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Shortcuts to adiabaticity provide fast protocols for quantum state preparation in which the use of
auxiliary counterdiabatic controls circumvents the requirement of slow driving in adiabatic strategies.
While their development is well established in simple systems, their engineering and implementation are
challenging in many-body quantum systems with many degrees of freedom. We show that the equation for
the counterdiabatic term—equivalently, the adiabatic gauge potential—is solved by introducing a Krylov
basis. The Krylov basis spans the minimal operator subspace in which the dynamics unfolds and provides
an efficient way to construct the counterdiabatic term. We apply our strategy to paradigmatic single- and
many-particle models. The properties of the counterdiabatic term are reflected in the Lanczos coefficients
obtained in the course of the construction of the Krylov basis by an algorithmic method. We examine how
the expansion in the Krylov basis incorporates many-body interactions in the counterdiabatic term.
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I. INTRODUCTION

In noisy quantum devices, dominant in the noisy inter-
mediate-scale quantum (NISQ) era [1], the prospects of
implementing exact adiabatic control protocols are dim.
Noise generally lowers the fidelity of preparing a target
quantum state, making the dynamics not unitary, and leading
to a final mixed state. The presence of noise further limits the
admissible operation time in adiabatic protocols, e.g., in
adiabatic quantum computing and quantum annealing. In
these devices, noise can act as a heating source leading to
excitation formation [2,3], precluding the goal of finding the
low-energy configuration of a given problem Hamiltonian.
The ubiquitous presence of noise in current NISQ

devices forces us to rethink the use of adiabatic strategies.
A natural approach is operating in timescales where
environmental noise is negligible. A demonstration of this
approach has recently been reported in quantum annealing
devices, where noise-induced errors generated for moderate
operation times [4] can be eliminated by shortening the
duration of the process [5]. However, this strategy generally

limits the efficiency of the computation as a result of
the adiabatic theorem, whether one considers the system
closed [6] or open [7]. An alternative approach relies on
optimally tailoring the time dependence of the parameters
that are varied in time in the system of interest (e.g., the
harmonic frequency in a trapped system or a magnetic field
in a spin system) [8]. This is the principle behind the so-
called boundary cancellation method that reduces excita-
tions by devising smooth protocols in view of the adiabatic
theorem in either isolated or open systems [7,9,10]. Such an
approach requires no additional control fields, easing
the implementation of the driving protocols in the labo-
ratory [11], but provides limited advantages in the speedup,
and technical assumptions in the adiabatic theorem may
restrict its applicability.
Shortcuts to adiabaticity (STAs) provide an alternative

approach [12–15]. They enforce the nonadiabatic following
of a prescribed adiabatic trajectory of interest, tailoring
nonadiabatic excitations utilizing auxiliary control fields.
In other words, STAs remove the requirement for slow
driving in adiabatic protocols, leading to the preparation of
the same target state in a shorter time. By now, several
experiments have demonstrated the use of STAs in ultracold
atoms [16–23], nitrogen-vacancy centers [24,25], trapped
ions [26], and superconducting qubits [27], among others.
While various techniques have been developed to engi-

neer STAs, counterdiabatic (CD) driving stands out among
them by providing a universal approach for any system
in isolation. The early formulation due to Demirplak and
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Rice [28–30], independently developed by Berry [31],
assumes the dynamics to be unitary and the system
Hamiltonian to be diagonalizable at all times. However,
progress over the past decade has shown that STAs can be
applied to open quantum systems [32–36], as demonstrated
in a pioneering experiment [37].
From the outset, the need for the system Hamiltonian to

be diagonalizable at all times precludes the application of
CD driving in important scenarios where such knowledge
is unavailable, e.g., in quantum annealing. However,
the development of approximate methods to engineer
CD controls has challenged and de facto removed this
requirement. Specifically, the early proposal of using
digital methods for quantum simulation to realize
CD controls [38,39], in combination with variational
methods [40–42], has led to a framework for digitized-
CD quantum driving for quantum algorithms [43,44],
that include the use of STA in adiabatic quantum compu-
tation [45] and quantum optimization [46–48].
The nature of the CD controls remains currently an issue.

In a system with many degrees of freedom, finding an
efficient prescription to determine the CD fields is gen-
erally challenging. The first works exploring STA by CD
driving in many-body quantum systems showed that the
CD controls generally involved many-body interactions
of arbitrary rank (one-body, two-body, etc.) [38,39,49,50].
In addition, CD terms are generally spatially nonlocal [39].
In systems of continuous variables, such as a harmonic
oscillator or ultracold gases, CD terms cannot always
be realized by applying an external potential [12,51]
but may involve nonconservative momentum-dependent
Hamiltonian terms [52–54]. Likewise, in spin systems,
CD terms may involve interactions among distant spins
[38,39,49,50]. As a result, one of the pressing problems in
the development of STA is to find systematic approaches to
tailor CD terms. One option is to find unitarily equivalent
Hamiltonians for which STAs can be implemented exactly
with experimentally available resources [53–55]. Another
relies on approximate protocols, determined through varia-
tional methods [39–41,56–59] or otherwise [49,60,61].
Current general approaches to engineering STA by CD

driving are blind to any structure or symmetry in the actual
dynamics. However, it is known that the presence of
dynamical symmetries in a given process can significantly
simplify the CD protocols required to control it and render
the implementation of STA experimentally realizable. In
cases where a dynamical symmetry is known, one can
identify the CD controls in terms of the elements of a
closed Lie algebra [62]. However, the application of this
approach has been limited to the restricted set of examples
in which dynamical symmetries are known, i.e., few-level
systems [63] and scale-invariant processes [64].
Further progress calls for novel approaches that system-

atically unravel and exploit any structure in the dynamics
of the process to be controlled. This work introduces an

approach that achieves this goal by formulating CD driving
in Krylov space. Krylov subspace methods have a long
tradition in numerical recipes and can be efficiently imple-
mented using the Lanczos algorithm and its variants [65]. In
time-dependent quantum mechanics, Krylov space describes
the minimal subspace in which the dynamics unfolds, greatly
easing the computational resources to describe time evolu-
tion [66]. They are further useful in foundations of quantum
physics to characterize operator growth [67–70] and the
fundamental speed limits governing it [71,72]. Consider the
case of the quantum dynamics in the Heisenberg represen-
tation. Given an observable of interest O0 and a generator
of evolution H, the evolution of the observable is set by
OðtÞ ¼ U†ðtÞO0UðtÞ, where UðtÞ is the time-evolution
operator. For time-independent Hamiltonians, such evolution
admits the expansion OðtÞ ¼P∞

n¼0ðitÞnLnO0=n! with the
Liouvillian Lð·Þ ¼ ½H; ·�. The dynamics generates the set of
operators fLnO0g∞n¼0 that are not orthonormal and generally
live in an operator subspace known as the Krylov space. The
Lanczos algorithm can be used to construct a basis in Krylov
space and further provides the Lanczos coefficients that
determine the entries of the matrix representation of the
Liouvillian in the Krylov basis.

II. OUTLINE

In this work, we introduce a formulation of CD driving in
Krylov space using the celebrated Lanczos algorithm. In
Sec. III, we briefly review the key concept of STA. In the
CD driving, for a given time-dependent Hamiltonian, the
dynamics is assisted by an auxiliary control field known as
the CD term. The CD Hamiltonian acts as the generator of
adiabatic continuation, discussed in proofs of the adiabatic
theorem, e.g., by Kato [6] and Avron and Elgart [73].
Similarly, it has been discussed in the context of quasia-
diabatic continuation by Hastings [74–81]. Recent liter-
ature refers to the CD term as the adiabatic gauge potential
(AGP). It is further related to the Berry connection, and its
norm gives the real part of the quantum geometric tensor,
i.e., the quantum metric tensor or fidelity susceptibility,
as discussed in Refs. [30,38,82,83]. Thus, the AGP has
broad applications beyond quantum control, extending to
quantum state distinguishability, quantum state geometry,
adiabatic theorems, critical phenomena, quantum thermo-
dynamics, etc.
Finding the explicit form of the AGP is a fundamental

problem for practical applications and has been discussed
from various viewpoints. The spectral representation
obtained in the original studies [28–31] has a disadvantage,
as it is generally difficult to obtain the corresponding
operator form in systems with many degrees of freedom.
In that case, we can start the analysis from the operator
equation for the AGP. The equation is solved approx-
imately using the variational method [40].
In the variational method, the validity of the approxi-

mation strongly depends on the chosen ansatz. The
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operator equation is recast into an integral representation.
It gives a nested commutator expansion and indicates
possible operator forms of the AGP. Combining the nested
commutator expansion with the variational method offers a
systematic method for finding the AGP for complex
systems [41]. In most applications, the expansion is
truncated to obtain an approximate result. It is implied
that taking into the infinite-order expansion gives the exact
result, although rigorous proof has not been shown. In the
present work, we circumvent the need for the variational
method by providing an exact closed-form expression for
the AGP in the Krylov method.
In Sec. IV, we introduce the basic concept of the Krylov

subspace method and develop a general framework for
finding the exact AGP from the Krylov expansion. The
Krylov expansion is formulated by defining a proper inner
product and a Liouvillian superoperator for a target
system. For a given initial seed operator, the Krylov
subspace where the dynamics unfolds is determined from
the Krylov algorithm. We show that a specific choice of
the seed operator is useful to solve the equation for the
AGP. The AGP is expressed by the Krylov basis and the
Lanczos coefficients obtained from the Krylov algorithm.
We find that the AGP is classified into two categories.
They are characterized by the parity of the number of the
Krylov basis.
Comparing the exact form of the AGP with the integral

representation with the nested commutator expansion gives
a close relation of the AGP to the complexity of the Krylov
space. We discuss that the properties of the AGP can be
understood directly from the series of the Lanczos coef-
ficients and the operator wave functions defined from the
general framework of the Krylov method. We also discuss
how the variational method with the nest commutator
expansion is justified.
In Sec. V, we apply the general framework to various

canonical examples, including two- and three-level sys-
tems, and the harmonic oscillator. To be instructive, we
demonstrate those well-known examples by using several
different ways to determine the AGP.
The full potential of the present framework is displayed

when it is applied to systems with many degrees of
freedom. In Sec. VI, we treat integrable, nonintegrable,
and disordered quantum spin chains. We first apply the
method to a one-dimensional transverse Ising model with-
out a longitudinal magnetic field. The AGP of the system is
well known in that case [38,49,50], and we rewrite the
result with respect to the Lanczos coefficients. We find that
the quantum phase transition can be identified from the
Lanczos coefficient series. When we apply the longitudinal
magnetic field, the system becomes nonintegrable and the
exact solution is not available. We consider a truncation
of the Krylov expansion, and the result is shown to be
equivalent to that of the variational method. In reporting
explicit expressions for the AGP in many-body systems,

our work advances the study of STA beyond the large body
of literature focused on leading-order truncations of the CD
term [40,41,57,59].
We also discuss in the same section the one-dimensional

isotropic XY model. We treat several cases where the
interaction couplings are uniform or random. Although
the model can be mapped onto a free fermion model, the
explicit construction of the AGP for a given set of coupling
constants is a difficult task. We can formulate the expansion
systematically and demonstrate the expansion up to a
considerably large system size. We discuss closely how
each order of the expansion affects the result. We also
consider the case where the system is equivalent to the
integrable system described by the Toda equations. We
discuss the implications of the integrability condition on the
Krylov expansion.
The present study is concluded with final remarks in

Sec. VII.

