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The excitations in the Kitaev spin liquid (KSL) can be described by Majorana fermions, which have
characteristic field dependence of bulk gap and topological edge modes. In the high-field state of layered
honeycomb magnet α-RuCl3, experimental results supporting these Majorana features have been reported
recently. However, there are challenges due to sample dependence, and the impact of inevitable disorder on
the KSL is poorly understood. Here, we study how low-energy excitations are modified by introducing
point defects in α-RuCl3 using electron irradiation, which induces site vacancies and exchange random-
ness. High-resolution measurements of the temperature dependence of specific heat CðTÞ under in-plane
fields H reveal that, while the field-dependent Majorana gap is almost intact, additional low-energy states
with C=T ¼ AðHÞT are induced by introduced defects. At low temperatures, we obtain the data collapse
of C=T ∼H−γðT=HÞ expected for a disordered quantum spin system but with an anomalously large
exponent γ. This leads us to find a power-law relationship between the coefficient AðHÞ and the field-
sensitive Majorana gap. These results are consistent with the picture that the disorder induces low-energy
linear Majorana excitations, which may be considered as a weak localization effect of Majorana fermions in
the KSL.
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I. INTRODUCTION

In strongly interacting quantum systems, impurity effects
are known to provide important information about their
ground and excited states. For example, in anisotropic
superconductors with a pairing mechanism different from
conventional superconductivity, nonmagnetic impurities
exert a strong pairing-breaking effect, which significantly
affects the superconducting transition temperature, gap
structure, and the density of states of quasiparticles.
Among strongly interacting systems, quantum spin liquids

(QSLs) in insulators have recently attracted much attention.
Although the spins in QSLs are strongly interacting with
each other, they do not order even at absolute zero due to
strong quantum fluctuations [1]. In the ground state of
QSLs, strong quantum mechanical entanglement leads to
the emergence of fractionalized exotic quasiparticles that
are intimately related to the topology. However, the impact
of randomness on the QSL states remains largely elusive.
An exactly solvable spin model that can give such QSLs

is the Kitaev model of a two-dimensional honeycomb
lattice [2]. In this model, the bond-dependent Ising inter-
actions of magnitude J introduce exchange frustrations,
leading to a Kitaev spin liquid (KSL) ground state. An
important property of this state is that the excitations can be
described by two types of Majorana quasiparticles, namely,
itinerant Majorana fermions and localized Z2 fluxes
(visons) [2].
The Kitaev interactions can be realized in real materials

through the Jackeli-Khaliullin mechanism [3], which
boosted the search for candidates of Kitaev materials with
honeycomb structures. The most studied is the spin-orbit
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assisted Mott insulator α-RuCl3 [4], in which Ru3þ ions are
surrounded by octahedrons of Cl− ions, forming a layered
honeycomb lattice [Fig. 1(a)]. The crystallographic a and b
axes in the honeycomb plane are perpendicular and parallel
to the Ru-Ru bond direction, respectively. Although it has
been revealed that α-RuCl3 exhibits significant Kitaev
interactions, it also has other magnetic interactions such
as Heisenberg and off-diagonal terms [5], which lead to an
antiferromagnetic (AFM) order below the transition tem-
perature TN ∼ 7 K [6]. However, this AFM order can be
completely suppressed by applying a magnetic field of
approximately 8 T in the honeycomb plane [7,8]. In the
high-field quantum spin-disordered state, several anoma-
lous features consistent with the expectations of the KSL
have been observed experimentally. Most remarkably, the
half-integer quantization of thermal Hall effect that occurs
even in magnetic fields parallel to the plane (planar thermal
Hall effect), together with the angle-dependent excitation
gap, has been observed [9–12], which can be consistently
explained by the topological bulk-edge correspondence of
the Majorana fermions in the KSL.
On the other hand, it has been reported that the thermal

Hall conductivity depends on the sample in terms of its
magnitude and the temperature and field range over which
it exhibits a plateau [13–16]. These sample variations lead
to the suggestions of alternative scenarios such as topo-
logical magnons [16–20] and phonons [21]. However, very
recent observations of the gap closure for Hkb argue
against such bosonic scenarios [12]. These active discus-
sions on the nature of the high-field state of α-RuCl3
emphasize the crucial importance of elucidating the effects
of disorder that inevitably exist in real materials.
Experimentally, the effect of site defects has been discussed
in diluted α-Ru1−xIrxCl3 [22–24], which focuses on rela-
tively high concentration regimes of defects. The bond
disorder has also been discussed in the hydrogen

intercalated iridate H3LiIr2O6, which shows a divergent
behavior in the low-temperature specific heat C=T ∝ T−1=2

