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We construct an infinite family of microstates with geometric interiors for eternal black holes in general
relativity with a negative cosmological constant in any dimension. Wormholes in the Euclidean path
integral for gravity cause these states to have small, but nonzero, quantum mechanical overlaps that have a
universal form. The overlaps have a dramatic consequence: The microstates span a Hilbert space of log
dimension equal to the Bekenstein-Hawking entropy. The semiclassical microstates we construct contain
Einstein-Rosen bridges of arbitrary size behind their horizons. Our results imply that all these bridges can
be interpreted as quantum superpositions of wormholes of size at most exponential in the entropy.
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I. INTRODUCTION

In this article, we consider one old problem and one new
problem concerning black holes. As we will show, these
two problems turn out to be precisely related.
The old problem concerns the statistical origin and finite-

ness of the Bekenstein-Hawking black hole entropy [1,2]

SBH ¼ A
4G

; ð1:1Þ

where A is the area of the black hole horizon, and we have
chosen units to set ℏ ¼ 1. One way to derive this equation
is from an analysis of the partition function in Euclidean
quantum gravity [3]. With different identifications of
entropy S and area A, it also appears more generally in
the context of quantum gravity with a negative cosmologi-
cal constant [4–6] through the Ryu-Takayanagi conjecture
[7,8]. Equation (1.1) suggests that the Hilbert space
describing the quantum dynamics of black holes is finite
dimensional, spanned by eSBH orthogonal states, usually

dubbed the “black hole microstates.” The problem arises
when one tries to find these microstates, thus providing a
statistical account of black hole entropy.
Many routes towards solving this problem have been

explored. On the one hand, we have approaches in string
theory such as precise microstate counting [9] and the
fuzzball approach [10]. The problem with these celebrated
methods is that they apply to restricted scenarios and do
not provide a satisfactory understanding of the universality
of Eq. (1.1). On the other hand, we have approximate
approaches, such as the interpretation of black hole entropy
as entanglement entropy [11,12] or, relatedly, the associ-
ation of black hole entropy with the entropy of thermally
excited quantum fields in the vicinity of the horizon [13].
These approaches naively give an infinite answer, due to
the infinity of quantum field theory modes in the ultra-
violet. For sufficiently low-spin fields, at least, such
divergences can be absorbed into a renormalization of
Newton’s constant, so the denominator in Eq. (1.1) is
understood as the observed low-energy Newton’s constant
(see Refs. [14,15] for discussion). However, puzzles
remain, such as the interpretation of the contribution of
the bare Newton’s constant to Eq. (1.1), the validity of the
approach in a full quantum theory of gravity, and the
relationship of this interpretation to the state-counting
interpretation when the latter is available [16].
The new problem concerns a conjecture about the behav-

ior of the volume of the Einstein-Rosen bridge behind the
horizon of an eternal black hole [18,19]. The conjecture
suggests that the volume of such Einstein-Rosen bridges is
related to the “quantum complexity” [20] of the underlying
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state. In classical gravity, the volume of the Einstein-Rosen
bridge grows linearly with respect to the asymptotic time.
Thus, the conjecture predicts that the complexity, i.e., the
number of gates of the minimal circuit simulating the time
evolution of the quantum state, will increase linearly with
time. On the other hand, it is known that the complexity of
any circuit is bounded by the dimension of the Hilbert space
on which the circuit acts (see Chapter 7 of Ref. [20] and the
discussion in Ref. [21]). Thus, the conjecture also suggests
that the volume of the Einstein-Rosen bridge must saturate at
exponential time, and hence at a value exponentially large in
the black hole entropy, namely, at OðeSBHÞ. However, in
semiclassical gravity, the Einstein-Rosen bridge can grow
indefinitely, and no saturation is observed [22].
We will show that there is a relation between these two

problems: the expected finiteness of black hole entropy
and the conjectured finiteness of Einstein-Rosen bridges.
Indeed, we will provide a simple and universal solution to
both problems in gravitational models in any dimension. To
do so, we will only assume that general relativity, the well-
established low-energy theory of gravity, has some ultra-
violet completion with a well-defined semiclassical path
integral approximation.
The first step in our analysis is to recognize that the

problem at hand is not to find a specific family of eSBH
microstates. Indeed, below we will explicitly construct
many different families of black hole microstates, each with
infinitely many members [24]. These families will already,
at the time-symmetric point, include geometries with
Einstein-Rosen bridges of arbitrarily large volume, which
connects our puzzle about time evolution of the interior
Einstein-Rosen bridge to the puzzle regarding the appa-
rently excessive number of microstates. However, we will
show that the dimension of the Hilbert space spanned by
any of these infinite families is actually finite and given by
the exponential of the Bekenstein-Hawking entropy (1.1).
This enormous reduction in the Hilbert space dimension as
compared to the naive expectation originates from the
existence of wormhole saddle points of the gravitational
path integral, discussed recently in the context of heavy
operator statistics in the AdS=CFT correspondence [25].
We demonstrate that these wormholes give rise to tiny,
but universal, contributions to the quantum overlap of the
candidate black hole microstates. Thus, states in the
infinitely many families that we construct are not orthogo-
nal, and a computation establishes that they span a Hilbert
space of dimension that precisely equals the exponential of
the Bekenstein-Hawking entropy [26]. The same overlaps
will allow us to interpret Einstein-Rosen bridges of any
volume as superpositions of wormholes of volume bounded
by an exponential in the entropy.
Our results will generalize and clarify recent insights

from low-dimensional gravity, in particular, concerning the
spectral form factor in black hole physics [34–36], and the
derivation of the Page curve via replica wormholes (see

