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In a crystalline solid under mechanical stress, a Frank-Read source is a pinned dislocation segment that
repeatedly bows and detaches, generating concentric dislocation loops. We demonstrate that, in nematic
liquid crystals, an analogous Frank-Read mechanism can generate concentric disclination loops. Using
experiment, simulation, and theory, we study a disclination segment pinned between surface defects on one
substrate in a nematic cell. Under applied twist of the nematic director, the pinned segment bows and emits
a new disclination loop which expands, leaving the original segment intact; loop emission repeats for each
additional 180° of applied twist. We present experimental micrographs showing loop expansion and snap-
off, numerical simulations of loop emission under both quasistatic and dynamic loading, and theoretical
analysis considering both free energy minimization and the balance of competing forces. We find that the
critical stress for disclination loop emission scales as the inverse of segment length and changes as a
function of strain rate and temperature, in close analogy to the Frank-Read source mechanism in crystals.
Lastly, we discuss how Frank-Read sources could be used to modify microstructural evolution in both
passive and active nematics.
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I. INTRODUCTION

In both crystalline solids and nematic liquid crystals, the
nucleation, motion, annihilation, and microstructure of line
defects influence macroscopic material properties. In crys-
tals, dislocations disrupt translational order [1,2]; under
external stress, their motion produces plastic yield. In
nematic liquid crystals, disclinations disrupt orientational
order [3–9]. Disclinations in nematics nucleate, move, and
annihilate in response to elastic stress [9] and fluid flow
[10,11]. In passive liquid crystals, disclinations form during
cooling into the nematic phase, or when surface anchoring is
broken [12], andmay be stabilized by topological constraints
such as those associated with colloidal inclusions [13] and
patterned surface anchoring [14–16]. In active nematics,
disclinations spontaneously nucleate, move, and annihilate
[17–23]. Mechanisms governing disclination nucleation are

therefore important to understand microstructural evolution
in nematics.
In crystalline solids, the most common mechanism for

generating dislocations is a Frank-Read source [1,2,24].
Here, a preexisting dislocation line is pinned at two points
along its length, e.g., by impurities or entanglement with
other defects. Under applied stress, the dislocation segment
bows out into a circular arc. As stress increases, the arc
expands and eventually self-intersects; a new dislocation
loop snaps off, while the segment between the pinning
points remains intact. This process can repeat periodically,
leading to formation of a series of expanding concentric
dislocation loops, resulting in plastic deformation of the
crystal under stress. This continuous process may arrest if
outgoing loops are blocked, creating a back stress on the
source.
Here, we explore an analogous Frank-Read mechanism

arising in nematic liquid crystals. In crystals, the Frank-
Read mechanism has been extensively investigated to
understand material susceptibility to plastic deformation
[2]. To gain insight into the Frank-Read mechanism in
nematics, we perform experiments on a pinned disclination
segment under twist deformation and perform simulations
of disclination loop emission under both quasistatic and
dynamic strain conditions. Next, we develop an analytic
theory using minimization of a two-dimensional (2D) free
energy and a more intuitive theory using the Peach-Koehler
force, which is the force driving defect motion due to local
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stress. Lastly, we discuss the potential role of engineered
Frank-Read sources to drive heterogeneous loop nucleation
and control microstructural evolution in passive and active
nematics.

II. EXPERIMENT

To study a Frank-Read source in a nematic, we perform
an experiment using a dynamic cell [25,26] where the in-
plane rotation angle between top and bottom glass sub-
strates can be changed to impose twist. The upper substrate,
which is a convex lens with radius of curvature of 2 m, has
uniform planar anchoring, with a polyimide layer aligned
via uniaxial rubbing. The lower substrate has an anchoring
layer with two point defects of topological charge þ1=2
and −1=2 [3,15,26], as shown in Fig. 1(a), patterned via a
photoalignment technique [27]. The region with defects on
the lower substrate consists of three areas with distinct
orientations, surrounded by uniform planar anchoring,
producing the two point defects [3,15]. The gap between

the substrates is filled with a nematic liquid crystal and a
vertical disclination arch spontaneously forms, pinned at its
ends by the two surface defects, as shown schematically in
Fig. 1(a). Viewed from above, the arch appears as a straight
segment, as seen in a micrograph Fig. 1(b). At 0° of twist,
the length of the disclination line is approximately equal to
the spacing between the two point defects, which is
100 μm. The gap between the two substrates is approx-
imately 30 μm.
An in-plane twist is then imposed between upper and

lower substrates. After we increase the relative orientation
angle, twisting the nematic director, the disclination bows
and expands laterally into a horizontal arc as shown in
Figs. 1(c)–1(g). If the twist angle exceeds a threshold value,
the disclination arc expands enough to self-intersect and
snap off a new loop, as shown in Figs. 1(h) and 1(i). The
newly emitted disclination loop expands, leaving the
original pinned segment intact. Experimental details are
provided in Sec. VIII and in Ref. [26]. A real time video of
the experiment (Movie S1) is provided in Supplemental
Material [28].
The angle of 144° is the smallest rotation for which we

find loop emission within a reasonable waiting time, here
about 9 min. If we stop at a slightly larger rotation angle,
loop emission occurs within a shorter waiting time. For a
rotation angle of 160°, the waiting time drops to zero.
This sequence of defect bowing, self-intersection, and

loop snap-off is nearly identical to that observed for
dislocation loop emission from a Frank-Read source in a
crystalline solid; but the properties of dislocations in
crystals and disclinations in nematic liquid crystals are
not identical. Therefore, we perform simulations and
theoretical analysis to explore the properties and dynamics
of a Frank-Read source in a nematic.