[25]. Theoretical studies have pointed out that the intro-
duction of site vacancies and bond disorder can give rise to
various intriguing phenomena, such as a logarithmic
growth of low-T susceptibility, the divergent low-energy
density of states, and the presence of local Majorana zero
modes in the KSL [26–35]. It is also notable that the
disordered KSL shows localization of itinerant Majorana
fermions, leading to a linear low-energy dispersion and a
state called Anderson-Kitaev spin liquid with suppressed
thermal Hall conductivity [36,37]. However, the effects of
disorder on the Majorana excitations in the high-field state
of α-RuCl3 remain unclear.
In this study, we use high-quality single crystals of

α-RuCl3 and investigate the effects of point defects
artificially introduced by electron irradiation. High-energy
electron beams are used to create Frenkel pairs of vacancies
and interstitial atoms, which act as point defects without
changing the underlying electronic structure and lattice
constants significantly [38,39]. We compare the low-energy
excitations in pristine and irradiated crystals by high-
resolution specific heat measurements down to approxi-
mately 0.45 K under in-plane magnetic fields, which are
recently recognized as a powerful probe of charge-neutral
Majorana fermions [11,12]. In the KSL, itinerant Majorana
fermions exhibit gapless excitations at zero magnetic field,
but the application of a magnetic field changes the low-
energy gapless linear dispersion of Majorana fermions to a
gapped one. When a magnetic field H ¼ ðhx; hy; hzÞ is
applied, the Majorana gap ΔM opens with characteristic
field dependence as ΔM ∝ jhxhyhzj=Δ2

flux, where Δflux

represents the excitation gap of Z2 fluxes [2]. Here, x, y,
and z are the spin axes different from the crystallographic
axes [Fig. 1(a)]. In the pristine sample, clear angle-
dependent low-energy excitations fully consistent with
the field-dependent Majorana gap have been observed
[11,12]. In irradiated α-RuCl3, we find a slight suppression
of AFM order and the field-dependent Majorana gap
similar to the pristine sample in the high-field state. In
addition, we observe a field-dependent additional T-linear
term in C=T, which indicates that low-energy excitations
with a linear density of states emerge. At low temperatures,
the additional T-linear term in C=T shows a peculiar
relation with the Majorana excitation gap, which is con-
sistent with recent theoretical calculations that the low-
energy linear excitations can appear by the weak Anderson
localization of Majorana fermions induced by disorder
in α-RuCl3.

II. METHODS

High-quality single crystals of α-RuCl3 are grown by the
vertical Bridgman method [40]. The lateral size of the
sample used is approximately 1.1 × 1.1 mm2 with a weight
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FIG. 1. (a) Crystal structure of α-RuCl3 in the honeycomb
plane. Ru3þ ions (black circles) surrounded by octahedrons
(shades) of Cl− ions (brown circles) form a layered honeycomb
lattice. The upper inset shows the spin axis directions. (b) Temper-
ature dependence of the specific heat divided by temperature C=T
for the pristine [11] and irradiated (with a dose of 7.74 C=cm2)
crystals of α-RuCl3.
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of about 340 μg. We employ the long-relaxation method,
where a Cernox-1030 resistor serves as thermometer,
heater, and sample stage. This experimental setup enables
us to perform high-resolution heat capacity measurements
under in-plane magnetic field rotation [11].
The electron irradiation with an incident electron energy

of 2.5 MeV is performed at 22 K. The vacancies of Ru
atoms created by the irradiation act as site vacancies of the
honeycomb network, while defects in the surrounding Cl
atoms [Fig. 1(a)] are considered to act as bond disorder,
because the magnitude of Kitaev interactions is determined
by the interorbital hopping mediated by Cl− ions [3]. In the
present study, we use an irradiated crystal with a dose of
7.74 C=cm2, in which the concentrations of site vacancies
and bond disorder in the Ru honeycomb network are both
estimated as approximately 0.6% (see Appendix A).