Ref. [37] for a review). In particular, our construction will
not use artifices like “end-of-the-world (EOW) branes”
with unknown degrees of freedom, and it will be applicable
to general relativity in general dimensions.
The rest of the paper is organized as follows. In Sec. II,

we construct infinite families of geometric solutions to
general relativity with a negative cosmological constant
that have different interior geometries behind the horizons
of a fixed-exterior eternal black hole. The two asymptotic
regions of this black hole can have different masses. The
interior regions include shells of dust moving within a long
Einstein-Rosen bridge connecting the two asymptotic
regions. Our states are semiclassically well defined and
can be constructed via Lorentzian continuation of a
Euclidean geometry. In the boundary dual conformal field
theory, this construction has a well-defined interpretation in
terms of the state-operator correspondence. Thus, these
distinct interior geometries necessarily contribute to the
dimension of the black hole Hilbert space. However, they
naively lead to a black hole entropy far exceeding the
Bekenstein-Hawking formula. The apparent overcounting
resembles an old puzzle of Wheeler, concerning “bag of
gold” geometries [38,39]. Thus, our construction sharpens
a basic question: How do we count the independent degrees
of freedom contributing to the entropy of a black hole.
In Sec. III, we show why the states we constructed in

Sec. II are not orthogonal: They overlap quantum mechan-
ically because of the effects of the wormholes found in
Ref. [25]. These wormholes contribute to the Euclidean
path integral, they exist for all dimensions and for all our
states, and their action is straightforward to compute using
general relativity. For most states in every family, the
contribution from the wormhole is a universal functional of
the partition function of the theory. We also compute higher
moments of the overlaps, finding universal answers as well.
Schematically, in the limit of heavy shells of dust with
different masses, these wormholes contribute to the sta-
tistics of the overlaps so that, universally, the nth moment
of the overlap is

hΨmjjΨm0 i…hΨm0…0 jjΨmi ≃
ZðnβÞ2
ZðβÞ2n ; ð1:2Þ

where the overline means we are performing the compu-
tation using the gravitational path integral, ZðβÞ is the
Euclidean partition function of the gravitational theory, and
the square comes from the consideration of eternal black
holes, which are naturally associated to twice the entropy.
In Sec. IV, we describe how such exponentially small,

but nonvanishing overlaps determine a Hilbert space of
finite dimension given by the exponential of black hole
entropy. Physically, the excess microstates do not add to the
entropy since they do not generate new orthogonal Hilbert
space directions. We show this by demonstrating an explicit
transition in the overlap matrix, the so-called Gram matrix
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of the black hole microstates, as we increase the number of
microstates under consideration. The transition happens
when the Gram matrix goes from being positive definite to
positive semidefinite, implying that the added vectors are
not linearly independent. This transition does not depend
on the specific set of microstates that we start with. Once
the transition occurs, we do not generate new orthogonal
Hilbert space directions. Our arguments provide a way of
computing the entropy for general black holes, using the
large, overcomplete basis of microstates that we construct.
In Sec. V, we describe the implications of our con-

struction for the interior volumes of black holes. First, we
compute the volumes of the Einstein-Rosen bridges asso-
ciated with the families of black hole microstates con-
structed in Sec. II. We see that these volumes are simple
functions of the proper masses (scaling dimensions in the
AdS=CFT context) of the operators used to construct the
states in the gravitational description. Since there is no limit
on the energy or scaling dimension of such operators, there
is no limit on the interior volumes even at a fixed time. This
sharpens the problem regarding the conjecture that relates
wormhole volume and quantum complexity since all these
states are geometrical and semiclassical. We also compute
the maximal transversal size of our Einstein-Rosen bridges,
namely, the sizes of their “pythons” [40]. We then show that
any state that has an Einstein-Rosen bridge whose size is
superexponential in the entropy can be rewritten as a
superposition of states with at most exponentially large
wormholes. Thus, there is a transition beyond which the
notion of “volume” requires refinement. If we define
volume by a minimization over the possible linear defi-
nitions, this notion saturates at an exponentially large value.
We use recent advances on spread complexity, the tridia-
gonalization of random matrices, and the associated Krylov
basis [41,42] to construct a unitary toy model of these
effects.
In Sec. VI, we end with conclusions and open problems.

To understand the basic points of the paper, the reader can
skip Secs. II C, III D, IV C, and V on a first read.

