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Ramsey interferometry is a widely used tool for precisely measuring transition frequencies between two
energy levels of a quantum system, with applications in time keeping, precision spectroscopy, quantum
optics, and quantum information. Often, the coherence time of the quantum system surpasses the one of the
oscillator probing the system, thereby limiting the interrogation time and associated spectral resolution.
Correlation spectroscopy overcomes this limitation by probing two quantum systems with the same noisy
oscillator for a measurement of their transition frequency difference; this technique has enabled very
precise comparisons of atomic clocks. Here, we extend correlation spectroscopy to the case of multiple
quantum systems undergoing strong correlated dephasing. We model Ramsey correlation spectroscopy
with N particles as a multiparameter phase estimation problem and demonstrate that multiparticle
correlations can assist in reducing the measurement uncertainties even in the absence of entanglement. We
derive precision limits and optimal sensing techniques for this problem and compare the performance of
probe states and measurement with and without entanglement. Using one- and two-dimensional ion
Coulomb crystals with up to 91 qubits, we experimentally demonstrate the advantage of measuring
multiparticle correlations for reducing phase uncertainties and apply correlation spectroscopy to measure
ion-ion distances, transition frequency shifts, laser-ion detunings, and path-length fluctuations. Our method
can be straightforwardly implemented in experimental setups with globally coherent qubit control and
qubit-resolved single-shot readout and is, thus, applicable to other physical systems such as neutral atoms
in tweezer arrays.

DOI: 10.1103/PhysRevX.14.011033 Subject Areas: Atomic and Molecular Physics,
Quantum Information

I. INTRODUCTION

The ability to estimate the phase of a wave is key to
practical applications such as time keeping with atomic
clocks [1], rotation and acceleration sensing [2], and
gravimetry [3] but also to probing fundamental physics
[4] and measuring fundamental constants of nature [5].
Sensing techniques such as optical or matter wave interfer-
ometry rely on phase comparisons of two light waves or
matter waves, respectively. In optical atomic clocks, for
instance, the phase of an atomic superposition state is
compared to the phase of the laser having created the

superposition. In most of these applications, a large number
of uncorrelated photons or atoms are probed, giving rise to a
measurement uncertainty governed by the standard quantum
limit according to which the uncertainty decreases inversely
with the square root of the number of particles being probed.
If, however, quantum correlations exist between the par-
ticles, the scenario becomes much more interesting and
complex.
In this context, phase estimation based on quantum

measurements constitutes a subfield of quantum metrology,
which aims at making sensitive measurements of physical
quantities by harnessing quantum resources, in particular,
entanglement [6]. To this end, it has been shown that
entangled input states can be used to beat the standard
quantum limit [7,8] and that entanglement can be a resource
for achieving optimal phase sensing over a wider range of
phases [9]. However, as entangled states easily decohere
under environmental noise, the performance gain of entan-
glement-enhanced metrology protocols can be jeopardized
by decoherence processes [10,11]; the achievable precision
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bounds depend on whether the noise is Markovian or
contains temporal or spatial correlations [12,13].
Furthermore, from a practical point of view, entangle-

ment-generating resources are often not readily available in
precision experiments. For this reason, it is of interest to
consider quantum metrology protocols using quantum
correlations other than entanglement that might be easier
to implement for carrying out quantum-enhanced measure-
ments [14]. In this paper, we focus on correlation spec-
troscopy [15,16], a phase estimation technique for probing
the phase difference of qubits subjected to spatially
correlated noise, and extend it to networks of N qubits.
In the following, we provide our motivation for studying
this measurement scenario.
Coherent probing of ultranarrow atomic transitions in

combination with outstanding characterization of system-
atic level shifts has led to the development of optical atomic
clocks with unprecedented precision [17]. To verify a
clock’s performance, its frequency has to be compared with
another clock. The uncertainty with which the frequency
difference of the clocks can be determined within a given
measurement time is usually not limited by the lifetime of
the atomic energy levels but rather by the local oscillator’s
phase noise that sets an upper bound to the useful probe time.
This limitation can be overcome by synchronous probing of
the two clocks with the same local oscillator and correlating
the measurement outcomes. In the case of ensemble-aver-
aged signals, such as in optical lattice clocks where the
excitation probability of a large number of atoms is
measured [18,19], the correlations are purely classical. If,
however, the measurements probe the quantum state of
individual atoms, the correlations can become nonclassical,
even in the absence of any entanglement [20].
It is in this context that correlation spectroscopy [15,16]

has been developed, a technique for measuring transition
frequency differences in the presence of correlated phase
noise with probe times that can be significantly longer than
the coherence time of each system with respect to the local
oscillator [21–25]. It is based on a synchronous standard
Ramsey-type interrogation of two or more atoms by the
same oscillator: A first π=2 pulse rotates the Bloch vector
into the equatorial plane, where it precesses during the free
evolution time with a rate set by the detuning of the
oscillator from the atomic transition. The second π=2 pulse
in conjunction with a state detection in the energy eigen-
basis enables the measurement of a spin projection in the
equatorial plane. However, instead of measuring expect-
ation values of individual atoms, a parity measurement is
used to correlate the measurement outcomes of pairs of
atoms. By this approach, transition frequency differences
can be measured by observing parity oscillations as a
function of the duration of the free evolution time. While
correlation spectroscopy achieves only a maximum parity
oscillation contrast of 0.5 and, therefore, does not achieve
the optimum signal-to-noise ratio obtainable by preparing

maximally entangled states of the two systems [26–28], it is
technically much easier to implement.
The detection of phase shifts in the presence of strong

correlated phase noise is a common scenario that appears in
a wide variety of sensing platforms. Apart from the
example of multiple clocks probed by the same oscillator,
spatially correlated noise can result from the spatial
proximity of the qubits [29–31], instabilities of the local
oscillator probing them [29,32], or the coupling of the
qubits to a common bosonic mode [33,34]. A similar
scenario appears also in interferometers and optomechan-
ical sensors where a displacement noise of the mirrors and
radiation pressure induce a correlated noise on the different
output modes [35–37].
In this work, we investigate the parameter phase esti-

mation scenario as sketched in Fig. 1: We consider a set of
N qubits, all of which are prepared in states with Bloch
vectors in the equatorial plane and subjected to correlated
phase noise [Fig. 1(a)]. We want to estimate the angle
between the Bloch vectors of a pair of qubits ði; jÞ by
applying a second π=2 pulse, measuring all qubits in the
energy eigenbasis, and correlating the measurement out-
comes (�1) to obtain the correlationCi;j [Fig. 1(b)]. We ask
the question whether the measurement uncertainty of one of
the correlations, e.g., C1;2, obtained from a finite number of
experimental repetitions could be reduced by taking into
consideration all other pair correlations that are simulta-
neously recorded instead of analyzing only the measure-
ments of the particular pair, e.g., (1, 2). We analyze this
simple model and show that this is indeed the case. We then
proceed to estimate the phases using all N-qubit correla-
tions, not only pair correlations, and show that the
uncertainty can be even further reduced. This N-qubit
correlations analysis is performed by applying maximum-

(a) (b)

FIG. 1. Measurement scenario. (a) In a network of quantum
sensors comprised of qubits Qi, the qubits are prepared in Bloch
states lying in the equatorial plane and subjected to correlated
dephasing that randomly rotates all Bloch vectors by the same
angle, as indicated by solid and dashed arrows. (b) Correlations
Ci;j between pairs of qubits ði; jÞ are measured for an estimation
of the angle between the respective Bloch vectors. Is it possible to
reduce the measurement uncertainty of Ci;j obtained from a finite
number of experimental repetitions by taking into account all pair
correlations that can be simultaneously measured or even all
N-qubit correlations?.
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likelihood estimation or Bayesian estimation to the full
probability distribution.
In this way, we generalize the notion of correlation

spectroscopy to a quantum sensor network of N two-level
quantum systems [23,25] and demonstrate, in theory and
experiment, an improvement compared to the traditional
pair-correlation method. We derive precision bounds when
all the ðN

2
Þ pair correlations of the outcomes are used and for

the case where all N-qubit correlations are exploited. These
methods are implemented in experiments with ion crystals
and are used to estimate ion-ion distances and transition
frequency shifts. Finally, we propose theoretical schemes
for further improvement with entangled measurements and
initial states.
The manuscript is structured as follows: In Sec. II, we

describe the principle of N-qubit correlation spectroscopy
and how the analysis of measured correlations can be used
for inferring relative phase shifts between the qubits as well
as tracking correlated phase shifts on all qubits in the time
domain. Section III demonstrates the implementation of the
measurement protocol in one- and two-dimensional ion
crystals with up to 91 ions. In Sec. IV, we discuss lower
bounds to the measurement uncertainties when analyzing
pair correlations or N-qubit correlations and demonstrate
that these bounds are nearly saturated in our experiments.
We further discuss general quantum precision limits and
show that the input states used in our experiments are near
optimal in terms of the achievable measurement precision.
Section V discusses applications of the method in trapped-
ion experiments for the determination of transition fre-
quency differences, ion-ion distances, and tracking of local
oscillator noise. In Sec. VI, we discuss the application of
our measurement protocol to other experimental platforms.

II. MODEL: N-QUBIT CORRELATION
SPECTROSCOPY

We consider a dataset consisting of m ¼ 1;…;M real-
izations of Ramsey experiments with a free evolution time
T, each of which is simultaneously carried out on an
ensemble of N qubits [see Fig. 2(a)]. Prior to the second
π=2 pulse, the state of the N qubits during the mth
realization is

2−N=2 Π
N

i¼1
ðj0i þ eiϕim j1iÞ; ð1Þ

with phases

ϕim ¼ ϕi þ φm; ð2Þ

where ϕi is a qubit-specific phase and φm a random phase
that is common to all qubits; i.e., in experiments, ϕi appears
as a spatially varying phase, whereas φm encodes temporal
changes. To achieve an unambiguous definition of these
phases, we define φm to be the phase change between the

mth experiment and the first one. The phase φm could result
from a stochastic process coupling the qubits to an
environment inducing correlated dephasing; alternatively,
it could be engineered in the experiment, for example, by
randomly shifting the phase of the first Ramsey pulse with
respect to the second one. Note that we assume temporal
variations of the phases φm to occur on timescales that are
orders of magnitude longer than the time a laser wavefront
needs to transit the qubit array. This condition assures that
φm is indeed the same for all qubits. The qubit-specific
phases ϕi ¼ ðk1 − k2Þri þ ΔiT arise if the qubits have
different detunings Δi with respect to the local oscillator
frequency or if the qubits are excited from different spatial
directions for the first and the second π=2 pulse. Here,
k1ðk2Þ is the k vector of the running wave inducing the
first (second) π=2 pulse and ri is the qubit position vector.
We assign an outcome qim ¼ 1 or −1 to the measurement,
depending on whether we observe qubit i in the mth
measurement in the state j0i or j1i. The probability of
observing the outcome qim is given by pðqimÞ ¼
1
2
ð1þ qim sin ϕimÞ.
Here, we study two closely related problems.
(i) We want to carry out a multiparameter estimation of

the qubit-dependent phases ϕi in experiments where

(a)

(b)

FIG. 2. (a) Measurement protocol: Ramsey experiments are
simultaneously carried out on an ensemble of N qubits subject
to correlated dephasing, phase shifting all qubits by a randomphase
φ, and single-qubit phase shifts ϕn. The analysis of correlations
between measurement outcomes on different qubits taken at the
same time (column vector qm) enables the estimation of phase
difference between qubits; similarly, the analysis of correlations
between measurement outcomes taken at different times on the
same qubit (row vector qn) provides information about the
temporal evolution of phases (for details, see the main text).
(b) We implement correlation spectroscopy with ensembles of
trapped and laser-cooled ions, such as the two-dimensional 91-ion
crystal held in a monolithic ion trap shown in the picture.
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the random phases φm are uniformly distributed over
the interval ½0; 2πÞ; this situation can arise if, for
example, the probe time is much longer than the
coherence time of the qubits. We can model this
problem by preparing the qubits in

ρ ¼ 1

2π

Z
2π

0

dφjΨðφÞihΨðφÞj with

jΨðφÞi ¼ 2−N=2
YN
i¼1

ðj0ii þ eiφj1iiÞ; ð3Þ

a state which contains no entanglement but quantum
correlations in the form of nonzero quantum
discord [20,38]. Next, the qubits are subjected to
the unitary operation Uϕ ¼ exp½ði=2ÞPi ϕiσ

z
i � fol-

lowed by a global π=2 pulse around the x axis,
UX ¼ exp½−iðπ=4ÞPi σ

x
i �, and finally a projective

measurement of all qubits is carried out in the
computational basis. Given a set of measurement
outcomes stored in the matrix Q ¼ ðqimÞ, the goal is
to devise a strategy for estimating all phase
differences ϕi − ϕj with optimal precision. Note
that this is a special case of a quantum sensor
network [39–42], where the linear functions we
wish to estimate are all the phase differences.

