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We study two-dimensional (2D) droplets of noninteracting electrons in a strong magnetic field, placed in
a confining potential with arbitrary shape. Using semiclassical methods adapted to the lowest Landau level,
we obtain near-Gaussian energy eigenstates that are localized on level curves of the potential and have a
position-dependent height. This one-particle insight allows us to deduce explicit formulas for expectation
values of local many-body observables, such as density and current, in the thermodynamic limit. In
particular, correlations along the edge are long-ranged and inhomogeneous. As we show, this is consistent
with the system’s universal low-energy description as a free 1D chiral conformal field theory of edge
modes, known from earlier works in simple geometries. A delicate interplay between radial and angular
dependencies of eigenfunctions ultimately ensures that the theory is homogeneous in terms of the canonical
angle variable of the potential, despite its apparent inhomogeneity in terms of more naïve angular
coordinates. Finally, we propose a scheme to measure the anisotropy by subjecting the droplet to
microwave radiation; we compute the corresponding absorption rate and show that it depends on the
droplet’s shape and the waves’ polarization. These results, both local and global, are likely to be observable
in solid-state systems or quantum simulators of 2D electron gases with a high degree of control on the
confining potential.
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I. INTRODUCTION

Quantum Hall (QH) droplets are mesoscopic two-
dimensional (2D) electron gases placed in a strong
perpendicular magnetic field and confined by some electro-
static potential. They lie at the heart of the QH effect [1–3]
and provide a key benchmark for topological phases of
matter as a whole. In practice, however, the majority of
detailed analytical studies of QH droplets and their low-
energy edge excitations [4–9] are limited to highly

symmetric cases, typically involving isotropic traps or
harmonic potentials that are translation invariant in one
direction [10,11]. This is especially troubling as far as edge
modes are concerned, since it is not obvious that they are

FIG. 1. 2D electron droplet (shaded area) placed in a strong
perpendicular magnetic field and confined by a typical aniso-
tropic edge-deformed potential well (10). At leading order in the
thermodynamic limit, the droplet’s boundary (thick black curve)
coincides with the equipotential of the trap at the Fermi energy.
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universally described by a homogeneous chiral Luttinger
liquid when the gradient of the potential makes their
propagation velocity position dependent [12–14].
The goal of the present paper is to address this lack of

analytical results by predicting the behavior of many-body
observables near the edge of essentially any anisotropic
droplet, as illustrated in Fig. 1. We achieve this by
providing general, explicit formulas for the density, current,
and correlations in the regime of strong magnetic fields. We
also study the corresponding low-energy edge modes,
which are described by a free-fermion chiral conformal
field theory (CFT) whose Fermi velocity is constant
provided distances along the boundary are measured by
the canonical angle coordinate determined by the potential.
As we explain, this universal result stems from a delicate
interplay between the radial and angular dependencies of
anisotropic wave functions, and only becomes manifest
upon suitably “averaging” over the radial direction.
Such phenomena are likely to be directly observable with

local imaging techniques in condensed matter systems
[12,14–22] or quantum simulators [23–30]. In addition, we
predict two effects that probe the anisotropywithout requiring
local imaging. The first consists of shape-dependent quantum
corrections to the velocity and dispersion of edge modes,
measurable in both genuine QH samples [31–34] and their
cold-atom simulators [35–37]; the second is the microwave
absorption spectrum [38] of anisotropic QH droplets, whose
rich pattern of peaks with a polarization-dependent magni-
tude should similarly be detectable in view of the recent
experiment [39].
Related questions have appeared in the literature. Indeed,

random potentials with no symmetries are essential to
model disorder, whose importance for the robustness of QH
physics is hard to overstate [40–42]. A relevant series of
works in that context is Refs. [43,44], which study the
density and current of QH droplets with arbitrary poten-
tials, at finite temperature, generally including Landau-
level mixing, in the semiclassical limit of strong magnetic
fields and weak traps [41,42]. However, the coherent states
used in these references only provide a limited resolution at
the single-particle level, precluding the computation of
low-energy dynamics and long-range correlations along the
boundary. Our objective here is instead to find explicit one-
particle wave functions, which will depend on the shape of
the potential, and use these as a starting point for many-
body objects.
Regarding electronic edge correlations, similar issues

have been addressed in the context of classical 2D
Coulomb gases, where holomorphic methods provide a
handle on droplets of pretty much any shape [45–51]. The
most-studied case of harmonic traps even involves an exact
correspondence between the quantum Landau problem and
the appropriate Coulomb gas [52,53]. However, no such
matching holds for generic confining potentials, so the two
setups really need to be treated separately. In other words,

the vast majority of anisotropic QH droplets admit no
faithful Coulomb-gas description.
Finally, the results put forward here may be seen as

microscopic, first-principles derivations of quantities that
are normally studied within less-controlled approximation
schemes in the geometry of the QH effect [54–62]. Our
hope is thus to build a bridge between these theoretical
works and concrete observations that may soon be acces-
sible in tabletop experiments with a high degree of control
on the confining potential [29,30].
Here is the plan of the paper. To begin, Sec. II summa-

rizes our methods and results, avoiding technical details.
The next two sections are devoted to one-body physics in
the lowest Landau level: Sec. III first discusses generalities
on semiclassical holomorphic wave functions, and Sec. IV
presents a detailed calculation of the semiclassical energy
spectrum in a broad class of “edge-deformed” potentials of
particular interest. This leads to Sec. V, where we inves-
tigate the many-body density, current, correlations, and
low-energy edge modes of anisotropic droplets. Last,
Sec. VI is devoted to the microwave absorption spectrum,
seen as a realistic global probe of anisotropy. We conclude
in Sec. VII by discussing several future directions and open
questions. To streamline the text, some details are deferred
to Appendices A–E.

II. SETUP AND MAIN RESULTS

This section is an overview of our methods and results,
beginning with the general setup (see Fig. 1): AQH droplet
in a strong magnetic field, with a trapping potential that
varies slowly compared to the magnetic length [41,42,63].
We explore this regime by developing a powerful WKB
ansatz adapted to the lowest Landau level (LLL), inspired
by semiclassical tools for holomorphic wave functions
[64–67], in general, and quasimodes [68,69], in particular.
Concretely, we obtain the one-particle eigenfunctions and
energy spectrum for a class of edge-deformed potentials
representing the most general leading-order anisotropy of
any star-shaped QH sample [70]. We then apply these
insights to the full many-body setting of an anisotropic QH
droplet, providing explicit and practical formulas for both
local and global many-body observables, respectively
depicted in Figs. 2 and 4.

A. Semiclassical limit in the LLL

Consider spin-polarized noninteracting electrons of mass
M and charge q in the plane. Each electron is governed by a
Landau Hamiltonian with an anisotropic potential VðxÞ,

Hone-body ¼
1

2M
ðp − qAÞ2 þ VðxÞ; ð1Þ

where x denotes position, p is canonical momentum, andA
is the vector potential of the magnetic field B ¼ dA. The
latter is taken to be uniform, i.e., B ¼ Bdx ∧ dy for some
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constant B ≠ 0 in terms of Cartesian coordinates ðx; yÞ,
and we systematically work in symmetric gauge A ¼
1
2
Bðxdy − ydxÞ. (We view A and B as differential forms,

which simplifies some notation but is otherwise incon-
sequential.) For simplicity, we also assume that VðxÞ is
“monotonic,”meaning that it has a unique global minimum
away from which it grows monotonically but is otherwise
general [71]. The level curves or equipotentials of VðxÞ are
therefore nested and take the form shown in Fig. 2(a).
Finally, we assume throughout that the potential is weak
relative to the magnetic field [41–44,72,73], in that it is
nearly constant on length scales comparable to the mag-
netic length l given by

l2 ≡ ℏ
qB

; ð2Þ

where qB > 0without loss of generality [74]. Note that the
assumption of monotonicity is natural for QH samples: The
potential near the edge of any realistic droplet is guaranteed
to be monotonic, and this ultimately determines the low-
energy physics regardless of bulk details.
In the regime of slowly varying potentials, the

operator VðxÞ is a small perturbation of the pure Landau
Hamiltonian ∝ ðp − qAÞ2 and the eigenstates of Hone-body

in Eq. (1) are well approximated by wave functions in the
LLL. For instance, if the potential VðxÞ ¼ V0ðr2=2Þ is
isotropic, any eigenfunction of Hone-body has some definite
angular momentum ℏm with integer m. Each eigenstate
thus reduces at strong B to a standard LLL wave function in
symmetric gauge,

ϕmðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πl2

p zmffiffiffiffiffiffi
m!

p e−jzj2=2; ð3Þ

where m ≥ 0 and we introduced the dimensionless com-
plex coordinate

z≡ xþ iyffiffiffi
2

p
l

: ð4Þ

The wave function (3) reaches its maximum on the circle
jzj ¼ ffiffiffiffi

m
p

, away from which it decays in a Gaussian
manner with a width of the order of l. Our goal will be
to obtain similar approximate eigenstates for anisotropic
traps, using the squared magnetic length (2) as a small
parameter [75]. Equivalently, we shall carry out a semi-
classical (small ℏ), high-field (large B) expansion.
In practice, the projection to the LLL is implemented by

the (one-body) operator P≡P∞
m¼0 jϕmihϕmj whose kernel

can be obtained from the wave functions (3):

hz; z̄jPjw; w̄i ¼ 1

2πl2
e−ðjzj2þjwj2Þ=2ezw̄: ð5Þ

This kernel is manifestly Gaussian and reduces to a delta
function in the formal semiclassical limit l → 0. At small
but finite l, the projection (5) makes space noncommuta-
tive in the sense that LLL-projected position operators
satisfy the Heisenberg algebra

½PxP;PyP� ¼ il2: ð6Þ

One can thus think of the plane R2 as a phase space whose
canonical variables are ðx; yÞ. This interpretation pervades

FIG. 2. Intensity plots of: (a) The many-body density (16) along with several equipotentials (dashed curves), for a droplet with
N ¼ 100 electrons confined by the edge-deformed trap (10) used in Fig. 1. The constancy of the bulk density and its decay at the
boundary are manifest. (b) The norm of the current (17) for the same droplet, together with the edge (black curve) on which it is
localized. (c) The norm of the correlation function (18) for the same droplet, plotted as a function of x2 ¼ ðx; yÞ for a fixed point (black
cross) x1 ¼ ðl ffiffiffiffiffiffiffiffiffiffiffiffi

Nλð0Þp
; 0Þ on the edge. Long-range correlations along the boundary are clearly visible and satisfy the asymptotics (19)

away from the coincident point x1 ¼ x2. In each case, the color coding goes from black to white, respectively corresponding to
vanishing and maximal values of the plotted function.
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much of the QH literature [63,76–85] and will similarly
affect our discussion. Indeed, projecting the Hamiltonian
(1) to the LLL and looking for its spectrum leads to the
eigenvalue equation

PVPjψi ¼ Ejψi; ð7Þ

where the unknowns are the energy E and the quantum
state jψi in the LLL [86]. Note that the kinetic term in
Eq. (1) has disappeared in Eq. (7): The potential itself plays
the role of an effective Hamiltonian in the noncommutative
phase space ðx; yÞ.
Exact solutions of Eq. (7) are generally out of reach, so

one has to resort to approximations. The semiclassical
one that we shall use is well known in the QH context
[41–44,68,69]. More precisely, we will seek solutions of
Eq. (7) labeled by a large quantum numberm∈N, seen as a
generalization of angular momentum. This large-m limit is
accompanied by a small-l limit such that the area 2πl2m
remains fixed. In that regime, the mth eigenstate is
approximately Gaussian and localized on an equipotential
γm of VðxÞ, enclosing a quantized area such that the Bohr-
Sommerfeld condition holds:I

γm

xdy ¼ 2πl2m: ð8Þ

Equivalently, the flux of the magnetic field through the area
enclosed by γm is m times the flux quantum. The energy of
the mth state is then

Em ¼ E0
m þ l2E1

m þOðl4Þ; ð9Þ

where E0
m ¼ VðγmÞ is the leading classical approximation

and the quantum correction E1
m involves the Laplacian of

the potential and the curvature of the equipotential γm
[68,69]. The more familiar Wentzel-Kramers-Brillouin
(WKB) approximation of 1D quantum mechanics [87]
includes (topological) Maslov corrections on the right-hand
side of Eq. (8); we will encounter similar corrections below,
although their topological interpretation is prevented by a
subtle distinction between real and Kählerian polarizations
in geometric quantization [68,69].

B. One-body results

The semiclassical limit just outlined applies to any
(monotonic) weak potential. In practice, our main concern
is the physics of QH droplets near the edge, where the
details of the bulk potential are irrelevant. Most of our
explicit results will therefore be given for edge-deformed
potentials, obtained as follows. Consider anymonotonically
increasing function V0ðsÞ for s ≥ 0, and let λðφÞ be any
strictly positive 2π-periodic function of the angle
φ∈ ½0; 2πÞ. We normalize λðφÞ so that

H
dφλðφÞ ¼ 4π,

writing
H
dφ as a shorthand for

R
2π
0 dφ. Then, adopt polar

coordinates in the plane such that xþ iy ¼ reiφ and define
the potential

Vðr;φÞ≡ V0

�
r2

λðφÞ
�
: ð10Þ

We refer to this as an edge-deformed trap because it arises
from a deformation r2 ↦ r2=λðφÞ that changes the shape of
the boundary of isotropic droplets in a finite and smooth
way, even in the thermodynamic limit where the droplet’s
area goes to infinity [88]. The corresponding equipotentials
enclose star-shaped regions in the plane that only differ
from one another by their overall scale [70]. In this sense,
the class of potentials (10) is generic as far as edge effects
are concerned. It is partly inspired by earlier works on the
W1þ∞ algebra [89–95], where it was argued that infini-
tesimal deformations of the form (10) span a Virasoro
algebra.
The traps (10) allow for explicit calculations of the

semiclassical energy spectrum, generalizing the known
isotropic formulas reviewed in Appendix A. Indeed, we
show in Sec. IV that the relevant eigenfunctions, solving
the LLL eigenvalue problem (7), are Gaussians localized on
equipotentials r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mλðφÞp

at large quantum numbersm.
They can be written in polar coordinates as

ψmðr;φÞ ∼
eiΘmðr;φÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πl2σðφÞ

p e−a
2=σðφÞ2

ð2πmÞ1=4 ; ð11Þ

where Θmðr;φÞ is a position-dependent phase given below
in Sec. IV D, a≡ ðr − l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mλðφÞp Þ=l ffiffiffiffiffiffiffiffiffi

λðφÞp
is a dimen-

sionless coordinate encoding the deviation from the equi-
potential, and the quantity

σðφÞ≡
ffiffiffiffiffiffiffiffiffi
2

λðφÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
λ0ðφÞ
2λðφÞ

�
2

s
ð12Þ

determines the local height of the wave function. It is worth
stressing the simple geometric interpretation of these objects.
First, the ratioa=σðφÞ in the exponential inEq. (11)measures
the (signed) distance to the equipotential, namely

d ¼
ffiffiffi
2

p
l

a
σðφÞ ð13Þ

for large m; see Fig. 3. The Gaussian factor in Eq. (11) thus
exhibits the expected “quantum smearing” ofwave functions
in a strong but finite magnetic field [43,44,67], which would
be missed by the leading classical approximation (l2 ¼ 0).
Second, the function (12) is proportional to the Euclidean
norm of the velocity of guiding centers, namely

kvðφÞk ¼
ffiffiffiffiffiffiffi
2m

p lV 0
0ðl2mÞ
jBj σðφÞ ð14Þ
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on the level curve r ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mλðφÞp

of an edge-deformed
potential (10). The probability density corresponding to
the wave function (11) is thus proportional to 1=kvðφÞk,
in agreement with classical intuition.
As for the energy of the state (11), its expansion (9) up to

Oðl4Þ contributions turns out to be

Em ∼ VðγmÞ þ
l2

2
Ωm

�
1þ

�
1þ Γm

Ωm

�I
dφ
4π

λðφÞσðφÞ2
�
;

ð15Þ
where VðγmÞ ¼ V0ðl2mÞ is the leading (classical) term and
the first quantum correction involves derivatives Ωm ≡
V 0
0ðl2mÞ > 0 and Γm ≡ l2mV 00

0ðl2mÞ. Note that our semi-
classical regime ensures that Γm=Ωm is finite at large m
[96]. The mth energy is thus determined by the potential
and its derivatives on an equipotential that satisfies the
quantization condition (8), in accordance with general
theorems for holomorphic WKB theory [68,69].