II. INFINITE GEOMETRIC FAMILIES
OF BLACK HOLE MICROSTATES

The no-hair theorem states that all stationary black
hole solutions of the Einstein equations are completely
characterized by a few independent, externally observable,
classical parameters, such as mass, electric charge, and
angular momentum. This fact is sometimes incorrectly
understood as an obstruction to finding black hole micro-
states. In fact, the same black hole can develop from many
initial states that differ in their late-time interiors—we
can regard these different interiors as examples of
“microstates.” Likewise, an operation creating an excitation
of a quantum field behind the horizon that does not modify
the mass can also be regarded as making a microstate. In the
holographic AdS=CFT context, such operations in the

interior of the black hole should be encoded in the exact
dual CFT description [43]. This idea also appears in more
general terms in the old notion of “black hole comple-
mentarity” [45].
Here, we will build infinite families of geometric micro-

states of a large eternal AdS black hole by exploring
families of states with exteriors given by the black hole
geometry but with distinct interiors arising from back-
reaction caused by shells of dust [46]. We will prepare
these states via the Euclidean path integral, generalizing
the construction in Refs. [50,51] for Sachdev-Ye-Kitaev
model/Jackiw-Tietelboim (JT) gravity to a generic higher-
dimensional AdS=CFT setup. Our states also generalize the
infalling shell states considered in Ref. [52] to various
numbers of shells behind the horizon of a spacetime with
two asymptotic boundaries and interior backreaction. The
dual CFT interpretation of our construction shows that
these are pure states of a quantum theory of gravity with
two asymptotically AdS boundaries.
We examine a small subset of the possible configurations

that can be built using our construction. However, as wewill
argue later, the additional states would not increase the
dimension of the spanned Hilbert space. In fact, our
construction already provides an infinite number of candi-
date microstates, which naively overcount the Bekenstein-
Hawking entropy. One of our main messages is that it does
not really matter how we count states or which states we
count. The only important thing is to count them carefully.
Namely, we have to determine the actual dimension of the
spanned Hilbert space. The main advantage of the families
of states that we present below is that they can be described
geometrically and permit explicit calculations.

A. State preparation and thin-shell operators

In detail, we consider states in a theory of gravity with
two asymptotic AdS boundaries with topology Sd−1 ×R,
where R represents time, and asymptotic AdS curvature
radius l. Quantum gravity with such boundary conditions
is equivalent to the physics of two copies of a conformal
field theory (CFT), dubbed CFTL and CFTR, living at
the left and right boundaries and with Hamiltonians
HL ¼ HR ¼ H. The spatial component of each of these
boundaries is Sd−1. The total Hilbert space is just the tensor
product HCFT

L ⊗ HCFT
R . The microcanonical Hilbert space

dimension at a given energy in this theory is thus twice the
microcanonical dimension of a single-sided black hole. We
define the energy basis as

HLjn;mi ¼ Enjn;mi; HRjn;mi ¼ Emjn;mi: ð2:1Þ

Quantum states in the doubled Hilbert space can be
prepared by a Euclidean path integral for a single CFT
on a finite cylinder, with the argument of the wave
functional for each factor given by the value of the fields
at the ends of the cylinder (Fig. 1). We insert an operator O
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in the single CFT at the spatial slice denoted by the bottom
circle in Fig. 1. The cylinder extends by Euclidean time
β̃L=2 to the left and β̃R=2 to the right. The resulting state
can be described by starting with the operator

ρβ̃L=2Oρβ̃R=2; ð2:2Þ

where ρβ ¼ e−βH is the unnormalized thermal density
matrix, defined in a single copy of the CFT on Sd ×R.
It is identified with a state in a doubled Hilbert space via the
usual isomorphism. We can write this schematically as

jΨi ¼ jρβ̃L=2Oρβ̃R=2i

¼ 1ffiffiffiffiffi
Z1

p
X
n;m

e−
1
2
ðβ̃LEnþβ̃REmÞOnmjn;mi; ð2:3Þ

where Z1 ¼ TrðO†e−β̃LHOe−β̃RHÞ normalizes these pure
states. Note that the trace defining Z1 is taken in a single
copy of the CFT [53].
We show that these states correspond to two-sided black

holes with independent masses Mþ;− and inverse temper-
atures βR;L, respectively [54]. Note that the Euclidean
times β̃R;L used to prepare the states through Euclidean
evolution in Eq. (2.2) are not necessarily equal to the
physical inverse temperatures of the black holes. We will
derive the precise relationship for a certain class of
operators O below.
We can construct another family of states via the

Euclidean path integral, with Euclidean time evolution
by β̃R=2 at the right boundary, followed by the insertion of
an operator O1, followed by evolution with β̃1, then by
another operatorO2, and finally by a further time evolution
of β̃L=2 up to the left boundary. This process prepares a
pure state, which can be schematically written as

jΨi ¼ jρβ̃L=2O2ρβ̃1O1ρβ̃R=2i: ð2:4Þ

More generally, given operators O1;…;On and Euclidean
lengths β̃1;…; β̃n−1, we can build

jΨi ¼ jρβ̃L=2Onρβ̃n−1 � � � ρβ̃1O1ρβ̃R=2i: ð2:5Þ

By construction, all these states belong to the Hilbert space
HCFT

L ⊗ HCFT
R associated with the two asymptotic CFTs.

