone. Even in
the context of the microscopic Hamiltonian nonrelativistic
approximations to the Dirac equation, nonminimal cou-
pling to the electromagnetic field can modify the definition
of the magnetization current. Faced with these challenges,
we take the natural choice δj ¼ 0—corresponding to our
definition Eq. (31) for the current operator—as our work-
ing, model-independent definition of the current.
As we now show, Eq. (31) resolves many of the problems

of the nonconserved choices Eqs. (10) and (11) for the
current. In Sec. II A, we show that both the longitudinal and
transverse components of Eqs. (10) and (11) differ from
those of Eq. (31) at second order in wave vector. Then, in
Sec. II B, we compute the matrix elements of the conserved
current Eq. (31) in the basis of Bloch eigenstates, allowing
us to apply our formalism to compute electromagnetic
responses. Finally, in Sec. II C, we show that the formula of
Karplus and Schwinger can be used to define the gener-
alized wave-vector-dependent diamagnetic contributions to
the current operator in the presence of a nonzero electro-
magnetic field.

A. The nonconserved current operators

Equation (31) is our first main result. Let us compare it
quantitatively with the (nonconserved) current operators
Eqs. (10) and (11), which have been used to compute
spatially inhomogeneous electromagnetic response func-
tions to low order in the wave vector [51,66]. Recall that
Eq. (10) proposes the definition

j̃q ¼ ē
2

X
i

fe−iq·xi ; vig ð32Þ

for the current operator. We refer to this as the “trapezoidal”
current, since it is the trapezoidal approximation the
integration over λ in our conserved current Eq. (31).
Similarly, Eq. (11) proposes the commonly used

[51,66,68] definition

jmid;q ¼ ē
X
i

e−iq·xi=2vie−iq·xi=2: ð33Þ

We refer to this as the “midpoint” current, since it is the
midpoint approximation the integration over λ in our
conserved current Eq. (31).
To see how the definitions of current operator from

Eqs. (32) and (33) compare with our Eq. (31), it is helpful to
write vi ¼ viðpi;xiÞ to make explicit the pi and xi
dependence of vi. Inserting this into Eq. (31) and using
the fact that

eiα·xifðpi;xiÞ ¼ fðpi − α;xiÞeiα·xi ; ð34Þ

we find

jq ¼ ē
X
i

Z
1

0

dλe−ið1−λÞq·xiviðpi;xiÞe−iλq·xi

¼ ē
X
i

Z
1

0

dλe−iq·xiviðpi − λq;xiÞ: ð35Þ

Similarly, using Eq. (34) to simplify Eq. (32) yields

j̃q ¼ ē
1

2

X
i

e−iq·xiðviðpi;xiÞ þ viðpi − q;xiÞÞ: ð36Þ

Lastly, using Eq. (34) to simplify Eq. (33) yields

jmid;q ¼ ē
X
i

e−iq·xiviðpi − q=2;xiÞ: ð37Þ

Thus, we generically have that jq ≠ j̃q ≠ jmid;q. Note
that if vi is a linear function of momentum (which occurs
when the kinetic energy includes no relativistic correc-
tions and the spin-orbit potential is linear in momentum),
then we can carry out the integral in Eq. (35) to find
that jq ¼ j̃q ¼ jmid;q. However, for Hamiltonians with
relativistically corrected kinetic energy and complicated
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spin-orbit potentials, this will not be the case. This is
relevant not just for ab initio calculations of charge trans-
port in heavy elements, but also for effective models where
integrating out high-energy degrees of freedom can lead to
a renormalization of the effective Hamiltonian away from
the standard nonrelativistic form.
We can compute the difference jq − j̃q and jq − jmid;q

order by order in q. We find that

jq − j̃q ¼ −
ē
12

X
i

qμqν
∂
2viðpi;xiÞ
∂pμ

i ∂p
ν
i

þOðjqj3Þ; ð38Þ

jq − jmid;q ¼ ē
24

X
i

qμqν
∂
2viðpi;xiÞ
∂pμ

i ∂p
ν
i

þOðjqj3Þ: ð39Þ

We see from Eqs. (38) and (39) that jq, j̃q, and jmid;q all
coincide to linear order in q, with the first discrepancy
at the order of jqj2. This suggests that, while calcula-
tions of uniform magnetoelectric response functions
(which requires knowing jq to linear order in q, as in
Refs. [41,42,66]) can use j̃q or jmid;q in place of the
conserved Eq. (31), the calculations of the Oðjqj2Þ cor-
rections to the conductivity in Refs. [51,68] should be
reexamined. We show below that, while jq, j̃q, and jmid;q

all yield the same Hall conductivity to the order ofOðjqj2Þ,
they yield different predictions for the longitudinal con-
ductivity at the same order. Even further, we see from

Eq. (38) that q ·
�
jq − j̃q

�
≠ 0 and q · ðjq − jmid;qÞ ≠ 0, so

that only jq and not j̃q nor jmid;q satisfies the continuity
equation (16). Generically, we have

q · jq − q · jmin;q ¼ 0; ð40Þ

q · j̃q − q · jmin;q ≠ 0; ð41Þ

q · jmid;q − q · jmin;q ≠ 0: ð42Þ

In Appendix B, we give a direct analysis of how the
conserved jq differs from nonconserved j̃q and jmid;q for a
concrete model of a semirelativistic free-electron system.
We show explicitly that, once the free electron is energetic
enough for quartic or higher-order corrections to the kinetic
energy to become appreciable, the conserved jq and
nonconserved j̃q and jmid;q disagree at the order of jqj2.
Although we have shown how the conserved jq of

Eq. (31) differs from the nonconserved j̃q and jmid;q, in the
current form our results apply to only continuum first-
quantized Hamiltonians of the form of Eq. (12). To apply
our same approach to formulate the current density operator
for a wider variety of condensed matter problems, we in
Sec. II B calculate the second-quantized form of the current

operator Eq. (31) by examining its matrix elements in a
basis of single-particle Bloch eigenstates.

B. Matrix elements of the current operator
in the Bloch basis with second quantization

In this section, we evaluate the matrix elements of the
conserved current operator Eq. (31)—as well as the non-
conserved current operators Eqs. (32) and (33)—in a basis
of single-particle Bloch eigenstates. Consider a noninter-
acting Hamiltonian of the form of Eq. (12) withU ¼ 0with
discrete translation symmetry as in Eq. (14). From Bloch’s
theorem, we can introduce single-particle eigenstates

ψnkðrÞ ¼
1ffiffiffiffi
N

p eik·runkðrÞ; ð43Þ

whereN is the nominally infinite number of unit cells in the
system. We denote the eigenstates with kets jψnki with
inner product

hψnkjψmk0 i ¼
Z

drψ�
nkðrÞψmk0 ðrÞ ¼ δk;k0δnm: ð44Þ

It is also convenient to introduce kets junki to represent the
cell-periodic functions unkðrÞ. The inner product of cell-
periodic kets is given by

hunkjumk0 i ¼
Z
cell

dru�nkðrÞumk0 ðrÞ; ð45Þ

where
R
cell denotes an integration over a single unit cell. We

work in the periodic gauge such that

jψnkþGi ¼ jψnki ð46Þ

for any reciprocal lattice vector G. Note that the periodic
gauge always exists, even for topologically nontrivial
systems, as we discuss further at the end of this subsection.
The periodic gauge constraint implies [72]

junkþGi ¼ e−iG·xjunki: ð47Þ

Let us begin by computing the matrix elements of the
density operator ρq ¼ ē

P
i e

−iq·xi between two Bloch
states. We have

hψnkjρqjψmk0 i ¼ ē
Z

drψ�
nkðrÞe−iq·rψmk0 ðrÞ

¼ ē
1

N

X
R

eiR·ðk0−k−qÞ

×
Z
cell

dru�nkðrÞeir·ðk
0−k−qÞumk0 ðrÞ

¼ δk0;kþqēhunkjumkþqi: ð48Þ
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Introducing creation and annihilation operators c†nk and cnk
that create or annihilate electrons in the state jψnki, Eq. (48)
implies that we can write the density operator in second-
quantized notation as

ρq ¼
X
kk0nm

hψnkjρqjψmk0 ic†nkcmk0

¼ ē
X
knm

hunkjumkþqic†nkcmkþq: ð49Þ

Next, we can examine the second-quantized form of our
conserved current jq from Eq. (31). Note first that

TRjqjψnki ¼ ēTR

Z
1

0

dλe−ið1−λÞq·xve−iλq·xjψnki

¼ ē
Z

1

0

dλe−ið1−λÞq·ðx−RÞve−iλq·ðx−RÞTRjψnki

¼ e−iðk−qÞ·Rjqjψnki: ð50Þ

Equation (50) indicates that jqjψnki has crystal momentum
k − q. Since Bloch states with different crystal momentum
are orthogonal, we deduce that the only nonvanishing
single-particle matrix elements of jq are

hψnkjjqjψmkþqi ¼
ē
N

Z
1

0

dλ
Z

dru�nkðrÞe−i½ð1−λÞqþk�·r

× vei½kþð1−λqÞ�·rumkþqðrÞ

¼ ē
Z

1

0

dλ
Z
cell

dru�nkðrÞvkþð1−λÞqumkþqðrÞ

¼ ē
Z

1

0

dλhunkjvkþð1−λÞqjumkþqi; ð51Þ

where we have defined

vk ¼ e−ik·xveik·x ¼ ∂kðe−ik·xHeik·xÞ≡ ∂kHk: ð52Þ

Using Eq. (51), we conclude that the current jq has the
second-quantized representation

jq ¼ ē
X
knm

Z
1

0

dλhunkjvkþð1−λÞqjumkþqic†nkcmkþq: ð53Þ

By the same logic, we find the second-quantized repre-
sentation of the nonconserved trapezoid current j̃q from
Eq. (32) is

j̃q ¼ ē
X
knm

1

2
hunkjvkþq þ vkjumkþqic†nkcmkþq: ð54Þ

Finally, for the nonconserved midpoint current jmid;q in
Eq. (33), we find the second-quantized representation

jmid;q ¼ ē
X
knm

hunkjvkþq=2jumkþqic†nkcmkþq: ð55Þ
Equation (53) is the main result of this section and allows

us to reformulate our conserved current operator Eq. (31) in
terms of second-quantized Bloch orbitals. Equation (53)
can be used to compute the matrix elements of the
conserved current for effective models that include only
a subset of the energy bands of interest in a solid, in which
the effective kinetic energy need not be a quadratic function
of momentum. Additionally, Eq. (53) manifestly satisfies
the continuity equation and so gives a proper starting point
for the evaluation of linear and nonlinear electromagnetic
response coefficients.
Although we supposed that the wave functions junki

were the (cell periodic parts of the) energy eigenstates for
the noninteracting part of a Hamiltonian, we can follow the
logic leading to Eq. (53) for any orthonormal Bloch-like
basis set. In Appendix C, for example, we derive the
second-quantized representation of the current Eq. (31) in a
basis of ultralocalized tight-binding orbitals which are
useful for calculations in model systems. Additionally,
provided that the interaction energy depends only on
(unprojected) density operators, Eq. (53) still gives the
second-quantized current operator.
Note that, for systems with nonvanishing Chern num-

bers, the periodic gauge constraint for junki in Eq. (46)
requires that the phase of junki be nonsmooth in the
Brillouin zone [73,74]. This presents no difficulty for
our formalism, which does not involve derivatives or
Taylor expansions of the wave functions themselves with
respect to k but only derivatives of the manifestly smooth
operator Hk. Additionally, when we work in a basis of
tight-binding orbitals as in Appendix C, we can include a
sufficiently large number of bands to guarantee that the
basis Wannier orbitals have smooth Fourier transforms.
Finally, we note that, in any numerical computation, the
wave functions juink are typically evaluated on a discrete
grid of points in the Brillouin zone; we can then choose a
periodic gauge such that any nonremovable singularities
due to nonvanishing Chern number occur at points that are
not included in the grid.
Having expressed the current operator Eq. (31) in the

second-quantized Bloch basis, we can now turn our atten-
tion to how the current density is modified in the presence
of a background electromagnetic field. This allows us to
generalize the usual diamagnetic current to nonzero wave
vector for systems with generic Hamiltonians. We see that
these generalized diamagnetic current operators—which
are essential to maintain gauge invariance of response
functions—appear naturally in our formalism for jq defined
in Eq. (31).

C. Diamagnetic current operators

In order to compute electromagnetic response functions,
we need to know the current jAðrÞ order by order in the
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vector potential A. Although we primarily focus on jq;min

in Eq. (22), for a general system, we can write

jμAðrÞ ¼ jμminðrÞ þ
Z

dr0jμνðr; r0ÞAνðr0; tÞ þ � � � ð56Þ

or in Fourier space

jμA;q ¼ jμmin;q þ
X
q0

jμνq;−q0Aν;q0 þ � � � : ð57Þ

While knowledge of jμνq;−q0 requires knowledge of the
minimally coupled Hamiltonian in Eq. (17), the continuity
equation at Eq. (16) places constraints on the longitudinal
components of jμνq;−q0 . In particular, note first that

jμνq;−q0 ¼ −
δ2HA

δAμ;−qδAν;q0

����
A¼0

¼ δjμq;A
δAν;q0

����
A¼0

: ð58Þ

Inserting Eq. (58) into the continuity equation (16), we find
that

iqμj
μν
q;−q0 ¼

δ

δAν;q0
ðiqμjμq;AÞ

����
A¼0

¼ −i
δ

δAν;q0
½HA; ρq�

����
A¼0

¼ i½jν−q0;min; ρq�; ð59Þ

where we have used from Eq. (23) that ρq is independent of
the vector potential. Equation (59) shows that the longi-
tudinal component of the diamagnetic current jμνq;−q0 can be
expressed entirely in terms of the unperturbed current
jν−q0;min. Furthermore, since the longitudinal component
of jν−q0;min is equal to the current in Eq. (31), we find that the
longitudinal component qμq0νj

μν
q;−q0 of the diamagnetic

current is entirely expressible in terms of the velocity
operator.
Equation (59) is equivalent to the Ward identity from

quantum field theory [75]. We can iterate the logic leading
to Eq. (59) in order to obtain the longitudinal part of all
higher-order current vertices qμ1q

0
μ2q

00
μ3…jμ1μ2μ3…q;q0;q00…. Since

the operators jμ1μ2μ3…q;q0;q00… appear as vertex functions in
calculations of higher-order electromagnetic responses
[29,76], we see that our expression for the current in
Eq. (31) in terms of the velocity operator can be used to
generate the longitudinal components of these higher-order
vertices.
Using Eqs. (58) and (59), we can recast this second-order

operator in terms of an integrationover an auxiliary variable λ
via the Karplus-Schwinger relation. Namely, we show in
Appendix D that, for any single-particle operator O,

i½O; e−iq·x� ¼
Z

1

0

dλe−ið1−λÞq·xðq · ½O;x�Þe−iλq·x: ð60Þ

Applying Eq. (60) to our Ward identity Eq. (59), we find

iqμq0νj
μν
q;−q0 ¼ i

�
q0νjν−q0;min; ē

X
i

e−iq·xi
�

¼ ē
Z

1

0

dλe−ið1−λÞq·xðqμq0ν½jν−q0;min; x
μ�Þe−iλq·x

¼ ē
Z

1

0

dλe−ið1−λÞq·xðqμq0ν½jν−q0 ; xμ�Þe−iλq·x;

ð61Þ

where we have used the fact that both jmin;q and jq in
Eq. (31) are conserved. The advantage to using the
Karplus-Schwinger relation is being able to strip off the
q and q0, thus allowing us to define jμνq;−q0 that satisfies the
Ward identity for generic systems.
We can rewrite Eq. (61) in terms of the second-quantized

creation and annihilation operators for Bloch eigenstates
following the formalism of Sec. II B in order to define

jμνq;−q0 ¼ −ðēÞ2
Z

1

0

Z
1

0

dλdλ0hunkj
�
∂
2Hk

∂kμ∂kν

�
k→k−ð1−λ0Þq0þð1−λÞq

jumk−q0þqic†nkcmk−q0þq: ð62Þ

In a similar manner, we can iterate this procedure to derive expressions for the Nth-order current operator

jμν1ν2…νN
q;−q1;−q2;…;−qN ¼ −

δNþ1HA

δAμ;−qδAν1;q1δAν2;q2…δAνN;qN

����
A¼0

; ð63Þ

which satisfies the generalized Ward identity

ðiqμÞð−iq1;ν1Þð−iq2;ν2Þ…ð−iqN−1;νN−1
Þjμν1ν2…νN

q;−q1;−q2;…;−qN ¼ i
h
i
h
i
h
jνN−qN;min; ρ−qN−1

i
; ρ−qN−2

i
;…; ρq

i
: ð64Þ
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Applying the Karplus-Schwinger relation Eq. (60) iteratively and using our expressions Eqs. (31) and (53), we find that we
can write the nth-order diamagnetic current operator in second-quantized notation as

jμν1…νN
q;−q1;…;−qN ¼ −ð−ēÞNþ1

Z
1

0

dλ
Z

1

0

dλ1…
Z

1

0

dλN

× hunkj½∂kμ∂kν1…∂kνN Hk�k→kþð1−λÞq−ð1−λ1Þq1���−ð1−λNÞqN jumkþq−q1���−qN ic†nkcmkþq−q1���−qN : ð65Þ

Note, importantly, that Eq. (65) is explicitly symmetric under the exchange of any pair of indices, since partial derivatives
commute.
For later convenience, we define the Nth-order velocity vertex vνNðNÞðk;q;−q1;…;−qNÞ as the operator appearing in the

matrix element of Eq. (65), i.e.,

vνNðNÞðk;q;−q1;…;−qNÞ≡
Z

1

0

dλ
Z

1

0

dλ1…
Z

1

0

dλN ½∂kμ∂kν1…∂kνNHk�k→kþð1−λÞq−ð1−λ1Þq1���−ð1−λNÞqN
: ð66Þ

Therefore, applying Eq. (66) to Eq. (65), we can simply write

jμν1…νN
q;−q1;…;−qN ¼ −ð−ēÞNþ1

X
k

hunkjvνNðNÞðk;q;−q1;…;−qNÞjumkþq−q1���−qN
ic†nkcmkþq−q1���−qN

: ð67Þ

Note that, since the trapezoid and midpoint currents
[Eqs. (10) and (11)] do not satisfy the continuity equation,
there is no general procedure for determining their corre-
sponding diamagnetic currents. Nevertheless, for the sake
of comparison, we define trapezoid and midpoint diamag-
netic current operators by approximating each auxiliary
integral in Eq. (65) with the trapezoid or midpoint approxi-
mation, respectively.
Given Eq. (65) for the generalized diamagnetic current

operators as a function of wave vector(s), we now develop a
diagrammatic formalism to compute linear and nonlinear
conductivities as a function of frequency and wave vector.
Our construction of Eqs. (65) and (53) from generalized
Ward identities ensures that these conductivities give a
current that respects the continuity equation.