III. SIMULATIONS: QUASISTATIC
TWIST DEFORMATION

To gain insight into the Frank-Read mechanism in
nematics, we perform numerical simulations of a nematic
cell using the geometry shown in Fig. 2, under conditions
of quasistatic twist. The bottom substrate has strong
anchoring with two point defects of topological charges
þ1=2 and −1=2, similar (although not identical) to the
experiment shown in Fig. 1 [9,29,30]. The top surface has
strong anchoring in a uniform planar direction. The four
side surfaces are free boundaries. The spacing between
surface disclinations is w ¼ 4 (arbitrary units), with cell
size 120 × 120 × 10. Inside the cell, orientational order is
characterized by the nematic order tensor Qðr; tÞ, with free
energy given by a Landau–de Gennes series expansion. We
implement relaxational dynamics using an overdamped
equation of motion, solved numerically via time-dependent
finite-element modeling, using the software package
COMSOL. Details are given in Sec. VIII.

FIG. 1. Experimental micrographs showing a Frank-Read
source in a dynamic liquid-crystal cell, with a disclination
segment pinned at two point defects on the lower substrate,
before and after an imposed twist strain. (a) Diagram of the
dynamic cell. The surface of a convex lens (upper substrate)
imposes uniform planar alignment. The anchoring pattern with
two point defects is shown on the lower substrate. (b) Viewed
from above, the arch appears as a straight line at t ¼ 0 s.
(c)–(i) Disclination shape evolution after the angle between
the two substrates is increased via mechanical rotation by
144°, showing the Frank-Read mechanism. The defect segment
initially bows outward, shown at times (c) t ¼ 210 s,
(d) t ¼ 300 s, (e) t ¼ 400 s, (f) t ¼ 540 s, and (g) t ¼ 740 s.
(h) Self-intersection occurs at t ¼ 770 s. (i) At t ¼ 788 s, a new
loop has snapped off, leaving the initial segment intact.
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Inside the cell shown in Fig. 3(a), the top surface planar
anchoring is initially aligned with the y axis, which is also
the far-field orientation of the bottom surface. We initialize
the order tensor as a uniform nematic state aligned with the
y axis, and it relaxes into a stable configuration with a
single disclination line connecting the two surface defects
in an arch. Because the surface anchoring imposes parallel
alignment with the two substrates, the resulting director
field is also parallel to both substrates to minimize the

elastic energy. As a result, the rotation axis of the director
around the disclination (Ω̂) is always perpendicular to the
substrates, causing the disclination line to transform con-
tinuously from a þ1=2 wedge disclination, to a twist
disclination, and eventually to a −1=2 wedge disclination
along its length.
Next, we rotate the anchoring direction of the top

surface through an angle δϕ. Loading is quasistatic; at
each value of δϕ, we begin with the previous configuration
of nematic order and run the simulation until the nematic
order relaxes to a new steady state. As δϕ increases from 0°
to 150°, the disclination bows laterally into a curve, as seen
in Figs. 3(a)–3(d). When δϕ reaches 150°, the curve is
approximately a semicircle. The disclination separates
regions with different twist angles between bottom and
top substrates. As discussed below, it is stabilized by the
balance between the line tension (which favors a short
disclination) and the twist energy (which favors moving
the disclination to enlarge the low-twist region and reduce
the high-twist region). We note that, since the rotation
of the top substrate does not introduce any z component
into the director field, the Ω̂ vector of the bowed discli-
nation line [9] remains perpendicular to the substrates,
implying that the topological feature of the bowed dis-
clination line is still the same as the one for δϕ ¼ 0.
As we increase applied twist, the system eventually

reaches a threshold where the behavior changes radically.
At 160°, the disclination moves through the series of shapes
shown in Figs. 3(e)–3(j) via overdamped relaxation. Here,
the disclination does not find a stable or metastable
position. Instead, it expands; arms adjacent to the two
fixed ends rotate toward each other, intersect, and merge

FIG. 2. Geometry of the simulation cell, for the order-tensor
and the lattice simulations. The bottom substrate (purple) has an
anchoring pattern with two surface disclinations, while the top
substrate (cyan) has uniform planar anchoring, which is initially
aligned with the far field of the bottom substrate. A disclination
arch (yellow) connects the two surface disclinations. Based on
the director field around the disclination arch, the type of the
disclination changes continuously from a þ1=2 wedge disclina-
tion, to a twist disclination and eventually to a −1=2 wedge
disclination along the line from left to right. The inset graph
shows the cross section of the twist disclination in the disclination
arch, and the Ω̂ vector indicates the rotation axis of the director
around the disclination. In the example shown here, the arch is
derived from order-tensor simulations.

FIG. 3. Sequence of disclination structures as the top surface is rotated quasistatically, based on simulations of the nematic order
tensor. In these views from above, the color indicates the twist angle (in degrees) of the nematic director from the bottom to the top
surface. Inside the disclination cores, the twist angle is not uniquely defined because of biaxiality, and, hence, the color is shown as
white. (a)–(d) Steady states with δϕ fixed at 0°, 90°, 130°, and 150°, respectively. The size of the viewing window is 24 × 24.
(e)–(j) Snapshots of the dynamic process when δϕ is increased to 160°, which is slightly greater than the threshold angle. The size of the
viewing window is 120 × 120. The cyan cylinder located at the top right corner of each image represents the orientation of the top
surface.
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[Fig. 3(g)], snapping off to form two new disclination lines
[Fig. 3(h)]. One of these is a newly emitted pure twist
disclination loop which expands [Fig. 3(i)] and eventually
moves out of the simulation box by annihilating at the free
boundaries [Fig. 3(j)]. Through emission, expansion, and
escape of this loop, the net twist deformation in the cell is
reduced by 180°, which demonstrates a mechanism of stress
release in nematic liquid crystals by generation and motion
of topological defects. The remaining disclination segment
connects the two surface defects, and this source is ready to
emit more loops under further imposed twist. A new loop is
emitted for each additional 180° of applied twist. An
animation of the simulation (Movie S2) is provided in
Supplemental Material [28].
Because our model has mirror symmetry about the

vertical plane crossing the two defect points on the bottom
substrate at δϕ ¼ 0, and the nematic liquid crystal is
achiral, we expect the same behavior for the pinned
disclination line when δϕ is negative, except that the
pinned disclination line bows toward the opposite direction.

