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Highly diverse ecosystems exhibit a broad distribution of population sizes and species turnover, where
species at high and low abundances are exchanged over time. We show that these two features generically
emerge in the fluctuating phase of many-variable model ecosystems with disordered species interactions,
when species are supported by migration from outside the system at a small rate. We show that these and
other phenomena can be understood through the existence of a scaling regime in the limit of small
migration, in which large fluctuations and long timescales emerge. We construct an exact analytical theory
for this asymptotic regime that provides scaling predictions on timescales and abundance distributions that
are verified exactly in simulations. In this regime, a clear separation emerges between rare and abundant
species at any given time, despite species moving back and forth between the rare and abundant subsets.
The number of abundant species is found to lie strictly below a well-known stability bound, maintaining the
system away from marginality. At the same time, other measures of diversity, which also include some
of the rare species, go above this bound. In the asymptotic limit where the migration rate goes to zero,
trajectories of individual species abundances are described by non-Markovian jump-diffusion processes,
which proceeds as follows: A rare species remains so for some time, then experiences a jump in population
sizes after which it becomes abundant (a species turnover event) and later sees its population size gradually
decreasing again until rare, due to the competition with other species. The asymmetry of abundance
trajectories under time reversal is maintained at a small but finite migration rate. These features may serve
as fingerprints of endogenous fluctuations in highly diverse ecosystems.
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I. INTRODUCTION

In ecological communities, interactions between species
can drive changes in population sizes. For few-species
communities, experiments find dynamics including stable
equilibria, periodic oscillations, and chaos [1–3], which
are explained in terms of dynamical models of inter-
acting populations, such as Lotka-Volterra or resource-
competition models [4]. The applicability of these
few-species theories is limited however, as many natural
ecosystems, from microbes in a grain of soil to plants in a
rainforest, can be staggeringly diverse, and the dynamics of
such highly diverse communities are far less understood.
Observations on highly diverse systems show that the

distribution of species abundances (population sizes) at a
given time is often very broad, with many species at very
low population size [5,6]. Time fluctuations in abundances
can be very large, with “blooms” and significant species

turnover, where the species at high and low abundances are
exchanged over time [7–9].
Theoretically, dynamical models of interacting popula-

tions with many variables can be notoriously challenging to
analyze. They are parametrized by very many parameters
describing the interactions between species, which are
unknown and often unrealistic to obtain from measure-
ments. This has prompted a change of paradigm (following
similar ideas in physics and other fields), replacing
unknown parameters by randomly sampled ones [10,11],
and looking for typical and universal properties of the
many-variable systems. Both physicists and ecologists aim
to classify the different broad behaviors and the robust
features of each, formalized within physics as “phases.” An
important contribution of statistical physics is the ability to
provide mathematical frameworks, giving systematic
answers to questions on these robust properties. This work
provides such a framework for one such challenging phase.
Two distinct phases that have recently attracted much

attention are a phase where the abundances of different
species reach a fixed point, and another where they fluctuate
indefinitely [12–14]. These distinct behaviors have been
observed in controlled experiments where properties of
microbial communities are varied [15], highlighting the
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power of robust theoretical predictions when applied to
ecological phenomena.
Most of the theoretical work so far has been devoted to

the fixed-point phase, and many of its properties are well
understood, including abundance distributions and limits
on the fixed-point stability that signal the transition to the
fluctuating phase [12,13,16]. Predictions obtained theoreti-
cally for the fixed-point phase stand in contrast with
empirically observed broad abundance distributions, and
are also unable to account for situations where large
abundance fluctuations are observed. The dynamical phase,
which is the focus of this work, holds promise of address-
ing these limitations.
Yet, much less has been known about this phase. For

well-mixed systems (no explicit space) that are coupled to
the outside by a migration of all species, simulations have
shown that the system reached a stationary chaotic state
[17]. Similar results have been obtained from simulations
of coupled spatial locations [18,19]. However, for well-
mixed systems in the absence of migration, a dynamical
slowdown is observed, along with large population fluc-
tuations [17,19]. Analytical results for many-species fluc-
tuating dynamics have been derived when interactions are
fully antisymmetric, in which case a stationary chaotic state
is reached even without migration [19]. Yet, this state is
sensitive to the antisymmetry that is not expected to hold
generally in nature [19]. A few-species model featuring
dynamical slowdown and large fluctuations is the three-
species rock-paper-scissors dynamics cycling between and
ever closer to three unstable fixed points (a heteroclinic
orbit) [20]. This elegant model serves as an instructive
analogy for many-species dynamics [19,21,22], yet it is
only of limited relevance to many-species properties
such as diversity, abundance distributions, and stability.
A many-species exactly solvable dynamical toy model
that features dynamical slowdown was introduced in
Ref. [22]. Yet due to its special structure, this model
did not include key features of ecological systems. In
particular, questions relating diversity and linear stability
that appear in many other systems cannot be addressed,
and it also did not include migration that interrupts the
dynamical slowdown process.
In this work, we provide a systematic analytical frame-

work for the dynamical phase for the Lotka-Volterra model
with randomly sampled interactions, in the limit of many
species and when migration rates are small. In this phase,
fluctuations in population sizes are caused solely by
interactions between species, without changes in the
environment. We show that it is precisely in the limit of
low migration, where fluctuations in population sizes get
slower and larger, that many of the striking signatures of
this phase emerge. These features, which are now listed,
include commonly observed traits of high-diversity natural
ecosystems, such as a broad abundance distribution and

species turnover; see points 1 and 2 below. In addition, they
shed new light on the definition and measurement of
diversity when species turnover is involved (see point 4)
and uncover new phenomena that could be used as finger-
prints of endogenous fluctuations; see point 5.
(1) At any given time, abundances are broadly distributed

with many rare species. We show analytically that
over many orders of magnitude, the abundance dis-
tribution scales as a power law with exponent −1 and
characterize the corrections to this power-law behav-
ior when the migration rate is finite. Broad distribu-
tions have been measured in natural ecosystems
[6,23], but their form and origin have been de-
bated [5,24].

(2) The dynamics exhibit species turnover, where the
species at high abundance are exchanged over time
with species that were at low abundances. Hence, the
distinction between rare and abundant species
changes in time, and rare species at a given time
can be important in the future. In particular, we show
that there are always species at low abundances that
are able to grow. This is in contrast to the fixed-point
phase, where rare species cannot invade.

(3) A long timescale emerges, possibly extending over
many generations: As the migration gets lower,
temporal changes in both abundances and growth
rates become slower. This timescale scales as the
absolute value of the logarithm of themigration rate, a
prediction that might be directly tested in controlled
experiments. The combination of species that can
invade and long timescales is what allows species to
reach high abundance, even if they were previously
very rare. Because the dynamics are slow, the species
at high abundance lie close to a fixed point, which
would have been stable in the absence of the other
species.

(4) How do many species coexist in highly diverse
ecosystems is one of the key questions in ecology.
Turnover events and broad abundance distributions
raise questions as to how one might even define
diversity. We show that while the list of abundant
species changes in time, the fraction above any given
threshold abundance fluctuates only by a little.
Furthermore, in the low migration limit, the number
of species with high abundance is well defined,
namely, insensitive to the precise choice of the
threshold. Finally, we show that the number of
high-abundance species, which lie close to a fixed
point, is strictly below the stability bound known as
the “May bound” [11]. Equivalently, this fixed point
is fully stable (as opposed to marginally stable). In
contrast, measures of species richness that also probe
the rarer species with abundances belonging to the
power-law region of the species abundance distri-
bution are not constrained by May’s stability bound.
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In fact, most of the species whose population sizes
are well above the minimal value set by migration
have small abundances.

(5) Lastly, we show that “bloom” dynamics, where a
species grows from rare to abundant, until eventually
going back to rare, are strongly asymmetric under
time reversal. This is an interesting signature of
purely endogenous fluctuations in high-diversity
ecosystems that could be looked for in empirical
time series.

In addition to the above predictions,we also consider isolated
systems (namely, without migration from the outside) and
show that there, the timescale and size of the abundance
fluctuations will continue to grow in time indefinitely. This
inevitably leads to extinctions ofmany species once the finite
size of the populations is taken into account.
The core of our argument is built on identifying the

appropriate transformations of time and abundances, for
which all dynamical properties (including steady-state
distributions and two-time correlations) collapse for differ-
ent values of migration when migration is low. These
scaling relations are verified exactly in collapse of simu-
lation data. We obtain a well-defined stochastic process
for these transformed variables in the limit of a small but
positive migration rate. The resulting picture has features
that set it apart from generic many-variable chaotic dynam-
ics. First, abundances follow non-Markovian jump-
diffusion dynamics. Second, even though the dynamics
are slow, the system is maintained strictly away from
marginality, in contrast with glassy systems [25,26]. Last,
the emergence of the long timescale results from dynamical
slowdown (aging) that would have continued indefinitely at
zero migration. Yet, this slowdown is not due to the
existence of a rough landscape. We trace all the unique
phenomenology back to the possibility of extinctions in the
absence of migration. In other words, this phenomenology
is a consequence of the multiplicative nature of the
dynamics, which are constrained to positive population
sizes with absorbing boundaries at zero population sizes.

