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Shortcuts to adiabaticity provide fast protocols for quantum state preparation in which the use of
auxiliary counterdiabatic controls circumvents the requirement of slow driving in adiabatic strategies.
While their development is well established in simple systems, their engineering and implementation are
challenging in many-body quantum systems with many degrees of freedom. We show that the equation for
the counterdiabatic term—equivalently, the adiabatic gauge potential—is solved by introducing a Krylov
basis. The Krylov basis spans the minimal operator subspace in which the dynamics unfolds and provides
an efficient way to construct the counterdiabatic term. We apply our strategy to paradigmatic single- and
many-particle models. The properties of the counterdiabatic term are reflected in the Lanczos coefficients
obtained in the course of the construction of the Krylov basis by an algorithmic method. We examine how
the expansion in the Krylov basis incorporates many-body interactions in the counterdiabatic term.
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I. INTRODUCTION

In noisy quantum devices, dominant in the noisy inter-
mediate-scale quantum (NISQ) era [1], the prospects of
implementing exact adiabatic control protocols are dim.
Noise generally lowers the fidelity of preparing a target
quantum state, making the dynamics not unitary, and leading
to a final mixed state. The presence of noise further limits the
admissible operation time in adiabatic protocols, e.g., in
adiabatic quantum computing and quantum annealing. In
these devices, noise can act as a heating source leading to
excitation formation [2,3], precluding the goal of finding the
low-energy configuration of a given problem Hamiltonian.

The ubiquitous presence of noise in current NISQ
devices forces us to rethink the use of adiabatic strategies.
A natural approach is operating in timescales where
environmental noise is negligible. A demonstration of this
approach has recently been reported in quantum annealing
devices, where noise-induced errors generated for moderate
operation times [4] can be eliminated by shortening the
duration of the process [5]. However, this strategy generally

“ktaka@ phen.mie-u.ac.jp
"adolfo.delcampo @uni.lu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/24/14(1)/011032(23)

011032-1

Subject Areas: Quantum Physics,
Quantum Information,
Statistical Physics

limits the efficiency of the computation as a result of
the adiabatic theorem, whether one considers the system
closed [6] or open [7]. An alternative approach relies on
optimally tailoring the time dependence of the parameters
that are varied in time in the system of interest (e.g., the
harmonic frequency in a trapped system or a magnetic field
in a spin system) [8]. This is the principle behind the so-
called boundary cancellation method that reduces excita-
tions by devising smooth protocols in view of the adiabatic
theorem in either isolated or open systems [7,9,10]. Such an
approach requires no additional control fields, easing
the implementation of the driving protocols in the labo-
ratory [11], but provides limited advantages in the speedup,
and technical assumptions in the adiabatic theorem may
restrict its applicability.

Shortcuts to adiabaticity (STAs) provide an alternative
approach [12-15]. They enforce the nonadiabatic following
of a prescribed adiabatic trajectory of interest, tailoring
nonadiabatic excitations utilizing auxiliary control fields.
In other words, STAs remove the requirement for slow
driving in adiabatic protocols, leading to the preparation of
the same target state in a shorter time. By now, several
experiments have demonstrated the use of STAs in ultracold
atoms [16-23], nitrogen-vacancy centers [24,25], trapped
ions [26], and superconducting qubits [27], among others.

While various techniques have been developed to engi-
neer STAs, counterdiabatic (CD) driving stands out among
them by providing a universal approach for any system
in isolation. The early formulation due to Demirplak and
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Rice [28-30], independently developed by Berry [31],
assumes the dynamics to be unitary and the system
Hamiltonian to be diagonalizable at all times. However,
progress over the past decade has shown that STAs can be
applied to open quantum systems [32—36], as demonstrated
in a pioneering experiment [37].

From the outset, the need for the system Hamiltonian to
be diagonalizable at all times precludes the application of
CD driving in important scenarios where such knowledge
is unavailable, e.g., in quantum annealing. However,
the development of approximate methods to engineer
CD controls has challenged and de facto removed this
requirement. Specifically, the early proposal of using
digital methods for quantum simulation to realize
CD controls [38,39], in combination with variational
methods [40-42], has led to a framework for digitized-
CD quantum driving for quantum algorithms [43,44],
that include the use of STA in adiabatic quantum compu-
tation [45] and quantum optimization [46—48].

The nature of the CD controls remains currently an issue.
In a system with many degrees of freedom, finding an
efficient prescription to determine the CD fields is gen-
erally challenging. The first works exploring STA by CD
driving in many-body quantum systems showed that the
CD controls generally involved many-body interactions
of arbitrary rank (one-body, two-body, etc.) [38,39,49,50].
In addition, CD terms are generally spatially nonlocal [39].
In systems of continuous variables, such as a harmonic
oscillator or ultracold gases, CD terms cannot always
be realized by applying an external potential [12,51]
but may involve nonconservative momentum-dependent
Hamiltonian terms [52-54]. Likewise, in spin systems,
CD terms may involve interactions among distant spins
[38,39,49,50]. As a result, one of the pressing problems in
the development of STA is to find systematic approaches to
tailor CD terms. One option is to find unitarily equivalent
Hamiltonians for which STAs can be implemented exactly
with experimentally available resources [53-55]. Another
relies on approximate protocols, determined through varia-
tional methods [39—-41,56-59] or otherwise [49,60,61].

Current general approaches to engineering STA by CD
driving are blind to any structure or symmetry in the actual
dynamics. However, it is known that the presence of
dynamical symmetries in a given process can significantly
simplify the CD protocols required to control it and render
the implementation of STA experimentally realizable. In
cases where a dynamical symmetry is known, one can
identify the CD controls in terms of the elements of a
closed Lie algebra [62]. However, the application of this
approach has been limited to the restricted set of examples
in which dynamical symmetries are known, i.e., few-level
systems [63] and scale-invariant processes [64].

Further progress calls for novel approaches that system-
atically unravel and exploit any structure in the dynamics
of the process to be controlled. This work introduces an

approach that achieves this goal by formulating CD driving
in Krylov space. Krylov subspace methods have a long
tradition in numerical recipes and can be efficiently imple-
mented using the Lanczos algorithm and its variants [65]. In
time-dependent quantum mechanics, Krylov space describes
the minimal subspace in which the dynamics unfolds, greatly
easing the computational resources to describe time evolu-
tion [66]. They are further useful in foundations of quantum
physics to characterize operator growth [67-70] and the
fundamental speed limits governing it [71,72]. Consider the
case of the quantum dynamics in the Heisenberg represen-
tation. Given an observable of interest O, and a generator
of evolution H, the evolution of the observable is set by
O(t) = U (1)OyU(t), where U(t) is the time-evolution
operator. For time-independent Hamiltonians, such evolution
admits the expansion O(r) = > % ,(it)"L"Oy/n! with the
Liouvillian £(-) = [H, -]. The dynamics generates the set of
operators {L" Oy}, that are not orthonormal and generally
live in an operator subspace known as the Krylov space. The
Lanczos algorithm can be used to construct a basis in Krylov
space and further provides the Lanczos coefficients that
determine the entries of the matrix representation of the
Liouvillian in the Krylov basis.

II. OUTLINE

In this work, we introduce a formulation of CD driving in
Krylov space using the celebrated Lanczos algorithm. In
Sec. 111, we briefly review the key concept of STA. In the
CD driving, for a given time-dependent Hamiltonian, the
dynamics is assisted by an auxiliary control field known as
the CD term. The CD Hamiltonian acts as the generator of
adiabatic continuation, discussed in proofs of the adiabatic
theorem, e.g., by Kato [6] and Avron and Elgart [73].
Similarly, it has been discussed in the context of quasia-
diabatic continuation by Hastings [74-81]. Recent liter-
ature refers to the CD term as the adiabatic gauge potential
(AGP). It is further related to the Berry connection, and its
norm gives the real part of the quantum geometric tensor,
i.e., the quantum metric tensor or fidelity susceptibility,
as discussed in Refs. [30,38,82,83]. Thus, the AGP has
broad applications beyond quantum control, extending to
quantum state distinguishability, quantum state geometry,
adiabatic theorems, critical phenomena, quantum thermo-
dynamics, etc.

Finding the explicit form of the AGP is a fundamental
problem for practical applications and has been discussed
from various viewpoints. The spectral representation
obtained in the original studies [28-31] has a disadvantage,
as it is generally difficult to obtain the corresponding
operator form in systems with many degrees of freedom.
In that case, we can start the analysis from the operator
equation for the AGP. The equation is solved approx-
imately using the variational method [40].

In the variational method, the validity of the approxi-
mation strongly depends on the chosen ansatz. The
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operator equation is recast into an integral representation.
It gives a nested commutator expansion and indicates
possible operator forms of the AGP. Combining the nested
commutator expansion with the variational method offers a
systematic method for finding the AGP for complex
systems [41]. In most applications, the expansion is
truncated to obtain an approximate result. It is implied
that taking into the infinite-order expansion gives the exact
result, although rigorous proof has not been shown. In the
present work, we circumvent the need for the variational
method by providing an exact closed-form expression for
the AGP in the Krylov method.