III. FEYNMAN DIAGRAMMATIC METHOD
AND SUM RULES

Using the conserved current operator, Eq. (31) we now
develop the formalism for computing the spatially inho-
mogeneous linear and nonlinear conductivities defined in
Eq. (2). We build off the work of Ref. [29], which presented
a simple yet powerful framework for calculating the
spatially uniform (q ¼ 0) nonlinear conductivities.
Continuing off of this framework, we look to expand this
framework to accommodate spatially inhomogeneous
fields and currents. This framework utilizes diagrammatic
perturbation theory in terms of noninteracting Matsubara
Green’s functions for electrons, with interactions with the
external electromagnetic field given by the (noninteracting)
vertex functions governed by Eq. (66). We generalize this
diagrammatic method in Refs. [29,33] to allow for electro-
magnetic fields and currents with nonzero wave vectors.

As a consequence, we are able to capture not just response
to electric fields, but—via Faraday’s law Eq. (4)—response
to magnetic fields as well. We begin in Sec. III A by
establishing the foundation for diagrammatic evaluation of
the Kubo formula. Then, in Sec. III B, we give the rules for
setting up and evaluating our Feynman diagrams. Finally,
in Secs. IV–VI, we apply our formalism to analyze the
linear and second-order response as a function of wave
vector for 3D Weyl and 2D moiré systems.

A. Feynman diagram setup

To write the Feynman diagram rules for evaluating the
average current, we must first relate the conductivities to
the generating function for correlations. Since the Feynman
diagrams are a direct interpretation of perturbative expan-
sions of the generating function, this allows us to write the
conductivities as a sum of diagrams, which may then be
translated to a mathematical statement involving Green’s
functions and interaction vertices [29,33,77–83].
First, consider the generic Hamiltonian that has been

coupled to a vector potential, as posed in Eq. (17). Notice
that the minimally coupled Hamiltonian can be expanded in
powers of the vector potential as

HA ¼ H0 −
�
Aα1;−q1j

α1
q1 þ

1

2
Aα1;−q1Aα2;q2j

α1α2
q1;−q2

þ 1

6
Aα1;−q1Aα2;q2Aα3;q3j

α1α2α3
q1;−q2;−q2

þ � � �
	
: ð68Þ

In the last term in Eq. (68), we have replaced the functional
derivatives of the coupled Hamiltonian with the generalized
current term described in Eq. (63). We now specify to
studying systems of electrons, where we take ē ¼ −e,
with e being the (positive) elementary charge. With this
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definition of the minimally coupled Hamiltonian, we can
define the expectation values of the current operator to all
orders in the vector potential [29]:

hjμi ¼ 1

Z
Tr
h
Ttej

μ
AðrÞe−i

R
dt0HAðt0;rÞ

i
; ð69Þ

where jμAðrÞ is defined via Eq. (56) in terms of our
conserved current [Eq. (53)] and the diamagnetic currents
[Eq. (65)]. Also, Tt is the time-ordering operator.
In Eq. (69), two levels of expansion may be implemented

in orders of the vector potential: an expansion in jμAðrÞ and
an expansion in HA. We assume the vector potential can be
written as a superposition of plane waves:

Aðr; tÞ ¼
X
ω;q

AqðωÞeir·q−iωt: ð70Þ

To obtain the average current, we can expand the left-hand
side of Eq. (69) in terms of a Fourier-transformed response
coefficient and the corresponding fields, as described in
Eq. (2), taking the Fourier transform of every time and
position argument.
Note that, for systems of electrons in a periodic potential,

umklapp processes allow for the generation of currents that
oscillate in space with wave vectors that differ from the
wave vectors of the applied field by a reciprocal lattice
vector. Concretely, expanding Eq. (69) in Fourier space [or,
equivalently, taking the Fourier transform of Eq. (2)] yields

hjμqðtÞi ¼
X
n

X
G

Z Y
dqidtiσ

μ;ν1;…;νn
ðnÞ ðq;q1;…qn; t; t1;…; tnÞδ

�
q −

X
i

qi −G

	Y
i

Eνi;qiðtiÞ; ð71Þ

where G are the reciprocal lattice vectors. Since the spatial
scale of variation of a current with wave vector G ≠ 0 is on
the order of (fractions of) an angstrom, these umklapp
terms are typically not experimentally interesting. There-
fore, we focus the remaining work on computing theG ¼ 0
component of the electromagnetic response. We empha-
size, however, that our diagrammatic calculation can be
easily generalized to compute the G ≠ 0 umklapp compo-
nents of the current as well.
By comparing Eq. (69) with Eq. (71), we may extract the

nth-order conductivity by using the following process: We
first expand the average current to nth order in the vector
potential. Next, we Fourier transform with respect to time
and make use of the definition of the electric field

EqðωÞ ¼ iωAqðωÞ ð72Þ

in the A0 ¼ 0 gauge. Note that this produces a time-
ordered, rather than a causal, response function. To recover
the usual causal response function that can be measured in
experiment, we can analytically continue all frequencies
into the complex plane, ω → ωþ iη for a small infinitesi-
mal η, following the procedure outlined in Refs. [29,65,80].
In additional to preserving causality, a small positive finite
η can be used to approximate the electron self-energy due to
impurity scattering [29,65].
Practically speaking, we carry out the perturbative

calculation using the imaginary-time Matsubara formalism,
using Matsubara frequencies iνn ¼ ½ð2nþ 1Þiπ=β� for
fermions and iωn ¼ ð2niπ=βÞ for bosons, where β ¼
ðkBTÞ−1 [78]. We take the T → 0 limit at the end of all
computations, which has the effect of turning Fermi-Dirac
distributions nF into Heaviside step functions. Moreover,
the T → 0 limit still gives a good approximation for
low-temperature transport coefficients in insulators. Since

the Matsubara frequencies become continuous in this limit,
we suppress the subscript n [29,78,81,82].
With this as our starting point, we can now outline the

diagrammatic rules that allow us to express Eq. (71) in
terms of Matsubara Green’s functions and the vertex
functions of Eq. (65).

B. List of Feynman diagram rules

In this section, we describe the rules for writing down
and evaluating the Feynman diagrams for the wave-vector-
and frequency-dependent conductivity tensors. These dia-
grams rely on the generalized current operator derived in
Sec. II C. Our formalism closely follows Ref. [29], con-
trasting only in the inclusion of the wave vector dependence
of the external fields and the current operator.
First, let us define the symbology that composes our

diagrams.
(1) The free fermion propagator (Matsubara Green’s

function) GðkÞ is denoted by .
(2) The perturbing vector potential field is denoted

by and carries with it a (Matsubara)
frequency and a wave vector.

(3) Where the fermion and photon propagator meet, we
place a vertex in the α direction. When correspond-
ing to the output current operator it is denoted by an
outgoing photon vertex , and when correspond-
ing to a perturbing field it is denoted by an incoming
vertex .

We introduce a four-vector notation for Matsubara frequen-
cies, with k ¼ ðiν;kÞ representing the fermionic Matsubara
frequencies and momenta and q ¼ ðiω;qÞ representing
the bosonic Matsubara frequencies and momenta. We also
use the shorthand dk≡ dkdν1 to denote the integration
measure and q1 þ q2 ≡ q12 to denote the componentwise
sum of two four-vectors.
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With these components defined, we may write diagrams
describing the contributions to hjμqi order by order in
perturbation theory. For concreteness, we specialize at this
point to a free-electron system. As such, the Feynman rules
below require us to consider only diagrams with a single
fermion loop. We note, however, that our diagrammatic
rules can be extended in the presence of interactions, such
as from phonons [80], by including additional interaction
vertices. To simplify the bookkeeping arising from the
negative signs in Eq. (65) and from the negative sign of the
electron charge, we formulate our diagrammatic rules in
terms of the velocity vertex functions in Eq. (66).
The diagrammatic rules are as follows.
(1) Every loop has an output vertex, and most have input

vertices. Diagrams contributing the nth-order re-
sponse have nþ 1 photon lines. All photon lines
are incoming at input vertices. At output vertices,
exactly one photon line is outgoing.

(2) Every loop denotes an integral over both k space as
well as a Matsubara sum (which can be made into an
integral) in frequency ν.

(3) Every closed loop conserves momentum and energy
[84]. By convention, incoming photon lines carry
momentum out of the loop, and outgoing photon
lines carry momentum into the loop.

(4) Each incoming field vector also contributes a factor
of ei=ℏiωα, where ωα is the Matsubara frequency for
the αth photon line.

(5) To avoid double counting, only topologically unique
diagrams should be considered. In particular, if the
exchange of two or more four-vector and index
labels on photon lines (not including the photon
corresponding to the output current) does not change
a diagram, then the diagram should be divided by the
appropriate multiplicity factor [29]. In practice, this
means that Nth-order input diamagnetic current
vertices are accompanied by a factor of 1=N!,
and Nth-order output diamagnetic vertices are ac-
companied by a factor of 1=ðN − 1Þ!. We see an
application of this rule in Sec. VI.

(6) A vertex with N photon lines corresponds a factor of
(a matrix elements of) vνNðNÞðk;q1;…;qNÞ defined in
Eq. (65), where k is the fermion momenta going into
the vertex.

After evaluating a particular set of diagrams, we can finally
obtain a causal response function by analytically contin-
uing each Matsubara frequency back to a real frequency,
iω → ωþ iη, for η a positive infinitesimal.

IV. LINEAR RESPONSE

In this section, we apply the Feynman diagrammatic
rules from Sec. III B to calculate the linear conductivity as a
function of frequency and wave vector for a general
noninteracting periodic solid. First, in Sec. IVA, we use
our diagrammatic method to recover the Kubo formula for
the conductivity, where we comment on the relationship
between our approach and that in Refs. [51,66,68]. Then, in
Sec. IV B, we show how our formalism relates to the
generalized f-sum rule [4,85].

A. Full linear response from diagrams

The linear conductivity is given by the sum of the two
diagrams in Fig. 1. Using our Feynman rules, this becomes

σμνðiω;qÞ ¼ ie2

iω

Z
dk

h
Gn1ðkÞvμνð2Þ;n1n1ðk;−q;qÞ

þ Gn2ðkþ qÞvνð1Þn2n1ðkþ q;−qÞ
×Gn1ðkÞvμð1Þn1n2ðk;qÞ

i
; ð73Þ

where GnðkÞ ¼ ðν − ϵnkÞ−1 is the Matsubara Green’s
function in the energy eigenbasis jψnki of Eq. (43), ϵnk
is the corresponding energy, and we introduce the notation
vμν1;…νN
ðNþ1Þ;n1n2 to denote the matrix elements of the velocity

vertex Eq. (66) in the basis of Bloch eigenstates junki.
The first term in Eq. (73), corresponding to the diagram

in Fig. 1(a), is the diamagnetic conductivity. We can
evaluate Eq. (73) and analytically continue to real fre-
quency to find

σμνdiaðωÞ ¼
ie2

ωþ

Z
dk

X
n1

Gn1ðkÞvνð2Þ;n1n1ðk;−q;qÞ

¼ ie2

ωþ

Z
dνdkdλdλ1

X
n1

hun1kjð∂kμ∂kνHkÞjk→k−ð1−λ1Þqþð1−λÞqjun1ki
iν − ϵn1k

¼ ie2

ωþ

Z
dkdλdλ1

X
n1

nFðϵn1ðkÞÞhun1kjð∂kμ∂kνHkÞjk→kþðλ1−λÞqjun1ki; ð74Þ

(a) (b)

FIG. 1. Linear-order response diagrams.
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where nF is the Fermi-Dirac distribution and ωþ ¼ ωþ iη.
In the limit q → 0, this reproduces the generalized dia-
magnetic conductivity of Ref. [29]. Here, however, we see
that, when Hk contains nonquadratic momentum depend-
ence—as it will for any semirelativistic system or for any
system modeled by a low-energy effective Hamiltonian—
the diamagnetic conductivity acquires a nontrivial q
dependence. The diamagnetic conductivity serves to regu-
larize the conductivity in the limit ω → 0. We can gain
some intuition for this by noting that Fig. 1(a) gives the
diamagnetic conductivity in terms of the average

σμνdiaðωÞ ¼
i
ωþ hjμν−q;qi ð75Þ

of the diamagnetic current Eq. (62). The generalized
Ward identity from Eq. (59) constrains the diamagnetic
conductivity.
The bubble diagram in Fig. 1(b) gives the paramagnetic

conductivity, corresponding to the second term in Eq. (73).
By evaluating the Matsubara integrals in Eq. (73) and
analytically continuing back to real frequencies, we find
that the paramagnetic conductivity is given by

σαβparaðω;qÞ ¼ −ie2

ωþ Qαβðω;qÞ; ð76Þ

where Qαβðt − t0;qÞ≡ i
Dh

jαqðtÞ; jβ−qðt0Þ
iE

θðt − t0Þ is the

retarded current-current correlation function in the time
domain. In the frequency domain, we can use our expres-
sion Eq. (53) for the current operator to find

Qαβðω;qÞ

¼
X
k

vαabðk;qÞvβbaðkþ q;−qÞ nFðϵakÞ − nFðϵbkþqÞ
ϵak − ϵbkþq þ ωþ

≡X
k

Fab
αβðk;qÞ

nFðϵakÞ − nFðϵbkþqÞ
ϵak − ϵbkþq þ ωþ ; ð77Þ

where vαabðk;qÞ is the charge-conserving velocity, given by

vαabðk;qÞ ¼
Z

1

0

dλhuakjð∂kαHkÞjk→kþð1þλÞqjubkþqi ð78Þ

as indicated in Eq. (65).
Our improved definition for the conserved current

operator enters into the matrix elements Fab
αβðk;qÞ, while

the ratio of Fermi functions to energy differences is
universal and arises from the evaluation of the Green’s
function integral in Eq. (73). We can compare our result for
the paramagnetic conductivity to that in Refs. [51,68],
which uses the midpoint current from Eq. (33) instead of
the conserved current. This leads to the appearance of a
modified matrix element

Fab
mid;αβðk;qÞ ¼

D
uak

���v̂αkþq
2

���ubkþq

ED
ubkþq

���v̂βkþq
2

���uak
E
;

ð79Þ

in place of Fab
αβðk;qÞ, with v̂αk ≡ ð∂Ĥk=∂kαÞ. The subscript

“mid” is assigned to this quantity to remind the reader that
it is derived using the midpoint definition of the current
operator.
Similarly, if the (nonconserved) trapezoid current j̃ from

Eq. (32) were used in place of j to derive the response, then
we would find for the matrix element

F̃ab
αβðk;qÞ ¼



uak

���� v̂
α
kþq þ v̂αk

2

����ubkþq

�

×



ubkþq

���� v̂
β
kþq þ v̂βk

2

����uak
�
: ð80Þ

We emphasize that, since Eq. (77) is computed using the
conserved current in Eq. (53), it gives the physically
meaningful conductivity. We use Eqs. (79) and (80) in
Sec. V to show how the trapezoid and midpoint currents
give quantitatively different predictions for the conductivity
as compared to Eq. (77).
In particular, Ref. [51] uses the (nonconserved) Eq. (79)

to evaluate the q-dependent Hall response for a two-band
tight-binding model, where we expect the use of the
conserved current Eq. (53) to be important to obtain reliable
results. We now argue that, since the current operators
Eqs. (31)–(33) agree to linear order in q, they yield
identical calculations of the paramagnetic conductivity
Eq. (76) to the order of jqj2. To see this, let us rewrite
the current-current correlator in Eq. (76) as

Dh
jαqðtÞ; jβ−qðt0Þ

iE
¼
Dh

jα0ðtÞ; jβ−qðt0Þ
iE

þ
Dh

jαqðtÞ; jβ0ðt0Þ
iE

þ
Dh

δjαqðtÞ;δjβ−qðt0Þ
iE

−
Dh

jα0ðtÞ; jβ0ðt0Þ
iE

; ð81Þ

where we have introduced

δjαq ¼ jαq − jα0: ð82Þ

To proceed, note that, for crystalline systems, we know
from conservation of (crystal) momentum that the ground
state average of any operator with nonzero momentum
(modulo reciprocal lattice vectors) must vanish. We can
apply this observation to conclude that the first two terms
on the right-hand side of Eq. (81) vanish unless q ¼ 0.
Thus, we have
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Dh
jαqðtÞ; jβ−qðt0Þ

iE
¼

Dh
δjαqðtÞ; δjβ−qðt0Þ

iE

−
Dh

jα0ðtÞ; jβ0ðt0Þ
iE

: ð83Þ

Finally, Taylor expanding Eq. (83) for small q shows that
theOðjqj2Þ contribution to the paramagnetic conductivity is
determined by the OðjqjÞ term in δjαq. Since Eqs. (31)–(33)
agree to linear order in q, they yield the same prediction for
the paramagnetic (and, hence, the Hall) conductivity.
Note, however, that the diamagnetic vertex Eq. (75)

derived from the conserved current in Eq. (31) differs from
the naive q-independent diamagnetic current derived
from the nonrelativistic Hamiltonian in Eq. (8) and used
in Refs. [66–68] to calculate the symmetric part of the
conductivity from tight-binding models. In particular, since
the conserved two-photon vertex jμν−q;q, defined in Eq. (62),
is an even and symmetric function of q, there will be
Oðjqj2Þ contributions to the (symmetric) diamagnetic
conductivity for tight-binding models that are necessary
to ensure charge conservation.