IV. SIMULATIONS: FINITE TWIST
RATE AND THERMAL EFFECTS

To examine effects of finite twist rate, we simulate a
nematic liquid crystal in a cell with the same geometry as
Fig. 2, using a Lebwohl-Lasher rotor model [31–33]. The
liquid crystal is represented as a uniaxial nematic with a
unit director field, n̂i, defined on each site i of a cubic
lattice, interacting through the nearest-neighbor potential
Uij ¼−ϵP2ðn̂i · n̂jÞ¼−ϵ½3

2
ðn̂i · n̂jÞ2− 1

2
�. The director field

evolves via overdamped rotor dynamics, relaxing along the
potential energy gradient. Temperature is controlled via a

Langevin thermostat. We implement the model for fast
execution using graphics processing unit acceleration.
Model details are provided in Sec. VIII.
Figures 4(a)–4(c) show disclination loop emission at

finite temperature and under continuously increasing twist
angle; color indicates local potential energy density. As
twist increases, the disclination bows and expands into an
arc. At a twist angle δϕ�, the arc self-intersects [Fig. 4(b)],
snapping off to form a new loop which expands and moves
out of the simulated cell via annihilation at the free surfaces
[Fig. 4(c)]. We note that the Lebwohl-Lasher model intro-
duces anisotropic line tension which causes curved
disclinations to facet, an artifact of the underlying cubic
lattice. An animation is shown in Supplemental Material
(Movie S3) [28].
We vary the applied twist rate of the top surface

anchoring orientation. As shown in Fig. 4(d), the threshold
for loop emission δϕ� (identified here as the angle
corresponding to peak potential energy) rises with increas-
ing twist rate. This finding is in qualitative agreement with
the behavior of Frank-Read sources in crystalline solids,
where the strain threshold for loop emission typically rises
with increasing strain rate [34].
Next, we model thermal effects. We perform simulations

at different temperatures and find that the threshold angle
for loop emission rises with temperature [Fig. 4(h)]. This
increase in strain at loop emission as a function of
temperature is qualitatively similar to behavior of Frank-
Read sources in crystalline solids [35].
As another measure of thermal effects, we study the

behavior of a bowed disclination segment under gradually
increasing temperature. We hold the twist angle at a fixed,

FIG. 4. Simulations of Frank-Read source behavior at finite temperature, via the Lebwohl-Lasher model, with defect spacing w ¼ 16
and cell thickness d ¼ 10. (a)–(c) Disclination loop emission under continuous twist of the planar anchoring orientation at the top
surface, with rate 90°=100k time steps and temperature kBT ¼ 0.1ϵ. (d) Threshold twist angle δϕ� for loop emission increases as a
function of applied twist rate. (e)–(g) Disclination loop with fixed subcritical applied twist undergoes stable expansion as temperature
increases, due to changes in Frank elasticity and line tension. (h) Threshold twist angle δϕ� for loop emission increases as a function of
temperature.
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subcritical value where the bowed disclination segment is
metastable. As temperature rises from kBT ¼ 0.1ϵ to 0.5ϵ,
the disclination arc expands outward [Figs. 4(e)–4(g)]. This
spontaneous expansion is similar to the disclination “blow-
out” at the nematic-isotropic transition, reported in previous
Lebwohl-Lasher simulations [31], but occurs within the
nematic phase. It is also consistent with the change in
disclination shape on heating observed experimentally by
Modin et al. [36].
We note that the Lebwohl-Lasher model takes account of

only director relaxation without hydrodynamics. In future
work on finite strain rate studies, we will add hydro-
dynamics [11,22,37,38] to investigate backflow effects in
loop emission and resulting rheological response.

V. ANALYTIC THEORY: 2D FREE ENERGY

For an analytic theory of the Frank-Read source, we
consider the geometry in Fig. 5(a). We assume the nematic
director lies in the ðx; yÞ plane so that n̂ ¼ ðcosϕ; sinϕ; 0Þ.
On the lower substrate, it is anchored at orientation
ϕBðx; yÞ, given in Sec. VIII, which has surface defects at

ð�w=2; 0Þ. On the top substrate, it is anchored at
ϕT ¼ ðπ=2Þ þ δϕ, with δϕ ≥ 0, independent of x and y.
This geometry induces formation of a disclination shown
by the thick red line in Fig. 5(a).
We approximate the disclination shape as a circular arc

between the surface defects, passing through ð0; ytopÞ. For
ytop ¼ 0, this shape is a straight line between the two
surface defects. For ytop ¼ w=2, it is a semicircle connect-
ing the surface defects. For ytop → þ∞, it is an almost-
complete circle in the positive y region, just touching the
surface defects.
The free energy of this configuration has two components.

