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Colloidal gels, sparse particle networks with large voids, are fundamental model systems of
disordered porous materials. Unlike dense amorphous solids, they exhibit significant volumetric
deformation while expelling solvents when subjected to external compression. Despite their
importance in both natural and industrial settings, the relationship between their network micro-
structure and compressive yielding behavior has remained elusive. To address this problem, we
employ confocal microscopy and a specially designed sample cell to observe the gravity-induced
collapsing of colloidal gels at a single-particle level. The experimental insight gained is comple-
mented by simulation results for gravitational collapse and homogeneous uniaxial compression. We
find that, during compression, the microstructure of gels is uniquely determined solely by the local
volume fraction. This relationship remains independent of the deformation strain history but is subtly
influenced by the preparation history of the initial state. In contrast, compressive stress evolves as a
unique function of local volume fraction, unaffected by both preparation and strain history, as long as
the interparticle interaction remains identical. Moreover, we unveil that local yielding occurs in highly
strained, narrow network domains, while highly stressed particles form chainlike structures to support
the external stress. These findings suggest that colloidal gels undergoing compressive plastic
deformation mechanically self-organize into a unique history-independent state to satisfy mechanical
balance in a quasistatic condition, providing crucial microscopic insights into the compressive
yielding behavior of particle network materials.

DOI: 10.1103/PhysRevX.14.011035 Subject Areas: Chemical Physics, Materials Science,
Soft Matter

I. INTRODUCTION

Colloidal gels, formed through physical (thermoreversi-
ble) attraction, are ideal model systems to study the structural
and mechanical properties of fragile particle networks [1,2].
These networks exhibit unique, complex yielding behavior
when subjected to external stress [3]. Studies on the evolution
of microstructure under cyclic shear [4–7] and large shear
strain [8–11] have revealed the importance of the pore-size
scale topology and particle motions on the surface of the
network, which is distinct from dense amorphous solids
like glasses and dry granular materials [12]. The difference
becomes even more pronounced in compressive deforma-
tion: unlike glassy systems, gels have the ability to

considerably reduce their volume, effectively filling their
large pores while expelling solvents.
Compressive yielding of particle networks is essential in

various fields, encompassing soft matter science and
engineering (such as studying the rheological behaviors
of colloidal gels and emulsions with applications in
cosmetics [13], paints [14,15], drilling [7], and foods [16]),
materials science (for the development of advanced mate-
rials with tailored mechanical properties such as fuel cells
[17,18]), biophysics and bioengineering (to investigate the
mechanical response of biological tissues, cellular aggre-
gates, and biomaterials [19,20]), geology and geotechnical
engineering (for assessing the stability of soil and rock
network structures [21,22]), and granular materials and
powders (to understand the compaction of wet granular
materials like soils and grains [22,23]). Despite the impor-
tance of these phenomena in natural and industrial contexts,
the relationship between network microstructure and com-
pressive yielding remains poorly understood.
The mechanical stability of colloidal gels against gravity

is a critical issue in this context. Gels are formed through
arrested phase separation of colloidal suspensions, resulting
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in a percolated network that imparts macroscopic elasticity
and enables them to resist gravitational stress [1,2,24].
However, due to the intrinsic nonequilibrium nature of gels,
their mechanical properties change slowly over time as
their microstructure evolves. When the gravitational stress
exceeds the gel’s yield stress, the gel collapses, a process
that has garnered considerable attention and has been
extensively studied due to its fundamental and practical
importance [2,6,25–37]. The collapsing behavior depends
on the initial volume fraction ϕinit and the scaled temper-
ature kBT=ϵ (ϵ and kB being the attraction strength and the
Boltzmann constant, respectively). It can be classified into
rapid, delayed, or creeping collapses [25,26,34,36]. These
complex collapse patterns indicate the dynamic interplay
between aging-induced temporal changes in the gel’s
structure and the yielding process. Various interesting
behaviors have been observed in the aging regime, such
as network rupture [32,33], volume-fraction increase at the
top layer of gels [36], and coarsening of network arms
driven by osmotic pressure [6].
Experimentally, the dynamical processes during gravi-

tational compression have been intensively studied through
macroscopic observations, such as monitoring the temporal
change of the top surface position of a gel, and height-
resolved observations, such as measuring the height-
resolved volume fraction ϕðz; tÞ and sedimentation velocity
uzðz; tÞ, where z is the height. These studies have partially
supported the validity of a coarse-grained poroelastic
model [38–40], especially for the rapid collapse case.
However, the constitutive equation for the yield stress
and solvent permeability through a network lacks a micro-
scopic foundation, which hinders a full understanding of
the underlying physics.
The yield stress of a gel σzz has been accessed by

measuring the volume-fraction profile at the final settled
state ϕeqðzÞ, assuming the mechanical equilibrium con-
dition, ∂zσzz þ Δρgϕeq ¼ 0, where g and Δρ are the
gravitational acceleration and mass-density difference
between colloids and solvent, respectively [31,41–44].
Interestingly, these studies have reported that the yield
stress σzz is determined by kBT=ϵ alone, independent of
ϕinit [31,41–44]. Furthermore, nontrivial scaling of σzz for
various kBT=ϵ [41,43,44] and a crossover from power-law
to divergent growth of σzz toward the random close packing
volume fraction ϕRCP have also been observed [41,44].
However, the microstructural evolution of gels under stress
and its connection to the yield stress remain unclear since
previous studies have relied on observations of final
mechanical equilibrium gels after complete collapse.
In this study, we employ real-time in situ three-dimen-

sional (3D) confocal microscopy at a single-particle level to
observe the gravitational collapsing process of colloidal
gels. As emphasized above, the structural changes in gels
are driven by both external mechanical stress and aging
effects. For systematically studying the microstructural

evolution of gels during yielding, it is essential to isolate
the collapsing process from the aging process. To achieve
this, we employ a specially designed cell capable of
promptly applying buoyancy to well-aged gels prepared
without subjecting them to gravitational stress. This
approach enables us to track the particle-level structural
evolution of a gel with a well-defined initial structure
during sedimentation, free from aging effects. By manipu-
lating gravitational force, we have effectively investigated
the relationship between the gel’s microstructural evolution
and its mechanical yielding under low strain rates.
Additionally, to obtain information on the mechanical
stress, we have conducted Brownian dynamics simulations
for gravitational collapse and homogeneous uniaxial com-
pression. Through comparisons with these simulation
results, we have also verified that the experimental results
reported below can be considered quasistatic.
Despite substantial changes in the microstructure of the

gel during gravitational collapse, we have discovered that,
throughout the collapsing process, the microstructural
characteristics, such as the average coordination number
and characteristic pore size, are statistically uniquely
determined by the local volume fraction ϕ alone. This
relationship remains independent of the deformation strain
history the system experienced but is subtly influenced by
the preparation history of the initial conditions, character-
ized by the volume fraction ϕinit and the age tage of the gel’s
initial state. On the other hand, the compressive stress
adheres to a distinct function determined solely by the local
volume fraction during compression, except during the
initial transient behavior (e.g., stress overshoot). This
function remains unaffected by both the preparation and
strain histories, as long as the interparticle interaction is
identical. Furthermore, we observed two distinct micro-
structural changes during the compression process: the
emergence of compact clusters experiencing significant
strain and undergoing yielding, and the formation of
chainlike structures along the compressive axis that support
external stress. Our findings indicate that the gel’s micro-
structure mechanically self-organizes into a unique history-
independent absorbing state solely determined by the
volume fraction under external compressive stress.