C. Many-body results

Now consider the ground state of a large number N ≫ 1
of free spin-polarized electrons, each governed by the
single-particle Hamiltonian (1). This ground state is a
Slater determinant of wave functions whose large-m
behavior is the Gaussian (11). As we show in Secs. V
and VI, the ensuing many-body density, current, correla-
tions, low-energy effective field theory, and microwave
absorption spectrum can all be written in closed form in
terms of λðφÞ and the number N of fermions.
Concretely, the density ρðxÞ ¼ P

N−1
m¼0 jψmðxÞj2 has the

expected bulk value ρ ∼ 1=2πl2, while its form near the
edge at r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NλðφÞp

is given by a complementary error
function:

ρðr;φÞ ∼ 1

4πl2
erfc

�
dðr;φÞ

l

�
; ð16Þ

where dðr;φÞ is the (signed) distance to the droplet’s edge
[67], given by Eq. (13) for m ¼ N. As a result, the ground

state forms a star-shaped droplet with total area 2πNl2

and a nonzero width inherited from that of one-body
wave functions. Turning to the current J ¼ P

N−1
m¼0ð1=2iÞ×

ðψ�
mdψm − ψmdψ�

m − 2iqjψmj2AÞ written as a one-form in
polar coordinates, one has

Jðr;φÞ∼−
exp

�
−dðr;φÞ2

l2

�
ð2πl2Þ3=2σðφÞ

�
l

ffiffiffiffi
N

p
dφþ λ0ðφÞ

2λðφÞ3=2dr
�
: ð17Þ

This is localized on the edge and tangent to it, missing the
bulk behavior Ji ∝ εij∂jV as expected in the LLL [72,73].
Finally, the two-point correlation function

Cðx1;x2Þ ¼
XN−1

m¼0

ψ�
mðx1Þψmðx2Þ ð18Þ

behaves near the edge as

Cðx1;x2Þ ∼
eiΘNðx1;x2Þ

4πl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðφ1Þσðφ2Þ

p i exp
�
− d2

1

2l2 −
d2
2

2l2

�
ffiffiffiffiffiffiffiffiffi
2πN

p
sin

�R
φ1
φ2

dφ
4
λðφÞ

�
ð19Þ

with d1 ¼ dðjx1j;φ1Þ and d2 ¼ dðjx2j;φ2Þ in polar coor-
dinates, while ΘNðx1;x2Þ is a complicated overall phase.
Note again the Gaussian localization at the edge, as well as
the long-range correlation ∝ sinð…Þ−1 typical of gapless
fermions. Indeed, we will confirm that the underlying low-
energy edge modes are described by a chiral CFT of free
fermions; see the action functional (74) below. The corre-
sponding angular Fermi velocity ωF ∼ l2ΩN=ℏ [with ΩN
defined below Eq. (15)] is constant along the boundary
when measured in terms of the canonical angle variable of
the potential (10), namely

θðφÞ≡ 1

2

Z
φ

0

dα λðαÞ: ð20Þ

By contrast, the “lab velocity” measured, e.g., in terms of
Euclidean distances is generally nonconstant along the
edge [recall Eq. (14)].
The canonical angle coordinate (20) crucially affects the

microwave absorption spectrum. Indeed, we show in
Sec. VI that an anisotropic droplet’s electromagnetic
absorption rate Γ at frequency ω is given by

ΓðωÞ
2πNl2

¼ q2E2

16πℏ2

X∞
p¼1

pδðω − pωFÞ

×

				
I

dφ
2π

cosðφ − αÞeipθðφÞλðφÞ3=2
				2; ð21Þ

FIG. 3. The second exponential in Eq. (11) involves the signed
distance d between the point x ¼ (r cos ðφÞ; r sinðφÞ) and the
equipotential at r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mλðφÞp

. At large m, the equipotential is
locally nearly straight, so the expression (13) of d in terms of the
angle φ and the radial deviation a defined below Eq. (11) follows
from elementary Cartesian geometry.
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where the angle α determines the direction of the linearly
polarized electric field with amplitude E. This predicts a
series of peaks of absorption at resonance frequencies pωF,
as anticipated in Ref. [38]; see Fig. 4 for a typical plot. For
each absorption peak, both its height and its dependence on
α involve the deformation function λðφÞ and the canonical
angle (20). Equation (21) thus suggests that microwave
absorption spectroscopy can be used to “hear the shape of a
droplet.”

III. ANISOTROPIC STATES FROM AREA-
PRESERVING DEFORMATIONS

This section presents the WKB ansatz [see Eq. (25)] that
forms the basis of all our later considerations. The structure
is ultimately quite simple: Given a monotonic potential
VðxÞ, we pick one of its equipotentials, γm, with quantized
area (8). We then build a wave function with winding m,
perfectly localized on γm, and finally project it to the
LLL using the operator (5). General theorems on Kählerian
semiclassical analysis [64–66,68,69] ensure that LLL-
projected eigenstates satisfying Eq. (7) can indeed be
built in this way. The detailed application of this method
to edge-deformed traps (10) is given in Sec. IV.
Note that what follows relies on the mathematics of

area-preserving diffeomorphisms, which is not reviewed in
detail. We refer instead to Ref. [88] for an introduction
whose language is similar to that adopted here. For
more general discussions in the symplectic context, see
Refs. [97,98].

A. Potentials in action-angle variables

Let us be more precise about the geometry of the setup,
remaining at the classical level for now. We pick a smooth
potential VðxÞ and assume as in Sec. II that it is monotonic.
Its unique global minimum is thus surrounded by nested
level curves, and one can always find an area-preserving
deformation of the plane that sends each equipotential on a
circle [97]. In other words, one can find an invertible
smooth map F∶R2 → R2 with unit Jacobian such that

VðFðxÞÞ ¼ V0ðr2=2Þ; ð22Þ
where the trap on the right-hand side is isotropic, depend-
ing only on r ¼ jxj. If F is the identity (or a rotation around
the origin), then V was isotropic to begin with and its
eigenstates satisfying Eq. (7) are the standard wave
functions (3) with definite angular momentum. In the more
general case of arbitrary V, Eq. (22) suggests using F to
map the eigenstates (3) on those corresponding to our
general VðxÞ.
The existence of F in Eq. (22) is guaranteed by the

monotonicity and smoothness of V, and is equivalent to the
existence of globally well-defined canonical action-angle
variables. In fact, we can use this to write F in a more
explicit form that will be useful below. Let therefore
ðl2K; θÞ be action-angle coordinates for the potential
VðxÞ, where K ≥ 0 is dimensionless and θ∈ ½0; 2πÞ is a
genuine angle. They are normalized so that l2dK ∧ dθ ¼
dx ∧ dy, which is to say that their Poisson bracket reads
fl2K; θg ¼ l2 in terms of the phase space ðx; yÞ whose
bracket stems from the commutator (6). Then, the map
ðx; yÞ ↦ ðl2K; θÞ is an area-preserving diffeomorphism in
terms of which VðxÞ ¼ V0ðl2KðxÞÞ is invariant under
rotations of θ. To be specific, write these coordinates as
functions Kðx; yÞ and θðx; yÞ and let the inverse be x ¼
FðK; θÞ and y ¼ GðK; θÞ for some functions ðF;GÞ; this
inverse is nothing but the deformation F in Eq. (22). In
other words, knowing the action-angle variables of a
potential V allows us to map it on its (unique) isotropic
cousin V0, which, in turn, can be used to relate the
corresponding anisotropic eigenstates to those in Eq. (3).
These considerations apply to any monotonic anisotropic

trap, in which case one typically encounters intricate area-
preserving maps with complicated action-angle variables.
In practice, we will focus in Sec. IV on the edge deforma-
tions mentioned below Eq. (10). This will enable us to
tackle a broad range of setups where such complexities
become manageable while still capturing key features of
generic anisotropic droplets, especially as far as their
boundary properties are concerned. For now, we remain
general and turn to quantum aspects.

B. Anisotropic eigenstates

Using the action-angle variables ðl2K; θÞ for VðxÞ, the
statements around Eqs. (8)–(9) can be turned into formulas

FIG. 4. Intensity plot of the absorption spectrum (21) for the
same droplet as in Figs. 1 and 2, with delta functions replaced by
Lorentzian distributions to account for the finite lifetime of
quasiparticles in real systems. Following the dominant first peak
at ω ¼ ωF (the angular Fermi velocity), the absorption rate
displays a series of weaker resonances at higher frequencies,
with visibly angle-dependent magnitudes. The separation be-
tween peaks is clear despite the fact that the resolution chosen
here is lower than what can be achieved in experiments [39].
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and eventually yield anisotropic eigenfunctions that satisfy
Eq. (7). Indeed, the Bohr-Sommerfeld quantization con-
dition (8) implies that the equipotential γm is the set of
points in R2 for which K ¼ m. Now consider the following
quantum state, perfectly localized on γm:

jΨmi≡ 2πl2

I
dθ nðθÞeimθjFðm; θÞ; Gðm; θÞi: ð23Þ

Here, the factor 2πl2 is included for later convenience, the
state jF;Gi gives a delta function hxjFðm; θÞ; Gðm; θÞi ¼
δ2ðx − Fðm; θÞÞ, and nðθÞ is some complex periodic
function. The latter does not wind upon completing one
turn in the plane along the equipotential, so all the winding
of the integrand in Eq. (23) is encoded in the phase eimθ.
We emphasize that Eq. (23) is analogous to the standard

WKB ansatz ψðxÞ ∼ eiS0ðxÞ=ℏeiS1ðxÞ in 1D. Indeed, the phase
eimθ is the leading classical contribution eiS0=ℏ for m ≫ 1,
corresponding to the geometrical-optics approximation of
the wave function, while nðθÞ is the physical-optics
quantum correction eiS1 that needs to satisfy a transport
equation in order for the Schrödinger equation to hold [87].
The only difference lies in the interpretation of areas in the
plane as values of an “action,” which ultimately stems from
the noncommutative geometry (6) of LLL physics. Note
that nðθÞ is the only unknown in Eq. (23); in fact, most of
the WKB method below will concern the derivation of a
transport equation for nðθÞ from the requirement that
Eq. (7) be satisfied.
Starting from Eq. (23), it is straightforward to build a

state in the LLL thanks to the projector (5): Denoting

ψmðz; z̄Þ≡ hz; z̄jPjΨmi; ð24Þ

one finds the wave function

ψmðz; z̄Þ ¼ e−jzj2=2
I

dθ nðθÞeimθe−½Fðm;θÞ2þGðm;θÞ2�=4l2

× ez½Fðm;θÞ−iGðm;θÞ�= ffiffi
2

p
l: ð25Þ

This is manifestly of the form e−jzj2=2 times a holomorphic
function that depends on the action variable l2m and the
uniformizing map F in Eq. (22). It will be our starting point
for the semiclassical solution of the eigenvalue equation (7).
As a consistency check, note that Eq. (25) simplifies for

isotropic potentials. In that case, the action-angle variables
are essentially polar coordinates l2K ¼ r2=2 and θ ¼ φ,
and the map in Eq. (22) is FðxÞ ¼ x, merely implementing
a change from polar to Cartesian coordinates: Fðm; θÞ ¼
l

ffiffiffiffiffiffiffi
2m

p
cosðθÞ and Gðm; θÞ ¼ l

ffiffiffiffiffiffiffi
2m

p
sinðθÞ. One can then

verify that ψmðz; z̄Þ in Eq. (25) with nðθÞ ¼ const coin-
cides (up to normalization) with the standard LLL wave
function (3). Similarly to that simple example, any aniso-
tropic wave function (25) reaches its maximum on the

equipotential γm and is approximately Gaussian close to it,
as ensured by the kernel (5). This will be confirmed
explicitly in Sec. IV for edge deformations.

C. Expanding the eigenvalue equation

None of what we wrote so far involves a manifest
semiclassical expansion; the latter is hidden in the eigen-
value equation (7) and the function nðθÞ in Eq. (25), since
nðθÞ should be expanded as a power series nðθÞ ¼
n0ðθÞ þ l2n1ðθÞ þOðl4Þ. (As before, there are no odd
powers of l since l2 ∝ ℏ is really the semiclassical
parameter.) It is therefore worth anticipating the first few
terms of the semiclassical approximation of Eq. (7). We
stress that the expansion below will eventually be limited to
the leading-order transport equation, so only n0ðθÞ will, in
fact, be calculated. In principle, one can push the expansion
to higher orders for more detailed results.
The semiclassical expansion of the right-hand side of

Eq. (7) is clear: It is given by the large-m, small-l2

expansion of the projected wave function (25), including
an expansion of nðθÞ. As for the energy, its expansion was
written in Eq. (9). The left-hand side of Eq. (7) is more
subtle, as its semiclassical expansion involves that of the
operator PVP. The latter is a “Berezin-Toeplitz operator”
[68,69] that will play an important role for edge-deformed
potentials, so we now explain its expansion in some detail.
First, given Cartesian coordinates ðx; yÞ, express the poten-
tial in complex coordinates (4) as Vðx; yÞ≡ Vðz; z̄Þ for
some function Vðz; w̄Þ which is holomorphic in z and
antiholomorphic in w. Then, recall that P is the LLL
projector with kernel (5) to find

hz; z̄jPVPjw; w̄i ¼ 1

2πl2
e−ðjzj2þjwj2Þ=2

×
Z
R2

dudv Vðu; vÞe−jXj2þzX̄þw̄X ð26Þ

with X ≡ ðuþ ivÞ= ffiffiffi
2

p
l defined similarly to the coordinate

(4). Our task is to expand the integral on the right-hand side
in the semiclassical limit. The key is to assume that the
potential varies slowly on the scale of the magnetic length
[41–44], i.e., we choose once and for all a smooth potential
VðxÞ, independent of l, and let l be small. In that regime,
the integrals in Eq. (26) are approximately Gaussian and
give (see Appendix B)

hz; z̄jPVPjw; w̄i ∼l≪1 1

2πl2
e−jz−wj2=2eðzw̄−z̄wÞ=2

×

�
Vðz; w̄Þ þ l2

2
ð∇2VÞðz; w̄Þ

�
; ð27Þ

where ð∇2VÞðz; w̄Þ is the bicomplex function that
corresponds to the Laplacian of the potential, i.e.,
ð∇2VÞðz; w̄Þ ¼ ð4=2l2Þ∂z∂w̄V. This is the standard
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semiclassical expansion of a Berezin-Toeplitz operator
[65,68,69]. Note the general structure: The entire PVP
operator boils down to P itself, with kernel (5), multiplied
by a function that coincides with V at leading order but also
includes quantum corrections. In the “zoomed-out” limit
where the kernel of P is a delta function, the first term in
Eq. (27) becomes Vðz; z̄Þδ2ðz − w; z̄ − w̄Þ as expected.
Moreover, for harmonic potentials, the truncated expres-
sion (27) is actually exact, since the next term ∇4V and all
subsequent ones vanish. This agrees with the common lore
that “WKB is exact for quadratic Hamiltonians.”

IV. EDGE-DEFORMED ANISOTROPIC TRAPS

Here, we apply the WKB ansatz of Sec. III to potentials
(10) with scale-invariant level curves, obtained by acting
with edge deformations on an isotropic trap. As we explain
below, these provide a broad class of setups that describe
QH droplets whose shape is any star domain in the plane
[70]. The plan is as follows. First, we introduce edge
deformations and give a few examples for later reference.
Second, we apply Eq. (7) to edge-deformed traps and
expand it in the classical limit [large m, small l2 with
l2m ¼ Oð1Þ kept fixed]. We keep track of all terms up to
orderOðl2Þ, leading to a transport equation for the function
nðθÞ in Eqs. (23) and (25). This eventually yields an
explicit energy spectrum [see Eq. (42)] along with approx-
imately Gaussian eigenfunctions [see Eq. (48)]. Last, we
conclude with a consistency check by showing that our
wave functions reproduce the asymptotic (large-m) form of
the known LLL-projected spectrum for anisotropic har-
monic traps [53,99–102].

