
Elastomers Fail from the Edge

Nan Xue ,1,2,3 Rong Long ,4 Eric R. Dufresne ,1,2,3,* and Robert W. Style 1,†

1Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
2Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

3Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York 14853, USA
4Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA

(Received 21 July 2023; revised 4 December 2023; accepted 25 January 2024; published 22 March 2024)

The performance of soft devices is limited by the fracture resistance of elastomers. Thus, understanding
how fracture resistance changes with material and sample geometry is an important challenge. A key
observation is that thicker elastomers can be significantly tougher than thinner ones. We show that this
surprising toughness enhancement in thick samples emerges from the 3D geometry of the fracture process.
In contrast to the classical picture of a 2D crack, failure is driven by the growth of two separate “edge”
cracks that nucleate early on at a sample’s sides. As loading is increased, these cracks propagate in towards
the sample midplane. When they merge, samples reach their ultimate failure strength. In thicker samples,
edge cracks need to propagate farther before meeting, resulting in increased sample toughness. We
demonstrate that edge-crack growth is controlled by the elastomer’s strain-stiffening properties. Our results
have direct implications for how to effectively toughen elastomers by controlling their geometry and large-
strain mechanical properties.
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I. INTRODUCTION

Soft elastomers can undergo large and reversible defor-
mations [1,2], making them useful in many fields ranging
from soft robotics [3,4] to stretchable electronics [5,6]. In
each of these applications, a key consideration is how the
elastomers fail via fracture [7,8]. In stiff materials, such
as glass and metals, established theories allow one to
predict failure of both brittle and ductile materials in
arbitrary geometries, based on the results of a few standard
mechanical tests [8–10]. However, the same is not true of
fracture in highly stretchable materials [11–26]. Here, the
challenge originates from the large deformation near the tip
of a crack, which leads to nonlinear stress and strain fields
as well as complex failure and dissipation processes near
the crack tip [1,2,27]. Our current understanding of soft
fracture is based on a classical picture of essentially 2D
crack growth. This picture is augmented by the emerging
consensus that the crack-tip fracture process is controlled
by two material length scales: the size of the crack-tip

failure zone where microscopic damage occurs and the size
of the nonlinear zone where nonlinear elasticity dominates
the deformation [1,2,28–30]. The relative size of these
compared to each other, and in comparison to sample
dimensions (e.g., thickness and crack length), is believed to
dictate fracture behavior.
In this work, we reveal that this 2D picture does not

capture the behavior of strain-stiffening elastomers.
Specifically, we show that the surprising toughness enhance-
ment of such elastomers arises from the three-dimensional
structure of the fracture front. In particular, the fracture
process involves the interaction of three independent cracks:
one inner crack, and two edge cracks that grow inward from
the faces of the sample. Ultimately, the sample toughness is
determined by how much stretch can be applied before the
edge cracks meet and merge at the sample’s midplane.
In thicker samples, edge cracks meet at a larger stretch than
in thinner samples. Thus, the former are significantly
tougher. Further, we show that thickness-dependent behavior
is governed by a dimensionless parameter reflecting the
strain-stiffening characteristic of an elastomer.

II. THICKER ELASTOMERS ARE TOUGHER
THAN THINNER ONES

In a standard fracture test, we rely on results being
thickness independent to justify the measurement of
material properties [1,23,31–33]. However, the fracture
process in soft elastomers can be surprisingly thickness
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dependent [21,24,34,35] (Fig. 1). We perform single-edge-
notch tension tests on samples of a commercial, highly
stretchable silicone elastomer, Ecoflex 00-30 (Smooth-On)
(see Sec. VIII for details). These samples have identical
dimensions, other than thickness b0, which we vary
between 0.5 mm and 7.5 mm: a typical range for materials
used in soft devices. Figure 1 shows the ultimate tensile
strength (i.e., maximum engineering stress) σc and the
corresponding stretch λc for samples tested to failure
(typical σ–λ curves are shown in Fig. 6, and the corre-
sponding values of fracture energy are given in Fig. 10).
Interestingly, thicker samples are more than twice as tough
as thinner samples. This trend is opposite to that found in
metals and glass, where thinner samples are tougher [8,36].
Alongside changes in σc with b0, we also see changes in
crack morphology (Fig. 1, Supplemental Movies 1 and 2)
[21]. Thinner samples exhibit classical Mode-I fracture
while thicker samples have extremely blunted crack tips.
This blunting has been attributed to the phenomenon of
“sideways cracking” [21], where the crack path curves to
travel parallel to the direction of applied tension.

III. DYNAMIC IMAGING OF FRACTURE
SURFACE GROWTH

To understand why our results are so thickness dependent,
we image the fracture surface across the sample thickness as
the sample is loaded. This process is facilitated by the use of
a T-peel geometry [1,24,33,37,38], as shown in Fig. 2(a),
which allows us to use a large range of thicknesses (widths),
b0, ranging from 1 mm to 25 mm. Samples are formed in a

mold containing a thin, metal sheet, which separates the two
legs of the samples. The sheet is removed after curing,
eliminating the need to cut an initial crack in the sample
(see Sec. VIII). Samples are clamped at a distance of
15.9� 0.3 mm from the initial crack front on each of the
legs. Then, we initiate the test at a grip-to-grip separation of
L0 ¼ 30.5� 0.1 mm. We increase the grip-to-grip stretch λ
at a rate of λ̇ ¼ 0.007 s−1, which is slow enough that
viscoelastic rate effects will be negligible (see rheology in
Ref. [39], and the appendixes).
To directly visualize the creation of a new fracture

surface, we coat the sample with a dense layer of graphite
powder so that the new crack surface can be easily
identified by a lack of graphite. Upon stretching, this area
lies essentially flat in the y-z plane, so we always record
images along the x direction [the coordinate axis is defined
in Fig. 2(a)]. During loading, the newly generated interface
is bright and clearly visible, as seen in the example in
Fig. 2(b) (Supplemental Movie 3). Importantly, this area is
almost always symmetric about the midline of the sample
[dashed line in Fig. 2(b)]. Thus, for compactness, we only
show half of our images when presenting the results.
Our images show that cracks evolve in a highly non-

uniform manner across a sample’s thickness. For example,
Figs. 2(c)–2(e) show how a new surface appears for a
sample with b0 ¼ 25 mm. The crack first opens uniformly
across the width of the sample (see image at λ ¼ 2.4).
However, as the stretch increases (λ ¼ 3), the new surface
is generated much faster at the outer edges of the crack.
Later (λ ¼ 3.6), the crack growth accelerates near the
midplane of the sample. Perhaps surprisingly, crack growth
is almost never up-down symmetric [e.g., Fig. 2(e)]. This
asymmetry reflects the presence of “sideways” cracking
mentioned above [21], which deflects the crack front either
toward the þy or −y directions. Here, we always orient
images so that cracks appear to deflect upward.
Cracks open uniformly near the midplane while