II. METHODS

A. Experiments

Here, we describe a unique experimental protocol using
a custom-made cell that allows us to observe the gel’s
gravitational collapse process without the influence of the
aging effect. We first prepare a density and refractive-index
matched colloidal suspension of diameter a ¼ 1.9 μm of
the volume fraction ϕinit ¼ 0.19� 0.01, including poly-
mers (the concentration Cp) but no salt, in a sample
chamber (see Appendix A and Fig. 7 in Appendix B for
the details on the sample and the sample cell, respectively).
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In this stage, colloids are homogeneously dispersed free
from aggregation due to the intercolloid Coulomb repulsion
[left-hand panel in Fig. 1(a)]. Then, we introduce a solvent
with both polymers (the same concentration as in the
sample) and salt into a reservoir chamber [see protocol (I)
in Fig. 1(a)], which is in contact with the sample chamber
through a semipermeable membrane. The salt quickly
diffuses into the sample chamber through the membrane,
screens the Coulomb repulsion, and makes the polymer-
induced depletion attraction between colloids active (the
attraction range Δ ∼ 0.13; see Appendix A for details),
initiating phase separation of the colloidal suspension into
the colloid-rich and -poor phases. This allows us to observe
the gelation dynamics from the beginning and prepare
an ideal colloidal gel state without any mechanical and
hydrodynamic perturbations [the middle panel in
Fig. 1(a)]. See Refs. [45–47] for the details and validity
of this method.
After forming the gels, we replace the reservoir solvent

with the one without density match with colloids (Δρ ≠ 0)
to induce the colloids’ buoyancy Fg ¼ πa3Δρg=6 and
initiate the gravitational collapse of colloidal gels [see
protocol (II) in Fig. 1(a)]. We set the gravitational Péclet
numbers to be Pe ¼ Fga=2kBT ¼ 0.16; 0.32;−0.32. The
positive and negative Pe’s correspond to the floating and
sedimentation of gels (see Appendix B for further details),
and we orient z coordinate such that the buoyant force
points toward −z. Here, it is worth noting that the
comparisons with numerical simulation results below

demonstrate that the processes under investigation can
be regarded as quasistatic. By combining this protocol
with high-precision dynamical particle tracking (see Figs. 8
and 9 and Appendix C), we investigate the gravitational
collapsing of a gel with single-particle resolution.
In Fig. 1(b), we show 2D confocal images of the two gel

states formed by protocol (I) for Cp=C�
p ¼ 2 and 4, where

C�
p ¼ 0.25 g=L is the critical polymer concentration above

which colloids aggregate. The waiting times from the
initiation of gelation (∼1 h), or the age of the gels,
correspond to tage ≃ 1500 and 1100 in the unit of the
Brownian time τB ¼ ða=2Þ2=6D0 (D0 is the diffusion
constant of a free particle) for the gels of Cp=C�

p ¼ 2

and 4, respectively. To characterize the gelation processes
reaching these final states at the microscopic level, we
follow the temporal change of the average coordination
number nb (the number of interparticle bonds per particle;
see Appendix D for the details), as shown in Fig. 1(c).
Initially, nb experiences a rapid increase, but its growth
significantly slows down as it approaches Maxwell’s
isostaticity criterion (2d ¼ 6, where d is the dimension-
ality). This observation supports the notion that the
dynamic slowing down in the gelation of colloids with
short-range attractions is caused by the percolation of
mechanically rigid particles [8,45,47–49]. To see the
structural evolution in a different length scale, we monitor
the temporal change of the characteristic pore size lc
obtained as the mean value of the chord length distribution
PðlÞ (see Appendix D), as shown in Fig. 1(d). lc increases

Stable liquid Gelation and aging Gravitational collapse(a)

(b) (c) (d)

FIG. 1. Experimental protocol and results of colloidal gelation. (a) Schematic figure of a sample cell used in our experiment. Colloids
in the sample chamber are density matched to create a stable homogeneous liquid state (left). Then, we replace the solvent in the
reservoir chamber with the one with salt (I). This quickly screens intercolloid electrostatic repulsion through ion diffusion across a
semipermeable membrane, which activates polymer-induced depletion attractions between colloids and initiates colloidal phase
separation and gelation (middle). After forming the gel, we replace the reservoir solvent with the one without density match with colloids
(II) to induce the colloids’ buoyancy and initiate the colloidal gel’s gravitational collapse (right). (b) 2D confocal xy-slice images for
colloidal gels with Cp=C�

p ¼ 2 (left) and 4 (right) at the final frame of observation of the gelation dynamics. (c),(d) The time evolution of
the average coordination number per particle nb and characteristic pore size lc during gelation, respectively. The inset in (d) is a
binarized image of the left-hand side of (b), where the white and black regions correspond to the colloid network and pores, respectively.
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in the early stage but shows a logarithmic growth in the
late stage, similarly to nb. Furthermore, by comparing nb
and lc for the two different Cp’s, we find a notable
difference in the gel structure between them; the network
formed at the larger Cp has thinner strands and smaller
pore sizes than the one at the smaller Cp [see Fig. 1(b)].
Below, we show that such a difference in Cp (or ϵ=kBT in
simulations) significantly impacts the dynamic route of
the gravitational collapse.

B. Simulations

We perform the Brownian dynamic simulation using
the LAMMPS package. The short-range depletion attrac-
tion between colloids is modeled using the Morse
potential, UðrÞ ¼ ϵðe2ρða−rÞ − 2eρða−rÞÞ, where ρa is set
as 48.63 to match the attraction range in the experiments
(Δ ¼ 0.13) [46] and a linear correction term is added to
truncate U at r=a ¼ 1þ Δ smoothly (i.e., U ¼ U0 ¼ 0).
The position RiðtÞ and the velocity ViðtÞ for particle i
ði ¼ 1; 2;…; NÞ obey the following overdamped
Langevin equation: dRiðtÞ=dt ¼ ViðtÞ ¼ ζ−1ðFi þ FR

i Þ.
Here, Fi ¼ −

P
jð∂=∂RiÞUðjRj − RijÞ is the force act-

ing on particle i, ζ is the viscous friction constant,
and FR

i is the random force, which satisfies the follow-
ing fluctuation-dissipation relation: hFR

i i ¼ 0 and
hFR

iαðtÞFR
jβðt0Þi ¼ 2kBTζδijδαβδðt − t0Þ.

This simulation method does not account for many-body
hydrodynamic interactions (HIs), which arise from the
dynamic coupling between colloidal and solvent motions.
However, we have confirmed that the impact of HIs on the
final structure of the gel at ϕinit ¼ 0.2 [t=τB ∼Oð103Þ] is
minimal [50], although the aggregation process preceding
gelation [t=τB ≲Oð102Þ] is significantly influenced by
HIs [46]. In Fig. 10 and Appendix E, we demonstrate
that, for the small Pe’s employed in our study, HIs play a
minor role in the gel’s microstructure during gravitational
collapse. It is noteworthy that HIs influence the sedimen-
tation speed of the system, although this does not affect the
analysis results presented in the main text.
We scale the above equation of motion using a and a2ζ=ϵ

as the length and time units, respectively, and integrate it
under the Euler scheme with a time step Δt ¼ 1.0 × 10−5.
To characterize the strength of intercolloid attraction and
buoyancy, we use the scaled temperature T̂ ¼ kBT=ϵ and
F̂g ¼ Fga=ϵ, respectively. Then, the experimental param-
eters Cp=C�

p ¼ 2 and 4 approximately correspond to T̂ ¼
0.143 and 0.071, and Pe ¼ 0.16 and 0.32 correspond to
F̂g ¼ 0.0432 and 0.0864. Hereafter, we omit the scaling
symbol “^” to avoid cumbersomeness.
To prepare the initial conditions, we first equilibrate the

system at a high temperature (T ¼ 1) and then drop the
temperature to obtain arrested gels (the scaled waiting time
being tage ¼ 3000τB). Then, we add a constant external

force −Fgez on all particles along the z direction, to see the
dynamical processes of gravitational collapse. Here, we
introduce two flat walls perpendicular to z axis, with a gap
of Lz ¼ 100a, and impose the periodic boundary condition
in x, y directions (the system size is Lx ¼ Ly ¼ 34.6a). The
walls interact with particles through the above Morse
potential during the gelation processes, but we remove
the interaction with the upper wall during the sedimentation
processes to avoid complex behavior such as network
detachment from the top wall.
Additionally, to observe the compression behavior with-

out global density gradient along z axis, we perform
uniaxial compression simulations under periodic boundary
conditions in all directions. In each step, we first update the
particle positions by integrating the above overdamped
Langevin equation. Subsequently, we change the system
size and particle positions along the z axis with a constant
deformation rate of κ ¼ −6.93 × 10−4. Specifically, we
update the Lz (and Ri;z) as Lzðtþ ΔtÞ ¼ LzðtÞ expðκΔtÞ,
where Lzð0Þ ¼ 2Lx, Lx and Ly fixed at 34.6a. We continue
the compression until Lz reaches Lx. It is important to note
that this algorithm ensures that the rate of instantaneous
strain, ½Lzðt1 þ t0Þ − Lzðt0Þ�=Lzðt0Þ ≃ −½ϕðt1 þ t0Þ −
ϕðt0Þ�=ϕðt0Þ (t0, reference time; t1, interval from t0), is
constant (κ) for small t1. We compared the results obtained
at a rate of −6.93 × 10−5 for the volume fractions within
our range of interest (0.2 ≤ ϕ ≤ 0.6), and we did not
observe any significant differences. Based on this analysis,
we can conclude that our compression simulations can be
considered practically quasistatic. By employing these
simulations with sufficiently slow deformation rates, we
can effectively prevent density inhomogeneity along the
compression direction (see Fig. 11 and Appendix F for the
detailed discussion on the uniformity of the volume-
fraction profile). This simplifies the interpretation of the
results to a great extent, enabling a clearer understanding of
compressive yielding.