(ii) We are interested in characterizing the stochastic
process that gives rise to temporally fluctuating
random phases φm. Because of the symmetry of
the problem in space and time as showing up in
Eq. (2), a strategy for estimating the single-qubit
phases ϕi can equally well be applied to an estima-
tion of φm by analyzing the transposed matrix Qt of
measurement results.

Let us first understand the fundamental precision limits
in estimating the phase differences. Given a pure product
state, 2−N=2

Q
N
i¼1ðj0ii þ eiϕi j1iiÞ, and in the absence of

noise, the precision in estimating each phase independently
from M measurements is σϕi

¼ ð1= ffiffiffiffiffi
M

p Þ. Hence, the
minimal uncertainty in estimating a phase difference Δϕ ¼
ϕ2 − ϕ1 is

σΔϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ϕ1

þ σ2ϕ2

q
¼

ffiffiffiffiffi
2

M

r
: ð4Þ

This approach basically amounts to inferring Δϕ from the
relative phase shifts of two Ramsey fringes. Since this is the
best achievable precision with a product state, we refer to it
hereafter as the noiseless precision bound.
Considering N ¼ 2 qubits and correlated dephasing, as

in Eq. (3), the phase difference Δϕ is estimated using
standard correlation spectroscopy. Using error propagation
of quantum projection noise, the uncertainty in the esti-
mation of Δϕ from M measurements equals

σN¼2
Δϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − cos2 ðϕi − ϕjÞ

q
ffiffiffiffiffi
M

p j sin ðϕi − ϕjÞj
: ð5Þ

The uncertainty diverges when the phase difference
approaches 0 or π, i.e., the points where the parity reaches
an extremum. It becomes minimal for Δϕ ¼ π=2, where
min σN¼2

Δϕ ¼ ð2= ffiffiffiffiffi
M

p Þ, which is larger by a factor of
ffiffiffi
2

p

than the noiseless precision bound. The
ffiffiffi
2

p
difference in

the uncertainty stems from the reduced contrast (< 0.5) in
correlation spectroscopy.
For N > 2, one can ask whether the uncertainty of the

phase difference estimation can be lowered by employing a
more sophisticated analysis. Here, we provide an affirma-
tive answer: We show that the uncertainty can be reduced
by estimating the phase differences using all the ðN

2
Þ pair

correlations of measurement outcomes and that, in addi-
tion, a further reduction is achieved by using all the
multiparticle correlations. The intuition behind this
improvement is based on the following argument: An
estimate of the single-qubit phase differences Δϕij ¼
ϕi − ϕj from the observed correlations makes it possible
to estimate the random phases φm of each experimental
realization. In the limit of a large number of qubits, the
near-perfect estimation of φm enables an “unscrambling” of
the Ramsey fringes and in consequence a reconstruction of
single-qubit Ramsey fringes with contrast close to 1 instead
of 1=2 as for the two-qubit parity fringe. This implies that
we should be able to retrieve the noiseless precision bound
of σ∞Δϕ ¼ ffiffiffiffiffiffiffiffiffiffi

2=M
p

in the limit of N → ∞.
Here, and in the remainder of this section, we assume

that in the absence of correlated dephasing Ramsey fringes
would have the full contrast, i.e., that there is no other
source of decoherence. Later, this assumption is dropped
and we also consider the influence of additional single-
qubit dephasing on the measurement uncertainty. In the
following, we discuss different approaches for estimation
using multiqubit correlations: We start with multipair
correlations and then discuss N-qubit correlations.

A. Correlation spectroscopy with many qubits:
Pair correlations

Ramsey measurements of individual qubits contain no
useful information, as measuring Ẑi¼j0ih0j− j1ih1j results
in hẐii¼TrðUXUϕρUϕ

†U†
XẐiÞ¼0. Yet, information about

transition frequency and position differences is obtained
from correlation measurements [15]:

Cij ≡ hẐiẐji ¼
1

2
cosðϕi − ϕjÞ; ð6Þ

for which the correlated dephasing reduces the maximum
range of correlations only by a factor of 2. A fit of the
correlation matrix C ¼ ðCijÞ yields estimates ϕ̂i of the
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single-qubit phases ϕi up to an irrelevant global offset
phase. In experiments where Δk ¼ k1 − k2 ¼ 0, this
approach can be used to determine differences in transition
frequencies up to a global sign factor. If, on the other hand,
T ¼ 0 and jΔkj ≠ 0, information about the spatial arrange-
ment of the qubits is obtained.

B. Single-qubit phase estimates
with N-particle correlations

For an estimation of the single-qubit phases ϕ ¼
ðϕ1;ϕ2;…Þ, we calculate the likelihood of observing the
single-shot measurement outcome q ¼ ðq1;…; qNÞ:

PðqjϕÞ ¼ 2−N

2π

Z
2π

0

dφ
YN
i¼1

½1þ qi sinðϕi þ φÞ�: ð7Þ

Given a set of measurements Q ¼ ðqimÞ, a maximum-
likelihood estimation of ϕ is obtained via evaluation of the
log-likelihood function

LðQjϕÞ ¼ log
YM
m¼1

PðqmjϕÞ: ð8Þ

Note that the calculation of the integral in Eq. (7) can be
replaced by an average over N þ 1 evenly distributed
phases φm ¼ 2πm=N, as the highest Fourier component
of the integral kernel has a period of 2π=N.

C. N-particle correlations for estimating the collective
random phases φm

Once an estimate ϕ̂i of the single-qubit phases is
available, single-shot Ramsey spectroscopy can be used
for estimating the random phase φm of an experimental run
from the vector of outcomes qm ≡ ðqimÞNi¼1. Toward this
end, we calculate the likelihood function

Pðqmjfϕ̂ig;φÞ ¼ 2−N
YN
i¼1

½1þ qim sinðϕ̂i þ φÞ� ð9Þ

and use it for a Bayesian estimate of the random phase:

φ̂m ¼ arg

�Z
2π

0

dφeiφPðqmjfϕ̂ig;φÞ
�
: ð10Þ

This approach allows for tracking the temporal fluctuations
of the local oscillator with respect to the qubit transition
frequencies. The reconstruction of the local oscillator’s
phase changes is unambiguous only up to integer multiples
of 2π. Therefore, using this approach, the probe time has to
be limited to times for which the phase diffusion is so low
that phase slips are exceedingly unlikely, similar to the
situation encountered when standard Ramsey spectroscopy
is used.

We note that the Bayesian approach can also be applied
to estimating the vector of single-qubit phases ϕ. Given the
estimates φ̂m, the single-qubit phase differences Δϕij can
be estimated by calculating the likelihood function

Pðqijϕi; fφ̂mgÞ ¼ 2−N
YM
m¼1

½1þ qim sinðϕi þ φ̂mÞ�; ð11Þ

where qi ≡ ðqimÞMm¼1, in order to obtain the Bayesian
estimate

ϕ̂i ¼ arg

�Z
2π

0

dϕeiϕPðqijfφ̂mg;ϕÞ
�
: ð12Þ

This approach is computationally fast albeit less precise than
maximum-likelihood estimation (MLE) of ϕ. As discussed
further below, the resulting uncertainties approach the ones
obtained with maximum-likelihood estimation only in the
limit of large number qubits, whereas the performance is
unsatisfactory for small numbers of qubits.

III. EXPERIMENTAL IMPLEMENTATION
AND MEASUREMENT RESULTS

Measurements on linear and planar 40Caþ ion crystals are
performed in two different experimental setups that are
described in the following.
The centerpiece of the apparatus for trapping planar

crystals is a novel microfabricated monolithic linear Paul
trap, shown in Fig. 2(b), which allows us to create the
anisotropic potentials required for trapping 2D ion crystals
while simultaneously maintaining sufficient optical access
perpendicular to the crystal plane for ion imaging. The trap
provides a potential in which the ions are strongly confined
in the direction perpendicular to the crystal plane, at an
oscillation frequency of 2.196 MHz, and weakly confined
along the two other directions, in which the crystal is
extended, at oscillation frequencies of about 679.8 and
343.0 kHz. Further details on this new ion trap apparatus
can be found in Ref. [43]. Ions are loaded into the trap via
laser ablation and are Doppler cooled on the S1=2 ↔ P1=2
dipole transition. For encoding a qubit in an ion, we use the
two 4S1=2; m ¼ �1=2 Zeeman ground states, coherently
coupled by a magnetic radio frequency field oscillating at
approximately 11.4 MHz. We distinguish the two qubit
states by shelving the population of one of them in the long-
lived 3D5=2 Zeeman states, followed by fluorescence
detection: The qubits are measured with high fidelity by
exciting the ions on the S1=2 ↔ P1=2 transition and imaging
the ion fluorescence onto an electron-multiplying CCD
camera. For the shelving operation, we employ π pulses
induced by a frequency-stable 729 nm laser, coming from a
direction perpendicular to the crystal plane.
In contrast to the apparatus for manipulating 2D crystals,

long strings of 40Caþ ions are trapped in a macroscopic
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linear Paul trap providing a very anisotropic trapping
potential with radial oscillation frequencies of about 2.5–
3MHz and an axial oscillation frequency of about 120 kHz.
After Doppler cooling, the radial modes of the ion string are
cooled close to the ground state by sideband cooling and
the axial modes sub-Doppler cooled by polarization-gra-
dient cooling [44]. The qubit is encoded in one of the two
4S1=2 Zeeman ground states and one of the metastable
3D5=2 Zeeman states. The ion qubit can be coherently
manipulated using 729 nm laser light resonantly exciting
the S1=2 ↔ D5=2 transition. Two laser beams with k vectors
parallel (perpendicular) to the linear ion crystal are avail-
able for collectively coupling to the qubits with the same
coupling strength. Further details about this experimental
setup can be found in Ref. [45].
In a first measurement, we investigate multiqubit-

enhanced phase estimation in a 91-ion planar crystal; the
results are shown in Fig. 3. We probe the ground-state
qubits with a Ramsey probe time of 10 ms; here, magnetic-
field inhomogeneities gave rise to qubit-dependent phases
ϕi, and correlated dephasing was the result of temporal
fluctuations of the magnetic field’s magnitude. Figure 3(a)
shows the measured pair correlations Cij used for a first
estimate ϕ̂i of the single-qubit phases shown in Fig. 3(b).
Figure 3(c) displays the outcomes of an individual Ramsey
experiment plotted against ϕ̂i together with a single-shot
Ramsey fringe obtained from an estimate of the collective
random phase φm. In Fig. 3(d), the matrix elements Cij are
plotted versus the improved estimate ϕ̂i − ϕ̂j obtained by
maximum-likelihood estimation based on Eq. (8), for
which we maximize the likelihood by a gradient-based

optimization algorithm [46]. The plot shows that the
contrast of the resulting fringe is close to the maximum
possible value. Similarly, averaging over experiments
carried out at similar values of φm results in single-qubit
Ramsey fringes with contrast close to 1 [Fig. 3(e)]. By
subdividing the datasets into subsets of 200 measurements
each, it is possible to measure the uncertainty of the phase
difference estimates ϕ̂i − ϕ̂j. Pink data points in Fig. 3(f)
show the uncertainty based on estimating the phase differ-
ence from the pair correlation between two qubits, which
becomes minimal for a phase difference of π=2. The
measured uncertainties are in agreement with the bound
provided by quantum projection noise in the presence of
correlated dephasing. The lowest uncertainty is obtained by
maximum-likelihood estimation using N-qubit correlations
(blue data points and blue line, average over all points). The
dashed line is the lower bound in the limit of M → ∞
and N → ∞.
The same dataset can also be used for investigating the

measurement uncertainties as a function of the number of
qubits as shown in Fig. 4. Toward this end, we split the data
into subsets, each containing a fixed number of qubits with
single-qubit phases that are approximately evenly distrib-
uted over the interval ½0; 2πÞ. The measurements of each of
these sets is further split into subsets containing M ¼ 200
experimental realizations from which we reconstruct the
single-qubit phases for an estimate of the measurement
uncertainties. Dark blue data points represent reconstruc-
tions based on MLE [Eqs. (7) and (8)], and light blue points
are the results of the noncompetitive Bayesian approach
[Eqs. (11) and (12)]. As shown in Sec. IV, the uncertainties
of the MLE estimates can be fitted by Eq. (17) with a fringe

FIG. 3. Many-qubit correlation spectroscopy of a 91-ion planar crystal based on M ¼ 26852 experimental repetitions. (a) Measured
correlation matrix with correlations jCijj ≤ 1=2 limited by correlated dephasing. (b) Single-qubit phases ϕ̂i estimated by fitting the
correlation matrix. (c) Measurement outcomes qim of an individual experiment (black dots) used for a Bayesian estimate of the common
random phase φ̂m (blue curve, fitted Ramsey fringe). (d) Correlation matrix elements Cij plotted as a function of the phase difference
ϕi − ϕj obtained by analyzing N-qubit correlations. (e) Single-qubit Ramsey fringes with nearly full contrast obtained from binning into
sets of similar common random phase φm modulo 2π. The red and the blue curve are just two out of 91 measured fringes.
(f) Measurement uncertainties inferred from subdividing the data into 134 data sets with 200 repetitions each. The pink dots do not cover
the entire range of 0 to π, as we omit those qubit pairs ði; jÞ for which we measure jCijj > 0.5 for one or several subsets. Uncertainties
obtained from individual elements Cij (pink dots) and the analysis of N-qubit correlations (blue dots and solid light blue line, average
over the data points). The dashed red line indicates the noiseless precision bound achievable in the limit of N → ∞, the solid black line
the two-qubit limit σN¼2

Δϕ .
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contrast of C0 ¼ 0.995, which could result from state-
assignment errors and slow drifts of trap parameters over
the duration of the measurement. The inset shows that the
phase uncertainty decreases inversely proportional to the
number of samples in a given set and is, thus, still
projection-noise limited at M ¼ 104 samples. Note that
we use an unbiased estimator for the determination of the
uncertainties displayed in Figs. 3 and 4 assuming normally
distributed measurement results [47].