III. ADIABATIC GAUGE POTENTIAL AND
COUNTERDIABATIC DRIVING

Consider a closed quantum system described by the
Hamiltonian operator HðλÞ depending on the set of
parameters λ ¼ ðλ1; λ2;…Þ. Throughout this paper, a
capital letter denotes an operator or a matrix. Let jnðλÞi
represent an eigenstate of the Hamiltonian with the
eigenvalue ϵnðλÞ. The time-independent Schrödinger equa-
tion and the equation for adiabatic continuation read,
respectively,

HðλÞjnðλÞi ¼ ϵnðλÞjnðλÞi; ð1Þ

AðλÞjnðλÞi ¼ i∂λjnðλÞi: ð2Þ

The phase of the eigenstate is fixed by requiring the relation
hnðλÞj∂λnðλÞi ¼ 0. The AGP operator A ¼ ðA1; A2;…Þ is
introduced by differentiating the eigenstate with respect to λ
and enforces adiabatic continuation for all eigenstates; i.e.,
it is independent of n.
One of the prominent applications of the AGP is the

CD driving [28–31,84]. For time-varying parameters λðtÞ,
we consider the time evolution

i∂tjψðtÞi ¼ fH½λðtÞ� þHCDðtÞgjψðtÞi: ð3Þ

Here, the CD term is introduced as HCDðtÞ ¼ λ̇ðtÞ · A½λðtÞ�,
where the overdot denotes the time derivative. It prevents
the nonadiabatic transitions among eigenstates jnðλÞi,
which means that the solution of the Schrödinger equa-
tion (3) is exactly given by the adiabatic state of H:

jψðtÞi ¼
X
n

e−i
R

t

0
dsϵn½λðsÞ�−

R
t

0
dshn½λðsÞ�j∂sn½λðsÞ�i

× jn½λðtÞ�ihn½λð0Þ�jψð0Þi: ð4Þ
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Even when the implementation of the CD term is chal-
lenging, we can use the CD term to assess the nonadiabatic
effects [85].
While it is a nontrivial problem to obtain the explicit

form of the AGP for a given Hamiltonian, its matrix
elements can be formally written in terms of the spectral
properties of H as

hmðλÞjAðλÞjnðλÞi ¼ i
hmðλÞj∂λHðλÞjnðλÞi

ϵnðλÞ − ϵmðλÞ
ð1 − δm;nÞ: ð5Þ

The main aim of the present work is to find a systematic
way to obtain the operator form of the AGP. The AGP
satisfies

Lλ½∂λHðλÞ − iLλAðλÞ� ¼ 0; ð6Þ

where Lλð·Þ ¼ ½HðλÞ; ·�. This relation was used to find an
approximate AGP by variational methods [40,41,86]. We
exploit this relation to obtain the exact form of the AGP.
As an alternative useful relation, one can invoke the

integral representation introduced by Hastings in the
context of quasiadiabatic continuation [74,75,77]:

AðλÞ ¼ −
1

2
lim
η→0

Z
∞

−∞
dssgnðsÞe−ηjsj

× eiHðλÞs
∂λHðλÞe−iHðλÞs: ð7Þ

The integrand is proportional to the operator ∂λHðλÞ
conjugated by a unitary. Using the unitary operation
is represented by Lλ, we can perform the integration over
s to write

AðλÞ ¼ −
1

2
lim
η→0

�
1

η − iLλ
−

1

ηþ iLλ

�
∂λHðλÞ: ð8Þ

This formal expression motivates us to use the expansion
[41,87,88]

AðλÞ ¼ i
X
k

αnck ðλÞL2k−1
λ ∂λHðλÞ: ð9Þ

The construction of the AGP in Krylov space that we
present in the following follows solely from using the
expansion (9) in combination with Eq. (6). Its importance
relies on the fact that it removes the need for the spectral
properties of HðλÞ in determining the CD term and shows
that the operators in the AGP are generated from the nested
commutators L2k−1

∂H at odd orders. We note that the
variable s in the integral representation represents a
fictitious time. The unitary e−iHðλÞs is interpreted as the
time evolution operator in the fictitious time with no need
for the time-ordered product, as HðλÞ is independent of s.
When we keep all possible operators generated from the
nested commutators, the exact AGP can be obtained by

solving the equation for αnck from Eq. (6). Practically, a
truncation of the operator series yields an approximate
AGP. The infinite series by nested commutators produces
the same type of operators many times, and it is not clear
how many terms should be kept to obtain a required
accuracy. To treat the AGP systematically, we rearrange
the expansion in Eq. (9) and represent the AGP in a finite
series by using a set of orthonormal Krylov basis elements.

IV. KRYLOV EXPANSION

A. Inner product, basis operators, and vector
representation of operators

In the Krylov method [66], we use a set of operators
satisfying an orthonormal relation. To define the orthonor-
mality of operators, we first introduce the inner product for
an arbitrary pair of operators X and Y as

ðX; YÞ ¼ 1

2
Tr½ρðHÞðX†Y þ YX†Þ�: ð10Þ

The operators are not necessarily Hermitian. In addition,
the measure ρðHÞ is a positive-definite Hermitian operator
but not necessarily normalized. We note that the present
method is applicable even when the Hilbert space dimen-
sion is infinite and the energy spectrum is continuous,
provided that ρðHÞ is chosen appropriately. We see in the
following that the result of the AGP is independent of the
choice of ρðHÞ. What is important is that ρðHÞ commutes
with H. We have

ðX;LXÞ ¼ 0; ð11Þ

ðX;LYÞ� ¼ ðY;LXÞ; ð12Þ

for Hermitian operators X and Y.
To find an explicit representation of the superoperator L,

we introduce a set of basis operators X ¼ ðX1; X2;…Þ, that
are Hermitian and orthonormal with each other:

ðXμ; XνÞ ¼ δμ;ν: ð13Þ

The number of operators is not specified here and is
discussed in the following after clarifying the aim of the
analysis. Generally, for a given quantum system, it is equal
to or smaller than the square of the dimension of the
Hilbert space.
One of the aims of introducing the basis operators is that

the superoperator L can be represented by an antisym-
metric Hermitian matrix L. It has elements

Lμν ¼ ðXμ;LXνÞ ð14Þ

and satisfies L† ¼ L and LT ¼ −L. The diagonal compo-
nents are equal to zero, and each of the off-diagonal
components is purely imaginary. Corresponding to the
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matrix representation of superoperator, a vector represents
an operator. We write the Hamiltonian

H ¼ h · X ⇔ jHi ¼ ðh1; h2;…ÞT ð15Þ

and the AGP

A ¼ a · X ⇔ jAi ¼ ða1; a2;…ÞT: ð16Þ

Then, we obtain a vector representation of Eq. (6) as

Lðj∂λHi − iLjAiÞ ¼ 0: ð17Þ

It is not a difficult problem to obtain the formal solution
of this equation by using the spectral representation of L.
However, L is generally a matrix of large size, and the
diagonalization is much more difficult than that of the
Hamiltonian H. We resolve this problem in the following
by introducing an algorithmic method.

B. Lanczos algorithm and Krylov basis

Equation (17) implies that the AGP jAi is constructed
from a linear combination of Lnj∂Hi with n ¼ 1; 2;…. We
prepare the normalized vector jθ0i from the relation

b0jθ0i ¼ j∂Hi: ð18Þ

The coefficient b0 represents the normalization factor and is
written as

b20 ¼ h∂Hj∂Hi ¼ ð∂H; ∂HÞ: ð19Þ

The zeroth-order normalized vector jθ0i and the coefficient
b0 are defined for each component of λ. The same applies
to the quantities introduced in the following. We abbreviate
the component index to simplify the notation. Then, the
new normalized basis jθ1i is defined from

b1jθ1i ¼ Ljθ0i: ð20Þ

By construction, jθ1i is orthogonal to jθ0i. We repeat the
same procedure by using the relation

bnjθni ¼ Ljθn−1i − bn−1jθn−2i; ð21Þ

with n ¼ 2; 3;…. The positive coefficient bn is chosen so
that jθni is normalized. Thus, the introduced vectors satisfy
the orthonormal relation hθmjθni ¼ δm;n. When the dimen-
sion of the Hilbert space is finite, the number of basis
elements must be finite, which means that there exists an
integer d satisfying Ljθd−1i − bd−1jθd−2i ¼ 0. The number
of the basis vectors is given by d, which we refer to as the
Krylov dimension.
This way of constructing a basis set is nothing but the

Lanczos algorithm, since the matrix L is brought to a

tridiagonal form T, satisfying L ¼ VTV†, where V ¼
ðjθ0ijθ1i…jθd−1iÞ and

T ¼

0
BBBBBBBBBB@

0 b1 0

b1 0 b2
0 b2 0

. .
.