B. The f -sum rule and diamagnetic conductivity

In this section, we show how our definition for the
conserved current jq allows us to derive a generalized
f-sum rule valid for any effective model. While the
derivations in this section do not make use of the explicit
form of the current operator, they highlight constraints on
the conductivity imposed by charge conservation that are
satisfied only when the conserved current operator is used.
We begin with a short review of density-density response
and the derivation of the f-sum rule [86]. Recall that the
f-sum rule constrains the spectral weight of the density-
density response function

χðω;qÞ ¼ −i
Z

∞

0

dteiω
þth½ρqðtÞ; ρ−qð0Þ�i: ð84Þ

We start by defining the spectral density

χ00ðω;qÞ ¼ 1

2

Z
∞

−∞
dteiωth½ρqðtÞ; ρ−qð0Þ�i ð85Þ

which satisfies the Kramers-Kronig relation

χðω;qÞ ¼ 1

π

Z
∞

−∞
dω0 χ

00ðω0;qÞ
ωþ − ω0 : ð86Þ

The spectral density χ00ðω;qÞ can also be expressed as the
imaginary part of χðω;qÞ and can be directly measured
through absorption spectroscopy.
From Eq. (86), we can deduce an expansion for the large-

ω asymptotics of χðω;qÞ in terms of moments of χ00ðω;qÞ.
By Taylor expanding the denominator in the integral in
Eq. (86), we obtain the asymptotic expansion

χðω → ∞;qÞ ∼
X∞
n¼0

χ00nðqÞ
ðωÞnþ1

; ð87Þ

where

χ00nðqÞ ¼
1

π

Z
∞

−∞
dωðωÞnχ00ðω;qÞ ð88Þ

is (1=π times) the nth frequency moment of χ00ðω;qÞ. Note
that, since the (unprojected) density operators commute,
i.e., ½ρq; ρq0 � ¼ 0, we have

χ000ðqÞ ¼
1

π

Z
∞

−∞
dωχ00ðω;qÞ ð89Þ

¼ 1

2π

Z
∞

−∞
dω

Z
∞

−∞
dteiωth½ρqðtÞ; ρ−qð0Þ�i ð90Þ

¼
Z

∞

−∞
dtδðtÞh½ρqðtÞ; ρ−qð0Þ�i ð91Þ

¼ h½ρqð0Þ; ρ−qð0Þ�i ð92Þ

¼ 0; ð93Þ

where in going from Eq. (90) to Eq. (91) we exchanged the
order of the ω and t integrals and used

1

2π

Z
dωeiωt ¼ δðtÞ: ð94Þ

This means that the n ¼ 0 term in the asymptotic expansion
Eq. (87) vanishes. Using Eqs. (87) and (93), we have,
asymptotically to leading order as ω → ∞,

lim
ω→∞

ω2χðω;qÞ ¼ χ001ðqÞ ¼
1

π

Z
∞

−∞
dωðωÞχ00ðω;qÞ: ð95Þ

We can go further and evaluate χ001ðqÞ using the continuity
equation to arrive at a general form of the f-sum rule. In
particular, inserting the definition Eq. (85) into the defi-
nition Eq. (88) of χ001ðqÞ and integrating by parts, we find

χ001ðqÞ ¼
1

π

Z
∞

−∞
dωðωÞχ00ðω;qÞ

¼ 1

2π

Z
∞

−∞
dω

Z
∞

−∞
dteiωtωh½ρqðtÞ; ρ−qð0Þ�i

¼ −i
2π

Z
∞

−∞
dω

Z
∞

−∞
dt

d
dt

ðeiωtÞh½ρqðtÞ; ρ−qð0Þ�i

¼ 1

2π

Z
∞

−∞
dω

Z
∞

−∞
dteiωth½i∂tρqðtÞ; ρ−qð0Þ�i

¼
Z

∞

∞
dtδðtÞh½i∂tρqðtÞ; ρ−qð0Þ�i

¼ h½i∂tρq; ρ−q�i; ð96Þ
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where we suppress the time arguments in the equal-time
commutator in the last line. Using the continuity equa-
tion (24), along with the Karplus-Schwinger relationship to
simplify commutators of the density operator, we find

χ001ðqÞ ¼ h½i∂tρq; ρ−q�i
¼ qμh½jμq; ρ−q�i
¼ qμqνhjμν−q;qi;
¼ −ilim

ω→0
ωqμqνσ

μν
diaðq;ωÞ; ð97Þ

where we have used Eq. (75) to express the sum rule in
terms of the average of the two-photon velocity vertex,
which is the coefficient of the diamagnetic conductivity
σμνdiaðq;ωÞ. For Hamiltonians with quadratic momentum
dependence, the diamagnetic conductivity is independent
of q, and this reproduces the usual f-sum rule. Note that,
since Eq. (96) involves an integral over all frequencies, the
sum rule of Eq. (97) in the form we have written it relates to
the full (unprojected) density operator and diamagnetic
conductivity. We defer the exploration of restricted sum
rules over a limited frequency range to future work (though
see the recent Ref. [87] for progress along these lines).
Our derivation shows how the f-sum rule generalizes to

nonzero wave vector for general systems. In particular, we
show in Sec. II C that the two-photon velocity vertex jμνq0;−q,
which uses the conserved current jq, is generally given by
Eq. (61). We also show how the correlation-correlation
operator through the spectral density function relates back
to conductivity in Eq. (97), and, in Appendix F, we explore
this connection even further through the plasmon dispersion.
For general Hamiltonians, such as those arising in tight-

binding approximations to solid state systems, the q
dependence of jμνq0;−q leads to a nontrivial q-dependent
diamagnetic conductivity and, hence, a modification to the
f-sum rule according to Eq. (97). In Ref. [4], the deviation
between the generalized f-sum rule [in the form of
Eq. (96)] and the electron filling was taken as a measure
of goodness of fit for tight-binding parameters. Here, we
take a different point of view: The deviation between the
generalized f-sum rule and the electron filling is a
consequence of gauge invariance and quantifies a combi-
nation of semirelativistic effects as well as information
about the truncation of the Hilbert space in an effective low-
energy model. Since the spectral density at nonzero q is
measurable via absorption spectroscopy, Eq. (97) gives an
experimental probe of the two-photon velocity vertex and,
hence, of the conserved current jq [85].

V. APPLICATIONS OF THE LINEAR RESPONSE

Having derived the complete expression for the
q-dependent linear conductivity in Eq. (73), we now use
it to analyze electromagnetic response in insulators and

semimetals. We begin in Sec. VA by computing the
frequency- and wave-vector-dependent Hall conductivity
in a model of a Weyl semimetal. We see that for large wave
vectors the use of the conserved current Eq. (53) in the
Kubo formula yields quantitatively different predictions for
the Hall response as compared to the trapezoid or midpoint
approximations prevalent in the literature. This analysis is
applicable to studying the response of the system to
spatially modulated ac electromagnetic fields, such as
can be applied using standing waves or gate potentials.
Next, in Sec. V B, we turn our attention to moiré materials,
where the wave vector dependence of σμνðω;qÞ has
implications even for optical response due to the large
effective lattice constant. We compute the Kerr angle and
ellipticity at oblique incidence as a function of frequency
for a model of a moiré-Chern insulator in two dimensions,
showing that spatial inhomogeneous electric fields can lead
to experimentally relevant modifications to the Kerr effect.
Finally, in Sec. V C, we use our formalism for the
conserved current to analyze the magnetic moment and
magnetic susceptibility of insulators.

A. Linear Hall effect in a Weyl semimetal

As a proof of principle, we apply our definition for the
conserved current Eq. (53) to compute the wave-vector-
dependent Hall conductivity

σxyH ðω;qÞ ¼ 1

2
ðσxyðω;qÞ − σyxðω;qÞÞ ð98Þ

for a toy model of a time-reversal symmetry-breaking,
inversion symmetric Weyl semimetal with two Weyl
points first presented in Ref. [88]. We also compare our
predictions with analogous calculations of the Hall con-
ductivity using the (nonconserved) midpoint and trapezoid
currents via Eqs. (79) and (80). In the Weyl semimetal, Hall
conductivity arises due to the Berry curvature texture of
the occupied bands; each Weyl point is a source of Berry
curvature of charge jCj ¼ 1. For two Weyl points of
opposite charge separated by momentum 2k0ẑ, the Berry
curvature, when the chemical potential is exactly at the two
Weyl nodes, leads to a spatially uniform anomalous Hall
conductivity [36,89–91]:

σxyH ðω → 0;q → 0Þ ¼ 2e2k0: ð99Þ

For future convenience, we define the wave-vector-
dependent anomalous Hall conductivity σxyanomðqÞ as

σxyH ðω → 0;qÞ≡ σxyanomðqÞ: ð100Þ

We use our formalism to compute how this topological
Hall response is modified in the presence of inhomo-
geneous electric fields. At this stage, we do not assume
that our fields are optical—that is, we do not require that
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ω ¼ cjqj. As such, our analysis is primarily applicable to
the response of the Weyl semimetal to spatially dispersive,
slowly varying ac electromagnetic fields. Note that the
diamagnetic conductivity Eq. (74) is explicitly symmetric,
owing to the symmetry of the diamagnetic current vertex in
Eq. (59). Therefore, when we go to calculate the Hall
conductivity (which is antisymmetric), it will not contrib-
ute. Thus, we can focus on the paramagnetic conductivity
Eqs. (76) and (77).

1. The Weyl semimetal model

We consider a model for a time-reversal symmetry-
breaking, inversion symmetric Weyl semimetal with tight-
binding Hamiltonian given by [92–97]

H ¼
X4
i¼0

diðkÞσi;

d0ðkÞ ¼ γ½cosðkzÞ − cosðk0Þ� − μ;

d1ðkÞ ¼ −2tx sinðkxÞ;
d2ðkÞ ¼ −2ty sinðkyÞ;
d3ðkÞ ¼ −ð2tzðcosðkzÞ − cosðk0ÞÞ

þmð2 − cosðkxÞ − cosðkyÞÞ
þ γzðcosð3kzÞ − cosð3k0ÞÞÞ; ð101Þ

where σi are the 2 × 2 Pauli matrices with σ0 defined to be
the identity matrix. All values of k are measured in reduced
coordinates, i.e., ki ∈ ½−π; π� for i ¼ x, y, z. Here, k0
quantifies the separation of the Weyl nodes along the ẑ
direction. When jmj > 2tz, this model has a gapped
spectrum everywhere in the Brillouin zone except at two
Weyl points with (reduced) coordinates ð0; 0;�k0Þ; we
focus on this regime for our analysis. The energy param-
eters tx, ty, and tz determine the velocities close to the Weyl
node in each principal direction. The quantities γ and γz are
tilting parameters that allow for type-II Weyl semimetals to
occur [92]. A plot of the spectrum of Eq. (101) with kx ¼
ky ¼ 0 is shown in Fig. 2.
Using this model along with our Kubo formula Eq. (77),

we examine how the Hall conductivity σxyH ðω;qÞ deviates
from its topological value as a function of both ω and q.

2. Hall response when q= ðq0;0;0Þ
Using Eq. (77), we first compute the Hall response in this

Weyl semimetal model when the electric field is parallel to
the ŷ direction and the wave vector is oriented in the x̂
direction with a magnitude q0. The Hall current then flows
along the x̂ direction, parallel to the wave vector. Note that,
in this case, the electric field is transverse, while the
measured current is longitudinal. We examine this response
because it illustrates the differences between the Hall
conductivity calculated with the conserved current and

the Hall conductivity calculated with the nonconserved
currents commonly used in the literature.
We first illustrate the difference in the three definitions as

outlined in Eqs. (77), (79), and (80): the conserved current,
the (nonconserved) midpoint definition, and the (noncon-
served) trapezoidal definition, respectively.
Each of these three different definitions, yielding differ-

ent predictions for the Hall conductivity, is shown in Fig. 3.
Increasing the wave vector generally leads to a more
pronounced difference among the three predictions, which
makes sense, since the midpoint and trapezoid currents are
approximations to the λ integration in the definition
Eq. (53) of the conserved current; these integral approx-
imations become less exact as the wave vector increases.
This is further demonstrated in Fig. 4(c), where we can see
that the discrepancies between the anomalous Hall con-
ductivity σxyanomðqÞ [defined in Eq. (100)] computed using
each of the three methods increase as q increases. We note
also that, due to the integration over λ in the definition of
the conserved current Eq. (53), the anomalous Hall con-
ductivity computed using the conserved current decays as
1=jqj2 for asymptotically large q. Hence, the continuity
equation has an influence on the Hall response that
becomes more apparent with increasing wave vector. On
the contrary, the nonconserved trapezoidal and midpoint
definitions of the current fail to capture this feature and
instead predict an anomalous Hall conductivity that is
periodic in qx with period 2π and 4π, respectively. This
point is illustrated in Fig. 4(c).
We also find, as expected, that the three current operators

predict the same Hall conductivity in the limit q → 0 for all
frequencies. Furthermore, from Fig. 4(c), we see that, for
small jqj, deviations between the conserved and non-
conserved predictions for the anomalous Hall conductivity

FIG. 2. Energy spectrum of the Weyl semimetal Hamiltonian
Eq. (101) along the kx ¼ ky ¼ 0 line in the Brillouin zone, with
parameter values m ¼ 4tz, tx ¼ ty ¼ tz, γ ¼ 0, γz ¼ 0, and
μ ¼ 0. The dotted lines indicate two types of indirect transitions
that can be driven by a time- and space-dependent electric field:
The green dotted line shows a jump of jqj ¼ π=2 in momentum
and ω ¼ 2tz in energy, and the dotted yellow line shows a jump of
jqj ¼ π in momentum space with zero energy transfer ω ¼ 0.
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vanish faster than jqj2. We see that, for small q, the
anomalous Hall conductivity behaves as

σxyanomðqxx̂Þ ∼ σxyanomð0Þ − jαjq2x: ð102Þ

This is consistent with the results in Ref. [51], which found
that to quadratic order the nonconserved midpoint approxi-
mation Eq. (79) predicts a negative Oðq2Þ correction to
the anomalous Hall conductivity arising from band-
geometric effects (recall that to quadratic order the mid-
point current and the conserved current yield the same Hall
conductivity).

Focusing now on the physically meaningful conserved
current, we show in Figs. 4(a) and 4(b) the real and
imaginary parts of the Hall conductivity as a function
of frequency for five different wave vectors in the x̂
direction. Strikingly, we see that the Hall conductivity at
q ¼ ðπ; 0; 0Þ is identically zero, i.e., σxyH ðω; πx̂Þ ¼ 0.
This is true for computations based on both the con-
served and nonconserved currents, arises due to the
simplicity of the model, and can be most clearly understood
in terms of the trapezoid method: Since vxk depends only
on kx and includes only nearest-neighbor hopping, we
have F̃xyðk; πx̂Þ ¼ 0 identically. In a more complicated
model with longer-range hopping, we would expect

(a) (b) (c)

FIG. 4. The real [(a)] and imaginary [(b)] parts of the Hall conductivity as a function of frequency for several values of the wave vector
in the x̂ direction. The conductivities in (a) and (b) are computed using the conserved current Eq. (53) and the Kubo formula Eq. (77).
(c) shows the real part of the anomalous Hall conductivity [as defined in Eq. (100)] as a function of the wave vector changing in the x̂
direction. The parameters m ¼ 4tz, tx ¼ ty ¼ tz, γ ¼ 0, γz ¼ 0, and μ ¼ 0 are used for these calculations.

(a) (b) (c)

(d) (e) (f)

FIG. 3. The Hall conductivity versus the frequency of the perturbing electric field at different values of the wave vector
(jqj ¼ π=4; π=2; 3π=4) in the x̂ direction. (a)–(c) show the real parts of the Hall conductivity for each wave vector, while (d)–(f) show
the imaginary part. The parameters m ¼ 4tz, tx ¼ ty ¼ tz, γ ¼ 0, γz ¼ 0, and μ ¼ 0 are used for these calculations. Black curves
correspond to the conductivity computed with the conserved current jq using Eq. (77). For comparison, we also show the Hall
conductivity computed with the nonconserved trapezoid current j̃q (blue) and the nonconserved midpoint current (pink). We see that, at
large wave vectors, the nonconserved currents give quantitatively different predictions for the Hall conductivity as compared to the
conserved current. All plots are generated with natural units (i.e., all energy parameters in terms of tz and e ¼ 1).
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σxyH ðω; πx̂Þ ≠ 0 generically. Examining Figs. 4(a) and 4(b),
we see that, as the magnitude of q ¼ qx̂ is increased, the
magnitude of the Hall conductivity decreases. We also see
peaks in the Hall response at frequencies corresponding to
indirect (nonzero momentum transfer) transitions between
occupied and unoccupied states induced by the external
electromagnetic field.

3. Hall response when q= ð0;0;q0Þ
Now we take the orientation of the incoming field to be

in the ẑ direction, which is parallel to the Weyl node
separation. Unlike when q was in the x̂ orientation in
Sec. VA 2, the three different definitions of the current
operators yield identical predictions for the Hall conduc-
tivity in this case. This is because, for our toy model
Eq. (101), only the matrix elements Eqs. (77), (79),
and (80) change in the Kubo formula for the conductivity.
Since our model has no diagonal hopping and since
the Hall conductivity depends only on the x and y
components of the current, we have that Fab

xy ðk;qÞ ¼
Fab
mid;xyðk;qÞ ¼ F̃ab

xy ðk;qÞ ¼ Fab
xy ðk; 0Þ. To change this,

we could include diagonal hoppings of the form sinðkiÞ →
sinðkiÞfðkzÞ or cosðkiÞ → cosðkiÞfðkzÞ for i∈ fx; yg and
fðkzÞ being a general periodic function. Mixing the kx or ky
dependence with kz gives rise to the possibility of a Hall
conductance where each of the three mentioned methods
would then yield different results.
In Figs. 5(a) and 5(b), we show the real and imaginary

parts of the Hall conductivity σxyH ðq ¼ qzẑ;ωÞ for five
values of qz. We point out two relevant wave vector values:
qz ¼ π=2 (the momentum transfer of the transition from
oneWeyl node to the highest-energy eigenstate) and qz ¼ π
(momentum transfer of the transition between Weyl nodes
at zero frequency). The qz ¼ π=2 transition is shown in
Fig. 2 with the green dotted arrow, and the qz ¼ π is
illustrated in that same figure with a yellow dotted line. At
qz ¼ π=2, we would expect a large Hall response, since the
density of states at the band maximum is large. To examine
the Hall effect in this orientation, we inspect Figs. 5(a)
and 5(b), which plot the Hall coefficient as a function of
frequency for several wave vectors. At the value qz ¼ π=2,

we notice the real part of the Hall effect achieves its
maximal value at ω ∼ 2.63tz.
The other interesting value of qz is at π. At qz ¼ π, a

zero-frequency electric field can excite transitions between
the two Weyl nodes. This is, an electron can directly hop
from one Weyl node to the other without having to absorb
energy. This type of excitation at q ¼ πẑ puts the electron
in the strongest differential of Berry curvature possible,
hopping from one topologically charged Fermi point to the
Fermi point with opposite charge. We find that, at low
frequencies, this leads to a Hall conductivity σxyH ðq ¼
πẑ;ωÞ with a real part that is nearly constant over a wide
frequency range, before decaying to zero at high frequen-
cies. We see this in Fig. 5(a). In Fig. 5(b), see that the
imaginary part of σxyH ðq ¼ πẑ;ωÞ is nearly linear at lower
frequencies and then decays to zero at high frequencies.
We next consider the anomalous Hall conductivity

σxyanomðq ¼ qzẑÞ as a function of the wave vector. We plot
the anomalous Hall conductivity as a function of the
q ¼ qzẑ, in Fig. 5(c). We see that the anomalous Hall
conductivity for this model is periodic as a function of qz
due to the absence of diagonal hopping. We also see that the
Hall conductivity decreases quadratically at small qz,
consistent with previous investigations into Oðq2Þ correc-
tions to the Hall conductivity [44,45,98].
Lastly, to study the effect of a finite Fermi surface on the

Hall conductivity, we study σxyH ðω;q ¼ qzẑÞ for our Weyl
semimetal as a function of chemical potential. When the
Fermi surface volume is finite, we expect a diverse range of
intra- and inter-Fermi surface indirect transitions to con-
tribute to the q dependence of the Hall conductivity.
First, we focus on the anomalous Hall conductivity as a

function of wave vector for several different values of the
chemical potential. For jμj < j2tzj, we see fromFig. 2 that the
Fermi surface consists of two disjoint pockets centered on
each Weyl node. At jμj ¼ j2tzj, there is a Lifshitz transition,
where the two Fermi pockets meet; for jμj > j2tzj, there is a
single Fermi pocket. Since the density of states and topo-
logical charge of the Fermi surface change drastically at the
Lifshitz transition, we expect to see a drastic change in the
Hall conductivity near μ ¼ 2tz for all q.