III. RESULTS

A. Gravity-induced compression of colloidal gels

Using the gels obtained from protocol (I) as the initial
states, we impose the gravitational force on colloids by
quickly switching on the buoyancy force Fg, i.e., by
replacing the existing density-matched solvent in the
reservoir chamber with a solvent with a targeted density
mismatch Δρ [see protocol (II) in Fig. 1(a)]. Note that the
refractive index of the solvents is kept matched between the
two solvents (see Appendix A); therefore, the intercolloid
interaction is unchanged by this solvent exchange. We set
the gravitational Péclet numbers to be Pe ¼ 0.16, 0.32
(floating) and −0.32 (sedimentation), which are strong
enough to induce the gravitational collapse of gels [51].
Here, we emphasize that the gels discussed in our study

are physical colloidal gels, formed through the dynamic
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arrest of network-forming phase separation. Such gels
constitute an entirely distinct material category compared
to chemical colloidal gels, which are particle networks
stabilized by chemical interactions between the surfaces of
colloids [1,2]. Notably, physical gels lack a fractal micro-
structure and a restoring force for bond-bending, character-
istics present in chemical gels. Refer to, for example,
Refs. [52–58] for studies on the compression or sedimen-
tation of chemical gels.
Under the above conditions, the collapse starts immedi-

ately after the solvent replacement (within 1–2 min); see
Supplemental Material, Movie 1 [59]. The time window of
the collapse observation (∼2 h) is in the same order as tage.
Since the aging proceeds logarithmically, it has little
impact in this timescale. Therefore, unlike previous
experimental studies, we can follow structural changes
driven by gravitational stress alone, free from the aging
effects. To our best knowledge, our work is also the
first particle-level 3D observation for the gravitational
collapse of colloidal gels, although several earlier studies

observed xz cross sections of colloidal gels with confocal
microscopy [28,32,34,37].
We first provide an overview of the collapse process and

examine if our results reproduce the previous studies.
Hereafter, we mainly focus on the results for ðCp=C�

p; PeÞ ¼
ð2; 0.32Þ; the results for other trajectories are provided in
Fig. 14 of Appendix I. Figure 2(a) shows 3D reconstructions
of the confocal images for a collapsing gel,which cover from
the top to the bottom layers of the sample chamber (thewidth
being 90a–100a), together with the xy-slice images (the size
being 562a2) at the bottom of the sample chamber. We can
see that the particle density at the bottom increases as the gel
collapses (see also Supplemental Material Movie 1 [59]).
This behavior can be characterized quantitatively by follow-
ing the time evolution of the volume-fraction profile ϕðz; tÞ
[see Fig. 2(b)] [refer to Appendix D for the method of
computing ϕðzÞ]. Note that the peak in the ϕðzÞ profile
develops slightly above the bottom wall of the sample
chamber (see the vertical dashed line in the figure) due to
the density depletion near the samplewalls at the initial state.

(a)

(b) (c) (d)

FIG. 2. 3D observation of the gravitational collapse of a colloidal gel with confocal microscopy. (a) 3D reconstruction of a confocal
image for the collapsing gel at a different time (see also Supplemental Material Movie 1 [59]). Particles are colored to distinguish the
front from the back. We also show the confocal 2D image of the sample chamber’s bottom in the xy plane [at the location of the vertical
dashed line in (b)]. (b) The volume-fraction profile ϕðzÞ as a function of height z and elapsed time t. (c) The time evolution of the front
position, i.e., the distance from the sample chamber’s bottom to the front of the collapsing gel h [see the black arrow in (b)], for various
trajectories. Here, we scale h by its initial value h0 at t ¼ 0 min. (d) The z component of the average colloid velocity uzðz; tÞ, estimated
from the particle displacements between two subsequent times (the time interval Δt ¼ 0.68 min). Panels (b) and (d) correspond to the
results for ðCp=C�

p;PeÞ ¼ ð2; 0.32Þ, and those for other trajectories are shown in Fig. 14 of Appendix I.
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The deposition of particles on the walls in the early gelation
stage may create this depleted region.
We regard the peak position of ϕðzÞ as the bottom of the

collapsing colloidal gel and measure the gel height h from
this bottom to the gel’s top surface as a function of time; the
result is shown in Fig. 2(c). We can see that h decreases
faster, and its final gel height h is smaller for weaker
intercolloid interaction and stronger gravitational strength.
The collapsing speed, i.e., the slope of hðtÞ around t ¼ 0, is
not maximum, unlike several previous studies (see, e.g.,
Refs. [34,36]), which may be because the detachment of the
gel network from the top wall of the sample chamber
retards the collapse process. We can also see that the
direction of buoyancy, sedimentation (green curve) or
floating (blue curve), has little influence on the behavior
as long as the magnitude is the same. The excellent
agreement between the two curves also shows the robust-
ness of our experimental method.
Figure 2(d) shows the z component of the average

colloid velocity, uzðz; tÞ, obtained from the displacements
of particles between two subsequent times (Δt¼0.68min;
see Appendix C regarding how to construct the particle
trajectories). In the early stage, the sample can be divided
into the free-falling supernatant part with little deformation
(the z region with constant ϕ) and the lower part under
significant deformation (the z region where ϕ increases
with decreasing z). However, the supernatant part disap-
pears in the late stage (t≳ 46.2 min). These two distinct
time regimes correspond to the linearly decreasing behavior
and the subsequent nonlinear saturation of hðtÞ [Fig. 2(c)].
This behavior of hðtÞ is similar to typical behaviors
observed in the rapid collapse but different from the
delayed collapse or creeping-type collapse (see, e.g.,
Refs. [33,34,36]). This is natural since the delayed and
creeping-type collapse cases are much more seriously
affected by the gel’s aging than the rapid collapse case.
This observation supports that the collapsing process of the
gel is free from aging effects.

B. Absorption into a history-independent state

Now, we examine the microstructural evolution of the
collapsing gels under gravity. To systematically evaluate
the influence of the evolution of ϕðz; tÞ, we divide the entire
system into layers with a width of 3.5a along the z axis and
measure ϕðzÞ, nbðzÞ, and lcðzÞ layer by layer as a function
of time t. The bin size of the layers is chosen to be
sufficiently large to conduct structural analysis with stat-
istical significance and small enough to ensure that the
variation in ϕðzÞ within the layer is effectively negligible
[see Fig. 2(b) and also Fig. 14 in Appendix I]. Note that we
measure lc only in the xy plane since the system is subject
to strong ϕ gradient along the z axis at the pore-size scale.
Figures 3(a) and 3(b) show the mappings of ϕ-nb and ϕ-lc,
respectively, for four different trajectories. Notably, the
data for different z, t, and Pe collapse onto the same curve.