0 bd−1
bd−1 0

1
CCCCCCCCCCA
: ð22Þ

We can also write

L ¼
Xd−1
n¼1

bnðjθnihθn−1j þ jθn−1ihθnjÞ: ð23Þ

Generally, for a given matrix L and an initial basis
element jθ0i, we can render the matrix in tridiagonal form
algorithmically. We find in the following that the present
choice of the initial basis in Eq. (18) is convenient to
solve Eq. (17).
The introduction of the orthonormal basis vectors

corresponds to that of the orthonormal basis operators
jOni ¼ jθni. In the original representation,

On ¼ θn · X; ð24Þ

with n ¼ 0; 1; 2;…; d − 1. They are generated by the
procedure

b0O0 ¼ ∂H;

b1O1 ¼ LO0;

bnOn ¼ LOn−1 − bn−1On−2 ðn ¼ 2; 3;…; d − 1Þ ð25Þ

and satisfy ðOm;OnÞ ¼ hθmjθni ¼ δm;n. This set of oper-
ators represents the Krylov basis. In the present choice of
O0, the operators of even order O2k (k ¼ 0; 1; 2;…) are
Hermitian, and those of odd order O2k−1 (k ¼ 1; 2;…) are
anti-Hermitian.
We note that the introduction of the basis operators X is

not necessary, since we can construct the Krylov basis
directly from Eq. (25). The introduction of the basis
operators makes it clear that the introduction of the
Krylov basis is equivalent to the Lanczos algorithm.
The following examples illustrate that the two options
can prove convenient.
The advantage of the basis operator representation of L

by L is that we do not need to calculate the nested
commutators Ln

∂H once we can construct a single
matrix L. We also see that the number of the basis operators
X is not necessarily equal to the square of the dimension of
the Hilbert space dH. For the present purpose, we need
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operators in Ln
∂H, and the dimension of L, denoted by dL,

satisfies

d ≤ dL ≤ d2H: ð26Þ

Thus, the Krylov dimension d is defined by the minimum
number of the basis elements. When the matrix L is block
diagonalized, we may treat only the block in which the
operators in ∂H are included. A good choice of the basis
reduces the computational cost. It is known that the general
upper limit of the Krylov dimension is given by the relation
d ≤ d2H − dH þ 1 [69].
Generally, the Krylov method is useful when we treat

the Heisenberg representation of a normalized operator O0,
OðsÞ ¼ eiHsO0e−iHs [66–70]. We can represent the oper-
ator by a finite series as

OðsÞ ¼
Xd−1
n¼0

inφnðsÞOn; ð27Þ

where φnðsÞ is known as the operator wave function. The
time dependence of OðsÞ can be conveniently studied by
using the operator wave function, a feature we next apply to
the computation of the AGP from the integral representa-
tion in Eq. (7).

C. Adiabatic gauge potential

We are now in a position to solve Eq. (6), or the
equivalent Eq. (17), by using the Krylov basis. We use

A ¼ ib0
XdA
k¼1

αkO2k−1 ⇔ jAi ¼ ib0
XdA
k¼1

αkjθ2k−1i ð28Þ

and solve the equation for fαkgdAk¼1. It is important to notice
that A includes the Krylov basis at odd order, O2k−1. This

property is a direct consequence of the representation in
Eq. (9). The number of the operators is denoted by dA and is
related to the Krylov dimension d as

dA ¼
�
d
2

�
¼
�
d=2 for even d;

ðd − 1Þ=2 for odd d:
ð29Þ

We first consider the case of even d. In this case, one
finds

j∂λHi− iLjAi ¼ b0ð1þ α1b1Þjθ0i

þ b0
XdA−1
k¼1

ðαkb2k þ αkþ1b2kþ1Þjθ2ki: ð30Þ

Setting each side of this equation to zero yields

α1 ¼ −
1

b1
; ð31Þ

αkþ1 ¼ −
b2k
b2kþ1

αk; ð32Þ

where k ¼ 1; 2;…; dA − 1. That is, we can find the AGP
satisfying the relation j∂Hi − iLjAi ¼ 0, which is a suffi-
cient condition of Eq. (17). We also see that the relation
j∂Hi − iLjAi ¼ 0 represents the equation for a dynamical
invariant, when the eigenvalues of the Hamiltonian,
ϵn½λðtÞ�, are time independent [89,90]. In this case, diagonal
components of ∂λHðλÞ in the eigenstate basis are equal to
zero, i.e., hnðλÞj∂λHðλÞjnðλÞi ¼ 0.
Next, we consider the case of odd d. In this case, an

additional term appears in Eq. (30) and no solution exists
for j∂Hi − iLjAi ¼ 0. We examine L2jAi ¼ −iLj∂Hi to
find the expression

0
BBBBBBBBBB@

b21 þ b22 b2b3 0

b2b3 b23 þ b24 b4b5
0 b4b5 b25 þ b26

. .
.

b2d−4 þ b2d−3 bd−3bd−2
bd−3bd−2 b2d−2 þ b2d−1

1
CCCCCCCCCCA

0
BBBBB@

α1

α2

..

.

αdA

1
CCCCCA ¼

0
BBBBB@

−b1
0

..

.

0

1
CCCCCA: ð33Þ

Inverting the matrix in this expression, we can obtain the
explicit form of the AGP. In the following, we solve this
equation by using a different approach which proves
illuminating.
We conclude this part by stating that the AGP can be

constructed systematically by using the Krylov basis. The

AGP is represented by an expansion of the Krylov basis,
and the coefficient of each term is obtained as a function of
b0, the scale of ∂H, and the set of Lanczos coefficients
fbngd−1n¼1. When d is even, the instantaneous eigenvalues of
the Hamiltonian must be time independent. Conversely, the
Krylov dimension d is even (odd) when the eigenvalues of
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the Hamiltonian are time independent (dependent). The
flowchart of the algorithm is presented in Fig. 1.
Equation (28) is compared with Eq. (9). The former is

expanded by orthonormal operators and the total number of
series elements is finite, if the resulting AGP is given by a
finite number of operators. The expansion is also applicable
to systems with a continuous spectrum. Thus, the Krylov
method offers a general systematic method for constructing
the AGP.

D. Operator wave function and adiabatic
gauge potential

The AGP is closely related to the operator wave function
φnðλ; sÞ defined from the Heisenberg representation

eiHðλÞsO0ðλÞe−iHðλÞs ¼
Xd−1
n¼0

inφnðλ; sÞOnðλÞ; ð34Þ

where the initial condition is chosen as b0ðλÞO0ðλÞ ¼
∂λHðλÞ. Substituting this representation into Eq. (7), we
obtain

1

2
lim
η→0

Z
∞

−∞
dssgnðsÞe−ηjsjφ2kðλ; sÞ ¼ 0; ð35Þ

for k ¼ 0; 1;…; dA, and

1

2
lim
η→0

Z
∞

−∞
dssgnðsÞe−ηjsjφ2k−1ðλ; sÞ ¼ ð−1ÞkαkðλÞ; ð36Þ

for k ¼ 1; 2;…; dA. This relation between φnðλ; sÞ and
αkðλÞ shows that the latter is obtained from the Laplace
transform of the former. The behavior of the operator wave
function has been studied in the context of the Krylov
complexity, and we can exploit the properties obtained
in that context [66–71]. For example, the operator wave
function jφðλ; sÞi ¼ ðφ0;φ1;…;φd−1ÞT satisfies the differ-
ential equation ∂sjφðλ; sÞi ¼ BðλÞjφðλ; sÞi with

B ¼

0
BBBBBBBBB@

0 −b1 0

b1 0 −b2
0 b2 0

. .
.

0 −bd−1
bd−1 0

1
CCCCCCCCCA

ð37Þ

and the initial condition jφðλ; 0Þi ¼ ð1; 0; 0;…ÞT . Here, iB
is related to the matrix T in Eq. (22) under a unitary
transformation. Since the equation for jφðλ; sÞi is inter-
preted as a Schrödinger equation with a Hamiltonian iBðλÞ
independent of the fictitious time s, the solution is obtained
by solving the eigenvalue problem iBðλÞjωnðλÞi ¼
ωnðλÞjωnðλÞi. We can write

jφðλ; sÞi ¼
Xd−1
n¼0

e−iωnðλÞsjωnðλÞihωnðλÞjφðλ; 0Þi: ð38Þ

The form of the Hermitian matrix iB indicates that the
eigenvalues come in pairs�ωn, whereωn ≠ 0, and the zero-
eigenvalue state exists only when the size of the matrix d is
odd. We refer to the details on the pairing of eigenstates in
Appendix A. Here, we look at only the zero-eigenvalue state
jϕðλÞi satisfying BðλÞjϕðλÞi ¼ 0 for odd d. We can solve
the eigenvalue equation to obtain the normalized solution

jϕi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb1b2Þ

2 þ � � �
q

0
BBBBBBBBBBBBB@

1

0
b1
b2

0
b3b1
b4b2

..

.

bd−2bd−4…b1
bd−1bd−3…b2

1
CCCCCCCCCCCCCA
: ð39Þ

FIG. 1. The flowchart of the Krylov algorithm to obtain the AGP AðλÞ for a given Hamiltonian HðλÞ.
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Since the matrices L and B are constructed from the
commutator Lð·Þ ¼ ½H; ð·Þ�, the eigenvalues are related
to the energy eigenvalue difference ϵm − ϵn. The zero-
eigenvalue state of M implies the existence of the diagonal
components

∂H − iLA ¼
X
n

∂ϵnjnihnj: ð40Þ

The contribution on the right-hand side is absent for even d
with ∂ϵn ¼ 0.
We can also use the equation for jφðλ; sÞi to obtain the

explicit form of αk. The 2kth component of the equation is
given by ∂sφ2k ¼ b2kφ2k−1 − b2kþ1φ2kþ1. Using the inte-
gral representation in Eq. (7), we obtain

lim
η→0

Z
∞

0

dse−ηs∂sφ2k ¼ ð−1Þkðb2kαk þ b2kþ1αkþ1Þ: ð41Þ

The left-hand side is calculated by using the integration by
parts to give

lim
η→0

Z
∞

0

dse−ηs∂sφ2k ¼ −δk;0 þ ϕ2kϕ0; ð42Þ

where the second term exists only for odd d and we write
jϕi ¼ ðϕ0;ϕ1;…ÞT . In the odd-d case, we obtain

α1 ¼ −
1

b1
þ ϕ2

0

b1
; ð43Þ

αkþ1 ¼ −
b2k
b2kþ1

αk þ
ð−1Þkϕ2kϕ0

b2kþ1

; ð44Þ

with k ¼ 1; 2;…; dA − 1. It is not a difficult task to confirm
that this relation is consistent with Eq. (33).
The use of the operator wave function also allows us to

obtain

ðA; AÞ ¼ b20
XdA
k¼1

α2k ¼ b20h0jðQiBQÞ−2j0i; ð45Þ

where j0i ¼ ð1; 0;…; 0ÞT and Q ¼ 1 − jϕihϕj represents
the projection operator onto the nonzero-eigenvalue states.
We show the derivation in Appendix A. This representation
is useful when we evaluate the norm of the AGP.
It is instructive to compare the present result for the

odd-dimension case to that for the even-dimension case.
Equations (31) and (32) show that, when the Krylov
dimension is even, each order is calculated without using
the higher-order contributions. This property is practically
useful for systems with many degrees of freedom. As we
discuss in the next sections, we frequently consider the

truncation of the series expansion as an approximation. By
contrast, for an odd Krylov dimension, all the Lanczos
coefficients are required to construct each term of the AGP,
as we see in Eqs. (43) and (44) and the zero mode jϕi in
Eq. (39). However, each component of jϕi takes a small
value and could be negligible for large systems.
We can estimate a contribution from each term of the

expansion in Eq. (28) by the Lanczos coefficient. When bn
is an increasing function with respect to n, the corre-
sponding αk is a decreasing function. The typical global
behavior of the Lanczos coefficients has been discussed in
many-body systems. It was found that bn ∝ n for chaotic
systems and leads to a maximal pace of operator growth.
Likewise, bn ∝

ffiffiffi
n

p
for integrable systems, and bn ≈ const

for noninteracting systems [67]. In Fig. 2, we show the
behavior of αk in the case of a linear and square-root
growth of bn. The constant case is found in the examples
in Sec. VI. In the figure, we also show a special case
bn ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd − nÞp

where the operators defined from the
Krylov complexity theory form a SU(2) algebra [67–72].
We also note that the series of Lanczos coefficients
typically shows an oscillating behavior, as shown in the
examples below. Given that the coefficients αk in the AGP
expansion involve the ratio b2k=b2kþ1 as in Eq. (44), a
regular oscillation series of bk leads to a decreasing series
on αk. These observations indicate that the property of the
CD term is closely related to that of the operator growth in
the Krylov subspace.