One component is the line energy, proportional to the length
of the disclination. The second component is the elastic
energy associated with director twist between the two
substrates. As ytop increases and the disclination grows,
the line energy increases but the elastic energy decreases,
because more area is transformed from high twist to reduced
twist. The balance between these two competing terms is
worked out in detail in Sec. VIII. The minimum free energy
occurs at

δϕ ¼ arctanð2ȳtopÞ þ
8αȳtop

1þ 4ȳ2top
; ð1Þ

which implicitly shows how disclination shape evolves with
δϕ. Here, ȳtop ¼ ytop=w is a dimensionless parameter char-
acterizing ytop normalized by defect separation w. Likewise,
α ¼ ðIdÞ=ðπK22wÞ is a dimensionless parameter represent-
ing line tension I times cell thickness d, compared with twist
elastic constant K22 and defect separation w.
By analyzing Eq. (1), we identify distinct regimes of

stability, shown in Fig. 5(b). First, consider the case of
α < 1=4. As δϕ rotates from 0 to π=2, ytop increases from
0 to þ∞. Hence, the disclination grows from a straight
segment at δϕ ¼ 0 into a semicircle and then into an
almost-complete circle connecting the surface defects at
δϕ ¼ π=2. All of these shapes are stable minima of the free
energy. If δϕ rotates beyond π=2, then there is no stable
shape in the positive y region. Rather, the disclination must
grow to infinity.
If α > 1=4, the behavior is different. As δϕ rotates from

0 to π=2, ytop increases from 0 to a finite value, which
depends on α. If δϕ rotates beyond π=2, then ytop continues
to increase, and the disclination grows larger in the positive
y region as ametastable structure (while the stable structure
is a disclination in the negative y region). The metastable
disclination can grow up to

ȳmax
top ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αþ 1

4α − 1

r
;

δϕmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16α2 − 1

p

2
þ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αþ 1

4α − 1

r
: ð2Þ

FIG. 5. (a) Geometry for the theoretical free energy of the
Frank-Read source. The thick red line represents the curved
disclination, viewed from above. (b) Stability diagram in terms of
angle δϕ and dimensionless parameter α, indicating whether the
curved disclination is stable, metastable, or unstable (so that it
must grow to infinity). Along the gray dashed line, the shape
is a semicircle. (c) Comparison of theoretical predictions with
nematic-order-tensor simulation results, for different defect
spacings w.
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If δϕ rotates beyond δϕmax, the disclination becomes
unstable; it finds no steady state in the positive y region.
Instead, it must expand to infinity.
Predictions of this analytic theory can be compared with

the quasistatic nematic-order-tensor simulation presented
above. Figure 5(c) shows simulation results for defect
separation w ¼ 4, 8, and 18. For each value of δϕ, we
analyze the simulated shape to extract ytop. These results
can be fit to Eq. (1), with the dimensionless parameter
α ¼ 0.908, 0.454, and 0.202. The prediction and simula-
tions agree well over the full range of δϕ, and they give
consistent values for the limit of metastability δϕmax. As
expected, α is inversely proportional to w. From the values
of α and w, along with the cell thickness d ¼ 10 and twist
elastic constant K22 ¼ 3.0, we extract the line tension
I ¼ 3.4 (all in the arbitrary units defined in Sec. VIII).
Line tension is assumed to remain constant throughout the
dynamic expansion process. This value is reasonable in
terms of Landau–de Gennes theory.
The predictions can be used to interpret the experiment

presented in Fig. 1 and Supplemental Video S1 [28].
Because the disclination line expands rapidly past
δϕ ¼ 144°, we estimate the dimensionless parameter
α ¼ ðIdÞ=ðπK22wÞ ¼ 0.9. Because the surface defect spac-
ing is w ¼ 100 μm, and the cell gap is d ¼ 30 μm, we have
the ratio I=K22 ¼ 10. For example, the twist elastic con-
stant might be K22 ¼ 4 pN, and disclination line tension
I ¼ 40 pN. These numerical estimates can be compared
with a recent experimental and theoretical study by Modin
et al. [36]. Our dimensionless parameter α is equivalent to
their parameter 2γ̃, and our estimate I=K22 ¼ 10 is similar to
their reported ratio of 12 to 18, depending on temperature.

VI. ANALYTIC THEORY:
PEACH-KOEHLER FORCE

In crystalline solids, the standard theory of a Frank-Read
source is based on the balance between the Peach-Koehler
force (which pushes the dislocation forward) and the
dislocation line tension (which pulls it back). The
Peach-Koehler force is a force per length acting on
dislocations in crystalline solids under stress [1,2,39]. It
can be written as f PK ¼ ðb · σÞ × t̂, where b is the Burgers
vector, σ is the local stress tensor, and t̂ is the local tangent
vector of the dislocation. An estimate of its magnitude is
fPK ¼ bσ. By contrast, the line tension provides a force per
length of I=r, where I is the dislocation energy per length
and r is the local curvature radius. These forces balance
when bσ ¼ I=r. As an estimate, the dislocation energy per
length is I ≈Gb2, where G is the shear modulus of a solid.
Furthermore, the minimum curvature radius is r ≈ w=2,
where w is the spacing between the pinned defects. Hence,
the curved dislocation is stable only up to a maximum
stress of σ ≈ 2Gb=w. Beyond that stress, the Frank-Read
source becomes active and produces dislocation loops.