In Sec. IV, we introduce the basic concept of the Krylov
subspace method and develop a general framework for
finding the exact AGP from the Krylov expansion. The
Krylov expansion is formulated by defining a proper inner
product and a Liouvillian superoperator for a target
system. For a given initial seed operator, the Krylov
subspace where the dynamics unfolds is determined from
the Krylov algorithm. We show that a specific choice of
the seed operator is useful to solve the equation for the
AGP. The AGP is expressed by the Krylov basis and the
Lanczos coefficients obtained from the Krylov algorithm.
We find that the AGP is classified into two categories.
They are characterized by the parity of the number of the
Krylov basis.

Comparing the exact form of the AGP with the integral
representation with the nested commutator expansion gives
a close relation of the AGP to the complexity of the Krylov
space. We discuss that the properties of the AGP can be
understood directly from the series of the Lanczos coef-
ficients and the operator wave functions defined from the
general framework of the Krylov method. We also discuss
how the variational method with the nest commutator
expansion is justified.

In Sec. V, we apply the general framework to various
canonical examples, including two- and three-level sys-
tems, and the harmonic oscillator. To be instructive, we
demonstrate those well-known examples by using several
different ways to determine the AGP.

The full potential of the present framework is displayed
when it is applied to systems with many degrees of
freedom. In Sec. VI, we treat integrable, nonintegrable,
and disordered quantum spin chains. We first apply the
method to a one-dimensional transverse Ising model with-
out a longitudinal magnetic field. The AGP of the system is
well known in that case [38,49,50], and we rewrite the
result with respect to the Lanczos coefficients. We find that
the quantum phase transition can be identified from the
Lanczos coefficient series. When we apply the longitudinal
magnetic field, the system becomes nonintegrable and the
exact solution is not available. We consider a truncation
of the Krylov expansion, and the result is shown to be
equivalent to that of the variational method. In reporting
explicit expressions for the AGP in many-body systems,

our work advances the study of STA beyond the large body
of literature focused on leading-order truncations of the CD
term [40,41,57,59].

We also discuss in the same section the one-dimensional
isotropic XY model. We treat several cases where the
interaction couplings are uniform or random. Although
the model can be mapped onto a free fermion model, the
explicit construction of the AGP for a given set of coupling
constants is a difficult task. We can formulate the expansion
systematically and demonstrate the expansion up to a
considerably large system size. We discuss closely how
each order of the expansion affects the result. We also
consider the case where the system is equivalent to the
integrable system described by the Toda equations. We
discuss the implications of the integrability condition on the
Krylov expansion.

The present study is concluded with final remarks in
Sec. VIL

III. ADIABATIC GAUGE POTENTIAL AND
COUNTERDIABATIC DRIVING

Consider a closed quantum system described by the
Hamiltonian operator H(4) depending on the set of
parameters A = (4;,4,,...). Throughout this paper, a
capital letter denotes an operator or a matrix. Let |n(4))
represent an eigenstate of the Hamiltonian with the
eigenvalue €,(4). The time-independent Schrodinger equa-
tion and the equation for adiabatic continuation read,
respectively,

AA)[n(d)) = ioy|n(2)). (2)

The phase of the eigenstate is fixed by requiring the relation
(n(A)|0;n(1)) = 0. The AGP operator A = (A}, A,, ...) is
introduced by differentiating the eigenstate with respect to A
and enforces adiabatic continuation for all eigenstates; i.e.,
it is independent of n.

One of the prominent applications of the AGP is the
CD driving [28-31,84]. For time-varying parameters A(7),
we consider the time evolution

io,ly (1)) = {H[A(D)] + Hep (1) }Hy (1)) (3)

Here, the CD term is introduced as Hcp(t) = (1) - A[A(1)],
where the overdot denotes the time derivative. It prevents
the nonadiabatic transitions among eigenstates |n(4)),
which means that the solution of the Schrodinger equa-
tion (3) is exactly given by the adiabatic state of H:

() = S e Jy drestol= [ st lonico)

x |n[A(D)]) (n[2(0)][w(0))- (4)
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Even when the implementation of the CD term is chal-
lenging, we can use the CD term to assess the nonadiabatic
effects [85].

While it is a nontrivial problem to obtain the explicit
form of the AGP for a given Hamiltonian, its matrix
elements can be formally written in terms of the spectral
properties of H as

The main aim of the present work is to find a systematic
way to obtain the operator form of the AGP. The AGP
satisfies

(1 _5m,n)' (5)

L3]0;H(4) = iL;A(2)] = 0, (6)

where £,(-) = [H(A), -]. This relation was used to find an
approximate AGP by variational methods [40,41,86]. We
exploit this relation to obtain the exact form of the AGP.
As an alternative useful relation, one can invoke the
integral representation introduced by Hastings in the
context of quasiadiabatic continuation [74,75,77]:

1 0
Ad) = ——lim/ dssgn(s)e~l!
211—>0 —o
% eiH(i)“'aiH(ﬁ)e"'HW". (7)

The integrand is proportional to the operator 9,H (1)
conjugated by a unitary. Using the unitary operation
is represented by £,, we can perform the integration over
s to write

1 1 1
A1) =—=1i - 0,H(1). 8
This formal expression motivates us to use the expansion
[41,87,88]

AQ) = i) () LF0,H(A). (9)
k

The construction of the AGP in Krylov space that we
present in the following follows solely from using the
expansion (9) in combination with Eq. (6). Its importance
relies on the fact that it removes the need for the spectral
properties of H(A) in determining the CD term and shows
that the operators in the AGP are generated from the nested
commutators £2*"'0H at odd orders. We note that the
variable s in the integral representation represents a
fictitious time. The unitary e~"”#()* is interpreted as the
time evolution operator in the fictitious time with no need
for the time-ordered product, as H(4) is independent of s.
When we keep all possible operators generated from the
nested commutators, the exact AGP can be obtained by

solving the equation for a}° from Eq. (6). Practically, a
truncation of the operator series yields an approximate
AGP. The infinite series by nested commutators produces
the same type of operators many times, and it is not clear
how many terms should be kept to obtain a required
accuracy. To treat the AGP systematically, we rearrange
the expansion in Eq. (9) and represent the AGP in a finite
series by using a set of orthonormal Krylov basis elements.

IV. KRYLOV EXPANSION

A. Inner product, basis operators, and vector
representation of operators

In the Krylov method [66], we use a set of operators
satisfying an orthonormal relation. To define the orthonor-
mality of operators, we first introduce the inner product for
an arbitrary pair of operators X and Y as

(X7) = S Tp(H)(XTY + VX)) (10)
The operators are not necessarily Hermitian. In addition,
the measure p(H) is a positive-definite Hermitian operator
but not necessarily normalized. We note that the present
method is applicable even when the Hilbert space dimen-
sion is infinite and the energy spectrum is continuous,
provided that p(H) is chosen appropriately. We see in the
following that the result of the AGP is independent of the
choice of p(H). What is important is that p(H) commutes
with H. We have

(X, LX) =0, (11)

(X, LY)" = (Y, LX), (12)

for Hermitian operators X and Y.
To find an explicit representation of the superoperator L,

we introduce a set of basis operators X = (X, X5, ...), that
are Hermitian and orthonormal with each other:
(X;an) = 5u.v‘ (13)

The number of operators is not specified here and is
discussed in the following after clarifying the aim of the
analysis. Generally, for a given quantum system, it is equal
to or smaller than the square of the dimension of the
Hilbert space.

One of the aims of introducing the basis operators is that
the superoperator £ can be represented by an antisym-
metric Hermitian matrix L. It has elements

L = (X,.LX,) (14)
and satisfies L™ = L and LT = —L. The diagonal compo-
nents are equal to zero, and each of the off-diagonal
components is purely imaginary. Corresponding to the
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matrix representation of superoperator, a vector represents
an operator. We write the Hamiltonian

H=h-X&|H)= (h,h,,...)" (15)
and the AGP
A=a-X& |A) = (a,a,...)T. (16)

Then, we obtain a vector representation of Eq. (6) as
L(|o,H) —iL|A)) = 0. (17)

It is not a difficult problem to obtain the formal solution
of this equation by using the spectral representation of L.
However, L is generally a matrix of large size, and the
diagonalization is much more difficult than that of the
Hamiltonian H. We resolve this problem in the following
by introducing an algorithmic method.

B. Lanczos algorithm and Krylov basis

Equation (17) implies that the AGP |A) is constructed
from a linear combination of L"|0H) withn = 1,2, .... We
prepare the normalized vector |6,) from the relation

by|0o) = |0H). (18)

The coefficient b, represents the normalization factor and is
written as

b3 = (0H|0H) = (0H,0H). (19)

The zeroth-order normalized vector |0,) and the coefficient
by are defined for each component of 1. The same applies
to the quantities introduced in the following. We abbreviate
the component index to simplify the notation. Then, the
new normalized basis |6,) is defined from

b1161) = L|6p). (20)

By construction, |0;) is orthogonal to |6,). We repeat the
same procedure by using the relation

bn|9n> = L|9n—1> - bn—llgn—2>7 (21)

with n = 2,3, .... The positive coefficient b, is chosen so
that |0,) is normalized. Thus, the introduced vectors satisfy
the orthonormal relation (6,,6,) = &,,,,. When the dimen-
sion of the Hilbert space is finite, the number of basis
elements must be finite, which means that there exists an
integer d satisfying L|60,_,) — b,_,|04_,) = 0. The number
of the basis vectors is given by d, which we refer to as the
Krylov dimension.