III. RESULTS: PHASE DIAGRAMS

First, we discuss the change in the phase diagram by
electron irradiation. Figure 1(b) shows the temperature
dependence of the specific heat divided by temperature
C=T for the pristine and irradiated samples. For the pristine
sample, the sharp peak anomaly observed in C=T at TN ∼
7 K represents the AFM transition [11]. For the irradiated
sample, TN is shifted to a lower temperature of approx-
imately 5.7 K, and the peak in C=T is suppressed. This
behavior is consistent with the reported results in diluted

α-Ru1−xIrxCl3 [23,24], indicating that the long-range AFM
order is vulnerable to disorder. In α-RuCl3, stacking faults
can be formed, and the associated C=T anomalies appear at
TN2 between approximately 10 and 14 K [40,41]. However,
these anomalies are barely visible, indicating no significant
stacking faults in our samples.
Figures 2(a) and 2(b) represent the temperature depend-

ence ofC=T under several fields forHka (k½112̄� in the spin
coordinate) and Hkb (k½1̄10�), respectively. As the in-plane
magnetic field increases, TN shifts to lower temperatures,
and the anomalies in C=T at TN are getting smeared. To
determine the critical fields at low temperatures, we use the
field-angle rotation within the honeycomb plane, because
the previous study in the pristine sample has shown that
maxima and minima angles are interchanged between the
low-field AFM and high-field disordered phases [11]. As
shown in Figs. 2(c) and 2(d), the field-angle dependence of
C=T at 0.47 K changes from a peak to a dip structure near
the a direction and vice versa near the b direction with
increasing field. We define the critical field Hc as the
magnetic field at which the angle dependence switches. For
Hka (b), μ0Hc is about 6.5 T (6.7 T). The obtained T-H
phase diagrams for the two field directions are shown in
Figs. 2(e) and 2(f). The solid line represents the phase
boundary between the AFM and the high-field disordered
phase. The boundary is shifted to lower temperatures and
fields by irradiation.
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IV. RESULTS: LOW-ENERGY EXCITATIONS

Next, we discuss the low-energy excitations from the low-
temperature behaviors of specific heat. In Fig. 3(a), we plot
the temperature dependence of C=T2 for Hka in the high-
field phase of irradiatedα-RuCl3. It is clear from the data that
a finite residual term C=T2 exists in the zero-temperature
limit. It has been established that the phonon contribution
gives βT3 term in CðTÞwith β ≈ 1.3 mJmol−1K−4 [11,42],
which does not contribute to the residual C=T2 term.
Figure 3(b) shows the C=T − βT2 data for the irradiated
sample, which display a T-linear behavior at low temper-
atures, corresponding to the finite residual C=T2 term. In
contrast, the data in the pristine sample show exponential
temperature dependence, indicating fully gapped excitations
[11]. When we subtract the T-linear term from C=T − βT2

for the irradiated sample, we essentially obtain a gapped
behavior similar to the pristine case [Fig. 3(b)], although
the prefactors that determine the magnitude are different
possibly due to a slight change in the interactions. From
these results, we conclude that introduced disorder by
irradiation induces additional low-energy density of states
of quasiparticles.
To analyze the data more quantitatively, we employ the

following formula: CðT;HÞ=T¼βðHÞT2þCMðT;HÞ=Tþ
CfluxðT;HÞ=TþAðHÞT. Here, we consider bosonic con-
tributions in the first βT2 term and the contributions from
itinerant Majorana fermions (CM=T) and Z2 fluxes
(Cflux=T) in the second and third terms, respectively.
These three terms have been used in the previous study
for the pristine sample [11]. Here, for the irradiated sample,
we consider the fourth term AðHÞT, which describes the
observed additional low-energy excitations. The details of
the fitting procedures are explained in Appendix B. We

obtain fairly good fitting results as shown in Figs. 3(a)
and 3(b) by the solid lines, and the obtained fitting
parameter ΔM is about 16.7 K for 12 T, which is close
to the value (14.4 K) in the pristine sample [11].
Figure 3(c) demonstrates the field dependence of the

Majorana gap ΔM for Hka obtained from the fitting. The
Majorana gapΔM shows a systematic increase as a function
of field, which is in agreement with the previous reports for
the pristine α-RuCl3 [11,43,44]. It has also been shown that
the specific heat C, excluding the bosonic contribution βT3,
displays a broad peak at the peak temperature Tmax (see
Appendix B), which is associated with the excitations of Z2

fluxes [45,46]. ThisZ2 flux peak temperature is related to the
Kitaev interaction J, and quantum Monte Carlo simulations
suggest the relations Tmax ∼ 0.012J and Δflux ∼ 0.07J [45].
Therefore, the simple relation Tmax ∝ Δflux can be used to
verify the validity of the equation ΔM ∝ jhxhyhzj=Δ2