We construct bulk duals for states of this form that
contribute to the semiclassical Hilbert space of a black
hole with fixed-exterior geometry, that is, with fixed ADM
masses and exterior temperatures in each asymptotic
exterior region. Thus, they are candidates for microstates
of these black holes.
We are interested in states that have a simple semi-

classical and geometrical description in the gravitational
theory. To this end, we consider operators that create
spherically symmetric “dust shells.” To do this, we start
with any scalar operator OΔ with a scaling dimension Δ of
Oð1Þ. Such operators are dual to scalar fields in the gravity
theory with mass mΔl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðΔ − dÞp
. Standard construc-

tions [55–58] show that the application of OΔ at a spheri-
cally symmetric distribution of points in the CFT is dual,
after appropriate holographic renormalization [59–61], to
applying the bulk scalar field to the same distribution of
points at the AdS boundary. This process creates a shell of
matter O at the boundary that will propagate into the bulk.
In our construction, any operator OΔ will suffice because,
in an interacting theory, we expect that the algebra
generated by OΔ will contain all operators of the theory,
allowing us access to any state in the theory, although in a
possibly complicated way.
We also require that the operator we are constructing is

sufficiently heavy, i.e., that it creates states with masses of
Oð1=GÞ, in units of the AdS radius l, where G is Newton’s
constant. With this choice, O creates a spherically sym-
metric heavy shell of dust particles, which classically
backreacts on the geometry at leading order in the G→0
expansion. To this end, we use a number of dust particles
that scale parametrically as n ∼ ld−1=G, homogeneously
distributed along the sphere [62]. The final dust-shell
operator can be effectively described as a pressureless
perfect fluid localized at the worldvolume W of the shell.
This fluid has the usual energy-momentum tensor

TμνjW ¼ σuμ uν; ð2:6Þ

where uμ is the proper fluid velocity, tangent toW, and σ is
the surface density. The total rest mass of the dust shell is

m ¼ σVΩrd−1∞ ¼ nmΔ; ð2:7Þ

where VΩ ¼ VolðSd−1Þ is the volume of the sphere, andmΔ
is the mass of the individual operator insertions. The
effective perfect fluid description of the operator works

FIG. 1. Schematic form of the Euclidean path integral in the
boundary field theory, which is two copies of a holographic CFT
with Hilbert spaceHCFT. The cross section of the tube represents
the spatial direction, and the length is Euclidean time. The
operator O is inserted in the circle at the bottom, and the tube
corresponds to propagation in Euclidean time via the Hamiltonian
of the underlying CFT, by β̃L (β̃R) along the left (right) of the
operator insertion.
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for fluid densities σ that are sufficiently large, compared to
one dust particle per unit volume, but also sufficiently
small, when measured in Planck units; thus, we can trust
the classical description.

B. Geometry of single-shell states

Our strategy for preparing bulk microstates is to find the
bulk Euclidean geometry dual to the Euclidean calculation
shown in Fig. 1. The full geometry is symmetric under
Euclidean time reversal; the fields at the τ ¼ 0 spatial slice
are fixed under this symmetry. Thus, we can continue to the
Lorentzian signature at this slice.

1. Euclidean geometry

We start with one-shell microstates. The operator O
inserts a thin spherical domain wall of dust particles. This
shell then propagates in Euclidean time. Since the mass is
large in Planck units, we have to account for its back-
reaction on the geometry.
More precisely, the worldvolume W of the thin shell

bisects the Euclidean manifold X and generates two
connected components X� ⊂ X, one on each side of W.
This process is depicted in Fig. 2. Given the spherical
symmetry, the geometry of each component X� is that of a
Euclidean black hole

ds2� ¼ f�ðrÞdτ� þ dr2

f�ðrÞ
þ r2dΩ2

d−1; ð2:8Þ

where

f�ðrÞ ¼
r2

l2
þ 1 −

16πGM�
ðd − 1ÞVΩrd−2

for d > 2; ð2:9Þ

f�ðrÞ ¼
r2

l2
− 8GM� for d ¼ 2: ð2:10Þ

Here, r is a radial coordinate on the Euclidean disc, and
τ� ∼ τ� þ β� are angular coordinates around periodic
Euclidean time. In what follows, we will write all dimen-
sionful parameters in units of the AdS radius l, effectively
l ¼ 1. Here, M� is the ADM mass of the black hole in
component X�, with inverse temperature β� ¼ 4π=f0ðr�Þ,
where f0� is the derivative of f� evaluated at the horizon
radii r� where f�ðrÞ ¼ 0.
The shell follows a trajectory parametrized in terms of T,

the synchronous proper time of the dust particles, via
functions r ¼ RðTÞ and τ� ¼ τ�ðTÞ. The rest mass of the
shell m is conserved along its trajectory. Its surface density
at radius R is therefore defined by

σ ¼ m
VΩRd−1 ; ð2:11Þ

where VΩ is the volume of the unit transverse sphere. In the
thin-shell formalism, the shell’s dynamics, described just
by its trajectory, is reduced to the motion of a nonrelativistic
effective particle with zero total energy�

dR
dT

�
2

þ VeffðRÞ ¼ 0; ð2:12Þ

subject to the effective potential

VeffðRÞ ¼ −fþðRÞ þ
�
Mþ −M−

m
−

4πGm
ðd − 1ÞVΩRd−2

�
2

:

ð2:13Þ

This potential arises from Israel’s junction conditions [63]
along the shell. Appendix A gives details about this gluing
process and the derivation of the potential. Thus, each
single-shell configuration for a black hole of fixed mass is
characterized by the shell mass m.
Qualitatively, the thin shell starts at the boundary

R ¼ r∞ and falls inwards towards the tip of the geometry
(the Euclidean horizon) at R ¼ r�. The trajectory is subject
to a repulsive force in the Euclidean section. Thus, it
bounces back at a minimum radius R ¼ R� ≥ r� at the axis
of time-reflection symmetry of the solution and then returns
to R ¼ r∞. In our calculations, we will send r∞ → ∞.