We can apply the same argument to the Frank-
Read source in a nematic liquid crystal. Early work by
Kléman [3] showed that nematic disclinations experience a
Peach-Koehler force, but this effect has not been studied
much in the liquid-crystal literature. In a recent paper [9],
our group developed a theory for this force as

f PK ¼ ðπΩ̂ · σeffÞ × t̂: ð3Þ

Here, Ω̂ is the rotation vector of the director field around
the disclination, with πΩ̂ analogous to a Burgers vector.
The effective stress tensor σeff is the difference of torques
between the top and bottom surfaces, normalized by the
area over which the torques are applied. Hence, a simple
estimate of the Peach-Koehler force per length is
fPK ¼ πσeff . It competes with the disclination line ten-
sion, which provides a force per length of I=r, and the
forces balance when πσeff ¼ I=r. The disclination energy
per length is approximately I ≈ Kπ2, assuming all Frank
elastic constants are equal to K. The minimum curvature
radius is r ≈ w=2, half the spacing between the surface
defects.
Hence, the curved disclination is stable only up to the

maximum effective stress of σeff ≈ 2Kπ=w. Beyond that
stress, it produces disclination loops. Critical stress for
dislocation loop emission in crystalline solids also scales
inversely with the distance between pinning points.
Tomake our theorymore precise, we return to Eq. (3). The

tangent vector t̂ runs along the disclination. It is in the ðx; yÞ
plane, except in small regions near the two surface defects.
The rotation vector Ω̂ is vertical everywhere. We must make
an arbitrary choice for the signs of t̂ and Ω̂, and these two
signsmust be compatiblewith each other. Let us choose that t̂
goes from theþ1=2 to the−1=2 surface defect, and Ω̂ ¼ þẑ.
From Ref. [9], assuming equal Frank elastic constants, the
effective stress tensor is σeffji ¼ Kðn̂ × ∂in̂Þj. As a simple
approximation, we consider only the variation of n̂ in the z
direction. The effective stress of rotating the top alignment
from ϕT ¼ π=2 to ϕT ¼ ðπ=2Þ þ δϕ then becomes
σeffzz ¼ Kðδϕ − ϕBÞ=d, with all other components zero.
Hence, the Peach-Koehler force per length acting on the
disclination is

f PK ¼ πK
δϕ − ϕB

d
ẑ × t̂: ð4Þ

In our geometry, t̂ is mostly in the þx̂ direction, and, hence,
f PK is mostly in the þŷ direction. It pushes the disclination
toward the positive y region, as seen in both experiment and
simulations. By comparison, line tension provides a force per
length of

f tension ¼ −
I
r
ẑ × t̂; ð5Þ

CHENG LONG et al. PHYS. REV. X 14, 011044 (2024)

011044-6



with direction inward toward the center of curvature. By
balancing these forces, we predict the curvature radius

r ¼ Id
πKðδϕ − ϕBÞ

: ð6Þ

Using expressions for r and alignment angle ϕB from
Sec. VIII, we see that this equation is exactly equivalent to
Eq. (1) derived from free energy minimization. It predicts the
maximum stable stress of σeffzz ¼ ð2IÞ=ðπwÞ, consistent with
the estimate above, in the limit of α ¼ ðIdÞ=ðπKwÞ ≫ 1.
One further benefit of the Peach-Koehler force concept is

that it provides a way to estimate the velocity of an
expanding disclination loop. In general, a disclination
moves with overdamped dynamics, following the equation
of motion f total ¼ ζv, where f total ¼ f PK þ f tension is the
total force (per length), ζ is the drag coefficient (per length),
and v is the velocity. In Sec. VIII, we use this dynamic
equation to determine the velocity of a large expanding
disclination loop. We find v ¼ 0.81ðδϕ − π=2Þ, in the
arbitrary units. For example, δϕ ¼ 160° gives v ¼ 1.00,
and δϕ ¼ 108° gives v ¼ 0.26.
To check this estimate, we monitor loop expansion after

δϕ exceeds the critical threshold, as in Figs. 3(e)–3(j),
tracking ytop as a function of time. Figure 6(a) shows the
motion in the simulation with defect spacingw ¼ 4 at angle
δϕ ¼ 160°. After an initial phase of slow growth, presum-
ably limited by line tension, ytop increases at the steady
velocity of 1.10 arbitrary units. Figure 6(b) shows corre-
sponding results in the simulation with w ¼ 8 at
δϕ ¼ 108°. In this case, ytop increases at the steady velocity
of 0.256 arbitrary units. These simulation results are quite
consistent with the prediction.
We note that the present analysis using the Peach-Kohler

force was carried out under the approximation of equal
splay and bend Frank elastic constants. In this limit, we find
that the analogy to the Peach-Kohler mechanism in
crystalline solids works well. The case of unequal Frank
constants is more challenging and will be the subject of
future investigation.

VII. DISCUSSION AND OUTLOOK

In closely related experimental and theoretical work,
Jiang et al. [40] studied a lattice of surface-pinned
disclination segments in a nematic cell. Under director
twist imposed by optically rewriting surface anchoring
orientation on the opposite substrate, the defects underwent
programmable transformations via expansion, merging,
and reconfiguration. We interpret this geometry as an array
of Frank-Read sources that are closely spaced, such that
expanding disclination segments merge and reconnect,
preempting loop emission. We predict that spacing the
pinned segments further apart will enable emission of
expanding loops, forming an array of Frank-Read sources.
Expanding loops will then collide and reconnect.
Independent of defect spacing, this mechanism creates a
localized slip plane for twist deformation, in analogy to slip
planes in metals. We speculate that this technique could be
implemented to control microstructural evolution and
rheological response (e.g., lubrication) for flow of nematics
under shear between patterned substrates.
The Frank-Read mechanism could arise more generally