IV. BOUNDS TO THE ACHIEVABLE PHASE
ESTIMATION UNCERTAINTY

In this section, we compare the experimentally measured
uncertainties to the theoretically achievable minimum
uncertainties for an unbiased estimator andM experimental
samples. The noiseless precision bound

ffiffiffiffiffiffiffiffiffiffi
2=M

p
in Eq. (4)

cannot be experimentally achieved, as it assumes noiseless
dynamics, i.e., that the single-qubit Ramsey fringes
[cf. Fig. 3(e)] can be measured with unity contrast.
However, this assumption is unrealistic in noisy experi-
ments affected by strong correlated dephasing and small
levels of single-qubit dephasing.

The impact of these two noise sources on the precision is
different. Uncorrelated dephasing reduces the fringe con-
trast to C0 < 1, which unavoidably degrades the precision.
In contrast, the effect of strong correlated dephasing can be
overcomewith a suitable data analysis for a large number of
ions. This can be understood as follows: Given a large
number of ions, the random phase in each shot, φm, can be
estimated with an error that goes to zero as N → ∞.
Another way to understand this is that for correlated
dephasing there are decoherence-free subspaces (unlike
the case of uncorrelated dephasing). The density matrix has
elements inside and outside the decoherence-free subspa-
ces, and as N → ∞ the contribution of the elements outside
the protected subspaces goes to zero. Here, we take these
factors into consideration. We derive heuristic precision
bounds that depend on both the number of qubits N and a
finite Ramsey contrast C0 (in the absence of correlated
dephasing). We start with a simple analytical model for an
estimator based on N-particle correlations and compare the
predictions to numerical simulations based on the classical
Fisher information.

A. Measurement uncertainties
with N-particle correlations

Here, we derive a simple analytic model to approximate
the precision bounds given correlated and uncorrelated
dephasing.
Before we proceed to the model, let us first understand

the effect of uncorrelated dephasing and generalize the
noiseless precision bound to a finite contrast limit that takes
into account this dephasing and serves as a similar bench-
mark. Given an uncorrelated dephasing, the product
state mentioned in Sec. II becomes a mixed state:
ð1=2NÞQi ðIþ C0R̂ϕi

Þ, with R̂ϕi
¼cos ðϕiÞX̂iþsin ðϕiÞŶi.

Measuring the ith qubit in the Ŷi basis, the probability of 1
is p ¼ 1

2
ð1þ C0 sin ðϕiÞÞ. Then, the uncertainty in

the determination of p with M repetitions is given by
projection noise, σp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−pÞ=Mp

. Because of σp¼
jdp=dϕijσϕi

and ðdp=dϕiÞ ¼ ðC0=2Þ cos ðϕiÞ, we have

σϕi
¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NeffðC0;ϕiÞ
p Þ, where

NeffðC0;ϕiÞ ¼ MC2
0

ð1 − sin2 ϕiÞ
1 − C2

0 sin
2 ϕi

ð13Þ

is an effective number of measurements. Assuming ϕi is
drawn from a uniform distribution, the uncertainty becomes
σϕi

¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NeffðC0Þ

p Þ with

NeffðC0Þ ¼
1

2π

Z
2π

0

dϕi NeffðC0;ϕiÞ

¼ M
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

q �
: ð14Þ

FIG. 4. Phase uncertainties versus number of qubits for M ¼
200 samples. Dark blue dots represent uncertainties estimated
from experimental data by MLE, light blue dots the uncertainties
of the Bayesian estimation. The prediction of Eq. (17) is shown as
the solid blue curve for a contrast C0 ¼ 1 and as a dashed blue
curve for C0 ¼ 0.995. The latter is obtained by fitting the
experimental data. The black curve represents the noiseless
precision bound of

ffiffiffiffiffiffiffiffiffiffi
2=M

p
. The red curve represents the optimum

uncertainty that is obtainable with entangled input states (see
Appendix C). The reduction in measurement uncertainty pro-
vided by preparation of entangled input states rapidly shrinks
with increasing N. The inset displays the measured uncertainty
for N ¼ 91 on the number samples, with the black curve
representing the noiseless precision bound.
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The uncertainty in estimating Δϕ ¼ ϕi − ϕj is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ϕi

þ σ2ϕj

q
and, thus, equal to

σΔϕ ¼
ffiffiffi
2

p
ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

pq : ð15Þ

Since this is the minimal obtainable uncertainty given a
contrast of C0 and assuming no correlated dephasing, we
refer to it as the finite contrast precision bound.
We derive now a simple model for precision bounds

given also correlated dephasing. The idea is to first find the
uncertainty in estimating the common random phase φm
and then insert this uncertainty as an uncorrelated dephas-
ing of each qubit.
We first need to find the uncertainty in estimating φm

(given that all the other phases are known). Note that this is
exactly the same calculation as performed above for ϕi, just

taking M ¼ N; therefore, σφm
¼ ð1= ffiffiffiffi

N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

pq
Þ.

This limits the precision with which the random phases φm
can be estimated. We can, thus, take the distribution of the
random phase to be Gaussian with this variance. By
averaging the single-qubit probability over the Gaussian
distribution N ðφm; σ2Þ,

hcos ðϕi þ φÞiN ðφm;σ2Þ ¼ cos ðϕi þ φmÞ exp
�
−
σ2

2

�
;

we observe that the contrast of the unscrambled single-
qubit Ramsey fringe [Fig. 3(e)] gets reduced to

Cunscr ¼ C0 exp

�
−

1

2Nð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

p
Þ

�
; ð16Þ

if C0 was the Ramsey contrast in the absence of correlated
dephasing. We can now apply the same reasoning again to
estimate the uncertainty with which the shift of
unscrambled Ramsey fringes can be determined in order
to estimate the uncertainty of the phase difference ϕi − ϕj

which becomes

σΔϕðN;C0Þ ¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

unscr

p
Þ

q : ð17Þ

For the case of large qubit number and high contrast C0,
this expression can be approximated by Eq. (15) if the
replacement C0 → C0 exp½−ð1=NÞ� is made.

B. Fisher-information-based bounds

We use a Fisher information (FI) analysis to calculate the
achievable minimum uncertainties. According to the
Cramer-Rao bound, the Fisher information matrix sets a

bound on the achievable uncertainty with any unbiased
estimator

COV ðϕÞ ≥ I−1; ð18Þ
where COV is the covariance matrix of the parameters
ϕ ¼ ðϕiÞ and I−1 is the inverse of the FI matrix. In case I is
singular, i.e., information can be obtained only about a
subspace of the parameters, I−1 is the Moore-Penrose
pseudoinverse, defined only on this subspace. This implies
that the variance of the phase difference ϕi − ϕj is given by

Varðϕi − ϕjÞ ≥ vtijI
−1vij; ð19Þ

where vij is a column vector with components ðvijÞn ¼
δin − δjn and I−1 the inverse of the relevant FI matrix.
The Fisher information matrix I ¼ ðIijÞ can be calcu-

lated by the following formula:

Iij ¼
X
k

p−1
k ðϕÞ ∂pkðϕÞ

∂ϕi

∂pkðϕÞ
∂ϕj

; ð20Þ

where ϕ ¼ ðϕiÞ is the vector of parameters and pk the
probability distribution of the observations. As a simple
example, observe that, for a single-parameter Bernoulli
distribution pðϕÞ, the FI about ϕ is I ¼ ð∂ϕpÞ2=pð1 − pÞ
and, hence, σϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞp
=∂ϕp. Given M identical

independent Bernoulli trials, the FI about ϕ is multiplied
by a factor of M and, thus, σϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞp
=

ffiffiffiffiffi
M

p
∂ϕp.

This expression coincides with the uncertainty of Eqs. (4)
and (5). Furthermore, note that the FI is a generalization of
Neff defined in Sec. IVA.

1. Fisher information bound for the pair correlations

In pair correlation analysis, we estimate the ion phases
ðϕiÞ using the pair correlations of the measurement out-
comes, i.e., the correlation matrix Ci;j defined in Eq. (6)
and presented in Fig. 3(a). More precisely, we take the
averages �

1

M

XM
m¼1

qi;mqj;m

�
i≠j

and estimate the phases according to it. According to
the central limit theorem, the averages converge to a
Gaussian random variable N ððμi;jÞi≠j;M−1ΣÞ, where

μi;j ¼ hqiqji ¼ 1
2
C2
0 cos ð2ðϕi − ϕjÞÞ and Σ is the covari-

ance matrix Σði;jÞ;ðk;mÞ ¼ hqiqjqkqmi − hqiqjihqkqmi. An
explicit calculation of the covariance matrix elements is
presented in Appendix A.
Since the distribution is normal, the FI matrix about ðϕiÞ

is given by [48]

I ¼ ð∂ϕμÞ†Σ−1ð∂ϕμÞ: ð21Þ
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ð∂ϕμÞi;ðk;mÞ ¼ ∂ϕi
μk;m is the information gained due to the

change in the mean values, i.e., the signal, and Σ is the
covariance matrix of the different correlations representing
the noise.
Applying Eq. (21) for a single-pair correlation ði; jÞ, we

retrieve the uncertainty in Eq. (5): The only linear combi-
nation of ϕi and ϕj that has a nonvanishing FI is ϕi − ϕj,
for which the FI is sin2ðϕi − ϕjÞ=4 − cos2ðϕi − ϕjÞ, i.e.,
σΔϕ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − cos2ðϕi − ϕjÞ

q
=j sin ðϕi − ϕjÞjÞ. The mini-

mal uncertainty per measurement is 2, and a divergence
occurs for ϕi − ϕj ¼ nπðn∈ZÞ due to the vanishing
derivative and nonvanishing noise.
Since information about ϕi − ϕj is encoded not only in

the ði; jÞ correlations but in other pairs as well, using all
pairs improves the uncertainty and removes the divergence
around nπ. We use Eq. (21) to perform an exact numerical
calculation of the FI. The behavior of the FI is presented in
Figs. 10 and 11 in Appendix A. It can be seen from the
figures that asN → ∞ the FI with pair correlations does not
saturate the noiseless precision bound. The reason for this is
the information encoded only in higher moments. Using an
analytical approximation, we show in Appendix A that the
variance for large N converges to 4 − C2

0=C
2
0, while the

finite contrast precision bound to the variance is
2=1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

p
. As C0 gets smaller, the variance with pair

correlations gets closer to this bound, since the information
from higher moments becomes smaller.