This result suggests that while the microscopic structure of
collapsing gels exhibits strong heterogeneity depending on
height and elapsed time, the network structure of the gel
undergoing collapse is statistically determined solely by the
local volume fraction ϕ measured in each layer at a given
height z. In other words, the microstructure evolves as a
function of ϕ, independent of the strain history that the
system has experienced.
This phenomenon of colloidal gels being absorbed into a

unique state under external stress somewhat resembles
the critical steady state observed in dense amorphous
solids under unidirectional shear deformation [12,60].
Additionally, another type of absorbing state transition
has been observed in non-Brownian suspensions [61,62]
and granular materials [63,64] subjected to cyclic shear.
However, a critical difference is that in our case, as the
volume fraction increases with compression, the absorbing
state undergoes continuous changes rather than remaining
steady. It is also crucial to note that this history-independent
state is unique to compressive yielding and significantly
differs from behaviors observed in shear-induced yielding
of colloidal gels. In shear-induced yielding, unidirectional
shear leads to global-scale network rupture, whereas
oscillatory shear results in the slow coarsening of network
strands (see, e.g., Refs. [7,10,11]).
The failure of data collapse for different Cp implies that

the state to which the system is absorbed depends on the
attraction strength ϵ=kBT. In Fig. 3(c), we present the chord
length distributionsPðlÞ for the samevolume fraction but at
different times (the corresponding simulation results are
provided in Fig. 15 and Appendix I). The data collapse of
PðlÞ for a given ϕ further confirms the existence of the
history-independent state unique to compressive yielding.
Weverify that the same trend holds for the number density of
local structures identified by topological cluster classifica-
tion [2,23,65,66] [see Figs. 12(a)–12(c) and Appendix G].
Then, a critical question is how this structural feature

relates to mechanical properties. In the experiments, it is
difficult to obtain information on intercolloid forces (the
attraction range being 0.13a) due to the limited accuracy of
particle tracking (roughly 200 nm ≃ 0.1a). We mention
that an experimental setup using special emulsions to
estimate interparticle forces from confocal images has been
developed recently [67]. Here, we consider results obtained
from Brownian dynamics simulations of gel collapsing and
compare them with the above experimental results by
matching the initial condition of gels, i.e., (ϵ=kBT, ϕinit,
tage) between the experiments and simulations (see Sec. II B
for the details).
The triangle and cross symbols in Figs. 3(d) and 3(e)

show the mapping of ϕ-nb and ϕ-lc, obtained from the
simulation results of gravitational collapse, reproducing the
essential features of the corresponding experimental results
in Figs. 3(a) and 3(b). In Fig. 10 and Appendix E,
we confirm that these microstructural signatures remain
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unaffected by the presence or absence of hydrodynamic
interactions, while HIs significantly affect the sedimenta-
tion speed. To see the relationship between the structure
and mechanics, we evaluate the volume-fraction depend-
ence of the stress σzz following the expression of the virial
stress; the results are shown in Fig. 3(f). Each point in the
figure corresponds to a pair of ðϕ; σzzÞ measured for each
layer at height z and elapsed time t, and the colors of the
points are labeled following the value of Fg.
On the other hand, the red line in Figs. 3(d)–3(f)

represents the same result but obtained from simulations
of homogeneous uniaxial compression (along the z axis),
which coincides well with the curves for gravitational
collapse. This indicates that the system has been mechan-
ically self-organized into a unique history-independent
state after a short period of transient behavior (see
also Fig. 16 in Appendix I), irrespective of the pres-
ence or absence of the spatial gradient of the volume
fraction ϕ as well as the height of the initial gels h0.

Here, it is worth stressing that the global strain rate in
uniaxial compression simulations is sufficiently low (see
Sec. II B for the detail). Hence, the observed yielding
behavior can be practically regarded as quasistatic. This
indicates that the unique state in compressive processes is
characterized by a low strain rate, ensuring that it evolves in
a manner that maintains mechanical balance. This obser-
vation also explains why the microstructure of the gel is
little affected by the presence or absence of hydrodynamic
interactions (see Fig. 10 and Appendix E). Furthermore, the
persistence of the σzz-ϕ relation, unaffected by volume
fraction gradients along the compression axis, emphasizes
the local nature of the mechanical equilibrium (see also
Appendix F).

C. Structure and stress dependence on the preparation
history of the initial states

Next, we consider how the structure and stress evolution
depends on initial conditions. The blue and green lines in

(a) (b) (c)

(d) (e) (f)

p p

FIG. 3. Comparison of gel’s microstructure during compressive yielding between experiments and simulations. (a)–(c) Experimental
results. (a) The average coordination number per particle nb for various z and t. (b) The characteristic pore size lc along the xy plane for
various z and t. The brown cross, blue cross, green cross, and red triangle symbols in (a) and (b) represent the trajectory at
ðCp=C�

p; PeÞ ¼ ð4; 0.16Þ, (4, 0.32), ð4;−0.32Þ, and (2, 0.16), respectively. (c) Comparison of the chord length distribution PðlÞ under
fixed volume fractions (ϕ ¼ 0.25, 0.31, 0.41) between the intermediate (solid lines, t ¼ 13.6, 34, 68 min) and late time (dashed lines,
t ¼ 115.6 min). The dotted line represents PðlÞ for the initial condition. Here we show the result for (Cp=C�

p; PeÞ ¼ ð2; 0.32Þ.
(d)–(f) Simulation results. (d),(e) ϕ dependence of the average coordination number per particle nb and the characteristic pore size lc,
respectively. Triangle and cross symbols are the results of the gravitational collapse at T ¼ 0.071, 0.143 and Fg ¼ 0.0432, 0.0864, for
which we start the simulation with the same volume fraction ϕinit ¼ 0.2. Dotted and dashed lines are the results of uniaxial compression
at T ¼ 0.071, 0.143, respectively. Here, we show the results from three different initial conditions: ϕinit ¼ 0.2 (red), 0.25 (blue), 0.3
(green). (f) ϕ dependence of stress σzz at T ¼ 0.071. Cross symbols are the results of gravitational collapse simulations. Each cross
symbol corresponds to a map of (ϕ, σzz) for a given pair of (z, t). The color indicates the gravitational strength: Fg ¼ 0.043 (blue), 0.086
(green), 0.173 (brown), and 0.345 (red). Solid lines are the results of uniaxial compression for three different initial conditions:
ϕinit ¼ 0.2 (red), 0.25 (blue), and 0.3 (green).
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Fig. 3(f) represent the stress σzz for initial volume frac-
tions different from the one in gravitational collapse
(ϕinit ¼ 0.25, 0.3). All the points from the gravitational
collapse simulations and the lines from uniaxial compres-
sion simulations are absorbed onto a single master curve,
implying the uniqueness of the stress for a given ϕ. Such a
link of the macroscopic stress to the volume fraction has
been assumed in a standard coarse-grained model [38–40].
Our results establish that σzzðϕÞ is unique even if the
compressive yielding process is ongoing when the strain
rate is sufficiently low, providing the first microscopic
support for this hypothesis. Note that the transient behavior
of σzz before entering into the history-independent state
exhibits either ductile (overshoot) or liquidlike (monotonic
increase) fractures, depending on the preparation protocol
of initial conditions [see Figs. 13(c) and also 16 in
Appendix I for the shape of σzzðϕÞ under the other
parameter settings], as observed in the case of shear
yielding of dense amorphous solids [12].
In our study, we denote the stress σzzðϕÞ in this

absorbing state as the yield stress. It is important to note
that while this notation is consistent with earlier studies on
the compressive yielding of colloidal gels (see Sec. I), in
yielding phenomena of amorphous dense solids under
unidirectional shear, the yield stress is often defined as
the maximum stress in the stress overshoot that appears
before reaching the critical steady state [12,60]. Under
substantial gravitational stress, the layer at the bottom of
the sample chamber can reach a very dense state with few
pores, crossing over from heterogeneous gels to homo-
geneous attractive glasses. This structural homogenization
is accompanied by the sharp increase of the yield stress
toward ϕRCP [41,44].
In Figs. 3(d) and 3(e), we can see that the collapse and

compression simulations yield almost exactly identical
behavior for the same ϕinitð¼ 0.2Þ. However, slight mis-
matches in structural evolution are noticeable among
different ϕinit values, even in the late stages. This suggests
that while σzz at fixed ϕ is common for different ϕinit,
their microstructures are not strictly identical, albeit very
similar.
To further investigate this point, we monitor the evolu-

tion of local structures for different ϕinit values and find that
the number densities of the tetrahedral (three-ring) struc-
tures and pentagonal pyramid (five-ring) structures follow
master curves, while that for square pyramid (four-ring)
structures does not [see Fig. 12(d) and Appendix G],
indicating the presence of relevant and irrelevant structures
in the compressive yielding process. In Fig. 13 and
Appendix H, we examine tage dependence (which covers
two decades) on the evolution of nb, lc, and σzz under
uniaxial compression, and the role of tage is essentially the
same as that of ϕinit: tage alters the structural evolution
slightly, whereas it does not affect the stress evolution
except during the early transient stage.