II. MODEL DEFINITION: THE TWO PHASES

We start with the Lotka-Volterra system of equations

Ṅi ¼ Ni

�
1 − Ni −

X
jð≠iÞ

αijNj

�
þ λ ð1Þ

for i ¼ 1;…; S where S is the total number of species. The
variables Ni represent the abundances (population sizes) of
the different species, and so Ni ≥ 0 at the initial time and is
guaranteed to remain so throughout. λ ≥ 0 represents
migration from an external source, which for simplicity
is taken to be the same for all i.
Equation (1) is a standard rescaling [13,27–29] of the

Lotka-Volterra equation ṅi¼rini=kiðki−ni−
P

j≠iAijnjÞþ
Di. Here, ni is the dimensionless number of individuals of

species i, and the carrying capacity ki is its long-time value
in the absence of all the other species. The growth rate ri is
of the order of the inverse of a generation time. Finally,
the dimensionless coefficient Aij quantifies the effect of

(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 1. Species richness and species abundance distributions at
fixed points (left column) and a persistently fluctuating state (right
column). (a) Dynamics reaching a fixed point. (b) Persistent
dynamics, where the abundances fluctuate indefinitely in the range
λ≲ Ni ≲ 1. (c)–(f) The corresponding distributions forN and lnN
denoted by PðNÞ and P̂ðlnNÞ, respectively. The distributions
contain three parts [see (e) and (f)]: a top part, which remainsOðλ0Þ
when λ → 0þ, containing S�top species, an intermediate part at
λ ≪ N ≪ 1, and a low part atOðλÞ. The intermediate part contains
a finite fraction of the species in the dynamical phase but not in the
fixed-point phase. (g) The three definitions of species richness
normalized by varðαÞ so that 1 is the fixed-point stability bound as a
function of the interaction variability σ. For σ < σc, a fixed point is
reached, and all three definitions coincide and lie below the stability
bound and agree with known theory (solid line). At σ ¼ σc, the
stability bound is reached. Beyond it, there are persistent fluctua-
tions, and the three definitions no longer coincide: S�top is lower
than the stability bound, while S�inter and S�growth are above it. The
diversities are obtained by solving the rescaled dynamics defined in
Sec. IV and agree quantitatively with careful analysis of the full
equations of motion (see Sec. VII). Simulation parameters for all
figures are given in Appendix A 7.
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species j on species i, and Di is a migration rate per unit
time. For simplicity, we take all ri ¼ r. Equation (1) is
obtained by rescaling time by r and introducing the non-
dimensional parameters Ni ≡ ni=ki, αij ≡ Aijkj=ki, and
λ≡Di=ðrkiÞ. In the following, time is therefore measured
in generation times, and λ compares the number of individ-
uals migrating during one generation time to the carrying
capacity. Below, we study the limit λ ≪ 1 but assume that
absolute population sizes ni, whose minimal size is around
Di=r, are always large enough so that demographic stochas-
ticity can be neglected. The large parameter j ln λj plays an
important role in the following, and since the absolute
population sizes ki can be large (e.g., up to 1010 bacterial
cells in one milliliter), j ln λj can be reasonably large in
ecologically relevant settings.
The limit of large S is relevant to many natural high-

diversity ecosystems, with hundreds to thousands of
species, in communities from microbes to trees [5,30].
We assume that α is a random matrix with Gaussian entries,
and for mathematical convenience we carry most of the
analysis in the case where the interaction coefficients are all
sampled independently from each other such that hαiji ¼
μ=S and hαijαkli − hαijihαkli ¼ σ2δikδkl=S. By using com-
binations of numerical simulations and analytical calcu-
lations, we later show that the qualitative picture presented
in this paper is nonetheless robust to the addition of
correlations (positive or negative) of the interaction coef-
ficients within pairs of species; see Sec. VII.
The system exhibits different dynamical behaviors

depending on the parameters [13]. When μ > 0 and the
heterogeneity of interactions is smaller than a critical value
σ < σc, the dynamics reach a fixed point; see Fig. 1(a). In
it, some species are absent and others remain present. This
definition is straightforward when λ ¼ 0, where a fixed
point dNi=dt ¼ 0 in Eq. (1) implies either Ni ¼ 0, which
are the absent species, or Ni > 0, which are the present
species. At the stable fixed point reached, the extinct
species have negative growth rates Ṅi=Ni < 0 and so
cannot invade, and the subset of the present species is
linearly stable. For small λ > 0, the absent species are now
at values Ni of order λ, and the present species are
unaffected by the small λ. The requirements for a stable
fixed point remain the same.
Above σ > σc, the system evolves indefinitely [see

Fig. 1(b)] without ever settling at a stable fixed point (in
fact, such stable, uninvadable fixed points do not exist [31]).

III. PHENOMENOLOGY

We now describe key features of the dynamics when
σ ≥ σc and λ ≪ 1, starting with the species abundance
distribution (SAD) and then turn to the dynamics.

A. Species abundance and stability

The species abundance distribution PðNÞ in the dynami-
cally fluctuating phase is shown in Figs. 1(d) and 1(f). It

spans many orders of magnitude ranging from Oð1Þ pop-
ulation sizes to order OðλÞ population sizes. This is indeed
the order of magnitude of the minimal value allowed by
migration,whichwe call themigration floor in the following.
Compared to the equilibrium situation, Figs. 1(c) and 1(e),
there are many more species with abundances in the
intermediate range λ ≪ N ≪ 1, and the fraction of species
there remains finite even for small λ; see Fig. 1(f). In this
range, PðNÞ appears to be approximately a power law. The
value of PðlnNÞ changes slowly, so the distribution of the
abundances PðNÞ is expected to behave roughly as N−1

[19,32]; see Fig. 1(c). In Sec. V B, we show that in the
λ → 0þ limit the power law is indeed exactlyN−1 and refine
this picture with precise corrections to this N−1 behavior.
A common way to define the number of present species

(the “species richness”) is by those whose abundance lies
above some value. We consider two definitions based on
this idea and an additional criterion based on the invasion
growth rate. The three proposed definitions of species
richness are as follows:
(1) S�top is the number of species belonging to the right

peak in Fig. 1(f). Their abundance Ni remains finite
even for small λ. These are the top or abundant
species.

(2) S�inter includes the number of “intermediate” species.
It is all species except those belonging to the left
peak in Fig. 1(f). They satisfy Ni ≫ λ.

(3) A third definition S�growth can be obtained through
invasion experiments. If the population size of species
i is set to a value that is small but well above
the migration floor λ ≪ Nnew

i ≪ 1, and keeping
all other Nj unchanged, species i will grow with
½Ṅi=Ni�invasion ¼ gi > 0. gi is called the “invasion
growth rate” (see, e.g., Refs. [33,34]). For the dy-
namics Eq. (1), gi ¼ 1 −

P
jð≠iÞ αijNj. S�growth counts

the number of species with a positive growth rate.
At the fixed-point phase, all three definitions coincide,
S�top ¼ S�inter ¼ S�growth ¼ S�, when λ is small. In the fluc-
tuating phase, given the presence of species in the range
λ ≪ N ≪ 1, one might worry that species richness S�top is
not well defined, in that it relies on an arbitrary cutoff on the
abundances to decide which species are “present” or
“absent,” with a similar concern for S�inter. In the limit
λ → 0þ, we show below that the peaks in Fig. 1(f) become
narrow compared to j ln λj, and therefore, the definitions for
S�top; S�inter become sharp. Focusing on S�top, we argue in
Sec. VII that for λ small but reasonable for ecological
applications, these quantities can be measured in practice
and are not far from their asymptotic values.
The values of S�top; S�inter; S

�
growth are plotted in Fig. 1(g).

They are compared to a bound on species richness coming
from linear stability (horizontal dashed line): If a subset of
S� abundant species is at a fixed point, meaning that the
abundances satisfy 1 − Ni −

P
jð≠iÞ αijNj ¼ 0, this fixed

point will typically be linearly stable (ignoring other
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species) if S�varðαÞ ≤ 1 [11,13]. In the fixed-point phase, it
is known that S�varðαÞ < 1 up to the transition [13]; thus,
the stability bound is not saturated in this phase. As shown
in Fig. 1(g), after crossing the transition, we have again
S�topvarðαÞ < 1, meaning that the richness of abundant
species lies strictly below the stability bound. In Sec. VA,
we further show that the subset of abundant species lies
at any time in the vicinity of a fixed point, which is thus
linearly stable. This is perhaps surprising, compared to the
symmetric case where the stability bound is saturated [35]
and given that the dynamics are slow, as shown below.
We return to this result in Sec. VA.
In contrast, S�intervarðαÞ and S�growthvarðαÞ continue to

grow above the bound. This is not in contradiction to the
stability bound, since S�inter and S�growth count species with
intermediate abundances λ ≪ Ni ≪ 1, and some of them
have positive growth rates, so they do not satisfy the
condition Ṅi=Ni ≃ 1 − Ni −

P
jð≠iÞ αijNj ≃ 0. The propor-

tion of species with intermediate abundances (λ ≪ N ≪ 1)
among those with population size well above the migration
floor (N ≫ λ) grows with the standard deviation of the
interactions stdðαÞ, as can be seen in Fig. 1(g).

B. Dynamics and timescales

We now describe the long-time phenomenology of the
dynamics when λ > 0. The transient regime [see Fig. 2(a)]
is later discussed in Sec. VI together with the closely related
dynamics of isolated systems, for which λ ¼ 0. When
λ > 0 and at long times, the species abundances fluctuate
forever, and their autocorrelation function Cðt; t0Þ≡P

i NiðtÞNiðt0Þ=S becomes time-translation invariant,
namely, Cðt; t0Þ ¼ Cðt − t0Þ; see Fig. 2(b). Crucially, the
dynamics become slow when λ ≪ 1 and feature an emer-
gent statistical invariance between realizations at different λ
under the rescaling of time t → t=j ln λj. As we show in
Fig. 2(c), the autocorrelation functions for different values
of λ, but identical values of σ and μ, indeed collapse to a
single master curve when plotted against t=j ln λj, namely,
Cλðt; tþ j ln λjsÞ → ĈðsÞ when λ → 0þ. Thus, a unique
timescale τ ∼ j ln λj characterizes the autocorrelation func-
tion. We defer the proof of this result to Sec. IV where we
derive the rescaled dynamics that are also solved numeri-
cally to obtain the function ĈðsÞ; see Eqs. (5), (7), and (8).
Timescales of order j ln λj are expected to appear, since

it takes a time t ∼ j ln λj for a population to grow from the
migration floor λ to Oð1Þ population size under expo-
nential growth with finite growth rate. Importantly, we
find that there is no shorter timescale τ ≪ j ln λj relevant
for describing the effective dynamics of a single species.
Indeed, the master curve ĈðsÞ is regular at s → 0þ. Recall
that λ is nondimensional and that j ln λj can be quite large
in ecologically relevant contexts (see Sec. II), in which
case fluctuations become correlated over many genera-
tion times.