A. Edge deformations

We saw in Sec. III that area-preserving deformations
play a key role for the semiclassical solution of the
eigenvalue equation (7). The group of all such deformations
is obviously huge, so it is essential to identify the subset of
transformations that are likely to be important for low-
energy physics. In fact, part of this work has already been
carried out, at least implicitly, in Refs. [89–94], which we
now use as a basis for the definition of edge deformations.
(A similar motivation was put forward in Ref. [88].)
Label points on the plane by their polar coordinates

ðr;φÞ, defined as usual by xþ iy ¼ reiφ. Then, the
boundary of any isotropic QH droplet is located at some
fixed radius redge ¼ Oðl ffiffiffiffi

N
p Þ. What is the most general

area-preserving diffeomorphism that preserves this order of
magnitude? The answer is readily found by realizing that
the constraint of keeping redge ¼ Oðl ffiffiffiffi

N
p Þ is equivalent, at

leading order in 1=N, to the condition that the deformation
commutes with overall dilations r ↦ const × r. The most
general diffeomorphism satisfying this criterion is an edge
deformation

�
r2

2
;φ

�
↦

�
r2

2f0ðφÞ ; fðφÞ
�
; ð28Þ

where fðφÞ is an (orientation-preserving) deformation of
the circle, i.e., any smooth map satisfying fðφþ 2πÞ ¼
fðφÞ þ 2π and f0ðφÞ > 0 [103]. The angle-dependent
rescaling of r on the right-hand side ensures that the
map preserves area. Note that the set of maps (28) is
isomorphic to the group of diffeomorphisms of the circle,
whose central extension famously leads to the Virasoro
algebra encountered in CFT. Indeed, this motivates the
statement in Refs. [91,92] that generators of maps (28) in
the QH effect produce conformal transformations of
edge modes.
We stress that the subset of transformations (28) originates

from an asymptotic analysis of the relevant orders of
magnitude. One can undoubtedly consider other families
of deformations, motivated by different considerations, but
those are irrelevant for our purposes. For instance, the
transformations r2 ↦ r2 þ αðφÞ are crucial for the effective
low-energy description of QH droplets [4,8,92], but they are
subleading compared to those in Eq. (28) since they deform
the radius redge ¼ Oðl ffiffiffiffi

N
p Þ by terms of order Oð1=NÞ

instead of Oð1Þ. Conversely, one might consider “higher-
spin transformations” [89,91,92] that change the radius in a
dramatic way such as r2 ↦ βðφÞr4½1þOð1=rÞ�, but these
stretch QH droplets to an infinite extent in the thermody-
namic limit, which is why we discard them.
Let us provide a few examples of edge deformations for

future reference. First, the maps (28) include rigid rotations
around the origin given by fðφÞ ¼ φþ const . A richer
class is obtained by fixing some positive integer k and
considering all maps of the form

eikfðφÞ ¼ αeikφ þ β

β̄eikφ þ ᾱ
; ð29Þ

where α and β are complex numbers satisfying
jαj2 − jβj2 ¼ 1. For fixed k, such maps span a group locally
isomorphic to SLð2;RÞ, always containing a subgroup of
rigid rotations. We will return to these deformations below,
since they can be seen as Fourier modes for circle diffeo-
morphisms [104]. In particular, setting α ¼ coshðλÞ and
β ¼ sinhðλÞ for some real parameter λ turns the map (29)
into an analogue of a Lorentz boost with rapidity λ. In terms
of the bulk action (28), any deformation (29) turns a circle
into a “flower with k petals”; see Fig. 7 for k ¼ 3. For
k ¼ 2, this maps the circle on an ellipse (see Ref. [88] for
details), to which we will return in Sec. IV E.

B. Edge-deformed potentials

Given an isotropic potential V0ðr2=2Þ, how is it affected
by an edge deformation (28)? The answer is provided by
the anisotropic trap (10) with λðφÞ ¼ 2f0ðφÞ:
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Vðr;φÞ≡ V0

�
r2

2f0ðφÞ
�
: ð30Þ

In what follows, we exclusively consider this class of
potentials and refer to them as edge-deformed traps, for the
reasons stated above. The shape of their equipotentials is
entirely fixed by the function fðφÞ. For instance, flower
deformations (29) give rise to lower values of the potential
inside the flower’s petals and higher values between petals.
Having chosen some circle deformation fðφÞ, our goal is to
solve the corresponding eigenvalue equation (7) in the
classical limit of high quantum numbers and small mag-
netic length.
We begin by listing the key classical data of the problem.

The action-angle variables suited to Eq. (30) are ðl2K; θÞ ¼
ðr2=2f0ðφÞ; fðφÞÞ with an inverse given by ðr2=2;φÞ ¼
ðl2K=ðf−1Þ0ðθÞ; f−1ðθÞÞ, where f−1 denotes the inverse of
f. In particular, the angle coordinate coincides with our
earlier Eq. (20) upon using λðφÞ ¼ 2f0ðφÞ, possibly up to
an overall rotation of θ. Points satisfying

r2

2f0ðφÞ ¼ l2K ð31Þ

with constant K ≥ 0 form an equipotential, i.e., a level
curve of the potential in Eq. (30). In Cartesian coordinates,
this is the set of points x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2Kf0ðφÞ

p
cosðφÞ, y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l2Kf0ðφÞ
p

sinðφÞ for φ∈ ½0; 2πÞ. Equivalently, in terms
of the angle variable θ¼fðφÞ∈½0;2πÞ, the equipotential is

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2K

ðf−1Þ0ðθÞ

s
cos (f−1ðθÞ)≡ FðK; θÞ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2K

ðf−1Þ0ðθÞ

s
sin (f−1ðθÞ)≡GðK; θÞ;

ð32Þ

where the notation ðF;GÞ was introduced in Sec. III A. We
will eventually focus on the regime where K is a very large
integerm such that the dimensionful area 2πl2m is anOð1Þ
quantity as l → 0.
Moving just slightly away from the classical regime, we

saw in Sec. III that the expansion of the operator PVP
involves a bicomplex potential function Vðz; w̄Þ. In the case
of edge-deformed potentials (30), with the convention (4)
for complex coordinates, one finds

Vðz; w̄Þ ¼ V0

�
l2

zw̄
f0ð 1

2i log½z=w̄�Þ
�
: ð33Þ

Note that this only makes sense for z and w close to each
other; otherwise, taking z → e2πiz affects the argument of
f0 on the right-hand side. By contrast, when z and w remain
close, taking z → e2πiz also requires w → e2πiw, and this
time the angle ð1=2iÞ log½z=w̄� is indeed invariant.

Finally, the expansion (27) also involves the complexi-
fied Laplacian of the potential, but only its real value will be
relevant at the order studied here. Let us therefore express
the Laplacian of Eq. (30) in polar coordinates:

∇2V ¼ 1

f0

�
2 −

1

2

f000

f0
þ f002

f02

�
V 0
0ðr2=2f0Þ

þ r2

f02

�
1þ f002

4f02

�
V 00
0ðr2=2f0Þ: ð34Þ

Here, the prime means differentiation with respect to the
argument, namely φ for fðφÞ and r2=2 for V0ðr2=2Þ. We
shall rely on Eqs. (33) and (34) below, since they directly
affect the eigenvalue equation (7).

C. Eigenvalue equation and energy

Having studied the potential (30), let us turn to the
quantum state meant to solve the eigenvalue equation (7).
As in Sec. III B, we begin by building a state (23) that is
perfectly localized on the equipotential (31) with K ¼ m,
project to the LLL using the operator (5), and obtain the
wave function (25) that now reads

ψmðz; z̄Þ ¼ e−jzj2=2
I

dφ f0ðφÞn(fðφÞ)

× exp

�
imfðφÞ − 1

2
mf0ðφÞ þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðφÞ

p
e−iφ

�
;

ð35Þ

where we changed variables using θ ¼ fðφÞ. It remains to
show that this solves the eigenvalue equation (7) for edge-
deformed traps (30) in the semiclassical regime, provided
the function nðθÞ satisfies a suitable transport equation. The
latter is derived by expanding the energy (9) and the
potential (27) to get

0¼
I

dφ f0ðφÞn(fðφÞ)

×

�
Vðz;w̄Þþl2

2
∇2Vðz;w̄Þ−E0

m−l2E1
m

�

×exp

�
imfðφÞ−1

2
mf0ðφÞþ zw̄

�				
w̄¼

ffiffiffiffiffiffiffiffiffiffi
mf0ðφÞ

p
e−iφ

; ð36Þ

where Vðz; w̄Þ is the bicomplex function (33) and the
equation holds up to neglected Oðl4Þ corrections. In the
extreme classical limit, the potential expansion (27) boils
down to hzjPVPjwi ∼ Vðz; z̄Þδ2ðz − wÞ, so Eq. (36) implies
E0
m ¼ V0ðl2mÞ ¼ VðγmÞ at leading order. The issue is to

find the two remaining unknowns, namely the function
n(fðφÞ) and the first-order energy correction E1

m.
To determine these, the crucial step is to evaluate

Eq. (36) along the equipotential (31) labeled by K ¼ m,

ANISOTROPIC QUANTUM HALL DROPLETS PHYS. REV. X 14, 011030 (2024)

011030-9



i.e., for z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðαÞp

eiα with α∈ ½0; 2πÞ, assuming as
before m ≫ 1. Indeed, if Eq. (36) holds on a level curve,
then it holds for all z by holomorphicity. This is written
in more detail in Appendix C, where we show that
the integrand of Eq. (36) has a saddle point at φ ¼
αþOð1= ffiffiffiffi

m
p Þ, eventually resulting in a transport equation

for the unknown function nðθÞ. Here, we skip the compu-
tation and analyze separately the real and imaginary parts of
the transport equation. We start with the real part, which
will allow us to deduce the LLL-projected energy spectrum.
The imaginary part is postponed to Sec. IV D, where we
also display the ensuing nearly Gaussian wave functions.
Let ΦðφÞ be the phase of n(fðφÞ)≡N ðφÞeiΦðφÞ.

Then, the real part of the transport equation [see
Eq. (C17)] yields

Φ0ðφÞ¼E1
m

Ωm
f0ðφÞ−1

2

�
1þΓm

Ωm

��
1þ f00ðφÞ2

4f0ðφÞ2
�

−
1

2
þ∂φ

�
f00ðφÞ
8f0ðφÞ

�
þ1

2

∂φ½f00ðφÞ=2f0ðφÞ�
1þf00ðφÞ2=4f0ðφÞ2 ; ð37Þ

where E1
m is the first-order correction to the energy (9) and

we introduced the derivatives

Ωm ≡ V 0
0ðl2mÞ > 0; Γm ≡ l2mV 00

0ðl2mÞ: ð38Þ

In many-body droplets with N electrons, these will respec-
tively measure the Fermi velocity and the curvature of the
spectrum at the Fermi surface when m ¼ N. Note that all
terms in Eq. (37) except the factor 1þ ½f00=2f0�2 are total
derivatives, so the solution is

ΦðφÞ ¼ E1
m

Ωm
fðφÞ − 1

2

�
1þ Γm

Ωm

�Z
φ

0

dα

�
1þ f00ðαÞ2

4f0ðαÞ2
�

−
φ

2
þ f00ðφÞ
8f0ðφÞ þ

1

2
arctan

�
f00ðφÞ
2f0ðφÞ

�
þ const: ð39Þ

This turns out to imply a quantization condition for energy.
Indeed, when we initially introduced the function nðθÞ in
Eq. (23), we mentioned that it must have a vanishing
winding number along the equipotential, so that all the
winding of ψmðxÞ is contained in the exponential factor
eimθ. The phase ΦðφÞ must therefore be strictly
2π-periodic, i.e., Φð2πÞ ¼ Φð0Þ. Using Eq. (39), this fixes
the first quantum correction of the energy (9):

E1
m

Ωm
¼ 1

2
þ
�
1þ Γm

Ωm

�I
dφ
4π

�
1þ f00ðφÞ2

4f0ðφÞ2
�
: ð40Þ

The latter generally depends on m through Γm and Ωm in
Eq. (38). A simplification occurs in “harmonic” setups,

where Γm ¼ 0 and the right-hand side of Eq. (40) is an
f-dependent constant, for all m [105]. In any case, the full
mth energy (9) in the semiclassical limit reads

Em∼V0ðl2mÞ

þl2

2

�
ΩmþðΩmþΓmÞ

I
dφ
2π

�
1þ f00ðφÞ2

4f0ðφÞ2
��

; ð41Þ

reproducing the expression announced in Eq. (15) with
λðφÞ ¼ 2f0ðφÞ, and generalizing the isotropic value obtained
for f0ðφÞ ¼ 1 [see Eq. (A3)]. The leading-order Bohr-
Sommerfeld quantization condition (8) is manifestly satis-
fied, while the first quantum correction can be written in
terms of a Maslov-like shift and an integral of the Laplacian,
confirming the general result in Ref. [69]:

Em¼V0

�
l2

�
mþ1

2

��

þl2

4

I
dφ
2π

f0ðφÞ∇2V

				
r2¼2l2ðmþ1=2Þf0ðφÞ

þOðl4Þ: ð42Þ

(In the language ofRef. [69], our “Maslov-like” termactually
stems from an integral of the curvature of γm.)

D. Gaussian wave functions

As above, write n(fðφÞ) ¼ N ðφÞeiΦðφÞ for the unknown
function of theWKBansatz, with a normN ðφÞ¼jn(fðφÞ)j.
Then, the imaginary part of the transport equation [see
Eq. (C18)] can be recast into

N 0ðφÞ
N ðφÞ ¼ 1

4
∂φ log

�
1

f0ðφÞ
�
1þ f00ðφÞ2

4f0ðφÞ2
��

; ð43Þ

which remarkably has the form of an overall logarithmic
derivative. The general solution is therefore

jnðfðφÞÞj ¼ N0

�
1

f0ðφÞ
�
1þ f00ðφÞ2

4f0ðφÞ2
��

1=4

; ð44Þ

where the normalization N0 will soon be fixed. Note the
exponent 1=4, typical of WKB approximations [87].
We can now use Eq. (44) to evaluate approximate

eigenfunctions (35) near their maximum, i.e., close to
the equipotential (31) with K ¼ m. To see this, zoom in
on the equipotential by writing

z≡ ð ffiffiffiffi
m

p þ aÞ
ffiffiffiffiffiffiffiffiffiffiffi
f0ðαÞ

p
eiα ð45Þ

for m ≫ 1 and some finite a. The integral (35) then has a
unique saddle point at φ ¼ αþ δ1=

ffiffiffiffi
m

p þOð1=mÞ, with
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δ1¼−ia(1−i½f00ðαÞ=2f0ðαÞ�)−1. The saddle-point approxi-
mation of the wave function (35) thus yields

ψmðz; z̄Þ ∼
1ffiffiffiffiffiffiffiffiffiffi
2πl2

p 1

ð2πmÞ1=4 e
imfðαÞþiΦðαÞ

×
1ffiffiffiffiffiffiffiffiffi
σðαÞp exp

"
−

f0ðαÞa2
1 − i f00ðαÞ

2f0ðαÞ

#
: ð46Þ

Here, we used Eqs. (39) and (44) for the phase and norm
of n(fðαÞ), fixed the integration constant in Eq. (44) to
N0 ¼ ð1=2πlÞðm=2πÞ1=4, and introduced the function

σðφÞ2 ≡ 1

f0ðφÞ
�
1þ f00ðφÞ2

4f0ðφÞ2
�
; ð47Þ

written earlier in Eq. (12) with λðφÞ ¼ 2f0ðφÞ. The nor-
malization was fixed so that the square of the function in
Eq. (46),

jψmðz; z̄Þj2 ∼
1

2πl2

e−2a
2=σ2ðαÞffiffiffiffiffiffiffiffiffi

2πm
p

σðαÞ ; ð48Þ

is a genuine probability density such that
R
d2xjψ j2 ¼ 1.

The wave function (46) coincides with the earlier
expression (11) upon using λðφÞ ¼ 2f0ðφÞ and the phase

ΘmðxÞ≡mfðφÞ þΦðφÞ − a2f00ðφÞ
2f0ðφÞσðφÞ2 : ð49Þ

The Gaussian behavior of LLL-projected eigenstates is thus
manifest, as anticipated at the end of Sec. III B for the
general WKB ansatz (25). In that context, we stress again
that the exponent a2=σ2 in Eq. (48) is nothing but the
squared distance (13) away from the equipotential, while
the function σðφÞ defined by Eq. (47) is essentially the
velocity (14) of guiding centers. It is therefore classically
expected that the probability of finding an electron at
position φ is proportional to 1=σðφÞ, which is indeed
confirmed by the density (48). As a consequence, the wave
function (46) generally behaves as a “roller coaster” whose
height follows the local symplectic gradient of the confin-
ing potential; this is illustrated in Fig. 5 for two choices of
edge-deformed traps (30). Finally, note that Eq. (46)
generalizes the behavior of isotropic states (3) [see
Eq. (A1)], including the Oð1= ffiffiffiffi

m
p Þ contribution that we

did not state here but that can be computed by incorporating
the next-order term δ2=m for the saddle point and repeating
the analysis; see Appendix D for details.