flux. In
the pristine sample, the behavior of T2

maxΔM exhibits distinct
H3 dependence, which is well consistent with the Kitaev
model [11]. From the combined results of ΔMðHÞ and
TmaxðHÞ, we also find similar H3 dependence of T2

maxΔM
in the irradiated sample [Fig. 3(c), inset]. This finding
provides strong evidence that the KSL is sustained even
with approximately 0.6% defects in the high-field phase of
α-RuCl3. We note that the slope of the T2

maxΔM versus H3

plot is consistent with the pristine data within about 10%,
implying that the Majorana gap is almost intact after
irradiation. The slight slope change near approximately
10 T is associated with the slope changes in ΔMðHÞ and
TmaxðHÞ, which are also seen in the pristine sample [11].
These changes may be related to the possible transition to a
high-field state where the quantum thermal Hall effect
vanishes [11,15,47], which deserves further studies.
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V. DISCUSSION

Here, we examine whether the observed specific heat
behaviors originate from the intrinsic properties of the KSL
with quenched disorder. It has been proposed that the low-
temperature specific heat CðH; TÞ in spin-disordered sys-
tems exhibits T=H data collapse, showing universal scaling
features [48]. In frustrated disordered quantum spin sys-
tems, C=T follows H−γðT=HÞq at low temperatures, where
γ is a nonuniversal exponent and q is an integer index of
either 0, 1, or 2. We apply this analysis for the low-
temperature data of C=T − βT2 in the high-field phase of
irradiated α-RuCl3. As shown in Figs. 4(a) and 4(b), the
low-temperature data show the q ¼ 1 collapse behavior for
Hka (b) with the exponent γ ≈ 1.5 (2.1). These results
strongly indicate that the low-energy excitations are gov-
erned by the introduced disorder in this system. In the
random-singlet distribution of frustrated spin-disordered
systems, the nonuniversal exponent is expected to be in the
range of 0≲ γ ≲ 1 [48], as observed in layered triangular
and kagome antiferromagnets [49,50]. In the honeycomb

iridate H3LiIr2O6 under magnetic fields, the scaling with
γ ∼ 1=2 within this range has also been reported [25].
However, here, we find anomalously large γ values beyond
this range, suggesting a different nature of the disorder-
induced states in α-RuCl3.
The large γ exponent immediately indicates that the

additional T-linear behavior of C=T observed in the
irradiated sample with a small defect concentration has
unusually strong dependence on magnetic field. The fact
that the Majorana excitation gap also has strong sensitivity
to magnetic field suggests that the defect-induced excita-
tions are related to the Majorana physics in the KSL.
Theoretical calculations for the gapped phase of the KSL
under magnetic fields have shown that both bond disorder
[36] and site vacancies [37] can induce the in-gap locali-
zation modes of Majorana fermions, whose density of
states shows a linear spectrum at low energies. Such in-gap
modes suggested by these calculations can be compared
with our data for Hka, where the coefficient AðHÞ in the
induced AðHÞT term in C=T inside the Majorana excitation
gap ΔM can be evaluated quantitatively.
Figure 5(a) displays the field dependence of the coef-

ficient A in the high-field state for Hka. For the gapped
KSL, it has been suggested that the in-gap energy-linear
localization modes induced by the disorder has a relation
with the three-spin interaction term κ (∼jhxhyhzj=J2) [37],
which has essentially the same form as Majorana gap ΔM.
Here, we find a peculiar power-law relationship between A
and ΔM (∝κ) over a wide range of magnetic fields; AðHÞ ∝
ΔMðHÞ−δ with an exponent δ ≈ 2.3 [Fig. 5(a), inset]. This
is in very good agreement with the theoretical finding of the
power-law dependence C=T ∼ κ−δT with δ ∼ 2.25 for the
KSL with 2% site vacancies [37]. This power-law relation-
ship between the disorder-induced AðHÞT term in C=T and
ΔM corresponds to the large exponent γ ≈ 1.5 for the data
collapse analysis, which suggests A ∝ H−2.5. The fact that
Tmax ∝ Δflux ∝ J has some field dependence [Fig. 3(c)]
implies that the relation with ΔM rather than that with H is
more straightforward, and indeed a clear data collapse
behavior is also seen at low temperatures in such a
ΔM-based analysis [Fig. 5(b)]. These field-sensitive behav-
iors of the additional AðHÞT term strongly suggest that the
Majorana physics is at play in the disorder-induced low-
energy excitations.
These results are consistent with the picture that the