FIG. 2. Preparation of the state from the Euclidean path
integral. The lower part of the figure (tan colors) shows time
evolutions from a past Euclidean boundary with a shell operator
(red dot) inserted. In the Euclidean section, the horizon is a point,
here represented by crosses for the left and right black holes on
either side of the shell. At t ¼ 0, the Euclidean preparation
geometry is matched onto a Lorentzian time evolution (blue and
purple). The black hole horizons (thin black lines) become null
surfaces, while the shell (red line) continues to move into the
future behind both horizons. Spacetime is glued across the
trajectory of the thin shell by Israel’s junction conditions. Here,
we have allowed for the possibility that the black holes on either
side of the shell have different temperatures or masses. The solid
black line is the spacetime boundary. For d-dimensional AdS
geometries, this will be a cylinder Sd−1 × R on which the dual
CFT lives.
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The Euclidean time elapsed by the shell Δτ� as described
in patches on either side of it, X�, is

Δτ� ¼ 2

Z
r∞

R�

dR
f�ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðRÞ þ VeffðRÞ

−VeffðRÞ

s
: ð2:14Þ

Therefore, the evolution of the one-shell states (2.3) is
performed for the imaginary “preparation times,”

β̃L ¼ βL − Δτ−; ð2:15Þ

β̃R ¼ βR − Δτþ; ð2:16Þ

which differ from the fixed inverse temperatures βL;R of the
actual black holes (see Fig. 3), thus fixing their masses as
well [64]. This condition ensures that the backreaction of
the shell does not change the asymptotic mass of the
geometry on either side. Notice that left and right asymp-
totic black hole regions can have different temperatures βL
and βR because of the presence of the shell, which serves as
a domain wall supporting this temperature difference. Here,
the trajectory of the shell in Eq. (2.14) is fixed by the mass
(temperature) of the background black hole and the mass of
the shell, and the resulting elapsed Euclidean time in the
trajectory fixes the required preparation time. If the mass of
the shell is taken to zero, such solutions do not exist for
different left or right black hole masses. Equation (2.14),
together with Eqs. (2.15) and (2.16), ensures that the
trajectory passes in between both horizons in the
Euclidean geometry (Fig. 2) so that the Lorentzian con-
tinuation is an eternal black hole with a shell inside [65].

2. Lorentzian geometry

In the Lorentzian section (the blue and purple parts of
Fig. 2), the shell follows the equation of motion

Ṙ2 − VeffðRÞ ¼ 0, arising from analytic continuation of
the shell’s proper time T → iT. The shell now emerges
from the past singularity at finite proper time T ¼ −T0 in
the past, reaches the radius R ¼ R� inside the black hole at
T ¼ 0, and dives into the future singularity at T ¼ T0.
The geometry is that of two Schwarzschild-AdS black

holes, with inverse temperatures βL;R, glued along the
trajectory of the shell’s worldvolume W in the black hole
interior (Fig. 2). The induced metric in the time-reflection
symmetric slice is that of a “python’s lunch”; that is, there is a
bulgewhere the area of the transverse spatial spheres reaches
a maximum, at r ¼ R�, between the two horizons [66].

3. Example: 2 + 1 dimensions

For d ¼ 2, the shell’s trajectory can be explicitly
evaluated. The BTZ horizon radii are given by r� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GM�

p
, and the inverse temperatures are given by

β� ¼ 2π=r�. The effective potential (2.13) in this case
is quadratic,

VeffðRÞ ¼ −ðr2 − R2�Þ; ð2:17Þ

where the turning point R� is

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ

�
Mþ −M−

m
− 2Gm

�
2

s
: ð2:18Þ

The solution for the shell’s trajectory (2.12) is

RðTÞ ¼ R� cosh T; ð2:19Þ

wherewe have chosen the initial condition such that the shell
passes through R� at proper time T ¼ 0. The Euclidean time
elapsed by the shell (2.14) can also be computed analytically.
We find

Δτ� ¼ β�
arcsinðr�=R�Þ

π
: ð2:20Þ

C. Multishell states

We can also describe situations with multiple shells
characterized by a mass vector m ¼ fm1; m2; � � �g. In the
Euclidean picture, we can insert as many shells as we want
behind the horizon, and the above analysis applies locally
to each trajectory RiðTÞ.
Such a multishell state will have the form (2.5). The

region between any pair of shells is locally a black hole
geometry and must have (see Fig. 4)

βi ¼ 2β̃i þ Δτiþ þ Δτiþ1
− ; ð2:21Þ

where Δτi� depends onmi and on parametersMi−1 andMi,
which are “masses” characterizing the local geometries
between the shells. From the consistency of the classical
solution, the mass difference Mi −Mi−1 is constrained to

FIG. 3. We show here the Euclidean geometry of the right black
hole, which is a disk of circumference βR. The shell (red line)
cuts the disk, with an associated Euclidean travel time Δτþ.
Consistency fixes the state preparation temperature to satisfy
βR ¼ β̃R þ Δτþ.
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be upper bounded by the ith shell’s gravitational self-
energy at R�.
The formulas (2.12) and (2.13) go through for the

dynamics of each shell, with Mi and Miþ1 replacing the
black hole masses, since the thin-shell formalism is a local
analysis in the vicinity of the shell. The preparation of such
states is shown in Fig. 5.