This way of constructing a basis set is nothing but the
Lanczos algorithm, since the matrix L is brought to a

tridiagonal form T, satisfying L = VTV', where V =
(160)161)-104-1)) and

0 b, O
by 0 b,
0 b, O
T = (22)
0 by
by, 0
We can also write
d-1
L= bn(|9n><9n—l| + |9n—1><9n|> (23)

1

3
Il

Generally, for a given matrix L and an initial basis
element |6,), we can render the matrix in tridiagonal form
algorithmically. We find in the following that the present
choice of the initial basis in Eq. (18) is convenient to
solve Eq. (17).

The introduction of the orthonormal basis vectors
corresponds to that of the orthonormal basis operators
|0,) =16,). In the original representation,

On = en X, (24)

with n=0,1,2,...,d—1. They are generated by the
procedure

b000 - aH,
b0, = LOy,

b,0,=L0,_y—b,.10,, (n=23,....,d-1) (25)
and satisfy (0,,,0,) = (0,,10,) = 6,,,- This set of oper-
ators represents the Krylov basis. In the present choice of
0Oy, the operators of even order O,; (k=0,1,2,...) are
Hermitian, and those of odd order O,,_; (k =1,2,...) are
anti-Hermitian.

We note that the introduction of the basis operators X is
not necessary, since we can construct the Krylov basis
directly from Eq. (25). The introduction of the basis
operators makes it clear that the introduction of the
Krylov basis is equivalent to the Lanczos algorithm.
The following examples illustrate that the two options
can prove convenient.

The advantage of the basis operator representation of £
by L is that we do not need to calculate the nested
commutators L£"0H once we can construct a single
matrix L. We also see that the number of the basis operators
X is not necessarily equal to the square of the dimension of
the Hilbert space dy. For the present purpose, we need
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operators in £"0H, and the dimension of L, denoted by d;,
satisfies

d<d; <dj. (26)
Thus, the Krylov dimension d is defined by the minimum
number of the basis elements. When the matrix L is block
diagonalized, we may treat only the block in which the
operators in dH are included. A good choice of the basis
reduces the computational cost. It is known that the general
upper limit of the Krylov dimension is given by the relation
d<dy—dy+11[69].

Generally, the Krylov method is useful when we treat
the Heisenberg representation of a normalized operator O,
O(s) = e'50ye~5 [66-70]. We can represent the oper-
ator by a finite series as

d—1
O(s) = > i"pu()0y, (27)
n=0

where ¢,,(s) is known as the operator wave function. The
time dependence of O(s) can be conveniently studied by
using the operator wave function, a feature we next apply to
the computation of the AGP from the integral representa-
tion in Eq. (7).

C. Adiabatic gauge potential

We are now in a position to solve Eq. (6), or the
equivalent Eq. (17), by using the Krylov basis. We use

dy dy
A=ibyY aOy_y & |A) =iby Y arl0yi) (28)
k=1 =1

and solve the equation for {ak}ZA: - It is important to notice
that A includes the Krylov basis at odd order, O,;_;. This
|

property is a direct consequence of the representation in
Eq. (9). The number of the operators is denoted by d4 and is
related to the Krylov dimension d as

4 - LdJ B {d/2 for even d,
A7 2] L(d=1)/2 forodd d.

We first consider the case of even d. In this case, one
finds

(29)

|0,H) = iL|A) = by(1 + a;by)|6y)
dy-1

+bo Y (o + ap1bos1)|02). (30)
P

Setting each side of this equation to zero yields

1
a; = —;, (31)
1
b
X1 = — = A, (32)
bay1

where k = 1,2, ...,d, — 1. That is, we can find the AGP
satisfying the relation |0H) — iL|A) = 0, which is a suffi-
cient condition of Eq. (17). We also see that the relation
|0H) — iL|A) = O represents the equation for a dynamical
invariant, when the eigenvalues of the Hamiltonian,
€,[A(1)], are time independent [89,90]. In this case, diagonal
components of 9;H(A) in the eigenstate basis are equal to
zero, i.e., (n(4)|0;H(4)|n(4)) = 0.

Next, we consider the case of odd d. In this case, an
additional term appears in Eq. (30) and no solution exists
for |0H) —iL|A) = 0. We examine L’|A) = —iL|0H) to
find the expression

b+ b} bybs 0
babs b3+ b5 bybs a —b,
0 bybs b2+ D2 a 0
=1 | (33)
b: ,+ b3, bysbu, g, 0
bysbas  bi,+ by

Inverting the matrix in this expression, we can obtain the
explicit form of the AGP. In the following, we solve this
equation by using a different approach which proves
illuminating.

We conclude this part by stating that the AGP can be
constructed systematically by using the Krylov basis. The

|

AGP is represented by an expansion of the Krylov basis,
and the coefficient of each term is obtained as a function of
by, the scale of 0H, and the set of Lanczos coefficients
{b,}¢=}. When d is even, the instantaneous eigenvalues of
the Hamiltonian must be time independent. Conversely, the
Krylov dimension d is even (odd) when the eigenvalues of
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boOo = OH

(n=1,2,...,d—1)

— bnon = £On—1 - bn—lon—z

dA=d/2
ok from (31), (32)

Yes

bo|6o) = |0H)

(n=1,2,...,d—1)

Basis X

bn|0n) = L|0p—1) — bp—1]60r—2)

@ dA=(d-1)/2

No | ok from (33), or (43), (44) | |

available?

N

L, = (Xu LX)

FIG. 1.

the Hamiltonian are time independent (dependent). The
flowchart of the algorithm is presented in Fig. 1.

Equation (28) is compared with Eq. (9). The former is
expanded by orthonormal operators and the total number of
series elements is finite, if the resulting AGP is given by a
finite number of operators. The expansion is also applicable
to systems with a continuous spectrum. Thus, the Krylov
method offers a general systematic method for constructing
the AGP.

D. Operator wave function and adiabatic
gauge potential

The AGP is closely related to the operator wave function
@, (4, s) defined from the Heisenberg representation

QU

—1

s, (ﬂ)e_iH('l)s = "9,(4,5)0,(2), (34)

3
Il
=}

where the initial condition is chosen as by(1)0y(1) =
0,H(A). Substituting this representation into Eq. (7), we
obtain

1 0
5 lim dssgn(s)e g, (A, 5) =0, (35)
’7_’ —00
for k=0,1,...,d,, and
1 oo
5 Lim dssgn(s)e gy (2,5) = (=1)fax(2),  (36)
']_’ —00

for k=1,2,...,d,. This relation between ¢, (4,s) and
a;(4) shows that the latter is obtained from the Laplace
transform of the former. The behavior of the operator wave
function has been studied in the context of the Krylov
complexity, and we can exploit the properties obtained
in that context [66-71]. For example, the operator wave
function |@(4, s)) = (@g, @1, ..., pa_1)" satisfies the differ-
ential equation d,|p(4, s)) = B(1)|p(4, s)) with

dA dA
A =ibo )  akOak—1 =ibo )  axbze—1-X

k=1 k=1

The flowchart of the Krylov algorithm to obtain the AGP A(1) for a given Hamiltonian H(2).

0 —b, O
by 0 —b,
0 b O
B= (37)
0 —=by,y
by, O

and the initial condition |¢(4,0)) = (1,0,0,...)". Here, iB
is related to the matrix 7 in Eq. (22) under a unitary
transformation. Since the equation for |¢@(4,s)) is inter-
preted as a Schrédinger equation with a Hamiltonian iB(4)
independent of the fictitious time s, the solution is obtained
by solving the eigenvalue problem iB(1)|w,(1)) =
,(1)|w,(1)). We can write

U

—1

@(2.5)) = ) 7P|, (2))(@,(2)|@(2,0)).  (38)

3
Il
=]

The form of the Hermitian matrix iB indicates that the
eigenvalues come in pairs +®,,, where w,, # 0, and the zero-
eigenvalue state exists only when the size of the matrix d is
odd. We refer to the details on the pairing of eigenstates in
Appendix A. Here, we look at only the zero-eigenvalue state
|p(2)) satisfying B(1)|¢(4)) = 0 for odd d. We can solve
the eigenvalue equation to obtain the normalized solution

(39)

baabiy...by
Bac1bys- by
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Since the matrices L and B are constructed from the
commutator L(-) = [H, (-)], the eigenvalues are related
to the energy eigenvalue difference €,, —¢,. The zero-
eigenvalue state of M implies the existence of the diagonal
components

OH — iLA =Y de,|n)(n|. (40)

The contribution on the right-hand side is absent for even d
with ode,, = 0.

We can also use the equation for |¢(4, s)) to obtain the
explicit form of a;. The 2kth component of the equation is
given by 0y = b1 — bojy192x41- Using the inte-
gral representation in Eq. (7), we obtain

lim dse™ 0y = (=1)*(byar + by aiyr). (41

=0 Jo
The left-hand side is calculated by using the integration by
parts to give

[s9)
}1i—1>% ; dse™ 0y = =610 + Do,

(42)

where the second term exists only for odd d and we write

|§) = (o, p1,...)T. In the odd-d case, we obtain
L #
———+7°, 43
N= Ty T (43)
b —1)k
O‘k+1:—b2k ak+( b)¢2k¢0’ (44)
2t 1 2t 1

withk = 1,2, ...,d, — 1. Itis not a difficult task to confirm
that this relation is consistent with Eq. (33).