introduced defects induce low-energy linear Majorana
excitations in the high-field KSL state of α-RuCl3. Such
energy-linear excitations can be interpreted by the weak
Anderson localization effect of Majorana fermions [36,37].
Based on the symmetry classification, the KSL in the
absence of a magnetic field belongs to the symmetry class
called BDI, but when time-reversal symmetry is broken by
the application of magnetic fields the symmetry class
changes to D [51,52]. In class D, it is a general property
of weak localization that the density of states exhibits a
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linear behavior at low energies in the presence of weak
disorder [53]. Therefore, the T-linear behavior of C=T
observed in the high-field state of irradiated α-RuCl3 is
consistent with the weak Anderson localization picture in
the symmetry class D.
It is remarkable that with only approximately 0.6%

defects a significant amount of the anomalous localization
term in the specific heat appears at low energies, implying
that the KSL is very sensitive to randomness. The disorder-
induced weak localization of Majorana fermions is
expected to influence the thermal Hall effect in the gapped
KSL, which is closely related to the edge current of
itinerant Majorana fermions. Recent calculations for the
bond disorder have shown that the thermal Hall conduc-
tivity κxy is suppressed by the localization effect [36]. As
the randomness is inevitably present even in the pristine
samples, such disorder effects provide a source of sample
variations of the κxy values in the high-field state of
α-RuCl3. Indeed, a recent thermal transport study reported
a tendency that the samples with higher longitudinal
thermal conductivity κxx exhibit larger κxy values closer

to the half-integer quantization [15], implying that the long
mean free path of quasiparticles, which is sensitive to
disorder, is an important requisite for the observation of
Majorana quantization.
In conclusion, we conducted high-resolution specific

heat under in-plane magnetic fields in irradiated α-RuCl3.
The introduction of disorder through electron irradiation
resulted in the slight suppression of the antiferromagnetic
order. The field dependence of the Majorana gap provides
thermodynamic evidence that the KSL is maintained in the
high-field state of the disordered α-RuCl3. Importantly, we
observed an additional in-gap T-linear term in C=T, whose
coefficient AðHÞ shows distinct field-sensitive behaviors
suggestive of Majorana physics in the KSL. These results
may be interpreted by the weak localization of Majorana
fermions, which is induced by the disorder. Our exper-
imental study points to the importance of the disorder
effects on the low-energy Majorana excitations in the KSL.
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APPENDIX A: ELECTRON IRRADIATION

Electron irradiation was performed by using the SIRIUS
Pelletron accelerator operated by the Laboratoire des
Solides Irradiés (LSI) at École Polytechnique, maintaining
the sample immersed in liquid hydrogen at 22 K during
irradiation. The low-temperature environment is important
to prevent defect migration and agglomeration. Partial
annealing of the introduced defects occurs upon warming
to room temperatures [54]. The penetration depth of the
2.5-MeV electron beam is estimated as approximately
4.6 mm, which is much longer than the sample thickness
of approximately 100 μm. This ensures the uniform dis-
tribution of the point defects.
We calculate the cross sections σ for collisions of high-

energy electrons as a function of incident electron energy
and estimate the amount of created defects (Frenkel pairs)
on the Ru and Cl sites by using the SECTE software
developed at LSI [55]. We use a typical value of
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Ed ¼ 25 eV for the energy of ion displacement [56]. In
Fig. 6, the cross sections σ of Ru and Cl sites are plotted as a
function of incident energy E of electrons. We find that σ is
twice larger for Ru than that for Cl for the present incident
energy E ¼ 2.5 MeV. The density of vacancies of Ru atoms,
vRu, canbeestimatedbyvRu ¼ σϕn,whereϕ is the irradiation
fluence (the number of high-energy electrons incident per unit
area of the sample) and n is the density of atoms per
unit volume. For the dose of 7.74 C=cm2, we estimate
vRu=n ∼ 0.6%, which corresponds to the concentration of
site vacancies in the honeycomb lattice. Similarly, thevacancy
concentration for Cl atoms is estimated as approximately
0.3%. As the exchange interaction for each bond is deter-
mined via two Cl− ions, the bond disorder concentration is
also estimated as approximately 0.6% of the total bonds.
After the specific heat measurements, we make addi-

