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Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to
provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot
arrays have emerged as a versatile platform for realizing generalized Fermi-Hubbard physics, one of the
richest playgrounds in condensed matter physics. In this work, we employ a germanium 4 × 2 quantum dot
array and show that the naturally occurring long-range Coulomb interaction can lead to exciton formation
and transport. We tune the quantum dot ladder into two capacitively coupled channels and exploit Coulomb
drag to probe the binding of electrons and holes. Specifically, we shuttle an electron through one leg
of the ladder and observe that a hole is dragged along in the second leg under the right conditions. This
corresponds to a transition from single-electron transport in one leg to exciton transport along the ladder.
Our work paves the way for the study of excitonic states of matter in quantum dot arrays.
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I. INTRODUCTION

Quantum systems with well-controlled interaction param-
eters can shed light on the physics of strongly correlated
many-body quantum systems [1,2]. Electrostatically defined
semiconductor quantum dot arrays, owing to their in situ
tunability of electrochemical potentials and relevant
energy scales which can far exceed the thermal energy,
have become an attractive platform for studying a wide
variety of fermionic systems [3–6]. Over the past few years,
the techniques for control and probing of quantum dot
simulators has progressed significantly. This platform and
closely related donor arrays have been used as a small-
scale simulator of Mott-Hubbard physics [7–9], Nagaoka

ferromagnetism [10], Heisenberg antiferromagnetic spin
chains [11], resonating valence bond states [12], and the
Su-Schrieffer-Heeger model [13].
The charge carriers confined in quantum dot arrays

exhibit an intrinsic long-range Coulomb interaction which
is essential for a wide range of interesting phenomena.
The long-range interaction induces spontaneous ordering
of charges in a flat potential landscape to form a Wigner
crystal [14,15]. Similar spontaneous charge ordering occurs
in lattice potentials that are fractionally filled [16,17]. Also,
pair density wave states crucially rely on nonlocal inter-
actions [18]. When particles of opposite charge are
involved, the long-range Coulomb interaction is attractive
instead of repulsive, and composite particles can be formed.
The attractive interaction between electrons and holes is the
essential ingredient for exciton formation [19], excitonic
insulators [20], and exciton condensates [21]. In lattices
that are close to fractional filling, a charge-transfer exciton
can bind one or two holes, giving rise to a polariton or
trimer [22]. It has been suggested that this trimer can give
rise to unconventional superconductivity [23].
The long-range Coulomb interaction combined with the

precise control of the lattice filling, interdot charge tunneling,
and the spin degree of freedom thus allow quantum dot
systems access to a wealth of interesting many-body phe-
nomena in Coulomb-mediated states of matters. In ultracold

*These authors contributed equally to this work.
†Present address: Department of Physics, National Tsing Hua

University, Hsinchu 30013, Taiwan.
‡Present address: Niels Bohr Institute, University of Copen-

hagen, Copenhagen, Denmark.
§L.M.K.Vandersypen@tudelft.nl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 011048 (2024)

2160-3308=24=14(1)=011048(17) 011048-1 Published by the American Physical Society

https://orcid.org/0000-0001-5140-2809
https://orcid.org/0009-0002-7669-9746
https://orcid.org/0000-0001-9648-5206
https://orcid.org/0000-0002-7197-4801
https://orcid.org/0000-0003-3780-4769
https://orcid.org/0000-0001-8454-2859
https://orcid.org/0000-0002-9946-4117
https://orcid.org/0000-0002-3900-0345
https://orcid.org/0000-0002-9776-9099
https://orcid.org/0000-0003-2512-0079
https://orcid.org/0000-0001-9730-3523
https://orcid.org/0000-0002-2499-632X
https://orcid.org/0000-0003-4346-7877
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.011048&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevX.14.011048
https://doi.org/10.1103/PhysRevX.14.011048
https://doi.org/10.1103/PhysRevX.14.011048
https://doi.org/10.1103/PhysRevX.14.011048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


atoms systems, combining tunneling with long-range inter-
actions has only recently been achieved [24,25], and remains
challenging. For ultracold atoms in optical lattices, the
Hamiltonian is usually limited to on-site interactions and
tunneling [26,27]. Conversely, for atoms with a large mag-
netic moment or dipolar molecules in optical lattices, long-
range dipolar interactions exist, but tunneling is generally
absent [28,29]. In suchplatformsaswell as forRydberg atoms
trapped by optical tweezers, the focus has therefore been on
studying various spin models [30–32].
In low-dimensional solid-state systems, a clear manifes-

tation of long-range Coulomb interactions is Coulomb
drag. In a two-channel system, a current imposed by a
voltage bias across one channel (the drive channel) leads
to a current or voltage across a second channel (the drag
channel) [33]. Coulomb drag can take two forms.
“Positive” Coulomb drag occurs when an electron in the
drive channel pushes electrons in the drag channel forward
due to Coulomb-mediated momentum transfer [34].
“Negative” Coulomb drag can result from Wigner-crystal
physics [35] or from exciton formation [33,36], in which
the motion of a charge carrier in the drive channel pulls
along a charge carrier of opposite sign in the drag channel.
The negative Coulomb drag effect from exciton formation
has been observed in double quantum wells in the quantum
Hall regime [33,37,38], double quantum wires [39], and 2D
materials [40–42]. In these works, the negative Coulomb
drag is interpreted as resulting from interchannel exciton
transport. Whereas Coulomb drag can arise from inter-
actions between classical charges, in the quantum dot
platform, the motion of charges and excitons occurs by
tunneling and cotunneling, respectively, which are intrinsi-
cally quantum mechanical processes. Coulomb drag then
serves as a precursor for exciton condensation and exci-
tonic insulator phases.
Excitonic states can be described theoretically using a

two-channel Hubbard model with N × 2 sites [43–45],

H ¼ −t
X
hi;ji;σ

c†iσcjσ þ U
X
i

niðni − 1Þ
2

þ U0X
hi;ji

ninj

þ V
X

i∈ α;j∈ β

ninj þ V 0 X
i∈ α;j∈ β

ninj; ð1Þ

where ciσ denotes the annihilation operator of a spin-1=2
fermion with spin σ ∈ f↑;↓g at site i of a two-channel
system where sites 1 to N are located in channel α and sites
(N þ 1) to 2N are part of channel β, and hi; ji sums over
neighboring sites in the same channel. The number operator
is given by ni ¼ c†i↑ci↑ þ c†i↓ci↓, t is the tunnel coupling
within the same channel,U the on-site Coulomb interaction,
U0 is the nearest-neighbor Coulomb interaction within
the same channel, V is the nearest-neighbor interchannel
Coulomb interaction, and V 0 is the diagonal interchannel
Coulomb interaction. When the two channels are occupied

by charge carriers of opposite sign, the interchannel inter-
actions are attractive. Note that we consider systemswithout
hopping between the two channels, and interaction terms
beyond nearest-neighbor or diagonal sites are neglected.
Furthermore, in Eq. (1) we assume homogeneous tunnel
couplings and Coulomb interactions. To describe systems
with inhomogeneous couplings, we will use tij and Vij to
denote the tunnel coupling and interchannel Coulomb
interaction between site i and j.
This model can describe the conduction band and valence

band in a material, and also two capacitively coupled
channels. Earlier works have reported on arrays of metallic
or superconducting tunnel junctions [46–48] and small
quantum dot arrays [49]. However, these systems lack the
control knobs for individual interaction parameters and the
probes for the quantum state at each site. In comparison,
when anN × 2 quantum dot ladder is tuned to host electrons
in one channel and holes in the other channel, thanks to the
advanced control and probing capabilities, it can be used as a
versatile platform for studying excitonic physics.
Many years of work on quantum dot systems have led

to steady scaling of linear arrays [50–52]. Furthermore,
several reports on two-dimensional quantum dot arrays
have appeared using GaAs [10,53], silicon [54,55], and
germanium [56] as the host material. Among the various
host materials, germanium is particularly promising to scale
to large arrays thanks to the low disorder and light effective
mass [57,58]. Even a 4 × 4 Ge quantum dot array has been
realized [59], albeit with shared controlled electrochemical
potentials and tunnel couplings.
In this work we use a 4 × 2 Ge quantum dot ladder as an

excitonic system, doubling the size of fully controlled Ge
quantum dot arrays [56]. We activate hopping along the legs
of the ladder but suppress hopping between the legs. In this
way, two capacitively coupled channels of quantum dots are
formed. The charge carriers in this platform are holes arising
from the valence band. A missing hole on top of a singly
occupied background of holes effectively defines an elec-
tron. We control the electrochemical potentials of the array
such that the top channel hosts an electron and the bottom
channel can host a hole. To explore the formation of
excitons, we use real-time charge sensing to study under
what conditions the imposed motion of an electron through
the top channel drags along a hole in the bottom channel
through the long-range Coulomb interaction.