IV. RESCALED DYNAMICS

In Sec. III, we describe the phenomenology of the long-
time fluctuating dynamics when 0 < λ ≪ 1. We see that the
species abundances NiðtÞ fluctuate over a long timescale of
order j ln λj. Furthermore, the log abundances lnNi dynami-
cally explore values from Oðln λÞ to Oð1Þ. These obser-
vations motivate defining rescaled variables s≡ t=j ln λj
and zi ≡ lnðNiÞ=j ln λj. ziðsÞ turns out to follow a well-
defined stochastic process when λ → 0þ (that no longer
includes any λ dependence). It is a single-variable process
describing the probability of trajectories of a single species
within the large system. Section IVA is devoted to the
mathematical derivation of this process. Section IV B
describes its properties and can be read independently of
Sec. IVA. Later sections discuss its implications for the
species abundance distribution and species diversity.

(a) (b)

(c) (d)

FIG. 2. Species dynamics and correlations. (a) Species are
initialized with order-one values. We follow lnNiðtÞ. In the
transient regime, the changes in lnNiðtÞ are comprised of three
elements: downward motion, roughly in a straight line (main-
taining its slope for a large part of the decay between largest and
smallest values, corresponding to exponential decay of Ni),
upward motion, roughly in a straight line, and slow changes at
high population values NiðtÞ ≃Oð1Þ. The dynamics slow down,
with the time spent in each of these elements increasing with the
time since the start of the dynamics; see Sec. VI. As the
excursions grow longer, the average value of lnNiðtÞ decreases
linearly in t. This transient regime ends when a finite fraction of
species reach the migration floor NiðtÞ ≃OðλÞ after a time of
order j ln λj. At long times, after the transient regime is over,
lnNiðtÞ performs the three dynamical elements described above,
and a fourth one, slowly changing around the migration floor. The
vertical red dashed line marks the crossover between these two
regimes. (b) At long times, timescales do not grow in time
anymore, as seen in the correlation function that depends only on
time differences Cðt; t0Þ ¼ Cðt − t0Þ. (c),(d) This timescale is
proportional to j ln λj. This is demonstrated by the data collapse
when plotting C against t=j ln λj presented in (c), compared with
the data without rescaling shown in (d).
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A. Derivation

Our starting point is the effective single-species stochastic
dynamics forNiðtÞ previously obtained in the limitwhere the
number of species is very large and for any value of λ [17,36].
For the sake of completeness, we briefly outline the steps
leading to these dynamics. In Eq. (1), the dynamics of NiðtÞ
are driven by the influence of all other species through
giðtÞ ¼ 1 −

P
j αijNjðtÞ, which involves the sum of many

weakly correlated contributions. When S → ∞, dynamical
mean-field theory (DMFT) shows that the giðtÞ are identi-
cally distributed Gaussian processes and are independent for
i ≠ j. This implies that population sizes NiðtÞ behave as
independent realizations of the single-variable stochastic
process,

ṄðtÞ ¼ NðtÞ(gðtÞ − NðtÞ)þ λ; ð2Þ

where the subscript i has been dropped. The first two
moments of the Gaussian process gðtÞ obey self-consistent
closure relations that relate the input noise gðtÞ to the output
NðtÞ,

hgðtÞi ¼ 1 − μhNðtÞi; ð3Þ

hgðtÞgðt0Þi − hgðt0ÞihgðtÞi ¼ σ2hNðtÞNðt0Þi: ð4Þ

Here the angular brackets h:i denote an average over the
realizations of gðtÞ [and the initial conditionsNð0Þwhich are
irrelevant at large times]. The derivation of Eq. (2) follows a
standard procedure [37–40] which was applied to the Lotka-
Volterra equations in [17]. In the long-time limit where
hNðtÞi → hNi, the entire dynamics is controlled by the two-
time correlation Cðt; t0Þ≡ hNðtÞNðt0Þi, since the Gaussian
process gðtÞ is completely characterized by its correlations
and mean given in Eqs. (3) and (4).
In order to study the behavior of these equations when

λ ≪ 1, we introduce z≡ lnðNÞ=j ln λj and s≡ t=j ln λj so
that Eq. (2) becomes

z0ðsÞ ¼ gðsÞ þ expf−j ln λj½zðsÞ þ 1�g − exp½j ln λjzðsÞ�:

The nonlinear terms become impenetrable boundaries
when λ → 0þ, since

lim
λ→0þ

exp½−j ln λjðzþ 1Þ� ¼
�
0 if z > −1;
þ∞ if z < −1;

and

lim
λ→0þ

expðj ln λjzÞ ¼
�
0 if z < 0;

þ∞ if z > 0:

Hence, the process zðsÞ is confined between −1 and 0 when
λ → 0þ. The confinement originates from the migration
term and the self-regulation term proportional to N2

i in

Eq. (1). The effective noise gðsÞ is not able to push zðsÞ to
the outside of the confining region, because its mean and
variance are finite provided population sizes do not blow
up; see Eqs. (3) and (4). Thus, zðsÞ obeys

z0ðsÞ ¼ gðsÞ þWð−z − 1Þ −WðzÞ ð5Þ

in the low migration limit, whereWðzÞ ¼ þ∞ if z > 0 and
WðzÞ ¼ 0 if z < 0. The autocorrelation function of gðsÞ is
proportional to the master function ĈðsÞ introduced in
Sec. III, since hgðsÞgðs0Þi−hgðs0ÞihgðsÞi¼σ2hNðsÞNðs0Þi¼
σ2Ĉðs−s0Þ.
We now derive the evolution of the abundance NðsÞ.

Beyond the fact that NðsÞ is the main quantity of interest,
such an evolution is also necessary to derive the self-
consistent equations (3) and (4) in the λ → 0þ limit, and
obtain a closure of the DMFT equations in terms of the
process zðsÞ. When zðsÞ < 0, it is clear from the definition
NðsÞ ¼ exp ½j ln λjzðsÞ� that NðsÞ ¼ 0 in that limit.
However, this relation appears ambiguous in the double
limit z → 0 and λ → 0þ. To remove the ambiguity, we use
the impenetrability condition at the z ¼ 0 boundary,
namely.W½zðsÞ� ¼ gðsÞwhen zðsÞ ¼ 0. Since by definition
of z and Eq. (5), W½zðsÞ� ¼ NðsÞ, we obtain the relation

NðsÞ ¼ gðsÞΘ(zðsÞ); ð6Þ

where ΘðzÞ is the Heaviside function with the convention
Θð0Þ ¼ 1. The existence of this impenetrability condition
rests on the facts that (i) gðsÞ does not have a white-noise
component, which follows from the fact that its mean
and variance remain finite when λ → 0þ and (ii) that ĈðsÞ
has a well-defined limit when λ → 0þ, which agrees with
numerical simulations [see Fig. 2(c)]. That ĈðsÞ is well
behaved when λ → 0þ is for now assumed and is self-
consistently verified is the following Eqs. (7) and (8). The
interpretation of Eq. (6) is discussed below in Sec. IV B.
Using Eq. (6), the λ → 0þ limit of the closure equa-

tions (3) and (4) reads

hgðsÞi ¼ 1 − μhgðsÞΘ(zðsÞ)i; ð7Þ

hgðsÞgðs0Þi − hgðs0ÞihgðsÞi
¼ σ2hgðsÞgðs0ÞΘ(zðsÞ)Θ(zðs0Þ)i: ð8Þ

Importantly, Eqs. (5), (7), and (8) are independent of λ. It
therefore follows that indeed, gðsÞ has well-defined corre-
lations in the limit λ → 0þ.

B. Properties of the limit dynamics

Equation (5) describes the effective evolution of ziðsÞ for
any single species within the many-variable system. It is
driven by a Gaussian noise giðsÞ and confined to values
−1 ≤ zi ≤ 0. The mean and variance of the Gaussian noise
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giðsÞ are determined self-consistently through Eqs. (3)
and (4), which become Eqs. (7) and (8) in the limit
λ → 0þ. The noise giðsÞ can be interpreted within the
original many-species species dynamics Eq. (1) as the
effective growth rate set by all the other species
giðsÞ ¼ 1 −

P
j αijNjðsÞ, which can indeed be shown to

be Gaussian distributed in the limit of many species. When
−1 < ziðsÞ < 0, meaning λ ≪ Ni ≪ 1, the dynamics read
z0iðsÞ ¼ ṄiðtÞ=NiðtÞ ¼ giðsÞ, resulting in exponential
growth or decay of the population sizes under the effective
growth rate set by all the other species.
In the limit λ → 0þ, the dynamics of the population size

NiðsÞ is related to that of ziðsÞ by Eq. (6). When ziðsÞ < 0,
Eq. (6) yields NiðsÞ ¼ 0, which naturally follows from
taking the limit λ → 0þ in the definition Ni ¼
expðj ln λjziÞ. Yet, Eq. (6) goes further, relating Ni and
zi in the double limit where both λ → 0þ and zi ¼ 0. The
interpretation of Eq. (6) is that the species with zi ¼ 0,
meaning with a finite population size Ni, are in a slowly
changing fixed point. Indeed, Eq. (6) can also be obtained
from the many-body dynamics using the slowness of the
dynamics discussed in Sec. III when λ → 0þ: by Eq. (1),
slow changes ṄiðtÞ ≃ 0 require NiðtÞ ¼ giðtÞwhen NiðtÞ is
finite.
Equations (3) and (4) guarantee that gðsÞ has finite

variance and mean, so that gðsÞ cannot contain a white-
noise component. Also, by solving these rescaled DMFT
equations following the procedure detailed in Appendix A 7,
we find that Ĉ0ð0þÞ is finite, thus confirming the absence of
fast timescale in the Lotka-Volterra dynamics; see Fig. 8. We
further show that Ĉ0ð0þÞ ≠ 0, meaning that gðsÞ is rough,
namely, nowhere differentiable (like in Brownian motion
[41]). The fact that Ĉ0ð0þÞ ≠ 0 follows from Eq. (10) below;
see the discussion there. An example run of the rescaled
dynamics is shown inFig. 3.As can be seen,−1 ≤ z ≤ 0, and
z spends finite time intervals at the boundaries, which is a
consequence of the finitememoryof thenoisegðsÞ. Indeed, if

g > 0 and z ¼ 0 at a given time, it will remain so for a finite
amount of time.
Lastly, we discuss the important features of the dynamics

of the population sizes NðsÞ seen in Fig. 3. First, NðsÞ is
rough since N ¼ g when z ¼ 0, while zðsÞ is more smooth
since it is a time integral of gðsÞ. Second, the limiting
process NðsÞ is not continuous in time and features jumps
from 0 to a finite value, after which NðsÞ continuously
reaches 0. The jumps represent species that grow from very
small abundances at a finite growth rate, and thus their time
to reach N ¼ g from a small fixed value (that does not
depend on λ, say, N ¼ 10−5) is finite in time t, and so it
vanishes in the rescaled time s. These jumps are precisely
species turnover events that drive the change in the
composition of the abundant species.