2. Fisher information bound with N-particle correlations

When using the full counting statistics, the probability
distribution entering into the calculation of the Fisher
information matrix is given by Eq. (7) with the replacement
qi → C0qi in order to account for a Ramsey contrastC0 < 1.
In Appendix A, we numerically calculate the Fisher infor-
mation matrix for finding the lower limit to the achievable
uncertainty as a function of qubit number N and contrast C0

(see Fig. 11). WhenN becomes large, an exact evaluation of
the Fisher information matrix by Eq. (20) becomes imprac-
tical, as a summation over 2N terms would have to be carried
out. For N > 24, we sample bit strings from the underlying
probability distribution for a Monte Carlo calculation of the
empirical Fisher informationmatrix. The uncertainty achiev-
able in experiments with a finite number of repetitions is
numerically investigated in Appendix B.

3. Improving precision limits using entanglement

In our experiments, the qubits are initialized to a product
state and measured in a local X basis. Hence, no entangle-
ment occurs in these experiments, and an analysis based on
classical Fisher information suffices. This raises the ques-
tion of whether nonclassical protocols that involve
entangled states or different measurement bases can yield
an advantage. It turns out that this is indeed the case: More

general quantum protocols can obtain the noiseless pre-
cision bound of

ffiffiffiffiffiffiffiffiffiffi
2=M

p
with an initial product state for

every N, and with an entangled initial state we can further
reduce the uncertainty to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 1=N

p ffiffiffiffiffiffiffiffiffiffi
2=M

p
. We prove in

Appendix C that this uncertainty is optimal.
To obtain these results, we use the quantum Fisher

information (QFI),which is theFI optimizedover all possible
measurement strategies [49,50]. After averaging the quan-
tum state over the random phase [Eq. (3)], we show that the
noiseless precision bound can be achieved for everyN with a
suitable measurement strategy (see Appendix C 1). To gain
intuition, let us examine the case ofN ¼ 2: Whenmeasuring
in the local X basis, Eq. (5) predicts σΔϕ ≥ ð2= ffiffiffiffiffi

M
p Þ.

However, if we first measure the total number of excitations,
i.e., Z1 þ Z2, and then measure in the local X basis, the
noiseless precision bound of

ffiffiffiffiffiffiffiffiffiffi
2=M

p
is achieved.

Optimizing over both initial states and measurement
strategies, we prove in Appendix C 2 that the ultimate
precision limit is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 1=N

p ffiffiffiffiffiffiffiffiffiffi
2=M

p
. Several initialization

strategies saturate this bound; in particular, any initial pure
state with hZji ¼ 0; hZjZki ¼ −ð1=N − 1Þ for all j ≠ k
achieves it. The reason for this improvement is the minimalP

j≠khZjZki, which guarantees minimal uncertainty. The
reason this limit grows with N is frustration: One cannot
make all pairs of spins antiparallel. While the number of
pairs is ðN

2
Þ, the minimal

P
j<khZjZki is −N=2, and, thus,

the optimal hZjZki is −ð1=N − 1Þ.
It can be immediately observed that the symmetric Dicke

statewithN=2 excitations satisfies these conditions and, thus,
is optimal. Another optimal strategy is to employ a probabi-
listic initialization to products of antiparallel Bell states; i.e.,
in each experiment, different pairs arebeingentangled to form
an antiparallel Bell state. With these two initialization
strategies, the optimal sensitivity can be achieved with local
measurements in the X or Y basis. This bound is plotted as a
red curve in Fig. 4 along with other theoretical limits. A
detailed derivation of the bound and the required initial states
and measurements is presented in Appendix C 2.
These theoretical quantum limits imply that some

improvement can indeed be obtained using entangled states
or nonlocal measurements; however, this improvement
becomes negligible in the limit of a large number of ions.
This potential improvement and a comparison between the
different precision limits are presented in Fig. 4.

V. APPLICATIONS IN TRAPPED-ION
EXPERIMENTS

In the following, different applications of correlation
spectroscopy in trapped-ion experiments are presented.

A. Measurement of ion positions

Very anisotropic potentials are required for confining
many ions in the form of a linear string. As a consequence
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of theweak axial confinement, these strings have lengths that
are no longer small as compared to the distance between the
ions and the nearest trap electrode. Therefore, the trapping
potential can no longer bemodeled as beingpurely harmonic,
and anharmonicities, which might affect the ion string’s
normal modes of motion, have to be considered.
We reconstruct the trapping potential in the axial

direction by Ramsey experiments probing an optical qubit
on the S1=2 ↔ D5=2 transition, in which the first (second)
π=2 pulse is realized by a laser beam impinging on the ions
from the axial (perpendicular) direction. This setting results
in qubit-specific phases ϕi ¼ kxi, where k is the wave
number and xi denotes the coordinate of the ith ion along
the direction of the ion string. To suppress energy-depen-
dent phase contributions, we use short π=2 pulses without
any free-evolution time in between. Following the previ-
ously outlined procedure, we first reconstruct the qubit
phase ϕi and the measurement contrast by fitting the
correlation matrix. Next, we use these phases for recon-
structing the time-dependent random phases φm. Using
N-qubit correlations, we finally use the Bayesian approach
of Eq. (12) for an improved phase estimate of ϕi, shown as
open symbols in Fig. 5(a) for a string of 62 ions.
In a second step, we extract the trapping potential

from the measured correlations. We approximate the
potential by Taylor expanding it up to fourth order,
VðzÞ ¼ 1

2
mω2

0z
2½1þ z=l3 þ ðz=l4Þ2�, where ω0 is the oscil-

lation frequency of a single ion and l3 (l4) account for the
cubic (quartic) anharmonicity of the potential. By calculat-
ing the ion positions in this potential, we fit the measured ϕi
and find ω0 ¼ ð2πÞ109.728ð3Þ kHz, l3 ¼ 2.1ð7Þ mm, and
l4 ¼ 0.8ð6Þ mm, where the error bars are obtained from

nonlinear regression assuming quantum projection noise as
the only source of errors. We compare the measured phases
ϕi to the ones obtained from fitting the potential (ϕfit

i ) by
calculating the residual position errors δxi ¼ ðϕ − ϕfit

i Þ=k.
Figure 5(b) shows that these residuals have a standard
deviation of 6.0 nm, barely above the theoretically expected
error σΔϕ ¼ 5.1 nm. Moreover, the absence of spatial
correlations in the residuals demonstrates that Taylor
expanding the potential up to the fourth order is an
adequate approximation to the exact potential.
To further test the method, we carry out the

reconstruction of the potential for a fixed set of trap
parameters but different number of ions (10 ≤ N ≤ 62)
and obtain consistent results. Figure 5(c) shows the inferred
oscillation frequency ω0 (light blue points) and the lowest
collective mode frequency ωc (dark blue points). For an
independent cross-check, the latter is also measured via
sideband spectroscopy on the S1=2 to D5=2 transition (red
squares). We observe that the correlation measurement
systematically underestimates the mode frequency by about
220 Hz [Fig. 5(d)]. This discrepancy could be explained by
the perpendicular laser beam being misaligned by about
1 mrad. Apart from this systematic error, the match
between the two methods is quite good for N > 10 ions:
The inset shows the difference of the predicted mode
frequencies, which have a standard deviation of only
14 Hz if the N ¼ 10 data point is excluded on the basis
of the rather uneven distribution of the phases ϕi over the
interval from 0 to 2π. Systematic effects in the measured
frequencies by imperfect laser beam misalignment could be
further reduced by replacing the perpendicular beam by
another axial beam that is counterpropagating to the axial
beam in place, because small alignment errors of the beams
with the direction of the ion string would affect the
measurement outcomes only in second order.

B. Measurement of transition frequency differences

Correlation spectroscopy with long probe times provides
a tool for precisely measuring spatial transition frequency
variations, which are relevant for frequency standards and
quantum simulation experiments. For 40Caþ ions, the
dominant frequency shifts are Zeeman and electric quadru-
pole shifts. We measure the spatial dependence of these
shifts by probing the stretched S1=2; m ¼ �1=2 ↔ D5=2;
m ¼ �5=2 transitions with a Ramsey time of τ ¼ 40 ms
duration with a 51-ion string. In contrast to the experiments
of Sec. VA, both Ramsey pulses are realized by the same
laser beam. Writing the spatially resolved shifts Δ�

i as
ΔQ

i ¼ ðΔþ
i þ Δ−

i Þ=2 and ΔB
i ¼ ðΔþ

i − Δ−
i Þ=2 enables a

separation of electric quadrupole and magnetic-field shifts.
Figures 6(a) and 6(b) display the measured quadrupole

shift together with a calculated shift obtained from a
measurement of the ion positions and the known quadru-
pole moment θð3d; 5=2Þ of the D5=2 level [26]. The

FIG. 5. (a) Reconstruction of the axial trapping potential.
(a) Measured phases ϕi (open symbols) and nearest-neighbor
distances (full symbols) obtained by fitting a model potential.
(b) Residuals. Shaded area: theoretical minimum measurement
uncertainty. (c) Center-of-mass mode frequency measured by
correlation spectroscopy, ωc=ð2πÞ (dark blue circles) and by
sideband spectroscopy, ωsb=ð2πÞ (squares) versus number of
ions, together with the fitted value of ω0=ð2πÞ (light blue circles).
(d) Measured ðωsb − ωcÞ=ð2πÞ.
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systematic variation of the residuals on the scale of 0.5 Hz
could be explained by a 1.5σ error in the determination of
θð3d; 5=2Þ or by a misalignment of the perpendicular laser
beam by 3 mrad. Figures 6(c) and 6(d) display the level
shifts by the inhomogeneous magnetic field produced by
the permanent magnets defining the quantization axis. We
fit the Zeeman shifts with a third-order polynomial of the
ion positions in order to extract the residuals. The latter
have a standard deviation of 109 mHz, approaching the
minimal uncertainty of 103 mHz predicted by the noise-
less limit.
Figure 7(a) shows the measured single-ion phases for a

two-dimensional 91-ion crystal in the presence of a
spatially varying magnetic field. We probe the ground-
state transition S1=2; m ¼ −1=2 ↔ S1=2; m ¼ þ1=2 by a
Ramsey experiment of τ ¼ 5 ms duration. We fit a linear
function to the measured phases and show the contour lines
of constant phases from the fit in Fig. 7(a). We extract a
magnetic-field gradient of 0.85ð1Þ G=m from the linear fit
with an angle of 38.6(4)° with respect to the horizontal
direction. The maximal measured transition frequency
difference between the ions is 218.2(8) Hz. The spatial
distribution of the residuals from the linear fit, shown in
Fig. 7(b), reveals that the magnetic field contains higher-
order terms in addition to the linear gradient. We further fit
a quadratic function to the residuals and show the

remaining residuals in Figs. 7(c) and 7(d) along the two
orthogonal directions. The majority of the spatial structure
in the magnetic field can be explained with linear and
quadratic terms, as the remaining residuals show almost no
systematic structure. Experimentally, it is straightforward
to cancel linear variations of the magnetic field across the
ion crystal with permanent magnets or coils placed outside
the vacuum system.

C. Single-shot Ramsey interferometry

The data taken for probing the spatial dependence of
phase shifts can also be analyzed in the time domain: We
probe temporal fluctuations of the local oscillator’s phase at
the locations of the ions by single-shot Ramsey interfer-
ometry. Figure 8 shows examples of such temporal phase
changes that are caused by magnetic-field fluctuations,
laser frequency noise, and optical path length fluctuations,
respectively. Figure 8(a) shows a magnetic-field change of
about 3 μG at the location of the ions induced by the arrival
of an elevator at the lab floor. The magnetic field is sensed
by a 49-ion string probed by a 40 ms Ramsey experiment
on the Zeeman ground state qubit transition. For the data
shown in Fig. 8(b), the S1=2; m ¼ 1=2 ↔ D5=2; m ¼ 3=2

FIG. 6. Transition frequency shift measurement obtained by
probing the quadrupole transitions between stretched states with
1500 experimental repetitions each. (a) Quadrupole shift of the
D5=2; m ¼ �5=2 states (red circles, measured shift; black line,
predicted shift). The frequency shift is measured with respect to
the first ion; in the figure, a constant offset is added so that the
averaged shift equals the calculated average quadrupole shift.
(b) Measurement residuals. (c) Differential Zeeman shift of the
S1=2; m ¼ 1=2 ↔ D5=2; m ¼ 5=2 transition frequency. An offset
is added so that the average shift becomes equal to zero. The
black line is a fit to the data by a third-order polynomial.
(d) Residuals. The gray rectangle indicates the measurement
uncertainty (1σ) predicted for quantum projection noise.