II. DEVICE AND EXPERIMENTAL APPROACH

The experiment is carried out in an electrostatically
defined 4 × 2 hole quantum dot array, which is fabricated in
a Ge=SiGe quantum well heterostructure [60]. Figure 1(a)
shows a device image, with the positions of the dots
and charge sensors as indicated by the labeled circles.
Figure 1(b) shows a schematic gate stack of the device.
Screening gates, plunger gates, and barrier gates were
fabricated in successive lithography steps (see the
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Appendix for details), using a device design that can be
easily extended to longer bilinear quantum dot ladders. We
refer to the path from dot 1 to dot 4 as the top channel (drive
channel) and to the path from dot 5 to dot 8 as the bottom
channel (drag channel). Quantum dots are formed by
applying negative dc voltages on a set of plunger gates
P and barrier gates B, to accumulate and confine holes in
the quantum well in the area between the screening gates.
The charge occupation of the 4 × 2 array is denoted
ðO1

O5

O2

O6

O3

O7

O4

O8
Þ, where Oi represents the number of holes in

dot i. The structure allows for individual control of all ten
nearest-neighbor tunnel couplings. Plunger gates and
barrier gates are additionally connected to high-frequency
lines via bias tees to allow fast control of electrochemical
potentials and tunnel couplings.
In this experiment the plunger and barrier gates are

virtualized such that changing a virtual plunger P0
i inde-

pendently controls the electrochemical potential ϵi of dot i,
and changing a virtual barrier B0

ij mainly modulates the
tunnel coupling tij between neighboring dots i and j
without influencing the dot potentials. In this device four
charge sensors [bottom left (BL), bottom right (BR), top
left (TR) and top right (TR)] can be formed at the four
corners of the array. They serve both as detectors for the
charge occupation and as reservoirs. In this experiment
we use only the BL and BR sensors for charge sensing,
with multiplexed rf reflectometry (TL and TR are used as
reservoirs). The plunger gates for the BL and BR sensors
are also included in the gate virtualization, such that
sweeping a plunger gate in the array does not shift the
sensor peak position. Therefore, the sensors are mostly
sensitive to changes of the charge occupation in the array.
While jumps in the charge sensor peak position could in
principle affect the loading fidelity, the Coulomb peaks are
broad enough such that this effect is negligible for the
experiments described below. Thus, we can simultaneously

use them as charge sensors and reservoirs without a
measurable impact in loading fidelity.
To study exciton formation via the Coulomb drag effect,

we will aim to initialize the device in the ð1
0
1
0
1
0
1
0
Þ charge

state, where each top-channel dot is occupied by one hole
and the bottom channel is empty. Because the charge
carriers in the array are holes originating from the valence
band, removing a hole in the top channel amounts to
adding an electron relative to the singly filled background
of holes (see Fig. 2). We can thus load an electron to the
top channel by emptying a dot [e.g., pulsing to the (0111)
charge state in the top channel]. The electrochemical
potentials of the bottom dots in the ð1

0
1
0
1
0
1
0
Þ configuration

are aligned with each other, such that loading a hole from
the reservoir to the bottom channel costs the same energy
regardless of its position. We label this energy cost E
(Fig. 2). When E is lower than the nearest-neighbor
interchannel Coulomb interaction Vij, a hole will be
attracted in the bottom channel by the top-channel
electron, reaching, e.g., the charge state ð0

1
1
0
1
0
1
0
Þ. An

electron-hole pair is thus formed bound by Vij, which
constitutes an interchannel exciton (strictly speaking, Vij

must here be corrected by intrachannel and diagonal
Coulomb interactions; we will neglect these corrections
to simplify the discussion but they are included when
aligning the bottom dot potentials). Furthermore, if the
system Hamiltonian favors an exciton ground state,
pushing the electron (the missing hole) through the top
channel will cause the hole in the bottom to move together
with the electron [Figs. 1(c) and 2].

III. QUANTUM DOT LADDER FORMATION
AND TUNE-UP

Figure 3(a) shows charge stability diagrams for the
interchannel dot pair 1-5 near the ð1

0
1
0
1
0
1
0
Þ charge

(a) (c)(b)

FIG. 1. (a) A false-color scanning electron microscope image of a device nominally identical to the one used in this work. The dashed
white circles indicate the intended positions of the 4 × 2 dot array and sensing dots. (b) Schematic cross section of the gate stack and a
germanium quantum well heterostructure. Holes are confined in the 55-nm-deep quantum well. Gate layers with different functions are
drawn in colors shown in the legend. (c) Schematics illustrating the Coulomb drag of a hole in the bottom channel by the (imposed)
motion of an electron (missing hole) in the top channel of a 4 × 2 quantum dot array. The bound state of an electron and hole (an exciton)
arises from the interchannel Coulomb interaction. Two charge sensors, located at the bottom left and bottom right corners, are used to
probe the charge configuration of the array.
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configuration (see the Appendix for the other interchannel
pairs). The virtualized sensors result in a gradient-free
signal within each charge state region. The interchannel
Coulomb interactions Vij between dot i and j are extracted
from the size of the anticrossing for an interdot transition.
The obtained interchannel Coulomb interaction strengths
are V15 ¼ 220 μeV, V26 ¼ 260 μeV, V37 ¼ 315 μeV, and
V48 ¼ 213 μeV. The diagonal Coulomb interactions V 0 are
smaller than 100 μeV.
Figure 3(b) shows the sensor signal as a function of the

detuning of dots 1 and 2, δðP0
1 − P0

2Þ, and the detuning of
dots 5 and 6, δðP0

5 − P0
6Þ, near their respective interdot

transitions. If we sweep δðP0
1 − P0

2Þ and keep δðP0
5 − P0

6Þ
fixed near the 5-6 transition, as indicated by the black arrow
in Fig. 3(b), a transition is made from ð0

1
1
0
1
0
1
0
Þ to ð1

0
0
1
1
0
1
0
Þ

whereby a charge tunnels from dot 2 to dot 1 and
simultaneously a charge moves from dot 5 to dot 6, thanks
to the interchannel Coulomb interactions V15 and V26. This
cotunneling process [49] results in an exciton moving in the
ladder array, and is the dominant exciton transport process

since it happens before sequential tunneling is energetically
allowed (see the path along the black line in Fig. 3).
Efficient exciton transport requires strong intrachannel

tunnel couplings in order to obtain large intrachannel
cotunneling couplings, and weak interchannel tunnel cou-
plings. Strong interchannel tunneling exceeding the chan-
nel detuning would allow the charge carriers to hybridize
between the two channels, in which case we can no longer
speak of a distinct electron and hole which are bound by
long-range Coulomb interaction.
Using the gate voltages, we can control both the

interchannel and intrachannel tunnel couplings. The
tunnel couplings are characterized by fitting interdot
transition sensor signals to a model described in Ref. [61].
Figures 4(a) and 4(b) show the control of t12 and t15.
Because of fabrication procedure, some barrier gates exhibit
a weaker response than others, meaning that larger voltage
swings are required for modulating the corresponding tunnel
couplings (see the Appendix for details). Note that in the
virtualized B0 we do not compensate for tunnel coupling
crosstalk [62,63] since the present experiment requires

FIG. 2. Schematics illustrating the experimental scheme for probing exciton formation through Coulomb drag. The first row shows the
ladder diagrams of the drive channel. The vertical axis is an energy axis, the horizontal axis is space. Vertical black lines indicate tunnel
barriers, the blue shaded region represents the reservoir, which is filled up to the Fermi level. Phase I: Each dot is filled with one hole and
the dot potentials are aligned. Phase II: The leftmost hole is pushed out by raising ϵ1, which can be viewed as loading an electron in dot 1.
Phase III: ϵ1 is lowered and ϵ2 is raised. The electron moves to dot 2. Phase IV: ϵ2 is lowered and ϵ3 is raised. The electron moves to
dot 3. Phase V: ϵ3 is lowered and ϵ4 is raised. The electron moves to dot 4. The second and the third rows compare the ladder diagrams of
the drag channel with and without Coulomb drag effect, respectively. The second row is the exciton transport regime (E < Vij), in which
the presence of a drive-channel electron lowers the dot potentials in the drag channel sufficiently for a hole to be loaded in the bottom
channel. The hole will then be bound to the electron and travel along with the electron, i.e., an exciton is formed. The third row is the
single-electron transport regime (E > Vij), in which the charge state in the drag channel is not affected by the drive-channel electron.
Note that for simplicity we assume homogeneous Vij ¼ V, and the intrachannel and diagonal Coulomb interactions are ignored in
the schematics. Also note that while electrons have been added to the first row to make the underlying particle-hole transformation clear,
our device can host only holes.
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setting the tunnel couplings only once, and furthermore is
robust to small variations in tunnel couplings.
We here set all intrachannel tunnel couplings to

30–40 μeV. For the interchannel tunnel couplings we target
values ideally below 1 μeV. However, it is challenging to
quantify such small tunnel couplings by fitting the interdot
sensor signal, given that the thermal energy based on the
effective electron temperature is about 20 μeV in this
experiment. Instead of the tunnel couplings, we measure
the interdot tunnel rates by abruptly aligning the dot
potentials using a gate voltage pulse. The relation between
tunnel coupling and tunnel rate can be expressed as [64]

Γij ¼ 2T2t2ij; ð2Þ

where Γij and tij are the tunnel rate and tunnel couplings
between dot i and j, and T2 is the charge dephasing time
(T2 ≥ 0.3 ns extracted from photon-assisted tunneling
measurement [65]; see the Appendix for details).
Figure 4(c) shows the tunnel rate measurement between
dot 2 and dot 6. The fit yields Γ26 ¼ 40 kHz. Using Eq. (2)
we obtain t26 ≤ 0.03 μeV. For comparison, Fig. 4(d) shows
the measurement of Γ56 when t56 ¼ 46 μeV. In this case
the decay appears instantaneous owing to the fast tunneling
between the dots. Using the interchannel barrier voltages,

all interchannel tunnel couplings can be suppressed
below 0.1 μeV (see the Appendix), with all interchannel
Coulomb interactions > 150 μeV. However, we ideally
want homogeneous interchannel Coulomb interactions
of about 200–300 μeV, in order to have a large window
for Coulomb drag. Since V15 is only 166 μeV when
t15 ¼ 0.07 μeV, we bring dot 1 and dot 5 closer together
to increase V15 to 220 μeV, at the expense of a higher
t15 ∼ 25 μeV [66].