V. PHENOMENOLOGY REVISITED

A. Diversities revisited

In Sec. III A, we propose three definitions for diversity
S�top; S�inter; S

�
growth. Denote ϕtop ≡ S�top=S and similarly for

ϕinter;ϕgrowth. All these quantities are well defined in the
limit λ → 0þ. Indeed, they take simple forms in terms of the
limiting process described in Sec. IV:

ϕtop ¼ Prob½z ¼ 0�;
ϕinter ¼ 1 − Prob½z ¼ −1�;

ϕgrowth ¼ Prob½g > 0�: ð9Þ

We now return to the discussion of ϕtop and its relation to
the stability bound; see Sec. III A. As followed from the
rescaled dynamics, the abundant species counted in ϕtop are
approximately at a fixed point, while all other species have
negligible abundances, and so they do not affect this fixed
point. Thus, one indeed expects the bound S�topvarðαÞ ¼
σ2ϕtop ≤ 1 to hold, as is clear in Fig. 1(g). Indeed, a fixed
point with S�top coexisting species and S�topvarðαÞ > 1 would
be typically linearly unstable to perturbations [11,12,35].
A natural question is, is the stability bound saturated, i.e.,

σ2ϕtop ¼ 1, resulting in fixed points of abundant species
that are near marginal stability? One could perhaps expect
marginal stability, as the rate at which low-abundance
species are added to the subset of abundant ones is slow,
“gently” perturbing the fixed points, and so would perhaps
allow S�top to increase up to the stability bound. In addition,
marginality is reached in Lotka-Volterra dynamics [35],
Eq. (1), with symmetric interactions (αij ¼ αji). And more
generally, slow dynamics are in many cases associated with
marginality (see, e.g., Ref. [42]).
Yet, as is shown in Sec. III A [see Fig. 1(g)], σ2ϕtop < 1,

so the stability bound is not saturated. Consequently, as
λ → 0þ, the high-abundance species lie at any time in the
vicinity of a fixed point that is linearly stable to

FIG. 3. The rescaled dynamics. Trajectories of N and z≡
lnðNÞ=j ln λj as a function of the rescaled time s≡ t=j ln λj in an
example run of the limiting rescaled dynamics when λ → 0þ.
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perturbations applied to those species. Note that this fixed
point changes over time, as it is destabilized by the growth
of species from rare.
To obtain the bound σ2ϕtop < 1, we prove that while

species turnover is a slow process, the jumps when going
from rare to abundant, seen clearly in Fig. 3, are sufficient
to significantly perturb the subset of abundant species and
prevent it from reaching marginal stability. We prove that
by deriving an exact relation that links diversity with
temporal fluctuations defined as follows. Let Njump be
the size of these jumps. Let G be the rate of incoming
species weighted by N2

jump: that is, the sum ofN2
jump over all

jumps taking place in a unit of rescaled time s in the many-
species dynamics, and divided by the number of species S.
The relation derived in Appendix A 3, reads

G ¼ 2jĈ0ð0þÞjð1 − σ2ϕtopÞ: ð10Þ

Here, ĈðsÞ is the autocorrelation of NðsÞ in the rescaled
time defined in Sec. III. Ĉ0ð0þÞ is finite; see Figs. 2(c) and 8
in Appendix A 1. Equation (10) then limits ϕtop to be below
the stability bound; indeed, marginal stability 1 ¼ σ2ϕtop is
only possible if G ¼ 0, namely, if species do not perform
jumps, in contradiction with the dynamics in Sec. IV.
Additionally, we note that G > 0 implies jĈ0ð0þÞj > 0,
thus proving that the trajectories NiðsÞ are rough when
NiðsÞ ≠ 0.
Put differently, the introduction of one new species leads

to the removal of others, with the average number of
removed species growing as one approaches the marginal
diversity. The balance, in which one species is removed for
each one introduced, sets S�top that reaches only some
fraction of the bound 1=varðαÞ. In dynamics that reach a
fixed point, the requirement that all species involved have
positive abundance is known as feasibility [43], and it is
what limits the diversity in the fixed-point phase σ < σc in
Fig. 2(f). Equation (10) can be thought of as an extension
of the requirement to dynamics, a form of “dynamical
feasibility.”

B. Species abundance distribution revisited

We now return to the species abundance distribution
PðNÞ. As mentioned in Sec. III A, PðNÞ behaves roughly
as 1=N in the intermediate range λ ≪ N ≪ 1. Using
the rescaled dynamics, we can refine this statement. The
dynamics of ziðsÞ (Sec. IV) spend a finite fraction of the
time at the boundaries z ¼ −1, 0 which translates into two
delta-peak contributions in PðzÞ at these values. In addition,
there is a regular contribution for −1 < z < 0. Together,
this reads

PðzÞ ¼ ϕtopδðzÞ þ ð1 − ϕinterÞδðzþ 1Þ
þ ðϕinter − ϕtopÞhðzÞΘð−zÞΘð1þ zÞ; ð11Þ

where hðzÞ is a smooth function with
R
0
−1 hðzÞdz ¼ 1.

ϕtop;ϕinter are defined in Eq. (9). Figure 4(b) shows the
collapse of Pðz ¼ lnN=j ln λjÞ as λ → 0þ to this form.
Equation (11) sets the form of the abundance distribution

in the intermediate range λ ≪ N ≪ 1. Changing variables
from z to N, we get

PðNÞ ¼ 1

Nj ln λj h
�
lnN
j ln λj

�
: ð12Þ

This refines the 1=N dependence with an additional, slowly
varying correction. As we discuss in Sec. VIII, this
correction can appear to change the power-law exponent
of the species abundance distribution when λ is finite, and
only parts of the entire distribution are sampled. The
distribution of top species can be inferred from P½gjz�,
the distribution of the growth rate g conditioned on the
value of the rescaled abundance z. For N ≥ 0, we get

PðNÞ ¼ ϕtopP½g ¼ Njz ¼ 0� þ ð1 − ϕtopÞδðNÞ: ð13Þ

Figure 4(a) shows the convergence of the distribution PðNÞ
to this limiting distribution as λ → 0þ. The results in the
limit λ → 0þ are obtained by solving numerically the
rescaled DMFT equations; see Eqs. (5), (7), and (8).
The limiting distribution PðNÞ deviates from the truncated
Gaussian SAD obtained in the fixed-point phase.

VI. DYNAMICS OF AN ISOLATED SYSTEM AND
TRANSIENT DYNAMICS AT FINITE λ

A. Dynamics of an isolated system

Isolated systems are characterized by zero migration rate
λ ¼ 0, which is a singular limit of the Lotka-Volterra
system of equations with a large number of species in
the chaotic phase. Indeed, the timescale j ln λj, which
characterizes these dynamics at finite λ, diverges when
λ → 0. For λ ¼ 0, the dynamics are not time-translation
invariant but forever slow down in time, as evidenced by a
linear growth of the correlation time as a function of the
elapsed time, a behavior known in physics as “aging.”

(a) (b)

FIG. 4. Collapse of species abundance distributions. Numeri-
cally measured distributions of N (a) and z ¼ lnN=j ln λj (b) con-
verge to the distributions predicted by the rescaled process
as λ → 0þ.
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Formally, Cλ¼0ðt; tþ tt0Þ → Ĉðt0Þ when t is large; see
Fig. 5(a) for the collapse of results from numerical
simulations. Again, the master curve Ĉðt0Þ, which depends
on the parameters σ and μ, is regular at t0 → 0þ. This
behavior can be understood as follows: When λ ¼ 0, the
lowest values of lnN reached after time t are of order
lnN ∼ −t. If a species changes to positive growth rate at
this time, it will therefore take another time t for its
population size to be Oð1Þ. This timescale sets the
correlation time. A similar mechanism was found in
another, exactly solvable model [22].
The proof of the existence of this aging regime is given in

AppendixA 2. Using a reasoning similar to that employed in
Sec. IV, we show that the transformed variables s≡ ln t;
z≡ lnðNÞ=t obey a well-defined set of DMFT equations
which become time-translation invariantwhen t → ∞. These
transformations reflect a growth of both timescales and log
fluctuationswith the elapsed time. The resulting process zðsÞ
is different from that of Sec. IV, and is described in detail in
Appendix A 2.
An important consequence of this result is that the

collective deterministic dynamics in an isolated system

drives the population size of any species arbitrarily close to
0 as time grows. Considering that actual population sizes
are finite, integer numbers, this process will inevitably lead
to the extinction of many species, subsequently leading to
an arrest of the fluctuations, as suggested in Refs. [18,19].

B. Transient dynamics at finite λ

When migration is present, this dynamical slowdown
provides a mechanism by which the correlation time grows
until time ttransient ∼ j ln λj, where the correlation time
reaches the value j ln λj discussed above. This is indeed
the time it takes for a finite fraction of the species in the
community to reach the migration floor, when starting with
all species with population sizes of Oð1Þ, and before which
λ can be safely set to zero.
We verify in simulations that the transient dynamics are

characterized by a linear growth of timescale with the
elapsed time, which is interrupted at a time ttransient ∼ j ln λj.
For that, we measure the time constant τ2ðλ; tÞ it takes for
the autocorrelation function Cλðtþ τ; tÞ − Cλð∞; tÞ to
reach a fraction e−1 of its τ ¼ 0 value, starting at initial
time t and with migration rate λ. Figure 5(c) shows that
the growth and saturation of the timescale follow the
scaling relation

τ2ðλ; tÞ
j ln λj ¼ f

�
t

j ln λj
�
;

where f is a smooth function with fðxÞ ∝ x at small x,
encoding the slowdown of the dynamics in the transient
regime, and fðxÞ approaching a constant as x → ∞,
encoding the time-translation-invariant behavior of the
long-time dynamics, with correlation timescale j ln λj.