�

�

�

� �
�

(a)

(b)

(c) (d)

FIG. 7. Transition frequency shift measurement in a two-
dimensional crystal obtained by probing the ground-state tran-
sition with 19 736 experimental repetitions. (a) Single-ion phases
together with contour lines of constant phases obtained from a
linear fit. (b) Residuals from the linear fit. (c),(d) Residuals from
the quadratic fit along the (c) x and (d) z axis. The gray rectangle
indicates the 1σ measurement uncertainty predicted for quantum
projection noise.
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transition is probed for τ ¼ 20 ms. Here, 371 data points
are acquired, each containing 50 experiments that are
recorded at a repetition rate of 25 Hz. Laser phase noise
gives rise to phase fluctuations for which an autocorrelation
is calculated. The spectral density of the autocorrelation
function reveals distinct components at low frequencies

contributing to the laser noise. The dominant component at
approximately 8 Hz introduces a frequency excursion on
the order of 1 Hz. Figure 9 shows differential path length
fluctuations in the time domain, measured with short
Ramsey experiments using two different laser beam paths
for the two Ramsey pulses. For durations below 2 s, the
data show phase fluctuations h½φðtþ τÞ − φðtÞ�2it between
experiments separated by a time τ that increase in propor-
tion to τ as shown in the inset. The phase diffusion is
predominantly caused by path length fluctuations in the
two optical fibers delivering the light to the ion trap.

VI. DISCUSSION AND OUTLOOK

We have investigated many-qubit correlation spectros-
copy for probing qubits subjected to spatially correlated
noise. The technique enables phase comparisons between
any pair of qubits, provided that the qubit states are about
evenly distributed over the equatorial plane of the Bloch
sphere. The latter condition does not impose a strong
restriction, as in most experimental setups it should be
possible to deliberately imprint spatial phase gradients on
the qubit array to satisfy this requirement. While single-pair
correlation limits the contrast to 50%, in the limit of large
qubit number and perfectly correlated noise, the multiqubit
correlations induced by the noise enable a nearly complete
restoration of the Ramsey contrast. The increased contrast
gives rise to a fourfold reduction in measurement time
needed to achieve the targeted measurement uncertainty.
Many-qubit correlation spectroscopy is easy to imple-

ment, as it requires only standard Ramsey spectroscopy
enhanced by single-qubit readout. The technique is, there-
fore, not limited to trapped-ion experiments but could be
used in any multiqubit physical system with high-fidelity
single-shot readout of individual qubits. In particular, it
might be applicable to atomic clock experiments in tweezer
arrays. Recently, experiments applying Ramsey correlation
spectroscopy to subensembles of atoms held in optical
lattices or tweezer arrays have demonstrated very small
frequency gradients and impressive optical atomic coher-
ence times reaching tens of seconds [25,51,52]. In one- or
two-dimensional tweezer arrays, which feature single-atom
detection of tens to hundreds of atoms [25,31,53], our
method is directly applicable and could assist in reducing
the measurement time required for characterizing spatially
varying transition frequency shifts across the atomic array.
With the further development of atomic clocks networks
connected by phase-stable photonic links [54,55], multi-
qubit correlation spectroscopy could be applied for mutual
frequency comparisons of the clocks, too. Another appli-
cation of the technique might be found in quantum
information processing experiments where spatially corre-
lated noise can degrade the device performance. For
example, in the atomic tweezer experiments reported in
Ref. [31], an auxiliary atomic species was employed for
sensing and in-sequence correction of correlated phase

�
(a)

(b) (c)

FIG. 8. Single-shot Ramsey interferometry tracking temporal
phase fluctuations. (a) Phase fluctuations induced by a time-
varying magnetic field probed with a 49-ion string. (b),(c)
Tracking laser frequency variations with a 51-ion string: auto-
correlation function AðTÞ of laser phase fluctuations (left)
together with its spectral density jF ½AðTÞ�j2 (right).

 esah P
egnahc

(ra
d)

Time(s)

FIG. 9. Measurement of temporal relative optical path length
fluctuations in two beam path delivering the laser pulses to a
string of 40 ions.
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noise. Here, an application of our protocol to the sensing
species might increase the maximum noise level for which
the correction can still be applied.
In the context of trapped-ion experiments, many-qubit

correlation spectroscopy proves to be a valuable tool for
characterizing various aspects of the experimental setup
with high precision. Our experiments demonstrate that
experimentally observed uncertainties come close to the
theoretically predicted ones. The resulting reduction in
measurement time for achieving a desired uncertainty could
be of interest for tracking the frequency of an unstable
laser and providing feedback from individual measure-
ments for improving its stability. Another application of
multiqubit correlation spectroscopy, which we did not
explore in this paper, is to use it for thermometry and
detection of structural phase transitions in ion crystals
[56,57]. In this context, insufficiently cooled (low-
frequency) motional modes could give rise to a reduction
of fringe contrast that could be detected in correlation
spectroscopy experiments.
While in our experiments both the readout and the initial

states are nonentangled, we have theoretically shown the
possibility of improving the precision using an entangled
initial state or nonlocal measurements. While being neg-
ligible for large N, this improvement can be considerable
assuming a relatively small N. A possible experimental
realization requires initialization to a symmetric Dicke
state. In trapped-ion experiments, these Dicke states could
be engineered [58] by preparing the ions’ center-of-mass
mode in a Fock state with N=2 quanta, followed by a
rapid adiabatic passage on its red-sideband transition [59],
which converts motional quanta into collective electronic
excitations [60]. Finding simple protocols for generating
optimal initial states and implementing these protocols
in a sensing experiment is an interesting challenge for
future work.
In view of experiments with multiple atomic ensembles,

each of which can be measured only collectively, we
generalized the multipair correlation method to an arbitrary
spin J, that could represent the collective Bloch vector of
N ¼ 2J atoms. As shown in Appendix D, an analysis of
single-pair correlation performs poorly in the limit of large
spins, since the resulting uncertainty cannot surpass 1=

ffiffiffi
2

p
.

However, when jointly analyzing all pair correlations, a
sensitivity of

ffiffiffiffiffiffiffiffiffiffi
3=2J

p
is obtained. This analysis could be

particularly relevant to Ramsey experiments with global
readout of multiple ensembles of qubits [51,52,61]. The
ellipse fitting method is typically used in these experiments,
and care needs to be taken to avoid biased phase estimation
[52]. We posit that our analysis could improve on the
ellipse fitting technique in the limit of multiple ensembles
containing a few qubits each.

All data presented in Fig. 3 and subsequent figures are
available online [62].
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APPENDIX A: BOUNDS TO THE ACHIEVABLE
PHASE ESTIMATION UNCERTAINTY

1. Pair correlations

We analyze the Fisher information obtained using only
pair correlations. As mentioned in the main text, the
relevant random variables are the pair correlations

�
1

M

XM
m¼1

qi;mqj;m

�
i;j>i

→ N ðfμi;jgi;j>i;ΣÞ; ðA1Þ

which, according to the central limit theorem, converge to a
Gaussian distribution, where μi;j is the average of qiqj and
Σ is the covariance matrix of the fqiqjgi;j>i.
Hence, the problem boils down to calculating the FI

matrix for this Gaussian distribution. The FI matrix about ϕ⃗
given this Gaussian distribution is presented in Eq. (21) in
the main text. We write it here as

I ¼ D†Σ−1D; ðA2Þ

where

D ¼

0
BBB@

∂ϕ1
μ1;2 ∂ϕ2

μ1;2 � � � ∂ϕN
μ1;2

..

. ..
. ..

. ..
.

∂ϕ1
μN−1;N ∂ϕ2

μN−1;N � � � ∂ϕN
μN−1;N

1
CCCA: ðA3Þ

Hence, we need to calculate fμi;jgi;j>i and Σ in order to
get the FI matrix. Let us first assume only correlated
dephasing (no uncorrelated dephasing). For the mean
values, we have
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μi;j ¼ 2

	
1

2π

Z2π
0

cos2
�
1

2
ðϕi þ φmÞ

�
cos2

�
1

2
ðϕj þ φmÞ

�

þ sin2
�
1

2
ðϕi þ φmÞ

�
sin2

�
1

2
ðϕj þ φmÞ

�
dφm



− 1

¼ 1

2
cos ðϕi − ϕjÞ: ðA4Þ

Let us now calculate Σ. The diagonal terms of Σ read

Σði;jÞ;ði;jÞ ¼ hq2i q2ji − hqiqji2 ¼ 1 −
1

4
cos2 ðϕi − ϕjÞ

¼ 7

8
−
cos ð2ðϕi − ϕjÞÞ

8
: ðA5Þ

Regarding the nondiagonal terms, let us begin with non-
overlapping pairs ði; jÞ; ðk; nÞ:

hqiqjqkqni ¼
1

8
cosðϕi þ ϕj − ϕk − ϕnÞ

þ 1

4
cosðϕi − ϕjÞ cosðϕk − ϕnÞ;

hqiqjihqkqni ¼
1

4
cos ðϕi − ϕjÞ cos ðϕk − ϕnÞ:

Hence,

Σði;jÞ;ðk;nÞ ¼
1

8
cos ðϕi þ ϕj − ϕk − ϕnÞ: ðA6Þ

For overlapping pairs, such as ði; jÞ; ði; nÞ, we have

Σði;jÞ;ði;nÞ ¼ hq2i qjqni− hqiqjihqiqni
¼ hqjqni− hqjqiihqiqni

¼ 3

8
cos ðϕj−ϕnÞ−

1

8
cos ðϕjþϕn−2ϕiÞ: ðA7Þ

The derivatives matrix D is

Dði;jÞ;m ¼

8>><
>>:

− 1
2
sin ðϕi − ϕjÞ m ¼ i;

1
2
sin ðϕi − ϕjÞ m ¼ j;

0 m ≠ i; j:

ðA8Þ

Inserting Eqs. (A4)–(A7) into Eq. (A2), we can perform
exact numerical calculations of the FI.
Given an uncorrelated dephasing in addition to the corre-

lated dephasing, the probabilities p� of observing outcomes
qi ¼ �1 are modified to p� ¼ 1

2
½1� C0 sin ðϕi þ φmÞ�,

i.e., a finite contrast of 0 ≤ C0 ≤ 1. It can be immediately
observed that μi;j ¼ 1

2
C2
0 cos ðϕi − ϕjÞ. The covariance

matrix is modified as follows:

Σði;jÞ;ði;jÞ ¼
�
1 −

C4
0

8

�
− C4

0

cos ð2ðϕi − ϕjÞÞ
8

;

Σði;jÞ;ðk;nÞ ¼
1

8
C4
0 cosðϕi þ ϕj − ϕk − ϕnÞ;

Σði;jÞ;ði;nÞ ¼
�
1

2
C2
0 −

1

8
C4
0

�
cos ðϕj − ϕnÞ

−
1

8
C4
0 cos ðϕj þ ϕn − 2ϕiÞ:

Let us analyze the uncertainty using pair correlations as
N → ∞. The behavior in the limit of large N is presented in
Fig. 10. It can be observed that for C0 ¼ 1 this uncertainty
does not converge to the noiseless precision bound offfiffiffiffiffiffiffiffiffiffi
2=M

p
but approximately to

ffiffiffiffiffiffiffiffiffiffi
3=M

p
.