having an edge structure that expands with a fixed shape.
Figure 2(f) shows the shape of the bottom boundary of the
developing crack at different stretches [colored curves
in Figs. 2(c)–2(e)]. We superpose these shapes by plotting
them relative to the lowest point on the curves.
Interestingly, the shapes collapse onto a single curve near
the edge. Outside of this boundary layer, the profile levels
off, adopting a uniform opening at the center. With a further
stretch, the boundary layer propagates deeper into the
sample (see also Fig. 2 in Supplemental Material [40]).
We borrow the term “boundary layer” from fluid mechan-
ics, where flow profiles are uniform away from a surface
but are strongly affected by viscosity in a thin layer
adjacent to the surface [41,42]. In a similar fashion, the
current boundary layer suggests a transition of the gov-
erning physics from the edge to the middle of the crack.
The boundary-layer structure is not only independent of

stretch but also of sample thickness. Figures 3(a)–3(e)

FIG. 1. Thicker elastomers are effectively tougher. We show the
critical stretch λc (blue circles) and maximum engineering stress σc
(red squares) of samples measured in single-edge-notch tension
tests, as a function of the sample thickness b0. Stress σ is calculated
by dividing the applied force by the initial cross-sectional area of
unnotched samples, while λ is calculated by dividing the current
sample length by its initial length. Test samples are 30.5 mm ×
25 mm × b0 (length × width × thickness). The initial crack length
is 10 mm, cut with a razor blade.
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(taken from Supplemental Movies 3–7) show crack shapes
in samples of different thicknesses, at the same edge
opening, Ledge ¼ 8 mm. For all but the thinnest samples,
the boundary-layer structures have the same shape near
their tips, as demonstrated by plotting all the lower-
boundary curves together [Fig. 3(f)]: a V shape with a
well-defined root angle. For thinner samples, the boun-
dary layers from the opposite edges of the crack overlap,
and the variation in the crack opening from the edge to the
midline becomes less pronounced. The independence of
the boundary-layer shape from the sample thickness and
applied stretch suggests that it is governed by a material
property. We test this hypothesis by visualizing the failure
of a different material (Dragon Skin 30, Smooth-On; see

Fig. 3 in Supplemental Material [40] and Supplemental
Movie 8). There, we find a similar, stretch-independent
boundary-layer structure but with a different profile.

IV. THREE-DIMENSIONAL STRUCTURE
OF THE FRACTURE SURFACE

The above boundary layer is actually the consequence
of a structure that extends across the edge of the
newly formed fracture surface, creating a diamond shape
[e.g., Figs. 2(d) and 2(e), and Fig. 4 in Supplemental
Material [40] ]. The bottom vertex of the diamond coin-
cides with the V-shaped tip of the boundary layer. The
width of the diamonds increases as the boundary layers

FIG. 2. Imaging new fracture surface in T-peel tests. (a) Schematic of the T-peel tests. (b) Typical image of new fracture surface (the
dark area is graphite powder, and the bright area is the new fracture surface). All tests are symmetric about their midline (white, dashed
line) to a good approximation. Here, b0 ¼ 25 mm. (c)–(e) Images of the left half of the same crack at increasing stretch: λ ¼ 2.4, 3, and
3.6. The solid, colored curves denote the bottom boundaries of the new opening area. (f) Curves of the bottom boundaries of the crack
opening area at different stretches collapsing onto a single curve near the sample edge, reminiscent of a boundary layer in fluid
mechanics.

FIG. 3. Structure of boundary layers with different sample thicknesses. (a)–(e) Crack opening areas for samples with a range of
different thicknesses b0 at the same edge opening length: Ledge ¼ 8 mm. The continuous curves denote the bottom boundaries of the
crack opening area, highlighting the boundary-layer shape. Dashed lines denote the vertical midlines of the samples. (f) Bottom-
boundary shapes from panels (a)–(d) collapsing onto a single curve near the sample edge, supporting the idea of a well-defined
boundary-layer structure that arises during fracture.
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grow in toward the sample midplane. To characterize
the diamond shapes, we measure the obtuse, internal angle
2θ nearest to the midplane [see Figs. 2(e) and 3 in
Supplemental Material [40] ]. Similar to the boundary-
layer structure, θ is independent of the sample thickness
and applied stretch but dependent on the material. For
Ecoflex, we find that θ ¼ 86� 1°, while for Dragon Skin,
θ ¼ 79� 2° (details can be found in Sec. VIII).
The diamond structures are actually distinct edge cracks.

We show this by first growing the fracture surface under
an increasing stretch until λ ¼ 3 and then reapplying a
graphite powder coating after unloading the sample. Upon
further stretching, a new, bright area shows us the exact
position of the crack tip [Fig. 4(a) and Supplemental
Movie 9]. In the classical view of the fracture, the new
opening area would be a single horizontal line. Instead,
intriguingly, the crack tip is highly curved and discontinu-
ous [Fig. 4(a)]. Across the majority of the thickness of the
sample, there is a single opening strip, which curves
upward as it approaches the sample sides before abruptly
stopping when reaching the diamond-shaped feature. A
new opening area then appears inside the diamond struc-
ture, cutting almost straight across its waist. This obser-
vation suggests that there are actually three separate crack
fronts across the sample thickness: one inner crack and two
edge cracks. The inner crack generates a new surface area
across the middle of the sample [red-tinted area in Fig. 4(a)]
while the edge cracks generate the diamond structures at
the sample edges (blue-tinted area).
We visualize the transition from the inner crack to the

edge crack by imaging the stretched surface with an optical
profilometer. Figure 4(b) (bottom) shows the 3D sample
surface at the inner end of the edge crack [dashed box in
Fig. 4(a)]. The blue area in this figure is the area created by
the edge crack. A height profile along the white line is
shown at the top of the figure. Both the inner-crack and

edge-crack opening areas predominantly lie flat in the
y-z plane. However, the edge crack cuts deeper into the
sample, as evidenced by the clear step in the surface profile
at the interface between the two crack opening areas.
Altogether, our observations suggest an overall 3D

crack-tip morphology in Fig. 4(c), with corresponding
2D projections in Figs. 4(d) and 4(e). Neglecting the
“sideways” crack propagation in the y direction, the inner
crack propagates predominantly in the x direction while the
edge crack propagates in the x and z directions. The tip
of the diamond corresponds to the tip of the edge crack
[Fig. 4(d)], with a total opening angle 2θ.