E. Comparison with elliptic wave functions

To conclude this section, we now focus on the flower
deformations (29) and show that the corresponding trans-
port equation is integrable: Both the phase (39) and the

norm (44) can be expressed in terms of elementary
functions. These results are valuable in themselves since
“flowers” are the simplest edge deformations [104] but also
because their special case k ¼ 2 reproduces known wave
functions for anisotropic harmonic traps [52,53], providing
an important benchmark for our WKB approach.
Consider first the deformation (29) with α ¼ coshðλÞ and

β ¼ sinhðλÞ for an arbitrary integer k and a real parameter λ.
When λ > 0, the ensuing potential (30) is steeper in the
directions φ ¼ 0; 2π=k; 4π=k;…; ð2k − 2Þπ=k and lower
around the petals at φ ¼ π=k; 3π=k; 5π=k;…; ð2k − 1Þπ=k;
see Fig. 7 for k ¼ 3. Then, the energy quantization
condition (40) can be integrated exactly, yielding

E1
m

Ωm
¼ 1

2
þ 1

2

�
1þ Γm

Ωm

��
1þ k2

2
sinh2ðλÞ

�
: ð50Þ

As for the solution of the transport equation, consisting of
the phase (39) and the norm (44), it is found to be

nðθÞ ¼ N0 e
−i ΓmΩm

k
8
sinhð2λÞ sinðkθÞei

θ
2



1− k

2
þ
�
1þ Γm

Ωm

��
1− k2

4

�


×

�
coshðλÞ − sinhðλÞeikθ
coshðλÞeikθ − sinhðλÞ

� 1
2k



1− k

2
þ
�
1þ Γm

Ωm

��
1− k2

4

�


×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i k

2
sinhð2λÞ sinðkθÞ

coshðλÞ − sinhðλÞe−ikθ

s
; ð51Þ

up to an overall constant phase. [Recall that the overall
constant is N0 ¼ ð1=2πlÞðm=2πÞ1=4 for normalized wave
functions (46).]
Equation (51) depends in a nontrivial way on the

potential’s derivatives (38), with some simplification in
the “harmonic” regime Γm ¼ 0. Let us therefore apply
Eqs. (50) and (51) to the case of an elliptic harmonic

FIG. 5. The density of a wave function (46) for m ¼ 30 in an
edge-deformed trap (30). The Gaussian behavior is manifest, as is
the angle-dependent “roller coaster” predicted by Eq. (48),
reflecting the changing Euclidean norm (14) of the local velocity
of classical guiding centers. (Peaks and troughs of the wave
function respectively correspond to minima and maxima of the
local velocity.) Left: Anisotropic harmonic potential given by
Eq. (30) for f of the form (29), with k ¼ 2 and α ¼ coshð1Þ,
β ¼ sinhð1Þ. Right: The same edge-deformed trap as in
Figs. 1 and 2.
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potential, meaning k ¼ 2 with constant stiffness Ωm ¼
Ω > 0 (hence Γm ¼ 0). The corresponding edge deforma-
tion (28) maps the isotropic harmonic potential V0ðr2=2Þ ¼
Ωr2=2 on its anisotropic cousin,

VðxÞ ¼ Ω
e2λx2 þ e−2λy2

2
; ð52Þ

whose equipotentials are ellipses rather than circles (with
their major axis along y for λ > 0). The energy correction
(50) then becomes E1

m ¼ Ω cosh2ðλÞ, and the (normalized)
solution (51) of the transport equation is

nðθÞ ¼ 1

2πl

�
m
2π

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðλÞ þ sinhðλÞe2iθ
q

: ð53Þ

It is straightforward to use these data to obtain the elliptic
version of the normalized Gaussian wave function (46):

ψmðz; z̄Þ ∼
1ffiffiffiffiffiffiffiffiffiffi
2πl2

p 1

ð2πmÞ1=4
eimθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðλÞ þ sinhðλÞe−2iθ
p

× exp

�
−
e2iθ − tanhðλÞ
e2iθ þ tanhðλÞ a

2

�
; ð54Þ

again up to an overall constant phase. Crucially, this
coincides with the large-m approximation of the exact
LLL-projected eigenstates of the harmonic potential (52)
[53], as can be verified thanks to known asymptotic
formulas for Hermite polynomials. This is actually true
even at subleading order in m−1=2; see Appendix D 2.

V. MANY-BODY OBSERVABLES

This section applies the results of Secs. III and IV to
entire QH droplets consisting of a large number N ≫ 1 of
electrons. Specifically, we exploit our insights on near-
Gaussian single-particle wave functions (46) to compute
many-body observables and read off the universal
shape-dependent effects due to the deformation fðφÞ.
We first show that the density equals 1=2πl2 in the bulk
and drops to zero as an error function at the edge
redge ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp

. Second, we turn to the current and
show that it is localized as a Gaussian on the edge, to which
it is tangent. Third, correlations near the edge are found to
display the usual power-law behavior of free fermions,
dressed by radial Gaussian factors. This reduces to known
expressions in isotropic traps [90], and to the harmonic
results of Refs. [52,53] in the case of flower deformations
(29) with k ¼ 2. Finally, the radial behavior of correlations
is shown to be consistent with the effective low-energy field
theory of edge modes: We derive it microscopically and
obtain a chiral CFT in terms of the canonical angle variable
on the boundary.

A. Density

Consider a QH droplet of N ≫ 1 noninteracting 2D
electrons governed by the Hamiltonian (1), with a very
strong magnetic field B ¼ dA and a weak edge-deformed
potential (30). The ground state jΩi of this many-body
system is a Slater determinant of the wave functions ψm for
occupied statesm ¼ 0; 1;…; N − 1, where we recall thatm
is a quantized action variable generalizing angular momen-
tum. This is schematically depicted by red dots in Fig. 6.
Explicitly,

jΩi ¼
YN−1

m¼0

a†0;mj0i; ð55Þ

where j0i is the empty state and a†0;m is a (canonically
normalized) Fock space creation operator for the one-
particle wave function ψm in the LLL. (We will later use
a†n;m for creation operators in the nth Landau level; see
Sec. V D.) The same ground state can be obtained by fixing
a chemical potential (Fermi energy) μ and filling all one-
body energies Em such that Em ≤ μ, implying that N is the
largest integer such that EN−1 ≤ μ [106].
Since each ψm yields a single-particle probability density

jψmðxÞj2, the many-body density of the state (55) is a sum,

ρðxÞ ¼
XN−1

m¼0

jψmðxÞj2: ð56Þ

While WKB theory does not give access to the form of ψm
at low m, large values of m should be correctly captured by
the analysis of Sec. IV, in which case the one-body density
is approximately Gaussian and given by Eq. (48). We now
exploit this Gaussian form to evaluate the many-body
density, both in the bulk and close to the edge. (Some
technical details are highlighted along the way, as the same
method will later allow us to study the many-body current
and correlations.)

FIG. 6. The one-body spectrum (42), where the N states that are
occupied in the many-body ground state (55) are highlighted in
red and those that contribute to the low-energy Hamiltonian (70)
are filled (black for “particles” and red for “holes”). Energies are
filled up to a Fermi energy set by a chemical potential μ such that
EN−1 ≤ μ < EN . The cutoff Λ is large but much smaller than N in
the sense that the limit Λ → ∞ is taken after taking the
thermodynamic limit N → ∞ at fixed Λ.
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The key point is that each wave function (48) is localized
on an equipotential of VðxÞwith area 2πl2m, so the density
close to some equipotential jzj ¼ const ×

ffiffiffiffiffiffiffiffiffiffiffi
f0ðφÞp

only
receives sizable contributions from wave functions whose
quantum number is close to jzj2=f0ðφÞ. Accordingly, the
bulk density for 1 ≪ jzj ≪ ffiffiffiffi

N
p

is obtained by letting the
upper summation bound in Eq. (56) go to infinity and
writing the approximate density as

ρðxÞ ∼ 1

2πl2

X∞
m¼m0

e
− 2

σðφÞ2

�
jzjffiffiffiffiffiffi
f0ðφÞ

p −
ffiffiffi
m

p �
2

ffiffiffiffiffiffiffiffiffi
2πm

p
σðφÞ ; ð57Þ

where the lower summation bound m0 is irrelevant as long
as it is large but much smaller than jzj2 and σðφÞ is given by
Eq. (47). At large jzj, the Euler-Maclaurin formula allows
us to approximate the sum over m by a (Gaussian) integral
over

ffiffiffiffi
m

p
. This yields the uniform density

ρðxÞ ∼ 1

2πl2
; ð58Þ

as expected in the bulk of a QH droplet consisting of a
single fully filled LLL [107].
An analogous argument can be carried out close to the

droplet’s edge, with one key difference: The upper sum-
mation bound in Eq. (56) is now crucial. Thus, letting jzj ¼
ð ffiffiffiffi

N
p þ aÞf0ðφÞ with finite a in the large-N limit and using
once more the approximate Gaussian form (48), the density
(56) near the edge behaves as

ρðxÞ ∼ 1

2πl2

X∞
k¼1

e
− 2

σðφÞ2
�
aþ k

2
ffiffi
N

p
�
2

ffiffiffiffiffiffiffiffiffi
2πN

p
σðφÞ ; ð59Þ

where we changed variables as m≡ N − k with k ¼
Oð ffiffiffiffi

N
p Þ at large N and only kept track of leading-order

terms. For N ≫ 1, the sum over k can once more be
converted into an integral, now over k=2

ffiffiffiffi
N

p
. This yields

the asymptotic behavior

ρðr;φÞ ∼ 1

4πl2
erfc

�
1

σðφÞ
r − l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp

l
ffiffiffiffiffiffiffiffiffiffiffi
f0ðφÞp �

; ð60Þ

where erfc denotes the complementary error function and
the width (47) is inherited from that of our LLL wave
functions. This explicit result was announced in Eq. (16)
with λðφÞ ¼ 2f0ðφÞ. It confirms that the density is roughly
constant and given by Eq. (58) in the bulk, then drops to
zero within a distance of the order of the magnetic length
(2) around the edge at r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp

; see Figs. 2(a)
and 7(a).
We stress that, in contrast to wave functions, the density

(60) only depends on the potential near the edge of the

droplet: Bulk deformations of the potential do not affect the
quantized bulk density (58) in the limit of strong magnetic
fields. In this sense, Eq. (60) is a universal formula for the
density of any QH droplet of LLL states whose edge traces
an equipotential of the form r2 ¼ 2l2Nf0ðφÞ; such an error
function behavior is indeed known to hold in considerable
generality [67]. It would be instructive to probe this local
density in experiments, using either real samples [20,21] or
quantum simulators [27–30].
Note that the leading-order result (60) receives a number

of subleading corrections that can be systematically com-
puted in our formalism; these are omitted here for brevity,
but the Oð1= ffiffiffiffi

N
p Þ correction is evaluated in Appendix D 3.

A related comment is that Eqs. (58) and (60) are only valid
at extremely strong magnetic fields, which stems from the
simplification provided by the LLL projection. The actual
density profile, both in the bulk and near the edge, depends
on the gradient of the potential. For instance, anharmonic
traps [108] give rise to an excess charge density at the edge,
but this involves higher Landau levels that are beyond our
scope. Interactions are similarly absent here, so electrostatic
backreaction and edge reconstruction [109] do not appear
in our approach. In this respect, the application of Eq. (60)
to real condensed-matter samples is subtle; quantum-
engineered systems may provide a better platform to
observe such detailed local effects.

B. Current

The current of a droplet of N ≫ 1 electrons can similarly
be expressed as a sum over single-particle currents. To this
end, recall that the gauge-invariant one-body probability
current of a charged wave function ψ with massM is a one-
form ℏj=M given by

j ¼ 1

2i

�
ψ�dψ − ψdψ� − 2i

q
ℏ
Ajψ j2

�
; ð61Þ

where the first term is only sensitive to the gradient of the
phase of ψ and A ¼ ðBr2=2Þdφ ¼ ðℏ=qÞjzj2dφ in sym-
metric gauge. The many-body current of the ground state
(55) is thus

J ¼
XN−1

m¼0

jm; ð62Þ

where jm is the single-particle current (61) of each
occupied one-particle state ψm.
As before, the WKB approximation does not give access

to wave functions for small m, but this is unimportant close
to the edge. In that regime, we have already gathered all the
ingredients needed to evaluate the currents (61) up to small
quantum corrections: The one-body density is given by
Eq. (48), while the derivative of the phase is obtained from
Eq. (49) and the real part (37) of the transport equation.
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In practice, the WKB phase Φ turns out to be negligible at
leading order, and the only relevant parts of the phase are
those explicitly visible in Eq. (46): The (fast) phase eimfðφÞ

together with the contribution from A ¼ ðℏ=qÞjzj2dφ
eventually gives rise to the leading angular component
of the current, while the (slow) phase e−i½f00ðφÞ=2f0ðφÞ�a2=σ2

yields its radial component that is nonzero whenever
f00ðφÞ ≠ 0.
Starting from these facts, it is straightforward to adapt

the method of Sec. VA to the many-body current (62).
Writing jzj ¼ ð ffiffiffiffi

N
p þ aÞ ffiffiffiffiffiffiffiffiffiffiffi

f0ðφÞp
, the sum over m≡ N − k

becomes an integral over k=2
ffiffiffiffi
N

p ¼ Oð1Þ and yields the
leading-order result (17) with λðφÞ ¼ 2f0ðφÞ:

Jðr;φÞ∼−
e−2a

2=σðφÞ2

ð2πl2Þ3=2σðφÞ
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp

dφþ f00ðφÞ
2f0ðφÞdrffiffiffiffiffiffiffiffiffiffiffiffiffi

2f0ðφÞp ; ð63Þ

where a ¼ ðr − l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp Þ=l ffiffiffiffiffiffiffiffiffiffiffiffiffi

2f0ðφÞp
and σðφÞ is

given by Eq. (47). Both components in Eq. (63) receive
subleading corrections that are omitted here. In particular,
there is anOð1Þ term in Jφ that is nonzero on the edge, even
in the isotropic case f0 ¼ 1. Evaluating that term requires
theOð1= ffiffiffiffi

m
p Þ correction that was neglected in Eq. (48); see

Appendix D for the computation of this correction and its
contribution to the current.
Using the metric ds2 ¼ dr2 þ r2dφ2, one can verify that

the one-form l
ffiffiffiffiffiffiffiffiffiffi
2Nf0

p
dφþ ðf00=2f0Þdr in Eq. (63) is the

dual of a vector tangent to the equipotential at the droplet’s
edge [110]. Moreover, the norm squared

kJðr;φÞk2∼ 1

2ð2πl2Þ3 exp
"
−
2ðr−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf0ðφÞp Þ2

l2σðφÞ2f0ðφÞ

#
ð64Þ

shows that the current has a constant maximum along the
edge, with a constant nonzero width owing to Eq. (13); see
Figs. 2(b) and 7(b).
Similarly to the density, it is important to remember that

the LLL projection misses some important physics. Indeed,
the actual bulk current is the symplectic gradient of the
confining potential multiplied by the Hall conductance
[43,44,72,73]. No such effect occurs in Eq. (63) because it
requires higher Landau levels, which are beyond our scope.