The limit of
ffiffiffiffiffiffiffiffiffiffi
3=M

p
can be derived analytically, assum-

ing that the phases are distributed evenly in kπðk∈ZÞ. To
obtain this result, we use the following approximation of
the variance:

varðϕ1 − ϕ2Þ ¼ u†1;2ðD†Σ−1DÞ−1u1;2

≈
jju1;2jj4
jjDu1;2jj4

ðDu1;2Þ†ΣðDu1;2Þ;

FIG. 10. Sensitivity (per measurement) with pair correlations
compared to precision bounds (numerical analysis). (a) Uncertainty
in estimating Δϕ using all pair correlations as a function of Δϕ for
different numbers of ions. The dashed red line is the noiseless
precision bound, pair correlations of N ¼ 20, 50, and 150 corre-
spond to light blue (top), red (middle), anddarkblue (bottom)points,
respectively. Inset: standard deviation averaged over all phases as a
function ofN; the top (bottom) lines correspond to pair correlations
(noiseless precision bound). (b) Uncertainty as a function of the
contrast C0. The red dashed line corresponds to the finite contrast
precision bound. Light blue (top) and blue (bottom) points corre-
spond to pair correlations for N ¼ 30 and 120, respectively.
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where u1;2 is the vector that corresponds to ϕ2 − ϕ1,
i.e., ð−1; 1; 0;…; 0Þ. This approximation is obtained by
using a Cauchy-Schwarz inequality twice: v†M−1v ≥
ðkvk4=v†MvÞ, and it can be understood as a single
parameter estimation bound where the derivative of
the mean is ð1=ku1;2k2ÞDu1;2 and the variance is
ð1=kDu1;2k4ÞðDu1;2Þ†ΣðDu1;2Þ. We now calculate this
approximation to show that in the limit of large N it
converges to 3.
Clearly, ku12k4¼4, and kDu1;2k4 ≈ ð2PN

k¼1
1
4
×

sin ð2kϕÞ2Þ2 ≈ ðN2=16Þ. We now need to calculate
ðDu1;2Þ†ΣðDu1;2Þ: Note that, since the denominator goes as
N2,wecanomit in thecalculationof this termanycontributions
that are smaller than N2. Since Du1;2 is a real vector, this
term is given by the sum (summation convention is used)
ðDu1;2Þði;jÞΣði;jÞðk;nÞðDu1;2Þðk;nÞ. We can neglect the N terms
of identical pairs. From overlapping pairs ði; jÞ; ði; nÞ, the
contribution is

2hq2i qjqniðDu1;2Þði;jÞðDu1;2Þði;nÞ
≈
2

8
cos ðϕj − ϕnÞ sin ðϕ1 − ϕjÞ sin ðϕ1 − ϕnÞ

þ 2

8
cos ðϕj − ϕnÞ sin ðϕ2 − ϕjÞ sin ðϕ2 − ϕnÞ

≈ N2=16:

The contribution from the nonoverlapping pairs is

2hqiqjqkqniðDu1;2Þði;jÞðDu1;2Þðk;nÞ
≈−

2

8
cosðϕ1þϕj−ϕ2−ϕnÞ

1

2
sin ðϕ1−ϕjÞ

1

2
sin ðϕ2−ϕnÞ

≈−N2=48:

Hence, ðDu1;2Þ†ΣðDu1;2Þ ≈ ðN2=16Þð1 − 1
4
Þ ¼ ðN2=16Þ 3

4
.

Therefore, altogether,

ku1;2k4
kDu1;2k4

ðDu1;2Þ†ΣðDu1;2Þ ≈ 3; ðA9Þ

which matches the numerical results.
For general contrastC0, these expressions are modified to

kDu1;2k4 ≈
N2

16
C8
0;

2hq2i qjqniðDu1;2Þði;jÞðDu1;2Þði;nÞ ≈ C8
0N

2=16;

2hqiqjqkqniðDu1;2Þði;jÞðDu1;2Þðk;nÞ ≈ −C6
0N

2=48:

Hence, we obtain that for a general contrast varðϕ1 − ϕ2Þ
from pair correlations converges to ≈ð4 − C2

0=C
2
0Þ. This

implies that as C0 becomes smaller the uncertainty using
pair correlations converges to the finite contrast bound of

the variance 2=1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

p
. The reason for this conver-

gence is that the Fisher information obtained from higher
moments goes with higher powers of C0; in general,
the Fisher information obtained from the 2kth moments
goes as C2k

0 , and, thus, the contribution from the higher
moment gets smaller for smaller C0. In fact, the FI
with pair correlations coincides with the finite contrast
bound up to a second order in C2

0: 2=1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

p
¼

½4 − C2
0 þOðC4

0Þ=C2
0�. This raises a natural question: Is the

variance with all m ≤ k particle correlations equal to

2

C2
0

þ 2

C2
0

�
1 −

Xk
l¼1

2

l

�
2l − 2

l − 1

��
C2
0

4

�
l
�
?

We leave it as an open question (and conjecture), as we do
not have a proof to this.

2. N-qubit correlations

The information about the phase differences when taking
all correlations into account is the information contained in
the full distribution averaged over the random phase:

PðqÞ ¼ 2−N

2π

Z
2π

0

dφ
YN
i¼1

½1þ qi sin ðϕi þ φÞ�: ðA10Þ

Hence, the precision bound is given by the FI matrix
about ϕ with this distribution. Since the FI matrix
involves summation over all 2N possible q vectors,
Ii;j ¼

P
q½ð∂ϕi

pðqÞÞð∂ϕj
pðqÞÞ=pðqÞ�, an exact calculation

becomes intractable for large N. Hence, to make an
efficient calculation of the FI, we use the fact that
Ii;j¼hð∂ϕi

pÞð∂ϕj
pÞ=p2i¼h∂ϕi

lnðpÞ∂ϕj
lnðpÞi. This allows

us to make a Monte Carlo calculation of the FI matrix by
sampling ∂ϕi

lnðpÞ∂ϕj
lnðpÞ. Simulation results are shown

in Fig. 11 for the case of evenly distributed single-qubit
phases, ϕj ¼ 2πj=N.

APPENDIX B: NUMERICAL SIMULATIONS

1. Estimating the phases with pair correlations:
Maximum-likelihood and least-squares estimation

We calculate precision bounds of the phases given the
pair correlations; in this part, we discuss estimation
methods using pair correlations and the saturability of
these precision limits. We compare between two estimation
methods: simple least-squares estimation, i.e., minimizing
V†V, where V ¼ fð1=MÞPM

m¼1 qi;mqj;m − μi;jgi;j, and
maximum-likelihood estimation. Note that since the rel-
evant distribution [Eq. (A1)] is Gaussian, the maximum-
likelihood estimation becomes a weighted least-squares
estimation [63]:

max
ϕ

LðVjϕÞ ¼ min
ϕ
V†Σ−1V:
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The difference between the two estimation methods is,
thus, rooted in the weights given by the inverse of the
covariance matrix, Σ−1. The maximum likelihood is, in
general, asymptotically efficient, i.e., saturates the Fisher
information, whereas the simple least square is more
straightforward, as it does not require evaluation of the
covariance matrix.
A comparison of both approaches is presented in Fig. 12.

It can be observed that for a large number of samples (here,
M ¼ 104) the maximum likelihood indeed saturates the FI,
while the simple least-squares method does not saturate it.
Interestingly, for a smaller number of samples (here,
M ¼ 200), maximum likelihood does not saturate the FI
and a simple least-squares approximation outperforms it. In
fact, for some phases, simple least squares even outper-
forms the FI (due to its bias for small number of samples).

2. Estimating the phases from N-qubit correlations

A maximum-likelihood estimation of the phases by
analysis of N-qubit correlations via Eq. (8) satisfies the
FI-based bound in the limit of infinite sample size. We carry
out numerical simulations of the phase estimation process

to investigate the influence of a finite number of samples on
the phase uncertainties. The simulations show the uncer-
tainty increasing over the FI bound with decreasing sample
size M; however, the effect is not very pronounced: In
simulations with 20 and 100 qubits, we observe an increase
by about 10% for M ¼ 50 and by about 1% for M ¼ 500.

APPENDIX C: IMPROVING THE
PRECISION WITH ENTANGLED STATES

AND NONLOCAL MEASUREMENTS

Let us inquire about the optimality of our scheme by
asking the following question: What is the optimal precision
optimized over all possible initial states and measurement
strategies? The figure of merit is 1=ðN

2
ÞPj>k Varðϕj − ϕkÞ.

We first show that the noiseless precision bound can be
obtained by modifying the measurement basis to a nonlocal
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N
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FIG. 11. Uncertainty with N-qubit correlations, pair correla-
tions, and precision limits (all values are per measurement).
(a) Precision bounds as a function of N: The gray (upper) curve
and blue dots correspond to pair correlations and N-qubit
correlations, respectively. The light blue curve corresponds to
the analytical approximation, and the red dashed line is the
fundamental noiseless limit of

ffiffiffi
2

p
. (b) Precision bounds as a

function of C0: Pink dots and the gray (upper) curve correspond
to all N correlations and pair correlations, respectively, for
N ¼ 30. The same for blue dots and the gray lower curve for
N ¼ 100. The red dashed line corresponds to the finite contrast
precision bound.

(a)

0 1 2 3

1.7

1.9

2

2.1
(b)

FIG. 12. Phase estimation errors using simple least-squares and
maximum-likelihood estimation for 200 and 104 samples and 20
qubits (data from numerical simulation). Green lines and blue
lines correspond to the distribution of the estimation errors with
simple least squares and maximum likelihood, respectively. The
green circles and blue diamonds correspond to the average
estimation error. The red solid line correspond to the Cramer-
Rao limit. (a) For 200 samples, the estimation errors are above the
limit, and simple least squares performs better than maximum
likelihood. This behavior is due to the small number of samples.
(b) For 104 samples, the behavior matches the expectations:
Maximum likelihood coincides with the Fisher information and
outperforms simple least squares.
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one. In a second step, we consider also entangled input states
and find an optimal initial state for this sensing task.
Let us introduce the following notation for this part: The

state jz⃗i is the product state jz1ijz2i…jzNi, where jzii is an
eigenstate of Zi with eigenvalue zi ∈ f�1g. A different
notation to the same state would be jq⃗i, where qi ¼
ð1 − zi=2Þ, and, thus, zi ¼ 1 → qi ¼ 0, zi ¼ −1 → qi ¼ 1.

1. Improving precision with nonlocal measurements

Let us first write the quantum state after the time
evolution. The initial state is a pure product state: jþiN ,
with jþi ¼ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ (an eigenstate of X with

eigenvalue þ1). After a free evolution, the state evolves
into the state of Eq. (1) with phases ϕim ¼ ϕi þ φm. φm is a
random phase that is distributed uniformly in ½0; 2π�. This
random phase induces a correlated dephasing; i.e., the final
state, after averaging out φm, becomes a mixture of Dicke
states:

ρf ¼ ⨁
N

j¼0

ρj;

where ρj is a Dicke state with j excitation:

ρj ¼
�
N
j

�
2N

jψ jihψ jj; jψ ji ¼
1ffiffiffiffiffiffiffiffiffi�
N
j

�r X
q⃗;
P
k

qk¼j

eiϕ⃗·q⃗jq⃗i:

Given ρfðϕ⃗Þ, the fundamental precision limit is set by the
quantum Fisher information matrix (QFIM) about the
parameters ϕ1;ϕ2;…;ϕN ; this is the Fisher information
matrix optimized over all possible measurement strategies.
Hence, the covariance matrix of the estimators, Σ, satisfies

Σ ≥ I−1;

where I is the QFIM, and, thus, for any j, k,

varðϕj − ϕkÞ ≥ u†ðj;kÞI
−1uðj;kÞ;

where uðj;kÞ is the parameter vector that corresponds to
ϕj − ϕk.
For a general mixed state ρ, given its spectral decom-

position ρ ¼ P
k pkjkihkj, the QFIM is given by [49]

Ii;j ¼ 2
X
k;l

�
∂ρ
∂ϕi

�
k;l

�
∂ρ
∂ϕj

�
l;k

ðpl þ pkÞ
;

where fpkgk are the eigenvalues of ρ and the matrix
elements ð•Þk;l ¼ hkj • jli are with respect to the eigenbasis
of ρ.

For pure states, this expression is reduced to

Ii;j ¼ 4ðh∂ϕi
ψ j∂ϕj

ψi − h∂ϕi
ψ jψihψ j∂ϕj

ψiÞ: ðC1Þ

Let us calculate the QFIM of our ρf, which we denote as
I. It can be observed that in this special case I is a weighted
sum of the QFIM of each jψ ji [64]:

I ¼
XN
j¼0

�
N
j

�
2N

IðjÞ; ðC2Þ

where IðjÞ is the QFIM of jψ ji. For every jψ ji, we have
∂ϕi

jψ ji ¼ −i 1
2
ðZi þ IÞjψ ji; inserting this into Eq. (C1), we

get that the QFIM of each jψ ji is

IðjÞk;l ¼ ðhψ jjZkZljψ ji − hψ jjZkjψ jihψ jjZljψ jiÞ:

Now jψ ji is a symmetric superposition of all states with j
excitations; from symmetry, we get

hZki ¼
1

N
ðN − j − jÞ ¼ N − 2j

N

and for k ≠ l

hZkZli ¼
ðN − 2jÞ2 − N
NðN − 1Þ :

Hence, all the nondiagonal terms of IðjÞ are

IðjÞk;l ¼
ðN − 2jÞ2 − N
NðN − 1Þ −

ðN − 2jÞ2
N2

¼ 4jðj − NÞ
N2ðN − 1Þ :

The diagonal terms of IðjÞ read

IðjÞk;k ¼ 1 −
�
N − 2j

N

�
2

¼ 4jðN − jÞ
N2

:

Inserting these terms into Eq. (C2), we get that I reads

I ¼
8<
:

P
N
j¼0

ðNj Þ
2N

4jðj−NÞ
N2ðN−1Þ ¼ − 1

N ; k ≠ l;

P
N
j¼0

ðNj Þ
2N

4jðN−jÞ
N2 ¼ N−1

N ; k ¼ l:

It is now simple to see that for any k ≠ m the vector that
corresponds to ϕk − ϕm is an eigenvector of I with an
eigenvalue of 1. The variance per measurement is, thus,

varðϕk − ϕmÞ ¼ 2;

and this is exactly the noiseless precision bound. Since the
strong commutativity condition is satisfied (all Hamiltonian
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terms commute with each other), we know that there exists
a basis that saturates this QFI [65]. This implies that there
exists a measurement strategy such that the noiseless
precision bound is obtained.
As a simple example, we examine the case of two qubits.