V. EDGE CRACKS PROPAGATE FIRST

Inner and edge cracks grow at different applied stretches.
This finding is clearly seen by comparing the edge and
midplane opening lengths, Ledge and Lmid, at different
levels of stretch in different samples [e.g., Fig. 5(a)]. Just
after uniform initiation across the whole sample [i.e., at the
point shown in Fig. 2(c)], Ledge and Lmid maintain similar
small values [yellow regions of Figs. 5(b)–5(c). Then, the
edge cracks start to propagate rapidly while the inner crack
stays stationary (white region). After a lag, the inner crack
starts to propagate (green region). This lag is larger in
thicker samples. To quantify this case, we measured the
sample stretch at the onset of crack propagation, λon,
determined by extrapolating the rapid linear growth regime
back to zero length [see Fig. 5(c)]. The onsets of edge- and
inner-crack propagation are shown for a range of sample
thicknesses in Fig. 5(d).
Interestingly, the onset of edge-crack propagation

appears to be independent of thickness while inner cracks
require larger stretches to propagate in thicker samples.
Edge cracks start to propagate at a constant stretch of
about 2, independent of b0. This finding suggests that

FIG. 4. Fracture surface generated by three distinct cracks: an inner crack and two edge cracks. (a) Recoating of a fracture surface with
graphite powder after it has started to grow, which allows us to see the position of the crack tip (bright area). This surface is discontinuous,
showing that there are multiple cracks that grow into the sample simultaneously. Inner cracks create the red-shaded opening area near the
midplane of the sample. Edge cracks create the diamond-shaped, blue-shaded area on the edges of the sample. (b) Bottom: 3D profile of the
crack surface around the position where the edge-crack tip meets the inner crack. Top: linescan of the surface topology along the white solid
line in the bottom image (passing through the edge-crack tip). Dashed white lines indicate the boundary between the cracks, and θ is half
the edge-crack tip-opening angle. (c) Three-dimensional schematic of the crack geometry. White curves show the crack tips while arrows
indicate local directions of crack propagation. (d),(e) The y-z and x-z projections of the schematic in (c).
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edge cracks are strictly associated with the surface. By
contrast, the onset of inner-crack propagation increases
linearly with thickness, which suggests that the onset of
inner-crack propagation is affected by the inward propa-
gation of edge cracks.

VI. EDGE CRACKS MERGE AT THE POINT
OF SAMPLE FAILURE

The samples fail when the edge cracks meet, at a
stretch λmeet. At this point, under displacement-controlled
loading, the two edge cracks “zip” together. The length
of the boundary between the two edge cracks, Lzip [e.g.,
Fig. 5(a)], is plotted as a function of stretch in Fig. 5(b). The
zipping of edge cracks accelerates the opening of the new
fracture surface, indicated by the kinks in the curves of
Lmid and Ledge at this point. Crucially, the force applied to
the sample either abruptly plateaus or drops off when edge
cracks meet [Figs. 5(e) and 13]. Indeed, when we plot
the stretch at which the maximum force is attained, λc,
against λmeet [Fig. 5(f)], we find that these are highly
correlated. Thus, edge-crack meeting defines the sample’s
load-bearing capacity.
These results suggest an empirical criterion for failure,

based on the meeting of edge cracks. Given the consistent
diamond shape of the edge cracks, the distance they move
inward is proportional to the edge-crack opening. Ignoring
corrections due to the Poisson effect, edge cracks reach the

midplane when Ledge ≈ b0 tan θ, about 10b0 for Ecoflex.
Conveniently, data in Figs. 5(b)–5(d) show that the edge-
crack opening is linear with the stretch above the onset
of propagation. Thus, Ledge=L0 ≈ cðλ − λedgeon Þ, where c is a
constant of Oð1Þ that depends weakly on the material and
thickness (Fig. 14), and L0 is the initial grip-to-grip
distance of the sample. Combining these results, we find
that λc ≈ λedgeon þ b0 tan θ=ðcL0Þ. This failure criterion
increases linearly with thickness, consistent with our
observations in single-edge-notch tension (Fig. 1) and
T-peel tests [Figs. 5(d) and 14].
The form of this failure criterion highlights the impor-

tance of the ratio b0=L0 in determining sample toughness.
When b0=L0 ≳ ðtan θÞ−1 (thick samples), edge cracks need
to propagate significantly before meeting in the midplane.
This process leads to higher critical stretches and enhanced
fracture resistance. By contrast, when b0=L0 ≪ ðtan θÞ−1
(thin samples), edge cracks meet as soon as they form, and
failure occurs at λedgeon , independent of thickness. In other
words, we should obtain thickness-independent fracture
results—a lack of geometric toughening—when the ratio
of sample thickness to initial crack length is smaller
than ðtan θÞ−1. Extending this argument, we would expect
effective toughening of the sample whenever any of
the ratios given by b0 divided by the various sample
dimensions are comparable to, or larger than, ðtan θÞ−1.
This prediction is consistent with our data [Fig. 10(b)]:

FIG. 5. Quantitative characterization of crack growth. (a) Evolution of inner (red) and edge (blue) cracks for a samplewith b0 ¼ 2.5 mm.
(b),(c) Crack opening lengths—Ledge, Lmid, and Lzip (continuous, dashed, and dash-dotted lines, respectively)—for thin (b0 ¼ 2.5 mm)
and thick (b0 ¼ 25 mm, Fig. 2) samples. Time points shown in panel (a) correspond to the points marked a1–a4 in panel (b). Different
colored regions indicate the four stages of crack growth. Yellow: A thin crack opens uniformly across the sample. White: Edge cracks
nucleate and start to grow. Green: The inner crack starts to grow. Purple: Edge cracks meet at the sample midplane. We extract effective
stretches at the onset of crack propagation, λon, with a linear fit to the initial stages of crack growth [e.g., dashed black lines in panel (c)].
(d) Stretches at the onset of crack propagation for edge cracks (circles) and the crack at the sample midplane (squares) as a function of the
sample thickness b0. Lines show the best linear fits to the data sets. (e) Typical force-stretch curve (b0 ¼ 5 mm, Supplemental Movie 5).
The force increases with stretch until reaching a maximum plateau at a critical stretch λc. (f) Stretch at maximum force, λc, as a function of
the stretch at which the edge cracks meet at the sample midplane, λmeet. The dash-dotted line is λc ¼ λmeet.
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For Ecoflex samples, we start to see effective toughening
for b0 > L0= tan θ ≈ 2 mm.
We also expect to obtain thickness-independent results in

the limit of very thick samples [24]. Then, the stress in the
middle of the samples will become high enough to cause
ultimate failure of the sample center, before edge cracks
meet. In this case, the toughness should plateau at a value
that represents the plane-strain toughness [24], which
matches the behavior we see in calculated toughness values
for peel tests [Fig. 10(b)].