E. Classification of basis operators

It is instructive to notice that the AGP consists of the
nested commutators at odd orders. When the original
Hamiltonian is real symmetric, the nested commutators
at even orders L2k

∂H are real symmetric and those at odd
orders L2k−1

∂H involve the imaginary unit. This means that
the basis operators are classified into two parts:

X → ðX;YÞ ¼ ðX1; X2;…; XdX ;Y1; Y2;…; YdY Þ: ð46Þ

X represents basis at even orders and Y at odd orders.
These Hermitian operators satisfy LX∈Y and LY ∈X.

FIG. 2. The Lanczos coefficients bn (left) and the coefficients
of the AGP αk (right). We show the cases bn ∝ n (linear),
bn ∝

ffiffiffi
n

p
(sqrt), and bn ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd − nÞp

[SU(2)].
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Accordingly, the matrix L, the basis operator representation
of L, takes the form

L ¼
�

0 M

M† 0

�
; ð47Þ

where Mμν ¼ ðXμ;LYνÞ. We note that M�
νμ ¼ ðYμ;LXνÞ.

The size of the matrix M is determined by the numbers of
the basis operators dX and dY ¼ dL − dX. M is generally a
rectangular matrix, and the Lanczos algorithm is applied for
even d ¼ 2dA as

M ¼ ðjθ0i jθ2i … jθd−2iÞ

0
BBBBBBBBBB@

b1 0 0

b2 b3 0

0 b4 b5

. .
.

bd−3 0

bd−2 bd−1

1
CCCCCCCCCCA

0
BBBBB@

hθ1j
hθ3j
..
.

hθd−1j

1
CCCCCA; ð48Þ

where each of fjθ2kigdA−1k¼0 has dX components, each of fjθ2k−1igdAk¼1 has dY components, and the size of the lower triangular
matrix on the right-hand side is dA × dA. Since the numbers of the basis operators must be large enough to span the operator
space, we find dX ≥ dA and dY ≥ dA. In the case of odd d ¼ 2dA þ 1, M is decomposed as

M ¼ ðjθ0i jθ2i … jθd−1iÞ

0
BBBBBBBBBBBB@

b1 0 0

b2 b3 0

0 b4 b5

. .
.

bd−4 0

bd−3 bd−2
0 bd−1

1
CCCCCCCCCCCCA

0
BBBBB@

hθ1j
hθ3j
..
.

hθd−2j

1
CCCCCA; ð49Þ

where each of fjθ2kigdAk¼0 has dX components, each of
fjθ2k−1igdAk¼1 has dY components, and the size of the
matrix on the right-hand side is ðdA þ 1Þ × dA. We also
find dX ≥ dA þ 1 and dY ≥ dA. In this case, the minimum
number of dX is larger than that of dY .

F. Relation to the variational method

The orthonormal relation of operators is useful to
understand the relation between the present method and
the variational method [40]. In the variational method, the
AGP is obtained by minimizing the cost function

G½A� ¼ Tr½ð∂H − iLAÞ2�; ð50Þ

for a given operator ansatz of A with undetermined
coefficients. In our notation, this can be written as

G½A� ¼ ðh∂Hj þ ihAjLÞðj∂Hi − iLjAiÞ; ð51Þ

with ρðHÞ ¼ 1. One of the systematic methods for
obtaining the AGP is to use the nested commutator series
in Eq. (9) and carrying out the minimization procedure with

respect to the coefficients αnck ðλÞ [41]. Practically, the
number of series elements in Eq. (9) is restricted to a
finite value, and the approximate AGP is obtained from the
minimization.
It is not obvious that the variational method can give the

exact AGP even when all of the possible operators are
incorporated in the trial form of the AGP by nested
commutators. When the AGP satisfies j∂Hi − iLjAi ¼ 0,
which is a sufficient condition of Eq. (17), we have
discussed that the Krylov dimension is even and that the
matrix L as well as B are invertible. Then, the minimization
procedure gives the exact AGP jAi ¼ −iL−1j∂Hi.
On the other hand, when the Krylov dimension is odd, L

is not invertible and special care is required for the zero-
eigenvalue state. The zero-eigenvalue state of L denoted
by jϕLi is obtained in the same way as that of B [Eq. (39)]
and is written by a linear combination of even basis

fjθ2kigðd−1Þ=2k¼0 . It is orthogonal to the AGP as hϕLjAi ¼ 0,
and the cost function is decomposed as

G½A� ¼ h∂HjPj∂Hi
þ ðh∂HjQþ ihAjLÞðQj∂Hi − iLjAiÞ; ð52Þ
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where P ¼ jϕLihϕLj and Q ¼ 1 − P are projection oper-
ators. The first term does not affect the variational pro-
cedure, and the minimization of the second term gives

jAi ¼ −iðQLQÞ−1Qj∂Hi: ð53Þ

This is the solution of Lðj∂Hi − iLjAiÞ ¼ 0, which means
that the variational method gives the exact AGP.
We note that the trial form of the AGP must include all

possible operators from the nested commutators at odd
order to find the exact AGP from the variational method.
When we consider a restricted number of operators, the
minimization gives an approximate AGP. This procedure is
essentially equivalent to considering a restricted number of
basis operators for the Krylov expansion. However, as we
explicitly show in the following examples, the variational
procedure does not necessarily lead to the result from
the Krylov expansion. This is because the coefficients of
the AGP in the variational method are optimized in the
truncated space.
A significant fact is that we can find the exact AGP

associated with a generalized cost function of the form

G½A� ¼ Tr½ρðHÞð∂H − iLAÞ2�: ð54Þ

This form is useful when the dimension of the Hilbert space
is infinite and when the spectrum is continuous. Although
the exact AGP must be independent of ρðHÞ, the approxi-
mate AGP is generally dependent on it. In the variational
method, we usually set a constant ρðHÞ. It may be possible
to use a different ρðHÞ for the variational calculation.
However, even when all possible operators are incorpo-
rated, it is not evident that the variational method gives the
exact result, which is independent on the choice of ρðHÞ.
The Krylov method states the requirements for ρðHÞ
explicitly and clarifies that the result is independent on
that choice.

V. APPLICATIONS TO SMALL SYSTEMS

In the construction of STA, one is interested in the time
dependence of the Hamiltonian. We set λðtÞ ¼ t and
identify λ as time t. Then, the AGP is equivalent to the
CD term. In the applications discussed below, we write the
Hamiltonian as HðtÞ and use the CD term HCDðtÞ instead
of the AGP AðλÞ. For the small systems discussed in the
present section, it is not a difficult task to calculate the CD
term explicitly. We study how the CD term is obtained by
the Krylov method in typical small systems.

A. Two-level system

The study of STA by CD driving in the canonical two-
level system [28–31] was soon followed by its experimen-
tal demonstration [19,24,91], often in a rotating frame,
i.e., making use of a unitarily equivalent CD Hamiltonian.

To illustrate the engineering of STA in Krylov space,
consider the two-level Hamiltonian

HðtÞ ¼ 1

2
hðtÞnðtÞ · Σ; ð55Þ

in terms of the positive scalar h, the unit vector
n ¼ ðn1; n2; n3Þ, and the vector Σ ¼ ðX; Y; ZÞ with Pauli
operators as entries. In this case, we have essentially no
other choices than to set the basis operators as ðX; Y; ZÞ.
We choose ρðHÞ ¼ 1=2 for the inner product. We assume
that nðtÞ depends on t; otherwise, the CD term trivially
gives zero. However, the explicit parameter dependence
of hðtÞ is not necessary, as h determines only the overall
scale of the Hamiltonian and the resulting CD term is
independent of h.
It is a simple task to calculate the L matrix explicitly.

We have

L ¼ ih

0
B@

0 −n3 n2
n3 0 −n1
−n2 n1 0

1
CA: ð56Þ

Then, we set the initial basis vector

b0jθ0i ¼
ḣ
2

0
B@

n1
n2
n3

1
CAþ h

2

0
B@

ṅ1
ṅ2
ṅ3

1
CA ð57Þ

to generate the Krylov basis

O0 ¼
1ffiffiffi
2

p ḣnþ hṅffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḣ2 þ h2ṅ2

p · Σ; ð58Þ

O1 ¼
iffiffiffi
2

p n × ṅ
jṅj · Σ; ð59Þ

O2 ¼ −
1ffiffiffi
2

p ḣ

jḣj
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḣ2 þ h2ṅ2
p �

hjṅjn −
ḣ ṅ
jṅj
�
· Σ ð60Þ

and the Lanczos coefficients

b1 ¼
h2jṅjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḣ2 þ h2ṅ2
p ; ð61Þ

b2 ¼
hjḣjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ḣ2 þ h2ṅ2
p : ð62Þ

We find LO2 − b2O1 ¼ 0, which shows d ¼ 3 and dA ¼ 1.
For ḣ ≠ 0, the Krylov dimension d ¼ 3 equals the number
of basis operators. It is reduced to d ¼ 2 and dA ¼ 1 for
ḣ ¼ 0 where b2 ¼ 0. We note that the eigenvalues of the
Hamiltonian, �h=2, are time independent when ḣ ¼ 0.
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In any case, the dimension of the AGP is given by
dA ¼ 1. We find the CD term

HCD ¼ ib0α1O1 ¼ −i
b0b1

b21 þ b22
O1 ¼

1

2
n × ṅ · Σ: ð63Þ

This result is consistent with the known result [28–31].