The use of the operator wave function also allows us to
obtain

ds
(A,A) = b§ >~ af = b3(0|(QiBQ)2|0),  (45)
k=1

where |0) = (1,0, ...,0)” and Q =1 —|¢)(¢| represents
the projection operator onto the nonzero-eigenvalue states.
We show the derivation in Appendix A. This representation
is useful when we evaluate the norm of the AGP.

It is instructive to compare the present result for the
odd-dimension case to that for the even-dimension case.
Equations (31) and (32) show that, when the Krylov
dimension is even, each order is calculated without using
the higher-order contributions. This property is practically
useful for systems with many degrees of freedom. As we
discuss in the next sections, we frequently consider the

bn

(arb.units)|

ok

Linear )
(arb.units)

SU(2)

- n .
Sqrt Linear et t———

0

0 n d 0 k a2

FIG. 2. The Lanczos coefficients b, (left) and the coefficients
of the AGP a; (right). We show the cases b, < n (linear),

b, « \/n (sqrt), and b,  \/n(d —n) [SUQ2)].

truncation of the series expansion as an approximation. By
contrast, for an odd Krylov dimension, all the Lanczos
coefficients are required to construct each term of the AGP,
as we see in Egs. (43) and (44) and the zero mode |¢) in
Eq. (39). However, each component of |¢) takes a small
value and could be negligible for large systems.

We can estimate a contribution from each term of the
expansion in Eq. (28) by the Lanczos coefficient. When b,
is an increasing function with respect to n, the corre-
sponding «a; is a decreasing function. The typical global
behavior of the Lanczos coefficients has been discussed in
many-body systems. It was found that b,, « n for chaotic
systems and leads to a maximal pace of operator growth.
Likewise, b, « /n for integrable systems, and b,, ~ const
for noninteracting systems [67]. In Fig. 2, we show the
behavior of «; in the case of a linear and square-root
growth of b,. The constant case is found in the examples
in Sec. VL. In the figure, we also show a special case

b, « y/n(d —n) where the operators defined from the
Krylov complexity theory form a SU(2) algebra [67-72].
We also note that the series of Lanczos coefficients
typically shows an oscillating behavior, as shown in the
examples below. Given that the coefficients ; in the AGP
expansion involve the ratio b,;/by,; as in Eq. (44), a
regular oscillation series of b, leads to a decreasing series
on ;. These observations indicate that the property of the
CD term is closely related to that of the operator growth in
the Krylov subspace.

E. Classification of basis operators

It is instructive to notice that the AGP consists of the
nested commutators at odd orders. When the original
Hamiltonian is real symmetric, the nested commutators
at even orders £?*0H are real symmetric and those at odd
orders £?*~'9H involve the imaginary unit. This means that
the basis operators are classified into two parts:

X_)(X;Y):(Xl’XZ?""XdX;Yl’YZ’""Ydy>‘ (46)
X represents basis at even orders and Y at odd orders.
These Hermitian operators satisfy £X €Y and LY €X.

011032-8
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Accordingly, the matrix L, the basis operator representation

of L, takes the form

0O M
t=(y ) (47)
!
b, 0
by by
0 b,
M = (|6y) [62) 04-2))

where M,, = (X,,LY,). We note that M;, = (Y,, LX,).
The size of the matrix M is determined by the numbers of
the basis operators dy and dy = d; — dy. M is generally a
rectangular matrix, and the Lanczos algorithm is applied for
even d = 2d, as

0
0 (0]
bs (03]
, (48)
bd—3 0 <9d—1 |
bd—2 bd—l

where each of {|6;) f’*: 61 has dy components, each of {|6,;_) }Z’; , has dy components, and the size of the lower triangular
matrix on the right-hand side is d4 x d,. Since the numbers of the basis operators must be large enough to span the operator

space, we find dy > d4 and dy > d,. In the case of odd d =

b, 0
b2 b3
0 b,

M = (6y) 16>) 104-1))

where each of {|05)}%, has dy components, each of

{|92k—1>}ZA= , has dy components, and the size of the
matrix on the right-hand side is (dy + 1) x dy. We also
find dy > d4 + 1 and dy > dy4. In this case, the minimum
number of dy is larger than that of dy.

F. Relation to the variational method

The orthonormal relation of operators is useful to
understand the relation between the present method and
the variational method [40]. In the variational method, the
AGP is obtained by minimizing the cost function

G[A] = Tr[(0H — iLA)?], (50)
for a given operator ansatz of A with undetermined
coefficients. In our notation, this can be written as

GIA] = ((oH| + i(A[L)(|oH) —iL|A)),  (51)
with p(H) =1. One of the systematic methods for
obtaining the AGP is to use the nested commutator series
in Eq. (9) and carrying out the minimization procedure with

2d, 4+ 1, M is decomposed as

0
0
5 (6]
s
(6] (49)
by 0 ’
- (82|
byz by
0 Dy,

|

respect to the coefficients aj°(4) [41]. Practically, the
number of series elements in Eq. (9) is restricted to a
finite value, and the approximate AGP is obtained from the
minimization.

It is not obvious that the variational method can give the
exact AGP even when all of the possible operators are
incorporated in the trial form of the AGP by nested
commutators. When the AGP satisfies |0H) — iL|A) = 0,
which is a sufficient condition of Eq. (17), we have
discussed that the Krylov dimension is even and that the
matrix L as well as B are invertible. Then, the minimization
procedure gives the exact AGP |A) = —iL~!|0H).

On the other hand, when the Krylov dimension is odd, L
is not invertible and special care is required for the zero-
eigenvalue state. The zero-eigenvalue state of L denoted
by |¢; ) is obtained in the same way as that of B [Eq. (39)]
and is written by a linear combination of even basis

{162) ,(i_ol)/z. It is orthogonal to the AGP as (¢;|A) = 0,
and the cost function is decomposed as
G|[A] = (0H|P|oH)

+ ((0H|Q + i(A|L)(Q|oH) — iL|A)).  (52)

011032-9
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where P = |¢;){¢;| and Q = 1 — P are projection oper-
ators. The first term does not affect the variational pro-
cedure, and the minimization of the second term gives

|A) = —i(QLQ)~' Q|oH).

This is the solution of L(|0H) — iL|A)) = 0, which means
that the variational method gives the exact AGP.

We note that the trial form of the AGP must include all
possible operators from the nested commutators at odd
order to find the exact AGP from the variational method.
When we consider a restricted number of operators, the
minimization gives an approximate AGP. This procedure is
essentially equivalent to considering a restricted number of
basis operators for the Krylov expansion. However, as we
explicitly show in the following examples, the variational
procedure does not necessarily lead to the result from
the Krylov expansion. This is because the coefficients of
the AGP in the variational method are optimized in the
truncated space.

A significant fact is that we can find the exact AGP
associated with a generalized cost function of the form

(53)

G|A] = Tr[p(H)(0H — iLA)?]. (54)
This form is useful when the dimension of the Hilbert space
is infinite and when the spectrum is continuous. Although
the exact AGP must be independent of p(H), the approxi-
mate AGP is generally dependent on it. In the variational
method, we usually set a constant p(H ). It may be possible
to use a different p(H) for the variational calculation.
However, even when all possible operators are incorpo-
rated, it is not evident that the variational method gives the
exact result, which is independent on the choice of p(H).
The Krylov method states the requirements for p(H)
explicitly and clarifies that the result is independent on
that choice.

V. APPLICATIONS TO SMALL SYSTEMS

In the construction of STA, one is interested in the time
dependence of the Hamiltonian. We set A(r) =7 and
identify A as time ¢. Then, the AGP is equivalent to the
CD term. In the applications discussed below, we write the
Hamiltonian as H(r) and use the CD term Hcp(¢) instead
of the AGP A(4). For the small systems discussed in the
present section, it is not a difficult task to calculate the CD
term explicitly. We study how the CD term is obtained by
the Krylov method in typical small systems.

A. Two-level system

The study of STA by CD driving in the canonical two-
level system [28-31] was soon followed by its experimen-
tal demonstration [19,24,91], often in a rotating frame,
i.e., making use of a unitarily equivalent CD Hamiltonian.

To illustrate the engineering of STA in Krylov space,
consider the two-level Hamiltonian

(55)

in terms of the positive scalar /i, the unit vector
n = (ny,ny,n3), and the vector £ = (X, Y, Z) with Pauli
operators as entries. In this case, we have essentially no
other choices than to set the basis operators as (X, Y, Z).
We choose p(H) = 1/2 for the inner product. We assume
that n(r) depends on f; otherwise, the CD term trivially
gives zero. However, the explicit parameter dependence
of h(t) is not necessary, as i determines only the overall
scale of the Hamiltonian and the resulting CD term is
independent of h.

It is a simple task to calculate the L matrix explicitly.
We have

O —nj ny
L=ih| nj 0 -nm (56)
—n, n 0
Then, we set the initial basis vector
. ny
h h| .
bo|6y) = Sl m |ty ™ (57)
ns I;l3
to generate the Krylov basis
1 hn+hn
Oy =—F—F———"1, (58)
V2 i+ w2
i nXn
01 - = E, (59)
V2 |n|
1 A 1 hn
O)=———F——— (h|n|n —f) ‘X (60)
V2R /2 + n2a? i
and the Lanczos coefficients
h2|n
b=l (61)
VI + h’R?
h|h
by = 11 ()

NI

We find LO, — b,O; = 0, which showsd =3 and d4 = 1.
For & # 0, the Krylov dimension d = 3 equals the number
of basis operators. It is reduced to d =2 and d4 = 1 for
h = 0 where b, = 0. We note that the eigenvalues of the
Hamiltonian, +4/2, are time independent when h=0.
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In any case, the dimension of the AGP is given by
dy = 1. We find the CD term

. bob,

1
HCD:ibOa]O]:—l O, =—nxn-X.

07 63
prybl 2 (63)

This result is consistent with the known result [28-31].