VII. STRAIN-STIFFENING CONTROLS
EDGE-CRACK BEHAVIOR

Our proposed criterion for thickness-dependent failure
is based on two experimental observations: (1) Edge
cracks propagate at a lower stretch than the inner crack,
and (2) edge cracks maintain a consistent diamond shape.
Both of these facts can be rationalized by reinterpreting
some previous results of fracture mechanics for nonlinear-
elastic materials.
Cracks propagate more easily at the edge because they

concentrate stress more severely there. This finding follows
from the fact that, for a range of nonlinear-elastic materials,
the analytical, crack-tip stress singularity in a deformed
sample is stronger for plane stress (i.e., edge cracks) than
for plane strain (i.e., inner cracks) (see Ref. [27] and the
appendixes). Thus, edge cracks fail first. The opposite
behavior is seen in metals, where cracks grow first in the
middle [8,43–45]. Here, plasticity controls fracture, and
failure occurs earlier under plane-strain conditions, due to
the high triaxial stress state that promotes void growth
and coalescence.
The robust diamond shape of the edge cracks follows

from the material’s nonlinear-elastic behavior: In suffi-
ciently strain-stiffening materials, crack tips take wedgelike
shapes with a constant opening angle 2θ. Tensile tests
reveal that the two silicones used in this study are strain
stiffening and well fit by an exponential model with the
strain-energy density function W ¼ μJm½eðI1−3Þ=Jm − 1�=2
(Fig. 9). Here, μ is the shear modulus, I1 is the trace of the
right Cauchy-Green deformation tensor, and Jm is a
dimensionless material parameter [17,46]. This case
reduces to the familiar Neo-Hookean energy density in
the limit of large Jm. For Ecoflex and Dragon Skin,
Jm ¼ 36.5� 0.4 and 14� 2, respectively (Fig. 9). These
values control the crack-tip angle θ as theory predicts
that tan θ ¼ αJ3=4m , where α is an Oð1Þ constant (see
Refs. [27,47] and the appendixes). Indeed, we find con-
sistent values for our materials: For Ecoflex, αEco ¼
0.9� 0.2, and for Dragon Skin, αDra ¼ 0.7� 0.3.
These results suggest that strain stiffening controls edge-

crack behavior. We highlight this fact by replacing tan θ in
our criterion for when we expect thickness-dependent
failure—now this is expected to occur when b0=L0 or

any of the ratios of thickness to sample dimension are
greater than or around J−3=4m . Furthermore, we reinforce the
key role played by strain stiffening by performing tests on a
non-strain-stiffening material (with Vytaflex 40 polyure-
thane, Smooth-On [48]). There, we observe no diamond
structure (Fig. 5 in Supplemental Material [40]).

VIII. CONCLUSIONS

In conclusion, we have shown that the results of the
fracture tests on strain-stiffening elastomers can be thick-
ness dependent, even for “thin” samples such as might be
used in standard tests. Reversing the familiar thickness
dependence of metals or glass, thicker elastomers are
effectively tougher than thinner ones [24]. The underlying
cause is the strain stiffening of the material, which leads to a
fracture surface comprised of three independent cracks:
An inner crack initiates first but propagates slowly; two
diamond-shaped edge cracks have a delayed initiation but
propagate more easily. When the edge cracks meet at the
sample midplane, the sample fails.
Our observations of fracture being controlled by the

interaction of multiple 3D cracks suggest that the classical
2D view of fracture is an oversimplification for elastomers.
Indeed, an interesting question is what generates this 3D,
multicrack structure [49]. We anticipate that this issue
may have connections to recent work on secondary crack
formation, for example, as caused by additional shear at a
crack tip [16,26,50]. Furthermore, the emerging view
of soft-solid fracture revolving around two material
length scales—the sizes of the failure and nonlinear-elastic
zones [2]—seems to be insufficient to describe the fracture
process. For reference, for the Ecoflex elastomer studied
here, these length scales are Oð0.1Þ mm and Oð1Þ mm,
respectively (see appendixes). We have shown that a proper
description of the fracture response needs to go beyond
these material length scales and incorporate a dimension-
less strain-stiffening parameter, such as Jm. It is this strain-
stiffening response that governs the behavior of the edge
cracks that, crucially, govern sample failure.
Our results also suggest geometrical design consider-

ations for increasing the toughness of a sample of a given
elastomer. Thinner samples should have a lower, thickness-
independent fracture resistance while thicker samples
should be significantly tougher. We expect the cross-over
to occur when the sample thickness increases above
the smallest lateral sample dimension divided by J3=4m .
Challenges for future work include validation of our results
over a wider class of strain-stiffening materials and the
impact of related phenomena, like strain-induced crystal-
lization [21,51]. While Jm reveals how long a material can
survive after the onset of propagation of an edge crack,
a complete understanding of the failure of these materials
requires elucidation of the factors that drive edge-crack
initiation and their onset of propagation.
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IX. MATERIALS AND METHODS

A. Preparation and curing of elastomers

We create Ecoflex 00-30 (Smooth-On) and Dragon Skin
30 (Smooth-On) samples by successively mixing together
the two components (parts A and B) in a 1∶1 ratio,
degassing, and curing at 40 °C for 24 hours. Before
mixing the components together, they are centrifuged at
104× gravity for 4 hours to remove any large clumps of
suspended silica particles. This process minimizes sample
heterogeneity. Samples are used within 12 hours after
finishing curing. Vytaflex 40 (Smooth-On) samples are
simply mixed in a 1∶1 ratio and allowed to cure at room
temperature for 24 hours.