in nematics via other stimuli that deform the director field,
such as fluid flow and electric or magnetic fields, or by
internal stresses in active nematics. In nematic flow through
a microfluidic channel [11,41–43] or in a Couette cell [10],
disclination nucleation has been observed at confining
walls due to the presence of surface irregularities which
pin disclinations.
In nematics, we have so far considered only Frank-Read

sources with pinning points located on a confining surface.
In crystals, by contrast, dislocations can pin at random
along their length via jog formation, interaction with
impurities, or entanglement [2,34], generating new
Frank-Read sources. Disclinations in pure nematics do
not spontaneously pin by any analogous mechanism.
However, addition of colloid particles can induce discli-
nations to form knots and complex entangled networks
[11], suggesting that a nematic-colloid composite might
demonstrate spontaneous Frank-Read source formation
under imposed flow. We speculate that resulting micro-
structural evolution might show complex behaviors in
analogy to mechanisms governing plasticity in crystalline
solids. On the other hand, thanks to the interaction between
colloids and disclinations, the Frank-Read source also
provides a controllable approach for redistribution of
colloids immersed in nematic liquid crystals responding
to external stimuli. From recent studies on manipulation of
light using nematic disclinations [44–46], we speculate that
disclinations controlled and created via the Frank-Read
mechanism might find use in novel optical applications.
In 3D active nematics, active stress drives both fluid flow

and director rotation. Studies by Duclos et al. [22] revealed
3D details of microstructural evolution. They showed that
colliding disclinations merge and reconnect without form-
ing long-lived pinning points. While they observed that

FIG. 6. Motion of ytop during the unstable expansion process,
from nematic-order-tensor simulations. (a) Defect spacing w ¼ 4
and angle δϕ ¼ 160°. (b) Defect spacing w ¼ 8 and angle
δϕ ¼ 108°. The black dashed lines show linear fits in the limit
of ytop ≫ w.
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disclination self-intersection can generate new loops, in the
absence of defect pinning, no Frank-Read source formation
was observed. In future work, we will investigate whether a
network of Frank-Read sources can be created in an active
nematic by inscribing defect pinning points on confining
substrates.
It is also interesting to note that the homogeneous defect

loop nucleation mechanism in active nematics, as shown in
Duclos et al. [22], is not typically observed in plastic
deformation of ductile crystals. Dislocation loop generation
from Frank-Read sources occurs at far lower critical stress,
and, thus, heterogeneous defect nucleation preempts homo-
geneous nucleation. Reasoning by analogy, we speculate
that a high-density network of Frank-Read sources in an
active nematic could produce a more ordered pattern of
defect generation and flow, with stresses never reaching the
threshold for homogeneous loop nucleation. Any mecha-
nism that produces disclination pinning—e.g., surface
defects, colloids, or micropillars—could, thus, modify
pattern formation and rheology of both active and passive
nematics.
In conclusion, we have presented experimental, theo-

retical, and simulation studies of the Frank-Read mecha-
nism in nematic liquid crystals. The experimental
micrograph in Figs. 1(b)–1(i) shows the signature shape
evolution of a Frank-Read source. Quasistatic simulations
using a nematic order tensor and Landau–de Gennes free
energy demonstrate the mechanism. Finite strain rate
simulations via the Lebwohl-Lasher rotor model show that
threshold twist for loop emission rises with increasing
strain rate, analogous to behavior in metals. We also
observe spontaneous loop expansion under increase of
temperature. We develop analytical theory of loop emission
by minimizing a 2D free energy and also via balance of
Peach-Koehler and line tension forces, showing close
agreement with quasistatic simulations.
As a historical aside, we note that Sir Frederick Charles

Frank made crucial contributions to the study of both
crystal plasticity and nematic liquid crystals. He codiscov-
ered the Frank-Read source mechanism together with
Thornton Read in 1950 [24] and also formulated the
Frank free energy for liquid crystals with contributions
from splay, twist, and bend, in 1958 [47]. The work
described here brings together and builds upon Frank’s
contributions to both fields.

VIII. METHODS

A. Dynamic cell experiment

The dynamic cell [25,26] is comprised of two glass
substrates, top and bottom, with a nematic liquid crystal (in
this case, 5CB) sandwiched in between [Fig. 1(a)]. The
bottom substrate is fixed on a rotating stage whose rotation
axis is along the substrate normal (z axis). The top substrate
is fixed on a stage which translates along the z axis. This

setup allows the bottom substrate to twist with respect to
the top substrate and for the top substrate to translate to
change the cell gap between substrates. The cell gap is
measured using a capacitance sensor.
The bottom substrate is a 1 inch × 2 inch glass substrate.

We used a plano-convex lens (1 inch diameter; with a radius
of curvature of 2 m) for the top substrate. The top substrate
is coated with PI-2555 polyimide and is rubbed 10 times
with a velvet cloth and marked to indicate the rubbing
direction. The bottom substrate is coated with an azo-based
photoalignment compound (SD-1) that can be photoaligned
by polarized UV light [48].
Photoalignment of the bottom substrate is done in two

steps. First, the entire substrate is exposed to polarized
UV light (8 mW=cm2 for 1 min) to induce uniform
planar anchoring. Surface defects are then generated in
the surface anchoring pattern using a maskless photoalign-
ment system [25,27,49].
The patterned anchoring is comprised of four regions

with different planar alignment angles [Fig. 1(a)]. The
central rectangular region ð100 μm × 50 μmÞ is split into
three segments as shown in Fig. 1(a). The maskless system
uses a rotating polarizer to expose the substrate with
polarized UV light. Each region is aligned in turn: First,
the polarizer is rotated to generate the desired alignment
angle. Then, the maskless system creates an image of the
region focused on the substrate surface.
Once the substrate preparation is complete, the dynamic

cell is assembled. First, a small amount of 5CB is deposited
on the bottom substrate surface. The disclination line
[Fig. 1(b)] spontaneously forms between the two surface
defects. Then, the top substrate is translated downward,
put in contact with the liquid crystal, and is further
translated downward until a cell gap of approximately
30 μm is attained.