IV. COULOMB DRAG AND EXCITON
FORMATION

The experiment scheme for measuring exciton formation
and transport is illustrated in Fig. 2. In phase I, the 4 × 2 dot
array is set to the ð1

0
1
0
1
0
1
0
Þ charge occupation in which the dot

potentials in the top channel (drive channel) are aligned and
are placed ∼200 μeV below the Fermi level. The potentials
in the bottom channel (drag channel) are aligned as well,

(a) (b)

FIG. 3. Charge occupation control of the 4 × 2 dot array in the
single-hole regime. (a) Charge stability diagram of an interchan-
nel dot pair 1-5. δP0

i refers to the change in P0
i relative to a

baseline dc voltage. The interchannel Coulomb interaction V15,
as illustrated in the schematic above, can be determined by
measuring the size of the anticrossing (the distance between the
white dashed lines) in the charge stability diagrams. The
Coulomb interaction strengths are converted from voltage to
energy using lever arms. See the Appendix for the charge stability
diagrams of all nearest-neighbor dot pairs, for all interchannel
Coulomb interaction measurements, and for the extraction of
lever arms. (b) Charge stability diagram as a function of 1-2
detuning δðP0

1 − P0
2Þ and 5-6 detuning δðP0

5 − P0
6Þ. Along the

black arrow an exciton moves in the dot array due a cotunneling
process depicted in the schematic.

(a) (b)

(c) (d)

FIG. 4. Tunnel coupling control of the 4 × 2 dot array in the
single-hole regime. (a),(b) Measurements of (a) intrachannel
tunnel coupling t12 and (b) interchannel tunnel coupling t15 as
a function of B0

12 and B0
15, respectively. The orange dashed lines

show exponential fits to the data. (c) Measurement of tunneling
rate Γ26 between dot 2 and dot 6 when t26 is suppressed. A hole is
initialized in dot 6 (ϵ6 < ϵ2), and at 100 μs we abruptly align the
electrochemical potentials (ϵ6 ¼ ϵ2) using a gate voltage pulse.
From this moment, the hole can tunnel from dot 6 to dot 2.
The plot shows the time averaged charge sensor response. As
expected, we see an exponential trend in the sensor response,
since the tunnel time should obey Poisson statistics. The
exponential fit yields Γ26 ¼ 40 kHz, which gives a rough
estimate of t26 ¼ 0.03 μeV. (d) Same as (c) but for Γ56 when
t56 ¼ 46 μeV. Γ56 is higher than the measurement bandwidth
of 1 MHz.
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and positioned above the Fermi level by an energy offset
E. From phase II to V, the respective top-channel dot
potentials are consecutively raised and then lowered by
6 mV (∼670 μeV) to load and shuttle an electron from left
to right. If E < Vij, the top-channel electron capacitively
lowers the bottom-channel potential on the opposite site
below the Fermi level. As a consequence a hole is loaded
in the bottom channel. Because of the interchannel
Coulomb interaction, the hole is dragged along with
the electron; i.e., the electron and hole move together
as an exciton along the channel throughout the pulse
sequence. In contrast, if E > Vij, the top-channel electron
moves alone without dragging along a hole. Therefore, a
transition between exciton transport and single-electron
transport is expected to occur at E ∼ Vav ¼ hViji. In this
work, the average interchannel Coulomb interaction Vav is
252 μeV. We note that for a system with inhomogeneous
Vij, the range of E where Coulomb drag can occur is
limited by the smallest Vij.
In the measurements shown in Fig. 5, the top-channel dot

potentials are pulsed from phase I to V in the time domain
while the bottom-channel potentials are fixed at E [67].
Figures 5(a) and 5(b) show the BL and BR sensor signals as
a function of time and E. The sensor signals corresponding

to the ð1
0
1
0
1
0
1
0
Þ charge state (phase I when E > 0) are

assigned a reference value of 0. An increasing (decreasing)
signal indicates a positive (negative) charge moves closer to
the corresponding sensor. In the region enclosed by the blue
dashed rectangle, from phase II to V, the BL (BR) sensor
signal is increasingly (less and less) negative. As E is
reduced, the sensor signals first pass through a transition
region around E ∼ 200 μeV and then reach a region
enclosed by the orange rectangle, where the BL (BR)
sensor signal is less and less (increasingly) positive from
phase II to V.
The data in Figs. 5(a) and 5(b) can be understood as

follows. In the blue dashed region, the system is in the
single-electron regime in which a top-channel electron is
moving away from BL and toward BR. Hence, the
magnitude of the negative signal decreases (increases) over
time for BL (BR). In contrast, in the orange dashed region,
the system enters the exciton transport regime in which an
interchannel exciton moves to the right. Because the BL
and BR sensors are more sensitive to the bottom-channel
hole than to the top-channel electron, the net signal induced
by the exciton is positive and the magnitude of this positive
signal decreases (increases) over time for BL (BR).
See Figs. 5(c) and 5(d) for a further comparison between

FIG. 5. Coulomb drag and exciton transport measurements. (a) BL and (b) BR processed (see the Appendix) sensor signals as a
function of time and E. In the time domain the dot potentials in the top channel are pulsed from phase I to V as described in Fig. 2. A
positive (negative) charge causes a positive (negative) sensor signal. The regions enclosed by a blue dashed rectangle correspond to the
single-electron transport regime, in which only a negative charge moves from the left to the right in the top channel. The regions
enclosed by an orange dashed rectangle indicate the exciton transport regime, in which an additional positive charge is loaded and travels
with the top-channel electron. Since the BL and BR sensors are more sensitive to charges in the bottom channel than in the top channel,
the sensor signals change sign in the exciton transport regime compared to those in the single-electron transport regime. (c) 1D line cuts
of the BL sensor signal in the single-electron transport regime (E ≃ 500 μeV, blue trace) and in the exciton transport regime
(E ≃ 100 μeV, orange trace). (d) Same as (c) but for the BR sensor signal. The small drop in the BR signal between 50 and 100 μs is
caused by imperfect virtualization of the BR sensor with respect to P0

1. The slight bending of the BR signal is possibly caused by
charging or discharging of the two-dimensional hole gas (2DHG) near the BR sensor. Additionally, we understand the broadening of the
transition line in phase II as a result of strong dot-reservoir coupling.
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the signals in the single-electron transport regime and
the exciton transport regime. In Figs. 5(a) and 5(b) the
transition between the single-electron regime and the
exciton transport regime occurs around E ∼ 200 μeV,
which is consistent with the predicted transition point
E ∼ Vav ¼ 252 μeV. The width of the transition regime
depends on the level of disorder in the dot potentials
(δϵ ≤ 50 μeV, which is the accuracy of the automated
calibration) and variations in interchannel Vij (standard
deviation in Vij of ∼40 μeV). Note that when E < 0 μeV,
the signals in phase I increase because the bottom channel
starts loading holes from the reservoirs, even if no electron
is loaded in the top channel.
Finally, since the transport of an interchannel exciton

involves a cotunneling process, it is possible in principle
that either the electron or the hole or the entire exciton is not
successfully transferred from one site to another. In the data
of Fig. 5, no such failed charge transfers are observed. This
is expected since the 50 μs duration of the pulse segments
by far exceeds both the single-particle tunneling rates and
the cotunneling rates (in the Appendix, we estimate the
probability of successful adiabatic charge transfer to be
about 99.2%).