B. Driven harmonic quantum oscillator

The driven harmonic oscillator is a workhorse in non-
equilibrium quantum dynamics and, not surprisingly, has
played a key role in the development of STAs [12,92]
and their experimental demonstration [16,26]. Although the
dimension of Hilbert space is infinite, it is not difficult to
treat the system analytically, since the system is a single-
particle one, and the spectrum is discrete. In addition, its
dynamics is described by a closed Lie algebra [93].

Consider the Hamiltonian

1 1
H() =5 P+ mor (010 - ao()f. (64)
where Q and P are the position and momentum operators,
respectively. Modulations of the time-dependent frequency
® induce expansions and compressions, while transport
processes are associated with variations of the trap center
qo [26,94,95]. We use the creation-annihilation operator

representation

HO = o) (C0C) +5). (65)
where
C() =50 = o0 + iy 5P (66)
The CD term, in this case, is given by [54,55,92]
Hcp = §oP —*[ (Q—q0) + (2 = q0)P]
- iqo\/@(cT _0)- i% (Cc?—c?).  (67)

Thus, the CD term involves a term proportional to the
momentum operator, the generator of spatial translations,
and a second term proportional to the squeezing operator,
which is the generator of dilatations.

In the present case, we can explicitly calculate all the
nested commutators. As mentioned, using the basis oper-
ators X is unnecessary. We find

£2kH — —ktl / 5 CIO(G + C)

2k1

—|—a)2k+1 (C' +C2)+5k0— )

(68)

)

for k=0,1,..., and

Ezk—lH_ 2k / 5 qo(c*_c)

2(k=1
22(k=1) 4, (C”
w

+ w?* Cc?), (69)
for k=1,2,.... These nested commutators involve a
finite number of operators, which determines the Krylov

dimension. It is given by

d=5 and dy=2 forgy#0 and @ #0,
d=3 and dy=1 forgy=0 and @ #0,

d=2 and dy=1 forgy#0 and &#=0. (70)
For @ = 0, the eigenvalues of the Hamiltonian are time
independent, and the Krylov dimension is given by an
even number. The explicit form of the Krylov basis is given
in Appendix B.

It is instructive to see how the exact AGP in Eq. (67) is
obtained in the expansion. In the case at d, = 2, the CD

term is expanded as Hcp = H (Clg +H g)), and the first term
H') = ibya, 0, is given by
HY = rgoP — 4r—
co = o "1 [ (Q—q0) +

(@ —qo)P). (71)

where

. 2
_ 9521 + 525 72)
32 + 5 2
with 22 = Trlp(H)P?] and 23 = Trlp(H)(P(Q - q) +
(Q — qo)P)?]. This result shows that each term of the
expansion is dependent on the definition of the inner
product in Eq. (10).

C. STIRAP

As a practical application of three-level systems, we
next discuss the stimulated Raman adiabatic passage
(STIRAP) [96,97]. It is a method of population transfer
between two states. We introduce an additional state and
apply two external pump fields to the system. The states
are given by |1), |2), and |3), and we consider population
transfer between |[1) and |3). The simplest STIRAP
Hamiltonian is given by

H(t):% 0, (1) 25 (73)

A typical protocol is given in Fig. 3.
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Probability 4
1 s . .
12) (@] {(b)
Wp/ \Ds I ) N
WONLS Dpld 1
Iy [3) 21t ]
Population
of state 3
0 titr 1o tte 1

FIG. 3. (a) Schematic view of STIRAP. Three-level states are
driven by two kinds of pulses, shown in the inset, and the initial
state |1) is adiabatically transferred to |3). (b) A typical protocol
for STIRAP. We set (1) = wyexp[—(t—1)?/2¢%] and
w,(1) = wyexp [—(t — 1)*/26%] with w,/5 = 4.0, 8t; = 100,
tl/tf = 04, t2/tf = 06, and G/[f =0.1.

Since we treat three-level systems, the number of
independent operators is given by eight, except the identity
operator. We also see that the Hamiltonian is real symmetric
and the L matrix is written as Eq. (47). Possible basis
operators for p(H) = 1/2 are given by

01 0 0 0 O 0 0 1
X = 1 0 0}],]0 O 11,10 0 O],
0 0 O 01 0 1 0 0
1 0 O | 1 0 0
-1 0 ,—3 01 O (74)
0 0 0O 0 -2
and
0-i0 00 O 00 —i
Y= i 00],]00-=i],]00 O (75)
00O 0i O i 00
Using this basis, we find Eq. (47) with
1) 0 wg/2
0 = -,/2
M=il| w;/2 —cop/2 0 (76)
w,, —w,/2 0

0 Véw,)2 0

We note that the number of operators in X can be reduced to
four, as we can understand from the general discussions in
the previous section. Since they are not much different, we
use the 5 x 3 matrix here.

0.041 boaa/d (a) 0.04}
aild |
: 0.00
-0.04 I
boot1/d bouz/é
-0.08 L
-0.04
0 titr 1 1
0.00
0.04 (©
a:ld | asld
0.00 N
i ,‘ff -0.08
-0.04 : . i ;
0 titr 1 0 titr 1
FIG. 4. (a) Coefficients of the CD term «; for STIRAP.

(b)—(d) af,l) (dotted curves), af,l) +a,<,2) (dashed curves), and

a, = - a,(,k> (solid curves).

We apply the Lanczos algorithm for the given M matrix
with the protocol in Fig. 3(b) to calculate @; shown in
Fig. 4(a). The Krylov dimension is given by d = 7.

The expansion is compared with the exact result [98]

Hep (1) =—=¢(1)sinf(1) Y, +p(t)cosO(1) Y, —0(1)Y5, (77)

where and

0(1) = arctan (w,(1)/w,(1)) P(1) =
[arctan (\/w? (1) + w?(1)/8)]/2. In the Krylov method, the
CD term is given by the form Hep (1) = iby Y 31 axOgiy.

When we rewrite itas Hep (1) = Y, a,Y,,, the coefficients

urt o
are written as a, = > 3 al?, where
i k=19 >

aftk) = iboak(Yﬂ’ Oi—1),

(78)
and are plotted in Figs. 4(b)—4(d). For short and large
times, the adiabatic condition is approximately satisfied,
and the CD term is well approximated by the first term of
the Krylov expansion.

VI. APPLICATIONS TO MANY-BODY SYSTEMS

The exact AGP or CD term is known for a limited number
of many-body systems, and we expect that the Krylov
method gives advantageous results that cannot be obtained
from other methods. For many-body systems, the required
number of operators is large, and it is still a formidable task
to find the exact CD term even in the present method. In this
section, we treat one-dimensional spin systems where the
exact CD term is known for some examples.
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A. One-dimensional transverse Ising model
1. Exact result without a longitudinal magnetic field

We first treat the Ising spin chain in a transverse field:

HO) =5 (XXX 490302, ). 09
n=1 n=1

Many spins are aligned in a chain, and the number of spins
is denoted by n,. We consider the periodic boundary
condition, and the subscript is interpreted as mod n;.
We are interested in the large-n; limit where the system
at g = | shows a quantum phase transition [99,100].

It is also known that the system is equivalent to the free
fermion system [101,102]. Then, the Hamiltonian is rep-
resented as an ensemble of two-level systems, and the
CD term for each two-level system can be found from the
result in the previous section. Here, to study properties for
many-body systems, we do not use the mapping and treat
the spin operators.

Under the setting p(H) = 1/(2"ny), we define ortho-
normalized operators

M=>z, (80)
n=1
nS
Vi = anzn+1'-'zn+k—lxn+kv (81)
n=1
n.Y
V}{/ = Z YnZn+1~--Zn+k—1Yn+k’ (82)
n=1
1 &
Wk = ﬁ; (XnZn-H .. -Zn+k—1Yn+k
+ YnZn+1~-Zn+k—1Xn+k>’ (83)

with k=1,2,....n, — 1. These operators take bilinear
forms in fermion operators and can be used as basis
operators. Since the Hamiltonian commutes with (—1)7 =
[T}, Z,, the number of independent operators is reduced.
We have the relations V) , =—(=1)"V[, V] =
—(-1)PV{, and W, , = (—1)’W,. Then, the subscript
takes k = 1,2, ...,n,/2 for even n,.
Acting L to these operators, we obtain

LM = \2ivW,, (84)
LVE = V2in(Wi_y — gWy), (85)
LV = V2iv(=Wypy + gWy), (86)

LW, =V2iv[V]_| - Via +9(VE= Vi) =Ml (87)

bnl2v V|

18 0.4

g=0.5 g=0.5
1.0 .
1.8 812 =

g=1.0 g=1.0
1.0f
1.8 82
1.0

=1.5 . =1.5
g 0.00 5 g
0 100 p 200 0 k 100

FIG. 5. The Lanczos coefficients (left) and the coefficients of
the CD term (right) for the one-dimensional transverse Ising
model in Eq. (79) at ny, = 200. For the Lanczos coefficients,
we denote by, bs, ... by the filled circle and b,, by, ... by the open
circle.