B. Simulations of nematic order tensor

Nematic order is represented by the tensor Qðr; tÞ, which
is a function of position and time. In uniaxial regions,
outside of disclination cores, this tensor is related to
the nematic director n̂ and scalar order parameter S by
Qij ¼ Sð3

2
ninj − 1

2
δijÞ. The free energy is given by the

standard Landau–de Gennes series expansion

F ¼
Z

d3r

�
A
2
TrQ2 þ B

3
TrQ3 þ C

4
ðTrQ2Þ2

þ L
2
ð∂iQjkÞð∂iQjkÞ

�
; ð7Þ

where the first three terms are the bulk free energy and the
last term is the distortion free energy. We choose the
coefficients A ¼ −1, B ¼ −12.3, C ¼ 10, and L ¼ 2.32 in
arbitrary units. The ratios of these coefficients correspond
to the ratios in the liquid crystal 5CB, provided that the unit

CHENG LONG et al. PHYS. REV. X 14, 011044 (2024)

011044-8



length in our simulations corresponds to 4.45 nm.With these
coefficients, the bulk scalar order parameter is the minimum
of the bulk free energy S ¼ 0.53. The single elastic constant
L for the nematic order tensor implies a single Frank elastic
constant for the director K ¼ 9

2
S2L ¼ 3.0.

To model pure relaxational dynamics, we use the over-
damped equation of motion for Qðr; tÞ:

Γ
∂Qij

∂t
¼ −

δF
δQij

; ð8Þ

where Γ is the rotational viscosity coefficient in the tensor
representation. We choose units of time such that Γ ¼ 1.
In the dynamic evolution, we impose strong planar

anchoring conditions on the bottom and top surfaces, with
n̂ ¼ ðcos ϕ; sin ϕ; 0Þ. On the bottom, the director configu-
ration is

ϕBðx;yÞ ¼−
1

2
arctan

xþw=2
y

þ 1

2
arctan

x−w=2
y

þ π

2
: ð9Þ

This pattern has a þ1=2 defect at ð−w=2; 0Þ and a −1=2
defect at ðþw=2; 0Þ, which enables a pinned disclination
line connecting the two defects through the interior of the
liquid-crystal cell. On the top, the director has the uniform
alignment

ϕT ¼ π

2
þ δϕ: ð10Þ

The alignment of the top surface is initially along the
y direction, and δϕ is the angle by which it is rotated from
the initial state.
Disclinations are visualized by the biaxiality parameter

β ¼ 1–6ðTrQ3Þ2=ðTrQ2Þ3. In particular, Fig. 2 shows the
isosurface of β ¼ 0.7. The thickness of the disclination
corresponds to the core radius, which can be estimated from
Landau–de Gennes theory as

rcore ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

j 3
4
AS2 þ 1

4
BS3 þ 9

16
CS4j

s
¼ 1.6 ð11Þ

in arbitrary units. We recognize that this value is unreal-
istically large, in comparison with the defect spacing and
system size. By exaggerating this parameter, we reduce the
ratio of length scales, which allows the simulations to run
more quickly. That is a drawback of simulations of the
nematic order tensor, which is addressed in simulations of
the lattice model.

C. Simulations of lattice model

The Lebwohl-Lasher model is a simplified version of the
order-tensor representation of a nematic liquid crystal,
where we assume equal elastic constants, no biaxiality,
and scalar order parameter of uniform magnitude. Spins on

a N × N × N cubic lattice represent the director field of a
nematic liquid crystal. These spins can rotate freely, but
they do not have any translational motion [50,51]. The
Lebwohl-Lasher model is effective at simulating large
systems on the order of 106 spins, where each spin could
represent a region of similarly aligned molecules [31,51].
Spins interact through the potential

H ¼ −ϵ
X
hi;ji

P2ðn̂i · n̂jÞ ¼ −ϵ
X
hi;ji

�
3

2
ðn̂i · n̂jÞ2 −

1

2

�
; ð12Þ

where i and j are neighboring lattice sites and ϵ is a positive
interaction constant [33,51].
The Lebwohl-Lasher potential effectively brings neigh-

boring spins into parallel alignment and accurately repro-
duces disclination behavior of liquid-crystal systems
[31,32,51]. Spins can be fixed at the boundary and
patterned to represent a strongly anchored layer. In this
study, we use the anchoring patterns of Eqs. (9) and (10) on
the bottom and top surfaces, respectively, just as in the
simulations of the nematic order tensor.
Many Lebwohl-Lasher models in the literature use a

stochastic Monte Carlo algorithm to study equilibrium
behavior at finite temperature [31,33,51]. However, we
use an overdamped torque relationship between the neigh-
boring spins to minimize our energy, creating a Lebwohl-
Lasher rotor model [33,51]. This dynamical system allows
us to study microstructural evolution where the system
continuously moves toward the lowest energy state. The
torque between neighboring spins is calculated from the
derivative of the energy with respect to orientation:

τbond ¼ ϵðn̂i × n̂jÞðn̂i · n̂jÞ: ð13Þ

To allow the system to overcome energy barriers at constant
temperature and reach the global energy minimum, we also
add another term to the torque associated with an angular-
momentum-conserving Langevin thermostat scaled with a
temperature parameter η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8kbTdt
p