D. Microstructures characteristic of particles
exhibiting high strain and stress

In the above, we have seen that in actual gel’s structure,
the preparation history of the initial conditions (ϕinit and
tage) are mostly erased during compression, but not com-
pletely. In contrast, the stress is not influenced by the
preparation protocol of gels, i.e., the initial conditions,
except during the initial transient stage. Then, a question
that naturally arises is what kind of microscopic structure or
dynamics in the history-independent state is linked to the
global-scale deformation and magnitude of yield stress.
To address this question, we first examine if there is an
experimental signature that can characterize the yielding
process. As a typical indicator of microscopic structural
changes, we monitor the particle-level shear strain γ,
following Ref. [68] (see Appendix D). The distributions
of shear strain PðγÞ for different reference times t0 are
shown in Fig. 4(a), where the time interval is the one
between two subsequent frames (Δt ¼ 0.68 min). Here,
we find that PðγÞ has a peak around γ ∼ 0.05 with an
exponential tail in the high γ side. Additionally, in Fig. 4(b),
we show a snapshot of particles belonging to the tail part
(γ > 0.2). We can see that particles subjected to large
deformation form small compact clusters (see also Movie 2
in Supplemental Material [59]). These results indicate that
the network structure almost retains its shape during
sedimentation to keep mechanical balance and that the
localized structural changes involving a tiny number of
particles are responsible for the global yielding.
To access the purely mechanical features, next we

examine the simulation results for uniaxial compression
at zero temperature, where the influence of thermal noise
and volume-fraction gradient along the z axis (at the pore-
size scale) are absent (see Appendix F). We confirm the
absorption into a history-independent state in this condition
(see Fig. 16 and Appendix I). We identify the top 10% of
particles with high particle stress σzz and strain γ, and

(a) (b)

FIG. 4. Microscopic yielding process observed in experiments
at (Cp=C�

p;PeÞ ¼ ð2; 0.32Þ. (a) The distribution of microscopic
shear strain γ for various reference time t0 (see the legends) and
time interval of Δt ¼ 0.68 min. (b) Visualization of highly
strained particles (γ > 0.2) at t0 ¼ 46.2 min. The color indicates
the size of the clusters to which each particle belongs. See also
Supplemental Material Movie 2 [59].
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perform a structural analysis of the corresponding clus-
ters identified by using the interaction range as a thresh-
old. Figures 5(a) and 5(b) show the snapshots of the top
10% particles with high strain and stress, respectively. In
Fig. 5(c), we show the relationship between the number
of particles belonging to each cluster N and its gyration
radius Rg for the top 10% strained and stressed particles.

The power exponent df in the equation Rdf
g ∝ N, known

as the fractal dimension, characterizes the morphology of
the clusters. Statistically, the top 10% strained particles
form spherical clusters with df ∼ 3, whereas the clusters
of the top 10% stressed particles exhibit a more chainlike
structure with df ∼ 1.5. These structural features can
also be directly observed from the real-space structures
of these particles shown in Figs. 5(a) and 5(b). Movie 3
in Supplemental Material demonstrates that these trends
are commonly observed during compression at finite
temperatures [59].
Figure 5(d) shows the fractions of ruptured bonds for

these two types of clusters and all bonds. The bonds in
stressed clusters are more compression resistant than the

others, indicating that highly stressed structures are more
likely to survive during compression and grow selectively
under compression. It is worth noting that the size of
compact strained clusters seen in Fig. 5(a) is typically
comparable to the network or strand width, which is a few
particle diameters. This trend is markedly different from
the shear yielding of jammed systems, where a system-
spanning shear band is formed [12,69]. Furthermore, as
illustrated in Fig. 5(a) (see also Supplemental Material
Movie 4 [59]), there is little spatial correlation between the
formed (green) and ruptured (red) bonds. This indicates
that T1 events are minor in the compressive yielding
of an inhomogeneous colloidal gel, unlike in homogene-
ous jammed systems [70] and glass systems [68]. It is
intriguing how the microscopic yielding behavior changes
with increasing the volume fraction across the gel-to-glass
crossover.

E. Mechanical anisotropy of gels under
uniaxial compression

Finally, we explore the structural and mechanical
anisotropy of gels under uniaxial compression. The solid
lines in Fig. 6(a) show the stress along the compression axis
(σzz) and one perpendicular to it (σxx) for various volume
fractions. The dotted lines in Fig. 6(a) represent the
transient behaviors observed before the system enters a
history-independent state from the initial conditions. We
observe that for small ϕ, the value of σzz is significantly
larger than that of σxx. However, the discrepancy between
the two stresses diminishes as ϕ approaches ϕRCP. This
suggests that the stress homogenization is induced by
compression [71].
To investigate the structural features associated with the

stress anisotropy, we first focus on the distribution of bond
orientation PðR̂zÞ, where R̂z is the amplitude of the z
component for the unit vector of each bond. Figure 6(b)
shows PðR̂zÞ for three different volume fractions (ϕ ¼ 0.3,
0.4, 0.5) in the history-independent state. Here, small (∼0)
and large (∼1) values of R̂z indicate that the bond direction
is perpendicular and along the z direction, respectively. The
red and blue lines in Fig. 6(b) show PðR̂zÞ for bonds that
form and rupture within the strain Δϕ=ϕ0 ¼ 0.0069,
respectively. We observe that the bonds lying in the xy
plane and oriented to the z axis tend to rupture, whereas
those oriented along the z axis tend to form. This behavior
reflects the squeezing of the network along the z direction
by the external stress and the expansion in the xy direction.
Furthermore, we note that PðR̂zÞ for all bonds (black) is
almost flat, implying that the anisotropy of the static
structure is weak.
This trend is also confirmed from the volume-fraction

dependence of the characteristic pore size measured in x
and z directions, lx

c and lz
c; see Fig. 6(c). We find that lx

c
and lz

c decrease similarly with increasing ϕ, and the relative

(a)

(c) (d)

(b)

FIG. 5. Microscopic mechanically relevant structures in uni-
axial compression simulations. (a) The top 10% particles with
high particle shear strain γ. The red and green bars are the bonds
that rupture and form by the deformation, respectively. (b) The
top 10% particles with high particle stress σzz. The particle color
in (a) and (b) represents the number of particles of a cluster to
which a particle belongs (see the color bar). (c) Mapping of the
gyration radius Rg as a function of the number of particles N for
clusters of the top 10% stressed (triangles) and strained (crosses)
particles. The dotted and dashed lines have slopes of 3 and 1.5,
respectively, representing the fractal dimensions of the top 10%
stressed and strained particles. Panels (a)–(c) are results for
external strain Δϕ=ϕ0 ¼ 0.0067 from ϕ0 ¼ 0.3. (d) The number
of ruptured bonds Δn−b under strain Δϕ=ϕ0 ¼ 0.0067 for various
ϕ0, normalized by the total number of bonds nb. The red and blue
curves are Δn−b =nb measured for the top 10% stressed and
strained particles. The black curve represents the result for
all bonds.
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difference between them is at most ∼5%. This is consistent
with the isotropic character of the microstructure observed
in wet granular materials under gravity [23].
Then, we turn our attention to the mechanical structure

discussed above. Figure 6(d) shows a snapshot of the top
10% stressed particles at ϕ ¼ 0.4 in terms of σxx and σzz.
We observe that chainlike clusters are present in both xx
and zz components, but the clusters in the xx component
appear shorter than those in the zz component. To quantify
this observation, we calculate the average cluster size (see
Appendix D for the definition) for xx and zz components at
various ϕ values and present the results in Fig. 6(e). We find
that the cluster size exhibits a significant difference
between the two components for small ϕ, and this differ-
ence decreases as ϕ approaches ϕRCP. These findings
highlight the crucial role of the stress-bearing structure
hidden in the nearly isotropic network structure in deter-
mining the mechanical anisotropy of the yield stress
observed in Fig. 6(a).