The density matrix for two qubits reads

ρf ¼
1

4
ðj11ih11j þ j00ih00jÞ þ 1

2
jψ1ihψ1j;

with jψ1i ¼ ð1= ffiffiffi
2

p Þðj01i þ eiðϕ1−ϕ2Þj10iÞ. Measuring
the local X basis, we project onto the states jx⃗i ¼
jx1ijx2i…jxNi where jxii is an eigenstate of Xi with
eigenvalues xi ∈ f�1g and obtain the probabilities

even x⃗∶
1

8
þ 1

4
cos

�
ϕ1 − ϕ2

2

�
2

;

odd x⃗∶
1

8
þ 1

4
sin

�
ϕ1 − ϕ2

2

�
2

;

where x⃗ odd (even) stands for #ðxi ¼ −1Þ odd (even). This
leads to

varðϕ2 − ϕ1Þ ¼
4 − cos ðϕ1 − ϕ2Þ2
sin ðϕ1 − ϕ2Þ2

≥ 4;

clearly, this is exactly the variance with a single-pair
correlation and, thus, does not saturate the QFI. It can
be observed that optimizing over all local measurement
bases is equivalent to optimizing over ϕ1;ϕ2, and, thus, no
local measurement saturates the QFI. There exists, how-
ever, a nonlocal measurement strategy that saturates the
QFI: Consider first measuring Z1 þ Z2 and then measuring
the local X basis. With probability 1=2 we get j00i; j11i in
the first measurement and, thus, no information, and with
probability 1=2 we collapse into jψ1i which yields a Fisher
information of 1. Therefore, the total Fisher information is

1

2
· 0þ 1

2
· 1 ¼ 1

2
→ varðϕ2 − ϕ1Þ ¼ 2;

hence, the bound is saturated.
A general optimal measurement strategywould be (i) first

measure
P

i Zi (this measurement collapses the density
matrix into one of the Dicke states jψ ji) and (ii) measure
the Dicke state jψ ji in its optimal measurement basis.
The optimal measurement basis of jψ ji can be written

implicitly as proven in Ref. [65]: Projecting into a
(Gram-Schmidt) orthogonalization of fjψ ji; j∂ϕk

ψ jigϕk

would be optimal. For example, for N ¼ 3, given jψ1i ¼
ð1= ffiffiffi

3
p Þðj011i þ j101i þ j110iÞ (we can assume for con-

venience ϕ1 ¼ ϕ2 ¼ ϕ3 ¼ 0; this can be achieved adap-
tively by local operations), an optimal measurement basis
would be

1ffiffiffi
3

p ðj011i þ j101i þ j110iÞ;
1ffiffiffi
6

p ð−2j011i þ j101i þ j110iÞ;
1ffiffiffi
2

p ðj101i − j110iÞ:

The construction for jψ2i is equivalent.

2. Optimal initial states

We show that the average variance of phase difference
1=ðN

2
ÞPj>kVarðϕj−ϕkÞ is lower bounded by 2ðN − 1=NÞ,

and we find several initialization strategies, all of which
involve entanglement, that saturate this bound. In particu-
lar, the symmetric Dicke state

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi�
N

N=2

�r X
z⃗ with

P
i

zi¼0

jz⃗i

and any other state that is an equal superposition of states
with

P
i zi ¼ 0 saturate this optimal precision. Another

strategy is a probabilistic initialization from an ensemble of
products of antiparallel Bell pairs. It can be shown that all
optimal strategies involve eigenstates of

P
i Zi with eigen-

value 0. Since these states are robust against correlated
dephasing, this optimal precision is achieved irrespective of
whether there is correlated dephasing or not. In the
following derivation, we use techniques similar to those
used in Ref. [40].
We denote the final and initial states as jψfi and jψi,

respectively, where jψfi ¼ Ujψi, with U¼expð−i1
2
ϕ⃗ ·Z⃗Þ.

Since j∂ϕj
ψfi ¼ −ði=2ÞZjUjψi, the QFIM of jψfi reads

Ii;j ¼ ðhψ jZiZjjψi − hψ jZijψihψ jZjjψiÞ:

Using the QFIM, we prove that the optimal achievable
variance 1=ðN

2
ÞPj>kVarðϕj − ϕkÞ is 2ðN − 1=NÞ.

Proof. By definition of QFIM,

varðϕj − ϕkÞ ≥ u†ðj;kÞI
−1uðj;kÞ:

The Cauchy-Schwarz inequality ðu†I−1uÞðu†IuÞ ≥
ju†

ffiffiffiffiffiffiffi
I−1

p ffiffi
I

p
uj2 implies

�
u†ðj;kÞI

−1uj;k
�
≥

jjuðj;kÞjj4�
u†ðj;kÞIuðj;kÞ

� :
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Hence,

varðϕj − ϕkÞ ≥
jjuðj;kÞjj4�
u†ðj;kÞIuðj;kÞ

� ¼ 4

Ijj þ Ikk − 2Ijk

≥
2

ð1 − hZjZkiÞ
:

Therefore, we seek to lower bound
P

j<k½2=ð1 − hZjZkiÞ�.
The minimal possible varðϕj − ϕkÞ is, therefore, obtained
when hZjZki ¼ −1; however, there is no state that sat-
isfies hZjZki ¼ −1 for all j and k. To lower boundP

j<k½2=ð1 − hZjZkiÞ�, we use the Cauchy-Schwarz
inequality:

2

�X
j<k

1

ð1 − hZjZkiÞ
��X

j<k

ð1 − hZjZkiÞ
�

≥ 2

�X
j<k

1

�
2

¼ 2
X
j<k

�
N
2

�
:

The first inequality is due to�X
i

1

xi

��X
i

xi

�
≥
�X

i

1ffiffiffiffi
xi

p ·
ffiffiffiffi
xi

p �
2

¼
�X

i

1

�
2

;

which is just the Cauchy-Schwarz inequality.
Hence,

X
j<k

Varðϕj − ϕkÞ ≥ 2
X
j<k

ðN
2
ÞP

j<kð1 − hZjZkiÞ
:

Note that hPi Zii2 ¼ 2
P

j<khZjZki þ N; therefore,
2
P

j<khZjZki ≥ −N. Hence,

X
j<k

Varðϕj − ϕkÞ ≥
X
j<k

4ðN
2
Þ

2ðN
2
Þ þ N

¼ 2
X
j<k

N − 1

N
:

This basically proves that 1=ðN
2
ÞPj<k Varðϕj − ϕkÞ ≥

2ðN − 1=NÞ. To show that this lower bound is saturable, we
need to find an initial state jψi for which all these
inequalities are saturated, namely,

X
j<k

u†ðj;kÞI
−1uðj;kÞ ¼ 2

X
j<k

N − 1

N
;

where I is the QFIM given this jψi. We observe that a
necessary condition is hZii ¼ 0 and identical hZjZki ¼
−ð1=N − 1Þ. Let us show that this is also a sufficient
condition: Given that this condition is satisfied, the QFIM is

Ii;j ¼
�
1 i ¼ j;

− 1
N−1 i ≠ j:

It can be now observed that any uðj;kÞ is an eigenvector of
this matrix with eigenvalue N=N − 1 and, thus, for any j,
k, u†ðj;kÞI

−1uðj;kÞ ¼ 2ðN − 1=NÞ.
Hence, any initial pure state that satisfies the conditions

∀ ihZii ¼ 0 and ∀ j; khZjZki ¼ −
1

N − 1
ðC3Þ

saturates this QFIM. We can immediately observe that the
symmetric Dicke state

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi�
N

N=2

�r X
z⃗ with

P
i

zi¼0

jz⃗i

satisfies these conditions and, thus, saturates this bound.
Other strategies exist, such as preparing a classical ensemble
of products of antiparallel Bell states, and they are discussed
later. For now, let us focus on the symmetric Dicke state.
To show that indeed Varðϕj − ϕkÞ ¼ 2ðN − 1=NÞ can be

achieved with jψi, we need to find a readout strategy that
achieves this bound, i.e., a measurement with a classical FI
matrix that equals the QFIM. We show that local mea-
surements in X saturate this optimal variance.
To show this, let us first write jψfi, the final probe state

given the initial symmetric Dicke state:

jψfi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N

N=2

�s X
P
i

zi¼0;z1¼1

�
e−i

1
2
ϕ⃗·z⃗jz⃗i þ ei

1
2
ϕ⃗·z⃗j − z⃗i

�

ðC4Þ

¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N

N=2

�s X
P
i

zi¼0;z1¼1

cos

�
1

2
ϕ⃗ · z⃗

�
jþz⃗i

− i sin

�
1

2
ϕ⃗ · z⃗

�
j−z⃗i; ðC5Þ

where j�z⃗i ¼ ð1= ffiffiffi
2

p Þðjz⃗i � j − z⃗iÞ.
Let us now use Theorem 2 in Ref. [65]: Given a pure

probe state jΨðϕ⃗Þi, then a projective measurement that
consists of rank 1 projectors fΠkgk saturates the QFIM if
and only if for every k and j

ImðhΨjΠkj∂ϕj
Ψ⊥iÞ ¼ 0; ðC6Þ

where j∂ϕj
Ψ⊥i ≔ j∂ϕj

Ψi − jΨihΨj∂ϕj
Ψi; i.e., it is the

projection of j∂ϕj
Ψi onto the orthogonal subspace of
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jΨi. The full proof of this theorem is presented in Ref. [65].
Let us briefly explain the intuition behind this theorem:
Given jΨi, the probability of detecting the kth result is
pk ¼ hΨjΠkjΨi. The derivative of this probability with
respect to ϕj is ∂ϕj

pk ¼ 2RehΨjΠkj∂ϕj
Ψi. The parallel part

of j∂ϕj
Ψi, i.e., j∂ϕj

Ψki ≔ hΨj∂ϕj
ΨijΨi, does not contribute

to the derivative, because RehΨjΠkj∂ϕj
Ψki ¼ 0. The deriva-

tive can, therefore, bewritten as ∂ϕj
pk ¼ 2RehΨjΠkj∂ϕj

Ψ⊥i.
Hence, if ImhΨjΠkj∂ϕj

Ψ⊥i ≠ 0, then some of the informa-
tion aboutϕj is being lost whenmeasuring in this basis; i.e., a
changeϕj is being translated to a change in the phase and not
the probability. If ImhΨjΠkj∂ϕj

Ψ⊥i ¼ 0 for every j and k,

then no information about ϕ⃗ is lost, and, thus, the QFIM is
being saturated. We remark that this intuitive argument is
correct only for pure states.
Let us apply this theorem to our case: We need to show

that the condition of Eq. (C6) is satisfied for our jψfi and
local X measurements. The rank 1 projectors in our case
are, thus, fΠx⃗ ¼ jx⃗ihx⃗jgx⃗. Hence, we need to show that, for
every x⃗, ImðhψfjΠx⃗j∂ϕj

ψf⊥iÞ ¼ 0.