III. OVERLAPS BETWEEN STATES FROM
SEMICLASSICAL WORMHOLES

Consider a pair of black hole microstates jΨmi; jΨm0 i,
for generic shell configurations m;m0 representing classi-
cally different interior geometries in the G → 0 limit. For
example, for one-shell states, this means configurations
whose rest mass differences scale parametrically as
Δm ¼ Oðld−2=GÞ. The objective of this section is to
compute the overlaps and their products,

hΨmjjΨm0 i; hΨmjjΨm0 ihΨm0 jjΨm00 i;
hΨmjjΨm0 ihΨm0 jjΨm00 ihΨm00 jjΨm000 i;…; ð3:1Þ

where the overline means that we are computing these
quantities within the low-energy effective theory of general
relativity with a negative cosmological constant, coupled
to the shells [68]. We will typically restrict ourselves to
βL ¼ βR ¼ β so that the left and right black holes have the
same mass, as these are the scenarios we need while
counting black hole microstates.
At first glance, it would appear that if we compute

the first inner product hΨmjjΨm0 i in Eq. (3.1), then the
remaining quantities will follow by multiplication.
However, we will see that this is not the case because of
nonperturbative effects in the gravitational path integral. To
show this scenario, we start with the combined Euclidean
action

I½X� ¼ −
1

16πG

Z
X
ðR − 2ΛÞ þ 1

8πG

Z
∂X

K

þ
Z
W
σ þ Ict: ð3:2Þ

Here, Λ is the cosmological constant, K is the extrinsic
curvature of the spacetime boundary, σ is the density of the
shell, W is the worldvolume of the shell, and Ict are
counterterms, localized at the asymptotic boundary ∂X, that
remove divergences and renormalize the value of the on-
shell action [59,61].
Recall that inner products are computed in terms of the

gravitational path integral by summing over all Euclidean
geometries that are consistent with the boundary conditions
determined by the preparation of the bra and ket states. In
the semiclassical approximation, the path integral then
reduces to a sum over the exponential of the action of
the classical saddle points X satisfying the boundary
conditions. When m ≠ m0, we need some way to join
the different shells from the Euclidean boundary. Achieving
this result requires a number of bulk interactions of the
order of Δm ¼ jm −m0j in Planck units, so we expect the
result to be parametrically suppressed in the exponential of
the mass difference Δm. Thus, we neglect such contribu-
tions by taking the mass difference to be arbitrarily large.
In this limit, the inner product is

hΨmjjΨm0 i ¼ δm;m0 : ð3:3Þ

Next, hΨmjjΨm0 ihΨm0 jjΨm00 i is computed from the path
integral with two disconnected asymptotic boundaries,
which prepare the overlaps hΨmjjΨm0 i and hΨm0 jjΨm00 i,
respectively. This quantity receives one contribution from a
disconnected geometry—two copies of the saddle point
contributing to hΨmjjΨm0 i, one associated with each of the
two asymptotic boundaries. In our limit, in which the

FIG. 4. Euclidean disk geometry (a Euclidean black hole) in
between two shells (red lines). The shell travel times τiþ and τiþ1

−
plus twice the preparation temperature β̃i must be equal to the
physical temperature βi of this black hole geometry between the
shells.

FIG. 5. Example of a multishell state of an eternal black hole
with ADM masses M− and interior geometry with associated
mass parameter Mþ.
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difference in masses between different states is taken to be
arbitrarily large, this quantity vanishes unlessm¼m0 ¼m00.
Ifm ¼ m00, i.e., the first bra and the final ket have the same
shells (so that we are computing a “square” of the overlap),
there is a second connected contribution—a semiclassical
wormhole X2 connecting the two boundaries, as described
in Ref. [25] in the context of operator statistics. The full
semiclassical expression then reads

hΨmjjΨm0 ihΨm0 jjΨmi≡ jhΨmjjΨm0 ij2

¼ δm;m0 þ Z2

Z1Z0
1

; ð3:4Þ

where we have defined

Z2 ¼ e−I½X2�; Z1 ¼ e−I½X�; Z0
1 ¼ e−I½X0� ð3:5Þ

as the renormalized action (3.2) of the wormhole X2. The
normalization factors Z1 and Z0

1 associated with each shell
[see Eq. (2.3)] are given by the classical saddles X and X0,
respectively [69]. In fact, if m ≠ m00, there will still be a
connected contribution, but it will be exponentially sup-
pressed if the mass difference of the shells jm −m00j is
taken to be large, by the same reasoning as above. We can
continue similarly for the higher-order overlaps

hΨmjjΨm0 ihΨm0 jjΨm00 i…hΨm0…0jjΨmijc ¼
Zn

Z1Z0
1 � � �Z0���0

1

;

ð3:6Þ
which arise from the maximally connected n-boundary
wormhole contributions Zn ¼ e−I½Xn�. Below, we study I½X�
and I½X2� in detail, as well as the other I½Xn�, in certain
limits, which we will need in later sections. Appendix B
provides more details about wormholes with more than two
boundaries.