B. Fracture experiments

Single-edge-notch tension specimens are created by cur-
ing slabs of Ecoflex 00-30 in Petri dishes and cutting out the
desired shapes [see Fig. 6(a)]. These specimens are tested
with a tensile-testing machine (Stable Micro Systems,
TA.XTPlus, 5 kg load cell). The initial grip-to-grip distance
is L0 ¼ 30.5� 0.1 mm, and tests are performed at a
constant stretch rate of λ̇ ¼ 0.007 s−1 [e.g., Fig. 6(b)].
T-peel samples are cured in a laser-cut acrylic mold

containing a 50-μm-thick molybdenum sheet (see Fig. 7
and Fig. 1 in Supplemental Material [40]) that separates the
two sample legs. The use of this sheet avoids the need for
cutting the samples to form an initial crack. The sheet is
removed after curing, and then the legs of the sample are
clamped in the tensile-testing machine for testing. For
thin samples (b0 ≤ 2.5 mm), we remove excess weight
from the back of the sample with a razor blade (see the
dashed line in Fig. 7).
We image a new fracture surface by coating graphite

powder (5 μm, Sigma-Aldrich) on the sample surfaces

with a brush. These surfaces are imaged with a camera
(Thorlabs, SC1280G12M) with a telecentric lens (Seiwa
Optical, FXL-0305-VT-165, 0.3×). The sample is
imaged in transmission with an LED panel placed
behind the sample. The 3D profile of the crack surface
in Fig. 4(b) is measured with a 3D optical profilometer
(S-neox, Sensoscan, 20 × objective). Here, no graphite
powder is applied, and the sample is directly stretched
to λ ¼ 2.6.
Edge-crack opening angles 2θ are measured in T-peel

experiments with 21 measurements from four experiments
with b0 ¼ 10 mm or 25 mm (Ecoflex) and with 16
measurements from four experiments with b0 ¼ 20 mm
(Dragon Skin).
In this work, we always control the macroscopic stretch

rate λ̇ ¼ 0.007 s−1. This stretch rate is slow [21] so that
the viscoelasticity is negligible [39]. As control experi-
ments, we perform three separate tests for the stretch
rate λ̇ ¼ 0.03 s−1 and 0.001 s−1, respectively (Fig. 8).
Indeed, a lower stretch rate allows more time for crack
growth, but the observed boundary layers and diamond
structures are very similar.

FIG. 7. T-peel test sample preparation. The schematic shows
the mold used for sample preparation. A thin sheet placed in the
mold during curing (red area) separates the “legs” of the sample.

FIG. 6. Single-edge-notch test results. (a) Schematic of the samples used in the tests. The initial crack (red area) is cut with a razor
blade. (b) Stress-stretch curves for tests on thin (b0 ¼ 0.7 mm, Supplemental Movie 1) and thick (b0 ¼ 7.5 mm, Supplemental Movie 2)
samples. For each curve, the maximum value of the stress σc and the corresponding stretch λc are indicated by dashed lines. The thicker
sample is more than twice as tough as the thinner one.
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C. Strain stiffening

We characterize strain-stiffening properties with multiple
uniaxial tensile tests on rectangular samples. The samples
are approximately 12.5 mm wide and 1.5 mm thick (cut by
a razor blade), and clamped in the tensile-testing machine
with an initial grip-to-grip distance of L0 ¼ 15.5 mm.
Samples are stretched at a constant stretch rate λ̇ ¼
0.007 s−1, and we calculate the strain-energy density
WðλÞ ¼ R

λ
1 σdλ, where σ is the engineering stress and λ

is the stretch. This finding is then fitted to the exponential
model given in the main text by setting I1 ¼ λ2 þ 2=λ
(see examples in Fig. 9).
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APPENDIX A: ESTIMATION OF
FRACTURE ENERGY

In this work, our primary focus is on the critical stretch
and maximum engineering stress as key parameters in the
fracture resistance of elastomers. Here, we present an
estimation of the fracture energy of the samples. Given

FIG. 9. Measuring the strain-stiffening properties of our materials with uniaxial tensile tests. Here, we plot strain-energy densityW as
a function of λ, for (a) Ecoflex 00-30, (b) Dragon Skin 30, and (c) Vytaflex 40, respectively. The blue solid curves show the measured
values ofWðλÞ (see Sec. VIII for details). The red dashed curves show the best fit to the exponentially stiffening model given in the main
text—the best-fit parameters are reported in the panels. Both Ecoflex 00-30 and Dragon Skin 30 are strain stiffening, as we see from the
fact that Jm is Oð10Þ. Vytaflex 40 shows no evidence of strain stiffening, as Jm is very large. Indeed, the fit implies that the elastomer
needs to be stretched to λ ¼ Oð104Þ, far beyond its limit of breaking, to see a significant stiffening effect.

FIG. 8. T-peel tests performed on Ecoflex 00-30 at (a) high (λ̇ ¼ 0.03 s−1) and (b) low stretch rates (λ̇ ¼ 0.001 s−1), respectively. In
both images, the sample thickness b0 ¼ 25 mm. Both experiments show boundary-layer structures and diamond-shaped edge cracks.
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the quasistatic propagation of the crack, it is reasonable to
equate the fracture energy Γ with the energy release rate G.
For single-edge-notch tension tests, an estimation of the

energy release rate G is given by [31,33]

G ¼ 6ffiffiffiffi
λc

p WðλcÞc; ðA1Þ

where λc is the critical stretch at the maximum engineering
stress, WðλcÞ is the strain-energy density of an untracked
sample under the uniaxial stretch λc, and c ¼ 10 mm is
the notch length. The calculated effective fracture energy
for Ecoflex 00-30 and Dragon Skin in single-edge-notch
tension tests is shown in Figs. 10(a) and 10(c), respectively.
For T-peel tests, the energy release rate G is estimated

as [33]

G ¼ 2λcFmax

b0
− 2WðλcÞH0; ðA2Þ

where λc is the critical stretch at maximum force Fmax, and
H0 ¼ 5 mm is the width (height) of the legs of the sample.
The calculated fracture energy for Ecoflex 00-30 in
T-peel tests is presented in Fig. 10(b).
It should be noted that Eqs. (A1) and (A2) are approx-

imations for estimating the energy release rate G. One
reason for this is because cracks can propagate “sideways”
in tests, unlike the forward propagation assumed in deriv-
ing these equations. Furthermore, Eq. (A1) is an approxi-
mation, but the resulting errors are expected to be less than
or around 5% [52].
Figure 10(a) demonstrates that in single-edge-notch

tension tests, the effective fracture energy Γ appears to
plateau at a finite value at small b0, and it increases
monotonically with increasing b0. For reference, our
work suggests that this plateau should occur for
b0 ≲ cðtan θÞ−1 ≈ 1 mm. This finding supports our obser-
vation that thicker elastomers are tougher due to the

increased distance edge cracks must travel to meet and
cause sample failure.
For T-peel tests [Fig. 10(b)], the effective fracture energy

again takes a finite value for small b0 before increasing and
then plateauing again at a large thickness (b0 ≳ 15 mm).
For reference, our work suggests that the toughness should
take a constant value for b0 ≲ L0ðtan θÞ−1 ≈ 2 mm. This
constant value (0.4–0.6 kJm−2) is consistent with the
corresponding limiting value for single-edge-notch tension
tests (0.5 kJm−2). The plateau at large b0 closely aligns
with the results of Ref. [24] and can be interpreted as
follows: At larger thicknesses b0, even though edge cracks
grow towards the middle of the sample with increasing
stretch, the stress at the center is sufficiently high to fracture
the sample directly, without the edge cracks meeting. In this
scenario, the fracture resistance becomes independent
of sample thickness, leading to a saturation in effective
fracture energy. We anticipate a similar plateau in the
effective fracture energy for thicker samples or smaller
crack sizes in single-edge-notch tension tests. Interestingly,
the finite value of toughness at small b0 is in contrast to the
results of Ref. [24], who reported that fracture energy
appeared to be negligible as b0 → 0.