B. Driven harmonic quantum oscillator

The driven harmonic oscillator is a workhorse in non-
equilibrium quantum dynamics and, not surprisingly, has
played a key role in the development of STAs [12,92]
and their experimental demonstration [16,26]. Although the
dimension of Hilbert space is infinite, it is not difficult to
treat the system analytically, since the system is a single-
particle one, and the spectrum is discrete. In addition, its
dynamics is described by a closed Lie algebra [93].
Consider the Hamiltonian

HðtÞ ¼ 1

2m
P2 þ 1

2
mω2ðtÞ½Q − q0ðtÞ�2; ð64Þ

where Q and P are the position and momentum operators,
respectively. Modulations of the time-dependent frequency
ω induce expansions and compressions, while transport
processes are associated with variations of the trap center
q0 [26,94,95]. We use the creation-annihilation operator
representation

HðtÞ ¼ ωðtÞ
�
C†ðtÞCðtÞ þ 1

2

�
; ð65Þ

where

CðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mωðtÞ

2

r
½Q − q0ðtÞ� þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2mωðtÞ

s
P: ð66Þ

The CD term, in this case, is given by [54,55,92]

HCD ¼ q̇0P −
ω̇

4ω
½PðQ − q0Þ þ ðQ − q0ÞP�

¼ iq̇0

ffiffiffiffiffiffiffi
mω

2

r
ðC† − CÞ − i

ω̇

4ω
ðC†2 − C2Þ: ð67Þ

Thus, the CD term involves a term proportional to the
momentum operator, the generator of spatial translations,
and a second term proportional to the squeezing operator,
which is the generator of dilatations.
In the present case, we can explicitly calculate all the

nested commutators. As mentioned, using the basis oper-
ators X is unnecessary. We find

L2kḢ ¼ −ω2kþ1

ffiffiffiffiffiffiffi
mω

2

r
q̇0ðC† þ CÞ

þ ω2kþ1
22k−1ω̇

ω
ðC†2 þ C2Þ þ δk;0

ω̇

ω
H; ð68Þ

for k ¼ 0; 1;…, and

L2k−1Ḣ ¼ −ω2k

ffiffiffiffiffiffiffi
mω

2

r
q̇0ðC† − CÞ

þ ω2k 2
2ðk−1Þω̇
ω

ðC†2 − C2Þ; ð69Þ

for k ¼ 1; 2;…. These nested commutators involve a
finite number of operators, which determines the Krylov
dimension. It is given by

d ¼ 5 and dA ¼ 2 for q̇0 ≠ 0 and ω̇ ≠ 0;

d ¼ 3 and dA ¼ 1 for q̇0 ¼ 0 and ω̇ ≠ 0;

d ¼ 2 and dA ¼ 1 for q̇0 ≠ 0 and ω̇ ¼ 0: ð70Þ

For ω̇ ¼ 0, the eigenvalues of the Hamiltonian are time
independent, and the Krylov dimension is given by an
even number. The explicit form of the Krylov basis is given
in Appendix B.
It is instructive to see how the exact AGP in Eq. (67) is

obtained in the expansion. In the case at dA ¼ 2, the CD

term is expanded as HCD ¼ Hð1Þ
CD þHð2Þ

CD, and the first term

Hð1Þ
CD ¼ ib0α1O1 is given by

Hð1Þ
CD ¼ rq̇0P − 4r

ω̇

4ω
½PðQ − q0Þ þ ðQ − q0ÞP�; ð71Þ

where

r ¼ q̇20z
2
1 þ ω̇2

4ω2 z22
q̇20z

2
1 þ ω̇2

ω2 z22
; ð72Þ

with z21 ¼ Tr½ρðHÞP2� and z22 ¼ Tr½ρðHÞðPðQ − q0Þ þ
ðQ − q0ÞPÞ2�. This result shows that each term of the
expansion is dependent on the definition of the inner
product in Eq. (10).

C. STIRAP

As a practical application of three-level systems, we
next discuss the stimulated Raman adiabatic passage
(STIRAP) [96,97]. It is a method of population transfer
between two states. We introduce an additional state and
apply two external pump fields to the system. The states
are given by j1i, j2i, and j3i, and we consider population
transfer between j1i and j3i. The simplest STIRAP
Hamiltonian is given by

HðtÞ ¼ 1

2

0
B@

0 ωpðtÞ 0

ωpðtÞ 2δ ωsðtÞ
0 ωsðtÞ 0

1
CA: ð73Þ

A typical protocol is given in Fig. 3.
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Since we treat three-level systems, the number of
independent operators is given by eight, except the identity
operator. We also see that the Hamiltonian is real symmetric
and the L matrix is written as Eq. (47). Possible basis
operators for ρðHÞ ¼ 1=2 are given by

X ¼

8>><
>>:
0
B@

0 1 0

1 0 0

0 0 0

1
CA;

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA
9>>=
>>; ð74Þ

and

Y¼

8>><
>>:
0
B@
0 −i 0

i 0 0

0 0 0

1
CA;

0
B@
0 0 0

0 0 −i
0 i 0

1
CA;

0
B@
0 0 −i
0 0 0

i 0 0

1
CA
9>>=
>>;: ð75Þ

Using this basis, we find Eq. (47) with

M ¼ i

0
BBBBBB@

δ 0 ωs=2

0 −δ −ωp=2

ωs=2 −ωp=2 0

ωp −ωs=2 0

0
ffiffiffi
6

p
ωs=2 0

1
CCCCCCA
: ð76Þ

We note that the number of operators in X can be reduced to
four, as we can understand from the general discussions in
the previous section. Since they are not much different, we
use the 5 × 3 matrix here.

We apply the Lanczos algorithm for the given M matrix
with the protocol in Fig. 3(b) to calculate αk shown in
Fig. 4(a). The Krylov dimension is given by d ¼ 7.
The expansion is compared with the exact result [98]

HCDðtÞ¼−ϕ̇ðtÞsinθðtÞY1þϕ̇ðtÞcosθðtÞY2− θ̇ðtÞY3; ð77Þ

where θðtÞ ¼ arctan ðωpðtÞ=ωsðtÞÞ and ϕðtÞ ¼
½arctan ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
pðtÞ þ ω2

sðtÞ
q

=δÞ�=2. In the Krylov method, the

CD term is given by the form HCDðtÞ ¼ ib0
P

3
k¼1 αkO2k−1.

Whenwe rewrite it asHCDðtÞ ¼
P

3
μ¼1 aμYμ, the coefficients

are written as aμ ¼
P

3
k¼1 a

ðkÞ
μ , where

aðkÞμ ¼ ib0αkðYμ; O2k−1Þ; ð78Þ

and are plotted in Figs. 4(b)–4(d). For short and large
times, the adiabatic condition is approximately satisfied,
and the CD term is well approximated by the first term of
the Krylov expansion.

VI. APPLICATIONS TO MANY-BODY SYSTEMS

The exact AGP or CD term is known for a limited number
of many-body systems, and we expect that the Krylov
method gives advantageous results that cannot be obtained
from other methods. For many-body systems, the required
number of operators is large, and it is still a formidable task
to find the exact CD term even in the present method. In this
section, we treat one-dimensional spin systems where the
exact CD term is known for some examples.

FIG. 4. (a) Coefficients of the CD term αk for STIRAP.

(b)–(d) að1Þμ (dotted curves), að1Þμ þ að2Þμ (dashed curves), and

aμ ¼
P

3
k¼1 a

ðkÞ
μ (solid curves).

FIG. 3. (a) Schematic view of STIRAP. Three-level states are
driven by two kinds of pulses, shown in the inset, and the initial
state j1i is adiabatically transferred to j3i. (b) A typical protocol
for STIRAP. We set ωsðtÞ ¼ ω0 exp ½−ðt − t1Þ2=2σ2� and
ωpðtÞ ¼ ω0 exp ½−ðt − t2Þ2=2σ2� with ω0=δ ¼ 4.0, δtf ¼ 100,
t1=tf ¼ 0.4, t2=tf ¼ 0.6, and σ=tf ¼ 0.1.
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A. One-dimensional transverse Ising model

1. Exact result without a longitudinal magnetic field

We first treat the Ising spin chain in a transverse field:

HðtÞ ¼ −
v
2

�Xns
n¼1

XnXnþ1 þ gðtÞ
Xns
n¼1

Zn

�
: ð79Þ

Many spins are aligned in a chain, and the number of spins
is denoted by ns. We consider the periodic boundary
condition, and the subscript is interpreted as mod ns.
We are interested in the large-ns limit where the system
at g ¼ 1 shows a quantum phase transition [99,100].
It is also known that the system is equivalent to the free

fermion system [101,102]. Then, the Hamiltonian is rep-
resented as an ensemble of two-level systems, and the
CD term for each two-level system can be found from the
result in the previous section. Here, to study properties for
many-body systems, we do not use the mapping and treat
the spin operators.
Under the setting ρðHÞ ¼ 1=ð2nsnsÞ, we define ortho-

normalized operators

M ¼
Xns
n¼1

Zn; ð80Þ

VX
k ¼

Xns
n¼1

XnZnþ1…Znþk−1Xnþk; ð81Þ

VY
k ¼

Xns
n¼1

YnZnþ1…Znþk−1Ynþk; ð82Þ

Wk ¼
1ffiffiffi
2

p
Xns
n¼1

ðXnZnþ1…Znþk−1Ynþk

þ YnZnþ1…Znþk−1XnþkÞ; ð83Þ

with k ¼ 1; 2;…; ns − 1. These operators take bilinear
forms in fermion operators and can be used as basis
operators. Since the Hamiltonian commutes with ð−1ÞP ¼Qns

n¼1 Zn, the number of independent operators is reduced.
We have the relations VX

ns−k ¼ −ð−1ÞPVY
k , VY

ns−k ¼
−ð−1ÞPVX

k , and Wns−k ¼ ð−1ÞPWk. Then, the subscript
takes k ¼ 1; 2;…; ns=2 for even ns.
Acting L to these operators, we obtain

LM ¼
ffiffiffi
2

p
ivW1; ð84Þ

LVX
k ¼

ffiffiffi
2

p
ivðWk−1 − gWkÞ; ð85Þ

LVY
k ¼

ffiffiffi
2

p
ivð−Wkþ1 þ gWkÞ; ð86Þ

LWk ¼
ffiffiffi
2

p
iv½VY

k−1 − VX
kþ1 þ gðVX

k − VY
k Þ − δk;1M�: ð87Þ

Since the Hamiltonian is real symmetric, the nested com-
mutators at odd order involve only Wk. In Appendix C,
we show