V. CONCLUSION AND OUTLOOK

In summary, we have fabricated a germanium 4 × 2
quantum dot ladder and used it to study exciton formation
and transport. To engineer the system Hamiltonian, we tune
the full array into the single-hole regime and independently
control all the on-site potentials and interdot tunnel
couplings. We find strong interchannel Coulomb interac-
tion while the tunneling between channels is suppressed,
which is essential for realizing excitonic physics. To probe
exciton formation by means of Coulomb drag, we drive an
electron through the top channel and measure the charge
sensor signals as a function of the bottom-channel poten-
tial. The measured signals are in good agreement with the
picture of a transition from single-electron transport to
exciton transport resulting from the interchannel Coulomb
interaction. An interesting next step possible with the
present sample is to create and study an engineered
excitonic insulator [20].
Whereas tunneling and Coulomb-mediated cotunneling

of charges between the dots along each leg of the ladder
are quantum mechanical effects, the present experiments
on exciton formation and transport can be understood in
terms of classical long-range Coulomb interactions without
invoking quantum effects (see Appendix A 11). In the
future, we envision that with sufficiently homogeneous
interaction energies and cotunnel couplings in longer
ladders, excitons can delocalize over the array and show
both coherent dynamics in the time domain as well as
exciton quasicondensation [68]. Already, coherent delo-
calization of individual charges as well as coherent oscil-
lations of charges in the time domain have been observed

previously in quantum dot arrays [10,64,69–73]. Also spin
coherence was shown to extend over quantum dot arrays
[11,12,63], including across a 4 × 2 quantum ladder using a
nominally identical device to the one used here [74].
It is useful to point out an enhanced symmetry in bilinear

quantum dot arrays as described by Eq. (1), which should
play an important role in the nature of the ground state in
the thermodynamic limit. As there is no tunneling between
the channels, one can define separate SU(2) symmetries for
each channel [75]. The full Hamiltonian is symmetric with
respect to both of them, and the full symmetry of the system
is SOð4Þ ≃ SUð2Þ ⊗ SUð2Þ [76]. Excitonic condensation
in this system would require spontaneous symmetry break-
ing of the SO(4) symmetry. For non-Abelian symmetries
such as SO(4), the Hohenberg-Mermin-Wagner theorem
shows that only exponentially decaying correlations are
allowed even at zero temperature, due to the abundance of
possible fluctuations of the order parameter. This should be
contrasted to the excitonic states of spinless fermions, for
which condensation corresponds to the Abelian U(1)
symmetry and thus the system can exhibit quasi-long-range
at zero temperature in one-dimensional systems.
Interestingly, two excitons can together form a SO(4)

singlet. Such singlets can exhibit quasi-long-range order at
zero temperature in one-dimensional systems, analogously
to spinless bosons. This suggests our system can exhibit
unusual types of ground states in the thermodynamic limit,
such as quasicondensates of composite particles or states
with broken translational symmetry. Analogous phenom-
ena have been discussed in the context of spinor con-
densates of cold atoms in one-dimensional systems [77,78].
One can also break the SO(4) symmetry by introducing

extra terms to the Hamiltonian. When breaking SO(4)
symmetry with a magnetic field, Sz ¼ 1 excitons are
favored and can form a (quasi)condensate, which is not
usually seen in optical spectroscopy since these excitons
are dark. In addition, the spin-orbit coupling present in
germanium quantum wells, while not breaking time rever-
sal symmetry [79], can also hybridize singlet and triplet
states, lifting their degeneracy [80,81], which may lead to
condensation at zero magnetic field.
Owing to the in situ tunability of device parameters, the

quantum dot platform offers access to a wide variety of
regimes. For instance, a transition from semiconductor to
excitonic insulator can be observed by changing the
detuning between two channels. The BCS-BEC crossover
might be realized by increasing the exciton density while
fixing the Coulomb interaction strength [82]. Moreover,
one may create and manipulate charged excitons (trions) by
introducing imbalanced electron and hole numbers in the
channels. Another important regime for the SO(4) physics
in 1D systems is the so-called “incoherent Luttinger liquid”
regime [83], where the temperature is below the charge
(exciton in our case) binding energy but above the spin
interaction energy. In this case, we expect Luttinger liquid
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power-law correlations in the “exciton number” but short-
range correlations in the spin sector.

The data reported in this paper are archived on a Zenodo
data repository [84].
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APPENDIX

1. Device fabrication and experiment setup

The device was fabricated on a Ge=SiGe heterostructure
featuring a strained Ge quantum well positioned 55 nm

below the semiconductor-dielectric interface, as described
in Ref. [60]. The fabrication started by defining Ohmic
contacts, which were made by electron beam lithography,
etching of the native oxide with buffered hydrofluoric acid
(HF), and electron beam deposition of 30 nm of Al. An
insulating layer of 7 nm Al2O3 was grown with atomic
layer deposition (ALD), also annealing the device and
diffusing the aluminum into the heterostructure during the
process. Subsequently, the screening gates (3=17 nm
Ti=Pd), plunger gates (3=27 nm Ti=Pd), and barrier gates
(3=37 nm Ti=Pd) were made in three metalization layers,
which are all separated by 5-nm-thick layers of Al2O3.
Note that for easing the lift-off of the compact barrier gates,
we made the barrier gates in two steps, in which the barrier
gates were distributed in two lithography-evaporation-lift-
off processes without a Al2O3 layer in between. The
fabrication procedure is summarized in Fig. 6. The chosen
device design provides a scalable path to longer bilinear
quantum dot arrays with full control over all dot potentials
and interdot tunnel couplings. Charge sensing can be
accomplished dispersively or with sensors integrated along-
side the ladder instead of at the extremities only.
The measurement was performed in an Oxford

Instruments Triton dilution refrigerator with a nominal
base temperature of 6 mK. The device was mounted
on a custom-made sample printed circuit board (PCB).
dc voltages from homebuilt serial peripheral interface (SPI)
DAC modules and pulses from a Keysight M3202A
arbitrary waveform generator are combined using

(a) (b) (c)

(d) (e)

FIG. 6. Fabrication steps for the 4 × 2 Ge quantum dot ladder, showing the design of each patterned layer. (a) Ohmic contact layer for
contacting the Ge quantum well. (b) Screening gate layer for defining the active region in which holes are confined. (c) Plunger gate
layer for charge accumulation and electrochemical potential control. (d),(e) First and second barrier layer used for shaping the quantum
dot potentials and for tunnel coupling control. The layers in (a)–(d) are separated by Al2O3 insulating layers. The barrier gates in (d) and
(e) are realized in two separate metalization steps (with no insulating layer in between) to ease the lift-off process.
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on-PCB bias tees. rf reflectometry for charge sensing was
done using SPI in-phase and quadrature (IQ) demodulation
modules and on-PCB LC tank circuits. The demodulated
signals were recorded by a Keysight M3102A digitizer.

2. Single-hole regime of the 4 × 2 array

The charge state tunability of the 4 × 2 ladder is
displayed in Fig. 7, where we show charge stability
diagrams for all dot pairs down to the single-hole regime.
The area on the top right corner of the plots corresponds to
the zero-charge state. The effect of gate voltage crosstalk
is compensated using virtual gates P0. All ten plots are
obtained using charge sensing using the bottom right and
bottom left sensors.
Additionally, in Fig. 8, we show global charge state

control of full the 4 × 2 array by sweeping two virtual
gates, corresponding to the top and bottom channel
energies (PT and PB, respectively). Every vertical or
horizontal addition line reflects a single charge being added
to either the top or the bottom channel. Lines are spaced
apart by the long-range Coulomb interaction. The starting
charge occupation for the Coulomb drag experiment
corresponds to the top left of this plot, with four charges
in the top channel and none in the bottom.

3. Lever arm measurement

The conversion between a virtual gate voltage P0
i and

electrochemical potential ϵi is described by δϵi ¼ LiδP0
i,

where Li is the lever arm for dot i. The lever arms can be
characterized using photon-assisted tunneling (PAT) [65].
In Fig. 9(a), the signal is fitted to hf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵ23 þ 4t237

p
. From

the fit a lever arm L3 ¼ 117 μeV=mV is extracted. In
addition, the ratio between two lever arms can be deter-
mined from the slope S of an interdot charge transition line
based on the fact that Vij ¼ Vji. For instance, in Fig. 9(b),
V34 ¼ L3H ¼ V43 ¼ L4W. Therefore, S¼H=W¼L4=L3.
So, L4 can be estimated from L3 and S. We obtain
L4¼117 μeV=mV with L3 ¼ 117 μeV=mV and S ¼ 1.0.
Similarly, based on PAT measurements and interdot slopes,
all lever arms are estimated. The results are summarized in
Table I. All lever arms have similar value ∼110 μeV=mV
with a standard deviation of 4 μeV=mV.

FIG. 7. Charge stability diagrams of all neighboring dot pairs, showing the left or right bottom sensor signal as a function of two virtual
plunger gate voltages. (a)–(f) Dot pairs along the top or bottom channel. (g)–(j) Dot pairs across the channel. The top right corner of each
figure corresponds to the zero-charge state.Note that at this tuning stage, there existed a strong coupling between dot 5 andBL sensor,which
resulted in an improper virtualization and reduced sensitivitywhen dot 5 was empty. However, this problemwas solved with further tuning.
See Fig. 3, where all relevant addition and interdot lines as well as the proper sensor virtualization are clearly visible for dots 1 and 5.