APPENDIX B: PLANE STRESS VERSUS
PLANE STRAIN

A highly stretchable elastomer breaks mainly at a high
stress that elongates the material [27,47]. To rationalize the
fact that the elastomer breaks more easily near the edge, we
compare the Cauchy stress (i.e., true stress) component τyy
directly ahead of the crack tip under plane-stress and plane-
strain conditions. The coordinates and notations used are
defined in Fig. 11. The plane stress is associated with the
near-surface edge crack (note that this plane-stress con-
dition is a 2D approximation of the 3D configuration near
the edge [53]) while the plane strain is associated with
the inner crack. We first use a neo-Hookean solid as an
example and extend the result to other hyperelastic

FIG. 10. Estimation of effective toughness for (a) Ecoflex 00-30 in single-edge-notch tension tests, (b) Ecoflex 00-30 in T-peel tests,
and (c) Dragon Skin 30 in single-edge-notch tension tests, respectively. The solid lines represent the average, and the shaded areas
indicate the standard deviation of the data.
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models. All of the models used are incompressible (i.e., the
Poisson ratio ν ¼ 0.5). The derivations presented here are
primarily based on Ref. [27], which reviews the work from
Refs. [47,54,55].
For a neo-Hookean solid, when expressed in terms of

the reference (i.e., undeformed) polar coordinates ðr;φÞ,
the first-order asymptotic solution of τyy is the same for
plane-stress and plane-strain conditions [Eqs. (50) and (68)
in Ref. [27] ]:

τyy ¼
μ

4
a2r−1; ðB1Þ

where μ is the shear modulus and a is an undetermined
constant representing the amplitude of the crack-tip stress
field. Determination of a requires the far-field boundary
conditions away from the crack tip, such as the sample
geometry and the applied loading. Equation (98) in
Ref. [27] shows that a can be related to the energy release
rate G through the J-integral approach as, for both plane
stress and plane strain, G ¼ ðμπa2=4Þ. Therefore, Eq. (B1)
can be rewritten as

τyy ¼
G
π
r−1: ðB2Þ

Equation (B2) specifies the distribution of τyy around the
crack tip with its amplitude governed by the energy release
rate G. Note that G can be evaluated using the external
loading and sample dimensions; e.g., see Ref. [33] for G of
a T-peel test [Eq. (2.5)] and of a single-edge-notch tension
test [Eq. (2.7)].
The difference between plane-stress and plane-strain

solutions arises when we consider the distribution of τyy
in the deformed configuration, i.e., in terms of ðρ;ϕÞ. For
simplicity, we consider τyy directly ahead of the crack tip
(φ ¼ 0 and ϕ ¼ 0), motivated by the expectation that
the mode-I crack tends to grow along this direction.
The relations between r and ρ are [Eqs. (90a) and (93)
in Ref. [27] ]

plane strain∶ ρ ¼ 4

3a
r3=2; ðB3Þ

plane stress∶ ρ ¼ c0r; ðB4Þ

where c0 is an undetermined constant that will be discussed
later. Substituting Eqs. (B3) and (B4) into Eq. (B2) gives

plane strain∶
τyy
μ

¼
�
2

3

�
2=3

�
G
μπ

�
2=3

ρ−2=3; ðB5Þ

plane stress∶
τyy
μ

¼ c0
G
μπ

ρ−1: ðB6Þ

Determination of the constant c0 also requires the far-field
boundary conditions: One needs to solve the deformation
of the entire fracture sample, rather than merely performing
asymptotic analysis in the vicinity of the crack tip. It is
shown in Ref. [56] that c0 ¼ Oð1Þ through finite element
simulations of a pure-shear fracture sample [Fig. 3(b) in
Ref. [56] ]. Nevertheless, Eqs. (B5) and (B6) show that the
plane-stress condition results in a stronger stress singularity
in the deformed configuration (τyy ∼ ρ−1) than that of the
plane-strain condition (τyy ∼ ρ−2=3).
The underlying physical mechanism for the different

singularities is the distinct stretch behavior along the x
direction. Directly ahead of the crack tip (at φ ¼ 0), the
stretch ratio λx is [using Eqs. (B3) and (B4)]

λx ¼
dρ
dr

¼
�
2r1=2=a≡ λPEx ðplane strainÞ
c0 ≡ λPSx ðplane stressÞ : ðB7Þ

Near the crack tip (r → 0), the plane-strain solution of λx,
denoted as λPEx , approaches zero, indicating a severe
contraction along the x direction. In contrast, the plane-
stress solution of λx, denoted as λPSx , is a constant c near
the crack tip. Indeed, Ref. [56] shows that c0 is even
slightly larger than 1, indicating that there is a slight
stretch along the x direction. This difference can be
rationalized as follows: (1) Under plane strain, the stretch
along the out-of-plane direction is constrained, and there
is a severe stretch along the y axis. Therefore, to maintain
incompressibility, the material must undergo severe con-
traction along the x axis to conserve its volume. (2) Under
plane stress, there is still a severe stretch along the y axis,
but the material is free to contract along the out-of-plane
direction to conserve its volume. Therefore, it does not
need to contract along the x axis. Indeed, the out-of-plane
contraction can lead to a valleylike surface profile near the
tip of a deformed crack (which is also detected by our
profilometer scanning).
The severe lateral contraction under plane strain (i.e.,

λPEx ≪ 1) essentially squeezes the high-stress region further
toward the crack tip, thereby reducing the stress singularity.