C. Correlations

The methods that we applied to density and current can
also be used to compute electronic correlations near the
edge, for which much less is known. Indeed, consider as
before an anisotropic droplet whose occupied one-body
states have quantum numbers m ¼ 0; 1;…; N − 1. Then,
the correlation function between the points x1 and x2 is

Cðx1;x2Þ ¼
XN−1

m¼0

ψ�
mðx1Þψmðx2Þ; ð65Þ

which reduces to the density (56) when x1 ¼ x2. As before,
we rename m≡ N − k and let the complex coordinates z
and w corresponding to x1 and x2 be such that

z ¼ � ffiffiffiffi
N

p þ a
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

f0ðφ1Þ
p

eiφ1 ;

w ¼ � ffiffiffiffi
N

p þ b
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

f0ðφ2Þ
p

eiφ2 ;
ð66Þ

FIG. 7. Intensity plots of: (a) The density (60) for N ¼ 100 electrons and a flower deformation (29) of order k ¼ 3 with α ¼ coshð1Þ
and β ¼ sinhð1Þ. The constancy of density in the bulk and its sharp decay at the boundary are manifest. Note also the depletion of
electrons between petals, due to the steepness of the potential at φ ¼ 0; 2π=3; 4π=3, to be contrasted with the deeper potential wells near
the petals at φ ¼ π=3; π; 5π=3. (b) The current’s norm (64) for the same droplet. The localization on the edge equipotential (black curve)
is clearly visible, as is the width of the Gaussian jump. (c) The norm of the correlation function (65) for the same droplet, seen as a
function of x2 when x1 ¼ ðl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nf0ð0Þp
; 0Þ (black cross) is fixed close to the edge; its behavior for well-separated points is given by the

long-range correlator (67). The color coding is the same as in Fig. 2.
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where a and b are finite at large N and φ1 and φ2 are the
polar angles of x1 and x2. One can then plug the Gaussian
wave functions (46) into Eq. (65), this time assuming k
finite, and perform the sum over k. The gradient expansion
of the potential implies that the ratio Γm=Ωm ∼ ΓN=ΩN þ
Oðl2Þ is nearly constant in this regime, so Eq. (65)
becomes a geometric sum over k that reproduces the result
stated in Eq. (19) with λðφÞ ¼ 2f0ðφÞ:

Cðx1;x2Þ ∼
eiΘNðx1;x2Þ

ð2πÞ3=2l2
ffiffiffiffi
N

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðφ1Þσðφ2Þ

p

×
i exp

�
− a2

σðφ1Þ2 − b2

σðφ2Þ2
�

2 sinð½fðφ1Þ − fðφ2Þ�=2Þ
; ð67Þ

where σðφÞ was defined in Eq. (47). The overall phase
ΘNðx1;x2Þ¼ΘNðx2Þ−ΘNðx1Þ− ½fðφ2Þ−fðφ1Þ�=2, given
by Eq. (49), involves the WKB phase (39).
Several features of Eq. (67) are worth emphasizing. First,

note the striking appearance of long-range correlations
localized at the edge by a Gaussian envelope. Their
power-law decay along the boundary is a static diagnostic
of the presence of edge modes [8,90,111] and matches the
standard CFT propagator written in the angle variable
θ ¼ fðφÞ, as will be discussed in Sec. V D. In fact, this
behavior agrees with the classical picture in which edge
modes propagate at constant speed in the θ coordinate [112].
A second key aspect is the lack of translation invariance
in φ along the edge, caused not only by the argument
fðφ1Þ−fðφ2Þ¼

R
φ1
φ2
dφf0ðφÞ, but also by the factors σðφ1Þ

and σðφ2Þ. Interestingly, the product σðφ1Þ−1=2σðφ2Þ−1=2
resembles prefactors picked up by primary fields in CFT
under local conformal transformations.
It is tempting to compare our result with the edge

correlations of a 2D Coulomb gas of the same shape as
the droplet. For harmonic potentials, the two problems are
indeed identical, and Eq. (67) coincides with the plasma
result of Ref. [53] upon using the map (29) with k ¼ 2,
α ¼ coshðλÞ, and β ¼ sinhðλÞ. But there is no such coinci-
dence for arbitrary edge deformations: Our formula (67)
generally differs from the plasma prediction of Ref. [46].
[This can be verified, e.g., with flower deformations (29) of
order k ≥ 3.] The reason for this mismatch is that Coulomb-
gas edge correlations are obtained by solving an electro-
static problem that only depends on the shape of the droplet
[46], whereas QH edge correlations are sensitive not only to
a droplet’s shape, but also to the local edge velocity, which
is controlled by the gradient of the potential. These ideas
will be further explored elsewhere.
Finally, it is a simple matter to include time dependence

in the correlator (67). Indeed, the occupied one-particle
states in Eq. (65) have definite energies Em given by
Eq. (42) at large m. This spectrum is approximately linear
close to the Fermi energy: Changing variables according to
m ¼ N þ k with k finite at large N, one has

ENþk − EN ∼ ℏωFk ð68Þ

with ωF ≡ l2ΩN=ℏ the angular Fermi velocity given
by the potential’s derivative in Eq. (38) at m ¼ N. In
the linear regime (68), one can repeat the asymptotic
computation of correlations to find once more an expres-
sion of the form (67), now with a time-dependent
overall phase and a time-dependent denominator
2 sinð½fðφ1Þ − fðφ2Þ − ωFðt1 − t2Þ�=2Þ. This exhibits the
standard ballistic propagation of correlations in a CFT,
which we confirm below from the low-energy dynamics
of our droplet.

D. Edge modes

The effective low-energy description of anisotropic QH
droplets can be derived similarly to the isotropic case [90]
inspired by Luttinger-liquid theory [113]. This has the
advantage of circumventing topological field theory, at the
cost of failing to apply for fractional QH states [4–8]. We
now provide such a first-principles calculation, eventually
concluding that edge modes span a free chiral CFT
expressed in terms of the canonical angle coordinate
θ ¼ fðφÞ along the boundary. Aside from its intrinsic
interest, this provides an independent check of the validity
of the correlator (67).
Our starting point is the one-body Hamiltonian

Hone-body − μ given by Eq. (1) with the chemical potential
μ introduced in Sec. VA. The corresponding second-
quantized Hamiltonian in the fermionic Fock space is

H ¼
X
n;m≥0

ðEn;m − μÞa†n;man;m; ð69Þ

where each En;m is a one-particle eigenvalue of the operator
in Eq. (1) labeled by the Landau-level index n∈N and the
“action variable” quantum numberm∈N within each level.
(Thus, the eigenvalues found in Sec. IV are really

Em ≡ E0;m.) As for the Fock space operator að†Þn;m, it anni-
hilates (creates) the corresponding eigenstate, with standard
anticommutation relations fan;m; a†n0;m0 g ¼ δn;n0δm;m0 . The
exact energy spectrum is unknown, but this is not an issue
since low-energy excitations all belong to the LLL, with an
approximately linear dispersion (68) near the Fermimomen-
tum; see Fig. 6. As a consequence, the low-energy approxi-
mation of themany-bodyHamiltonian (69) can bewritten as

H ∼
X

p∈ ½−Λ;Λ�
ℏωFp∶a

†
pap∶; ð70Þ

where Λ is some cutoff on the half-integer label p with

að†Þp ≡ að†Þ0;Nþp−1=2 and the right-hand side is normal ordered
with respect to the ground state (55)—this merely subtracts
a constant such that the Hamiltonian has a well-defined
Λ → ∞ limit [114].
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Up to the cutoff Λ, the Hamiltonian (70) is that of a 1D
chiral CFT. However, one should keep in mind that the
operators a†p create 2D states. Showing the emergence of a
truly 1D effective theory relies on the fact that the relevant
wave functions (46) are Gaussians localized on the edge.
Indeed, provided Λ is kept finite while taking the thermo-
dynamic limit N → ∞, one can write the creation operators
in Eq. (70) as Fourier modes

a†p ¼
I

f0ðφÞdφffiffiffiffiffiffi
2π

p eipfðφÞΨ†(fðφÞ) ð71Þ

of an “edge field” Ψ†(fðφÞ) that is independent of p. This
1D field is a radial integral of 2D creation operators c†ðxÞ
weighted by the Nth wave function ψNðxÞ in Eq. (46):

Ψ†(fðφÞ)≡
ffiffiffiffiffiffi
2π

p

f0ðφÞ e
−ifðφÞ=2

Z
∞

0

rdr c†ðxÞψNðxÞ: ð72Þ

We emphasize that the appearance of a single labelN in this
definition crucially stems from the restriction to quantum
numbers that differ from N by a finite amount in the
thermodynamic limit. It is then clear that the operatorΨ†ðθÞ
creates an electron at the position θ ¼ fðφÞ on the edge.
Furthermore, the normalization of the 1D field (72) is
canonical in angle variables: Using the standard anticom-
mutator fcðx1Þ; c†ðx2Þg ¼ δð2Þðx1 − x2Þ, one similarly
finds fΨ(fðφ1Þ);Ψ†(fðφ2Þ)g¼δ(fðφ1Þ−fðφ2Þ) in terms
of the Dirac delta function on the circle. This is consistent
with the canonical anticommutator of the operators (71).
Also note that the half-integer labels in Eq. (70) imply
antiperiodic (Neveu-Schwarz) boundary conditions in φ [or
θ ¼ fðφÞ] for the edge field (72).
The derivation of the low-energy effective field theory is

now essentially done. Indeed, removing the cutoff by taking
Λ → ∞ in Eq. (70) yields Heff ¼

P
p ℏωFp∶a

†
pap∶, where

the sum is over all half-integer “momenta” p∈Zþ 1=2 and
the angular Fermi velocity is ωF ¼ l2ΩN=ℏ with ΩN given
by Eq. (38). This can be recast as

Heff ¼ ℏ
I

dθ∶Ψ†ðθÞð−iωF∂θÞΨðθÞ∶ ð73Þ

in terms of the 1D fields Ψð†ÞðθÞ. The canonical normaliza-
tion of (72) then implies the presence of the usual term
iΨ†

∂tΨ in the fermionic action functional of edge modes,
which reads

S½Ψ;Ψ†� ¼ ℏ
Z

dtdθ iΨ†ðθÞð∂t þ ωF∂θÞΨðθÞ: ð74Þ

This is manifestly a local 1D free chiral CFT in terms of the
anglevariable θ ¼ fðφÞ. Bybosonization, the corresponding

edge density waves (magnetoplasmons) are similarly
described by a free bosonic chiral CFT.
We stress that the simplification leading from highly

anisotropic, inhomogeneous wave functions (46) to the
homogeneous field theory (74) stems from delicate can-
cellations between radial and angular dependencies in the
integral (72). This generalizes the known theory of edge
modes in highly symmetric geometries to the anisotropic
setups studied here. The low-energy effective theory (74) is
thus universal: For any trapping potential, edge modes are
described by a chiral fermionic CFT expressed in terms of
the canonical angle coordinate of the trap at the boundary.
One could have guessed this from the dynamics of
electronic guiding centers induced by the potential V in
the noncommutative plane (6) [112]. In the present case, the
angle coordinate is θ ¼ fðφÞ; more general cases involve
more complicated action-angle variables.
Of course, θ generally has nothing to do with other

obvious position coordinates, such as the polar angle φ or
the arc length

sðφÞ ¼ l
ffiffiffiffiffiffiffi
2N

p Z
φ

0

dα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðαÞ þ f00ðαÞ2

4f0ðαÞ

s
: ð75Þ

Any such “wrong” coordinate makes the apparent Fermi
velocity of edgemodes position dependent. For example, the
Euclidean norm (14) of the velocity of edge modes varies
along the boundary and is, in fact, proportional to the
function σðφÞ defined in Eq. (47). This is reminiscent of
inhomogeneous CFTs, whose light cones are curved owing
to the presence of a nonzero spacetime curvature [115–122].
However, one should keep inmind that our edgemodes sense
a flat metricω2

Fdt
2 − dθ2 ¼ ω2

Fdt
2 − f0ðφÞ2dφ2, whose light

cones are straight lines in terms of the canonical angle
coordinate θ ¼ fðφÞ.
This observation is also consistent with the seemingly

complicated correlator (67). Indeed, one can start from
the definition (72) to write the 1D correlation function
hΨ†ðθ1ÞΨðθ2Þi as a double radial integral of the 2D
quantity hc†ðx1Þcðx2Þi. The asymptotic relation (67) then
yields numerous simplifications, eventually giving

hΨ†ðθ1ÞΨðθ2Þi ¼
1

2π

i
2 sinð½θ1 − θ2�=2Þ

: ð76Þ

The same result would have been obtained directly from the
low-energy action (74): It is a correlation function of free
gapless fermions written in terms of the angle coordinates
θ1 ¼ fðφ1Þ and θ2 ¼ fðφ2Þ. As a bonus, time-dependent
correlations automatically satisfy the behavior ∝ sinð½θ1 −
θ2 − ωFðt1 − t2Þ�=2Þ−1 stated at the end of Sec. V C.
In conclusion, it is worth noting that the CFT action (74)

is only the leading part of the full effective action of
edge modes. The latter actually contains many subleading
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terms—irrelevant corrections that vanish in the thermody-
namic limit and typically break conformal invariance. For
example, the Taylor expansion (68) of energies near the
Fermi momentum can be pushed further to include quan-
tum corrections that we have so far neglected. Their leading
part can be consistently computed from Eq. (41), yielding

ENþk − EN ¼ ℏ

�
ω̃Fkþ

l4

2ℏ
ΓN

Nl2
k2 þOðl6Þ

�
; ð77Þ

which involves the spectrum’s curvature ΓN in Eq. (38) as
well as the corrected Fermi velocity

ω̃F ¼ωFþ
l4

2ℏ

�
ΓN

Nl2
þ2ΓN þΔN

Nl2

I
dφ
2π

f0ðφÞσðφÞ2
�
: ð78Þ

Here, ωF ≡ l2ΩN=ℏ was defined below Eq. (68) in terms
of the potential’s derivative in Eq. (38), and ΔN ≡
l4N2V0

000ðl2NÞ. Thus, edge modes have a weak dispersion
(77) governed by the curvature of the potential—a well-
known effect whose bosonization gives rise to nonlinear
dynamics for edge density waves [108,123,124]. The veloc-
ity ωF itself also receives corrections in Eq. (78); these
depend on the entire shape of the droplet through the integral
off0ðφÞσðφÞ2. In principle, since the propagationvelocity on
the edge is measurable in QH experiments [31–33] and also
affects transport [34], this opens up the possibility to probe
the anisotropy, e.g., in cold-atom realizations [35–37], where
the smaller number of particles enhances subleading effects.
It is somewhat remarkable that our leading WKB wave
functions (46) suffice to predict such detailed corrections.
In practice, realistic QH systems involve numerous other
sources of modifications to the leading effective action (74),
typically stemming from higher Landau levels and/or inter-
actions; no such complications occur here.

VI. MICROWAVE ABSORPTION

Our study so far focused on local properties of QH
droplets in space—their wave functions, density, etc. While
the measurement of such local quantities may soon be
within reach in quantum simulators, it is generally much
trickier in genuine solid-state systems where one’s control
over the confining potential is limited. The present section
is therefore devoted to an experimentally realistic, global
probe of anisotropy that requires no local imaging. Namely,
we consider the microwave absorption spectrum of aniso-
tropic QH droplets [38] and show that it consists of a
characteristic series of peaks whose magnitude depends on
the waves’ polarization. This is expected to soon be
observable in setups that build upon the experimental work
]39 ]. In what follows, we first review the basics along with

known isotropic results, then turn to anisotropic droplets,
finally concluding with nonuniform generalizations and a
discussion of subleading effects.

A. Transition rates and isotropic benchmark

Consider a QH droplet of mesoscopic size, with a
confining potential such that the angular Fermi velocity
ωF falls in the microwave range [125,126]. The droplet,
prepared in its ground state (55), is placed next to a
coplanar microwave transmission line that subjects it to
electromagnetic pulses with a frequency ω close to ωF.
Suddenly switching on the radiation at time t ¼ 0 excites
edge density waves, leading to a frequency-dependent
absorption rate ΓðωÞ of electromagnetic waves by the
droplet. Our goal is to compute this rate.
As a general starting point, let a quantum system be

prepared in a given energy eigenstate jψmi, and subject it to
a time-dependent perturbation W cosðωtÞ starting at time
t ¼ 0, where W is some Hermitian operator. Standard
perturbation theory then predicts that the transition rate
from jψmi to some other eigenstate jψni is

Γm→n ∼
1

2ℏ
jhψmjWjψnij2δðℏω − jEm − EnjÞ ð79Þ

up to subleading corrections involving higher powers ofW,
where Em and En are the respective energies of jψmi and
jψni. In particular, Eq. (79) applies to electronic orbital
transitions in a QH sample subjected to electromagnetic
waves [127,128]. Here, we shall mostly focus on linearly
polarized, uniform perturbations, in which case W ¼
qE½x cosðαÞ þ y sinðαÞ� in terms of the electric field’s
amplitude E and the polarization angle α. The ensuing
transition rates (79) can be evaluated thanks to the knowl-
edge of the relevant eigenfunctions. The corresponding
many-body absorption rate, for a QH droplet consisting of
many states jψ0i;…; jψN−1i, will be a sum of those one-
body rates (79) that are permitted by the Pauli exclusion
principle given the ground state (55).
Let us derive such an absorption rate in the simplest case

of an isotropic QH droplet. Then, there is no loss of
generality in assuming polarization along the x axis, and
the relevant wave functions (3) behave near their maximum
as predicted by Eq. (46) with fðφÞ ¼ φ and Φ ¼ 0. It
follows that the matrix elements needed in Eq. (79) satisfy
the selection rule hψmjxjψni ∼ l

ffiffiffiffiffiffiffiffiffi
m=2

p ðδm;n−1 þ δm;nþ1Þ at
large quantum numbers m and n [129]. Note that the
Kronecker deltas on the right-hand side would occur for
any pair of states with definite angular momenta m and n,
while the coefficient in front is specific to the LLL. Owing
to the selection rule, the only transition allowed by the Pauli
exclusion principle for the many-body ground state (55) is
the one where the state jψN−1i jumps to the state jψNi; any
other transition either is forbidden or occurs at higher
orders in the perturbation. Equation (79) then predicts that
the droplet’s absorption rate at frequency ω is given by [38]

ΓðωÞ
2πNl2

∼
q2E2

8πℏ2
δðω − ωFÞ ð80Þ
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at leading order in perturbation theory, where we recall that
2πNl2 is the droplet’s area and ωF is the angular Fermi
velocity (68). Thus, the rate exhibits a single absorption
peak (at ω ¼ ωF) whose magnitude is independent of the
direction of polarization; anisotropic droplets, to which we
now turn, will change both these conclusions.