(a) (b) (c)

FIG. 5. The real [(a)] and imaginary [(b)] parts of the Hall conductivity as a function of frequency for several values of the wave vector
in the ẑ direction. (c) shows the real part of the anomalous Hall conductivity [as defined in Eq. (100)] as a function of the wave vector
changing in the ẑ direction. The parameters m ¼ 4tz, tx ¼ ty ¼ tz, γ ¼ 0, γz ¼ 0, and μ ¼ 0 are used for these calculations.
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We show this in Fig. 6(a), where we plot the anomalous
Hall conductivity σxyanomðq ¼ qzẑÞ as a function of qz for
five different values of the chemical potential. We see that,
when μ ¼ 2tz, the anomalous Hall conductivity is positive
at qz ¼ 0 but decreases dramatically as a function of qz.
For larger qz the anomalous Hall conductivity reverses
sign and achieves a large negative value at qz ¼ π; the Hall
response at qz ¼ π and μ ¼ 2tz is almost an order of
magnitude larger than the topological anomalous Hall
response σxyanomðq ¼ 0Þ.
To investigate this further, we compute the anomalous

Hall conductivity σxyanomðq ¼ qzẑÞ at ω ¼ 0 and at fixed qz
as a function of μ, shown in Fig. 6(b) for qz ¼ 0, and we see
that σxyanomðqz ¼ 0Þ decreases quadratically as μ → 0, con-
sistent with previous results [99–102]. Importantly, the
anomalous Hall response at qz ¼ 0 is proportional to the
Berry curvature at the Fermi surface leading to this
quadratic dependence on the chemical potential [99–
102]. Furthermore, we see in Fig. 6(b) that σxyanomðq ¼ 0Þ
is always positive for any value of μ. Therefore, since we
know from previous literature [36,93] that this contribution
is proportional to the Berry curvature, we can establish both
the positivity and quadratic behavior as indicators of a
Berry curvature-dominated influence at the Fermi surface.
However, as noted previously, σxyanomðq ¼ πẑÞ demon-

strates very different behavior as a function of μ, as shown
in Fig. 6(c). We see that the anomalous response is positive
for μ ¼ 0 and then, as jμj grows, eventually switches sign
and achieves a large negative value at the Lifshitz tran-
sition. The behavior of σxyanomðq ¼ πẑÞ near the μ ¼ 2tz
arises due to the divergence of the joint density of states
[essentially, the velocity-independent universal factor in
our Kubo formula Eq. (77)] at the Lifshitz transition.

B. Kerr rotation in moiré materials

While the wave vector dependence of the optical
conductivity can usually be ignored in most solids, the

large length scales present in moiré lattice systems mean
that spatial inhomogeneities in optical electromagnetic
fields may have an appreciable effect on transport. In this
section, we focus on applying our formalism to compute
the wave vector dependence of the Kerr effect in 2D
systems. Recall that the Kerr effect describes the change
in relative angle and ellipticity from the light reflected from
a material [22,103] and is a direct probe of time-reversal
symmetry breaking [104]. As such, the polar Kerr effect has
been used as a direct probe of time-reversal symmetry
breaking in unconventional superconductors and charge-
ordered systems [105–110]. Additionally, reflectivity studies
on 2D materials allow us to probe the frequency and wave
vector dependence of response functions off the light cone,
since, for a fixed frequency, the magnitude of the in-plane
wave vector can be varied by changing the incidence angle.
Because of the intrinsic time-reversal symmetry breaking of
states in twisted graphene and transition-metal dichalcoge-
nidesmaterials, a study of theKerr effect in these systems is a
natural avenue for future experiments [62].
To this end, we compute the magnitude of the Kerr effect

in a model of a moiré-Chern insulator. First, in Sec. V B 1,
we introduce a toy model for a Chern insulator in a moiré
system. Then, in Sec. V B 2, we compute the Kerr angle
and ellipticity for the model, using Eq. (73). Unlike in our
analysis of the Hall effect in Sec. VA, here both the
paramagnetic and diamagnetic conductivities play a role.
We compare our results with approximate calculations
using the nonconserved trapezoid [Eq. (32)] and midpoint
[Eq. (33)] definitions of the current prevalent in the
literature, showing that they yield quantitatively distinct
predictions for the Kerr angle and ellipticity that could be
distinguished in experiment.

1. Moiré Haldane Chern insulator model

For our toy model of a moiré-Chern insulator, we
start with the spinless Haldane model on a honeycomb
lattice [111–114]. The Bravais lattice vectors connecting

(a) (b) (c)

FIG. 6. Chemical potential dependence of the anomalous Hall conductivity [as defined in Eq. (100)] for the Weyl semimetal model.
(a) shows the real part of the anomalous Hall response as a function of the wave vector in the ẑ direction, for several different values of μ
up to the Lifshitz transition at μ ¼ 2tz. (b) shows the real part of the anomalous Hall response as a function of chemical potential at
qz ¼ 0, and (c) shows the real part of the anomalous Hall response as a function of chemical potential at qz ¼ π. The parameters
m ¼ 4tz, tx ¼ ty ¼ tz, γ ¼ 0, and γz ¼ 0 are used in these calculations.
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next-nearest-neighbor honeycomb lattice sites (in the same
sublattice) are, in Cartesian coordinates,

b1 ¼
a
2

�
−

ffiffiffi
3

p

3

�
; ð103Þ

b2 ¼
a
2

�
−

ffiffiffi
3

p

−3

�
; ð104Þ

b3 ¼ a

� ffiffiffi
3

p

0

�
; ð105Þ

where a is the moiré lattice constant. The nearest-neighbor
vectors connecting honeycomb lattice sites in opposite
sublattices can similarly be written as

a1 ¼
a
2

� ffiffiffi
3

p

1

�
; ð106Þ

a2 ¼
a
2

�
−

ffiffiffi
3

p

1

�
; ð107Þ

a3 ¼ a

�
0

−1

�
: ð108Þ

We construct a tight-binding model with nearest and next-
nearest-neighbor hoppings as well as a staggered on-site
potential and an orbital magnetic flux. We can write the
Hamiltonian as H ¼ P

3
i¼0 hiðkÞσi, with

h0ðkÞ ¼ 2t2
X3
j¼1

cosðk · bjÞ − μþ 3t2 cosðϕÞ; ð109Þ

h1ðkÞ ¼ t
X3
j¼1

cosðk · ajÞ; ð110Þ

h2ðkÞ ¼ t
X3
j¼1

sinðk · ajÞ; ð111Þ

h3ðkÞ ¼ M − 2t2 sinðϕÞ
X3
j¼1

sinðk · bjÞ: ð112Þ

Here, M is the staggered on-site potential, t is the nearest-
neighbor hopping amplitude, and t2 is the next-nearest-
neighbor hopping amplitude. The parameter μ is the
chemical potential. Also, the last term in Eq. (109) is
modified from Haldane’s original derivation by the extra
term 3t2 cosðϕÞ. We include this extra term for the
convenience of putting the zero of energy in the band
gap. Finally, ϕ is the time-reversal symmetry-breaking
magnetic flux per plaquette.

In this model, we take jt2=tj < 1=3, which forces
the bands to not overlap. Additionally, to be in a topo-
logically nontrivial state with Chern number C ¼ �1, our
choice of parameters must satisfy jM=t2j < 3

ffiffiffi
3

p j sinðϕÞj.
The phase diagram for this model is shown in Fig. 7.
Furthermore, we note this model contains two gapped

Dirac points at points K and K0, with coordinates
ð2π=3Þ½ð1= ffiffiffi

3
p Þ; 1� and ð2π=3Þ½−ð1= ffiffiffi

3
p Þ; 1� in units of

the inverse moiré lattice constant, respectively. The K
and K0 points are shown in the Brillouin zone in Fig. 8.
By adjusting M, t2, and ϕ, the Dirac nodes can be
gapped out. A gap closes at a single Dirac node at
each phase boundary as illustrated in Fig. 7. At the K
and K0 points, the band gaps are 2jM − 3

ffiffiffi
3

p
t2 sinðϕÞj and

FIG. 7. The top is the topological phase diagram of the Haldane
Chern insulator as described by Eqs. (109)–(112). We set t ¼ 4t2
and t2 ¼ 1 THz to adhere to the nonoverlap condition of
jt2=tj < 1=3. The Chern number, as illustrated in this figure, is
calculated by integrating the Berry curvature across the Brillouin
zone. The bottom is the spectrum for the Haldane Chern insulator,
capturing both K and K0 points when ky ¼ 2π=3, which is at

kx ¼ �2π=3
ffiffiffi
3

p
. At these points, the separation in energies

follows as 2jM � 3
ffiffiffi
3

p
t2 sinðϕÞj, which take on separation values

of 6 and 14.8 THz, respectively.
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2jM þ 3
ffiffiffi
3

p
t2 sinðϕÞj, respectively; we refer to these as

the topological gaps. We show the band structure of the
model for a representative set of parameters t2 ¼ 1 THz,
t ¼ 4 THz, M ¼ 2.2 THz, and ϕ ¼ π=2.

2. The momentum-dependent Kerr effect
of the Haldane Chern insulator

We now consider the influence of an optical electric
field on the moiré-Chern insulator, focusing on the Kerr
effect. When the moiré lattice constant is large, the in-plane
wave vector jqj ∼ ω=c may be an appreciable fraction of
the inverse lattice spacing 1=a, at frequencies near the
topological gaps. To model this, we choose the moiré
length and energy scales of our model to be comparable
to those of twisted bilayer graphene reported in the
literature [62,115–118]. In particular, we take the lattice
constant a ¼ 200 Å, which is achievable at small twist
angles in graphene. Additionally, we take t2 ¼ 1 THz,
t ¼ 4 THz, and M ≈ 4.45 THz, such that the relevant
energy scale for optical excitations is on the order of
10 THz. Additionally, by differentiating the HamiltonianH
defined in Eqs. (109)–(112) with respect to k, we find that
the matrix elements of the velocity operator are all on the
order of ta ∼ 2.6 × 10−4c or smaller, where c is the speed
of light; this is comparable to the Fermi velocity in a
typical metal.
To compute the Kerr response, we consider the exper-

imental geometry shown in Fig. 9. We consider an infinite
sample oriented in the xy plane, encapsulated within
a dielectric substrate with large index of refraction
nR ¼ ffiffiffiffiffi

ϵR
p ¼ 38 [119]. We illuminate the system with

linearly polarized light at oblique incidence θi ¼ 7π=16,
EI ¼ E0x̂e−iωtþiq·r. Since the in-plane component of the
electric field is continuous across the interface, this means

that the in-plane component qy of the wave vector relevant
for scattering is, in dimensionless units,

qya ¼ anR sinðθIÞω=ðcÞ ∼ ð0.0025 THz−1Þω ð113Þ

for our choice of moiré lattice constant. This is several
orders of magnitude larger than the typical scale qya0 ∼
ð10−6 THz−1Þω for crystalline systems with typical lattice
constants a0 ∼ 2 Å. Taking the incident photon frequency
to be on the order of approximately 10 THz, which should
be reasonable with recent breakthroughs in terahertz
spectroscopy experiments, we see q in the moiré system
is comparable enough to the lattice spacing to make finite
wave vector corrections to optical response large enough to
be experimentally measurable; although the effects of
nonzero q are still small, they are experimentally non-
negligible in moiré systems. Although we use a very large
nR substrate appropriate to metamaterials, we see from
Eq. (113) that a lower dielectric constant can be used,
provided the moiré lattice constant is similarly increased
(e.g., by decreasing the twist angle). Additionally, the effect

FIG. 9. Diagram of the polarization and configuration of the
Kerr effect setup. The 2D sample (red) is encapsulated in a high-
ϵR dielectric (green). The yellow curve is the incident light with
incidence angle θi and incident field EI . The left blue curve is the
reflected wave with reflected angle θR and reflected electric field
ER. The right blue curve is the transmitted light with transmitted
angle θT and transmitted electric field ET . Each of the reflected
and transmitted polarizations can be described in terms of an
ellipticity and angle of rotation that describe the Kerr (reflected)
and Faraday (transmitted) effects.

FIG. 8. Brillouin zone for the Chern insulator model in
Eqs. (109)–(112) measured in natural units of inverse lattice
constants. The dotted green line denotes the momentum transfer
between the K0 and K points. An excitation between these two
points can be excited by adjusting the wave vector of the
incoming electromagnetic field.
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of the wave vector correction becomes more noticeable as
the angle of incidence becomes closer to being oblique.
We can now compute the Kerr angle (rotation of the

plane of polarization of the reflected wave) and ellipticity
(imaginary part of the Kerr angle) for light reflected off our
model of a moiré-Chern insulator. Since our sample is two-
dimensional, its primary influence on the propagation of
light is through the boundary conditions that enter
Maxwell’s equations. In particular, the conductivity tensor
σμνðω;q ¼ qyÞ determines the surface current at the sam-
ple, which determines the discontinuity in the magnetic
field across the sample and, thus, the reflection coefficient.
We give a full derivation of the Kerr angle and ellipticity in
terms of the conductivity tensor in Appendix E. We can,
thus, use our Kubo formula Eq. (73) in terms of the
conserved current operator in Eq. (53) to compute the Kerr
angle and ellipticity. Since the derivation for the Kerr angle
and ellipticity involves both the longitudinal and Hall
components of the conductivity tensor, we need to include
both the diamagnetic and paramagnetic parts of the
conductivity, as presented in Sec. IVA.
In Fig. 10(a), we show the Kerr angle θK and Kerr

ellipticity ϵK as functions of frequency, using the Kubo

formula in Eq. (73). For comparison, we also include the
analogous calculation using the nonconserved trapezoid
and midpoint definitions of the current operator. As noted at
the end of Sec. II, to use the nonconserved currents we
introduce an approximate diamagnetic current in order to
compute the corresponding q-dependent diamagnetic con-
ductivity. For the parameter values considered here, the
topological gaps in the band structure occur at ω ¼
1.5 THz and another at ω ≈ 19.28 THz, which are indi-
cated by vertical dotted lines in Fig. 10(a). As expected, we
see that the Kerr angle rises rapidly (and the ellipticity falls
rapidly) near the smaller topological gap, and the Kerr
angle nearly vanishes above the larger topological gap.
Note also that, while the ellipticity and Kerr angles also
grow at very low frequencies (ω < 0.5 THz), the intensity
of the reflected light goes rapidly to zero at low frequencies.
We also indicate with a vertical dotted line the frequency
ω ¼ 25.60 THz, which corresponds to the highest possible
excitation energy in this system.
To highlight the non-negligibility of including wave-

vector-dependent corrections to the optical response in
moiré systems, in Fig. 10(b), we show the difference
between the q-dependent conserved current calculation

(a) (b)

(c) (d)

FIG. 10. Kerr effect in the moiré-Chern insulator model. (a) shows the Kerr angle θK and ellipticity ϵK as a function of frequency
computed using the conserved current, the nonconserved midpoint current, and the nonconserved trapezoid current. (b) shows the
difference between the angle and ellipticity computed using conserved current compared to the uniform approximation
σμνðq;ωÞ ≈ σμνð0;ωÞ, effectively showing the importance of q-dependent modifications to the optical response. In (c), we show
the differences between the conserved and midpoint current predictions for the Kerr angle and ellipticity. Similarly, in (d), we show the
differences between the conserved and trapezoid current predictions for the Kerr angle and ellipticity. These figures use model
parameters of M ¼ ð3 ffiffiffi

3
p

− 3=4Þt2, t ¼ 4t2, t2 ¼ 1 THz, and ϕ ¼ π=2. Vertical dashed lines denote the two topological gaps and the
highest allowed transition frequency.
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of the Kerr angle and ellipticity and the Kerr angle and
ellipticity computed using the common q → 0 uniform
approximation to the conductivity tensor. This shows the
calculational error arising from neglecting the wave vector
dependence in the Kerr effect. We see that the difference
varies on the order of 103 arcseconds, which shows that
including spatial inhomogeneity when modeling light
scattering off the material surface has quantitative effects
that cannot be ignored in order to accurately describe the
Kerr effect in moiré systems. Moreover, this magnitude
of difference is detectable using existing experimental
techniques. Thus, this further demonstrates that optical
response in moiré materials is sensitive to spatial inhomo-
geneities in electromagnetic fields.
At the scale of Fig. 10(a), it is difficult to distinguish

between the predicted value of θK and ϵK from the
conserved and nonconserved currents. According to our
analysis of the dimensionless in-plane wave vector in
Eq. (113), we expect the difference in prediction between
the three definitions of the current operator to be small but
measurable. To demonstrate this, in Figs. 10(c) and 10(d),
we show the difference between θK and ϵK calculated with
the conserved current and the midpoint [(c)] and trapezoid
[(d)] approximations to the current. We see that the
differences are on the order of 1 arcsecond for the midpoint
current, to as large as almost 1250 arcseconds (or about
20 arcminutes) for the trapezoid current, which are both

within reach of experimental detection. Thus, we expect
that the conserved current in Eq. (53) provides a better fit to
Kerr effect experiments, especially for terahertz frequencies
in moiré lattices.
Next, we turn our attention to the dependence of the Kerr

angle on the magnetic flux at fixed frequency. In our tight-
binding model, the parameter ϕ controls the magnetic flux
through each plaquette; varying ϕ at fixed M allows us to
tune between the topological phases with Chern numbers
−1, 0, andþ1 as indicated in Fig. 7. We examine signatures
of the topological phase transition on the Kerr angle and
ellipticity, restricting our attention only to predictions using
the conserved current of Eq. (53).
In general, we expect the θK and ϵK to both be odd

functions of ϕ, since all of θK, ϵK, and ϕ are odd under time
reversal. Additionally, since ϕ ¼ 0 and ϕ ¼ π are time-
reversal invariant values of the magnetic flux per plaquette,
we expect the Kerr angle and ellipticity to vanish for these
values of ϕ. We see this reflected in Fig. 11, where we show
the Kerr angles and Kerr ellipticities as functions of ϕ for
various values of ω. Figures 11(a)–11(c) show θK and ϵK
for ω ¼ 1.5 THz (the frequency corresponding to the
topological gap), 14 THz (an intermediate frequency scale
in the model), and 25.6 THz (the highest possible excitation
energy in the model), respectively. We show with vertical
dashed lines the values of ϕ corresponding to the topo-
logical phase boundaries in Fig. 7. We see that, when the

(a)

(d) (e)

(b) (c)

FIG. 11. Kerr angle θK and ellipticity ϵK as a function of magnetic flux ϕ per plaquette in the moiré-Chern insulator model, computed
using our conserved current in Eq. (53). θK and ellipticity ϵK are shown at fixed frequency ω ¼ 1.5 THz in (a), 14 THz in (b), and
25.6 THz in (c). (d) and (e) show the Kerr angles [(d)] and Kerr ellipticities [(e)] as a function of flux when ω is pinned to the ϕ-
dependent topological band gap ωðϕÞ ¼ 2jM � 3

ffiffiffi
3

p
t2 sinðϕÞj at the K (for positive ϕ) or K0 (for negative ϕ) point in the Brillouin zone.