VII. ROBUSTNESS OF THE PREDICTIONS

The theory is built around two limits S → ∞ and λ → 0þ
and assumes that the interaction coefficients αij are
sampled independently. In this last part of this work, we
assess the robustness of our predictions when these
assumptions are relaxed. We find that the main qualitative
features discussed in this work are robust against changes
in model definition and relevant even at reasonable values
of migration rate and number of species.

A. Finite migration rate λ and number of species S

We start by discussing how the key quantities hNi, hN2i,
and ϕtop vary with S, λ, when measured from abundance
data gathered in numerical simulations of the original
many-species dynamics Eq. (1). Regarding the moments
hNi; hN2i, we find that the dependence on S and λ is very
weak for hNi and weak for hN2i, respectively, within
roughly 1% and 10% in the inspected range of parameters;
see Fig. 11 in Appendix A 5.

(a) (b)

(c) (d)

FIG. 5. Growth of timescales in dynamics without migration.
(a),(b) When λ ¼ 0, the collapse of Cðt; tþ τÞ as a function of τ=t
demonstrates the linear growth of timescales with the elapsed
time. Data without rescaling, as a function only of τ, are shown
for comparison in (b). (c),(d)Crossover at finite λ from a transient
regime exhibiting the λ ¼ 0 phenomenology to the long-time
behavior, as identified by the time constant τ2 of the correlation
function. After an initial transient of finite time duration, τ2 grows
linearly with the elapsed time and independently of λ, a trademark
of the λ ¼ 0 dynamics. The crossover to the long-time behavior
happens around times proportional to j ln λj, after which τ2
stabilizes to a value proportional to j ln λj. This scaling of the
crossover is manifest in the data collapse in (c), with the data
without rescaling displayed in (d) for comparison. τ2ðt; λÞ is
defined as the time when ½Cðt; tþ τ2Þ − Cðt;∞Þ�=½Cðt; tÞ−
Cðt;∞Þ� ¼ e−1. The value of Cðt;∞Þ is estimated through an
exponential fit of the function Cðt; tþ τÞ as a function of τ.
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To measure ϕtop at finite λ, we test three options. The first
measure ϕN

topðS; λ; ϵÞ is simply a threshold on the abun-
dance: counting all the species with Ni ≥ ϵ at a given time,
for some chosen ϵ. Unsurprisingly, ϕN

topðS; λ; ϵÞ is more
sensitive to λ than hNi or hN2i. For moderate values of S
and λ, we find that the asymptotic value ϕtop nevertheless
provides a reasonable estimate of ϕN

topðS; λ; ϵÞ; see
Figs. 6(a) and 6(b), though the discrepancy increases with
the strength of the interactions; see Fig. 12(b). This last
point suggests that disentangling species at high and
intermediate abundances becomes harder when the scale
of the interactions, and thus the amplitude of the fluctua-
tions, increases. The second measure denoted by
ϕg
topðS; λ; ϵÞ refines the first one and requires Ni ≥ ϵ but

also gi > 0. We find that both measures converge to the
asymptotic ϕtop as 1=S in S. Yet the convergence with λ is
significantly different, with ϕN

top converging as j ln λj−1=2,
and ϕg

top faster, as j ln λj−1; see Figs. 6(b) and 6(d). This
highlights the relevance of the growth rate g in determining
“top species,” namely, members of fixed points. We find

that the measure ϕN
topðS; λ; ϵÞ is often above the stability

bound, in contrast to the asymptotic ϕtop which is always
below it. Because of the faster convergence, ϕg

topðS; λ; ϵÞ
can be either above or below this bound, depending on the
parameters; see Fig. 6(c). The origin of these convergence
rates is discussed in Appendix A 4.
Finally, we consider a situation where one is able to

manipulate the system by removing certain species and
continuing the dynamics. Namely, after a long time so that
transients have passed, we kill all species withNi=gi < 1=2.
These correspond to specieswith positive growth rate that are
in the midst of their jump, below halfway, as well as those
with negative growth rate. (Recall that, asymptotically as
λ → 0þ, abundant species are those for which Ni=gi ¼ 1.)
Then, we run again the dynamics, and we find that the
remaining species reach a stable equilibrium. The properties
of the equilibrium obtained in this way are strikingly similar
to those predicted by the asymptotic theory, even for
reasonable λ. The asymptotic diversity and the asymptotic
distribution in Eq. (13) can be almost exactly reproduced; see
Appendix A 6.

B. Correlation between the matrix elements

In addition to taking the asymptotic limits in S, λ, the
model above assumes that interactions are statistically
asymmetric with vanishing correlation coefficient corrðαij;
αjiÞ ¼ 0. We show that two of our main qualitative results—
how the timescale grows and that top diversity is below the
stability bound—also hold when this assumption is relaxed.
Allowing for more symmetric or antisymmetric interactions,
we take a correlation coefficient corrðαij; αjiÞ ¼ γ with
−1 < γ < 1.
The growth of the timescale τ ∼ τλ ≡ j ln λj is clearly

seen in Figs. 10(a) and 10(b) in Appendix A 4, the
equivalent of Fig. 2(c). This is expected for the same
reason as when γ ¼ 0: The time for a population to grow
from λ to N ∼ 1 scales as j ln λj. As to the diversity ϕtop, we
conjecture that the slowness of the dynamics at λ ≪ 1 still
introduces a clear partition between nearly extinct species
with lnN ∼ ln λ and abundant species with N ¼ Oð1Þ. For
the abundant species, the long timescale implies that they
are near a fixed point. In Appendix A 4, we generalize the
relation between fluctuations and diversity from Sec. VA,
Eq. (10), to give

G ¼ 2jĈ0ð0þÞj
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2
− 4ϕtopσ

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2
: ð14Þ

As for γ ¼ 0, we expect that the growth of timescale when
λ → 0þ goes hand in hand with jumps in the rescaled
dynamics of the abundances, meaning G > 0. This implies

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q

Þ2 − 4ϕtopσ
2 > 0, so that ϕtop lies

(a) (b)

(c) (d)

FIG. 6. Average top diversity measures, ϕN
topðS; λ; ϵÞ;

ϕg
topðS; λ; ϵÞ, as a function of S and λ. ϕN

top is the fraction of
species with Ni > ϵ ¼ 10−3; ϕg

top also requires gi > 0.
(a) ϕN

topðS; λ; ϵÞ as a function of S converges as ϕN
topðS → ∞;

λ; ϵÞ þ #=S, at fixed λ. Data points at S ¼ 500 are excluded
from the linear fit. (b) Large S value of the top diversity ϕN

topðS →
∞; λ; ϵÞ converges as j ln λj−1=2 to its asymptotic value
ϕN
topðS → ∞; λ → 0þ; ϵÞ. The asymptotic value ϕN

topðS → ∞;
λ → 0þ; ϵÞ is within 5% of the value predicted by the rescaled
DMFT and well below the stability bound. For all reasonable
values of the migration rate (here already when λ ≳ 10−40), the
measured top diversity is significantly above the stability bound.
ϕN
topðS → ∞; λ; ϵÞ is inferred from the finite-S scaling, panel (a).

(c),(d) Same as panels (a) and (b) but for ϕg
topðS; λ; ϵÞ. The

convergence to the asymptotic ϕtop is more rapid; in particular,
ϕg
top can be either below or above the stability bound.
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strictly below the linear stability bound [13]. This is
confirmed by numerical simulations; see Figs. 10(c)
and 10(d) in Appendix A 4.

VIII. DISCUSSION

We begin the discussion by summarizing key predictions
presented above. We identify several signatures of the
many-species Lotka-Volterra dynamics, when the abun-
dances do not reach a fixed point and migration rates are
small. They may serve as footprints of endogenously driven
fluctuations in experimental or natural situations.
First, we predict that endogenously driven fluctuations in

timewill lead to broadly distributed abundance distributions,
in contrast with the fixed-point distributions. For very low
migration, the abundance distribution at intermediate values
(meaning small population sizes well above the migration
floor) are predicted to behave asPðNÞ ∼ 1=N. At any finite λ,
there are slowly varying corrections to this 1=N behavior; see
Eq. (12). As PðNÞ is broad, one can always define a slowly
varying “local” power law νðzÞ by the slope of lnPðNÞ
versus lnN at given z ¼ lnN=j ln λj. It has corrections of
order j ln λj−1, νðzÞ ¼ −1þ j ln λj−1h0ðzÞ=hðzÞ,whichmight
explain deviations from ν ¼ −1 in observed abundance
distributions [6]. These corrections vary with z and are
arbitrarily large over the entire range −1 < z < 0, so no
unique exponent other than−1 can be defined over the entire
range of N.
Second, we predict that a single timescale controls the

dynamics, predicted to grow as j ln λj when lowering the
migration rate, and thus extending over many generation
times when λ is small. This can be tested in controlled
experiments, for example, via the abundance autocorrelation.
Moving on to diversity, different definitions of diversity

give different results. For example, the number of species
that can grow from rare at a given time is generally different
from the number of species that have high abundance,
in contrast with the situation at a fixed point. We show that
the number of species with high, intermediate, and low
abundance is well defined, namely, insensitive to the
precise threshold above (or below) which the number of
species is counted. We show that the number of species at
high abundance is significantly below the May bound (their
fraction of the total number of species is below the fraction
allowed by the bound). This makes the community of high-
abundance species a stable equilibrium of the dynamics if
the other species are removed. The distance to the stability
bound increases with the strength of the interactions σ; see
Fig. 1(g), and also Fig. 12(b) in Appendix A 4. In contrast,
when including the intermediate ones [in the power-law
regime of PðNÞ], the total number goes above the bound.
The same is true when including all species in the pool that
may invade. It is this last fact that drives species turnover:
There are always species that grow from rare to replace the
ones at high abundance.