B. Microwave absorption by anisotropic droplets

Consider as before an edge-deformed potential, for
which the relevant eigenstates are given by Eq. (46).
Then, the one-body matrix elements needed for the
transition rate (79) read

hψmj½x cosðαÞ þ y sinðαÞ�jψni

∼ l
ffiffiffiffiffiffiffi
2m

p I
dφ
2π

cosðφ − αÞeiðn−mÞfðφÞf0ðφÞ3=2; ð81Þ

where we assumed that m and n are both large with a finite
differencem − n and we only wrote the leading-order result
in that limit. There is a priori no selection rule in Eq. (81),
so a state jψmi can typically jump to any other state jψni,
with an arbitrary difference p ¼ n −m. As a consequence,
the many-body absorption rate ΓðωÞ involves several
distinct peaks, each labeled by p; at leading order in the
thermodynamic limit, these peaks occur at integer multiples
of ωF, with p different one-body transitions contributing to
the pth peak. There is thus one lowest-frequency transition
at ω ¼ ωF (jψN−1i → jψNi), but two transitions at ω ¼
2ωF (jψN−2i → jψNi and jψN−1i → jψNþ1i), three transi-
tions at ω ¼ 3ωF, and so on. All in all, the droplet’s
absorption rate per unit area is

ΓðωÞ
2πNl2

∼
q2E2

2πℏ2

X∞
p¼1

pδðω − pωFÞ

×

				
I

dφ
2π

cosðφ − αÞeipfðφÞf0ðφÞ3=2
				2; ð82Þ

and it manifestly depends on the polarization angle α. As
announced, this generalizes the isotropic formula (80), to
which it reduces in the special case fðφÞ ¼ φ; it was
written in Eq. (21) for λðφÞ ¼ 2f0ðφÞ. Examples of
absorption spectra given by Eq. (82) are displayed in
Figs. 4 and 8, with delta functions replaced by broader
Lorentzian distributions; such a broadening typically
occurs in real systems due to dissipation effects.
Equation (82) predicts that secondary peaks (p ≥ 2) are

typically lower than the first, although they may be of the
same order of magnitude [see Fig. 8(a)] even for perfectly
smooth potentials. In addition, the first few subleading
peaks may have comparable amplitudes [see Fig. 8(b)],
since the multiplicative factor p in Eq. (82) increases the
weight of high-frequency resonances. Their magnitude
nevertheless falls off exponentially fast when p → ∞, as
the angular integral in Eq. (82) is the pth Fourier mode of a
certain function on the circle (see Appendix E).
In actual QH experiments, the precise shape of the

trapping potential is generally unknown. Equation (82)
offers in this sense a promising path to reconstruct the
shape of the droplet, at least partially. Indeed, the polari-
zation of electromagnetic perturbations gives a factor
cosðφ − αÞ in the integrand, which guarantees that the
angle-dependent absorption rate at the pth peak is a
function Ap þ Bp cosð2αþ CpÞ, where the numbers Ap,
Bp, and Cp depend on the deformation fðφÞ. Each peak

FIG. 8. Plots of the multiple-peaked, angle-dependent absorption spectrum (82) for droplets (a) and (b) shown as insets, where the
latter is the same as in Figs. 1 and 2 and the dashed curves represent a few equipotentials. [As is commonplace, the delta functions in
Eq. (82) have been replaced by Lorentzian distributions to account for the finite lifetime of quasiparticles in real systems.] Each
continuous black curve displays the absorption rate ΓðωÞ as a function of the frequency ω for a fixed value of the polarization angle α,
divided by the maximal absorption rate Γmax of the first peak. The occurrence of absorption peaks at integer multiples of the angular
Fermi velocity ωF is manifest. As is visible in (a), even very smooth droplets may give rise to secondary peaks (p ≥ 2) whose magnitude
is comparable to that of the first one.
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thus fixes (at most) three parameters entering fðφÞ; com-
bining several peaks gives a fair amount of insight into the
Fourier modes of the “anisotropy function” fðφÞ − φ. Note
in passing that just three directions of polarization are
needed in order to determine the entire angular dependence
of the absorption at any peak. Thus, only three waveguides
with different orientations are required to measure the full
angle-dependent absorption spectrum, without the need to
scan every single direction individually.
A key property of Eq. (82) is that it is consistent with the

expected behavior of admittance in more familiar cases. We
already mentioned this for the isotropic setup fðφÞ ¼ φ,
but one can go further and consider anisotropic harmonic
droplets, which were discussed in Sec. IV E. Such droplets
are obtained from isotropic harmonic traps through flower
deformations (29) of order k ¼ 2, e.g., with α ¼ coshðλÞ
and β ¼ sinhðλÞ. Plugging such a function fðφÞ into the
absorption formula (82) readily shows that a selection rule
is satisfied once more: All peaks with p ≥ 2 vanish, and
only the first peak (p ¼ 1) persists. In fact, the full angle-
dependent absorption rate for an elliptic droplet is

ΓðωÞ
2πNl2

∼
q2E2

8πℏ2
δðω − ωFÞ½coshð2λÞ − sinhð2λÞ cosð2αÞ�;

ð83Þ

where λ is the deformation parameter that appears in the
harmonic potential (52). This can be derived either from
our Eq. (82) or from the known exact LLL wave functions
in a harmonic potential. As shown in Fig. 9, Eq. (83)
predicts that increasing the droplet’s eccentricity increases
its absorption rate at most values of α, except near α ¼ 0
and π, where the absorption rate decreases. The intuitive

explanation is that the elliptic potential (52) elongates the
droplet along the y axis, so that larger dipole moments,
hence larger absorption rates, occur for α ¼ �π=2, while
smaller rates occur near α ¼ 0; π. In addition, the overall
increase in the absorption rate at larger eccentricities may
be viewed as an effect of the increase in the droplet’s
perimeter (though its area is kept constant), which agrees
with the intuition that microwave absorption probes the
droplet’s edge dynamics.
Moving away from harmonic potentials, the next step is

to consider all flower deformations (29) with arbitrary order
k. The corresponding potentials are both anharmonic and
anisotropic (unless k ¼ 2), so their absorption spectra
generally display infinite series of peaks. In fact, for
k ¼ 1, all peaks are nonzero and explicitly depend on α,
while flower potentials with k > 2 admit a (weak) selection
rule of their own: The pth absorption peak vanishes unless
p ¼ �1 mod k. We show in Appendix E that this is a direct
consequence of the Zk symmetry of flower deformations;
the same symmetry also implies (for k > 2) that all
remaining nonzero peaks are independent of the polariza-
tion angle α, in contrast with the cases k ¼ 1, 2 whose
absorption rates are angle dependent. Actually, the precise
values of absorption amplitudes (82) can be obtained
analytically for any flower deformation.

C. Nonuniform fields and subleading effects

It is worth noting that one is not limited to the uniform
electromagnetic perturbations considered so far. Indeed,
one may be interested in spatially modulated perturbations
that are periodic in time, generalizing the case W ¼
qE½x cosðαÞ þ y sinðαÞ� mentioned below Eq. (79). One
particular class of perturbations is especially well suited
for the anisotropic behavior studied here, namely W ¼
Λrs cosðn½φ − α�Þ in polar coordinates, where s and n are
some positive integers and Λ is some overall scale with
dimensions such that W is an energy. (Incidentally, such
potentials may be viewed as generators of the W1þ∞
algebra with spin 1þ s=2 [89].) Then, a straightforward
extension of the derivation surrounding Eq. (81) yields the
many-body absorption rate

ΓðωÞ ∼ Λ2l2sð2NÞs
2ℏ2

X∞
p¼1

pδðω − pωFÞ

×

				
I

dφ
2π

cosðn½φ − α�ÞeipfðφÞf0ðφÞð2þsÞ=2
				2: ð84Þ

In contrast to Eq. (82), this generally does not scale like the
area of the droplet. It does, however, display a series of
absorption peaks at discrete values of the frequency,
though it is crucially sensitive to more Fourier modes of
the deformation fðφÞ. For instance, one can verify that the
corresponding absorption peaks generally depend on the
angle α even for flower deformations of order k > 2. In this

FIG. 9. Plot of ΓðωFÞ=Γ0 ¼ coshð2λÞ − sinhð2λÞ cosð2αÞ, de-
scribing the magnitude of the first (and only) peak in the
absorption spectrum (83), seen as a function of α for an elliptic
droplet with anisotropy parameter λ ¼ 0; 0.05;…; 0.5 (orange to
black). The rescaling Γ0 contains all dimensionful quantities on
the right-hand side of Eq. (83) (with the delta function broadened
to a Lorentzian). The case λ ¼ 0 corresponds to the circular
droplet, while increasing λ elongates the droplet along the y axis
and increases the absorption rate at most values of α, except
near α ¼ 0; π.
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sense, Eq. (84) suggests that the combination of various
spatially modulated rates provides an even more powerful
method to reconstruct the shape of a droplet from its
admittance—at the expense of being harder to realize in
practice.
We end with a few words about subleading corrections

that were neglected here. First, realistic absorption peaks
are not delta functions as in Eqs. (82)–(84) but are
broadened instead by dissipation as in Figs. 4 and 8.
Second, anharmonic terms in the energy spectrum (77)
affect both the value of the angular Fermi velocity and the
dispersion relation of edge modes and edge magneto-
plasmons. Both effects modify the absorption rates (82)
and (84), at the very least by affecting the location and the
width of absorption peaks. Other higher-order quantum
corrections appear as well and can, in principle, be included
similarly to those of local observables in Appendix D.
Modifications also occur due to finite-temperature effects,
higher Landau levels, and interactions, none of which were
taken into account in our approach. Despite these simpli-
fications, the results presented here show how microwave
absorption by anisotropic droplets can be used as a
powerful probe of geometric effects in edge dynamics.

VII. CONCLUSION AND OUTLOOK

This work was devoted to a detailed study of mesoscopic
droplets of noninteracting planar electrons in a strong
perpendicular magnetic field, confined by any anisotropic
trap with scale-invariant level curves enclosing star domains.
In particular, we provided explicit formulas for the corre-
sponding wave functions and energy spectrum, allowing us
to compute the many-body density, current, and correlations
of an entire droplet. The low-energy edge modes of the
droplet were also shown to behave as a chiral CFT in terms of
the canonical angle variable along the boundary, despite
apparent inhomogeneities in terms of more naïve coordi-
nates. In practice, all calculations were based on a semi-
classical expansion in the magnetic length, crucially
involving a WKB ansatz for holomorphic wave functions
and the solution of the ensuing transport equation. The
approach provides a systematic handle on perturbative
quantum corrections, exemplified by our computations of
subleading effects in density and current, or shape-dependent
and dispersive corrections to the linear CFT spectrum.
These results pave the way for a number of applications

and follow-ups. Indeed, recent advances suggest the pos-
sibility of probing local properties of QH droplets in the lab
[14–21,27–30], both for static ground states and their
dynamical edge excitations. The density (60) and the
current (63) then predict observable shape-dependent
effects, while the low-energy theory (74) predicts the
ballistic propagation of local boundary disturbances with
a lab velocity that may appear position dependent as in
Eq. (14), unless one is careful to express it in canonical
action-angle coordinates. Notably, we also described a

realistic experiment to probe a droplet’s anisotropy without
local imaging, namely by measuring its microwave absorp-
tion spectrum. We showed analytically, that the latter
consists of a series of resonance peaks with a distinctive
dependence on the droplet’s shape and the waves’ polari-
zation; such effects are expected to be visible soon, given
the high sensitivity of state-of-the-art detectors [39].
More generally, the geometry of the QH effect [48,54–62]

could soon become relevant for experiments involving
ultracold atoms or photonics. Our work provides a bridge
between this field of mathematical physics and concrete
observables inmesoscopic quantumphysics. Confirming the
predictions put forward here through linear response experi-
ments, direct imaging, or measurements of edge velocity and
absorption rates would be a fascinating example of many-
body quantum mechanics at work.
Turning to theory, the link between our formalism andQH

symmetries deserves further study: Following the series of
works [89–94], one can think of edge deformations as unitary
operators acting onmany-bodyQHstates. It is then natural to
wonder how these operators get composed together, since
they are expected to span a Virasoro group with a nonzero
central charge [95]. More broadly, what are the operators
implementing area-preserving deformations in the sense of
the WKB ansatz (25)? One expects these to provide a
finite (exponentiated) form of the operators studied in
Refs. [89,91,92], with noncommutative composition laws
consistent with the geometry (6) of LLL physics. Similar
motivations recently led to Ref. [88] on quantum area-
preserving diffeomorphisms, although the formalism devel-
oped there does not involve any LLL projection.
Most of the discussion above focused on leading-order

properties, but subleading effects are sometimes crucial and
deserve to be investigated in their own right. For instance,
one may be interested in the irrelevant corrections of the edge
field theory (74) mentioned at the end of Sec. V D, especially
following the recent numerical observation [108] that the
slow time evolution of edge density waves is governed by a
nonlinear Korteweg–de Vries equation. This regime is
described by small droplet deformations of the form
r2 ↦ r2 þ αðφÞ, spanningaU(1)Kac-Moody algebrawhose
level is sensitive to the filling fraction [89,91,92]. The
corresponding nonlinear dynamics may then be seen as an
evolution equation in an infinite-dimensional group mani-
fold. Such a perspective is standard in geometric hydro-
dynamics [130–132], but it has only recently come to be
appreciated in condensed matter physics [133]. Our work
provides a basis for considerations of this kind in the QH
effect, including the possibility of inhomogeneous (position-
dependent) irrelevant corrections in anisotropic traps.
Another obvious extension of this work is the

fractional QH regime. In that context, no single-particle
description is available, but many-body predictions such as
the edge density (60), the current (63), or the absorption
spectrum (82) conceivably display universal geometric
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features that would remain true in interacting many-body
ground states [73]. It would be thrilling to derive such
predictions from the family of edge transformations studied
here, either from a microscopic analysis of the Laughlin
wave function or thanks to the reformulation of fractional
QH states as CFT correlation functions [134].
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APPENDIX A: ISOTROPIC DROPLETS

Most of this work is concerned with anisotropic proper-
ties, but isotropic results provide a useful benchmark. They
are simpler than their anisotropic counterparts and well
known in the literature, so their properties are concisely
summarized here. We begin by recalling basic aspects of
the one-body energy spectrum based on the exact wave
functions (3), then turn to many-body observables.

1. One-body spectrum

Consider a spin-polarized 2D electron governed by the
Landau Hamiltonian (1) with an isotropic confining poten-
tial VðxÞ ¼ V0ðr2=2Þ. At very strong magnetic fields, the
corresponding one-body spectrum is well approximated by
the solution of the LLL-projected eigenvalue equation (7).
As the potential is isotropic, it commutes with angular
momentum, so the eigenstates of PVP are wave functions
(3) with definite angular momentum. These confirm the
general near-Gaussian behavior found in Eq. (48): Letting
jzj ¼ ffiffiffiffi

m
p þ a with finite a, one finds that (3) behaves at

large m as

ϕmðxÞ¼
eimφffiffiffiffiffiffiffiffiffiffi
2πl2

p e−a
2

ð2πmÞ1=4
�
1þ a3

3
ffiffiffiffi
m

p þOð1=mÞ
�
; ðA1Þ

where we included the m−1=2 correction for later reference.
The energy Em of each state (3) is readily found by
computing the wave function hz; z̄jPV0ðr2=2ÞPjϕmi, which
yields the exact eigenvalue

Em ¼ hϕmjVjϕmi ¼
1

m!

Z
∞

0

dt tme−tV0ðl2tÞ ðA2Þ

in terms of the integration variable t≡ jzj2. Observe in
passing that this is the value one would find from first-order
perturbation theory of the full Landau Hamiltonian (1): By
construction, LLL-projected physics is only sensitive to
first-order effects of the potential, while higher orders
ultimately involve higher Landau levels.
Now fix an index m ≥ 0. What is the corresponding

equipotential in the sense of Eq. (9)? To answer this in the
classical limit, we let m ≫ 1 while fixing the value of
l2m ¼ Oð1Þ and evaluate the integral (A2) by a saddle-
point approximation. The outcome is

Em ¼ V0ðl2mÞ þ l2Ωm þ l2

2
Γm þOðl4Þ; ðA3Þ

where Ωm and Γm were defined in Eq. (38). This is
consistent with Eqs. (15) and (41) for λðφÞ ¼ 2f0ðφÞ ¼ 2.