IV. CONCLUSION

In summary, we studied the microscopic structural fea-
tures of particle networks during yielding under uniaxial
compression. To elucidate the underlying microscopic
mechanism, we employed confocal microscopy to observe

the structural evolution of colloidal gels undergoing gravi-
tational collapse, from individual particle trajectories to
global sedimentation dynamics. We compared our exper-
imental findings with the simulation results of the corre-
sponding setting and those for very slow (almost quasistatic)
uniaxial compression to establish the connection between the
structural andmechanical properties of the particle networks.
We discovered that, despite substantial changes in the

microstructure of the gel undergoing gravitational collapse
with height and elapsed time, the gel’s structure is sta-
tistically uniquely determined by the local volume fraction
alone, independent of the deformation strain history that the
system has experienced. However, the connection between
structure and volume fraction is mildly affected by the
preparation history of the initial conditions, including the
volume fraction and age of the initial gel states. In contrast,
the evolution of compressive stress follows a distinct
function of the local volume fraction during compression,
remaining unaffected by both the preparation and strain
histories, except for the initial transient behavior, such as
stress overshoot. Thus, the relation is robust as long as the
interparticle interaction is identical.
This suggests a subtle retention of the memory of the

initial structure during compressive yielding, while no such
memory effect exists in the mechanical stress evolution.
This retention of structural memory implies that the

(a)

(d) (e)

(b) (c)

FIG. 6. Structural and mechanical anisotropy observed in uniaxial compression simulations. (a) The volume-fraction dependence of
the stress σxx (blue line) and σzz (orange line) for various initial conditions (ϕinit ¼ 0.175; 0.2;…; 0.3). The dotted and solid lines
represent the results before and after absorbing into a history-independent state, respectively. (b) Distribution of the bond orientations
PðR̂zÞ, where R̂z is the magnitude of the z component of the unit vector of a bond. The black lines represent PðR̂zÞ for all bonds. The red
and blue lines represent PðR̂zÞ for bonds formed and ruptured within external strain Δϕ=ϕ0 ¼ 0.0069. The solid, dotted, and dashed
lines represent the results for ϕ0 ¼ 0.3, 0.4, and 0.5, respectively. (c) Volume fraction dependence of the characteristic pore size for x
(triangle) and z (circle) directions. (d) Snapshot of the top 10% stressed particles at ϕ ¼ 0.4 for σxx (left) and σzz (right). Particle color
represents the number of particles of a cluster to which a particle belongs (see the color bar). (e) The volume-fraction dependence of the
average cluster size for the top 10% stressed particles for σxx (dashed line) and σzz (solid line).
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compressive deformation erases only a part of memories
encoded in the gel’s initial microstructure by the control
parameters, possibly reflecting the presence of both
mechanically relevant and irrelevant local structural units.
Nevertheless, the compressive stress remains uniquely
determined by the local volume fraction, unaffected by
such subtle differences in microstructures. These provide a
clear indication of the mechanical self-organization of gels,
independent of their preparation and strain history.
We uncovered the strain localization within isotropic

clusters of network width and stress concentration on
chainlike anisotropic clusters composed of stress-bearing
particles. This process can be interpreted as the rearrange-
ment of the network structure under mechanical constraints
to support external stress, ultimately leading to mechanical
self-organization into a history-independent absorbing state
unique to compressive yielding.
These results offer novel microscopic insights into the

nonlinear mechanical response of particulate network mate-
rials during compressive yielding, but they also raise many
intriguing questions. For example, the elementary organiza-
tional processes of stress-bearing structures during compres-
sion are still unclear, and there has been limited explorationof
the commonalities and differences between the microscopic
processes involved in shear and compressive yielding [1–3].
It is important to note that the history-independent state

observed in compressive yielding is not observed in shear
yielding. In shear-induced yielding, the application of large
shear strain or multiple cycles of oscillatory shear leads to
failure in gels or slow coarsening of network strands,
respectively (see, e.g., Refs. [7,10,11]). These observations
highlight distinct behaviors and outcomes between shear
and compressive yielding processes.
Furthermore, it is worth noting that this state is funda-

mentally different from the critical steady state observed in
dense amorphous solids under unidirectional shear [12,60]
and the absorbing state in non-Brownian suspensions
[61,62] and granular materials [63,64] under cyclic shear.
Unlike these cases, the state absorbed during compressive
yielding continuously evolves with an increase in volume
fraction, rather than remaining steady.
Notably, we found that T1 events play a minor role, and

shear hand is absent during compressive yielding, indicat-
ing unique yielding behaviors of gels distinct from dense
amorphous solids [12]. However, the volume fraction may
increase significantly under strong compressive stress,
leading to a homogeneous glassy state without voids
[41,44]. Such a crossover of the yielding behavior from
gels to attractive glasses, including their commonality and
differences, is also an interesting topic for future study.
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APPENDIX A: SAMPLES

We synthesize poly(methyl methacrylate) (PMMA) col-
loids sterically stabilized with polyhydroxy steric acids and
labeled with a fluorescent dye (Cy3) (see Ref. [47] for the
detail). The diameter of the colloids is a ¼ 1.9 μm with
approximately 3% polydispersity. We use a mixture of
cis-decahydronaphtalene (CIS) and cyclohexyl bromide
(CHB) as a solvent. Because the refractive indexes of
PMMA, CIS, and CHB are almost the same (1.491, 1.481,
and 1.495, respectively), the Van der Waals interaction
between colloids can be safely neglected, independent of
the ratio of CIS and CHB. The mass density is matched
between the solvent and colloids when the weight fraction
of CIS in the whole solvent is wcis ∼ 24%. We add a salt
(tetra-butylammonium bromide) to the samples to screen
the electrostatic repulsion between colloids. Polymers
(polystyrene, molecular weight 8.4 × 106 Da) are mixed
to induce the depletion attraction between colloids. The
range of the attractionΔ ¼ 2Rg=a (Rg is the gyration radius
of polymers) is approximately 0.13 [46]. The concentration
of the polymer in the solvent Cp is used to control the
strength of the depth of the attractive potential ϵ, and the
temperature is kept to 26 °C. For the colloidal volume
fraction in our interest (ϕinit ∼ 0.19� 0.01), we find that
phase separation occurs when Cp > C�

p ∼ 0.25 g=L.

APPENDIX B: EXPERIMENTAL PROTOCOL

We used a specially designed sample cell to observe
gelation and gravitational collapse processes in a controlled
manner (Fig. 7). First, we prepared a density-matched
colloidal suspension at ϕinit ¼ 0.19� 0.01, including

FIG. 7. Schematic of the sample cells used in our experiments.
The cell is composed of sample and reservoir chambers,
separated by a membrane filter.

MECHANICAL SELF-ORGANIZATION OF PARTICLE NETWORKS … PHYS. REV. X 14, 011035 (2024)

011035-11



polymers (Cp ¼ 0.5 or 1.0 g=L) but without salt in the
sample chamber. In this condition, the contacts between
colloids are hardly observed due to the long-range
Coulomb repulsion between colloids. Then, we inserted
a solvent saturated with salt (density and polymer concen-
tration being the same as those in a sample chamber)
into the reservoir chamber to bring the two chambers into
contact through a semipermeable membrane filter
(Wahtman Anodisc 47, pore size 0.1 μm). This initiates
the gentle but rapid injection of salt ions into the sample
chamber through thermal diffusion, which screens the
electric repulsion between colloids, allowing us to bring
the sample from a stable one-phase state to an unstable two-
phase state. The volume of the sample chamber is approx-
imately 12 mm × 5 mm × 100a, which is about 1=500
times of one for the reservoir chamber. Once the salt
injection screens the intercolloidal electrostatic interaction,
colloids start to aggregate due to the polymer-induced
depletion attraction, eventually (after about 1 h) forming
an arrested gel (Fig. 1). The validity of this salt-injection
method has been demonstrated in Refs. [45–47]. Then, we
replaced the solvent in the reservoir chamber with a density-
mismatched solvent (wcis ¼ 16%, 20%, 32%) with salt and
the sameCp to apply the desired strength of the gravitational
force on colloids (Pe ¼ 0.32; 0.16;−0.32). We define the
sign of Pe (or Δρ) such that positive and negative values
correspond to the floating and sedimentation of gels,
respectively. This protocol allows us to observe gelation
and collapse processes perfectly separately (Fig. 2).