The dotted red vertical lines indicate values of ϕ corresponding to the topological phase boundaries shown in Fig. 7. All quantities are
computed using M ¼ ð3 ffiffiffi

3
p

− 3=4Þt2, t ¼ 4t2, and t2 ¼ 1 THz.
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incident photon frequency is on resonance with the topo-
logical gap [Fig. 11(a)], the Kerr angle and ellipticity peak
near the value of ϕ corresponding to the topological phase
transition. On the other hand, when the photon frequency is
off resonance [Figs. 11(b) and 11(c)], the evolution of the
Kerr angle and ellipticity as a function of ϕ becomes more
smooth; for very large frequencies [Fig. 11(c)], we see that
the Kerr angle is approximately zero for all ϕ, and the
dependence of the ellipticity angle on ϕ resembles a
steepened sinusoidal function.
To further explore the sensitivity of the Kerr angle and

ellipticity to the topological phase transition in our model,
we compute θK and ϵK as functions of ϕ at frequency
ωðϕÞ ¼ 2jM � 3

ffiffiffi
3

p
t2 sinðϕÞj, which is on resonance with

the smaller of the two topological band gaps for every ϕ
(shown in Fig. 7); we show these results in Figs. 11(d) and
11(e). In these figures, we examine the case when the
frequency is varied in step with the size of the Dirac points’
topological gaps at ω ¼ 2jM � 3

ffiffiffi
3

p
t2 sinðϕÞj. We see that

both the Kerr angle and ellipticity on resonance are large
and sharply peaked at the phase boundary, with maximum
values jθKj≳ 40° and jϵKj≳ 40°, respectively.
Thus, in order to fully understand and quantitatively

model optical experiments being performed on moiré
materials, it is necessary to account for wave vector
dependence of the optical conductivity. In particular, as
moiré systems become larger and as fabrication techniques
allow for smaller twist angles and longer-wavelength
superlattice potentials, the need to understand how q affects
the conductivity will become more imperative for explain-
ing the physics.

C. Magnetic properties of insulators

While we have derived our expression for the conduc-
tivity tensor in terms of response to an electric field, gauge
invariance and Maxwell’s equations imply that responses to
electric and magnetic fields are inextricably linked. In
particular, Faraday’s law Eq. (4) implies that a transverse
electric field is always accompanied by a magnetic field.
Rewriting Eq. (4) in Fourier space, we have that

Bμ;qðωÞ ¼
1

ω
ϵμνλqνEλ;qðωÞ; ð114Þ

where ϵμνλ is the totally antisymmetric Levi-Civita symbol.
Additionally, the momentum-dependent conductivity ten-
sor σμνðω;qÞ can be used to derive equilibrium suscep-
tibilities. Recall that, in the limit ω → 0 for generic,
nonzero q, our perturbing fieldsAqðωÞ and A0qðωÞ become
time independent. The electric and magnetic fields corre-
sponding to these potentials are time independent,
bounded, and oscillate in space with wave vector q.
Note that, in this limit, the static electric and magnetic
fields interacting with the material are purely dependent on
the wave vector q and, therefore, offer a promising

experimental setup to probe the physics discussed in this
manuscript. Thus, the Hamiltonian in the presence of a
static ω → 0 electromagnetic perturbation at nonzero q has
a static ground state. It follows that taking ω → 0 at fixed
nonzero q leaves the system in an equilibrium state [120].
This means that there can be no charge transport, and
so the ground state current is purely a magnetization
current [121]:

hjqi ¼ iq ×Mq; ð115Þ

where Mq is the magnetization density (i.e., magnetic
dipole moment per unit volume).
Combining Eqs. (114) and (115), we are able to use

our formalism for the nonuniform conductivity σμνðω;qÞ
to calculate magnetic properties of insulators. First, in
Sec. V C 1, we derive a formula for the magnetic suscep-
tibility tensor in insulators. Next, in Sec. V C 2, we derive
expressions for the magnetic quadrupole moment in finite
systems. Finally, in Sec. V C 3, we show that our formalism
is consistent with the Streda formula, for which we provide
a new derivation. We note that the results of this section are
completely general, relying only on gauge invariance and
the assumption that any two-particle interactions are
independent of momentum; they apply equally well to
interacting and noninteracting systems.

1. Magnetic susceptibility in insulators

We derive an expression for the magnetic suscepti-
bility starting from the defining relation for the linear
conductivity:

hjμqðωÞi ¼ σμνðω;qÞEν;qðωÞ: ð116Þ

While the derivations in this section do not make use of the
explicit form of the current operator, they highlight con-
straints on the conductivity imposed by charge conserva-
tion that are satisfied only when the conserved current
operator is used. We can rewrite Eq. (116) in the A0 ¼ 0
gauge (which we use for our derivation of the diagrammatic
response in Sec. III) as

hjμqðωÞi ¼ iωσμνðω;qÞAν;qðωÞ: ð117Þ

Now let us suppose that our perturbing field Aν;q is time
independent, which in Fourier space implies that it consists
of only an ω ¼ 0 component. Defining

RμνðqÞ ¼ lim
ω→0

iωσμνðω;qÞ; ð118Þ

we have that the time-independent current response is
given by

hjμqi ¼ RμνðqÞAν;q; ð119Þ
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where the current and vector potential are taken at ω ¼ 0.
From Eq. (115), we know that RμνðqÞAν;q must be
expressible as the cross product of q with a vector. This
allows us to write

RμνðqÞAν;q ¼ iϵμλρqλαρνðqÞAν;q ð120Þ
for some tensor αρνðqÞ. Furthermore, gauge invariance
restricts the form of αρνðqÞ; the average current can depend
on Aν;q only through the magnetic field Bν;q ¼ iϵνλρqλAν;q,
and so

αρνðqÞ ¼ iχρλðqÞϵλμνqμ: ð121Þ
Combining Eqs. (115), (119), (120), and (121), we have

iϵμνλqνMλ;q ¼ −ϵμλρqλχρσðqÞϵσδνqδAq;ν

¼ iϵμλρqλχρσðqÞBq;σ ð122Þ

and, hence,

Mλ;q ¼ χλσðqÞBq;σ: ð123Þ
Thus, we see that χλσðqÞ is the wave-vector-dependent
magnetic susceptibility. Furthermore, we see from
Eqs. (119)–(121) that the magnetic susceptibility is
related to the conductivity tensor via

lim
ω→0

iωσμνðω;qÞ ¼ −ϵμλρqλχρσðqÞϵσδνqδ: ð124Þ

From Eq. (124), we can deduce several general features
of the conductivity tensor in the ω → 0 limit. First, we see
that if the magnetic susceptibility χμν is finite, then the
conductivity tensor is singular in the ω → 0 limit. In
particular, Eq. (124) shows that the magnetic susceptibility
determines the weight of the 1=ω pole in the conductivity
tensor as ω → 0 at nonzero q. This singularity appears
only in the transverse component of the conductivity (i.e.,
the transverse current response to a transverse field).
Counterintuitively, this shows that the transverse conduc-
tivity can be divergent as ω → 0 even for an insulator. We
also deduce for any system with a finite uniform magnetic
susceptibility

χμν ¼ lim
q→0

χμνðqÞ; ð125Þ

the low-frequency conductivity satisfies

lim
ω→0

σμνðω;qÞ ∼ i
ω
ϵμλρqλχρσϵσδνqδ þOðq3Þ; ð126Þ

and so the singular part of the low-frequency transverse
conductivity depends quadratically on q and vanishes
as jqj → 0.
To support these conclusions, we use our formalism to

compute limω→0 σ
μνðω;qÞ for our model of a moiré-Chern

insulator described in Eqs. (109)–(112). We show the
results in Fig. 12. We see that, in accordance with
Eq. (124), we have that

lim
ω→0

Im½ωσxxðω; qŷÞ� ¼ lim
ω→0

Im½ωσyyðω; qx̂Þ� ∼ −q2χzz

ð127Þ
for small q. This figure demonstrates not only the q
dependence, but also the singularity that is linear in ω.
Notably, this numerical computation does not assume a
form of the magnetic susceptibility, since it just faithfully
carries out the conductivity calculation; equality of
limω→0 ωσ

xxðqŷ;ωÞ and limω→0 ωσ
yyðqx̂;ωÞ in the limit

of small q is a reflection of gauge invariance alone.
We can also invert Eq. (124) to derive an expression for

the uniform magnetic susceptibility χμν. First, we note that,
for a system that conserves energy, the uniform magnetic
susceptibility must be a symmetric tensor. To derive this,
we follow the logic of Ref. [122], which proved an
analogous result for the tensor of elastic moduli. We can
consider the change in (free) energy for a system as we
slowly move the magnetic field through a closed cycle:

ΔhHi ¼ −
I

B · dM

¼ −
I

Bμχ
μνdBν

¼ −
1

2

I
Bμðχμν − χνμÞdBν: ð128Þ

Since the total energy is a state function, its change over
every closed cycle must be zero. Thus, we deduce
that χμν ¼ χνμ.

FIG. 12. Plot showing the imaginary part of the diagonal
components of the transverse conductivity scaled by the fre-
quency, in the limit of zero frequency for the moiré-Chern
insulator model introduced in Eqs. (109)–(112). The real part
vanishes. Notice the two curves are similarly quadratic at
leading order, and higher-order curvatures separate the curves
with increasing q. We use model parameters of ϕ ¼ π=2,
M ¼ ð3 ffiffiffi

3
p

− 3=4Þt2, and t ¼ 4t2, which puts the ground state
in the topological phase at C ¼ 1 as shown in Fig. 7.
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Taking two derivatives of Eq. (124) with respect to q and
making use of the antisymmetry of the Levi-Civita symbol,
we find after making use of the symmetry of χμν that

χμν ¼ lim
ω→0

−iω
3

ϵμλρϵνσδ
∂
2σλσ

∂qρ∂qδ

����
q¼0

: ð129Þ

Equation (129) is consistent with and generalizes expres-
sions for the orbital susceptibility that appear in the
literature [67,123–125]. It allows us to compute the
magnetic susceptibility of insulators using our Kubo for-
mula Eq. (73) in terms of the conserved current operator.

2. Magnetic quadrupole moments

In this section, we derive an expression for the magnetic
quadrupole moment in the ground state of a finite system
with zero external field using our manifestly conserved
operator jq defined in Eq. (31). Using Eq. (115), we see
that evaluating the average magnetic moment involves
expanding our expression for the current operator in powers
of q; thus, we expect our conserved current operator to give
different predictions for magnetic multipole moments as
compared to the nonconserved currents in Eqs. (10) or (11).
Since we show in Sec. II that all definitions of the current
operator agree to linear order in q, we begin our analysis
with the magnetic quadrupole moment. In the interest of
generality, we here return to consider particles of charge ē.
We start by following Refs. [126–128] and take the

average of Eq. (115) to find in components

hjμqi ¼ iϵμνγqνMγq: ð130Þ

To find the higher-order moments (quadrupole, octupole,
etc.), we expand both sides of the equation in orders of the
wave vector:

hjμ0i þ hjμν1 iqν þ hjμνγ2 iqνqγ þ � � �

¼ iϵμνγqν

�
Mγ0 þMα

γ1qα þMαβ
γ2qαqβ þ � � �

	
: ð131Þ

We point out that, in the thermodynamic limit, hjμ0i ¼ 0

by Bloch’s theorem [129,130]. We now match up the
left- and right-hand sides by orders of q. The magnetic
dipole moment Mγ0 has been extensively considered in the
literature [73,127]. We focus instead first on the quad-
rupolar term hjμνα2 i ¼ iϵμνγMα

γ1. Using the antisymmetry of
the Levi-Civita symbol, we can rewrite this as

−
i
2
ϵμνΔhjμνα2 i ¼ Mα

Δ1: ð132Þ

Since

hjμνα2 i ¼ 1

2
∂qν∂qαhjμqij

q¼0
; ð133Þ

we can use our definition of the conserved current in
Eq. (31) to find

hjμνα2 i ¼ −
ē
2

X
i

Z
1

0

dλhð1 − λÞ2xνi xαi vμi ðpi;xiÞ þ λ2vμi ðpi;xiÞxνi xαi þ λð1 − λÞxνi vμi ðpi;xiÞxαi þ λð1 − λÞxαi vμi ðpi;xiÞxνi i

¼ −
ē
6

X
i



fxνi xαi ; vμi ðpi;xiÞg þ

1

2
xνi v

μ
i ðpi;xiÞxαi þ

1

2
xαi v

μ
i ðpi;xiÞxνi

�
: ð134Þ

This implies from Eq. (134) that the magnetic quadrupole
moment takes the form

Mα
Δ1 ¼ −

iē
12

ϵμνΔ
X
i



fxνi xαi ; vμi ðpi;xiÞg

þ 1

2
xνi v

μ
i ðpi;xiÞxαi þ

1

2
xαi v

μ
i ðpi;xiÞxνi

�
: ð135Þ

Given that we know our conserved current in Eq. (31)
differs from the nonconserved trapezoid [(32)] and mid-
point [(33)] at the order of q2, we expect Eq. (135) to differ
from conventional expressions for the magnetic quadrupole
moment that have appeared in the literature. Indeed, if we
insert Eq. (32) for the nonconserved midpoint current j̃
operator into Eq. (133), we find the alternative expression

hj̃μνα2 i ¼ −
ē
4

X
i

hfxνi xαi ; vμi ðpi;xiÞgi; ð136Þ

which also gives a quadrupole moment of

M̃α
Δ1 ¼ −

iē
8
ϵμνΔ

X
i

D
fxνi xαi ; vμi ðpi;xiÞg

E
: ð137Þ

Finally, if we use instead the midpoint current jmid;q of
Eq. (33), we find the alternative expression

D
jμναmid;2

E
¼ −

ē
8

X
i

hfxνi xαi ; vμi ðpi;xiÞgi

þ hxνi vμi ðpi;xiÞxαi þ xαi v
μ
i ðpi;xiÞxνi i; ð138Þ

yielding a quadrupole moment of
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Mα
mid;Δ1 ¼ −

iē
16

ϵμνΔ
X
i

D
fxνi xαi ; vμi ðpi;xiÞg

þxνi v
μ
i ðpi;xiÞxαi þ xαi v

μ
i ðpi;xiÞxνi

E
: ð139Þ

By comparing Eqs. (135), (137), and (139), we see that
the conserved current predicts a different value for the
ground state magnetic quadrupole moment compared to
the nonconserved currents conventionally used in the
literature. This suggests that care must be exercised when
computing the magnetic quadrupole moment in effective
low-energy models, for which the nonconserved currents
may not correspond to physically relevant observables.
Furthermore, similar discrepancies will appear in the
octupole magnetic moment, as well as all higher moments.

3. Gauge invariance and the Streda formula

Continuing with our study of response to time-
independent fields, we now specialize to two dimensions
and show how the Streda formula [39,40] arises as a
consequence of gauge invariance and Eq. (115). While this
result is somewhat tangential to our main argument, it
highlights the importance of defining the q-dependent
conductivity using the conserved current operator. To
begin, recall that although we derived the Kubo formula
for the conductivity in the A0 ¼ 0 gauge, gauge invariance
requires that the conductivity tensor also governs the
response to gradients of A0. In particular, let us consider
response to a longitudinal electric field EqðωÞ ¼
−iqA0;qðωÞ. We have from Eq. (116) that

hjμqðωÞi ¼ −iσμνðω;qÞqνA0;qðωÞ: ð140Þ

We now take the ω → 0 limit at fixed nonzero q. Recall
from our discussion preceding Eq. (115) that, in this
limit, the perturbing electric field is static, bounded, and
spatially periodic. Thus, the system remains in a perturbed
equilibrium state, and the only currents that flow are
magnetization currents. Hence, we have

iϵμνλqνMλ;q ¼ −ilim
ω→0

σμνðq;ωÞqνA0;q: ð141Þ

We can expand Eq. (141) to lowest order in q to obtain

ϵμνλMλ;0 ¼ −σμνð0; 0ÞA0; ð142Þ

where we have introduced

σμνð0; 0Þ ¼ lim
q→0

lim
ω→0

σμλðω;qÞ qλqνjqj2 : ð143Þ

Finally, we note that a time- and space-independent scalar
potential A0 is indistinguishable from (the negative) of a
uniform variation of the chemical potential −δμ. Taking
derivatives on both sides then yields the generalized Streda
relation

σμνð0; 0Þ ¼ ϵμνλ
∂Mλ

∂μ
: ð144Þ

Finally, for an insulator, we know that the longitudinal
component σμνðω;qÞqν must be analytic and vanishing as q
and ω both go to zero [45]. This allows us to interchange
the order of limits in Eq. (143) and identify the suscep-
tibility σμνð0; 0Þ with the dc Hall conductivity. We see then
that, for an insulator, the only nonvanishing component of
the response to a longitudinal electric field at zero fre-
quency is the Hall conductivity, and the components of the
Hall conductivity are equal to the derivatives of the
magnetization with respect to chemical potential. We note
that this derivation makes clear the importance of consid-
ering an insulating system: It is only for an insulator that we
can guarantee the regularity of σμνðω;qÞqν.