O2k−1 ¼ ð−1ÞkiWk ð88Þ

and

b21þb22¼b23þb24¼���¼b2d−2þb2d−1¼4v2ð1þg2Þ; ð89Þ

b2b3 ¼ b4b5 ¼ � � � ¼ bd−3bd−2 ¼ 4v2g: ð90Þ

The Krylov dimension is odd in this case. Using the result
b0 ¼ ffiffiffiffiffi

ns
p

vġðtÞ=2 and b1 ¼
ffiffiffi
2

p
v, where we assume v > 0

and ġðtÞ > 0, we can calculate all of the Lanczos coef-
ficients. We plot the Lanczos coefficients in the left in Fig. 5
for several values of g. The asymptotic forms satisfy b2k ∼
2v ≥ b2k−1 ∼ 2vg for g ≤ 1 and b2k ∼ 2vg ≥ b2k−1 ∼ 2v for
g ≥ 1. This result implies that we can generally find a phase
transition point from the Lanczos coefficients.
The coefficients of the CD term are obtained from

Eq. (33). Since the matrix in the equation has the diagonal
components 4v2ð1þ g2Þ and the nonzero off-diagonal
components 4v2g, we can invert the matrix by using the
discrete Fourier transformation. The details are given in
Appendix C. We obtain

ð−1Þk−1b0αk¼ ġ

ffiffiffiffiffi
ns
2

r
1

2ðdAþ1Þ

×
XdA
l¼1

sin πl
dAþ1

1þg2−2gcos πl
dAþ1

sin
kπl

dAþ1
: ð91Þ

FIG. 5. The Lanczos coefficients (left) and the coefficients of
the CD term (right) for the one-dimensional transverse Ising
model in Eq. (79) at ns ¼ 200. For the Lanczos coefficients,
we denote b1; b3;… by the filled circle and b2; b4;… by the open
circle.
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The CD term is given by HCD ¼PdA
k¼1ð−1Þk−1b0αkWk

with dA ¼ ns=2. This result entirely agrees with that in
Refs. [38,49,50]. Since the Krylov basis at odd order in the
present case is given by a simple form Wk, it is natural to
find the same result without using the Krylov method.
We plot αk for several values of g in the right in Fig. 5.

For g ≠ 1, the Lanczos coefficients at even order are larger
than those at odd order; we see from Eq. (44) that αk is a
decreasing function in k. Then, we find that αk rapidly
decreases, which means that few-body interactions become
the dominant contributions to the CD term. It was discussed
in Refs. [38,50] that αk ∼ gk−1 for jgj < 1 and αk ∼ g−k−1

for jgj > 1 at the thermodynamic limit ns → ∞. For g ¼ 1,
the Lanczos coefficients take a constant value, and αk
decreases slowly as a function of k. At ns → ∞, an infinite
number of operators contributes to the CD term as
discussed in Ref. [38].

2. Approximate result with a longitudinal
magnetic field

The free fermion representation is possible only when
the direction of the magnetic field is perpendicular to the
direction of the interaction operator. Here, we treat the
nonintegrable Hamiltonian

HðtÞ ¼ gðtÞ
�
−v
Xns
n¼1

ZnZnþ1 − h
Xns
n¼1

Zn

�

þ ð1 − gðtÞÞ
�
−γ
Xns
n¼1

Xn

�
; ð92Þ

with gðtÞ ¼ t=tf. This is the standard form of the quantum
annealing Hamiltonian and a test bed for universal dynam-
ics of quantum phase transitions with a bias [103]. We
consider the time evolution from the ground state of Hð0Þ
toward that of HðtfÞ. The nonadiabatic effect makes the
system deviate from the instantaneous ground state, and we
apply the CD term to prevent the transition.
It is a complex problem to find and implement the exact

CD term for this Hamiltonian, and we consider a restricted
number of operators. As we discussed in the above
example, each term of HCDðtÞ involves an odd number
of Pauli Y operators. We keep the Y basis up to two-body
operators

Y ¼
�Xns

n¼1

Yn;
1ffiffiffi
2

p
Xns
n¼1

ðYnZnþ1 þ ZnYnþ1Þ;

1ffiffiffi
2

p
Xns
n¼1

ðYnXnþ1 þ XnYnþ1Þ
�
; ð93Þ

with ρðHÞ ¼ 1=ð2nsnsÞ. We act with L on these operators
to construct the M matrix. Using the X basis

X ¼
 Xns

n¼1

Zn;
Xns
n¼1

Xn;
Xns
n¼1

ZnZnþ1;

Xns
n¼1

XnXnþ1;
Xns
n¼1

YnYnþ1;

1ffiffiffi
2

p
Xns
n¼1

ðZnXnþ1 þ XnZnþ1Þ;
Xns
n¼1

Zn−1XnZnþ1;

1ffiffiffi
2

p
Xns
n¼1

ðZn−1XnXnþ1 þ Xn−1XnZnþ1Þ;

1ffiffiffi
2

p
Xns
n¼1

ðZn−1YnYnþ1 þ Yn−1YnZnþ1Þ
!
; ð94Þ

we can construct theM matrix with the size 9 × 3 and apply
the Lanczos algorithm to calculate the approximate CD
term. We note that the size of the M matrix can be reduced
to 3 × 3, keeping the result unchanged. The Krylov
dimension is given by d ¼ 7.
We calculate the approximate CD term and numerically

solve the time evolution with and without the approximate
CD term by setting the initial state as the ground state
of Hð0Þ for the system size N ¼ 6. In Fig. 6, we plot the
approximate CD term as a function of t and the fidelity

f ¼ jhψgsðtfÞjψðtfÞij2; ð95Þ

as a function of the annealing time tf. Here, jψðtÞi
represents the time-evolved state with or without the
approximate CD term, and jψgsðtÞi represents the instanta-
neous ground state of HðtÞ. f is close to unity when the
adiabaticity condition is satisfied.
We numerically confirm that the present method gives

the same result as the variational method, which is expected
from the general discussion. When h=v takes a large value,
the ground-state energy is well separated from the other
ones, and we find a large fidelity. As h=v decreases to zero,

FIG. 6. The time evolution for the quantum annealing
Hamiltonian in Eq. (92). We set N ¼ 6, γ=v ¼ 1.0, and h=v ¼
1.0 for the left and h=v ¼ 0.1 for the right. In the upper, we plot
ða1ðtÞ; a2ðtÞ; a3ðtÞÞ for the approximate CD term HCDðtÞ ¼
a1ðtÞY1 þ

ffiffiffi
2

p
a2ðtÞY2 þ

ffiffiffi
2

p
a3ðtÞY3. In the lower, we plot the

fidelity f for the time evolutions with HðtÞ (red open circle) and
with HðtÞ þHCDðtÞ (blue filled circle).
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the fidelity becomes smaller and finding the exact ground
state becomes difficult even with the approximate CD term
in use. As we see from the figure, many-body terms in the
CD term become important for small h, and we require
higher-order terms to improve the result by the approximate
CD driving.

B. One-dimensional XX model

1. Krylov method

In the example of the Hamiltonian in Eq. (79), O2k−1
incorporates kþ 1-body interactions only, which is a
specific property for the transverse Ising model. Here,
to study more complicated situations, we treat the one-
dimensional isotropic XY model (XX model) with the open
boundary condition

HðtÞ ¼ 1

2

Xns−1
n¼1

vnðtÞðXnXnþ1 þ YnYnþ1Þ þ
1

2

Xns
n¼1

hnðtÞZn:

ð96Þ

This model is also known to be equivalent to a free fermion
model. However, the coefficients are dependent on the site
index n, and it is generally a difficult task to find the exact
CD term.
The mapping to a bilinear form in fermion operators

denotes that we can find a closed algebra within a limited
number of operators. For ρðHÞ ¼ 1=2ns, we define

Vk
n¼

1ffiffiffi
2

p ðXnZnþ1…Znþk−1XnþkþYnZnþ1…Znþk−1YnþkÞ;

ð97Þ

Wk
n¼

1ffiffiffi
2

p ðXnZnþ1…Znþk−1Ynþk−YnZnþ1…Znþk−1XnþkÞ;

ð98Þ

with n ¼ 1; 2;…; ns and k ¼ 1; 2;…; ns − n. Since the
Hamiltonian is real symmetric, we define X ¼ ðfZng;
fVk

ngÞ and Y ¼ ðfWk
ngÞ to construct the M matrix with

the size nsðns þ 1Þ=2 × nsðns − 1Þ=2. We have

LWk
n ¼ −iðhnþk − hnÞVk

n − ivn−1V
kþ1
n−1 − ivnVk−1

nþ1

þ ivnþk−1Vk−1
n þ ivnþkVkþ1

n

þ δk;1
ffiffiffi
2

p
ivnðZnþ1 − ZnÞ: ð99Þ

For the Hamiltonian coefficients fvnðtÞgns−1n¼1 and
fhnðtÞgnsn¼1, we consider an annealing protocol. We take
vn as a constant value and consider the two cases: (i) uni-
form distribution vn ¼ v0 > 0 and (ii) random distribution
vn ¼ v0rn, where rn is a uniform random number with
rn ∈ ½−1; 1�. For a given set of fvng, we change the

magnetic field hnðtÞ from hnð0Þ¼h0≫ jvnj to hnðtfÞ¼0.
We take hnðtÞ¼h0ð1þ tanhfnðtÞÞ=2 with fnðtÞ ¼ n − 1þ
x0 − ðns − 1þ 2x0Þt=tf. The system becomes adiabatic
for large tf. The parameter x0 takes a large value so that
the conditions at t ¼ 0 and t ¼ tf are satisfied. We plot the
protocols used in the following calculations in the upper in
Fig. 7. The instantaneous eigenvalues for (i) and (ii) are,
respectively, plotted in the lower in Fig. 7. The Hamiltonian
commutes with M ¼Pns

n¼1 Zn, and we consider the block
withM ¼ ns − 2. The Hamiltonian takes a tridiagonal form,
and the size of the matrix is given by ns.
Although it is not difficult to implement the Lanczos

algorithm numerically for a considerably large value of ns,
we here take ns ¼ 6 to keep a good visibility of the plotted
points. In Fig. 8, we display the Lanczos coefficients and
the coefficients of the CD term for a fixed t. The Lanczos

FIG. 7. The protocol for the XX model in Eq. (96). The upper
represents hnðtÞ. We take hnðtÞ ¼ h0 ð1þ tanh fnðtÞÞ=2 and
fnðtÞ ¼ n − 1þ x0 − ðns − 1þ 2x0Þt=tf with x0 ¼ 4 and
ns ¼ 6. The lower represents the instantaneous eigenvalues
of the Hamiltonian for the uniform case (i) and the random
case (ii) with h0=v0 ¼ 2.0. In the following calculations, we
take v0tf ¼ 100.