0000
00001111

0000

0000
1111

FIG. 8. Charge stability diagram depicting the global charge
state tunability of the 4 × 2 array. The scanned gates are the top
and bottom channel virtual voltage PT ¼ P0

1 þ P0
2 þ P0

3 þ P0
4

and PB ¼ P0
5 þ P0

6 þ P0
7 þ P0

8. Every vertical (horizontal) charge
transition corresponds to adding a single charge to the top
(bottom) channel. We plot the gradient of the sensor signal for
better resolution of the transition lines. The top left region of this
plot corresponds to a filled top channel and an empty bottom
channel, which is the starting charge configuration for the
Coulomb drag experiment.
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4. Interchannel Coulomb interaction measurement

Figures 10(a)–10(d) show the measurements of inter-
channel Coulomb interactions, which are responsible for
the excitonic Coulomb drag effect. As in Fig. 3(a), the
Coulomb interactions are characterized by finding the sizes
of the anticrossings and converting them into energies
through lever arms. From Figs. 10(a)–10(d) we obtain
V15 ¼ 220 μeV, V26 ¼ 260 μeV, V37 ¼ 315 μeV,
and V48 ¼ 213 μeV.

5. Tunnel coupling control

Figure 11 shows control of all nearest-neighbor tunnel
couplings tij using the corresponding virtual barrier gates
B0
ij. The tunnel coupling dependency is fitted by an

exponential function A expð−γijB0
ijÞ þ C, from which the

barrier lever arm γij is extracted. The γij are summarized in
Table II. Roughly, the barrier lever arms can be separated
into two groups, corresponding to the two steps in which
the barriers were fabricated. Notably, the barrier gates
patterned in the first fabrication step display a stronger lever

arm than those patterned in the second step, despite the
absence of an ALD layer between the two barrier metal-
ization layers. The reasons for this discrepancy require
further investigation, but might be caused by the device
design or residual resist under the second barrier gate layer.
Nonetheless, all barriers display a reasonable level of
tunnel coupling control, which allows us to tune the tunnel
couplings to the values required to perform the excitonic
Coulomb drag experiment.

6. Tunnel rate measurement

Tunnel coupling extraction via fitting of the interdot
transition signals allows us to reliably obtain tunnel coupling
values of the order of tens of μeV, larger than or comparable
to the electron temperature. As tij becomes much smaller
than the electron temperature, this fit becomes unreliable.
When the hopping between channels is suppressed, we
estimate the interchannel tij from the interchannel tunnel
rates Γij as described in the main text. Figures 12(a)–12(d)
show the tunnel rate measurements, from which we obtain
Γ15 ¼ 208 kHz, Γ26 ¼ 40 kHz, Γ37 ¼ 118 kHz, and
Γ48 ¼ 81 kHz. Since we estimate T2 ≥ 0.3 ns (lower limit)
from the linewidth of the PAT in Fig. 9(a), by using Eq. (2)
we can then estimate t15 ≤ 0.07 μeV, t26 ≤ 0.03 μeV,
t37 ≤ 0.06 μeV, and t48 ≤ 0.05 μeV in the target regime
where the interchannel hopping is suppressed.

7. Automated calibration routine

Slow changes in the electrostatic environment of the
device lead to inevitable drift of dot electrochemical

TABLE I. The values and measurement methods for each lever
arm Li.

Li Value (μeV=mV) Method

L1 111 Interdot slope
L2 104 PAT
L3 117 PAT
L4 117 Interdot slope
L5 115 Interdot slope
L6 113 PAT
L7 112 PAT
L8 111 Interdot slope

(a) (b)

(c) (d)

FIG. 10. Measurements of interchannel Coulomb interactions
(a) V15 [replotted from Fig. 3(a)], (b) V26, (c) V37, and (d) V48.

(b)(a)

FIG. 9. Example of lever arm measurements. (a) PAT meas-
urement showing the processed sensor signal as a function of
frequency and detuning at the interdot transition between dot 3
and dot 7. The blue dashed line is a fit of the form
hf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵ23 þ 4t237

p
, where δϵ3 ¼ L3δP0

3. The linewidth is about
0.1 mV (11.7 μeV), from which we estimate a charge coherence
time T2 ≥ 0.3 ns. (b) The charge stability diagram at the interdot
transition between dot 3 and dot 4. The blue dashed line shows
the interdot transition line with a slope S ¼ H=W ¼ L4=L3,
where H is the height and W is the width of the transition line.
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potentials. To compensate for this low frequency drift, we
implement a fast automated calibration routine to keep the
electrochemical potentials fixed relative to the Fermi level.
Our target is to set the level of dot i with an offset P0

i;target

from the Fermi level. In this experiment P0
1;target to P0

8;target

are initially ½2; 2; 2; 2;−4;−4;−4;−4� mV, which places
the device in the ð1

0
1
0
1
0
1
0
Þ charge state. For the first instance

of the calibration, we manually tune the device to a baseline
dc voltage Vbase close to the target condition (within a
tolerance of a few mV). The calibration routine starts with
optimizing the sensor signals, which is done by scanning
sensor plunger gates and locating the optimal sensing
positions, as shown in Figs. 13(a) and 13(f). The voltage
drift of dot i is measured by scanning P0

i centered at
Vbase þ P0

i;target and fitting the signal to a charge addition
line to locate the Fermi level, as shown in Figs. 13(b)–13(e)
and 13(g)–13(j). Vbase is subsequently shifted by the
deviation of the addition lines from the centers of the

scans to compensate for the voltage drift. The entire
automated calibration routine takes about 10 s and offers
a valuable tool for the efficient adjustment of dot potentials
in multidot devices.

8. Exciton tunnel coupling

The tunneling of excitons entails a cotunneling process
of two charges in the ladder array. Here we take the
tunneling between ð1

0
0
1
1
0
1
0
Þ and ð1

0
1
0
0
1
1
0
Þ as an example. The

relevant charge states are j0i ¼ ð1
0
0
1
1
0
1
0
Þ, j1i ¼ ð1

0
1
0
0
1
1
0
Þ,

j2i ¼ ð1
0
1
1
0
0
1
0
Þ, j3i ¼ ð1

0
0
0
1
1
1
0
Þ, j4i ¼ ð1

0
1
0
1
0
1
0
Þ, and j5i ¼

ð1
0
0
1
0
1
1
0
Þ. The Hamiltonian in this basis is

H ¼

0
BBBBBBBB@

E0 0 −t23 −t67 −t26 −t37
0 E1 −t67 −t23 t37 t26

−t23 −t67 E2 0 0 0

−t67 −t23 0 E3 0 0

−t26 t37 0 0 E4 0

−t37 t26 0 0 0 E5

1
CCCCCCCCA
; ðA1Þ

where

E0 ¼ −ϵ3 − ϵ6 þ V þ 2V 0 − ϵ1 − ϵ4;

E1 ¼ −ϵ2 − ϵ7 þ V þ 2V 0 − ϵ1 − ϵ4;

E2 ¼ −ϵ2 − ϵ6 þ 2V þ V 0 − ϵ1 − ϵ4;

E3 ¼ −ϵ3 − ϵ7 þ 2V þ V 0 − ϵ1 − ϵ4;

E4 ¼ −ϵ2 − ϵ3 þ 3V − ϵ1 − ϵ4;

E5 ¼ −ϵ6 − ϵ7 þ V þ 2V 0 − ϵ1 − ϵ4: ðA2Þ

(f)

(a) (c)(b) (e)(d)

(h)(g) (j)(i)

FIG. 11. Control of all nearest-neighbor tunnel couplings. (a)–(f) Measured intrachannel tunnel coupling tij as a function of virtual
barrier gates B0

ij. (g)–(j) Measured interchannel tunnel coupling tij as a function of virtual barrier gates B0
ij. The orange dashed lines are

exponential fits to the data.

TABLE II. The values and corresponding barrier fabrication
steps for each tunnel barrier lever arm γij.

γij Value (1/mV) Barrier fabrication step

γ12 0.040 First
γ23 0.057 First
γ34 0.036 Second
γ56 0.028 Second
γ67 0.128 First
γ78 0.085 First
γ15 0.012 First
γ26 0.008 Second
γ37 0.006 Second
γ48 0.044 First
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V the nearest-neighbor Coulomb interaction and V 0 the
diagonal Coulomb interaction (for simplicity we assume
homogeneousV andV 0 in the ladder array).Near a symmetric
exciton tunneling condition in which ϵ2 ≈ ϵ3 ¼ ϵþ Δ,
ϵ6 ≈ ϵ7 ¼ ϵ, and ðV − V 0Þ;Δ ≫ t23; t67; t26; t37, Eq. (A2)
becomes

E0 ¼ −2ϵ − Δþ V þ 2V 0 þ δE0;

E1 ¼ −2ϵ − Δþ V þ 2V 0 þ δE1;

E2 ¼ −2ϵ − Δþ 2V þ V 0 þ δE2;

E3 ¼ −2ϵ − Δþ 2V þ V 0 þ δE3;

E4 ¼ −2ϵ − 2Δþ 3V þ δE4;

E5 ¼ −2ϵþ V þ 2V 0 þ δE5; ðA3Þ

where δEi is a small perturbation of Ei near the symmetric
exciton tunneling condition. We then express Eq. (A1) in

the eigenbasis of the first-order perturbation H0 ≃U†HU,
in which

U¼

0
BBBBBBBBBB@

1 0 − t23
V−V 0 − t67

V−V 0 − t26
2V−2V 0−Δ −t37

Δ

0 1 − t67
V−V 0 − t23

V−V 0
t37

2V−2V 0−Δ
t26
Δ

t23
V−V 0

t67
V−V 0 1 0 0 0

t67
V−V 0

t23
V−V 0 0 1 0 0

t26
2V−2V 0−Δ − t37

2V−2V 0−Δ 0 0 1 0

t37
Δ − t26

Δ 0 0 0 1

1
CCCCCCCCCCA
:

ðA4Þ

Neglecting terms of more than second order in
tij=V − V 0, tij=2V − 2V 0 − Δ, or tij=Δ, the effective
Hamiltonian H0 for the perturbed states j00i and j10i
becomes

(a) (b) (c) (d)

FIG. 12. Tunnel rate measurements for (a) Γ15, (b) Γ26, (c) Γ37, and (d) Γ48. The orange curves are exponential fits to the data.