VI. SECOND-ORDER RESPONSE
IN MOIRÉ MATERIALS

Impressive experimental advances in recent years
have spurred a renewed interest in nonlinear electromag-
netic responses in (topological) materials. Theoretical
and experimental investigations into the nonlinear
optical response of electrons in crystals has yielded
new insights into band topology and geometry that can
be probed using spatially uniform (q → 0) optical fields
[13–16,29–31,34,36,38,64,65,76,131–133]. So far, rela-
tively little attention has been paid to the nonlinear response
to finite q electromagnetic fields. As we show in Sec. V B,
in moiré materials even the wave vector dependence of
optical fields may play an important part in determining the
electromagnetic response.
Recently, Ref. [43] examined the wave-vector-dependent

longitudinal nonlinear conductivity at low order in wave
vector. Here, however, we show how our diagrammatic
perturbation theory of Sec. III can be used in conjunction
with our definition of the conserved current in Eq. (53) to
compute longitudinal and transverse nonlinear conductiv-
ities for arbitrary wave vector. We focus primarily on the
second-order response. In Sec. VI A, we write down and
evaluate the Feynman diagrams for the second-order non-
linear conductivity σμγνðω1;ω2;q1;q2Þ that determines the
second-order response via

hjμqðωÞi ¼
Z

dω1dω2dq1dq2δðω − ω1 − ω2Þδðq − q1 − q2Þσμγνðω1;ω2;q1;q2ÞEγ;q1ðω1ÞEν;q2
ðω2Þ: ð145Þ
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This requires using all of the diagrammatic rules of Sec. III
B and involves a careful treatment of the q-dependent
diamagnetic current vertices from Sec. II C. Next, in
Sec. VI B, we apply our results to compute the second-
order response of our toy model of a moiré-Chern insulator
from Eqs. (109)–(112). Motivated by experimental con-
siderations, we focus on spatially rectified (q1 ¼ −q2)
second-harmonic generation (ω1 ¼ ω2). This component
of the nonlinear conductivity can be probed using transient
grating spectroscopy techniques [134–138]. In such mea-
surements, a pair of coherent lasers are made to interfere at
the sample to generate a sinusoidal electric field, whose
wave vector can be tuned by changing the wavelength of
the beams and the angle between the beams. The nonlinear
response of the system to such a finite wave vector
perturbation is then determined using a probe pulse. By
using light in the visible to extreme ultraviolet range,
grating wave vectors on the order of 0.001–0.1 Å−1 can be
achieved. For moiré systems with lattice constants
a ∼ 100 Å, this means that the nonlinear response can
be measured over a range of wave vectors spanning
multiple moiré Brillouin zones; even for conventional
materials with lattice constants on the order of 1 Å, the
transient grating wave vector can span a large portion of the
first Brillouin zone. In both cases, a formalism such as ours
is necessary to compute the nonlinear response of the
manifestly conserved current at large q.

A. Second-order response

We may now turn to higher-order conductivities like the
second-order response. We proceed in a similar fashion as
in the linear response case, by using the rules and
conventions set out in Secs. II C and III B.
To compute the second-order conductivity, we begin by

using the diagrammatic rules in Sec. III B to write down the
four relevant Feynman diagrams, shown in Fig. 13. Note
that, in all cases, q1 and q2 flow “into” the fermion loop,
while q12 flows “out” of the fermion loop. We see that
diagrams Figs. 13(b) and 13(c) involve the two-photon
diamagnetic current vertex, while diagram Fig. 13(a)
involves the three-photon vertex. Using rule 5 from the

Feynman diagram rules in Sec. III B, we see that, since
Figs. 13(b) and 13(c) are invariant under the exchange of
ðγ; q1Þ with ðν; q2Þ, these diagrams enter into the expres-
sion for the conductivity with a multiplicity factor of 1=2.
To this end, we examine a representative example of the

input and output vertices in Fig. 13(c) in applying rules 5
and 6 before writing the full mathematical expression from
the diagrams. First, the input vertex has a fermion line
going into the solid dot vertex, so that k0 ¼ kþ q1. The
photon line associated with this line carries a value of −q1

as well, so this input vertex goes as

Z
dλ1hun1kþq1 j½∂kγHk�k→kþq1−ð1−λ1Þq1 jun2ki: ð146Þ

Similarly, we can apply Feynman diagram rules 5 and 6
to the output vertex of the same diagram. Since the fermion
line coming into the vertex has momentum k, then k0 ¼ k.
We also see there are two vector potential lines emanating
from the open dot vertex: One is going “in” with momen-
tum −q2, and the other is going “out” with q12. So the
output velocity vertex goes as

Z
dλ02dλ2hun2kj½∂kν∂kμHk�k→k−ð1−λ0

2
Þq2þð1−λ2Þq12 jun1kþq1i:

ð147Þ

Similarly applying the Feynman rules to each diagram in
Fig. 13 and summing the results, we can write the second-
order conductivity in terms of Matsubara frequencies as

σμγνðiω1; iω2;q1;q2Þ ¼
−e3

ðiω1Þðiω2Þ
Z

dk

�
1

2
Gn1ðkÞvμνγð3Þ;n1n1ðk;−q1;−q2;q12Þ

þ 1

2
Gn1ðkþ q12Þvγνð2Þ;n1n2ðkþ q12;−q1;−q2ÞGn2ðkÞvμð1Þ;n2n1ðk;q12Þ

þGn1ðkþ q1Þvγð1Þ;n1n2ðkþ q1;−q1ÞGn2ðkÞvνμð2Þ;n2n1ðk;−q2;q12Þ
þGn1ðkþ q12Þvγð1Þ;n1n2ðkþ q12;−q1ÞGn2ðkþ q2Þvνð1Þ;n2n3ðkþ q2;−q2ÞGn3ðkÞvμð1Þ;n3n1ðk;q12Þ

þ ðγ; q1Þ ↔ ðν; q2Þ
�
: ð148Þ

(a)

(c) (d)

(b)

FIG. 13. Second-order response diagrams.
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Each of these diagrams must be symmetrized under the
exchange of ðγ;q1Þ with ðν;q2Þ, since, as we see from
Eq. (145), these are merely labels for components of the
incident electromagnetic field. We indicate this explicit
symmetrization in the last line in Eq. (148). Feynman rule 5
in Sec. III B ensures that this explicit symmetrization does

not overcount diagrams, by including multiplicity factors
like the 1

2
in the second line in Eq. (148) from Fig. 13(b).

In this format, we can carry out the Matsubara frequency
integrals and analytically continue back to real frequencies
(using the prescription in Refs. [29,65,80] that iω1 → ωþ

1 ,
iω2 → ωþ

2 , and ωþ
12 ≡ ω1 þ ω2 þ 2iη) in order to find

σμγνðω1;ω2;q1;q2Þ ¼
−e3

ωþ
1 ω

þ
2

Z
dkdλ1dλ2dλ3

�
1

2
nFðϵn1kÞhun1kj½∂kμ∂kν∂kγHk�k→k−ð1−λ1Þq1−ð1−λ2Þq2þð1−λ3Þq12 jun1ki

þ 1

2

nFðϵn2kÞ − nFðϵn1kþq12Þ
ωþ
12 þ ϵn2k − ϵn1kþq12

hun1kþq12 j½∂kγ∂kνHk�k→kþq12−ð1−λ1Þq1−ð1−λ2Þq2 jun2kihun2kj½∂kμHk�k→kþð1−λ3Þq12 jun1kþq12i

þ nFðϵn2kÞ − nFðϵn1kþq1Þ
ωþ
1 þ ϵn2k − ϵn1kþq1

hun1kþq1 j½∂kγHk�k→kþq1−ð1−λ1Þq1 jun2kihun2kj½∂kν∂kμHk�k→k−ð1−λ2Þq2þð1−λ3Þq12
jun1kþq1i

þ
�

nFðϵn1kþq12
Þ

ð−ωþ
1 þ ϵn1kþq12

− ϵn2kþq2Þð−ωþ
12 þ ϵn1kþq12 − ϵn3kÞ

−
nFðϵn2kþq2Þ

ð−ωþ
1 þ ϵn1kþq12 − ϵn2kþq2Þð−ωþ

2 þ ϵn2kþq2 − ϵn3kÞ

þ nFðϵn3kÞ
ð−ωþ

2 þ ϵn2kþq2 − ϵn3kÞð−ωþ
12 þ ϵn1kþq12 − ϵn3kÞ

	

× hun1kþq12 j½∂kγHk�k→kþq12−ð1−λ1Þq1 jun2kþq2
ihun2kþq2 j½∂kνHk�k→kþq2−ð1−λ2Þq2 jun3ki

× hun3kj½∂kμHk�k→kþð1−λ3Þq12 jun1kþq12i

þ ðγ; q1Þ ↔ ðν; q2Þ
�
: ð149Þ

This analytic expression in Eq. (149) also allows us to
comment on the regularity of the conductivity at low
frequencies. In the q1;q2 → 0 limit, it was shown in
Refs. [29,43,80] that the diamagnetic vertices in
Figs. 13(a)–13(c) serve a crucial role in regulating
the low-frequency conductivity; in particular, proper
definitions of the diamagnetic current are necessary to
ensure that the second-order conductivity for a band
insulator satisfies

lim
ω1→0

lim
ω2→0

σμγνðω1;ω2; 0; 0Þ ¼ 0: ð150Þ

Using our formalism, we can now examine the behavior
of the static (ω1, ω2 → 0) second-order conductivity as a
function of q1 and q2. Since we defined our diamagnetic
current vertices to satisfy the generalized Ward identity
in Eq. (64), we are guaranteed that for a band insulator
the longitudinal components of the static second-order
conductivity go to zero as the wave vectors tend to zero.
On the other hand, as we show for the linear conduc-
tivity in Sec. V C 1, the transverse components of the
second-order conductivity can have singularities as we
take ω → 0 at fixed q1 and q2. These singularities
correspond to second-order magnetic and magnetoelec-
tric responses and are not unphysical.

B. Second-order response in a moiré-Chern insulator:
Harmonic generation in frequency
and self-focusing in wave vector

Using Eq. (149), we can numerically compute the
second-order conductivity as a function of frequency and
wave vector for any noninteracting electron system.
Typically, calculations of the second-order conductivity
have focused on sum frequency generation (where the
measured current oscillates as the sum of applied
electric field frequencies) or difference frequency gener-
ation responses (where the measured current oscillates as
the difference of applied electric field frequencies)
[29,33,80,139–141]. When we allow for spatially inhomo-
geneous electric fields, however, the response at second
order becomes more complicated. In particular, when the
applied electric field varies sinusoidally in space with wave
vector q and in time with frequency ω, we can consider sum
frequency generation (measured current oscillating at
frequency 2ω) and “difference wave vector generation”
in wave vector (measured current is spatially uniform with
wave vector q − q ¼ 0). Experimentally, this could be
measured in a transient grating experiment by looking at
the second-harmonic generation signal.
To see an example of this in practice, we return to our

model of a moiré-Chern insulator from Eqs. (109)–(112).
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We can consider the “sum-in-frequency, difference-in-
wave-vector” response. Since previous works [43] have
presented a formalism for computing the longitudinal
components of the response, we primarily focus on the
transverse response σyyyðω;ω; qx̂;−qx̂Þ that quantifies the
spatially uniform current jyð2ωÞ that flows in the y
direction in response to a transverse y-polarized electric
field. Such a response could be probed using in-plane
polarized terahertz radiation at oblique incidence. Referring
to Fig. 8, we see that the wave vector of incident light is
parallel to the vector ΔK ¼ ð4π=3 ffiffiffi

3
p

aÞ separating the K
andK0 points in the moiré Brillouin zone. In Figs. 14(a) and
14(b), we plot the real and imaginary parts of
σyyyðω;ω; qx̂;−qx̂Þ, respectively, as a function of fre-
quency for five different values of q between q ¼ 0 and
q ¼ jΔKj. We see that for all wave vectors the real part of
the response initially grows as a function of frequency,
peaks at ω ∼ 0.8t2 ¼ 0.8 THz—such that 2ω is approx-
imately equal to the topological gap—and then decreases at
larger frequency. Intriguingly, as a function of wave vector,
we see that for small values of q the magnitude of the
current at ω ∼ 0.8t2 initially grows as q increases, before
again decreasing: The peak value of σyyyðω;ω; qx̂;−qx̂Þ is
similar for q ¼ 0 and q ¼ jΔKj.
To conclude, we can also study magnetoelectric response

by examining the low-frequency behavior of
σyyyðω;ω; qx̂;−qx̂Þ. In line with our discussion in
Sec. V C 1, we expect that, as ω → 0 for fixed q, there
will be a 1=ω singularity in σyyyðω;ω; qx̂;−qx̂Þ whose

weight disperses at least quadratically at small q; the
weight of this pole quantifies the magnetization current
that flows in response to the external magnetic and electric
fields [with the magnetic field determined by Eq. (4)].
At the same time, we expect the longitudinal response
ωσyyyðω;ω; qŷ;−qŷÞ to be regular as ω → 0 for any fixed
q. We can see both properties in Fig. 14(c). We show the
quantities limω→0 ωσ

yyyðω;ω; qx̂;−qx̂Þ (in blue) and
limω→0 ωσ

yyyðω;ω; qŷ;−qŷÞ (in red) computed for our
moiré-Chern insulator model. Thus, our formalism for
computing transverse nonlinear electromagnetic responses
correctly captures the low-energy behavior dictated by
Maxwell’s equations and gauge invariance discussed in
Sec. V C 1 for the linear response.

VII. CONCLUSION

In this work, we have developed a formalism for
computing spatially nonuniform (wave-vector-dependent)
linear and nonlinear electromagnetic response functions
for condensed matter systems. In Sec. II, we introduced
a definition of the current operator that can be defined
using only the velocity and position operators, independent
of detailed knowledge of the microscopic form of the
Hamiltonian. Furthermore, unlike the approximations
Eqs. (11) and (10), our current in Eq. (31) is manifestly
conserved independent of the microscopic details of the
Hamiltonian. It is important to emphasize that, while
Eqs. (11), (10), and (31) coincide for nonrelativistic
Hamiltonians of the form of Eq. (8), only our conserved

0.52

(a) (b)

(c)

FIG. 14. Plots showing the real (a) and imaginary (b) parts of the second-order transverse conductivities as functions of the frequency,
σyyyðω; qx;ω;−qx; 2ω; 0Þ. The chosen direction for the conductivities’ indices are yyy and the wave vector is varied in qxx̂. (c) shows the
imaginary parts of the transverse and longitudinal wave vectors of limω→0 ωσ

yyyðω;q;ω;−q; 2ω; 0Þ. These figures used model
parameters of ϕ ¼ π=2, M ¼ ð3 ffiffiffi

3
p

− 3=4Þt2, and t ¼ 4t2, which puts the topological phase at C ¼ 1 as shown in Fig. 7.

MCKAY, MAHMOOD, and BRADLYN PHYS. REV. X 14, 011058 (2024)