Last, a key property of the dynamics at low migration is
the existence of jumps from rare in the dynamics of
population sizes; see Fig. 3. For finite λ, these jumps
manifest themselves in a strong asymmetry of “blooms,”
namely, trajectories where the abundance of a species
increases from rare before returning there. This can be
clearly observed in time series at finite λ (see Fig. 7) and
would be very interesting to look for in experimentally
measured time series.
In conclusion, the dynamically fluctuating phase of high-

diversity ecological communities is a promising direction to
explain key features of natural high-diversity ecosystems.We
offer a list of additional predictions expected in this phase. It
would be interesting to further investigate the robustness of
these features upon modifying the structure of the interaction
matrix. Along this line, we note that the chaotic dynamics
appear at finite S also without any beneficial interactions
(αij < 0) between species, and the analysis above is expected
to hold. We further note that the limit of large σ, μ in our
framework connects to other asymptotic limits [19,44].
A recent work on the strongly interacting case [45] suggests
from numerics that the qualitative picture of the present
studymay extend to that regime, in particular, the existence of
a growing timescale, and the fact that dynamics evolve in the
vicinity of fixed points. A different and very interesting
direction for future research is understanding how these
results extent to spatially extendedmetacommunities [18,19],
beyond a constant migration from an unspecified species

FIG. 7. Asymmetry of blooms under time reversal. Trajectories
of NðtÞ, while at high abundance display a clear asymmetry in
time, with a rapid initial increase and more gradual decrease. This
is conspicuous even for migration rates that are not very small
(here, λ ¼ 10−6). It is the finite-λ counterpart of the asymptotic
behavior at λ → 0þ featuring sharp jumps from zero to positive
N; see Fig. 3. Shown are trajectories that go above N ¼ 10−2 at
some time tin and stay above it until time tin þ Δt, and reach
N ≥ 0.1 at some intermediate time. Here, Δt ≃ 5.8j ln λj that is
the most common length of such trajectories. In light gray are 22
example trajectories, and the thick blue line shows the average
over many such trajectories.
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pool, as assumed here. This question is pertinent, given that
the present work shows that chaotic fluctuations cannot
generically be sustained in isolated high-diversity systems,
due to extinctions.
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APPENDIX: DERIVATIONS

1. Regularity of the correlation function as λ → 0+

By solving the DMFT equations (5), (7), and (8)
following the procedure detailed in Appendix A 7, we find
that Ĉ0ð0þÞ is finite, thus confirming the absence of fast
timescale in the Lotka-Volterra dynamics; see Fig. 8.

2. Rescaled dynamics for λ= 0

In this section, we adapt the derivation of Sec. IV to the
singular case λ ¼ 0 that accounts for the initial transient
when 0 < λ ≪ 1. For 0 < λ ≪ 1, the system reaches a
time-translation-invariant state with correlations character-
ized by a unique timescale j ln λjwhich diverges as λ → 0þ,
suggesting that the λ ¼ 0 dynamics does not reach a time-
translation-invariant state. We show that the dynamics age
with a correlation time that grows linearly with the elapsed
time, a phenomena already identified in a related popula-
tion dynamics model [22],

lim
t→∞

Cλ¼0ðt; tesÞ ¼ ĈðsÞ: ðA1Þ

This scaling regime can be shown to be a self-consistent
solution of the dynamical mean-field-theory equations (2)–
(4) with λ ¼ 0. We introduce z≡ lnN=t and s≡ ln t and
obtain from Eq. (2)

z0ðsÞ ¼ −zðsÞ þ gðsÞ − exp½eszðsÞ�:

Under the assumption that Eq. (A1) holds, the Gaussian
process gðsÞ has a time-independent mean and finite

memory with time-translation-invariant correlations in
the large-s limit. Similar to the λ → 0þ case, the term
− expðeszÞ effectively acts as a hard wall at z ¼ 0, thus
constraining zðsÞ ≤ 0. The long-time dynamics therefore
writes

z0ðsÞ ¼ −zðsÞ þ gðsÞ −WðzÞ; ðA2Þ

with WðzÞ formally accounting for the presence of the
confining boundary. We use the nonpenetrability condition
to resolve the ambiguous expression NðsÞ ¼ expðeszÞ in
the double limit s → ∞ and z → 0 and get

NðsÞ≡W½zðsÞ� ¼ gðsÞΘ(zðsÞ); ðA3Þ

with the convention Θð0Þ ¼ 1. It shows that Eq. (A2) is
supplemented by the same self-consistency conditions as in
the λ → 0þ case [see Eqs. (7) and (8)]

hgðsÞi ¼ 1 − μhgðsÞΘ(zðsÞ)i; ðA4Þ

together with

hgðsÞgðs0Þi − hgðs0ÞihgðsÞi
¼ σ2hgðsÞgðs0ÞΘ(zðsÞ)Θ(zðs0Þ)i: ðA5Þ

Note, however, that in the λ ¼ 0 case, the process zðsÞ is
confined in the negative half line by a harmonic potential
and not by a hard boundary; see Eq. (A2).
Under the condition that gðsÞ has time-translation-

invariant correlations, Eq. (A2) manifestly predicts that
zðsÞ reaches at long time a time-translation-invariant state.
The closure equations (A4) and (A5) then self-consistently
show the validity of the time-translation-invariant ansatz in
rescaled time s, eventually showing the validity of the aging
scaling given in Eq. (A1). In Fig. 9, we show the large-time
convergence of the distributions PðNÞ and PðzÞ to those
predicted by the λ ¼ 0 rescaled dynamics presented here.

3. Diversity limited by fluctuations

The two cases λ → 0þ and λ ¼ 0 share a crucial
property: The long-time dynamics are very slow, reflecting

FIG. 8. Enlargement of the small-s behavior of ĈðsÞ. The
correlation function is obtained by numerically solving the
DMFT equations (5), (7), and (8). The derivative is finite at
s ¼ 0þ, thereby confirming the absence of fast timescale in the
Lotka-Volterra dynamics.

(a) (b)

FIG. 9. Collapse of species abundance distributions. Numeri-
cally measured distributions of N (a) and z ¼ lnN=t (b) converge
to the distributions predicted by the rescaled process as t → ∞.
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the fact that the system evolves in the vicinity of feasible
fixed points (all population sizes are ≥ 0). More precisely,
at any given time s, the system is close to a fixed point
comprised of some abundant species with Oð1Þ population
sizes [corresponding to the fraction ϕtop of species with
zðsÞ ¼ 0], and some rare species [corresponding to the
fraction 1 − ϕtop of species with zðsÞ < 0]. Species turn-
over happens because these fixed points are invadable,
meaning that some nearly extinct species have a positive
growth rate. Furthermore, we see that the subset of
abundant species, when taken alone, is linearly stable
and not marginal. Indeed, the fraction ϕtop of top species
does not saturate the stability bound with ϕtopσ

2 < 1; see
Fig. 1(g). Despite the fact that abundant species are found
in the vicinity of a stable fixed point, the dynamics exhibit
abundance fluctuations due to the continuous flux of
incoming species from the pool of nearly extinct ones.
Here we derive a relation between temporal fluctuations

and the observed diversity valid both in the aging (λ ¼ 0)
and chaotic (for λ → 0þ) regimes of the many-body Lotka-
Volterra system of equations that then establishes the linear
stability of the subset of abundant species ϕtopσ

2 < 1; see
Eq. (10). We take advantage of the slowness of the dynamics
to generalize the calculation of the fluctuations induced by a
random perturbation to a fixed point [13]. Between the times
s and sþ ds, new species become abundant and induce a
perturbation on the species already abundant at time s. We
then relate the fluctuations of their population sizes to the
amplitude of the effective perturbing field and conclude by
using the DMFT closure relations. Henceforth, we use
the notations Θ ¼ Θ(zðsÞ), and for any quantity xðsÞ we
write xðsÞ ¼ x and δx ¼ xðsþ dsÞ − xðsÞ. Using NðsÞ ¼
gðsÞΘ(zðsÞ), we obtain

δN ¼ ðΘþ δΘÞδgþ gδΘ:

Hence,

lim
ds→0

�ðδNÞ2
ds

	
¼ lim

ds→0

�
ðΘþ 2ΘδΘþ ðδΘÞ2Þ ðδgÞ

2

ds

	

þ lim
ds→0

�
g2

ðδΘÞ2
ds

	

þ lim
ds→0

2

�
ðΘþ δΘÞδΘg δg

ds

	
: ðA6Þ

We assume that over short time intervals ds, the changes
in gðsÞ scale to leading order as δg ∼ ffiffiffiffiffi

ds
p

, as for Brownian
motion. Furthermore, δΘ∈ f−1; 0; 1g and its moments
scale as OðdsÞ. To prove the latter, we evaluate the mean
number of species with δΘ ¼ −1, namely, the mean
number of species going from z < 0 to z ¼ 0 between s
and sþ ds (which is also the mean number of species
going from z ¼ 0 to z < 0 in the same time interval).

Denoting P½g; z� the steady-state joint probability of g
and z, it reads

hðΘ − 1ÞδΘi ¼
Z

0−

−∞
dz

Z þ∞

0

dg P½g; z�Θðzþ gdsÞ

¼ ds
Z þ∞

0

dg P½g; z ¼ 0−�g;

which indeed scales as OðdsÞ. We can now treat separately
all the terms appearing in Eq. (A6). First,

lim
ds→0

�
½2ΘδΘþ ðδΘÞ2� ðδgÞ

2

ds

	
¼ 0;

since the term in brackets scales as OðdsÞ. Second, if
ΘδΘ ≠ 0, meaning zðsÞ ¼ 0 and zðsþ dsÞ < 0, then we
must have g ∼

ffiffiffiffiffi
ds

p
so that gðsþ dsÞ < 0 might be

obtained. This guarantees that

lim
ds→0

�
ΘδΘg

δg
ds

	
¼ 0:

Additionally, by using the identity ðδΘÞ2 ¼ −ΘδΘþ
ð1 − ΘÞδΘ, we get

lim
ds→0

�
ðδΘÞ2g δg

ds

	
¼ lim

ds→0

�
−ΘδΘg

δg
ds

	

þ lim
ds→0

�
ð1 − ΘÞδΘg δg

ds

	
;

¼ lim
ds→0

�
ð1 − ΘÞδΘg δg

ds

	
;

where we use the above result to obtain the last equality.
We note that a generic time-translation-invariant Gaussian
process can be generated from the Langevin equation,

ξ0ðsÞ ¼ −kξþ
ffiffiffiffiffiffiffi
2D

p
ηðsÞ þ

ffiffiffiffiffiffiffi
2D

p Z þ∞

0

ds0Jðs0Þηðs − s0Þ;

with ηðsÞ a Gaussian white noise and JðsÞ a suitably chosen
memory kernel that enforces hξðsÞξðs0Þi ¼ Cðs − s0Þ, i.e.,
in Fourier space [with Jðs < 0Þ ¼ 0]