FIG. 13. Fast automated calibration routine. Panels (a) and (f) show the sensor signals as a function of sensor plunger gates P0
BL (BL

sensor) and P0
BR (BR sensor). The red dashed lines indicate the sensor peak positions and the black dashed lines indicate the optimal

sensing positions (where the slope is steepest). P0
BL and P

0
BR are subsequently moved to the optimal sensing positions. Panels (b)–(e) and

(g)–(j) are the sensor signals for dot 1 to 8, near the addition lines for the first hole of each dot. The black dashed lines show the voltages
at which ϵi aligns with the Fermi level. Note that (b)–(e) and (g)–(j) are not centered at the same dc voltages. Instead, each addition line is
taken with an added offset ΔP0

i;target from the original dc voltage Vbase. Vbase is then adjusted according to the deviation of the black
dashed lines from the centers of the scans. Each scan takes approximately 1 s and the whole calibration routine takes about 10 s.
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H0 ¼
�

E00 −tco
−tco E10

�
; ðA5Þ

where E00 ¼E0−ðt223=V−V 0Þ−ðt267=V−V 0Þ−ðt226=2V−
2V 0−ΔÞ−ðt237=ΔÞ, E10 ¼E1−ðt223=V−V 0Þ−ðt267=V−V 0Þ−
ðt237=2V−2V 0−ΔÞ−ðt226=ΔÞ, and tco¼2ðt23t67=V−V 0Þ−
ðt26t37=2V−2V 0−ΔÞ−ðt26t37=ΔÞ [64]. From Eq. (A5) we
see that the tunneling of exciton states is determined by tco,
which has a term proportional to the product of intrachannel
tunnel couplings and a term proportional to the product of
interchannel tunnel couplings. In the present experiment,
the former is much larger than the latter by at least 3 orders of
magnitude. Therefore, tco is predominantly caused by the
cotunneling of charges in the intrachannel direction.

9. Adiabatic exciton transfer probability

We estimate the probability that an exciton adiabatically
transitions between neighboring sites in the quantum dot
ladder. When this transition does not occur adiabatically, the
exciton initially stays where it was. Afterward, either the
electron or the hole may tunnel, leaving the other particles
behind, and eventually the entire exciton may still transition,
but at least for a brief moment in time the intended exciton
transport does not take place. For instance, the transition
from ð1

0
0
1
1
0
1
0
Þ to ð1

0
1
0
0
1
1
0
Þ might instead end with ð1

0
0
1
1
0
1
0
Þ (the

pair is not transferred) or ð1
0
1
1
0
0
1
0
Þ (a hole lags behind). Using

the Landau-Zener formula [85,86], we obtain

Pdia ¼ exp

�
−2π

t2co
ℏVE

�
;

tco ¼
2t2

V − V 0 ;

VE ¼ ΔE
ΔTr

; ðA6Þ

where Pdia is the diabatic transition probability for the
transition from ð1

0
0
1
1
0
1
0
Þ to ð1

0
1
0
0
1
1
0
Þ, tco is the intrachannel

cotunneling of the electron-hole pair, VE is the energy level
velocity, t is the intrachannel tunnel coupling, V is the
interchannel Coulomb interaction, V 0 is the diagonal
Coulomb interaction, ΔE is the energy difference between
the ð1

0
0
1
1
0
1
0
Þ and ð1

0
1
0
0
1
1
0
Þ charge states, andΔTr is the rise time

of the pulse. Note that we do not include the interchannel
cotunneling processes in the analysis because they are at least
3 orders of magnitude smaller than that of the intrachannel
cotunneling process, as discussed before. Entering the exper-
imental parameters,weobtainPdia ≃ 0.8%. Therefore, during
Coulomb drag the interchannel exciton is transported adia-
batically with an estimated fidelity of 99.2%.
At this point, it is worth mentioning the effect of electron

temperature to the exciton transfer fidelity. While the
measured temperature of 20 μeV is much larger than the
interchannel tunnel coupling, it is still an order of magni-
tude smaller than the exciton transport window of about
200 μeV. Operation in the exciton transport regime is
possible by choosing a global detuning point which
is substantially far away from any transition line [see
Figs. 5(c) and 5(d); line cuts taken at a distance of
100 μeV from the Fermi energy]. Additionally, the inter-
channel tunnel rates extracted from Fig. 12 naturally
include the effect of thermal excitations. Therefore, when
the two channels are aligned, the thermal hopping strength
is at least below the extracted tunnel rates of below
210 kHz. This translates to an interdot tunnel coupling
strength of below 0.1 μeV, which is much weaker than all
other tunneling and cotunneling coupling strengths.

10. Coulomb drag data processing

In Fig. 5 the raw data of the BR sensor signal is inverted
such that an increasing (decreasing) signal corresponds to a

FIG. 14. Numerical simulation of exciton transport measurements. The simulation calculates the ground state charge configuration as
a function of electrochemical potentials fϵig. At every Coulomb drag step, the corresponding dot potential is pulsed by 670 μeV as
specified in the main text. The simulation uses the measured Vij and assumes slightly larger intrachannel Coulomb interaction terms of
400 μeV. Further, we input Ui ¼ 2000 μeV and neglect next-nearest-neighbor interactions. The calculated charge state is transformed
to sensor signal assuming a linear sensor response and a 1=r2 decay of interactions over distance. The simulation data are in good
agreement with the measured data [Fig. 5(a)].
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positive (negative) charge. In addition, residual crosstalk
from the bottom virtual gates to the sensor signals leads
to a small gradient along E (y axis) in phase I of Figs. 5(a)
and 5(b). We remove this residual crosstalk by fitting the
signals in phase I to a linear background signal and
subtracting this background from the data of the entire
panel. The scripts for data processing can be found in the
data repository [84].

11. Numerical simulation of exciton transport

We perform numerical simulations to compare with the
measured exciton transport data in Figs. 5(a) and 5(b). To
this end, we compute the ground state charge configuration
of a classical Fermi-Hubbard Hamiltonian:

H ¼
X
i

ϵini þ U
X
i

niðni − 1Þ
2

þ U0X
hi;ji

ninj

þ
X

i∈ α;j∈ β

Vijninj þ V 0 X
i∈ α;j∈ β

ninj: ðA7Þ

Compared to Eq. (1), we have set t ¼ 0 to facilitate
the computation. We further include the electro-
chemical potentials fϵig and account for the experimen-
tally observed differences in interchannel Coulomb
repulsion Vij.
Because of the absence of tunnel coupling terms, this

simple Hamiltonian is already diagonal. Finding its ground
state charge configuration becomes therefore a straight-
forward energy minimization problem. Since U ≫ Vij; U0,
double occupations are always high in energy and it
suffices to input homogeneous charging energies U ∼
2 meV as extracted from charge stability diagrams in
Fig. 7. To capture the observed variations of the exciton
transport windows, it is necessary to input the measured
interchannel Coulomb interaction parameters Vij as speci-
fied in the main text (see Sec. IV, neglecting diagonal
interactions). Furthermore, for the intrachannel Coulomb
interaction, we assume homogeneous interaction terms
U0 ∼ 400 μeV.
Figure 14 shows the simulated charge ground state

variation as a function of the electrochemical potentials
fϵig. These are varied in the sameway as in the experiment:
The bottom (drag) channel detuning E is swept from
500 μeV to past the Fermi energy, while the individual
top-channel potentials are raised and lowered by
670 μeV, corresponding to the charge shuttling sequence
specified in Sec. IV. The charge states are converted to
charge sensor signal by inputting the sensor-to-dot
distances frig and assuming 1=r2 decay of Coulomb
interactions and a linear response of the sensors. The
numerical simulations show good agreement with the
measured data. We point out that for each dot pair,
the exciton transport window is equal to the interchannel
Coulomb interaction Vij, as highlighted in the main text.

The faster vanishing response of the measured data as
opposed to the numerical simulations can be explained by
a decay of Coulomb interactions faster than 1=r2, as
previously observed in other work [87].
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Krahn, A. H. Hébert, G. A. Phelps, S. Ebadi, S. Dickerson,
F. Ferlaino, O. Marković, and M. Greiner, Dipolar quantum
solids emerging in a Hubbard quantum simulator, Nature
(London) 622, 724 (2023).