011058-30



current in Eq. (31) remains conserved when Eq. (8) is
approximated by truncating the Hilbert space. For non-
relativistic systems, we can thus view Eq. (31) as a con-
serving approximation to the total current applicable to
effective models such as Wannier-based tight-binding
models. This is crucial for calculations involving approxi-
mate models of nonsuperconducting systems with truncated
Hilbert spaces, since physically relevant approximations
must conserve charge if the total Hamiltonian also conserves
charge. Additionally, unlike Eqs. (11) and (10), our con-
served current (31) also remains conserved when relativistic
corrections to the kinetic energy are taken into account.
Next, we showed how Ward identities could be iter-

atively applied to determine the diamagnetic current oper-
ator order by order in the electromagnetic vector potential.
Using our conserved current as a starting point, we
continued in Sec. III to develop a diagrammatic perturba-
tion theory for computing spatially nonuniform linear and
nonlinear conductivities, focusing on the case of non-
interacting electrons for simplicity. Focusing first on the
linear conductivity, we showed how our fully charge-
conserving approach implies a generalized f-sum rule
relating the density-density response function to the dia-
magnetic conductivity as a function of wave vector.
We also applied our formalism to compute the wave-

vector-dependent Hall conductivity in a toy model of Weyl
semimetal. To connect our formalism to experimentally
relevant systems, in Sec. V B we introduced a model for a
2D Chern insulator in a moiré superlattice, such that the
wavelength of terahertz radiation can be a non-negligible
fraction of the moiré lattice scale in certain geometries. We
used this model to compute the Kerr angle and ellipticity as
a function of frequency for oblique incidence, showing that
the effects of spatial nonuniformity are potentially meas-
urable in the next generation of experiments. We also
showed how the low-frequency transverse conductivity
yields insights into the magnetic susceptibility, magnetic
quadrupole moment, and Streda formula for insulating
systems.
Finally, we applied our formalism to study second-order

response to spatially nonuniform, time-varying electric fields
in two-dimensional systems. We calculated the experimen-
tally relevant spatially uniform second-harmonic generation
current that flows in response to a transverse, spatially varying
ac electric field for amodel of a moiré-Chern insulator, which
points toward future experimental work on transient grating
nonlinear spectroscopy in moiré materials.
Our work opens up several avenues for future theoretical

and experimental studies. First, while our explicit calcu-
lations in Secs. Vand VI were carried out for noninteracting
systems, our Feynman diagram formalism in Sec. III can
naturally accommodate a treatment of interacting systems
by including additional interaction vertices. Our manifestly
charge-conserving approach to transverse linear and non-
linear conductivity would thus allow a consistent quanti-
tative treatment of magnetoelectric response in models for

candidate axionic charge density wave materials such as
ðTaSe4Þ2I [142,143]. Along the same lines, our formalism
can be systematically applied to systems with disorder. In
the lowest-order approximation, the effect of disorder on
the nonlinear conductivities may be phenomenologically
accounted for by replacing ωþ → ωþ i=τ, where τ is the
quasiparticle lifetime [29]. Our formalism, however, can
treat disorder scattering more formally by including ver-
tices for scattering of electrons by the disorder potential,
and standard diagrammatic techniques [78] for averaging
over disorder may be applied. In particular, we expect the
(nonlinear) conductivities to depend on both the current
vertices defined in Sec. II as well as (nonlinear general-
izations of) the diffuson propagator obtained by averaging
over disorder. Additionally, our formalism implies addi-
tional generalized sum rule relations between nonlinear
density response functions and diamagnetic current verti-
ces, generalizing our results of Sec. IV B and making
contact with Ref. [3].
As we showed that commonly used approximations for

the current operator do not conserve charge within the
context of effective models, our work also prompts a
reexamination of wave-vector-dependent quantities com-
puted using those approximations, such as the magnetic
quadrupole moment in models of higher-order topological
insulators [126,128]. Furthermore, in calculations of (non-
linear) x-ray scattering processes where both core and
valence electronic states must be treated on equal footing,
our response formalism based on the conserved current of
Eq. (31) can be used to ensure Ward identities are obeyed
even when relativistic corrections to the kinetic energy
cannot be ignored [144]. Our work also motivates exper-
imental studies of nonlinear optics in moiré systems, where
the effect of spatial inhomogeneity of optical fields may be
non-negligible provided samples are large enough.
Finally, recent advances in superlattice and gate engineer-

ing open the door to experimentally studying (nonlinear)
response to spatially inhomogeneous electromagnetic field
outside of optics. In particular, gate-tunable electronic
superlattice potentials [145–147] could be modulated in
time to create time-dependent electromagnetic fields. While
recent theoretical [148] and experimental [149,150]
progress along these lines has focused on tunable super-
lattices in untwisted bilayer graphene systems, applications
of these techniques to twisted systemswould allow the study
of response to time-dependent electromagnetic fields with
wave vectors comparable to the moiré lattice spacing. Thus,
we emphasize that our results will be directly applicable to
the next generation of transport experiments in gate-tunable
superlattice devices.
Let us conclude by reemphasizing the importance of

the conserved current from Eq. (31). Unlike the approx-
imations of Eqs. (10) and (11) to the minimally coupled
current in nonrelativistic systems commonly used in the
literature, Eq. (31) is manifestly conserved for any model
Hamiltonian. Since most Hamiltonians of interest in
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condensed matter systems arise as low-energy approxima-
tions to (i.e., truncations of the Hilbert space of) compli-
cated many-body semirelativistic systems, electromagnetic
response functions computed within these models will be
faithful approximations to what is experimentally measured
only if the current used in the calculation is conserved
within the Hilbert space of the model. All of Eqs. (10), (11),
and (31) accomplish this task to linear order in the wave
vector, ensuring that they yield the same approximations in
(paramagnetic) conductivities to quadratic order in wave
vector. However, only Eq. (31) is generally conserved at
quadratic order in wave vector and beyond, and only
Eq. (31) allows for the determination of diamagnetic
current vertices via Ward identities, which are essential
for properly regularizing the low-frequency conductivity.
Thus, we expect that Eq. (31) is a necessary starting point
for obtaining consistent approximations to response func-
tions beyond quadratic order in wave vector.
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APPENDIX A: PROOF OF THE
KARPLUS-SCHWINGER RELATION

In this appendix, we review the proof of the Karplus-
Schwinger relation [Eq. (29)], which was first presented in
Ref. [71]. We consider two operators A and B. Let us define
a function

FðτÞ ¼ eτðAþδtBÞ: ðA1Þ

We develop an expansion for Fð1Þ ¼ expðAþ δtBÞ as a
power series in δt. To do so, first note that

F0ðτÞ ¼ ðAþ δtBÞFðτÞ: ðA2Þ

Defining

GðτÞ≡ e−τAFðτÞ; ðA3Þ

we find that

G0ðτÞ ¼ −AGðτÞ þ e−τAF0ðτÞ
¼ −AGðτÞ þ e−τAðAþ δtBÞFðτÞ
¼ δte−τABeτAGðτÞ: ðA4Þ

Note that, from Eqs. (A1) and (A3), we also have that
Gð0Þ ¼ 1. Introducing

CðτÞ ¼ e−τABeτA ðA5Þ

and recasting Eq. (A4) as an integral equation, we have

GðτÞ ¼ 1þ
Z

τ

0

dλδtCðλÞGðλÞ: ðA6Þ

This integral equation can be solved iteratively by means of
a Dyson series. We find that

GðτÞ ¼ Pe
R

τ

0
δtCðλÞdλ

¼ 1þ δt
Z

τ

0

CðλÞdλ

þ ðδtÞ2
Z

τ

0

dλ
Z

λ

0

dλ0CðλÞCðλ0Þ þO½ðδtÞ3�; ðA7Þ

where P represents the path ordering (in λ) of the
exponential.
Setting τ ¼ 1, multiplying by eA, and using the definition

of Eq. (A5) for CðτÞ, we have

Fð1Þ ¼ eAGð1Þ ¼ eAþδtB

¼ eA þ δt
Z

1

0

eACðλÞdλ

þ ðδtÞ2
Z

1

0

dλ
Z

λ

0

dλ0eACðλÞCðλ0Þ þO½ðδtÞ3�

¼ eA þ δt
Z

1

0

eð1−λÞABeλAdλþO½ðδtÞ2�; ðA8Þ

which is equal to Eq. (29).

APPENDIX B: EXAMPLE: LONGITUDINAL
AND TRANSVERSE CURRENT OPERATOR

FOR SEMIRELATIVISTIC FREE ELECTRONS

As an example and verification of our expression for the
current operator derived from Eq. (31), we consider the
semirelativistic free-electron Hamiltonian

HSR ¼
X
i

jpij2
2m

þ jpij4
8m3c2

: ðB1Þ

By minimally coupling HSR to a background vector
potential, we can derive from Eq. (22) that the current
operator is given by

MCKAY, MAHMOOD, and BRADLYN PHYS. REV. X 14, 011058 (2024)

011058-32



jmin;q ¼ −ē
Z

dre−iq·r
δHSRðAÞ
δAðrÞ

¼ ē
X
i

1

2m
ðpie−iq·xi þ e−iq·xipiÞ þ

1

8m3c2
ðpijpij2e−iq·xi þ pie−iq·xi jpij2 þ jpij2e−iq·xipi þ e−iq·xipijpij2Þ

¼ ē
X
i

e−iq·xi

�
1

2m
ð2pi − qÞ þ 1

8m3c2
ðjpij2pi þ jpij2ðpi − qÞ þ jpi − qj2pi þ jpi − qj2ðpi − qÞÞ

�
: ðB2Þ

We can alternatively use our Eq. (31) to obtain the
current jq. The single-particle velocity operator for HSR is

vi ¼ i½HSR;xi� ¼
1

m
pi þ

1

2m3c2
jpij2pi: ðB3Þ

Inserting Eq. (B3) into Eq. (31), we find that our formalism
for the current operator yields

jq ¼ ē
X
i

Z
1

0

dλe−ið1−λÞq·xi
�
1

m
pi þ

1

2m3c2
jpij2pi

	
e−iλq·xi

¼ ē
X
i

Z
1

0

dλe−iq·xi
�
1

m
ðpi − λqÞ

þ 1

2m3c2
jpi − λqj2ðpi − λqÞ

�
: ðB4Þ

Finally, using Eqs. (32) and (33), we have that

j̃q ¼ ē
2

X
i

e−iq·xiðviðpi;xiÞ þ viðpi − q;xiÞÞ

¼
X
i

e−iq·xi
�
1

2m
ð2pi − qÞ

þ 1

4m3c2
ðpijpij2 þ ðpi − qÞjpi − qj2Þ

�
ðB5Þ

and

jmid;q ¼ ē
X
i

e−iq·xiviðviðpi − q=2;xiÞ

¼
X
i

e−iq·xi
�
1

2m
ð2pi − qÞ

þ 1

16m3c2
ð2pi − qÞj2pi − qj2

�
: ðB6Þ

Let us examine the longitudinal and transverse compo-
nents of the current using the three possible definitions:
Eqs. (B2), (B4), and (B5). For the longitudinal current,
we find

q ·jq;min¼q ·jq ¼ ē
X
i

e−iq·xi
�
1

2m
ð2pi ·q− jqj2Þ

þ 1

8m3c2
ð2pi ·q− jqj2Þð2jpij2−2pi ·qþjqj2Þ

�
;

ðB7Þ

q · j̃q ¼ ē
X
i

e−iq·xi
�
1

2m
ð2pi · q − jqj2Þ

þ 1

4m3c2
ð2pi · q − jqj2Þðjpij2 − pi · qþ jqj2Þ

�
;

ðB8Þ

q ·jmid;q¼ ē
X
i

e−iq·xi
�
1

2m
ð2pi ·q− jqj2Þ

þ 1

16m3c2
ð2pi ·q− jqj2Þð4jpij2−4pi ·qþjqj2Þ

�
:

ðB9Þ
Equation (B7) shows that the longitudinal component of
the current jq, as defined in Eq. (31), agrees with the
longitudinal component of the current jq;min defined
through minimal coupling via Eq. (21); both jq and
jq;min satisfy the continuity equation [Eq. (16)], as men-
tioned in the main text. The longitudinal components of j̃q
and jmid;q from Eqs. (B8) and (B9) are distinct, implying
that the (nonconserved) j̃q and jmid;q as defined in Eqs. (32)
and (33) do not satisfy the continuity equation. Subtracting
Eq. (B7) from Eqs. (B8) and (B9), we find

q ·
�
j̃q − jq;min

�
¼ ē

8m3c4
X
i

e−iq·xi jqj2ð2pi · q − jqj2Þ

≠ 0 ðB10Þ
and

q · ðjmid;q − jq;minÞ
¼ −

ē
16m3c2

X
i

e−iq·xi jqj2ð2pi · q − jqj2Þ ≠ 0: ðB11Þ

This explicitly shows that j̃q and jmid;q, as defined in
Eqs. (32) and (33), are not conserved for the semirelativistic
Hamiltonian from Eq. (B1).

CHARGE CONSERVATION BEYOND UNIFORMITY: SPATIALLY … PHYS. REV. X 14, 011058 (2024)

011058-33



Let us now examine the transverse components of the
currents Eqs. (B2), (B4), and (B5). Taking the cross product
with q, we find that the minimally coupled current satisfies

q × jq;min ¼ ē
X
i

e−iq·xiq

× pi

�
1

m
þ 1

4m3c2
ðjpij2 þ jpi − qj2Þ

�
: ðB12Þ

On the other hand, for our λ integral definition of the
current from Eqs. (31) and (B4), we find

q× jq ¼ ē
X
i

e−iq·xiq× pi

�
1

m
þ 1

2m3c2

Z
1

0

dλjpi − λqj2
�

¼ q× jq;min þ
1

3m3c2
X
i

e−iq·xi jqj2ðpi × qÞ: ðB13Þ

This means that, although the current jq is conserved, its
transverse components differ from that of the minimally
coupled current for the semirelativistic Hamiltonian in
Eq. (B1), implying a different definition for the magneti-
zation current.
On the other hand, the transverse current for the midpoint

definition of the current Eq. (33) is

q × jmid;q ¼ ē
X
i

e−iq·xiq ×

�
1

2m
ð2pi − qÞ

þ 1

16m3c2
ð2pi − qÞj2pi − qj2

�

¼
X
i

e−iq·xiq × pi

�
1

m
þ 1

4m3c2
ðjpij2

þ jpi − qj2 − 1

2
jqj2Þ

�

¼ q × jq;min −
1

8m3c2
X
i

e−iq·xi jqj2q × pi:

ðB14Þ

Curiously, if we examine the transverse component of
the nonconserved trapezoid current, j̃q, from Eq. (32), we
find that for the semirelativistic system

q × j̃q ¼ ē
X
i

e−iq·xiq ×

�
1

2m
ð2pi − qÞ þ 1

4m3c2
ðpijpij2

þ ðpi − qÞjpi − qj2Þ
�

¼
X
i

e−iq·xiq × pi

�
1

m
þ 1

4m3c2
ðjpij2 þ jpi − qj2Þ

�

¼ q × jq;min: ðB15Þ

Thus, for the semirelativistic Hamiltonian, the transverse
component of the nonconserved current j̃q is equal to the
transverse component of the minimally coupled current.
This means that for the semirelativistic Hamiltonian,
Eq. (B1), we have

jμq;min ¼
qμqν

jqj2 jνq þ
�
δμν −

qμqν

jqj2
	
j̃νq: ðB16Þ

In other words, for the semirelativistic Hamiltonian in
Eq. (B1), the minimally coupled current in Eq. (22) can
be written entirely in terms of the velocity operator via
Eqs. (31) and (32). We could, if we desired a model-
dependent formulation of the current, apply Eq. (B16) to
the semirelativistic Hamiltonian which is applicable to
heavy elements:

HSOC ¼
X
i

jpij2
2m

þ jpij4
8m3c2

þ VðxiÞ þ
1

8m2c2

þ 1

4m2c2
σ⃗ · ðpi ×∇VðxiÞÞ þOð1=c3Þ; ðB17Þ

where σ⃗ is a vector of Pauli matrices acting on electron
spin; σ⃗ · ðpi ×∇VðxiÞÞ represents the spin-orbit coupling
energy.
If we can assume that our Hamiltonians under study have

the form of HSOC in Eq. (B17), then the current defined
in Eq. (B16) entirely in terms of the velocity operator can
be used to compute both longitudinal and transverse
responses. If we cannot assume that Eq. (B17) holds for
our system of interest, then we cannot determine the
transverse component of the minimally coupled current
entirely in terms of the velocity operator without detailed
knowledge of the full microscopic Hamiltonian. In such a
situation, the only guiding principle is that we define a
conserved current, such as Eq. (31). In addition, we note
that the nonrelativistic approximation to the Dirac equa-
tion that yields Eq. (B17) in the absence of an external
electromagnetic field does not give a minimally coupled
Hamiltonian in the presence of a nonzero vector potential
[151]. Furthermore, Eq. (B16) fails when higher-order
relativistic corrections are taken into account. To see
this, we can consider a toy model with the next highest
power in momentum according to the semirelativistic
kinetic term:

H0 ¼ 1

6

X
i

jpij6: ðB18Þ

Minimally coupling H0 to a vector potential via Eq. (22)
gives the minimally coupled current
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jq;min ¼
ē
6

X
i

½e−iq·xipijpij4 þ pie−iq·xi jpij4 þ jpij2e−iq·xipijpij2 þ jpij2pie−iq·xi jpij2 þ jpij4e−iq·xipi þ e−iq·xipijpij4�

¼ ē
6

X
i

e−iq·xi ½pijpij4 þ ðpi − qÞjpij4 þ jpi − qj2pijpij2 þ jpi − qj2ðpi − qÞjpij2 þ jpi − qj4pi þ jpi − qj4ðpi − qÞ�:

ðB19Þ

Similarly, applying Eqs. (32) to the Hamiltonian H0 in
Eq. (B18) results in the nonconserved current operator

j̃q ¼ ē
2

X
i

e−iq·xi ½jpij4pi þ jpi − qj4ðpi − qÞ�: ðB20Þ

Decomposing Eqs. (B19) and (B20) into longitudinal
and transverse components, we find

q · j̃q ≠ q · jq;min; ðB21Þ

such that Eq. (B20) is not conserved. Importantly, using
Eq. (B20), we also find that

q × j̃q ¼ q × jq;min þ
1

6

X
i

e−iq·xiðq × piÞðjqj2 − 2q · piÞ2

≠ 0: ðB22Þ

Thus, for a general Hamiltonian, neither the longitudinal
nor the transverse components of the conventional
current j̃q correctly reproduce the minimally coupled
current jq;min.

APPENDIX C: CURRENT OPERATOR
IN THE TIGHT-BINDING BASIS

In many cases, we are interested in operators and
dynamics projected into a (tight-binding) basis of
Loewdin orbitals ϕαðr −R − rαÞ. Let us introduce the
Bloch-Loewdin basis functions

χαkðrÞ ¼
1ffiffiffiffi
N

p
X
R

eik·ðRÞϕαðr −R − rαÞ: ðC1Þ

We can equally well use jχαki as a basis for expanding
the current operators. Taking matrix elements of the
conserved current from Eq. (31) in the basis of
Eq. (C1), we find

jq ¼ ē
X
kαβ

Z
1

0

dλhχαkje−ið1−λÞq·xve−iλq·xjχβkþqic†αkcβkþq

¼
X

kk0k00αβγη

Z
1

0

dλhχαkje−ið1−λÞq·xjχγk0 i

× hχγk0 jvjχηk00 ihχηk00 je−iλq·xjχβkþqic†αkcβkþq: ðC2Þ

Introducing the cell-periodic basis functions

χ̃αkðrÞ ¼
ffiffiffiffi
N

p
e−ik·rχαkðrÞ ðC3Þ

and using Eq. (48), we observe that Eq. (C2) reduces to

jq ¼ ē
X
kαβγη

Z
1

0

dλhχ̃αkjχ̃γkþð1−λÞqi

× hχγkþð1−λÞqjvjχηkþð1−λÞqi
× hχ̃ηkþð1−λÞqjχ̃βkþqic†αkcβkþq: ðC4Þ

We can simplify Eq. (C4) by rewriting
hχγkþð1−λÞqjvjχηkþð1−λÞqi in terms of the Bloch
Hamiltonian. First, note that

hχαkjvjχβki ¼ hχ̃αkj∂kHkjχ̃βki
¼ ∂khχ̃αkjHkjχ̃βki − h∂kχ̃αkjHkjχ̃βki
− hχ̃αkjHkj∂kχ̃βki

¼ ∂kH
αβ
k − i½Ak; Hk�αβ; ðC5Þ

where we have introduced

Hαβ
k ¼ hχ̃αkjHkjχ̃βki; ðC6Þ

Aαβ
k ¼ ihχ̃αkj∂kχ̃βki; ðC7Þ

½Ak; Hk� ¼
X
γ

Aαγ
k Hγβ

k −Hαγ
k Aγβ

k : ðC8Þ

In the tight-binding limit where

Z
drϕαðr −R − rαÞrϕβðr −R0 − rβÞ ¼ rαδαβδRR0 ; ðC9Þ

we can simplify Eq. (C5) further as
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∂kH
αβ
k − i½Ak; Hk�αβ → ∂kHαβ − irαH

αβ
k þ iHαβ

k rβ

¼ eik·rα∂k
�
e−ik·rαHαβ

k eik·rβ
�
e−ik·rβ

¼ ½VðkÞð∂khkÞV†ðkÞ�αβ; ðC10Þ

where

VαβðkÞ ¼ eik·rαδαβ ðC11Þ
is the tight-binding embedding matrix and

hαβk ¼
X
γη

V†
αγðkÞHγη

k VηβðkÞ ðC12Þ

is the matrix Bloch Hamiltonian in the “nonperiodic” gauge
with hkþG ¼ V†ðGÞhkVðGÞ for any reciprocal lattice
vector G.