Let us use the following identity:

hx⃗j 1ffiffiffi
2

p ðjz⃗i þ j − z⃗iÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2Nþ1

p
h
ð−1Þq⃗x⃗·q⃗z⃗ þ ð−1Þq⃗x⃗·q⃗−z⃗

i
;

with ðq⃗z⃗Þi ¼ 1
2
ð1 − ziÞ and q⃗x⃗ and analogously ðq⃗x⃗Þi ¼

1
2
ð1 − xiÞ. Note that q⃗x⃗ · q⃗z⃗ þ q⃗x⃗ · q⃗−z⃗ ¼ #ðxi ¼ −1Þ;

hence, if #ðxi ¼ −1Þ is even, then ð−1Þq⃗x⃗·q⃗z⃗ ¼ ð−1Þq⃗x⃗·q⃗−z⃗ ,
and if it is odd, ð−1Þq⃗x⃗·q⃗z⃗ ¼ −ð−1Þq⃗x⃗·q⃗−z⃗ . Therefore,

hx⃗j 1ffiffiffi
2

p ðjz⃗i þ j − z⃗iÞ ¼
�
0 x⃗ odd

� 1ffiffiffiffi
2N

p x⃗ even
ðC7Þ

and

hx⃗j 1ffiffiffi
2

p ðjz⃗i − j − z⃗iÞ ¼
�� 1ffiffiffiffi

2N
p x⃗ odd

0 x⃗ even:
ðC8Þ

Inserting Eqs. (C7) and (C8) into Eq. (C5), we can
observe that

hx⃗jψfi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N−1
�

N

N=2

�s ·

8>>>>><
>>>>>:

ð−iÞ PP
i

zi¼0;z1¼1

ð−1Þ
P

i
ðq⃗x⃗Þiðq⃗z⃗Þi sin

�
1
2
ϕ⃗ · z⃗

�
x⃗ odd

PP
i

zi¼0;z1¼1

ð−1Þ
P

i
ðq⃗x⃗Þiðq⃗z⃗Þi cos

�
1
2
ϕ⃗ · z⃗

�
x⃗ even:

Therefore, for any value of ϕ⃗, hx⃗jψfi is either real (for
even x⃗) or imaginary (for odd x⃗). Similarly, it is simple to
observe that hx⃗j∂ϕj

ψf⊥i is real (imaginary) for even x⃗
(odd x⃗). To sum up,

x⃗ odd∶ hx⃗jψfi; hx⃗j∂ϕj
ψf⊥i imaginary

⇒ hψfjΠx⃗j∂ϕj
ψf⊥i real;

x⃗ even∶ hx⃗jψfi; hx⃗j∂ϕj
ψf⊥i real ⇒ hψfjΠx⃗j∂ϕj

ψf⊥i real:

Hence, the condition in Eq. (C6) is satisfied, and, thus, the
local X basis indeed saturates the QFIM.
We remark that another strategy to saturate the QFIM is

to choose the initial state of each experiment from a
classical ensemble of products of antiparallel Bell states.
An antiparallel Bell state is defined as ji; ji ¼
j0iij1ij þ j0ijj1ii. A Bell-product state is then a product
of N=2 such antiparallel Bell pairs; we denote any such
state as

QN=2
k¼1 jik; jki. It can be observed that the QFIM of

any
QN=2

k¼1 jik; jki is 1 −
Q

k Xik;jk , where Xik;jk ¼ jikihjkj þ
H:c: The total number of these states is ðN − 1ÞðN − 3Þ…1,
and the total number of states with a specific pair ðik; jkÞ
is ðN − 3Þ…1. Hence, by sampling from a uniform

distribution of these Bell-product states, the QFIM
becomes the optimal one:

Ii;j ¼
�
− 1

N−1 i ≠ j

1 i ¼ j
:

This QFIM is saturated with local X (or Y) measurements,
since these measurements saturate the QFIM of each Bell-
product state individually.
Finally, we remark about the set of optimal initial pure

states. These are the states that satisfy the conditions in
Eq. (C3). The problem of finding optimal states (other than
the symmetric Dicke state) is then basically solving a system
of linear equations. First, observe that the conditions imply
hðPi ZiÞ2i ¼ 0; hence, any optimal pure state is an eigen-
state of

P
i Zi with eigenvalue 0.We can, therefore, write the

states as
PP

i
zi¼0

ffiffiffiffi
p

p
z⃗jz⃗i. The conditions then become a

system of ðN
2
Þ þ N þ 1 linear equations for the distribution

fpz⃗g: ∀j;k;i
PP

i
zi¼0

pz⃗zjzk ¼− 1
N−1 ;

PP
i
zi¼0

pz⃗zi¼ 0,

and
P

l pl ¼ 1, with a constraint of 0 ≤ pl ≤ 1 for all l. The
number of equations, ðN

2
Þ þ N þ 1, is smaller than the

number of variables, ðNNÞ=2, which implies that there exist
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solutions other than the symmetric one. Finding solutions
that are simple to prepare, in terms of entanglement or circuit
complexity, is an interesting problem, and we leave it as an
open question.

APPENDIX D: GENERALIZATION
TO ARBITRARY SPINS

We consider a generalization of our protocol to arbitrary
spins. The motivation comes from experimental scenarios
where there is no individual readout of the qubits but a
global readout of ensembles of qubits. We consider N
ensembles, the ensembles have different phases, and all of
them haveNq qubits. Each ensemble, thus, corresponds to a
single spin of size J ¼ ðNq=2Þ. We analyze the perfor-
mance of correlation spectroscopy in this case.

1. Pair correlations

Just as in the single-qubit case, we measure the Jx ¼
1
2

PNq

i¼1 σ
x
i operator of each spin. Let us denote the outcomes

of 2Jx;k measurement as Yk, and for a specific realization of

φm we denote it as YðφmÞ
k . YðφmÞ

k þ Nq=2 has a binomial

distribution: ðYðφmÞ
k þ Nq=2Þ ∼ Biðcos2ðϕk þ φm=2Þ; NqÞ.

In single-pair correlations, we estimate ϕ1 − ϕ2 from
hY1Y2i, and the variance is, thus, hY2

1Y
2
2i − hY1Y2i2:

hY1Y2i ¼
Z

hYðφmÞ
1 ihYðφmÞ

2 ipðφmÞdφm

¼ N2
q

2π

Z
cos ðϕ1 þ φmÞ cos ðϕ2 þ φmÞdφm

¼ N2
q

2
cos ðϕ1 − ϕ2Þ:

Let us calculate

hY2
1Y

2
2i ¼

Z
hYðφmÞ2

1 ihYðφmÞ2
2 ipðφmÞdφm;

and we have hYðφmÞ2
j i¼ðN2

qþNq=2ÞþðN2
q−Nq=2Þ×

cos ð2ðϕjþφmÞÞ, so

hYðφmÞ2
1 YðφmÞ2

2 i¼
	
N2

qþNq

2
þN2

q−Nq

2
cos ð2ðϕ1þφmÞÞ




×

	
N2

qþNq

2
þN2

q−Nq

2
cos ð2ðϕ2þφmÞÞ



:

After averaging over φm, we are left with

hY2
1Y

2
2i ¼

1

4
ðN2

q þNqÞ2 þ
1

8
ðN2

q −NqÞ2 cos ð2ðϕ1 −ϕ2ÞÞ:

The variance is, thus,

hY2
1Y

2
2i − hY1Y2i2 ¼

1

8
N2

qðN2
q þ 4Nq þ 2Þ

−
1

8
N2

qð2Nq − 1Þ cos ð2ΔϕÞ;

and the estimation variance, thus, reads

σ2Δϕ ¼
1
8
N2

qðN2
q þ 4Nq þ 2Þ − 1

8
N2

qð2Nq − 1Þ cos ð2ΔϕÞ
N4

q

4
sin ðΔϕÞ2

¼ 1

2 sin ðΔϕÞ2 þ
1

Nq sin ðΔϕÞ2 þ
3=2

N2
q sin ðΔϕÞ2

þ 2

Nq
−

1

N2
q
:

The minimal variance (for every Nq) is, thus, obtained at
Δϕ ¼ π=2 for which σ2Δϕ ¼ 1

2
þ ð3=NqÞ þ ð1=2N2

qÞ. For
general Δϕ, the large Nq limit is 1=2 sin ðΔϕÞ2. Hence,
σ2Δϕ does not drop as 1=Nq. The reason for this behavior is
that the noisy φm adds noise which does not go to 0 as
Nq → ∞. Mathematically, it is because

hY1Y2i2 ≠
Z

hYðφmÞ
1 YðφmÞ

2 i2pðφmÞdφm:

This uncertainty is plotted in Fig. 13.

1 5 10 30 60

0.5

1
1.7

3 4 5 6 71.7
2

2.5
3

3.5

FIG. 13. Top: uncertainty with a single pair of spins correla-
tions for (black line) compared to the uncertainty with multipair
correlations (blue line). Both curves correspond to Δϕ ¼ π=2,
and N ¼ 50. The uncertainty with multipair correlations coin-
cides with

ffiffiffiffiffiffiffiffiffiffiffi
3=Nq

p
(dashed, orange line). Bottom: comparison

between multipair correlations with and without qubit-resolved
readout (blue stars and black circles, respectively). For large
enough N, they coincide with the limit of

ffiffiffiffiffiffiffiffiffiffiffi
3=Nq

p
(dashed,

orange line). In this illustration Nq ¼ 12.
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2. Multipair correlations

We generalize the calculation of the multipair correla-
tions done in Appendix A to general spins. As in
Appendix A, the pair correlations satisfy

�
1

M

XM
m¼1

Yi;mYj;m

�
i;j>i

→ N
�
fμi;jgi;j>i;Σ

�
;

where μi;j ¼ hYiYji and Σ is the covariance matrix of YiYj.
The FI matrix is, thus, given by Eqs. (A2) and (A3), where
the derivative matrix D now reads

Dði;jÞ;m ¼

8>>><
>>>:

− N2
q

2
sin ðϕi − ϕjÞ m ¼ i

N2
q

2
sin ðϕi − ϕjÞ m ¼ j

0 m ≠ i; j:

ðD1Þ

Let us, thus, calculate all the different terms of Σ. We
already have

hY2
i Y

2
ji − hYiYji2

¼ 1

8
N2

qðN2
q þ 4Nq þ 2Þ − 1

8
N2

qð2Nq − 1Þ cos ð2ΔϕÞ:

hYiYjYkYni − hYiYjihYkYni is exactly the same as with
qubits but with a factor of N4

q:

hYiYjYkYni − hYiYjihYkYni

¼ N4
q

8
cos ðϕi þ ϕj − ϕk − ϕnÞ:

hY2
i YjYni − hYiYjihYiYni is given by

hY2
i YjYni ¼

N3
q

8
½2ðNq − 1Þ cos ðϕi −ϕjÞ cos ðϕi −ϕnÞ

þ ðNq þ 3Þ cos ðϕn −ϕjÞ�;

hYiYjihYiYni ¼
N4

q

4
cos ðϕi −ϕjÞ cos ðϕi −ϕnÞ:

Hence,

hY2
i YjYni − hYiYjihYiYni

¼ N3
q

8
ðNq þ 3Þ cos ðϕn − ϕjÞ

−
N3

q

4
cos ðϕi − ϕjÞ cos ðϕi − ϕnÞ:

Inserting these equations, we perform exact numerical
calculation of the FI. The results of the numerical calcu-
lation are plotted in Fig. 13, and we observe that with
multipair correlations σΔϕ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=NqÞ
p

. In summary,

single-pair correlations cannot surpass the uncertainty of
1=

ffiffiffi
2

p
, while using all pair correlations a sensitivity offfiffiffiffiffiffiffiffiffiffiffi

3=Nq
p

is obtained, that is very close to the noiseless
limit (

ffiffiffiffiffiffiffiffiffiffiffi
2=Nq

p
).

3. Comparison with qubit-resolved readout

We can compare the performance of global readout
described above with qubit-resolved readout. It is simple to
see that given all N-qubit correlations the two methods
perform the same. For qubit-resolved readout, the proba-
bility of an outcome vector q depends only on the total
number of excitations in each ensemble:

pðqjφÞ ¼ 2−NqN

2π
·
Z2π
0

dφ
YN
j¼1

�
Nq

mj

�
ð1þ sin ðϕj þ φÞÞmj

× ð1 − sin ðϕj þ φÞÞNq−mj;

where mj is the total number of excitations in the jth
ensemble:mj ¼ 1

2
ðPi qj;i þ NqÞ. Therefore qubit-resolved

readout does not add information.
On the other hand, if we are using only pair correlations

in the postprocessing, qubit-resolved readout improves the
precision for small N. In more detail, estimating the phase
differences from all of the multipair correlations of qubits
fhσxi;mσxj;kigi;m;j;k

leads to better sensitivity for small N than

using only the ensemble correlations fhYmYkigm;k. The
calculation of the FI matrix with multipair correlations of
qubits is the same as the multipair correlation calculation in
Appendix A, just with different phases. Instead of NqN
different phases, we have N different phases such that ϕj is
the phase of qubits ðj − 1ÞNq þ 1;…; jNq. The FI matrix

is then given by Eq. (A2), where Σ is the relevant ðNqN
2
Þ ×

ðNqN
2
Þ covariance matrix and D is the relevant ðNqN

2
Þ × N

derivative matrix. The results are shown in Fig. 13, where
we observe that qubit-resolved readout can lead to a
considerable improvement for N ≤ 3, but already for
N ¼ 4 the improvement is negligible. At the limit of large
N, both the uncertainty with qubit-resolved readout and
global readout converge to

ffiffiffiffiffiffiffiffiffiffiffi
3=Nq

p
.
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