ĈðωÞ ¼ 2D
k2 þ ω2

j1þ ĴðωÞj2:

This means that the Oð ffiffiffiffiffi
ds

p Þ increments of δg are sta-
tistically independent from the previous history of the
system. We can therefore write

lim
ds→0

�
ð1 − ΘÞδΘg δg

ds

	
¼ 0;

because in the average δg scales as OðdsÞ. Lastly, we have
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lim
ds→0

�
Θ
ðδgÞ2
ds

	
¼ ϕtop lim

ds→0

�ðδgÞ2
ds

	
:

Therefore, combining the above results,

lim
ds→0

�ðδNÞ2
ds

	
¼ ϕtop lim

ds→0

�ðδgÞ2
ds

	
þ lim

ds→0

�
ð1−ΘÞg2 δΘ

ds

	
:

We now use the DMFT closure in Eq. (8) at s and at sþ ds
to write

hðδgÞ2i ¼ σ2hðδNÞ2i:

Hence, we obtain using limds→0hðδNÞ2=dsi ¼ 2jĈ0ð0þÞj,

ð1− σ2ϕtopÞ lim
ds→0

�ðδNÞ2
ds

	

¼ 2ð1− σ2ϕtopÞjĈ0ð0þÞj ¼ lim
ds→0

�
ð1−ΘÞg2 δΘ

ds

	
: ðA7Þ

In the right-hand side, we recover the quantityG introduced
in Sec. VA of the main text, and the above equation reduces
to Eq. (10). Note that we can express G as

G ¼ lim
ds→0

�
ð1 − ΘÞg2 δΘ

ds

	

¼ lim
ds→0

�ð1 − Θ(zðsÞ)ÞNðsþ dsÞ2
ds

	
: ðA8Þ

In terms of the many-body dynamics, the above equation
becomes

G ¼ lim
ds→0

1

Sds

X
i∈ Iðs;sþdsÞ

Niðsþ dsÞ2;

where Iðs; sþ dsÞ is the subset of species experiencing a
jump from rare during the interval ½s; sþ ds�. Following
Eq. (A8), the coefficientG can also be expressed in terms of
the steady-state distribution P½g; z�,

G ¼
Z þ∞

0

dg P½g; z ¼ 0−�g3:

4. Generalization for γ ≠ 0

We now consider the case γ ≠ 0 in the limit λ → 0þ. We
generalize the previous argument connecting fluctuations,
diversity, and species turnover based on the many-body
equations of motion and derive Eq. (14). We assume that
the previous scaling for the timescale of the correlation
matrix holds, which we check numerically; see Fig. 10. In
other words, at any time s ¼ t=j ln λj, the system is close to

a fixed point, meaning that some species (a fraction ϕtop of
them) are abundant and verify

1 − NiðsÞ −
X
j≠i

αijNjðsÞ ¼ 0;

while the others are nearly extinct, i.e., asymptotically

NiðsÞ ¼ 0:

Between s and sþ ds (where ds is an infinitesimal interval)
we distinguish four types of populations: the ones that were
extinct at s but are present at sþ ds (that we refer to as
incoming species), the ones that are abundant at both s and
sþ ds (that we refer to as surviving species), the ones
abundant at s but rare at sþ ds (that we refer to as extinct
species), and finally, the ones rare at both s and sþ ds that
do not play any role in the following argument. At time s,
we have for the surviving species

1 − NiðsÞ −
Xsurv
j≠i

αijNjðsÞ þ
Xextinct
j

αijNjðsÞ ¼ 0;

and correspondingly at time sþ ds,

(b)(a)

(d)(c)

FIG. 10. Model behavior with partially symmetric or antisym-
metric interaction matrices. Even when the interaction matrix
possesses some degree of symmetry or asymmetry, τλ ¼ j ln λj is
the only timescale controlling the dynamics when λ → 0þ. We
plot the collapse of the correlation function Cλðt; tþ τÞ as a
function of τ=j ln λj for partially antisymmetric [γ ¼ −0.5, (a)]
and partially symmetric [γ ¼ 0.5, (b)] interaction matrices. The
top diversity measured at finite λ asymptotically goes below the
May bound as λ → 0þ for partially antisymmetric [γ ¼ −0.5, (c)]
and partially symmetric [γ ¼ 0.5, (d)] interaction matrices. The
diversity is evaluated by counting the number of species with
Ni > 10−3. The form of the extrapolation in powers of j ln λj is
explained in Appendix A 4. Parameters: (a) S ¼ 5000; μ ¼ 10;
σ ¼ 4, average over 40 realizations; (b) S ¼ 5000; μ ¼ 50;
σ ¼ 1.3, average over 40 realizations.
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1 − Niðsþ dsÞ −
Xsurv
j≠i

αijNjðsþ dsÞ

þ
Xincoming

j

αijNjðsþ dsÞ ¼ 0:

For all i (where i is a surviving species), we introduce the
notations

h̃i ¼
Xextinct
j

αijNjðsÞ;

hi ¼
Xincoming

j

αijNjðsþ dsÞ:

Therefore, for the surviving species

δNi ≡ Niðsþ dsÞ − NiðsÞ ¼ ðIdþ α�Þ−1ij ðhj − h̃jÞ;

where α� is α reduced to the surviving species. We can now
write the quadratic variation of the population sizes over
all species

lim
ds→0

1

S

Xs

i¼1

ðδNiÞ2
ds

¼ lim
ds→0

1

S

Xsurv
i¼1

ðδNiÞ2
ds

þ lim
ds→0

1

S

Xextinct
i¼1

NiðsÞ2
ds

þ lim
ds→0

1

S
1

ds

Xincoming

i¼1

Niðsþ dsÞ2;

where we explicitly use the fact that for the incoming
species δNi ¼ Niðsþ dsÞ and that δNi ¼ −NiðsÞ for the
extinct ones. The number of incoming species scales as
OðdsÞ and for them Njðsþ dsÞ ∼Oð1Þ owing to the jump
dynamics identified previously (for γ ¼ 0). Therefore, we
expect the perturbing field induced by the incoming species
to scale as

hi ∼
ffiffiffiffiffi
ds

p
;

a result in agreement with the scaling δg ∼
ffiffiffiffiffi
ds

p
used in the

previous section. Therefore, the species going extinct
between s and sþ ds must at time s have a population
size of the order of NiðsÞ ∼

ffiffiffiffiffi
ds

p
. As a consequence,

lim
ds→0

1

S

Xextinct
i¼1

NiðsÞ2
ds

¼ 0;

because the fraction of extinct species scales as OðdsÞ. The
perturbing field induced by the extinct species is thus much
smaller than the one induced by the incoming ones,

h̃i ∼ ds:

Lastly, for the surviving species, we have

lim
ds→0

1

S

Xsurv
i¼1

ðδNiÞ2
ds

¼ lim
ds→0

1

S

Xsurv
i¼1

Xsurv
j;k

ðIdþ α�Þ−1ij ðIdþ α�Þ−1ik
hjhk
ds

:

Based on the DMFT analysis of the γ ¼ 0 case, we assume
that the Oð ffiffiffiffiffi

ds
p Þ perturbing fields hj are statistically

independent of the state of the system at time s and that
to leading order in ds, hj, hk are uncorrelated for j ≠ k.
Therefore, we obtain

lim
ds→0

1

S

Xsurv
i¼1

ðδNiÞ2
ds

¼ lim
ds→0

�
1

S

X
i

h2i
ds

�
ϕtop

S�

× Tr½ðIdþ α�Þ−1ððIdþ α�Þ−1Þt�:

We furthermore assume that to compute the trace we can
take α� to be sampled from the same ensemble as the full
interaction matrix α (albeit with a smaller size), neglecting
the correlations induced by the dynamical selection of the
community of surviving species. Relying on the cavity
method, the validity of this approximation has been argued
in the fixed-point phase [13,46] and more generally at the
level of the average spectral density; see Ref. [35] (the
possible existence of two outlying eigenvalues [46] is
subextensive in the trace). We thus have

1

S�
Tr½ðIdþ α�Þ−1ððIdþ α�Þ−1Þt�

¼

2
64
0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q

2

1
CA

2

− ϕtopσ
2

3
75
−1

:

Furthermore,

lim
ds→0

�
1

S

X
i

h2i
ds

�
¼ lim

ds→0

�
σ2

Sds

Xincoming

i¼1

Niðsþ dsÞ2
�
:

Together, we obtain
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2jĈ0ð0þÞj ¼

0
B@1þ ϕtopσ

2

2
64
0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q

2

1
CA

2

− ϕtopσ
2

3
75
−1
1
CA lim

ds→0

�
1

Sds

Xincoming

i¼1

Niðsþ dsÞ2
�
;

¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2
− 4ϕtopσ

2
lim
ds→0

�
1

Sds

Xincoming

i¼1

Niðsþ dsÞ2
�
:

Hence, we recover Eq. (14) of the main text

2jĈ0ð0þÞj ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γϕtopσ

2
q �

2
− 4ϕtopσ

2
G; ðA9Þ

with

G ¼ lim
ds→0

1

Sds

X
i∈ Iðs;sþdsÞ

Niðsþ dsÞ2;

and where Iðs; sþ dsÞ is the subset of species experienc-
ing a jump from rare during the interval ½s; sþ ds�. For
γ ¼ 0, Eq. (A9) reduces to Eq. (A7) derived within the
DMFT formalism. Additional figures and details may be
found in Sec. VIII.