Furthermore, in the tight-binding limit, we also have

hχ̃αkjχ̃βk0 i ¼
X
RR0

Z
cell

dreik·ðr−RÞe−ik0·ðr−R0Þ

× ϕ�
αðr −R − rαÞϕβðr −R0 − rβÞ

→ δαβ

Z
dreiðk−k0Þ·rϕ�

αðr − rαÞϕβðr − rβÞ

→ Vαβðk − k0Þ: ðC13Þ
Notice that, in going from the second to third line in
Eq. (C13), we use an even stricter form of the tight-binding
limit than in Eq. (C9): We require not just the first moment
but all moments of the position operator to be diagonal in
the tight-binding basis. Nevertheless, in this strict tight-
binding limit we can combine Eqs. (C4), (C10), and (C13)
to find

jq → ē
X
kαβ

Z
1

0

dλ½Vððλ − 1ÞqÞVðkþ ð1 − λÞqÞ∂khkþð1−λÞqV†ðkþ ð1 − λÞqÞVð−λqÞ�
αβ
c†αkcβkþq

¼ ē
X
kαβ

Z
1

0

dλ½VðkÞ∂khkþð1−λÞqV†ðkþ qÞ�c†αkcβkþq

¼ ē
X
kαβ

Z
1

0

dλð∂khkþð1−λÞqÞαβc̄†αkc̄βkþq; ðC14Þ

where we have introduced

c̄αk ¼ V†
αβðkÞcβk ðC15Þ

as the annihilation operator for the nonperiodic basis states,

χ̄αkðrÞ ¼
1ffiffiffiffi
N

p
X
R

eik·ðRþrαÞϕαðr −R − rαÞ

¼ VαβðkÞχβkðrÞ: ðC16Þ
Equation (C14) allows us to compute matrix elements of

the conserved current jq in the tight-binding basis entirely
in terms of the tight-binding Bloch Hamiltonian hαβðkÞ.
Note that Eq. (C14) could have been anticipated from
Eqs. (C4) and (C5) by noting that the nonperiodic basis
states in Eq. (C16) have vanishing Berry connection in the
strict tight-binding limit.
Following a completely analogous set of steps, we find

for the nonconserved trapezoid current in Eq. (32) that

j̃q ¼ ē
2

X
kαβ

�
∂kh

αβ
kþq þ ∂kh

αβ
k

�
c̄†αkc̄βkþq; ðC17Þ

and similarly for the nonconserved midpoint current in
Eq. (33):

jmid;q ¼ ē
X
kαβ

∂kh
αβ
kþq=2c̄

†
αkc̄βkþq: ðC18Þ

Equations (C14), (C17), and (C18) serve as our starting
point for computing linear and nonlinear response coef-
ficients from tight-binding models in the main text.

APPENDIX D: GENERALIZED INTEGRATION
FORMULATION OF AN OPERATOR USING
THE KARPLUS-SCHWINGER RELATION

In this appendix, we apply the Karplus-Schwinger
relation from Eq. (60) to the specific case of the density
operator ρq in order to derive an iterative formula for the
diamagnetic current vertices.
First, consider the commutator between a general oper-

ator A and the exponential e−iq·x that appears in the Fourier
component ρq. By introducing an auxiliary parameter τ, we
can write

i½A; e−iq·x� ¼ d
dτ

ðeiAτe−iq·xe−iAτÞ
����
τ→0

¼ d
dτ

ee
iAτð−iq·xÞe−iAτ

����
τ→0

¼ d
dτ

e−iq·xðτÞ
����
τ→0

; ðD1Þ

where we have defined

xðτÞ≡ eiAτxe−iAτ: ðD2Þ
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From here, we may follow our derivation in Appendix A of
the Karplus-Schwinger relation to find

i½A; e−iq·x� ¼ lim
δτ→0

e−iq·xðτþδτÞ − e−iq·xðτÞ

δτ

����
τ→0

≈ lim
δτ→0

e−iq·ðxðτÞþδτi½A;x�Þ − e−iq·xðτÞ

δτ

����
τ→0

¼
Z

1

0

dλe−ið1−λÞq·xðq · ½A;x�Þe−iλq·x: ðD3Þ

Equation (D3) allows us to rewrite commutators with the
density operator that appear in the generalized Ward
identity of Eq. (64) in terms of iterated integrals over
auxiliary variables λ.
We can also use Eq. (D3) in conjunction with the tight-

binding expression in Appendix C to express the general-
ized diamagnetic current operators in Sec. II C in the tight-
binding basis. In keeping with notation from Appendix C,
we let an overline indicate the operator in the orbital basis.
We have

j̄μν1…νN
q;−q1;…;−qN ¼

Z
1

0

dλ
Z

1

0

dλ1…
Z

1

0

dλN

× ½∂kμ∂kν1…∂kνN hk�k→kþð1−λÞq−ð1−λ1Þq1���−ð1−λNÞqN c̄
†
nkc̄mkþq−q1���−qN : ðD4Þ

Furthermore, in analogy with Eq. (66), we can define the tight-binding velocity vertex

v̄νNðNÞðk;q1;…;qNÞ≡ ½∂kμ∂kν1…∂kνN−1hk�k→kþð1−λ1Þq1���þð1−λNÞqN : ðD5Þ

Note that we can express any of the diagrams and
subsequent conductivities in Sec. III B in either the orbital
or tight-binding bases.

APPENDIX E: THE KERR EFFECT DERIVATION

In this appendix, we present a derivation of the Kerr
effect for systems with an anisotropic dielectric tensor. In
Appendix E 1, we start by analyzing electromagnetic
scattering from a 3D interface. Then, in Appendix E 2,
we apply these results to the experimentally relevant
situation of scattering from an encapsulated 2D sample
considered in Sec. V B.

1. Kerr effect derivation in 3D materials

Consider an interface between vacuum and a 3D semi-
infinite slab of material, with the interface normal to the z
axis. We take the material dielectric tensor ϵ to have the
form [152]

ϵ ¼

2
64

ϵxx ϵxy 0

−ϵxy ϵyy 0

0 0 ϵzz

3
75: ðE1Þ

We also make the approximation μ ∼ 1, which is tanta-
mount to including all magnetic response in the transverse
dielectric tensor [153–155].
We now consider an incident light beam with electric

field of the form

E�I ¼ E0RðθiÞ ·

2
64
1

0

0

3
75e−iωtþiki½y sinðθiÞþz cosðθiÞ�: ðE2Þ

Here, RðθiÞ denotes a rotation matrix about the x axis by
angle θi [while this has no effect on x-polarized light such
as in Eq. (E2), we retain it for ease of comparison with later
steps in the derivation]. Notice that this electric field is
linearly polarized and propagating in the direction of θi,
measured from the normal of the plane of the material. The
wave vector ki and frequency ω are related later, and E0 is
the real and positive amplitude.
We next consider the reflected field [155,156]:

ER ¼ E0

2
64
rx
ry
rz

3
75e−iωtþikR½y sinðθRÞþz cosðθRÞ�: ðE3Þ

Before considering the form of the transmitted field, we
consider the differential equations it must satisfy. Consider
Maxwell’s equations in a material [154,157,158]:

∇ ·DT ¼ ρf; ðE4Þ

∇ ×HT ¼ Jf þ
∂DT

∂t
; ðE5Þ

∇ ·BT ¼ 0; ðE6Þ

∇ ×ET ¼ −
∂BT

∂t
: ðE7Þ
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Here, with the assumption μ ∼ 1, then HT ¼ BT . Also,
DT ¼ ϵET , and we take ρf ¼ Jf ¼ 0. We can now com-
bine Eqs. (E5) and (E7) to obtain a wave equation:

∇ð∇ ·ETÞ −∇2ET ¼ −
∂Jf
∂t

−
∂
2ϵET

∂t2
: ðE8Þ

The fields that satisfy Eq. (E8) are of the form
tlEle−iωþikl·r, where El is the lth eigenvector of ϵ and
jklj is proportional to the corresponding eigenvalue. Given
the form of the dielectric tensor in Eq. (E1), we can solve
the eigenvalue equation ϵE ¼ n2E [159], to obtain the
eigenvalues

n2p ¼ 1

2

�
ϵxx þ ϵyy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵxx − ϵyyÞ2 − 4ϵ2xy

q 	
;

n2m ¼ 1

2

�
ϵxx þ ϵyy −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵxx − ϵyyÞ2 − 4ϵ2xy

q 	
;

n23 ¼ ϵzz ðE9Þ
with normalized (in units of E0) eigenvectors Ep, Em, and
E3, respectively [160,161]. The meaning of n2l is the
refractive index (squared) in the material.
Next, let θTl be the angle of propagation of each

eigenmode of the transmitted wave, measured with respect
to the normal. Satisfying the wave equation implies jklj2 ¼
n2lω

2=c2. Note that, when we assign an angle, this also
changes our eigenvalue equation to ½RðθTlÞϵR−1ðθTlÞ�×
RðθTlÞEl¼n2lRðθTlÞEl, but the eigenvalues remain the
same even if the eigenvectors are now angle dependent [155].
Given the required form of jklj2 to be a solution to Eq. (E8),
we can now write down the generalized form of the solution
of the transmitted electric field [155,158,160]:

ET ¼ tpEpe−iωtþikT1½y sinðθT1Þþz cosðθT1Þ�

þ tmEme−iωtþikT2½y sinðθT2Þþz cosðθT2Þ�

þ t3E3e−iωtþikT3½y sinðθT3Þþz cosðθT3Þ�; ðE10Þ

where tl and El are angle dependent.
To now solve this electromagnetic scattering problem,

we can first derive Snell’s law for each of the transmitted
modes. Snell’s law states that the argument in the expo-
nential of all the electric fields must be equal at the
boundary. Therefore, we now have a set of four equations
that results in

ki sinðθiÞ ¼ kR sinðθRÞ; ðE11Þ

ki sinðθiÞ ¼ kT1 sinðθT1Þ; ðE12Þ

ki sinðθiÞ ¼ kT2 sinðθT2Þ; ðE13Þ

ki sinðθiÞ ¼ kT3 sinðθT3Þ: ðE14Þ

It should be noted by the nature of reflection that kR ¼ −ki
and θR ¼ −θi.
We may now consider the remaining boundary condi-

tions derived by requiring that Eqs. (E4)–(E7) are satisfied
by components of the incident, reflected, and transmitted
waves at the boundary. The Snell’s law equations ensure the
position-dependent arguments in the exponential are the
same, guaranteeing the reflection and transmission coef-
ficients are position (and time) independent. Following
Ref. [157], the boundary equations are [156]

½ϵvacuum · ðE�i þERÞ −DT � · n ¼ 0; ðE15Þ

½∇ × ðE�i þ ERÞ −∇ × ET � · n ¼ 0; ðE16Þ

½E�i þER −ET � × n ¼ 0; ðE17Þ

½∇ × ðE�i þERÞ −∇ ×ET � × n ¼ 0; ðE18Þ

where n ¼ ½0; 0; 1�, the normal to the 2D material plane.
We also observe, as a good check, that ∇ ·ER ¼ 0 and
∇ ·ET ¼ 0 after resolving the coefficients through the
boundary conditions. Solving the transmitted coefficients
in this basis results in t3 ¼ 0.
To solve for the Kerr angles, we first rotate our local

coordinate system to the frame of the reflected wave,
RðθRÞER. Then we redefine the coefficients as rp ¼ ðrx þ
iryÞ=2 and rm ¼ ðry − iryÞ=2, which describes the reflec-
tion coefficients for the right-hand and left-hand circular
polarizations. Each of these coefficients is, in general,
complex so we may break up each according to complex
polar coordinates, that is, rp ¼ jrpjeiαp and rm ¼ jrmjeiαm .
Kerr rotation results in a phase shift between right- and left-
hand circularly polarized components of the reflected wave.
Furthermore, the reflected wave can have an amplitude
difference between right- and left-hand circularly polarized
components. This allows us to define [22,152,154,161]

rp
rm

¼ jrpj
jrmj

eiðαp−αmÞ ≡ jrpj
jrmj

ei½2ðθKþiϵKÞ�; ðE19Þ

where θK is the Kerr rotation angle and ϵK is the ellipticity,

tanðϵKÞ ¼
jrpj − jrmj
jrpj þ jrmj

: ðE20Þ

Our derivation expresses the Kerr angle and ellipticity in
terms of components of the dielectric tensor. This can be
related to the frequency and wave-vector-dependent con-
ductivity using [152,154]

ϵ ¼ I þ 4πi
ω

σ; ðE21Þ

where I is the 3 × 3 identity matrix.
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2. Kerr effect derivation in 2D materials
with a substrate

In this section, we extend our analysis of Kerr effect to
2D materials. Most of the derivation remains the same, but
there are a few subtle changes. In this setup, there is a
vacuum, followed by a 2D thin film, and followed by a
substrate which has the permittivity ϵR. We take the ẑ axis to
be normal to our 2D film, in the direction of the vacuum.
In this setup, the conductivity of the 2D materials now

enters into Maxwell’s equations as a boundary condition at
the interface. Therefore, the propagation speed of the
transmitted wave is not influenced by the film, only by
the substrate in which it propagates. That is, the eigenvalue
equation for the transmitted wave must satisfy n2RI3ET;2D ¼
ϵRI3ET;2D [152,159]. Thus, we can write the transmitted
wave as

ET;2D ¼ RðθTÞ · ðt1e1 þ t2e2 þ t3e3Þ
× e−iωtþi½RðθTÞ·ð0;0; ffiffiffiffi

ϵR
p

kiÞ�·r; ðE22Þ

where e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, and e3 ¼ ð0; 0; 1Þ are
the eigenmodes of ϵRI3. The form of the incident and
reflected waves remain the same, respectively:

E�I;2D ¼ E0ffiffiffi
2

p RðθiÞ ·

2
64
1

0

0

3
75e−iωtþi½RðθiÞ·ð0;0;kiÞ�·r; ðE23Þ

ER;2D ¼ Rð−θiÞ ·

2
64
rx
ry
rz

3
75e−iωtþi½Rð−θiÞ·ð0;0;−kiÞ�·r: ðE24Þ

The Snell’s law found by comparing the exponentials is
also similar to before:

ki sinðθiÞ ¼ −ki sinðθRÞ; ðE25Þ

sinðθiÞ ¼
ffiffiffiffiffi
ϵR

p
sinðθTÞ: ðE26Þ

Since we have a 2D material with nonzero conductivity
tensor, a surface current is generated at the interface. As
such, the boundary conditions get modified to include this
surface current by way of the surface conductivity,
js ¼ σ2D ·ET;2D, which enters into Maxwell’s equations
as a free current on the surface. Since ∇ · ER;2D ¼ 0 and
∇ ·ET;2D ¼ 0 force t3 ¼ rz ¼ 0, we arrive at four equa-
tions arising from two boundary conditions [153,162]:

½E�i;2D þER;2D − ET � × n ¼ 0; ðE27Þ
c
iω

½∇ × ðE�i;2D þ ER;2DÞ −∇ × ET;2D� × n

¼ σ2D ·ET;2D: ðE28Þ

Since σ2D is a property of the 2D sample, it takes the form

σ2D ¼

2
64
σ2Dxx σ2Dxy 0

σ2Dyx σ2Dyy 0

0 0 0

3
75; ðE29Þ

where the bulk conductivity is related to the surface
conductivity by σ2D ¼ dσ3D [152]. The Kerr rotation and
ellipticity can be extracted using Eqs. (E19) and (E20),
respectively.

APPENDIX F: CONSISTENCY WITH PLASMON
DISPERSION

In this appendix, we examine the implications of
Eqs. (31) and (73) for the dispersion of collective plasmon
modes. Since the plasmon dispersion depends on the q
dependence of the density-density calculation, it serves
as a consistency check on Eqs. (31) and the sum rule
from Eq. (97).
To begin, we treat the Coulomb interaction between

electrons in the random phase approximation (RPA). That
is, in writing the dielectric function, only the first bubble
diagram is considered, such that

ϵðω;qÞ ¼ 1 − vcðqÞΠðω;qÞ: ðF1Þ

Here, vcðqÞ is the Fourier transformed Coulomb interaction
[in 2D, vcðqÞ ¼ 2πe2=κq, and vcðqÞ ¼ 4πe2=κq2 in 3D]
[163,164]. The function Πðω;qÞ is the polarizability or
the electric susceptibility for noninteracting electrons. The
electric susceptibility is related to the conductivity through
the continuity equation. First, consider a longitudinal
electric field Eq ¼ −iqA0ðω;qÞ, defined in terms of a
scalar potential A0. The current that flows in response to
this field is jðω;qÞ ¼ −iσðω;qÞ · qA0ðω;qÞ. Additionally,
from the continuity equation, −e∂tnðt;xÞ þ∇ · jðt; rÞ ¼ 0.
Expressing the density in terms of the response function Π,
we find [165]

iωe2Πðω;qÞ þ q · σðω;qÞ · q ¼ 0: ðF2Þ

Now Eq. (F2) may be substituted into Eq. (F1) to obtain
the relation

ϵðω;qÞ ¼ 1þ i
ωe2

vcðqÞðq · σðω;qÞ · qÞ: ðF3Þ

Note that, since our conserved current in Eq. (31) satisfies
the continuity equation, our formalism ensures that Eq. (F3)
is obeyed. To solve for the plasmon dispersion, we set
Eq. (F3) equal to zero and solve for ωðqÞ, the plasma
frequency as a function of q.
Since our conserved current Eq. (31) obeys the con-

tinuity equation, we can use the conductivity Eq. (73) to
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determine the RPA plasmon dispersion in generic models.
By contrast, since the midpoint and trapezoid definitions of
the current [Eqs. (10) and (11)] do not obey the continuity
equation at large q, they do not give reliable estimates of
the plasmon dispersion.
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