2. Many-body aspects

The sequence followed here is the same as in Sec. V:
We start with the density, then consider the current and the
correlations close to the edge. In all cases, the edge
asymptotics reproduce the formulas in Sec. V for the
simplest case where f0ðφÞ ¼ 1.

a. Density

Let N ≫ 1 noninteracting planar electrons be subjected
to the Hamiltonian (1), with a very strong magnetic field
B ¼ dA and a weak isotropic potential VðxÞ ¼ V0ðr2=2Þ.
The ground-statewave function of this many-body system is
a Slater determinant of the occupied single-particle eigen-
states ϕ0;ϕ1;…;ϕN−1 given by Eq. (3), each of which has a
one-body density jϕmðxÞj2. In that specific case, the many-
body density (56) can be expressed in closed form as

ρðxÞ ¼ 1

2πl2

ΓðN; jzj2Þ
ΓðNÞ ðA4Þ

in terms of the upper incomplete gamma function

ΓðN; xÞ≡
Z

∞

x
dt tN−1e−t ¼ ΓðNÞe−x

XN−1

k¼0

xk

k!
: ðA5Þ
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Constancy of density in the bulk is then manifest, as is its
drop to zero close to the edge jzj ¼ ffiffiffiffi

N
p

, with an error
function behavior that can be deduced from known asymp-
totic formulas for gamma functions [111]; this reproduces
Eqs. (16) and (60) with λðφÞ ¼ 2f0ðφÞ ¼ 2.

b. Current

For the LLL states (3) with definite angular momentum,
each one-body current (61) is purely angular, i.e., it reads
jm ¼ ð…Þdφ. The sum (62) can then be evaluated in closed
form owing to an exact cancellation between the contri-
bution of the states m and mþ 1, eventually leading to a
current that only involves the Nth wave function:

JðxÞ ¼
XN−1

m¼0

jϕmðxÞj2ðm − jzj2Þdφ

¼
XN−1

m¼0

�
mjϕmðxÞj2 − ðmþ 1Þjϕmþ1ðxÞj2

�
dφ

¼ −NjϕNðxÞj2dφ: ðA6Þ

It is then trivial to show that the current is localized as a
Gaussian close to the edge, since this is inherited from the
underlying single-particle wave function. In particular, the
(leading part of the) asymptotic behavior (A1) reproduces
Eqs. (17) and (63) with λðφÞ ¼ 2f0ðφÞ ¼ 2.

c. Correlations

The computation of electronic correlations close to the
edge is similar to that of the density. Indeed, since the
many-body ground-state wave function is a Slater deter-
minant, its two-point correlation function can be expressed
as in Eqs. (18) and (65). The exact wave functions (3) can
then be used to write the correlation (65) as an incomplete
gamma function (this time with a complex argument):

Cðz; z̄; w; w̄Þ ¼ 1

2πl2

ΓðN; z̄wÞ
ΓðNÞ e−ðjzj2þjwj2Þ=2ez̄w: ðA7Þ

It is then manifest that bulk correlations coincide with the
kernel (5) at leading order in the thermodynamic limit. As
for the edge behavior, it can be extracted, e.g., from a
steepest descent argument [111] and reproduces Eqs. (19)
and (67) with λðφÞ ¼ 2f0ðφÞ ¼ 2.

APPENDIX B: SEMICLASSICAL
EXPANSION OF PVP

In this appendix, we derive Eq. (27) starting from
Eq. (26). To this end, think of Vðx; yÞ as some smooth
function of ðx; yÞ whose arguments can be complexified,
and change the integration variables ðx; yÞ in Eq. (26) to

s≡ x −
lffiffiffi
2

p ðzþ w̄Þ; t≡ yþ ilffiffiffi
2

p ðz − w̄Þ: ðB1Þ

In terms of ðs; tÞ, the integrals in Eq. (26) are two line
integrals in the complex plane, each along a path from
−∞þ ic to þ∞þ ic, where c is some irrelevant real
constant (a different one for s and t). The advantage of the
change of variables (B1) is to make the exponential factor
in Eq. (26) purely Gaussian:

hz; z̄jPVPjw;w̄i¼ 1

ð2πl2Þ2 e
−jz−wj2=2eðzw̄−z̄wÞ=2

×
Z

dsdtV

�
sþ lffiffiffi

2
p ðzþ w̄Þ; t− ilffiffiffi

2
p ðz− w̄Þ

�
e−ðs2þt2Þ=2l2 :

ðB2Þ

We then complexify V, thus replacing Vðx; yÞ by Vðz; z̄Þ,
where Vðz; w̄Þ is a function of two complex variables,
holomorphic in z and antiholomorphic in w. We can then
deform independently both integration contours for s and t
back to the real line. For small l, the Gaussian factor in
Eq. (B2) localizes everything to s ¼ t ¼ 0. We now use our
assumption of slow variation of VðxÞ to Taylor expand it as

V

�
sþ lffiffiffi

2
p ðzþ w̄Þ; t − ilffiffiffi

2
p ðz − w̄Þ

�

∼
�
V þ s2

2
∂
2
xV þ t2

2
∂
2
yV

�				�
lffiffi
2

p ðzþw̄Þ;− ilffiffi
2

p ðz−w̄Þ
�; ðB3Þ

where we only kept terms that give nonzero contributions
to the Oðl2Þ approximation of the integral (B2). Note
that everything is evaluated at ðx; yÞ ¼ (lðzþ w̄Þ= ffiffiffi

2
p

;
−ilðz − w̄Þ= ffiffiffi

2
p

); in complex coordinates, this is just the
point ðz; w̄Þ, so it is simpler to write the potential as Vðz; w̄Þ.
Plugging the expansion (B3) into Eq. (B2) then yields the
result (27).

APPENDIX C: TRANSPORT EQUATION

The goal of this appendix is to derive the real and
imaginary parts of the transport equation in Eqs. (37) and
(43), respectively, by imposing the eigenvalue equation (7)
based on our WKB ansatz (35) in the case of edge-
deformed droplets. The argument relies on expanding
the energy and the potential as in Eqs. (9) and (27). It is
divided in two parts. First, we use the eigenvalue equation
to derive the constraint (36), and let z belong to an
equipotential so that the whole equation boils down to a
1D integral identity. Second, we show that the integral has a
sharp saddle point in the large-m limit; this allows us to
rephrase the integral constraint as a first-order transport
equation for the unknown function nðθÞ.
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1. Evaluation along an equipotential

Using the wave functions (23)–(24) and the expansion
(27) of the potential along with the projector property
P2 ¼ P, the eigenvalue problem (7) reads

0 ¼
Z
R2

d2w
2πl2

e−jz−wj2=2eðzw̄−z̄wÞ=2

×

��
V þ l2

2
∇2V

�				
ðz;w̄Þ

− Em

�

×
I

dθ nðθÞeimθδ2
�
w − ðFðm; θÞ; Gðm; θÞÞ� ðC1Þ

up to Oðl4Þ corrections [135]. In the case of edge-
deformed traps, Vðz; w̄Þ is the bicomplex potential given

in Eq. (33) and the delta function localizes the whole
integral over w to a level curve (32) with K ¼ m.
Integrating over w and changing the integration variable
from θ ¼ fðφÞ to φ then yields Eq. (36).
Note that the structure of Eqs. (C1) and (36) is 0 ¼

e−jzj2=2FðzÞ for a holomorphic function FðzÞ, so setting
FðzÞ ¼ 0 on a closed curve implies FðzÞ ¼ 0 everywhere.
Accordingly, we will solve Eqs. (C1) or (36) along the
equipotential (31) by fixing K ¼ m and parametrizing

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðαÞ

p
eiα; α∈ ½0; 2πÞ: ðC2Þ

This ensures that all three terms in the exponential in
Eq. (36) are of the same order OðmÞ. Then, Eq. (36) with
the choice (C2) and φ≡ αþ ε becomes

0 ¼
Z

π

−π
dε f0ðαþ εÞn(fðαþ εÞ) exp

�
imfðαþ εÞ − 1

2
mf0ðαþ εÞ þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðαÞf0ðαþ εÞ

p
e−iε

�

×

�
V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf0ðαÞ
p

eiα;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðαþ εÞ

p
e−iðαþεÞ

�
þ l2

2
∇2V − E0

m − l2E1
m

�
: ðC3Þ

This rewriting will allow us to carry out the integral thanks
to the saddle-point approximation, obtained by expanding
all terms in powers of ε and leading to a differential
equation for nðθÞ.

2. Saddle-point analysis and transport equation

The saddle-point expansion of the integral (C3) is cum-
bersome but straightforward. The strategy is to expand all
factors in the integrand up to a suitable power of ε, then
perform the resulting integrals of the form

R
dε ε#e−Cε

2

,
whereC is some f-dependent coefficient [see Eq. (C5)]. The
powers of ε involved are typically small, as higher powers are
suppressed in the classical limit [largem and l2m ¼ Oð1Þ].
The fact that the argument of nðθÞ also involves a factor ε
eventually converts the integral into a transport equation of
the form n0ðθÞ ∝ nðθÞ [see Eq. (C16)].

We start with Eq. (C3) and first expand the exponential,
then the potential with its Laplacian, and finally the
simplest f0ðφÞn(fðφÞ) prefactor. For convenience, we
introduce the notation

A≡ f00

f0
; B≡ f000

f0
ðC4Þ

for combinations of derivatives of f that often appear
below; from now on, expressions of the form f or f0, etc.,
are all implicitly evaluated at α unless specified otherwise
[so f ≡ fðαÞ, f0 ≡ f0ðαÞ, etc.]. Note for future reference
the useful relation A0 ¼ B − A2.

a. The exponential

Using the notation (C4), one has

exp

�
imfðαþ εÞ − 1

2
mf0ðαþ εÞ þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðαÞf0ðαþ εÞ

p
e−iε

�

∼ eimfþ1
2
mf0 exp

�
−
1

2
mf0ε2

�
1þ A2

4

���
1þmf0ε3

�
i
6
−
A
4
−
iB
12

þ iA2

8
−
AB
8

þ A3

16

��
; ðC5Þ

where the factor exp½imf þmf0=2� is ultimately irrelevant
for the eigenvalue equation (C3), so we will not include it in
what follows. The main point of Eq. (C5) is to exhibit the
leading Gaussian behavior exp½−ðmf0=2Þð1þ A2=4Þε2� of
the integrand, which will eventually allow us to convert
Eq. (C3) into a differential equation for the unknown

function nðθÞ. In fact, the same exponential factor appears
in the approximately Gaussian wave function (48).

b. The potential

We now turn to the expansions of the potential and of its
Laplacian. As a first step, our task is to expand the potential
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V
� ffiffiffiffiffiffiffiffi

mf0
p

eiα;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðαþ εÞ

p
e−iðαþεÞ

�
¼ V0

0
B@l2m

ffiffiffiffi
f0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðαþ εÞp

e−iε

f0
�

1
2i log

h ffiffiffi
f0

p
e2iαþiεffiffiffiffiffiffiffiffiffiffiffiffi

f0ðαþεÞ
p

i�
1
CA

∼ V0

�
l2m

�
1 − iε

�
1þ A2

4

�
þ ε2

�
−
1

2
þ B

8
−
3A2

8
−
A3

4i
−
A4

16
þ AB

4i
þ A2B

32

���

∼ V0ðl2mÞ − il2mε

�
1þ A2

4

�
V 0
0ðl2mÞ − 1

2
l4m2ε2

�
1þ A2

4

�
2

V 00
0ðl2mÞ

þ l2mε2
�
−
1

2
þ B

8
−
3A2

8
−
A3

4i
−
A4

16
þ AB

4i
þ A2B

32

�
V 0
0ðl2mÞ; ðC6Þ

wherewe usedEq. (33) and the notation (C4). Aside from the
contribution of the Laplacian, these are all the terms of the
potential needed in the eigenvalue equation (C3) along an
equipotential. As expected, they all ultimately involve the
potential and its derivatives at the equipotential (31). For
ε ¼ 0, the whole expression boils down to V0ðl2mÞ alone.
Let us now turn to the Laplacian term. The eigenvalue

equation (C3) requires the Laplacian evaluated at the com-
plexified point ðz;w̄Þ¼ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf0ðαÞp
eiα;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf0ðαþεÞp

e−iðαþεÞÞ.
In practice, the Laplacian term ismultiplied byl2 in Eq. (C3),
so we may safely set ε ¼ 0 when computing it; this removes
the complexification and allows us to write the Laplacian
contribution in Eq. (C3) as

l2

2
∇2V ∼

l2

f0

�
1 −

B
4
þ A2

2

�
V 0
0ðl2mÞ

þ l4m
f0

�
1þ A2

4

�
V 00
0ðl2mÞ; ðC7Þ

which follows from the general expression (34) evaluated on
the equipotential (31).

c. All together

Let us finally consider the very first factor on the right-
hand side of Eq. (C3), namely

f0ðαþ εÞn(fðαþ εÞ) ∼ f0nðfÞ þ ε½f00nðfÞ þ f02n0ðfÞ�;
ðC8Þ

where higher powers of ε are negligible at this order. To see
why they may be neglected, it is helpful to investigate the
general structure of the small-l expansion in Eq. (C3): The
exponential term in Eq. (C5) has the form

exp½imfð…Þ� ∼ const × e−mΛε2
�
1þmLε3

� ðC9Þ

with m ≫ 1 and Λ and L some Oð1Þ coefficients.
Similarly, the potential expansion (C6) together with the
Laplacian correction (C7) can schematically be written
as V0 þ ðl2=2Þ∇2V0 ∼ V0 þ l2W0 þGεþHε2, where
V0 ≡ V0ðl2mÞ while W0, G, and H are again some Oð1Þ

coefficients. Finally, the expansion (C8) of the prefactor
roughly has the form

f0neð…Þ ∼ const × ðf0nþ εIn0 þ εJnÞ; ðC10Þ

where I and J are Oð1Þ coefficients. Putting together the
schematic expressions (C9) and (C10) and using the fact that
constant (i.e., ε-independent) contributions are irrelevant, the
eigenvalue equation (C3) becomes

0 ¼
Z

dε ðf0nþ εIn0 þ εJnÞe−mΛε2
�
1þmLε3

�
×
�
V0 þ l2W0 þ GεþHε2 − E0

m − l2E1
m

�
: ðC11Þ

Here, the right-hand side is a sum of integrals whose
integrand has the form εne−mΛε2 . For odd n, each such
integral vanishes; for even n, it is nonzero and scales as
m−n=2. This is why only the first order in ε is needed in the
expansion (C8): Higher powers of ε would yield subleading
corrections toEq. (C11),which can be consistently taken into
account only by expanding the exponential, potential, and
Laplacian terms up to orders in ε higher than what we did
above. Here, we content ourselves with the zeroth- and first-
order terms in l2 (i.e., in 1=m). At that level of approxima-
tion, Eq. (C11) yields the zeroth-order statement

V0 − E0
m ¼ 0 ðC12Þ

and the first-order result

f0n
�
Λl2mðW0 − E1

mÞ þ
H
2
þ 3LG

4Λ

�
þ G

2
ðIn0 þ JnÞ ¼ 0;

ðC13Þ

where l2m ¼ Oð1Þ as before. Equation (C12) confirms that
the eigenvalue equation holds if E0

m ¼ V0ðl2mÞ, i.e., if the
energy of the eigenstate jψmi is that of its equipotential at
leading order [recall Eq. (9)]. More important, Eq. (C13)
yields a transport equation for n, whose schematic form is
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GI
2

n0

n
þ f0

�
Λl2mðW0 − E1

mÞ þ
H
2
þ 3LG

4Λ

�
þ GJ

2
¼ 0: ðC14Þ

We now rely on the expansions (C5)–(C8) to write this transport equation explicitly: Using the notation (38) and plugging
Eqs. (C5)–(C8) into Eq. (C3) yields the condition

0 ¼
Z

dε e−
Kf0
2

�
1þA2

4

�
ε2
�
1þ ε

�
Aþ f0

n0ðfÞ
nðfÞ

���
1þ Kf0ε3

�
i
6
−
A
4
−
iB
12

þ iA2

8
−
AB
8

þ A3

16

��

×

�
−il2Kε

�
1þ A2

4

�
Ωm −

l2Kε2

2

�
1þ A2

4

�
2

Γm þ l2Kε2
�
−
1

2
þ B

8
−
3A2

8
−
A3

4i
−
A4

16
þ AB

4i
þ A2B

32

�
Ωm

þ l2

f0

�
1 −

B
4
þ A2

2

�
Ωm þ l2

f0

�
1þ A2

4

�
Γm − l2E1

m

�
; ðC15Þ

whose structure is that announced in Eq. (C11), as had to be
the case. What remains is to multiply all the factors in the
integrand, keep track of powers of ε, and integrate over ε,
which leads to

iR0=R¼
�
1þA2

4

�
Γm

2Ωm
þ 1−

B
4
þA2

2
− f0

E1
m

Ωm

−
1

1þ A2

4

��
B
8
þA4

16
−
A2B
32

�
þ i

�
A
4
þ 3A3

16
−
AB
8

��
;

ðC16Þ
where we introduced R≡ RðαÞ≡ n(fðαÞ) for simplicity.
This is the transport equation for the Oð1Þ multiplica-
tive factor of the WKB ansatz (35). Its real and imaginary
parts, respectively, govern the phase and norm of
n(fðφÞ)≡N ðφÞeiΦðφÞ:

−Φ0 ¼
�
1þ A2

4

�
Γm

2Ωm
− f0

E1
m

Ωm

þ 1

1þ A2

4

�
1þ 3A2

4
þ A4

16
−
3B
8

−
A2B
32

�
; ðC17Þ

N 0=N ¼ −
1

1þ A2

4

�
A
4
þ 3A3

16
−
AB
8

�
: ðC18Þ

The identity B ¼ A0 þ A2 then reduces these two relations
to Eqs. (37) and (43) in the main text.