FIG. 11. Coordinates and notations that describe the configu-
rations of the (a) undeformed crack and (b) deformed crack,
respectively. The black curves denote the crack. The blue curves
denote the coordinate systems.
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This effect can be mathematically expressed by defining the
average lateral stretch:

λ̄x ≡ 1

r

Z
r

0

λxdr ¼
1

r

Z
r

0

dρ
dr

dr ¼ ρ

r
: ðB8Þ

Using Eq. (B8), we can rewrite Eq. (B2) as

τyy ¼
G
π
ρ−1λ̄xðρÞ; ðB9Þ

where λ̄xðρÞ means that λ̄x can be a function of ρ. Since
λ̄PEx ≪ λ̄PSx , we can see that, at the same location ρ ahead of
the crack tip in the deformed configuration, τyy under plane
strain is smaller than that under plane stress.
The physical mechanism described above should be

applicable to all incompressible hyperelastic solids. For
example, Ref. [27] lists the asymptotic solutions for a class
of generalized neo-Hookean solids with the following
strain-energy density function:

W ¼ μ

2b

��
1þ b

n
ðI1 − 3Þ

�
n
− 1

�
; ðB10Þ

where b and n are dimensionless material parameters and I1
is the trace of the right Cauchy-Green deformation tensor.
Here, n controls the strain-stiffening behavior of the solid.
Note that n ¼ 1 corresponds to a neo-Hookean solid while
n > 1 leads to stronger strain-stiffening behavior. For this
class of materials, asymptotic analysis results in, again, the
same first-order solution of τyy in terms of the reference
polar coordinates ðr;φÞ [Eqs. (46c) and (63) in Ref. [27] ].
For simplicity, here we only look at the result directly ahead
of the crack tip (φ ¼ 0), where

τyy ¼
G
nπ

r−1: ðB11Þ

Note that to obtain Eq. (B11), we have already replaced the
undetermined coefficient a by the energy release rate G
using the J integral in Eqs. (97a) and (97b) in Ref. [27]. We
consider the cases with moderate to strong strain stiffening
and set n > 3=2, which allows us to obtain the following
results [Eqs. (58a) and (92a) in Ref. [27] ]:

plane strain∶ ρ ¼ c1
a
r1þ 1

2n; ðB12Þ

plane stress∶ ρ ¼ c2ffiffiffi
a

p r1þ 1
4n; ðB13Þ

where c1 and c2 are ofOð1Þ, weakly dependent on n. Using
Eqs. (B11)–(B13), we find that τyy ∼ ρ−ð2n=2nþ1Þ for plane
strain and τyy ∼ ρ−ð4n=4nþ1Þ for plane stress. For example,
when n ¼ 2, the stress singularity is τyy ∼ ρ−0.8 for plane
strain and τyy ∼ ρ−0.89 for plane stress. Interestingly, the

difference in the singularity between plane stress and plane
strain is smaller for strain-stiffening materials than that
for neo-Hookean materials. This is because the strain-
stiffening behaviors limit the amount of stretch along the
y axis near the crack tip and hence can reduce the contrast
in λx ahead of the crack tip.
How does the stress singularity affect the fracture

process? The commonly adopted Griffith criterion involv-
ing energy release rate G and fracture energy Γ is not
adequate for our discussion due to the lack of under-
standing on how G or Γ varies along the thickness
direction. By asserting that the stronger stress singularity
under plane stress promotes crack growth, we have implic-
itly assumed that crack growth is controlled by the Cauchy
stress distribution around the crack tip in the deformed
configuration. This finding is elaborated below.
In reality, stress cannot be infinite at the crack tip. The

singular stress solution must break down at some point
near the crack tip. For example, when the stress reaches a
threshold to trigger damage, the material may deviate from
its elastic stress-strain relation, and hence the singular
asymptotic solution should break down. This case is
manifested in the emergence of a material length scale
near the crack tip, e.g., the crack-tip load-transfer length
Γ=W� [2,28,30], where W� is the critical energy per unit
volume for material failure. Within this length scale around
the crack tip, the material undergoes failure. Understanding
the precise events that occur within this fracture process
zone remains an ongoing area of investigation. We propose
that the stronger stress singularity under plane stress can
intensify the fracture process zone in two possible ways:
(1) If the size of the fracture process zone is a material
constant, a stronger stress singularity would result in higher
stress within the zone. (2) If the stress within the fracture
process zone is constant (e.g., an intrinsic tensile strength),
a stronger stress singularity would result in a larger zone
size. Either of these ways facilitates the crack growth under
plane-stress (i.e., edge-crack) conditions.

APPENDIX C: EDGE-CRACK OPENING
(DIAMOND) PROFILE

Our 3D picture of the crack morphology suggests that θ
is exactly the crack-tip opening angle of the edge cracks
[Fig. 4(d)]. There, our imaging direction is locally parallel
to the edge-crack opening surface [i.e., we image the y-z
plane, Fig. 4(b)] and perpendicular to the local main
propagation direction [the x direction, Fig. 4(e)].
Furthermore, these near-surface cracks are subjected to
symmetric tensile loading, motivating a comparison with
analytical results for mode-I, plane-stress crack opening
shapes. Previous solutions [e.g., Fig. 11(b) in Ref. [47] ]
suggest that, as one increases the degree of strain
stiffening (by increasing n in the generalized neo-
Hookean model), the open profile of the crack transitions
from a blunt, parabolic shape (for neo-Hookean, n ¼ 1) to
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a wedgelike shape (large n or exponential model). The
wedgelike edge-crack profile observed in our experiments
motivates us to adopt the exponential model

WðλÞ ¼ μJm
2

�
exp

�
I1 − 3

Jm

�
− 1

�
; ðC1Þ

where Jm is a dimensionless parameter that reflects the
material’s strain-stiffening property. To be consistent with
our experiments, we employ the same coordinate nota-
tions as those presented in Fig. 4(d).
The first-order asymptotic solution of the crack opening

profile for an exponentially stiffening solid is [Eq. (71a)
in Ref. [27] ]

y� ¼ z�½− ln z��1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln ðz�½− ln z��1=4Þ

q
≡ z�fðz�Þ; ðC2Þ

where y� and z� are normalized coordinates to ðy; zÞ of the
upper crack surface:

y� ¼ y
A2

ffiffiffiffiffiffi
Jm

p and z� ¼ J1=4m z
CA2

≈
J1=4m z
A2

: ðC3Þ

Here, A2 is an undetermined constant specifying the
amplitude of the asymptotic solution, and C is a dimen-
sionless constant close to 1 and hence is neglected. Though
the crack opening profile in Eq. (C2) is not strictly a wedge
since the slope dy�=dz� changes as z� varies, we note
that the function ½− ln z��1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln ðz�½− ln z��1=4Þ

p
is Oð1Þ

unless z� is very small, due to the weak singularity of
logarithmic functions. Here, we adopt a first-order approxi-
mation by setting this to 1 (the error will be discussed later),
so Eq. (C2) becomes

y� ¼ z�: ðC4Þ

Substituting this into Eqs. (C3), we obtain

tan θ≡ y
z
¼ J3=4m : ðC5Þ

This is the equation we used to predict the half-angle of the
edge-crack opening.
Next, we discuss the error in the approximation of