APPENDIX C: IMAGE ACQUISITION
AND PARTICLE TRACKING

We employ a confocal laser scanning microscope
(Leica SP5) to capture the positions of colloids in three-
dimensional space. We use the scanned window with 563a3

for the gelation process and observe the middle part of the
sample chamber. For the collapse process, we locate the
scanned window with 562 × 100a3 to cover the sample
chamber from top to bottom along the z axis (i.e., the
gravitational axis). The thickness of the sample cell is
maximized to accommodate the working distance of the
lens used. The pixel size of the confocal image is
ð0.21 μmÞ3, and the acquisition time for one frame is
Δtscan ¼ 24 and 41 sec for the gelation and collapse
observations, respectively. We note that this time duration
is fast enough to track the sedimentating colloidal networks.
We used the algorithm in Ref. [72] to detect the particle
positions RiðtÞ form a 3D confocal image. However, the
particle displacement between two subsequent consecutive
frames was not small enough to perform the particle
identification by a simple comparison of the distance
between RiðtÞ and Rjðtþ ΔtscanÞ. Then, we perform a kind
of 3D particle image velocimetry combining RiðtÞ and the
original confocal image: to track particle i, we first extract a

3D cubic image with a side length 20 pixels centered on
RiðtÞ [Fig. 8(a)] from the original confocal image at time t.
Next, using a template matching algorithm in OpenCV, we
search for the most correlated 3D cubic imagewith the same
size [see the images surrounded by the dashed squares in
Fig. 8(b)] in the confocal image at time tþ Δtscan. We
evaluate the distance from the center position of the detected
3D cubic image to the position of particle j, Rjðtþ ΔtscanÞ.
Then, we identify particle j, which is closest to the center of
the detected cubic image (surrounded by the dashed squares)
as particle i at time tþ Δtscan [see the circle in Fig. 8(c)].

APPENDIX D: ANALYSIS METHODS

1. Clustering analysis

We regard a pair of particles ði; jÞ as bonded and
belonging to the same cluster if the interparticle distance
Rij is less than a threshold Rth. In simulations, the threshold
is defined as the attraction range [Rth ¼ ð1þ ΔÞa]. On the
other hand, in experiments, we set the threshold as
Rth ¼ 1.2a, due to experimental uncertainties such as the
particle size polydispersity (∼3%), particle-tracking ambi-
guity, and optical diffraction; this threshold value approx-
imately corresponds to the first minima of the radial
distribution function. The average cluster size in Fig. 6(e)
is defined by the second moment of the cluster size
distribution divided by its first moment.

(a)

(b)

(c)

FIG. 8. Particle tracking using template matching. (a) The
template 3D image for the tracking of particle i, RiðtÞ (marked by
dashed circles). Note that the center of each image is located at
the center of the particle surrounded by the dashed circle. (b) The
target of template matching (a part of the confocal image at time
tþ Δtscan). The regions surrounded by the dashed squares mark
the detected regions using template matching with the images in
(a). (c) Enlargement of the detected 3D image. Dashed circles
represent the position of particle j, Rjðtþ ΔtscanÞ, which is
closest to the center position of the detected cubic image
surrounded by the dashed squares.
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2. Volume-fraction profile and chord length
distribution

The volume-fraction profile along the compressive (z)
axis, denoted as ϕðzÞ, is obtained by calculating the
average value of ϕðrÞ over the xy plane. Here, ϕðrÞ is
a volume-fraction field constructed through a Gaussian
kernel with a standard deviation ofΔcg ¼ a=2. Specifically,
ϕðrÞ¼ðπa3=6ÞρcgðrÞ, where ρcgðrÞ¼

P
iexpð−jr−Rij2=

2Δcg2Þ=ð2πΔ2
cgÞ3=2.

To characterize the typical length at the network scale,
we use the chord length distribution for the colloid-poor
region PðlÞ. We define the region to satisfy ρcg < ρth as the
colloid-poor region. Here, ρth is set as e−1ð2πΔ2

cgÞ−3=2. We
randomly choose a point on the colloid-poor region and
draw a straight line from that point until the line hits the
boundary of the colloid-rich and -poor regions. The line
length corresponds to l [see the inset of Fig. 1(d)]. The mean
value of PðlÞ corresponds to the characteristic pore size lc.

3. Microscopic strain and stress

The microscopic shear strain of particle i from the
reference time t0 during the interval t1, denoted as γi, is
defined by the difference between the maximum and
minimum eigenvalues of the matrix ðei þ eTi Þ=2, where
ei;αβ ¼ Xi;αγY−1

i;γβ − δαβ with Xi;αβ ¼
P

j½Rj;αðt0 þ t1Þ −
Ri;αðt0 þ t1Þ�½Rj;βðt0Þ − Ri;βðt0Þ� and Yi;αβ ¼

P
j½Rj;αðt0Þ−

Ri;αðt0Þ�½Rj;βðt0Þ − Ri;βðt0Þ� [68]. The summation of the
index j is performed over the particles bonded with
particle i (here, the threshold Rth’ is set to 1.3 both for
experiments and simulations). The macroscopic stress
σαβ is computed using the virial stress formulation:
σαβ ¼ −

P
i<j Rij;αFij;β=V, where Rij and Fij denote the

relative position vector and interparticle force between
particle i and j, respectively. The microscopic stress for
particle i is defined as σi;αβ ¼ −

P
j Rij;αFij;β.

APPENDIX E: INFLUENCE OF SOLVENT
MOTION ON THE COLLAPSING PROCESS

To see the influence of solvent flow on the gravitational
collapse processes, we use the fluid particle dynamics
(FPD) method [73,74] and compare the numerical results
to those obtained from Brownian dynamics methods.
In short, this FPD method treats a solid colloidal particle
as an undeformable fluid particle whose viscosity is
much higher than the solvent viscosity. The viscosity η
changes smoothly across the colloid-solvent boundary
as ηðrÞ ¼ ηc

P
i ϕi þ ηsð1 −

P
i ϕiÞ, through a particle

field ϕiðrÞ ¼ sðjr − Rij; rFPD; ξFPDÞ, where we use
sðx; rFPD; ξFPDÞ ¼ ftanh½ðrFPD − xÞ=ξFPD� þ 1g=2 (rFPD
and ξFPD being particle radius and interfacial thickness,
respectively). This treatment allows us to follow the
colloidal dynamics, including many-body hydrodynamic
interactions (HIs), simply by solving the incompressible
Navier-Stokes equation for fluid velocity v in a Cartesian
coordinate system without suffering from the solid-fluid
moving boundary condition. See Refs. [73,74] for details.
We introduce a wall by locating a flat “viscous wall” with
thickness hw perpendicular to the z axis at z ¼ zw,
described by a wall field ϕwðrÞ ¼ sðjz − zwj; hw=2; ξFPDÞ.
Then, we solve the equations with the periodic boundary
condition. To satisfy the boundary condition between wall
and solvent, we enforce v ¼ 0 on the walls by adding a
body force fwðrÞ ¼ −ζwϕwv, as implemented in the other
types of the direct Navier-Stokes simulations; see, e.g.,
Ref. [75]. We performed FPD simulations on a Nvidia A40
GPU using the same units and parameter setting as in
Refs. [46,74] under the athermal condition. We fixed
Fg ¼ 12, ζw ¼ 200, and hw ¼ 6rFPD. The system size,
interparticle potential, and initial condition are common to
those in the Brownian dynamics simulations (the resulting
computational grid size being 256 × 256 × 718).
Figures 10(a) and 10(b) show the temporal change of the

front height h (i.e., the distance from the bottom wall to the

FIG. 9. A typical gravitational collapse process of a colloidal gel. The xz section of the confocal image is shown for different times
(t ¼ 0, 23.1, 57.8, 115.6 min) at Cp=C�

p ¼ 2, Pe ¼ 0.32.
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front of a gel) and the mechanical equilibrium (or final)
volume-fraction profileϕeq, respectively, for variousFg. We
use the Stokes time τs ¼ ζa=2Fg as the time unit, where ζ is
the friction coefficient of a free particle. h is scaled by its
initial value at t ¼ 0, h0. Here, we see that although h
evolves differently, depending on with and without HIs, ϕeq

is independent of it. This indicates that HIs significantly
affect sedimentation speed but play a minor role in the
microstructure. In other words, the solvent backflow is not
strong enough to alter themicrostructure in the current range
of Fg (≤ 0.346) and h0 ¼ 100a. In Figs. 10(c) and 10(d),
mapping ofϕ-nb andϕ-lc for various ðz; tÞ andFg is shown
as in Fig. 3. Results obtained from simulations with and
without HIs are almost identical, further supporting that HIs
have little effect on microstructure.