5. Convergence with S and λ

Figure 11 presents the convergence of hNi; hN2i, show-
ing that it is quantitatively quite robust to changes in λ, S.
One implication is that definitions of diversity others than
species richness, will be quite robust. For example, defining
diversity using the inverse Simpson index S−1ðPi NiÞ2=P

i N
2
i that is approximately hNi2=hN2i is relatively robust

in S, λ, due to the robustness of hNi; hN2i.
As briefly discussed in Sec. VIII, to measure ϕtop at finite

S and λ, we test two options. The first is simply a threshold

on the abundance: counting all the species with Ni ≥ ϵ at a
given time, for some chosen ϵ ≪ 1. Let ϕN

topðS; λ; ϵÞ be the
diversity measured this way. The second measure denoted
by ϕg

topðS; λ; ϵÞ utilizes the invasion growth rate gi. In it,
in addition to Ni ≥ ϵ we also require gi > 0. For both
measures, we find a similar form for the dependence on λ,
S, ϵ. For ϕN

top,

ϕN
topðS; λ; ϵÞ ¼ ϕtop þ c1j ln λj−βN þ c2=Sþ Aϵ; ðA10Þ

where A ¼ PðN ¼ 0þÞ, c1;2 are constants, and the expo-
nent βN ¼ 1=2. The expression for ϕg

top is of the same form,
only with βg ¼ 1. This form of convergence can be
understood as follows: We find that the asymptotic dis-
tribution PðzÞ diverges as ð−zÞ−1=2 when z → 0−. This can
be traced back to the fact that ż ¼ 0 when zðsÞ leaves the
confining wall. Therefore, by defining a cutoff N ≥ ϵ, or
equivalently, z ≥ ln ϵ=j ln λj, the error made in sampling the
distribution PðzÞ for z < 0 scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ln ϵ= ln λjp
, hence

the result in Eq. (A10). However, when conditioned on
g > 0, the distribution Pðg > 0; zÞ is found to be finite
when z → 0− stemming from the fact that ż > 0 when zðsÞ
reaches the wall from below. Thus, by defining a cutoff
N ≥ ϵ, or equivalently, z ≥ ln ϵ=j ln λj, the error made in

(a) (b)

FIG. 11. Behavior of the first and second moments of the
population size. hNi and hN2i are robust predictions that weakly
depend on the number of species S and the migration rate λ. In the
inspected range of parameters, the variations in hNi are of the
order of 1% and those in hN2i of the order of 10%. Parameters:
σ ¼ 1.8, μ ¼ 10, average over 80 realizations.

(a) (b)

FIG. 12. Model behavior at higher values of σ, μ. (a) Collapse
of the correlation function Cλðt; tþ τÞ as a function of τ=j ln λj,
showing that the only timescale in the problem scales as j ln λj.
Compare with Fig. 2(c). (b) ϕN

top as a function of λ, showing the
same dependence on λ, converging as j ln λj−1=2. Compare with
Fig. 6(b). The extrapolated asymptotic value at λ → 0þ is well
below the May bound. Here, σ ¼ 5, μ ¼ 50, S ¼ 5000. ϕN

top is
defined with Ni > ϵ ¼ 10−3.
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sampling the distribution Pðg > 0; zÞ for z < 0 scales only
as j ln ϵ= ln λj, hence the exponent βg ¼ 1. These properties
of the steady-state distribution Pðg; zÞ seem to be robust
features of persistent random walkers confined by hard
obstacles and have been discussed in other contexts
[47–49]. Since in practice j ln λj would not be a very large
number, the difference in the convergence in λ is important.
Quantitatively, ϕN

top;ϕ
g
top are typically larger than ϕtop, and

the convergence in λ of ϕg
top is indeed much faster, again

highlighting the relevance of g. We find that the measure
ϕN
topðS; λ; ϵÞ is often above the stability bound, in contrast to

the asymptoticϕtop which is always below it.ϕg
topðS; λ; ϵÞ can

be either above or below this bound, depending on the
parameters; see Fig. 6.

6. Identifying top species by selection
and subsequent dynamics

The separation of top species from the rest is guaranteed
for λ → 0þ. Yet as discussed in Sec. VII, for finite S, λ this
separation is not very clear when looking at the abundan-
ces; see PðNÞ in Fig. 4(a). By using insights gleaned from
the theory, we show (see Sec. VII and Fig. 6) that this
separation can be much better defined even away from the
asymptotic limit by also considering gi, the invasion growth
rate defined in Sec. III A. Here we show that if we can
manipulate the system by removing certain judiciously
chosen species and rerunning the dynamics, the asymptotic
distribution PðNÞ can be remarkably well reproduced at
reasonable S, λ. Beyond potential applications to experi-
ments, this seems to suggest that the separation between
abundant species and the others is still present, even when it
seems blurred with other measures.
The lack of clear separation is most pronounced at not-

very-small N (say, N ∼ 0.1). There, one finds (1) abundant
species, (2) species that grow from rare and are about to
disrupt the abundant species, and (3) species with negative
growth rate that are leaving the abundant subset. The
abundant species (group 1) are characterized by appreciable
N, and being at a fixed point g ≃ N. They occupy an
equilibrium that is fully stable if not disrupted by species
that grow from rare (group 2). These can have significant g,
with still N small compared to g. The idea here is to remove
species (2) and (3), which we do by removing all species
that have Ni=gi < 1=2, corresponding to species with
positive growth rate that are in the midst of their jump,
below halfway, and thosewith negative growth rate in Figs. 3
and 7. Then, we run again the dynamics, and we find that the
remaining species reach a stable equilibrium. The properties
of the equilibrium obtained in this way are remarkably
similar to those predicted by the asymptotic theory, even for
reasonable λ. Figure 13 shows the obtained abundance
distributionPðNÞ. It is similar to the asymptotic distribution,
and in contrast quite different from the instantaneous
unfiltered PðNÞ from Fig. 4(a). Furthermore, the resulting

distribution is distinct from those in the fixed-point phase
(when σ <

ffiffiffi
2

p
), as shown by a comparison with the

predicted distribution there, a truncated Gaussian. The
asymptotic species richness ϕtop ¼ 0.28 is recovered within
1%; this is lower than the stability bound at ϕ ¼ 0.31.

7. Numerical methods

Here we detail the numerical procedures used in pro-
ducing the figures. They are of two types:
(1) Full many-variable simulations of Eq. (1).
(2) Numerical solution of the rescaled dynamics defined

in full in Eqs. (5), (7), and (8).

(1) We use the explicit Runge-Kutta method of order 5
(4) implemented by the ordinary differential equa-
tion solver scipy.solve_ivp in PYTHON to simulate
Eq. (1).

(2) The set of equations of the rescaled dynamics are
self-consistent: The trajectory zðsÞ depends on gðsÞ,
which is sampled with correlation function Ĉðs; s0Þ
and mean mðsÞ. Self-consistently, Ĉðs; s0Þ; mðsÞ
depend on the statistics of zðsÞ; see Eqs. (7) and
(8). This self-consistency is standard in DMFT
formulations. We use a well-known numerical
method to solve it [17,50]. It starts with a guess
for hgðsÞgðs0Þi; hgðsÞi, generates realizations of gðsÞ,
and from that, trajectories zðsÞ, which are then used
to update hgðsÞgðs0Þi; hgðsÞi. This is repeated until
convergence.

In practice, the DMFT simulations are carried with a
time step ds ¼ 0.5 for s < 500, ds ¼ 0.1 for 500 ≤
s < 600, and ds ¼ 0.05 for 600 ≤ s < 700. We use
(i) 500 iterations with averaging over 1000 realizations
and injection fraction 0.3 followed by (ii) 1000 iterations

(a) (b)

FIG. 13. Identifying the top species by combined selection and
dynamics. (a) Top species are identified by stopping the dynamics
(solid lines), and removing species that are about to grow and
disrupt the system, here the orange trajectory, and those with a
negative invasion growth rate (by removing species i if
Ni=gi < 1=2), and then continuing the dynamics (dashed lines).
The outcome is an equilibrium. (b) The distribution of abun-
dances thus obtained is close to the asymptotic distribution
obtained from the rescaled dynamics. It is much closer than
the bare abundance distribution PðNÞ, and is also very different
from the distribution in the equilibrium phase. S ¼ 5000,
σ ¼ 1.8, μ ¼ 10, λ ¼ 10−10.
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with averaging over 10 000 realizations and injection
fraction 0.3 followed by (iii) 1500 iterations with averaging
over 10 000 realizations and injection fraction 0.03, and
followed by (iv) 2000 iterations with averaging over 10 000
realizations and injection fraction 0.003. In order to
precisely obtain the diversity graph in Fig. 1(g), we
initialize the algorithm with hgðsÞgðs0Þi; hgðsÞi given by
their fixed-point branch value with hgðsÞgðs0Þi destabilized
by a small identity matrix (corresponding to small ampli-
tude white noise). The results agree very well with the
asymptotic values found from full simulations of Eq. (1)
when S → ∞; λ → 0þ are taken carefully; see Fig. 6.

8. Simulation details for individual figures
of the main text

Figure 1: (a) S ¼ 1000, σ ¼ 1, μ ¼ 10, λ ¼ 10−8.
(b) S ¼ 1000, σ ¼ 2, μ ¼ 10, λ ¼ 10−8. (c),(e)
S ¼ 20 000, σ ¼ 1, μ ¼ 10, average over 200 realizations.
(d),(f) S ¼ 20 000, σ ¼ 2, μ ¼ 10, average over 200
realizations. (g) DMFT numerics of the rescaled equation
at μ ¼ 10.
Figure 2: (a) S ¼ 5000, λ ¼ 10−10, σ ¼ 2, μ ¼ 10.

(b) S ¼ 20 000, λ ¼ 10−10, σ ¼ 2, μ ¼ 10, average over
40 realizations. (c) S ¼ 20 000, λ ¼ 0, σ ¼ 2, μ ¼ 10,
average over 40 realizations. (d) S ¼ 20 000, σ ¼ 2,
μ ¼ 10, average over 40 realizations. DMFT line obtained
with the λ → 0þ rescaled dynamics.
Figure 4: same as in Fig. 2. (a),(c) S ¼ 20 000, λ ¼ 0,

σ ¼ 2, μ ¼ 10, average over 40 realizations. DMFT line
obtained with the λ ¼ 0 rescaled dynamics. (b),(d)
S ¼ 20 000, σ ¼ 2, μ ¼ 10, average over 40 realizations.
DMFT line obtained with the λ → 0þ rescaled dynamics.
Figure 5: same as in Fig. 2. S ¼ 20 000, σ ¼ 2,

μ ¼ 10, average over 40 realizations. All species start
at Niðt ¼ 0Þ ¼ 0.5.
Figure 6: σ ¼ 1.8, μ ¼ 10, average over 40 realizations.
Figure 7: S ¼ 5000, σ ¼ 1.8, μ ¼ 10, λ ¼ 10−6.
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