FIG. 8. The Lanczos coefficients bn and the coefficients of the
CD term, αk, for the XX model with ns ¼ 6 at t=tf ¼ 0.5. The top
are results for case (i), uniform distribution, and the bottom are
for (ii), random distribution. For the Lanczos coefficients, we
denote b1; b3;… by the filled circle and b2; b4;… by the open
circle.
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coefficients show an oscillating behavior. For the uniform
case (i), the even order tends to be larger than the odd order,
and correspondingly jαkj shows a decreasing behavior. For
the random case (ii), we observe a complicated behavior
denoting that the higher-order contributions of the Lanczos
expansion are important.
The typical behavior of bn for a large ns is shown

in Fig. 9. For any choice of parameters, we observe a
flat band, which is considered to be a property for
“noninteracting” systems.
To study the properties of the obtained CD term, we next

decompose it. The Lanczos basis at odd order is written as

jθ2k−1i ¼

0
BBBBBB@

jθð2Þ2k−1i
jθð3Þ2k−1i

..

.

jθðnsÞ2k−1i

1
CCCCCCA
; ð100Þ

where jθðpÞ2k−1i has ns þ 1 − p components and the corre-
sponding Krylov basis involves p-body interactions. We
decompose the norm of the CD term as hHCDjHCDi ¼Pns

p¼2hHðpÞ
CDjHðpÞ

CDi, where jHðpÞ
CDi ¼ −b0

PdA
k¼1 αkjθðpÞ2k−1i,

and define the norm fraction

qðpÞ ¼ hHðpÞ
CDjHðpÞ

CDi
hHCDjHCDi

¼
PdA

k¼1 α
2
khθðpÞ2k−1jθðpÞ2k−1iPdA
k¼1 α

2
k

; ð101Þ

which weights the contribution of the p-body term. This is
a function of t and is plotted for each value of p in Fig. 10.
We can understand from the comparison between
the energy levels in Fig. 7 and qðpÞ in Fig. 10 that the
many-body interaction terms cannot be neglected when the
energy levels significantly change as a function of t.
It is generally understood from Eq. (5) that the CD term

gives a large contribution when some of the energy levels
are close to each other. We calculate the amplitude of the

CD term hHCDjHCDi, which is plotted in Fig. 11. As we

have discussed, the CD term is decomposed as HCD ¼P
p H

ðpÞ
CD and HCD ¼ ib0

P
k αkO2k−1. In the same figure,

we plot the result where the first term of the expansion is
kept for each decomposition. We also plot the first con-
tribution of the approximate CD term Hnc

CD obtained from
the expansion in Eq. (9). The coefficient αnc1 is obtained
from the minimization condition of Tr½ðḢ − iLHnc

CDÞ2�
[40,41]. The result implies that the approximate CD term
underestimates an abrupt growth of the CD term.
We note that this result does not necessarily lead to the

failure of the approximation method. The CD term is
independent of the choice of the initial condition of the time
evolution. In the present examples, as we see from Fig. 7,
the energy level crossings occur at higher energy levels.
The ground-state level is isolated from the other levels, and
we can expect that a large amplitude of the CD term is not
required for the control of the ground state. The situation is,
in this sense, opposite to that across a quantum phase

FIG. 9. The Lanczos coefficients of the XX model with
ns ¼ 100. We consider the random case (ii) and take t=tf ¼ 0.5.

FIG. 10. Time dependence of the norm fraction fqðpÞðtÞgnsp¼2 in
Eq. (101), weighting the contribution of the p-body interactions
to the CD term, for the XX model with ns ¼ 6. Many-body CD
terms are shown to be necessary when the energy levels change
significantly along the driving protocol.

FIG. 11. The norm of the CD term for the XX model at ns ¼ 6.
Bold solid curves “exact” (black) represent σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihHCDjHCDi

p
.

We use the replacement HCD → Hð2Þ
CD for dashed curves “two-

body” (blue),HCD → ib0α1O1 for dotted curves “k ¼ 1” (green),
and HCD → iαnc1 LḢ for thin solid curves “variational” (red),
where αnc1 is obtained from the variational method.
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transition, discussed in Sec. VI A 1, in which the gap
between the ground state and the first excited state closes,
and the norm of the CD exhibits a singularity [38,50].
In the present analysis, we set the measure ρðHÞ in the

inner product as ρðHÞ ¼ 1=2ns . When we control a state
with an energy level well separated from the other levels, it
is reasonable to consider a weighted measure such as the
Gibbs-Boltzmann distribution ρðHÞ ∝ e−βH. Although the
exact CD term is independent of the measure, each term of
the expansionHCD ¼ ib0

PdA
k¼1 αkO2k−1 is dependent on it.

Therefore, when we consider a truncation approximation in
the Krylov expansion, the choice of the measure strongly
influences the result. Since a nontrivial choice of the
measure makes the calculation of the inner product diffi-
cult, it is practically an interesting problem to find a
convenient form of the measure. For the ground state, it
is tempting to take the limit β → ∞ for ρðHÞ ∝ e−βH.
However, the measure is not positive definite in this limit,
and we find unexpected behavior, such as the vanishing of
the Lanczos coefficient bn for n < d − 1.

2. Toda equation

It is known that the exact CD term is analytically
obtained when the coefficients of the Hamiltonian satisfy
the Toda equations [104]

ḣnðtÞ ¼ 2½v2nðtÞ − v2n−1ðtÞ�; ð102Þ

v̇nðtÞ ¼ vnðtÞ½hnþ1ðtÞ − hnðtÞ�: ð103Þ

The CD term is then given by

HCDðtÞ ¼
1ffiffiffi
2

p
Xns−1
n¼1

vnðtÞW1
n; ð104Þ

withW1
n as in Eq. (98). This term satisfies Ḣ − iLHCD ¼ 0,

which means that the instantaneous eigenvalues of the
Hamiltonian are time independent.
Despite this simplicity, the corresponding Krylov expan-

sion is generally involved and is required at each time. The
time evolution of the Hamiltonian is reflected only in the
choice of the initial basis b0O0 ¼ Ḣ, and the expansion is
essentially insensitive to the choice. Except for the special
cases discussed below, we find that the Krylov dimension is
as large as the number of odd basis elements nsðns − 1Þ=2.
Highly nontrivial cancellations should be observed when
we calculate αk to give the result with qðpÞ ¼ δp;2.
As a very special case, we can find the result with d ¼ 2

and dA ¼ 1 when the coefficients are written as

hnðtÞ ¼ −
2h1

ns − 1

�
n −

ns þ 1

2

�
sin θðtÞ; ð105Þ

v2nðtÞ ¼
nðns − nÞ
ðns − 1Þ2 h

2
1 cos

2 θðtÞ: ð106Þ

Using the Toda equations, we obtain that a single equation
describes the time evolution

θ̇ðtÞ
cos θðtÞ ¼

2h1
ns − 1

: ð107Þ

For a given h1 and a initial condition θð0Þ, the coefficients
evolve, keeping the equidistant of hnðtÞ and a quadratic
form of vnðtÞ. In this case, we find that the first-order term
in the Krylov expansion is proportional to the exact CD
term, i.e.,

b0b1O1 ¼ LḢðtÞ ¼ iffiffiffi
2

p
�

2h1
ns − 1

�
2Xns−1
n¼1

vnðtÞW1
n: ð108Þ

Since LO1 − b1O0 ¼ 0, the expansion terminates at this
order, and we obtain a simple result with d ¼ 2.
It was discussed that the present choice of parameters

saturates the operator speed limit, i.e., the quantum speed
limit in unitary operator flows [72]. The nested commu-
tators span the Krylov space within a limited number of
operators.

VII. DISCUSSION AND SUMMARY

The use of the integral representation of the CD term
introduced in Ref. [41] has eased the study of STA in many-
body systems by removing the requirement for the exact
diagonalization of the instantaneous system Hamiltonian.
In its place, the CD term can be expressed as a series of
nested commutators that follows from the Baker-Campbell-
Hausdorff formula. The coefficients in such an expansion
can be determined through a variational principle [40].
In this work, we have introduced Krylov subspace

methods to provide an exact expression of the CD term.
The Krylov algorithm identifies an operator basis for
the terms generated in the series by nested commutators,
along with the set of Lanczos coefficients. Using these
two ingredients, we have provided an exact closed-form
expression of the CD term, circumventing the need
for a variational approach. When the dimension of the
Hilbert space is finite, the series by the Krylov basis is
finite, which is in contrast to the expansion using nested
commutators.
We have shown the applicability of our method in the

paradigmatic models in which the CD term admits an
exact closed-form solution. This includes single-particle
systems such as two- and three-level systems and the
driven quantum oscillator. Although the applications of the
present method can be laborious, the implementation of
our approach in these systems is a straightforward task,
applicable to any Hamiltonian with no special symmetry.
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We have further applied our formalism to a variety of
quantum spin chain models encompassing the cases in
which the system is integrable, nonintegrable, and disor-
dered. Specifically, we applied the construction of the CD
term in Krylov space to the one-dimensional transverse-
field quantum Ising model as a paradigmatic instance of an
integrable and solvable quasi-free fermion Hamiltonian.
We have further demonstrated our approach in the presence
of a longitudinal symmetry-breaking bias field that
breaks integrability. A similar study is possible for the
XX model where the free fermion representation is avail-
able. However, in that case, the site-dependent couplings
make the explicit construction of the CD term by the
standard method difficult, except for the special case when
the coupling constants are varied in time according to a
Toda flow, and the resulting CD term takes a simple local
form. We have explicitly constructed the CD term for
general and disordered couplings, and the result was
compared to the approximation method [40,41].
The main task of the Krylov algorithm is to construct the

basis operators for the minimal subspace in which the
dynamics unfolds and to determine the associated Lanczos
coefficients by iterations. The CD term is constructed as a
series involving only the odd-order operators of the Krylov
basis, with the corresponding coefficients in this compact
expansion being determined in terms of the Lanczos
coefficients. These properties imply that we can find some
implications by comparing the Lanczos coefficients of odd
order and those of even order. As we see from Figs. 5 and 8,
the Lanczos coefficients typically show an oscillating
behavior. When the coefficients at even order are larger
than those at odd order, the corresponding coefficients
of the CD term show a decaying behavior, and the CD term
is well approximated by the first several terms of the
expansion. We also find that the Krylov dimension is
even when the instantaneous eigenstates of the original
Hamiltonian are time independent. Thus, we can directly
find the dynamical properties of the system from the Krylov
algorithm.
The Krylov expansion is dependent on the choice of the