APPENDIX D: SUBLEADING CONTRIBUTIONS

In this appendix, we state results for the next-order
correction inm−1=2 to the leading-order wave function (46),
obtained by including the Oð1=mÞ term in the location of
the saddle point in Sec. IV D. As we show, this reprodu-
ces formulas that can be derived by other means in
isotropic and/or harmonic traps. We also use this to deduce
Oð1= ffiffiffiffi

N
p Þ corrections to the many-body density (60) and

current (63). Note that this is not a higher-order quantum

correction: The latter requires higher-order terms in the
transport equation in Secs. IV C and IV D and would give
rise to Oð1=NÞ corrections [as opposed to Oð1= ffiffiffiffi

N
p Þ] for

the density and current.

1. One-body wave functions

Using as before the parametrization (45) near the mth
equipotential, the integral (35) has a unique saddle point at
φ ¼ αþ δ1=

ffiffiffiffi
m

p þ δ2=mþOðm−3=2Þ with

δ1 ¼ −ia
�
1 − i

f00

2f0

�
−1
; ðD1aÞ

δ2 ¼ ia2
�
2 − ff; αg

4
− i

f00

2f0

�
1 − i

f00

2f0

���
1 − i

f00

2f0

�
−3
;

ðD1bÞ
where ff; αg≡ f000=f0 − 3

2
ðf00=f0Þ2 is the Schwarzian

derivative of f and all derivatives of f are evaluated at
α. Repeating the saddle-point approximation of Eq. (35),
now keeping terms of one order in m−1=2 more than before
and using that m ≫ 1 while a is finite, one finds the wave
function

ψmðz; z̄Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πl2

p 1

ð2πmÞ1=4 e
imfðαÞþiΦðαÞ 1ffiffiffiffiffiffiffiffiffi

σðαÞp
× exp

2
4− f0ðαÞa2

1 − i f00ðαÞ
2f0ðαÞ

3
5

×
�
1þ 1ffiffiffiffi

m
p Rmða; αÞ þOð1=mÞ

�
: ðD2Þ

This differs from the leading-order result (46) by the m−1=2

correction

Rmða; αÞ≡ aR1
mðαÞ þ

a3

3!
R3
mðαÞ; ðD3Þ
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where

R1
mðαÞ≡−

f0ðαÞ
1− i f

00ðαÞ
2f0ðαÞ

�
σðαÞ2
2

�
Γm

Ωm
þ 1

2

�
−
E1
m

Ωm

þ 2− ffðαÞ;αg
8f0ðαÞ2σðαÞ2

�
3− i

f00ðαÞ
2f0ðαÞ

��
1þ i

f00ðαÞ
2f0ðαÞ

��
;

ðD4aÞ

R3
mðαÞ≡ f0ðαÞ 2 − ffðαÞ; αg�

1 − i f00ðαÞ
2f0ðαÞ

�
3
; ðD4bÞ

expressed using Eq. (47) for σðφÞ. Note that the normali-
zation in Eq. (D2) is the same as in Eq. (46) since it is
unaffected by the Oðm−1=2Þ correction. [This would no
longer be true when including Oð1=mÞ corrections.]

2. Isotropic and harmonic potentials

Let us consider the one-body wave function (D2) for the
isotropic and harmonic cases treated in Secs. A 1 and IV E,
respectively.

a. Isotropic potential

In this case, one has fðαÞ ¼ α, so f0ðαÞ ¼ 1 ¼ σðαÞ,
f00ðαÞ ¼ 0 ¼ ffðαÞ; αg, and ΦðαÞ ¼ const, where we used
Eq. (40) to get E1

m ¼ Ωm þ Γm=2. It follows that the
coefficients in Eq. (D4) are R1

mðαÞ ¼ 0 and R3
mðαÞ ¼ 2,

meaning that Eq. (D3) yields Rmða; αÞ ¼ a3=3. In con-
clusion,

ψmðz; z̄Þ¼
eimαffiffiffiffiffiffiffiffiffiffi
2πl2

p e−a
2

ð2πmÞ1=4
�
1þ a3

3
ffiffiffiffi
m

p þOð1=mÞ
�

ðD5Þ

up to an overall constant phase. This agrees with the
asymptotics (A1) of the isotropic wave function (3).

b. Anisotropic harmonic potential

In this case, fðαÞ is given by Eq. (29) with k ¼ 2,
α ¼ coshðλÞ, and β ¼ sinhðλÞ. One can then show, with
θ≡ fðαÞ, that

R1
mðαÞ ¼ sinhðλÞ coshðλÞe2iθ − sinhðλÞ

½coshðλÞe2iθ þ sinhðλÞ�2 ; ðD6aÞ

R3
mðαÞ ¼ 2

�
coshðλÞe2iθ − sinhðλÞ
coshðλÞe2iθ þ sinhðλÞ

�
3

: ðD6bÞ

Inserting these into Eq. (D3) yields the m−1=2 term in
Eq. (D2), which should be seen as a correction to the
leading-order result (54) stated in the main text. As in the
isotropic case above, the ensuing wave function agrees with
the large-m approximation of the exact LLL-projected

eigenstates for an anisotropic harmonic potential, which
can be obtained by pushing the saddle-point analysis of
Ref. [53] one order further.

3. Many-body aspects

The Oð1= ffiffiffiffi
m

p Þ correction in the wave function (D2)
induces Oð1= ffiffiffiffi

N
p Þ corrections for many-body observables.

We now write these for the density and current, whose
leading-order expressions were given in Eqs. (60) and (63),
respectively.

a. Density

The corrected wave function (D2) yields a one-body
probability density jψmj2 that differs from the earlier result
(48) by terms of order Oð1= ffiffiffiffi

m
p Þ. This can be plugged into

the many-body density (56), whereupon the sum over m
can be converted into an integral by the Euler-Maclaurin
formula. Thus,

ρðxÞ ∼ 1

2πl2

�
1

2
erfc

� ffiffiffi
2

p

σðφÞ a
�

þ e−2a
2=σðφÞ2ffiffiffiffiffiffiffiffiffi
2πN

p σðφÞ
2

�
AðφÞ a2

σðφÞ2 − BðφÞ
��

; ðD7Þ

where

AðφÞ≡ 2 − ffðφÞ;φg
3f0ðφÞ2σðφÞ4

h
4 − 3f0ðφÞσðφÞ2

i
; ðD8aÞ

BðφÞ≡ ΓN

ΩN
þ 1

2
−

2

σðφÞ2
�
E1
N

ΩN
−
1

2

�

þ 2 − ffðφÞ;φg
12f0ðφÞ2σðφÞ4

h
4þ 3f0ðφÞσðφÞ2

i
: ðD8bÞ

Note that this is consistent with the density of isotropic
droplets: When fðφÞ ¼ φ, then σðφÞ ¼ 1 and E1

N ¼
ΩN þ ΓN=2, implying AðφÞ ¼ BðφÞ ¼ 2=3, which yields

ρ ∼
1

2πl2

�
1

2
erfcð

ffiffiffi
2

p
aÞ þ e−2a

2ffiffiffiffiffiffiffiffiffi
2πN

p
�
a2

3
−
1

3

��
: ðD9Þ

The latter can also be obtained from the asymptotics of the
incomplete gamma function (A4) near the edge.

b. Current

For the many-body current, the next-order correction in
the wave functions (D2) leads to nontrivial subleading
contributions similar to those of the density, but substan-
tially more complicated. Through strenuous computations,
the sum (62) over one-body currents yields

Jðr;φÞ ¼ Jφðr;φÞdφþ Jrðr;φÞdr ðD10Þ
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with the angular component

Jφðr;φÞ∼−
e−2a

2=σðφÞ2

ð2πl2Þ3=2

×l
� ffiffiffiffi

N
p

σðφÞþAðφÞ a3

σðφÞ3−CðφÞ a
σðφÞ

�
ðD11Þ

and the radial component

Jrðr;φÞ ∼ −
e−2a

2=σðφÞ2

ð2πl2Þ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2f0ðφÞp f00ðφÞ
2f0ðφÞ

×

�
1

σðφÞ þ
AðφÞffiffiffiffi

N
p a3

σðφÞ3 −
DðφÞffiffiffiffi

N
p a

σðφÞ
�
; ðD12Þ

where AðφÞ was defined in Eq. (D8a) and

CðφÞ≡DðφÞ − 1 −
2 − ffðφÞ;φg
2f0ðφÞσðφÞ2 ; ðD13aÞ

DðφÞ≡ ΓN

ΩN
þ 1

2
−

2

σðφÞ2
�
E1
N

ΩN
−
1

2

�

þ 2 − ffðφÞ;φg
4f0ðφÞ2σðφÞ4

h
4þ f0ðφÞσðφÞ2

i
: ðD13bÞ

Note that the dependence on m in Ωm, Γm, and E1
m leads to

even higher-order corrections, meaning that they can safely
be evaluated at m ¼ N. In the special case of isotropic
potentials, the corrected components (D11) and (D12)
become

Jφ ∼ −
e−2a

2

ð2πl2Þ3=2
�
l

ffiffiffiffi
N

p
þ 2l

3
a3
�
; Jr ¼ 0; ðD14Þ

which perfectly agree with the asymptotic behavior of the
many-body current (A6) upon using both the leading and
subleading parts of Eq. (A1).
We conclude with a few remarks on the current. First,

note that the aforementioned subleading differences
between Jφ and Jr show that the current’s tangency to
the droplet only holds at leading order. Second, one can
verify that the one-form (D10) satisfies

∇ · Jðr;φÞ ¼ 0þOð1=NÞ ðD15Þ

for general anisotropic traps, as should indeed be the case
for the current of any energy eigenstate. In that argument,
the differences in the coefficients for the a=σðφÞ terms in
Eqs. (D11) and (D12) conspire so that the subleading
contributions to the divergence cancel. An analogous
statement appears in standard WKB theory, where the
transport equation implies that the probability current is
divergence-free. Our result shows that this remains true

here: n(fðφÞ) ¼ N ðφÞeiΦðφÞ satisfying Eqs. (37) and (43)
is consistent with the current satisfying Eq. (D15).

APPENDIX E: MICROWAVE ABSORPTION
FOR FLOWER DROPLETS

This appendix accompanies Sec. VI; it is devoted to the
microwave absorption spectrum of flower-shaped droplets
given by deformations (29) of any order k, including the
derivation of selection rules for k > 2. Letting λ be the
anisotropy parameter, such setups are obtained by acting on
an isotropic potential with a flower deformation (29) of the
form

eikfðφÞ ¼ coshðλÞeikφ þ sinhðλÞ
sinhðλÞeikφ þ coshðλÞ : ðE1Þ

On top of the selection rules, we will show that the
magnitude of absorption peaks can be evaluated analyti-
cally for such droplets.
Our starting point is to rewrite the angular integral in the

absorption rate (82) as a sum:I
dφ
2π

cosðφ − αÞeipfðφÞf0ðφÞ3=2 ¼ 1

2
ðXpe−iα þ X−peiαÞ;

ðE2Þ

where we defined

Xp ≡
I

dθ
2π

eipθ
eif

−1ðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf−1Þ0ðθÞ

p ðE3Þ

in terms of the canonical angle coordinate θ ¼ fðφÞ. Thus,
the coefficients Xp and X−p that determine the magnitude
of the pth peak are Fourier modes of the auxiliary function

FðθÞ≡ eif
−1ðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf−1Þ0ðθÞ
p ¼

X∞
p¼−∞

Xpe−ipθ: ðE4Þ

This readily implies the following selection rule: If fðφÞ is
a flower deformation of order k as in Eq. (E1), then

Xp ¼ 0 if p ≠ −1mod k: ðE5Þ

Put differently, the pth absorption peak can be nonzero
only if p ¼ �1 mod k. To prove this, note first that the
definition of flower deformations (E1) is ambiguous: If
fðφÞ satisfies Eq. (E1), then so does fðφÞ þ 2π=k. We fix
this ambiguity by choosing f smooth and such that
fð0Þ ¼ 0, hence

fðφÞ¼−
2

k
arctan

�
e2λcotðkφ=2Þ

�
þ2π

k

�
kφ
2π

�
þπ

k
; ðE6Þ
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where b·c denotes the nearest lower integer part. As
a consequence, the auxiliary function (E4) satisfies
Fðθ þ 2π=kÞ ¼ e2πi=kFðθÞ, which, in turn, implies the
announced selection rule (E5).
A corollary of this observation is that the norm of the

expression in Eq. (E2) is independent of α for any k > 2,
since at least one of Xp ¼ 0 or X−p ¼ 0must be true. Thus,
the uniform-field absorption rate (82) is independent of α
for any flower deformation beyond the elliptic case, and
the peaks in the absorption rate (82) vanish unless
p ¼ �1 mod k. This does not mean that all peaks allowed
by the selection rule (E5) are nonzero; for instance, the case
k ¼ 2 allows peaks for any odd p, but all peaks vanish in
practice except p ¼ 1, where the absorption rate is given by
Eq. (83). The other exceptional case is k ¼ 1, where the
selection rule trivially allows all peaks to be nonzero and
angle dependent—as indeed they are.
For k > 2, the rule (E5) turns out to give all the vanishing

peaks. The intensity of the remaining nonzero peaks can be
evaluated analytically. Indeed, for p ¼ −1þ nk with some
integer n, one can rewrite the Fourier mode (E3) as

X−1þnk ¼ k
Z

2π=k

0

dθ
2π

einkθ
ei½f−1ðθÞ−θ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf−1Þ0ðθÞ

p
¼

Z
2π

0

dϕ
2π

einϕGðϕÞ; ðE7Þ

where we let ϕ≡ kθ and the function

GðϕÞ≡ ei½f−1ðϕ=kÞ−ϕ=k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf−1Þ0ðϕ=kÞ

p ðE8Þ

is 2π-periodic. Using the flower deformation (E1) and the
fact that its inverse takes the same form with λ replaced by
−λ, one finds

GðϕÞ ¼ coshðλÞ
h
1 − tanhðλÞe−iϕ

iðkþ2Þ=2k

×
h
1 − tanhðλÞeiϕ

iðk−2Þ=2k
: ðE9Þ

It is then straightforward to write the Fourier modes (E7) in
terms of hypergeometric functions: For n ≥ 0, one has

X−1þnk ¼ coshðλÞ½− tanhðλÞ�n
�

1
2
þ 1

k

n

�

× 2F1

�
1

k
−
1

2
;n−

1

k
−
1

2
;1þn; tanh2ðλÞ

�
; ðE10Þ

while, for n < 0,

X−1þnk ¼ coshðλÞ½− tanhðλÞ�−n
�

1
2
− 1

k

−n

�

× 2F1

�
−
1

k
−
1

2
;−nþ 1

k
−
1

2
; 1 − n; tanh2ðλÞ

�
:

ðE11Þ

These expressions exhibit a general pattern: The absorption
rate of any nonzero peak increases when the anisotropy λ
increases. Recall from Sec. VI B that a similar behavior
occurs for elliptic droplets. In fact, one can verify that
Eqs. (E10) and (E11) reproduce the simple result (83) in the
harmonic case k ¼ 2.
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