Since the Hamiltonian is real symmetric, the nested com-
mutators at odd order involve only W,. In Appendix C,
we show

Oy = (=1)kiW, (88)

and
P2+bi=bi+bi=-=b2 ,+b3  =4*(1+¢), (89)
byby = bybs = - -+ = by_3b,_, = 4v7g. (90)

The Krylov dimension is odd in this case. Using the result
by = \/nsvg(t)/2 and by = v/2v, where we assume v > 0
and ¢(7) > 0, we can calculate all of the Lanczos coef-
ficients. We plot the Lanczos coefficients in the left in Fig. 5
for several values of g. The asymptotic forms satisfy b, ~
2v > b2k—1 ~ ZZ}g forg < 1 and b2k ~ 2’[/9 > bZk—l ~ 2 for
g > 1. This result implies that we can generally find a phase
transition point from the Lanczos coefficients.

The coefficients of the CD term are obtained from
Eq. (33). Since the matrix in the equation has the diagonal
components 42%(1 4+ ¢?) and the nonzero off-diagonal
components 4v2g, we can invert the matrix by using the
discrete Fourier transformation. The details are given in
Appendix C. We obtain

1
IV g = [
(=1 boa =gy 22(d,+1)

d <l
A sin dAﬂ+1  krxl

X sin .
;1+gz—2900s dy+1

o1

nl
dy+1
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The CD term is given by Hep = S ¢ (=1)* by, W,
with d4 = n,/2. This result entirely agrees with that in
Refs. [38,49,50]. Since the Krylov basis at odd order in the
present case is given by a simple form W, it is natural to
find the same result without using the Krylov method.

We plot a;, for several values of g in the right in Fig. 5.
For g # 1, the Lanczos coefficients at even order are larger
than those at odd order; we see from Eq. (44) that a; is a
decreasing function in k. Then, we find that a; rapidly
decreases, which means that few-body interactions become
the dominant contributions to the CD term. It was discussed
in Refs. [38,50] that a; ~ g*~! for |g| < 1 and a; ~ g7
for |g| > 1 at the thermodynamic limit n; — co. For g = 1,
the Lanczos coefficients take a constant value, and o
decreases slowly as a function of k. At n;, — oo, an infinite
number of operators contributes to the CD term as
discussed in Ref. [38].

2. Approximate result with a longitudinal
magnetic field

The free fermion representation is possible only when
the direction of the magnetic field is perpendicular to the
direction of the interaction operator. Here, we treat the
nonintegrable Hamiltonian

H(t) = g(1) (—v i;z,,zn+1 —h izn)

£ (1= (1) (—yZX)

with g(t) = t/t;. This is the standard form of the quantum
annealing Hamiltonian and a test bed for universal dynam-
ics of quantum phase transitions with a bias [103]. We
consider the time evolution from the ground state of H(0)
toward that of H(¢;). The nonadiabatic effect makes the
system deviate from the instantaneous ground state, and we
apply the CD term to prevent the transition.

It is a complex problem to find and implement the exact
CD term for this Hamiltonian, and we consider a restricted
number of operators. As we discussed in the above
example, each term of Hcp(f) involves an odd number
of Pauli Y operators. We keep the Y basis up to two-body
operators

(92)

ng 1 ng
Y = (Z Yi—z > (VZuii + ZuY i),
n=1 \/§n=1

1 g
EZ(YVLXWH +XnYn+1)>’ (93)
n=1

with p(H) = 1/(2"n,). We act with £ on these operators
to construct the M matrix. Using the X basis

ng ng ng
X = (Z Z0 Y X, 1Z,,ZH],
=

n=1 n=1

n’S nS
E XanJr]’ E YnYnJr]’
n=1 n=1

1 ng
7—2 (ZnthLl + XnZn+l )’ Z Zn—anZn+1 s
2 n=1 n=1

1 &
\/_E; (Zn—IXan-H + Xn—IXnZn-H)’
1 ng
\/_E; (Zn—IYnYn—H + Yn—1Y11Zn+1)> ’ (94)
we can construct the M matrix with the size 9 x 3 and apply
the Lanczos algorithm to calculate the approximate CD
term. We note that the size of the M matrix can be reduced
to 3 x3, keeping the result unchanged. The Krylov
dimension is given by d = 7.

We calculate the approximate CD term and numerically
solve the time evolution with and without the approximate
CD term by setting the initial state as the ground state
of H(0) for the system size N = 6. In Fig. 6, we plot the
approximate CD term as a function of ¢ and the fidelity

£ = 1walpltep) . (95)
as a function of the annealing time f,. Here, [y (1))
represents the time-evolved state with or without the
approximate CD term, and |y (7)) represents the instanta-
neous ground state of H(¢). f is close to unity when the
adiabaticity condition is satisfied.

We numerically confirm that the present method gives
the same result as the variational method, which is expected
from the general discussion. When //v takes a large value,
the ground-state energy is well separated from the other
ones, and we find a large fidelity. As i/ v decreases to zero,

0.0 h=3 0.0 k=3
trak k=2 trak =
04 \/
k=1 awv=1.0102 k=2 hiv=0.1
0.8
10 tite 1 10 tite 1
] ‘ ] .
iel N o
Wi hv=10] * hiv=0.1
0k 0«
0 20 v 40 0 20yt 40

FIG. 6. The time evolution for the quantum annealing
Hamiltonian in Eq. (92). We set N =6, y/v = 1.0, and h/v =
1.0 for the left and /v = 0.1 for the right. In the upper, we plot
(ai(1),ay(t),as3(t)) for the approximate CD term Hcp(t) =
ay ()Y, +V2a,(t)Y, + v2a5(f)Y5. In the lower, we plot the
fidelity f for the time evolutions with H(z) (red open circle) and
with H(z) + Hcp(t) (blue filled circle).
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the fidelity becomes smaller and finding the exact ground
state becomes difficult even with the approximate CD term
in use. As we see from the figure, many-body terms in the
CD term become important for small 4, and we require
higher-order terms to improve the result by the approximate
CD driving.

B. One-dimensional XX model
1. Krylov method

In the example of the Hamiltonian in Eq. (79), O,
incorporates k + 1-body interactions only, which is a
specific property for the transverse Ising model. Here,
to study more complicated situations, we treat the one-
dimensional isotropic XY model (XX model) with the open
boundary condition

1nx—l ng
H(t) = EZ n(t)(XanH»l + YnYrrH) + EZ hn(t)Zn-
n=1 n=1

(96)

This model is also known to be equivalent to a free fermion
model. However, the coefficients are dependent on the site
index 7, and it is generally a difficult task to find the exact
CD term.

The mapping to a bilinear form in fermion operators
denotes that we can find a closed algebra within a limited
number of operators. For p(H) = 1/2", we define

Vﬁ = (XanH-l . 'Zn+k—1Xn+k + YanH-l .- -Zn+k—1 Yn+k)v

1
V2
(97)

1
Wﬁ :ﬁ(XnZnJrl .. 'Zn+k—1 Yn+k - YnZn+l .- 'ZnJrk—anJrk)’
(98)

with n=1,2,...,n, and k=1,2,...,n, —n. Since the
Hamiltonian is real symmetric, we define X = ({Z,},
{VE}) and Y = ({W£}) to construct the M matrix with
the size n,(n, +1)/2 x ny(n, — 1)/2. We have

u/k — k : k+1 ; k—1
L n — _l(hn-'rk - hn)vn — Wy Vn—l - lvnvn+]
H k—1 H k+1
+ ”]n+k—1Vn + lUn+kVn

+ 5k.1\/§i7}n (Zn+1 - Zn)' (99)

For the Hamiltonian coefficients {v,(r)}" and
{h, ()}, we consider an annealing protocol. We take
v, as a constant value and consider the two cases: (i) uni-
form distribution v, = vy > 0 and (ii) random distribution
v, = vot,, Where r, is a uniform random number with
r,€[-1,1]. For a given set of {v,}, we change the

1 ns N
(i) Uniform en/vo (i) Random
L ~ 32

]

—~—_ ——1-2
0 titr 10

ttr 1

FIG.7. The protocol for the XX model in Eq. (96). The upper
represents h, (7). We take h,(t) = hy (1 + tanh f,,(¢))/2 and
fot) =n—14x9—(n,—142x0)t/t;, with x;=4 and
ny, = 6. The lower represents the instantaneous eigenvalues
of the Hamiltonian for the uniform case (i) and the random
case (ii) with hg/vg = 2.0. In the following calculations, we
take vyt; = 100.

magnetic field £, (¢) from h,(0) = hy> [v,| to h,(t;) =0.
We take h,, (1) = ho(1+tanhf,(¢))/2 with f,(1) = n— 1+
xo — (ng — 1 +2x0)t/t;. The system becomes adiabatic
for large 7;. The parameter x, takes a large value so that
the conditions at 7 = 0 and 7 = 7 are satisfied. We plot the
protocols used in the following calculations in the upper in
Fig. 7. The instantaneous eigenvalues for (i) and (ii) are,
respectively, plotted in the lower in Fig. 7. The Hamiltonian
commutes with M = > Z,. and we consider the block
with M = n, — 2. The Hamiltonian takes a tridiagonal form,
and the size of the matrix is given by n,.