A. Single-shell states

We start with single-shell states, m ¼ m and m0 ¼ m0.
The normalization of these states is computed semiclassi-
cally by the space-time filling procedure described above.
This process gives

Z1 ¼ e−I½X�; ð3:7Þ
where X is the saddle-point manifold depicted in Fig. 6.
From Eq. (2.14) and Fig. 3 with βL ¼ βR ¼ β, the effective
temperature β̃m to prepare the state is determined by the real
temperature β of the saddle-point black hole, and the
Euclidean time Δτ elapsed by the shell, via the relation

β ¼ β̃m þ Δτ: ð3:8Þ

The preparation temperature is the same on both sides of
the shell, so β̃L ¼ β̃R ¼ β̃m. In order to evaluate the

renormalized action I½X� in Eq. (3.2), it is convenient to
divide the manifold into X ¼ X− ∪ Xshell ∪ Xþ (Fig. 6).
The region Xshell is bounded by the constant Euclidean time
hypersurfaces that join the left or right horizon to the two
operator insertions at r∞. From additivity, the on-shell
action decomposes as

I½X� ¼ I½X−� þ I½Xþ� þ I½Xshell�: ð3:9Þ

The first two terms just depend on the exterior black hole
geometries, and therefore

I½X�� ¼ β̃mFðβÞ ¼ β̃mðM − S=βÞ; ð3:10Þ

where FðβÞ ¼ −β−1 logZðβÞ is the renormalized free
energy of the respective black hole and

S≡ A
4G

ð3:11Þ

is the Bekenstein-Hawking entropy. More explicitly, the
renormalized action is given by [70]

I½X�� ¼ β̃mFðβÞ ¼
β̃mVΩ

16πG
ð−rdþ þ rd−2þ þ cdÞ: ð3:12Þ

The constant cd accounts for the Casimir energy of the
CFT in even dimensions [59] (cd ¼ − 1

2
; 3
8
;− 5

16
;… in

d ¼ 2; 4; 6;…). Equation (3.12) is computed by noticing
that the solutions have angular symmetry around the
thermal cycle. We compute the action of a fraction of
the whole disk (i.e., regions Xþ and X−), so the integral
over Euclidean time then goes from zero to the preparation
temperature.

FIG. 6. Different regions in the decomposition of the Euclidean
gravitational action I½X� for the single-shell state. This figure
shows the r; τ� plane of the geometry. In this plane, τ� are
angular coordinates around the horizons r�, represented by the
crosses. The green region Xshell accounts for the intrinsic
contribution from the shell. Its boundaries are constant Euclidean
time hypersurfaces that join the horizons to the operator in-
sertions at the boundary.
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The last term I½Xshell� arises from the presence of the
shell since its value vanishes asm → 0 [71]. The Euclidean
action associated with the region Xshell has the form

I½Xshell� ¼ −
1

16πG

Z
Xshell

ðR − 2ΛÞ þ
Z
W
σ ð3:13Þ

before counterterms are added to remove long-distance
divergences that develop in both terms as r∞ → ∞. Here, σ
is the mass density of the shell, whose radius dependence is
given by Eq. (2.11). The on-shell Einstein-Hilbert term
gives two contributions:

R − 2Λ ¼ −2dþ 16πG
d − 1

δðyÞ; ð3:14Þ

where y is a normal coordinate to W. The second term
comes from the δ function contribution of the stress tensor
of the shell, and the first term comes from the constant
background curvature. Plugging this expression into
Eq. (3.13) gives

I½Xshell� ¼
d

8πG
VolðXshellÞ þm

d − 2

d − 1
L½γW �; ð3:15Þ

where the VolðXshellÞ term arises from the bulk integral of
the background curvature and the second term takes
contributions from the δ function in Eq. (3.14) and from
the integral over the shell in Eq. (3.13). Here, L½γW � is the
proper length of the trajectory of the shell. Thus, the second
term looks like the action of a heavy particle propagating in
the ðτ�; rÞ plane. Explicitly, each term is computed from
the integrals

L½γW � ¼ 2

Z
r∞

R�

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VeffðRÞ

p ; ð3:16Þ

VolðXshellÞ¼
4VΩ

d

Z
r∞

R�

dR
fþðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞþVeffðRÞ

−VeffðRÞ

s
ðRd−rdþÞ:

ð3:17Þ

This volume is the same as that seen from the left and right
sides of the shell because we assume the two asymptotic
geometries have the same mass, and hence the same
horizon radius rþ ¼ r−. Solving these integrals requires
numerical treatment when d > 2. Summarizing, the parti-
tion function normalizing one-shell states is

− logZ1 ¼ 2β̃mFðβÞ þ
d

8πG
VolðXshellÞ

þm
d − 2

d − 1
L½γW �: ð3:18Þ

1. Wormhole

We now calculate the semiclassical overlap squared,
namely,

jhΨmjjΨm0 ij2 ¼ δm;m0 þ Z2

Z1Z0
1

; ð3:19Þ

where we recall that

Z2 ¼ e−I½X2� ð3:20Þ

is the exponential of the gravitational action of the worm-
hole X2, see Fig. 7. The normalizations Z1 and Z0

1 are the
ones computed in the previous subsection. The wormhole

FIG. 7. Wormhole X2 consisting of a pair of Euclidean black holes of the same mass, which are glued together along the trajectory of
the two thin shells. The mass M2 of the black hole that forms the wormhole is determined by the preparation temperatures and the
saddle-point equations.
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X2 consists of a pair of Euclidean black holes of the same
mass. These are glued together along the trajectory of the
two thin shells, as depicted in Fig. 6. The saddle-point
equations were derived in Eq. (2.21) and follow from an
Israel junction condition analysis. Here, they read