Eq. (C2). These two solutions are directly compared in
Fig. 12(a). Although the linear approximation captures the
open angle of the crack profile given by Eq. (C2), it
underestimates the opening angle. To quantify the discrep-
ancy, we plot the factor that is neglected in Eq. (C2), i.e.,
fðz�Þ ¼ y�=z�, in Fig. 12(b). Depending on the value of y�,
the value of fðz�Þ is mainly from 1 to 5, indicating that the
linear approximation might underestimate the value of
y�=z� by a few times. To obtain a better estimate, we note
that in the experiments, 2θ is always measured using the
crack shape at y ¼ �1 mm. To obtain the corresponding
y�, we use Eq. (99) in Ref. [27], which links A2 to the
energy release rate G through the J integral:

A2 ¼
G
μπ

Jme3=Jm : ðC6Þ

Since the edge crack undergoes propagation as the
diamond structure expands, it is reasonable to set the
energy release rate G equal to the fracture energy Γ. For
EcoFlex 00-30, Γ is reported to be Oð100Þ Jm−2 [57], in
agreement with our estimation of effective toughness in
Fig. 10. Given that the EcoFlex 00-30 used in our experi-
ments is centrifuged before curing to remove large addi-
tives, our Γ is potentially lower. Therefore, we estimate
Γ to be in the range of 10 to 500 Jm−2. Using our
measurements μ ¼ 19.8 kPa and Jm ¼ 36.5, we find that
A2 is within 6.4 to 320 mm. Calculated by Eq. (C3), the
corresponding y� related to the measurement of the wedge
angle is y� ¼0.0005 to 0.026. This range corresponds to

FIG. 12. First-order asymptotic solution of the crack opening profile for an exponentially stiffening solid. (a) Comparison of Eqs. (C2)
(blue curves) and (C4) (red lines). (b) Error between Eqs. (C2) and (C4), f ¼ y�=z�, as a function of y�. Note that f can be below 1 for
y� ≳ 0.3679 (where z� ≳ 0.3679 as well).
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fðz�Þ¼3.1 to 5.1. Therefore, our approximation may
underestimate the ratio by a factor of 3.1 to 5.1.
Moreover, it is important to point out that Eq. (C2) serves

as the first-order asymptotic solution of the crack opening
profile, while there are higher-order terms that are not
included [33]. These higher-order terms could be important
given the weak logarithmic singularity in the first-order
term. Additionally, the detailed geometry of the edge cracks
in our experiments could be more complex than what is
simply accounted for under plane stress. To reflect these
errors, we can add a dimensionless correction factor α to
Eq. (C5), i.e.,

tan θ≡ y
z
¼ αJ3=4m ; ðC7Þ

which indicates

θ ¼ tan−1ðαJ3=4m Þ: ðC8Þ

We expect that α ¼ Oð1Þ. The linear approximation of
Eq. (C2) suggests that α is within 3.1 to 4.3. However, due
to the additional errors that are not quantifiable, we allow α
to be undetermined. With all the considerations above,
we expect to see the wedgelike crack tips for Jm ≲ 100.
Since Jm ¼ Oð10Þ for many of the strain-stiffening materi-
als, θ is usually close to 90°. Interestingly, setting α ¼ 1,
Eq. (C8) is identical to Eq. (C5), and this predicts that
θ ¼ 86.1� 0.3° and 82� 1° for Ecoflex and Dragon Skin,
respectively, which are in reasonable agreement with our
measurements.

FIG. 13. Ultimate sample failure caused by edge-crack meeting. (a) Typical force-stretch curve for an Ecoflex 00-30, T-peel
sample with b0 ¼ 5 mm (Supplemental Movie 5). The force increases with stretch, until reaching a maximum plateau at a critical
stretch λc ¼ 3.08. After the plateau, the force drops rapidly when the sample breaks. (b) Image, from the same experiment, showing
the fracture surface at the point at which the two edge cracks (blue tinted) are just about to meet in the sample midplane. This
meeting occurs at a stretch λmeet ¼ 3.08. (c) Plot of λc versus λmeet for T-peel, Ecoflex 00-30 samples, with a range of thicknesses.
The line shows λmeet ¼ λc. For thicker samples, λmeet ¼ λc to an excellent approximation. For thinner samples, λmeet is usually
slightly smaller than λc. In these samples, we see a sudden decrease in the slope of the force-stretch curve when the edge cracks meet,
but the material can subsequently tolerate a little more stretch before it fully breaks. (d) The λmeet as a function of sample thickness
b0. The dashed line is the best linear fit. Because λmeet is larger for thicker samples, these samples will break at higher stretches than
thinner samples.
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APPENDIX D: SIZES OF THE FAILURE AND
NONLINEAR-ELASTIC ZONES

According to Ref. [2], the size of the failure zone can be
estimated as

ξ ∼ Γ=W�: ðD1Þ

For Ecoflex 00-30, we estimate that Γ ≈ 100 Jm−2 [57] and
W� ≈ 0.5 MPa [Fig. 9(a)]. Thus, we have ξ ≈ 0.2 mm.
Note that ξ mainly represents the length near the crack tip
where the microscopic damage processes occur.
The size of the nonlinear-elastic zone can be estimated as

l ∼ Γ=E; ðD2Þ

where E ≈ 3μ is Young’s modulus of the material.
For Ecoflex 00-30, μ ¼ 19.8� 1.5 kPa. Thus, we have
l ≈ 2 mm. Note that l mainly represents the length near
the crack tip where the nonlinear elasticity dominates the
deformation. Substituting Eq. (D2) into Eq. (C6), we obtain

A2 ∼ lJm: ðD3Þ

Here, A2 mainly represents the length near the crack tip,
within which the wedgelike crack opening profile
[Eq. (C2)] remains valid. Therefore, Eq. (D3) indicates
that the diamond edge-crack structure lies in the nonlinear
zone. This finding is consistent with our previous argument
that the diamond structure is a consequence of the
nonlinear-elastic (i.e., strain-stiffening) behavior of the
material. However, to describe the structure of the edge
crack, one needs to use Jm, beyond the conventional

nonlinear-elastic zone size l. We note that Jm reflects
the nonlinear characteristics of an elastomer’s stress-strain
curve, which is not accounted for by l. Here, l reflects only
the initial slope of the stress-strain curve.
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