[52]. This torque is
then applied equally and oppositely to the neighboring
spins n̂i and n̂j.
We set each spin’s angular velocity proportional to its total

torque, resulting in overdamped rotation. The angular
velocity then becomesω ¼ Cτ, whereC is a mobility factor
inversely proportional to the rotational viscosity. Hence, the
spins in the Lebwohl-Lasher model are updated by

n̂iðtþ dtÞ − n̂iðtÞ
dt

¼ ωiðtÞ × niðtÞ ð14Þ

in each time step dt.
We note that the underlying cubic lattice in the 3D

Lebwohl-Lasher model gives rise to anisotropy in discli-
nation line tension. The lattice favors disclinations running
in orthogonal directions, leading to rectangular shapes.
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Additional interactions with the edges of the square
simulation box enhance the rectangular shape of the
disclination when it is allowed to completely relax. This
rectangular shape is not as pronounced when under a
constant twist rate. Furthermore, the motion of a disclina-
tion requires overcoming a small energy barrier between
lattice sites, in analogy to the Peierls-Nabarro barrier for
dislocations in crystals [53].

D. Minimization of 2D free energy

We consider a nematic liquid crystal in the geometry
shown inFig. 5(a). The bottomand top substrates have strong
anchoring with the configurations given in Eqs. (9) and (10),
respectively. Hence, the bottom substrate has two surface
defects at positions ð�w=2; 0Þ, and these defects are con-
nected by a disclination line. We model this disclination line
by a circular arc passing through ð0; ytopÞ. The total free
energy is the sum of two terms: the line tension associated
with the disclination and the twist free energy of the director
field between the bottom and top substrates. We wish to
minimize the total free energy over the parameter ytop.
The tension free energy is the line tension I multiplied by

the arc length of the disclination, which is the circular radius
times the angle subtended. The radius is r ¼ ðytop=2Þþ
½w2=ð8ytopÞ�, and the angle is θ ¼ 4 arctanð2ytop=wÞ. Hence,
the tension free energy is Ftension ¼ Irθ, and its derivative
with respect to ytop is

∂Ftension

∂ytop
¼ I½2wytop − ðw2 − 4y2topÞ arctanð2ytop=wÞ�

2y2top
: ð15Þ

The twist free energy is associated with twist of the
director between the bottom and top substrates, across the
cell thickness d. It is difficult to calculate the total twist free
energy, integrated over the entire liquid crystal, but easier to
calculate its derivative with respect to ytop. If the center of
the circle moves upward from ytop to ytop þ dytop, then a
narrow arc is transformed from region II to region I.
Remarkably, the anchoring orientation ϕB is uniform along
this arc, with the value ϕB ¼ arctanð2ytop=wÞ. In region II,
the twist angle is ðϕT − ϕBÞ, and, hence, the twist free
energy density per area is ½K22=ð2dÞ�ðϕT − ϕBÞ2. In region
I, the twist angle is reduced to ðϕT − ϕB − πÞ, and, hence,
the twist free energy density per area is reduced to
½K22=ð2dÞ�ðϕT − ϕB − πÞ2. Under this change in ytop, the
area transformed from region II to region I is

∂A
∂ytop

¼ 1

16y3top
½2wytopðw2 þ 4y2topÞ

− ðw4 − 16y4topÞ arctanð2ytop=wÞ�: ð16Þ

Combining these factors, the derivative of twist free energy
with respect to ytop is

∂Ftwist

∂ytop
¼ K22π

32dy3top
½π − 2ϕT þ 2 arctanð2ytop=wÞ�

× ½2wytopðw2 þ 4y2topÞ
− ðw4 − 16y4topÞ arctanð2ytop=wÞ�: ð17Þ

We combine Eqs. (15) and (17) to obtain the derivative of
total free energy with respect to ytop and then set it equal to
zero to find the minimum, giving the result in Eq. (1).
Formally, that equation gives δϕ as a function of ytop.
However, it can be inverted either numerically or graphi-
cally to find ytop as a function of δϕ.

E. Peach-Koehler force

To estimate the velocity of an expanding disclination
loop, we must take the ratio of the total force (per length) to
the drag coefficient (per length).
For a large disclination loop, we have ϕB → π=2, and,

hence, thePeach-Koehler force hasmagnitude ðπK=dÞðδϕ −
π=2Þ in the outward direction. In the same limit of large
radius, the force of tension goes to zero.Hence, the total force
has magnitude ðπK=dÞðδϕ − π=2Þ.
If we neglect fluid flow, the drag coefficient [8,54] is

given by ζ ¼ πγk2 logðrmax=rcoreÞ. Here, γ is the rotational
viscosity (in the director representation), k ¼ 1=2 is the
topological charge of the disclination, rcore is the disclina-
tion core radius, and rmax is the distance from the
disclination to a boundary.
Combining these expressions, we expect the velocity

v ¼ ftotal
ζ

¼ 4Kðδϕ − π=2Þ
γd logðrmax=rcoreÞ

: ð18Þ

In our nematic-order-tensor simulations, the cell thickness
is d ¼ 10 (arbitrary units), and the single Frank elastic
constant is K ¼ 9

2
S2L ¼ 3.0. The distance from the boun-

dary is approximately rmax ¼ 5, and the core radius is
approximately rcore ¼ 1.6. The rotational viscosity γ in the
director representation is related to the corresponding
viscosity Γ in the tensor representation by γjṅj2 ¼ ΓTrQ̇2,
and, hence, γ ¼ 9

2
S2Γ ¼ 1.3. Hence, our prediction for the

disclination velocity becomes v ¼ 0.81ðδϕ − π=2Þ.
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