[26] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[27] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller,
and J. I. Cirac, Analogue quantum chemistry simulation,
Nature (London) 574, 215 (2019).

[28] A. M. Kaufman and K.-K. Ni,Quantum science with optical
tweezer arrays of ultracold atoms and molecules, Nat. Phys.
17, 1324 (2021).

[29] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-
Tolra, B. L. Lev, and T. Pfau, Dipolar physics: A review of
experiments with magnetic quantum gases, Rep. Prog. Phys.
86, 026401 (2023).

[30] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A.
Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of
dipolar spin-exchange interactions with lattice-confined
polar molecules, Nature (London) 501, 521 (2013).

[31] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
V. Vuletić, and M. D. Lukin, Probing many-body dynamics

on a 51-atom quantum simulator, Nature (London) 551,
579 (2017).

[32] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang,
D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski,
R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M.
Greiner, V. Vuletić, and M. D. Lukin, Probing topological
spin liquids on a programmable quantum simulator, Sci-
ence 374, 1242 (2021).

[33] D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and
K.W. West, Exciton condensation and perfect Coulomb
drag, Nature (London) 488, 481 (2012).

[34] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N.
Pfeiffer, and K.W. West, Mutual friction between parallel
two-dimensional electron systems, Phys. Rev. Lett. 66, 1216
(1991).

[35] M. Yamamoto, M. Stopa, Y. Tokura, Y. Hirayama, and S.
Tarucha, Negative Coulomb drag in a one-dimensional
wire, Science 313, 204 (2006).

[36] B. N. Narozhny and A. Levchenko, Coulomb drag, Rev.
Mod. Phys. 88, 025003 (2016).

[37] M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer,
and K.W. West, Observation of quantized Hall drag in a
strongly correlated bilayer electron system, Phys. Rev. Lett.
88, 126804 (2002).

[38] E. Tutuc, M. Shayegan, and D. A. Huse, Counterflow
measurements in strongly correlated GaAs hole bilayers:
Evidence for electron-hole pairing, Phys. Rev. Lett. 93,
036802 (2004).

[39] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno, Positive
and negative Coulomb drag in vertically integrated
one-dimensional quantum wires, Nat. Nanotechnol. 6,
793 (2011).

[40] R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S.
Novoselov, T. Tudorovskiy, I. V. Grigorieva, A. H.
MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi,
and L. A. Ponomarenko, Strong Coulomb drag and broken
symmetry in double-layer graphene, Nat. Phys. 8, 896
(2012).

[41] J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R.
Dean, Excitonic superfluid phase in double bilayer
graphene, Nat. Phys. 13, 751 (2017).

[42] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and
P. Kim, Quantum Hall drag of exciton condensate in
graphene, Nat. Phys. 13, 746 (2017).

[43] B. Pandey, G. Alvarez, and E. Dagotto, Excitonic wave-
packet evolution in a two-orbital Hubbard model chain: A
real-time real-space study, Phys. Rev. B 104, L220302
(2021).

[44] T. Kaneko, K. Seki, and Y. Ohta, Excitonic insulator state
in the two-orbital Hubbard model: Variational cluster
approach, Phys. Rev. B 85, 165135 (2012).

[45] D. Vu and S. D. Sarma, Excitonic phases in a spatially
separated electron-hole ladder model, Phys. Rev. B 108,
235158 (2023).

[46] D. V. Averin, A. N. Korotkov, and Y. V. Nazarov, Transport
of electron-hole pairs in arrays of small tunnel junctions,
Phys. Rev. Lett. 66, 2818 (1991).

[47] M. Matters, J. J. Versluys, and J. E. Mooij, Electron-hole
transport in capacitively coupled 1D arrays of small tunnel
junctions, Phys. Rev. Lett. 78, 2469 (1997).

EXCITON TRANSPORT IN A GERMANIUM QUANTUM DOT … PHYS. REV. X 14, 011048 (2024)

011048-15

https://doi.org/10.1038/s41586-021-03560-w
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-021-03874-9
https://doi.org/10.1038/s41586-021-03874-9
https://doi.org/10.1146/annurev-conmatphys-031119-050711
https://doi.org/10.1103/PhysRev.37.17
https://doi.org/10.1103/PhysRev.158.462
https://doi.org/10.1103/RevModPhys.42.1
https://doi.org/10.1103/PhysRevB.102.235423
https://doi.org/10.1126/sciadv.abh2233
https://doi.org/10.1103/PhysRevX.11.021036
https://doi.org/10.1103/PhysRevX.11.021036
https://doi.org/10.1038/s41586-023-06614-3
https://doi.org/10.1038/s41586-023-06614-3
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/s41586-019-1614-4
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1088/1361-6633/aca814
https://doi.org/10.1088/1361-6633/aca814
https://doi.org/10.1038/nature12483
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1038/nature11302
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1126/science.1126601
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/PhysRevLett.88.126804
https://doi.org/10.1103/PhysRevLett.88.126804
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1038/nnano.2011.182
https://doi.org/10.1038/nnano.2011.182
https://doi.org/10.1038/nphys2441
https://doi.org/10.1038/nphys2441
https://doi.org/10.1038/nphys4140
https://doi.org/10.1038/nphys4116
https://doi.org/10.1103/PhysRevB.104.L220302
https://doi.org/10.1103/PhysRevB.104.L220302
https://doi.org/10.1103/PhysRevB.85.165135
https://doi.org/10.1103/PhysRevB.108.235158
https://doi.org/10.1103/PhysRevB.108.235158
https://doi.org/10.1103/PhysRevLett.66.2818
https://doi.org/10.1103/PhysRevLett.78.2469


[48] H. Shimada and P. Delsing, Current mirror effect and
correlated Cooper-pair transport in coupled arrays of small
Josephson junctions, Phys. Rev. Lett. 85, 3253 (2000).

[49] G. Shinkai, T. Hayashi, T. Ota, K. Muraki, and T. Fujisawa,
Bidirectional current drag induced by two-electron cotun-
neling in coupled double quantum dots, Appl. Phys. Express
2, 081101 (2009).

[50] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R.
Petta, Scalable gate architecture for a one-dimensional
array of semiconductor spin qubits, Phys. Rev. Appl. 6,
054013 (2016).

[51] S. G. J. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de
Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D.
Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M.
Veldhorst, G. Scappucci, and L. M. K. Vandersypen, Uni-
versal control of a six-qubit quantum processor in silicon,
Nature (London) 609, 919 (2022).

[52] W. Ha, S. D. Ha, M. D. Choi, Y. Tang, A. E. Schmitz, M. P.
Levendorf, K. Lee, J. M. Chappell, T. S. Adams, D. R.
Hulbert, E. Acuna, R. S. Noah, J. W. Matten, M. P. Jura,
J. A. Wright, M. T. Rakher, and M. G. Borselli, A flexible
design platform for Si=SiGe exchange-only qubits with low
disorder, Nano Lett. 22, 1443 (2022).

[53] P.-A. Mortemousque, B. Jadot, E. Chanrion, V. Thiney,
C. Bäuerle, A. Ludwig, A. D. Wieck, M. Urdampilleta, and
T. Meunier, Enhanced spin coherence while displacing
electron in a two-dimensional array of quantum dots,
PRX Quantum 2, 030331 (2021).

[54] E. Chanrion, D. J. Niegemann, B. Bertrand, C. Spence, B.
Jadot, J. Li, P.-A. Mortemousque, L. Hutin, R. Maurand, X.
Jehl, M. Sanquer, S. De Franceschi, C. Bäuerle, F. Balestro,
Y.-M. Niquet, M. Vinet, T. Meunier, and M. Urdampilleta,
Charge detection in an array of CMOS quantum dots,
Phys. Rev. Appl. 14, 024066 (2020).

[55] F. K. Unseld, M. Meyer, M. T. Mądzik, F. Borsoi, S. L. de
Snoo, S. V. Amitonov, A. Sammak, G. Scappucci, M.
Veldhorst, and L. M. K. Vandersypen, A 2D quantum dot
array in planar 28Si=SiGe, Appl. Phys. Lett. 123, 084002
(2023).

[56] N.W. Hendrickx, W. I. L. Lawrie, M. Russ, F. van Riggelen,
S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci,
and M. Veldhorst, A four-qubit germanium quantum proc-
essor, Nature (London) 591, 580 (2021).

[57] M. Lodari, A. Tosato, D. Sabbagh, M. A. Schubert, G.
Capellini, A. Sammak, M. Veldhorst, and G. Scappucci,
Light effective hole mass in undoped Ge=SiGe quantum
wells, Phys. Rev. B 100, 041304(R) (2019).

[58] G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss,
M. Myronov, J. J. Zhang, S. De Franceschi, G. Katsaros, and
M. Veldhorst, The germanium quantum information route,
Nat. Rev. Mater. 6, 926 (2021).