tional irradiation with the dose of 4.78 C=cm2 correspond-
ing to the total vacancy density of approximately 1%, and
we perform x-ray diffraction and magnetic susceptibility
measurements. The lattice constants for the C2=m structure
at room temperature are shown in Table I. For comparison,
the lattice parameters measured for a pristine sample and
reported values for a Bridgman sample [14] are also shown.
We find that these parameters are essentially unchanged
after irradiation considering the sample-dependent uncer-
tainties. The magnetic susceptibility χðTÞ measured under
in-plane fields of 0.1 T shows a single transition at
approximately 5 K, which is shifted down from the original
TN ∼ 7 K in the pristine sample, without showing higher

transition anomalies associated with the stacking faults as
shown in Fig. 7. We also find no signature of magnetic
impurities, indicating that the irradiation introduces non-
magnetic point defects. At higher temperatures, the hyste-
resis behavior in χðTÞ associated with the structural
transition from high-temperature C2=m to low-temperature
R3̄ [57,58] is not observed for the irradiated sample,
suggesting that the low-temperature structure remains
C2=m. This is consistent with the twofold rotational
symmetry as found in the slight difference of C=T at
ϕ ¼ �30° and ϕ ¼ 90°. Possible effects of this twofold
symmetry need to be clarified by further studies, but in our
previous study [11] we found that the rotational symmetry
breaking at high fields where the Majorana gap behavior
remains essentially unchanged. Together with the fact that
the Majorana gap behavior in Fig. 3(b) is almost intact from
the pristine sample when we subtract the induced T-linear
term, these results strongly suggest that the additional low-
energy excitations are induced by the introduced defects
rather than the lowered symmetry.

APPENDIX B: FITTING PROCEDURES

The contribution of itinerant Majorana fermions CM to
the specific heat can be evaluated from the standard calcu-
lations assuming that quasiparticles form a gas of fermions:

CMðT;ΔMÞ ¼
T
V
∂SðTÞ
∂T

¼ 1

V

X

k

�
EðkÞ
T

�
2

nF½EðkÞ�f1 − nF½EðkÞ�g

with the Fermi-Dirac distribution function nFðxÞ ¼
ðex þ 1Þ−1 [11]. We use the two-dimensional model
for energy dispersion E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jkj2 þ Δ2

M

p
, and the low-

temperature specific heat is given by
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FIG. 6. Calculated cross section σ for Frenkel-pair production
at the Ru (red circles) and Cl (blue circles) sites of α-RuCl3 as a
function of incident electron energy E.
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TABLE I. Lattice constants in unit of Å of C2=m structure at
room temperature.

Crystal a (Å) b (Å) c (Å)

Pristine 5.980 10.347 6.034
Pristine [14] 6.041 10.416 6.088
Irradiated (12.52 C=cm2) 5.998 10.386 6.055
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CMðT;ΔMÞ=T ¼ Gð∞Þ
v2

�
1 −

GðΔM=TÞ
Gð∞Þ

�
:

Here, the one-parameter function GðyÞ is given by GðyÞ ¼R y
0 ðdx=2πÞ½x3ex=ðex þ 1Þ2�. For Hkb, the Majorana gap
is zero (ΔM ¼ 0), and CM=T takes the form αT with
α¼Gð∞Þ=v2, corresponding to a gapless linear dispersion.
In the pristine sample, C=T2 shows finite residual values,
indicating the presence of αT terms in C=T [11].
First, we focus on the Hkb data. Figure 8(a) shows the

temperature dependence of C=T2 at 12 T in the pristine and
irradiated samples. The C=T2 data exhibit nearly T-linear
behavior with finite residual values in the low-temperature
limit, which can be fitted with αþ βT. The residual term α
of the irradiated sample is about twice larger than that of the
pristine sample, indicating that the additional excitation
also appears for Hkb.
We consider the derivation from the T-linear behavior at

high temperatures by the Z2-flux contribution. The Z2-flux
contribution can be estimated by the simple Schottky
formula Cflux=T ¼ AfluxðΔ2

flux=T
3Þ · eΔflux=Tð1þ eΔflux=TÞ2.

This contribution is weighted largely at high temperatures,
because the Z2-flux gap Δflux, which is related to Tmax, is
much larger than the Majorana gap ΔM [Fig. 8(b)].
Therefore, we perform our fitting at low temperatures
below 2

3
Tmax, where the Z2-flux contribution is small. To

analyze the data for Hka, we assume that the Z2-flux term
remains the same as that for Hkb, because Tmax is almost
angle independent [11]. By using these fixed parameters,
we fit the CðH; TÞ=T data with remaining variable param-
eters in the form βðHÞT2 þ CMðT;ΔMÞ=T þ AðHÞT.
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