Although it is not difficult to implement the Lanczos
algorithm numerically for a considerably large value of 7,
we here take n, = 6 to keep a good visibility of the plotted
points. In Fig. 8, we display the Lanczos coefficients and
the coefficients of the CD term for a fixed ¢. The Lanczos

bnlvo bo|ak|/vo
2l A (i) Uniform (i) Uniform
0.02
g 5 10 p (2'010 2 4 Kk 6
2t + . & (i)Random | [ (i) Random
0 10 n 20 30 b 5 10 kL 15

FIG. 8. The Lanczos coefficients b, and the coefficients of the
CD term, ay, for the XX model with n; = 6 att/t; = 0.5. The top
are results for case (i), uniform distribution, and the bottom are
for (ii), random distribution. For the Lanczos coefficients, we
denote by, b3, ... by the filled circle and b,, by, ... by the open
circle.
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0

0 5000 n 10000
FIG. 9. The Lanczos coefficients of the XX model with
n; = 100. We consider the random case (ii) and take #/7, = 0.5.

coefficients show an oscillating behavior. For the uniform
case (i), the even order tends to be larger than the odd order,
and correspondingly |a;| shows a decreasing behavior. For
the random case (ii), we observe a complicated behavior
denoting that the higher-order contributions of the Lanczos
expansion are important.

The typical behavior of b, for a large n, is shown
in Fig. 9. For any choice of parameters, we observe a
flat band, which is considered to be a property for
“noninteracting” systems.

To study the properties of the obtained CD term, we next
decompose it. The Lanczos basis at odd order is written as

2
165)

3
165)

|021) = R (100)

105)

where |9g’;)_1> has ng + 1 — p components and the corre-

sponding Krylov basis involves p-body interactions. We

decompose the norm of the CD term as (Hcp|Hcp) =
s d

Sy (HEIHE), where [HE) = ~by St ar03,).

and define the norm fraction

d
o _ (HBIHE) S a2 o) 165 )
d
Py 0‘%

which weights the contribution of the p-body term. This is
a function of ¢ and is plotted for each value of p in Fig. 10.
We can understand from the comparison between
the energy levels in Fig. 7 and ¢(”) in Fig. 10 that the
many-body interaction terms cannot be neglected when the
energy levels significantly change as a function of 1.

It is generally understood from Eq. (5) that the CD term
gives a large contribution when some of the energy levels
are close to each other. We calculate the amplitude of the

., (101)

(Hep|Hep)

1

Wq(!’)

FIG. 10. Time dependence of the norm fraction {¢'") (1)}, in
Eq. (101), weighting the contribution of the p-body interactions
to the CD term, for the XX model with n; = 6. Many-body CD
terms are shown to be necessary when the energy levels change
significantly along the driving protocol.

iy | o/vo |02 (ii).
10.05 10
VA
005 1
' \/aria.tiona\ ‘ | 856, i el
g titr 1 0 titr 1

FIG. 11. The norm of the CD term for the XX model at n; = 6.
Bold solid curves “exact” (black) represent ¢ = \/{(Hcp|Hcp)-
We use the replacement Hcp — Hg% for dashed curves “two-
body” (blue), Hcp — ibya; O, for dotted curves “k = 17 (green),
and Hcp — ia’,‘CEH for thin solid curves ‘“variational” (red),
where a}° is obtained from the variational method.

CD term (Hcp|Hcp), which is plotted in Fig. 11. As we

have discussed, the CD term is decomposed as Hcp =

o H(CIB and Hep = iby Y a0 In the same figure,
we plot the result where the first term of the expansion is
kept for each decomposition. We also plot the first con-
tribution of the approximate CD term H{, obtained from
the expansion in Eq. (9). The coefficient ai° is obtained
from the minimization condition of Tr[(H —iLHY,)?]
[40,41]. The result implies that the approximate CD term
underestimates an abrupt growth of the CD term.

We note that this result does not necessarily lead to the
failure of the approximation method. The CD term is
independent of the choice of the initial condition of the time
evolution. In the present examples, as we see from Fig. 7,
the energy level crossings occur at higher energy levels.
The ground-state level is isolated from the other levels, and
we can expect that a large amplitude of the CD term is not
required for the control of the ground state. The situation is,
in this sense, opposite to that across a quantum phase

011032-16



SHORTCUTS TO ADIABATICITY IN KRYLOV SPACE

PHYS. REV. X 14, 011032 (2024)

transition, discussed in Sec. VIA 1, in which the gap
between the ground state and the first excited state closes,
and the norm of the CD exhibits a singularity [38,50].

In the present analysis, we set the measure p(H) in the
inner product as p(H) = 1/2". When we control a state
with an energy level well separated from the other levels, it
is reasonable to consider a weighted measure such as the
Gibbs-Boltzmann distribution p(H) « e, Although the
exact CD term is independent of the measure, each term of
the expansion Hcp = ib ZZA: 1 0Oy is dependent on it.
Therefore, when we consider a truncation approximation in
the Krylov expansion, the choice of the measure strongly
influences the result. Since a nontrivial choice of the
measure makes the calculation of the inner product diffi-
cult, it is practically an interesting problem to find a
convenient form of the measure. For the ground state, it
is tempting to take the limit f — co for p(H) «x e 1.
However, the measure is not positive definite in this limit,
and we find unexpected behavior, such as the vanishing of
the Lanczos coefficient b, for n < d — 1.

2. Toda equation

It is known that the exact CD term is analytically
obtained when the coefficients of the Hamiltonian satisfy
the Toda equations [104]

ha (1) = 203 (1) = o3, (1), (102)
bn(t) = Un(t) [hn-H (t) - hn(t)]' (103)

The CD term is then given by
Hool) = 5> n(Wh (104

with W) as in Eq. (98). This term satisfies H — iLHqp = 0,
which means that the instantaneous eigenvalues of the
Hamiltonian are time independent.

Despite this simplicity, the corresponding Krylov expan-
sion is generally involved and is required at each time. The
time evolution of the Hamiltonian is reflected only in the
choice of the initial basis b,0, = H, and the expansion is
essentially insensitive to the choice. Except for the special
cases discussed below, we find that the Krylov dimension is
as large as the number of odd basis elements n (n, — 1)/2.
Highly nontrivial cancellations should be observed when
we calculate a; to give the result with ¢(?) = Opa-

As a very special case, we can find the result with d = 2
and d4, = 1 when the coefficients are written as

2h, ng+ 1Y\ .
h,,(t)——ns_1<n— : >s1n6’(t), (105)

n(ng —n)

W h% COS2 g(t)

w3 (1) = (106)

Using the Toda equations, we obtain that a single equation
describes the time evolution

o) _

cosO(t)

2h,
ng—1"

(107)

For a given &, and a initial condition 6(0), the coefficients
evolve, keeping the equidistant of £, (7) and a quadratic
form of v, (¢). In this case, we find that the first-order term
in the Krylov expansion is proportional to the exact CD
term, i.e.,

. i 2k 2=
= LH() = — E L
bob]O] [: (l) \/§ (ns — 1> ’Un(t)Wn

n=1

(108)

Since LO| — b; 0y = 0, the expansion terminates at this
order, and we obtain a simple result with d = 2.

It was discussed that the present choice of parameters
saturates the operator speed limit, i.e., the quantum speed
limit in unitary operator flows [72]. The nested commu-
tators span the Krylov space within a limited number of
operators.

VII. DISCUSSION AND SUMMARY

The use of the integral representation of the CD term
introduced in Ref. [41] has eased the study of STA in many-
body systems by removing the requirement for the exact
diagonalization of the instantaneous system Hamiltonian.
In its place, the CD term can be expressed as a series of
nested commutators that follows from the Baker-Campbell-
Hausdorff formula. The coefficients in such an expansion
can be determined through a variational principle [40].

In this work, we have introduced Krylov subspace
methods to provide an exact expression of the CD term.
The Krylov algorithm identifies an operator basis for
the terms generated in the series by nested commutators,
along with the set of Lanczos coefficients. Using these
two ingredients, we have provided an exact closed-form
expression of the CD term, circumventing the need
for a variational approach. When the dimension of the
Hilbert space is finite, the series by the Krylov basis is
finite, which is in contrast to the expansion using nested
commutators.

We have shown the applicability of our method in the
paradigmatic models in which the CD term admits an
exact closed-form solution. This includes single-particle
systems such as two- and three-level systems and the
driven quantum oscillator. Although the applications of the
present method can be laborious, the implementation of
our approach in these systems is a straightforward task,
applicable to any Hamiltonian with no special symmetry.
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We have further applied our formalism to a variety of
quantum spin chain models encompassing the cases in
which the system is integrable, nonintegrable, and disor-
dered. Specifically, we applied the construction of the CD
term in Krylov space to the one-dimensional transverse-
field quantum Ising model as a paradigmatic instance of an
integrable and solvable quasi-free fermion Hamiltonian.
We have further demonstrated our approach in the presence
of a longitudinal symmetry-breaking bias field that
breaks integrability. A similar study is possible for the
XX model where the free fermion representation is avail-
able. However, in that case, the site-dependent couplings
make the explicit construction of the CD term by the
standard method difficult, except for the special case when
the coupling constants are varied in time according to a
Toda flow, and the resulting CD term takes a simple local
form. We have explicitly constructed the CD term for
general and disordered couplings, and the result was
compared to the approximation method [40,41].