inner product. Although the CD term is independent of
the choice, each term in Eq. (28) is sensitive to it, a
feature that can be relevant when considering truncating
approximations. It is an interesting problem to find a
proper choice depending on the situation to treat. We can
also consider the truncation of the Krylov subspace. To
this end, it suffices to restrict the basis operators and to
construct the L matrix in the truncated space. Then, we
can apply the Lanczos algorithm to find an approximate
CD term. We note that even in that case the coefficients of
the CD term are obtained without using any variational
procedures, which gives a different result from the
variational method.
Our primary emphasis has been on exact and analytical

results formulating the CD term in Krylov space. In

addition, there exist powerful numerical algorithms that
largely simplify the computation of the Lanczos coeffi-
cients, used in our methodology. These are well established
in the literature on Krylov subspace methods and numerical
analysis [65]. They are further available in popular software
and numerical routines. They hold for any matrix of
Hessenberg form and replace the Gram-Schmidt diagonal-
ization by the use of Householder reflections, making the
implementation numerically stable and computationally
efficient.
Our work offers an interesting prospect to improve state-

of-the-art quantum algorithms by combining the formu-
lation of the CD term in Krylov space with the digital
approach for quantum simulation. This approach may
prove advantageous over the current formulation relying
on variational methods [43–48], suggesting the need to
generalize the error scaling in digitizing the CD term [105]
to Krylov space.
In summary, we have proposed a technique for con-

structing the CD term exploiting the Krylov operator space.
The method is flexibly applied to systems with many
degrees of freedom and can be a powerful general method
for understanding the dynamical properties of the system
in control. Suppression of nonadiabatic transitions in
discrete systems with many degrees of freedom is one of
the dominant problems in quantum technologies, such as
quantum simulation and quantum computing, and we hope
that our method will be an efficient technique inspiring
further studies.

Note added.—Recently, related results were reported in
Ref. [106].
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APPENDIX A: DERIVATION OF EQ. (45)

In Sec. IV D, we discussed the relation between the AGP
and the operator wave function jφðsÞi. The wave function
satisfies ∂jφðsÞi ¼ BjφðsÞi with the matrix B in Eq. (37)
and the initial condition jφð0Þi ¼ ð1; 0; 0;…ÞT . Since B is
independent of s, we can solve the differential equation by
the standard method for stationary states. Since iB is
Hermitian, the eigenvalue equation

iBjωni ¼ ωnjωni ðA1Þ
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is solved to find a real eigenvalue ωn. We also find that B
anticommutes with Z ¼ diagð1;−1; 1;−1;…Þ, which
gives the relation

iBZjωni ¼ −ωnZjωni: ðA2Þ
This identity shows that, for the eigenstate jωni with the
eigenvalue ωn, Zjωni represents an eigenstate with the
eigenvalue −ωn. We introduce the decomposition
jωni ¼ jωþ

n i þ jω−
n i, where

jω�
n i ¼

1� Z
2

jωni: ðA3Þ

Then, the associated orthonormality relations hωmjωni ¼
δm;n and h−ωmjωni ¼ 0 for ωm;n > 0 yield

hωþ
mjωþ

n i ¼ hω−
mjω−

n i ¼
1

2
δm;n: ðA4Þ

We also discuss in the main body of the paper that the zero-
eigenvalue state jϕi exists only when the dimension is odd.
Using the eigenstates discussed above, we can

generally write

jφðsÞi ¼
X

nðωn>0Þ
ðe−iωns þ eiωnsZÞjωnihωnjφð0Þi

þ jϕihϕjφð0Þi: ðA5Þ
The last term exists only for odd dimensions. We use this
representation for the integral form in Eq. (36). The
integration over s is performed to give

ð−1Þkαk ¼
X

nðωn>0Þ

2

iωn
h2k − 1jωnihωnj0i; ðA6Þ

where hnjψi denotes ψn for a vector jψi ¼ ðψ0;ψ1;…ÞT.
We also use h2k − 1jZ ¼ −h2k − 1j and h2k − 1jϕi ¼ 0 to
obtain this result. Taking the square and the sum over the
index, we obtain

X
k

α2k ¼
X
k

X
mðωm>0Þ

X
nðωn>0Þ

4

ωmωn

× h0jωmihωmj2k − 1ih2k − 1jωnihωnj0i

¼
X

mðωm>0Þ

X
nðωn>0Þ

4

ωmωn
h0jωmihω−

mjω−
n ihωnj0i

¼
X

nðωn≠0Þ

1

ω2
n
h0jωnihωnj0i: ðA7Þ

Thus, we find Eq. (45). Since iB is related to the matrix T in
Eq. (22) by a unitary transformation, we can also writeX

k

α2k ¼ h0jðQTQÞ−2j0i: ðA8Þ

APPENDIX B: KRYLOV BASIS FOR HARMONIC
OSCILLATOR

In this appendix, we construct the Krylov basis for the
harmonic oscillator Hamiltonian in Eq. (64). The derivative
of the Hamiltonian sets the zeroth-order basis jθ0i. It is
given by

Ḣ ¼ −q̇0

ffiffiffiffiffiffiffiffiffi
mω3

2

r
ðC† þ CÞ þ ω̇

2
ðC†2 þ C2Þ þ ω̇

ω
H: ðB1Þ

Evaluating the commutator of the operators that appeared
in Ḣ, we obtain

LðC† þ CÞ ¼ ωðC† − CÞ; ðB2Þ

LðC†2 þ C2Þ ¼ 2ωðC†2 − C2Þ: ðB3Þ

These lead to new operators that can, however, be
expressed in terms of the original operator set as

LðC† − CÞ ¼ ωðC† þ CÞ; ðB4Þ

LðC†2 − C2Þ ¼ 2ωðC†2 þ C2Þ: ðB5Þ

Since the original Hamiltonian is real symmetric, the L
matrix has the structure in Eq. (47). Using these results, we
can set

X1 ¼
C†Cþ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðC†Cþ 1

2
Þ2i

q ; ðB6Þ

X2 ¼
C† þ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðC† þ CÞ2i

p ; ðB7Þ

X3 ¼
C†2 þ C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðC†2 þ C2Þ2i

p ðB8Þ

and

Y1 ¼ i
C† − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðC† − CÞ2i
p ; ðB9Þ

Y2 ¼ i
C†2 − C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðC†2 − C2Þ2i
p ; ðB10Þ

where h·i denotes the average Tr½ρðHÞð·Þ�. Since the
dimension of the Hilbert space is infinite in the
present system, we need to choose the density operator
ρðHÞ in the inner product in a proper way. For example,
we can use the canonical Gibbs-Boltzmann distribution
ρðHÞ ¼ e−βH=Tre−βH.
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Now, we obtain

M ¼ iω

0
B@

0 0

1 0

0 2

1
CA: ðB11Þ

The Krylov basis is constructed by choosing the initial
normalized vector jθ0i ¼ ðx; y; zÞT. We obtain

jθ1i ¼
−iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4z2
p �

y

2z

�
; ðB12Þ

jθ2i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 16z2 − ðy2 þ 4z2Þ2
p

×

2
64
0
B@

0

y

4z

1
CA − ðy2 þ 4z2Þ

0
B@

x

y

z

1
CA
3
75; ðB13Þ

jθ3i ¼ −i
yz
jyzj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4z2

p �−2z
y

�
; ðB14Þ

jθ4i ¼
xyz
jxyzj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 16z2 − ðy2 þ 4z2Þ2

p
0
B@

3yz

−4zx
xy

1
CA: ðB15Þ

The corresponding Lanczos coefficients are given by

b1 ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4z2

q
; ðB16Þ

b2 ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 16z2 − ðy2 þ 4z2Þ2

y2 þ 4z2

s
; ðB17Þ

b3 ¼
6ωjyzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy2 þ 4z2Þ½y2 þ 16z2 − ðy2 þ 4z2Þ2�
p ; ðB18Þ

b4 ¼ 2ωjxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4z2

y2 þ 16z2 − ðy2 þ 4z2Þ2

s
: ðB19Þ

The expansion terminates at the fifth order, which means
d ¼ 5 and dA ¼ 2 assuming x, y, and z are nonzero. As we
discuss in the main body of the paper, the condition q̇0 ¼ 0
gives y ¼ 0, and we obtain d ¼ 3 and dA ¼ 1. For ω̇ ¼ 0,
one finds x ¼ z ¼ 0 and obtains that d ¼ 2 and dA ¼ 1.

APPENDIX C: KRYLOV BASIS FOR THE
ONE-DIMENSIONAL TRANSVERSE-FIELD

ISING MODEL

For the Hamiltonian in Eq. (79), we apply the Krylov
algorithm to find

O0 ¼ −M; ðC1Þ

b0 ¼
ffiffiffiffiffi
ns

p
2

vġ; ðC2Þ

O1 ¼ −iW1; ðC3Þ

b1 ¼
ffiffiffi
2

p
v; ðC4Þ

b2O2 ¼
ffiffiffi
2

p
v½−VX

2 þ gðVX
1 − VY

1 Þ�; ðC5Þ

b2 ¼
ffiffiffi
2

p
v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g2

q
; ðC6Þ

O3 ¼ iW2; ðC7Þ

b2b3 ¼ 4v2g: ðC8Þ

This result implies that O2k−1 ¼ ð−1ÞkiWk at odd order.
Assuming that the relation holds for O2k−1, we calculate
L2O2k−1 to find

b2kb2kþ1O2kþ1¼4v2gð−1Þkþ1iWkþ1

þð−1Þki½4v2ð1þg2Þ−ðb22k−1þb22kÞ�Wk:

ðC9Þ

Since this operator is orthogonal to Wk, b22k−1 þ b22k ¼
4v2ð1þ g2Þ must be satisfied. Then, from the normaliza-
tion condition, we obtain O2kþ1 ¼ ð−1Þkþ1iWkþ1 and
b2kb2kþ1 ¼ 4v2g.
For a given set of Lanczos coefficients, αk is obtained

by solving Eq. (33). Here, we denote the matrix in the
equation by K and represent its spectral decomposition as
K ¼PdA

k¼1 λkjϕkihϕkj. The eigenvalues and eigenstates are
explicitly obtained as

λk ¼ 4v2
�
1þ g2 − 2g cos

πk
dA þ 1

�
; ðC10Þ

jϕki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

dA þ 1

s
0
BBBBBB@

sin πk
dAþ1

− sin 2πk
dAþ1

..

.

ð−1ÞdA−1 sin dAπk
dAþ1

1
CCCCCCA
: ðC11Þ

Then, we can write

αk ¼
XdA
l¼1

−b1
λl

hkjϕlihϕlj1i ðC12Þ

and find Eq. (91).
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