[59] F. Borsoi, N. W. Hendrickx, V. John, M. Meyer, S. Motz,
F. van Riggelen, A. Sammak, S. L. de Snoo, G. Scappucci,
and M. Veldhorst, Shared control of a 16 semiconductor
quantum dot crossbar array, Nat. Nanotechnol. 19, 21
(2023).

[60] M. Lodari, N.W. Hendrickx, W. I. L. Lawrie, T.-K. Hsiao,
L. M. K. Vandersypen, A. Sammak, M. Veldhorst, and G.
Scappucci, Low percolation density and charge noise with

holes in germanium, Mat. Quantum Technol. 1, 011002
(2021).

[61] C. J. van Diepen, P. T. Eendebak, B. T. Buijtendorp, U.
Mukhopadhyay, T. Fujita, C. Reichl, W. Wegscheider, and
L. M. K. Vandersypen, Automated tuning of inter-dot tunnel
coupling in double quantum dots, Appl. Phys. Lett. 113,
33101 (2018).

[62] T.-K. Hsiao, C. J. van Diepen, U. Mukhopadhyay, C. Reichl,
W. Wegscheider, and L. M. K. Vandersypen, Efficient
orthogonal control of tunnel couplings in a quantum dot
array, Phys. Rev. Appl. 13, 054018 (2020).

[63] H. Qiao, Y. P. Kandel, K. Deng, S. Fallahi, G. C. Gardner,
M. J. Manfra, E. Barnes, and J. M. Nichol, Coherent multi-
spin exchange coupling in a quantum-dot spin chain, Phys.
Rev. X 10, 031006 (2020).

[64] F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider,
and L. M. K. Vandersypen, Long-distance coherent cou-
pling in a quantum dot array, Nat. Nanotechnol. 8, 432
(2013).

[65] T. H. Oosterkamp, T. Fujisawa, W. G. Van Der Wiel, K.
Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven,
Microwave spectroscopy of a quantum-dot molecule, Nature
(London) 395, 873 (1998).

[66] We note that although t15 is higher than other interchannel
tunnel couplings, since electron-hole pair transport is a
cotunneling process and since t26 remains below 1 μeV,
the correlated hopping of an electron-hole pair across the
channels is still 3 orders of magnitude smaller than the
hopping along the channel direction.

[67] In the experiment, we apply a global virtual gate voltage on
the bottom channel and convert the global voltage to a
global energy offset using an averaged bottom-channel lever
arm 112 μeV=mV.

[68] Strictly speaking, exciton condensation does not occur in
1D or 2D at finite temperature. However, for real exper-
imental systems we can have quasicondensation when the
correlation length exceeds the system size [88].

[69] M. Sigrist, Thomas Ihn, K. Ensslin, M. Reinwald, and W.
Wegscheider, Coherent probing of excited quantum dot
states in an interferometer, Phys. Rev. Lett. 98, 036805
(2007).

[70] S. Gustavsson, R. Leturcq, M. Studer, T. Ihn, K. Ensslin,
D. C. Driscoll, and A. C. Gossard, Time-resolved detection
of single-electron interference, Nano Lett. 8, 2547 (2008).

[71] G. Shinkai, T. Hayashi, T. Ota, and T. Fujisawa, Correlated
coherent oscillations in coupled semiconductor charge
qubits, Phys. Rev. Lett. 103, 056802 (2009).

[72] H.-O. Li, G. Cao, G.-D. Yu, M. Xiao, G.-C. Guo, H.-W.
Jiang, and G.-P. Guo, Controlled quantum operations of a
semiconductor three-qubit system, Phys. Rev. Appl. 9,
024015 (2018).

[73] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard,
Quantum coherence in a one-electron semiconductor
charge qubit, Phys. Rev. Lett. 105, 246804 (2010).

[74] X. Zhang, E. Morozova, M. Rimbach-Russ, D. Jirovec,
T.-K. Hsiao, P. C. Fariña, C.-A. Wang, S. D. Oosterhout,
A. Sammak, G. Scappucci, M. Veldhorst, and L. M. K.
Vandersypen, Universal control of four singlet-triplet qu-
bits, arXiv:2312.16101.

T.-K. HSIAO et al. PHYS. REV. X 14, 011048 (2024)

011048-16

https://doi.org/10.1103/PhysRevLett.85.3253
https://doi.org/10.1143/APEX.2.081101
https://doi.org/10.1143/APEX.2.081101
https://doi.org/10.1103/PhysRevApplied.6.054013
https://doi.org/10.1103/PhysRevApplied.6.054013
https://doi.org/10.1038/s41586-022-05117-x
https://doi.org/10.1021/acs.nanolett.1c03026
https://doi.org/10.1103/PRXQuantum.2.030331
https://doi.org/10.1103/PhysRevApplied.14.024066
https://doi.org/10.1063/5.0160847
https://doi.org/10.1063/5.0160847
https://doi.org/10.1038/s41586-021-03332-6
https://doi.org/10.1103/PhysRevB.100.041304
https://doi.org/10.1038/s41578-020-00262-z
https://doi.org/10.1038/s41565-023-01491-3
https://doi.org/10.1038/s41565-023-01491-3
https://doi.org/10.1088/2633-4356/abcd82
https://doi.org/10.1088/2633-4356/abcd82
https://doi.org/10.1063/1.5031034
https://doi.org/10.1063/1.5031034
https://doi.org/10.1103/PhysRevApplied.13.054018
https://doi.org/10.1103/PhysRevX.10.031006
https://doi.org/10.1103/PhysRevX.10.031006
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1038/27617
https://doi.org/10.1038/27617
https://doi.org/10.1103/PhysRevLett.98.036805
https://doi.org/10.1103/PhysRevLett.98.036805
https://doi.org/10.1021/nl801689t
https://doi.org/10.1103/PhysRevLett.103.056802
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1103/PhysRevLett.105.246804
https://arXiv.org/abs/2312.16101


[75] Holes in strained germanium have spin-3=2, but the large
heavy-hole light-hole splitting leads to an effective two-
level system.

[76] C. N. Yang and S. C. Zhang, SO4 symmetry in a Hubbard
model, Mod. Phys. Lett. B 04, 759 (1990).

[77] M. Rizzi, D. Rossini, G. De Chiara, S. Montangero, and R.
Fazio, Phase diagram of spin-1 bosons on one-dimensional
lattices, Phys. Rev. Lett. 95, 240404 (2005).

[78] G. V. Shlyapnikov and A. M. Tsvelik, Polar phase of
one-dimensional bosons with large spin, New J. Phys.
13, 065012 (2011).

[79] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer Berlin, Heidelberg,
2003), 10.1007/b13586.

[80] L. P. Gor’kov and E. I. Rashba, Superconducting 2D system
with lifted spin degeneracy: Mixed singlet-triplet state,
Phys. Rev. Lett. 87, 037004 (2001).

[81] V. N. Golovach, A. Khaetskii, and D. Loss, Spin relaxation
at the singlet-triplet crossing in a quantum dot, Phys. Rev. B
77, 045328 (2008).

[82] C. Comte and P. Nozières, Exciton Bose condensation: The
ground state of an electron-hole gas—I. Mean field descrip-
tion of a simplified model, J. Phys. (Paris) 43, 1069 (1982).

[83] G. A. Fiete, Colloquium: The spin-incoherent Luttinger
liquid, Rev. Mod. Phys. 79, 801 (2007).

[84] T.-K. Hsiao et al., Data for ‘Exciton transport in a
germanium quantum dot ladder’ by Tzu-Kan Hsiao et
al., Zenodo (2023), 10.5281/zenodo.8105397.

[85] L. D. Landau, Zur theorie der energieübertragung. II, Phys.
Soviet Union 2, 46 (1932).

[86] C. Zener, Non-adiabatic crossing of energy levels, Proc. R.
Soc. A 137, 696 (1932).

[87] J. Knörzer, C. J. van Diepen, T.-K. Hsiao, G. Giedke, U.
Mukhopadhyay, C. Reichl, W. Wegscheider, J. I. Cirac, and
L. M. K. Vandersypen, Long-range electron-electron inter-
actions in quantum dot systems and applications in quantum
chemistry, Phys. Rev. Res. 4, 033043 (2022).

[88] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven,
Regimes of quantum degeneracy in trapped 1D gases,
Phys. Rev. Lett. 85, 3745 (2000).

EXCITON TRANSPORT IN A GERMANIUM QUANTUM DOT … PHYS. REV. X 14, 011048 (2024)

011048-17

https://doi.org/10.1142/S0217984990000933
https://doi.org/10.1103/PhysRevLett.95.240404
https://doi.org/10.1088/1367-2630/13/6/065012
https://doi.org/10.1088/1367-2630/13/6/065012
https://doi.org/10.1007/b13586
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevB.77.045328
https://doi.org/10.1103/PhysRevB.77.045328
https://doi.org/10.1051/jphys:019820043070106900
https://doi.org/10.1103/RevModPhys.79.801
https://doi.org/10.5281/zenodo.8105397
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1103/PhysRevResearch.4.033043
https://doi.org/10.1103/PhysRevLett.85.3745