The main task of the Krylov algorithm is to construct the
basis operators for the minimal subspace in which the
dynamics unfolds and to determine the associated Lanczos
coefficients by iterations. The CD term is constructed as a
series involving only the odd-order operators of the Krylov
basis, with the corresponding coefficients in this compact
expansion being determined in terms of the Lanczos
coefficients. These properties imply that we can find some
implications by comparing the Lanczos coefficients of odd
order and those of even order. As we see from Figs. 5 and 8§,
the Lanczos coefficients typically show an oscillating
behavior. When the coefficients at even order are larger
than those at odd order, the corresponding coefficients
of the CD term show a decaying behavior, and the CD term
is well approximated by the first several terms of the
expansion. We also find that the Krylov dimension is
even when the instantaneous eigenstates of the original
Hamiltonian are time independent. Thus, we can directly
find the dynamical properties of the system from the Krylov
algorithm.

The Krylov expansion is dependent on the choice of the
inner product. Although the CD term is independent of
the choice, each term in Eq. (28) is sensitive to it, a
feature that can be relevant when considering truncating
approximations. It is an interesting problem to find a
proper choice depending on the situation to treat. We can
also consider the truncation of the Krylov subspace. To
this end, it suffices to restrict the basis operators and to
construct the L matrix in the truncated space. Then, we
can apply the Lanczos algorithm to find an approximate
CD term. We note that even in that case the coefficients of
the CD term are obtained without using any variational
procedures, which gives a different result from the
variational method.

Our primary emphasis has been on exact and analytical
results formulating the CD term in Krylov space. In

addition, there exist powerful numerical algorithms that
largely simplify the computation of the Lanczos coeffi-
cients, used in our methodology. These are well established
in the literature on Krylov subspace methods and numerical
analysis [65]. They are further available in popular software
and numerical routines. They hold for any matrix of
Hessenberg form and replace the Gram-Schmidt diagonal-
ization by the use of Householder reflections, making the
implementation numerically stable and computationally
efficient.

Our work offers an interesting prospect to improve state-
of-the-art quantum algorithms by combining the formu-
lation of the CD term in Krylov space with the digital
approach for quantum simulation. This approach may
prove advantageous over the current formulation relying
on variational methods [43-48], suggesting the need to
generalize the error scaling in digitizing the CD term [105]
to Krylov space.

In summary, we have proposed a technique for con-
structing the CD term exploiting the Krylov operator space.
The method is flexibly applied to systems with many
degrees of freedom and can be a powerful general method
for understanding the dynamical properties of the system
in control. Suppression of nonadiabatic transitions in
discrete systems with many degrees of freedom is one of
the dominant problems in quantum technologies, such as
quantum simulation and quantum computing, and we hope
that our method will be an efficient technique inspiring
further studies.

Note added—Recently, related results were reported in
Ref. [106].
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APPENDIX A: DERIVATION OF EQ. (45)

In Sec. IV D, we discussed the relation between the AGP
and the operator wave function |¢(s)). The wave function
satisfies d|¢(s)) = B|ep(s)) with the matrix B in Eq. (37)
and the initial condition |¢(0)) = (1,0,0,...)". Since B is
independent of s, we can solve the differential equation by
the standard method for stationary states. Since iB is
Hermitian, the eigenvalue equation

iB‘a)n> = C’)nlwn> (Al)
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is solved to find a real eigenvalue w,,. We also find that B
anticommutes with Z = diag(1,-1,1,-1,...), which
gives the relation

iBZ|wn> = _a)nZ|a)n>' (AZ)
This identity shows that, for the eigenstate |w,) with the
eigenvalue w,, Z|w,) represents an eigenstate with the

eigenvalue —w,. We introduce the decomposition
lw,) = |oy) + |@;), where
1+7
i) = —— ). (A3)

Then, the associated orthonormality relations (@,,|w,) =
Sy and (—w,,|w,) =0 for w,, , > 0 yield
(wp|wy) =

(o) =56 (A4)

2 m,n-*

We also discuss in the main body of the paper that the zero-
eigenvalue state |¢) exists only when the dimension is odd.

Using the eigenstates discussed above, we can
generally write
lp(s)) = Y (e7n + e Z)|w,) (@,](0))
n(w,>0)
+ ) (¢l9(0)). (A5)

The last term exists only for odd dimensions. We use this
representation for the integral form in Eq. (36). The
integration over s is performed to give

2
(D = Y ——(2k=1|w,){@,[0), (A6)
iw
n(w,>0) "
where (n|y) denotes y,, for a vector |y) = (o, w1, ...)L.

We also use (2k — 1|Z = —(2k — 1] and (2k — 1]|¢p) =0 to
obtain this result. Taking the square and the sum over the
index, we obtain

2
Z“k—
k

@, @y,
m(w,,>0) n

<0|w )@ m|2k— 1) (2k = 1]wy) (@,]0)
= Z ) (@] @3r) (@,]0)

m(w,,>0) n(w, >0

-y %<0|wn><wn|o>.

n (wn #O)

(0,>0)

(A7)

Thus, we find Eq. (45). Since iB is related to the matrix 7 in
Eq. (22) by a unitary transformation, we can also write
Z“k

(01(QTQ)7?(0). (A8)

APPENDIX B: KRYLOV BASIS FOR HARMONIC
OSCILLATOR

In this appendix, we construct the Krylov basis for the
harmonic oscillator Hamiltonian in Eq. (64). The derivative
of the Hamiltonian sets the zeroth-order basis |6,). It is
given by

. ma’ @, . 0]
H= —qm/T(CT +C) +§(C'2 +C?) +oH. (B1)

Evaluating the commutator of the operators that appeared
in H, we obtain
L(C"+ C) = w(C"

-0), (B2)

L(C? + C?) =2w(C™ - C?). (B3)
These lead to new operators that can, however, be
expressed in terms of the original operator set as

C(CT —

C) = w(C" + C), (B4)

L(C? - C?) =2w(C™ + C?). (B5)
Since the original Hamiltonian is real symmetric, the L
matrix has the structure in Eq. (47). Using these results, we

can set

Xl :4CTC+% ) (B6)
(C'C+3?)
C'+C
X2 - ﬁ, (B7)
(€ +0))
C? +C?
X3 = (B8)
(€™ +C%))
and
ct-cC
Yl =1 — TN (Bg)
—((C"=C))
CTZ _ C2
Y, =i —_—«Cﬂ =7 ; (B10)
where () denotes the average Tr[p(H)(-)]. Since the
dimension of the Hilbert space is infinite in the

present system, we need to choose the density operator
p(H) in the inner product in a proper way. For example,
we can use the canonical Gibbs-Boltzmann distribution
p(H) = e™PH Tre PH,
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Now, we obtain Oy =—-M, (C1)
0 0 NS
by = Y04, C2
M=io|[1 0 (B11) 0= (€2)
0 2 0, = —iw,, (C3)
The Krylov basis is constructed by choosing the initial
normalized vector |6,) = (x,y,z)7. We obtain by = V2w, (C4)
i y b0y = V20[=V¥ + g(V} = V)], (C5)
10)) = ——= , (B12)
VvV +42\22
| by = V2vy/1 + 242, (C6)
10,) =
V241622 = ()2 + 47%)? 0; = iW,, (C7)
0 X )
X y | =0*+425) v ||, (B13) baby = 4v°g. (C8)
4z 2 This result implies that O,,_; = (—=1)*iW, at odd order.
Assuming that the relation holds for O,,_;, we calculate
03) ( 21) (B14) L0y, to find
IyZI \/y +422\
; bokbai1 Oy =407 g(= 1) iW,
2 .
0z 1 ' (1407 (1 0) = (B3 + B3I W
104) = 5 5 5 = | —4zx |. (B15)
|xyz| VY2 + 1622 = (2 +42%) Xy (C9)

The corresponding Lanczos coefficients are given by

by = wy/y* + 422, (B16)
1622 — 4
by = \/y +162° = (7 +42)° (B17)
y? +47?
6
by = oly?] . (BI3)
VO? A2 + 1622 — (1 + 42)7)
2 2
v +4z
by =2w|x . B19
4 | | y +162 (y2+422)2 ( )

The expansion terminates at the fifth order, which means
d =5 and d4 = 2 assuming x, y, and z are nonzero. As we
discuss in the main body of the paper, the condition gq = 0
gives y = 0, and we obtain d =3 and d, = 1. For @ = 0,
one finds x = z = 0 and obtains that d =2 and d4 = 1.

APPENDIX C: KRYLOV BASIS FOR THE
ONE-DIMENSIONAL TRANSVERSE-FIELD
ISING MODEL

For the Hamiltonian in Eq. (79), we apply the Krylov
algorithm to find

Since this operator is orthogonal to Wy, b3, _, + b3, =
4v*(1 + ¢?) must be satisfied. Then, from the normaliza-
tion condition, we obtain O, = (—=1)**1iW,,, and
barboy1 = 4%g.

For a given set of Lanczos coefficients, @; is obtained
by solving Eq. (33). Here, we denote the matrix in the
equation by K and represent its spectral decomposition as
K= ZZ‘; | 4|@x) (@r|- The eigenvalues and eigenstates are
explicitly obtained as

k
A = do? <1+gz—2gcosdA”H), (C10)

k

Smd +1

s 2nk

2 — S dy+1
= Cl1
be) 451 (C11)

(=1)4=1sin ;’Afj
Then, we can write
d _p

a = ZT,I (klby) (ha] 1) (C12)

and find Eq. (91).
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