APPENDIX F: LOCAL CORRELATION
BETWEEN VOLUME FRACTION

AND STRESS IN UNIAXIAL
COMPRESSION SIMULATIONS

Figure 11(a) illustrates the evolution of the volume-
fraction profile ϕðzÞ along the z axis obtained from
uniaxial compression simulations. Here, z and ϕðzÞ are
scaled by the system size Lz and the global (average)
volume fraction ϕg, respectively. The profile ϕðzÞ is
globally relatively uniform, and the amplitude of spatial
fluctuations around the mean value (ϕg) decreases as the
compression proceeds. This can be interpreted simply as
the parts of gels with smaller ϕðzÞ being mechanically
weaker and more likely to yield [i.e., increase ϕðzÞ],
leading to density homogenization. This physical descrip-
tion is supported by the one-to-one correspondence and
proportionality between ϕðzÞ=ϕg and σzzðzÞ=σgzz, where σgzz
is the global stress, as shown in Fig. 11(b). This local
proportionality allows us to characterize the state of gels
by the global volume fraction and conduct structural and
mechanical analyses for the entire system in uniaxial
compression simulations.

It is worth noting that the amplitude of spatial fluctua-
tions in ϕðzÞ and, consequently, in σzzðzÞ, is expected to
diminish as the system size in the xy plane expands. In the
limit of infinite size, these fluctuations are anticipated to
vanish entirely.

(a) (b) (c) (d)

FIG. 10. Comparison between simulation results with and without hydrodynamic interactions (HIs). (a) Time evolution of height h,
i.e., the distance from the bottom wall to the front of gel, for various Fg. h is scaled by its initial value at t ¼ 0, h0. (b) Volume-fraction
profiles in mechanical equilibrium states ϕeq for various Fg. These results are obtained from athermal simulations for gels prepared at
T ¼ 0.143 and ϕinit ¼ 0.2. (c),(d) ϕ dependencies of the average coordination number per particle nb and the characteristic pore size lc,
respectively. The notation of symbols in (b)–(d) is the same as in (a).

(a)

(b)

FIG. 11. Evolution of local volume fraction and stress in
uniaxial compression simulations. (a) The evolution of volume-
fraction profile ϕðzÞ during uniaxial compression, scaled by
the global volume fraction ϕg. The results are obtained under
athermal conditions for a gel prepared at T ¼ 0.143 and
ϕinit ¼ 0.25. We choose the range of ϕg to be 0.3–0.5, repre-
senting a history-independent state. (b) Scatter plot of
½ϕðzÞ=ϕg; σzzðzÞ=σgzz� measured at layers with a width of 3.5a,
where σgzz denotes the global stress. The dotted line represents a
relation of σzzðzÞ=σgzz ¼ ϕðzÞ=ϕg.
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APPENDIX G: EVOLUTION
OF LOCAL STRUCTURES

Here, we analyze the evolution of several structural
motifs identified by topological cluster classification (see,
e.g., Refs. [65,66] for more details). The classification of
microscopic structures is rooted in the concept of locally
favored structures (LFSs), which denotes the smallest
potential energy configuration among a limited set of
possible arrangements. We specifically focus on the num-
ber densities of three local structures: tetrahedral (n3),
square pyramid (n4), and pentagonal pyramid (n5), which
serve as building blocks to compose LFSs. From a
mechanical viewpoint, the tetrahedral structure is stable,
representing the LFS for four particles, as it minimizes the
total interparticle potential. In contrast, the square pyramid
is considered mechanically unstable because it can easily
transition to an LFS consisting of two tetrahedra (the LFS
for five particles) with minimal mechanical perturbation.
The pentagonal pyramid is not a locally stable structure
but can be regarded as mechanically relatively stable.
This is because this local structure is similar to the LFS
for seven particles (pentagonal bipyramid) and requires
multiple sequential rearrangements to reach the LFS for six
particles.
The experimental results, as depicted in Figs. 12(a)–12(c),

faithfully reproduce the absorbing behavior observed in nb
and lc, as long as the initial conditions are common. This
provides compelling evidence that the evolution of gel
microstructures during uniaxial compression for the same
ϕinit precisely follows the history-independent state.
On the other hand, Figure 12(d) presents the results

obtained from uniaxial compression simulations for three
distinct ϕinit values. Remarkably, n3 and n5 follow master
curves nearly independent of ϕinit. In contrast, this trend is
not observed for n4. These trends are consistent with the

slight mismatch observed in the evolution of nb and lc
among different ϕinit values, suggesting that, during com-
pressive yielding, there is a selective involvement of
mechanically relevant structures in the self-organization
processes, rather than all types of local structures. However,
at this moment, the direct link between these local
structures and the mechanical structures (yielding compact
and stress-bearing chain structures) discussed in Figs. 4
and 5 is unclear.

APPENDIX H: AGING-TIME DEPENDENCE

As we discussed in Sec. III C, the influence of ϕinit on
gel’s microstructure is minor (but non-negligible), whereas
it significantly depends on ϵ=kBT. Here, we examine the
aging-time (tage) dependence on the evolution of nb, lc, and
σzz; the results are shown in Fig. 13. Similar to the case of
ϕinit, tage alters the structural evolution slightly, but it does
not affect the stress evolution. All the relevant simulation
results presented in the main text were obtained at
tage=τB ¼ 3.0 × 103.
The longest aging time investigated in this section

(tage=τB ¼ 3.0 × 105) corresponds to a week in experimen-
tal terms. Maintaining the density matching condition
over this extended period is challenging in our experimen-
tal setup, although it may be achievable through experi-
ments conducted under microgravity conditions in space
stations. It is important to note that physical colloidal gels
are intrinsically in a nonequilibrium state, formed through
arrested phase separation. Consequently, they eventually
settle into a thermodynamically equilibrium state (gas-
crystal coexistence) over a significantly longer timescale,
which is beyond the scope of our study. For these reasons,
we can reasonably conclude that the influence of aging
time tage is minor in the compressive yielding of colloi-
dal gels.

(a) (b) (c) (d)

FIG. 12. Local structures of gels during compressive yielding. (a)–(c) Experimental results. n3, n4, and n5 are the number densities
(per volume) of the tetrahedral (three-ring), square pyramid (four-ring), and pentagonal pyramid (five-ring) structures. The brown
cross, blue cross, green cross, and red triangle symbols represent the trajectory at ðCp=C�

p; PeÞ ¼ ð4; 0.16Þ, (4, 0.32), ð4;−0.32Þ, and
(2,0.16), respectively [the same trajectories used for Figs. 3(a)–3(c)]. (d) Results obtained from uniaxial compression simulations.
Solid, dashed, and dotted lines indicate n3, n4, and n5 for three different initial volume fractions ϕinit ¼ 0.2 (blue), 0.25 (orange), 0.3
(green) during uniaxial compression. Here, the simulation results for T ¼ 0.071 [the same trajectories used for Figs. 3(d)–3(f)]
are shown.
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APPENDIX I: SUPPLEMENTAL FIGURES

Figure 14 shows the volume-fraction profile ϕðz; tÞ and z component of average velocity of colloids uzðz; tÞ for
trajectories ðCp=C�

p; PeÞ ¼ ð4; 0.16Þ; ð4; 0.32Þ; ð4;−0.32Þ.
Figure 15 shows the chord length distribution obtained from uniaxial compression simulation.

(a) (b) (c)

FIG. 13. The aging-time dependence of the structural and mechanical evolution during uniaxial compression. The evolution of (a) the
average coordination number nb, (b) the characteristic chord length lc, and (c) the zz component of the stress σzz are shown as a function
of volume fraction ϕ. The color indicates the aging time (or the waiting time of gelation; tage ¼ 3.0 × 103, 3.0 × 104, and 3.0 × 105). The
temperature and initial volume fraction are T ¼ 0.071 and ϕinit ¼ 0.2, respectively. All the relevant simulation results shown in the main
text correspond to those at tage=τB ¼ 3.0 × 103.

(a)

(b)

FIG. 14. Other examples of gravitational collapsing processes. (a) Volume-fraction profile ϕðz; tÞ and (b) z component of average
velocity of colloids uzðz; tÞ for trajectories ðCp=C�

p;PeÞ ¼ ð4; 0.16Þ; ð4; 0.32Þ; ð4;−0.32Þ (left-hand, middle, and right-hand figures,
respectively).
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Figure 16 shows a comparison of σzzðϕÞ obtained from
gravitational collapse (dots) and uniaxial compression
(lines) simulations at zero temperature.
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