β2 ¼ β̃m þ β̃m0 þ Δτm þ Δτm0 : ð3:21Þ

In this equation, the two preparation temperatures β̃m and
β̃m0 have already been fixed by Eq. (3.8). Then, in the
wormhole solution, the equation of motion (2.14) fixes the
elapsed Euclidean time for each shell as a function of
the mass of the shell and the background black hole
geometry parametrized by some β2. The constraint
(3.21) then fixes β2. Having found this solution, the action
of the wormhole after counterterm subtraction can be
derived by the same logic as above, giving

I½X2� ¼ 2ðβ̃m þ β̃m0 ÞFðβ2Þ þ I½Xm
shell� þ I½Xm0

shell�: ð3:22Þ

Including the normalizations Z1 and Z0
1, we obtain the

semiclassical overlap squared,

jhΨmjjΨm0 ij2 ¼ δm;m0 þ Z2

Z1Z0
1

¼ δm;m0 þ e−2ðβ̃mþβ̃m0 ÞΔF−ΔI½Xm
shell�−ΔI½Xm0

shell�;

ð3:23Þ

where ΔF ¼ Fðβ2Þ − FðβÞ and ΔI½Xi
shell� ¼ I½Xi

shell�jβ2 −
I½Xi

shell�jβ for i ¼ m;m0.

2. 2 + 1 dimensions

For d ¼ 2, we can work out the details analytically. First,
the saddle-point equation (3.8) relating the state preparation
and physical temperatures, combined with the expression
for the Euclidean time elapsed across the whole shell
trajectory (2.20), is solved by

β̃m ¼ β

π
arcsin

rþ
R�

; ð3:24Þ

where R2�¼r2þþð2GmÞ2. Thus, we see that ðβ=2Þ≤ β̃m≤β,
where the lower bound is reached for small mass m ≪ M,
while the upper bound is reached for m ≫ M.
In this case, the second term drops out of Eq. (3.15),

and the volume of Xshell can be analytically computed,
VolðXshellÞ ¼ 4πGmL½γW �. The result equals the standard
propagator of a massive particle,

I½Xshell� ¼mL½γW � ¼ 2mcosh−1
�
r∞
R�

�
; for d¼ 2; ð3:25Þ

where we have evaluated the proper length for the
explicit trajectory of the particle RðTÞ ¼ R� coshT, with
R2� ¼ r2þ þ ð2GmÞ2.
To renormalize the logarithmic divergence of Eq. (3.25)

as r∞ → ∞, we add the counterterm Ict½Xshell� ¼−m logr∞
and then take r∞ → ∞. The final renormalized action of the
shell reads

Iren½Xshell� ¼−2m log R� þ2m log 2; for d¼ 2: ð3:26Þ

In addition, using Eq. (3.12), the total gravitational action
of the saddle point is

− logZ1 ¼−
β̃m
G

�
π2

β2
−
1

8

�
−2m log R� þ2m log 2: ð3:27Þ

Next, given the action of the wormhole (3.22), we can
derive an explicit analytical expression for the overlap
squared:

jhΨmjjΨm0 ij2¼δm;m0 þ Z2

Z1Z0
1

¼δm;m0 þe
2ðβ̃mþβ̃m0 Þπ2

G ð 1

β2
2

− 1

β2
Þþ4m log

R�ðβ2Þ
R�ðβÞ þ4m0 log

R0�ðβ2Þ
R0�ðβÞ ;

ð3:28Þ

where again R�ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4π2=β2Þ þ ð2GmÞ2

p
.

B. Higher moments

We can proceed similarly to compute higher moments of
the overlap. As shown in Appendix B, the connected part
acquires the form

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc ¼
Zn

Zðm1Þ
1 …ZðmnÞ

1

;

ð3:29Þ

where Zn ¼ e−I½Xn� is the contribution from the n-boundary

wormhole (Fig. 14) and ZðmiÞ
1 is the normalization of the

state of a shell of mass mi. The expressions for the
n-boundary wormholes contributing to Zn can be obtained
in a straightforward manner using the building blocks we
have derived already. For details, see Appendix B.

C. Limit of large mass and universality

To provide an account of black hole entropy in the next
section, we need the contribution of n-boundary wormholes
to the nth moment of the overlap. However, we only need
the large mass mi ≫ M limit, where we recall that the local
mass of the shell inside the black hole can actually exceed
the asymptotic mass of the black hole because of the effects
of backreaction. In this limit, the Euclidean time elapsed by
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each shell trajectory tends to zero, Δτi → 0 [see Eqs. (2.14)
and (2.20)], and therefore β̃mi

≈ β [see Eq. (3.8)]. Also
in this limit, ðd=8πGÞVolðXshellÞ ≈ ðm=d − 1ÞL½γW � in
Eq. (3.17) so that

I½Xshell� ≈mL½γW � ≈ 2m logR�; ð3:30Þ

after including the counterterms. The proper shell action
therefore becomes constant, independent of the mass of the
black hole, since Rd−1� ∼Gml in this limit. The normali-
zation of the one-shell states (3.18) is then given by

Z1 ∼ ZðβÞ2e−2m logR� : ð3:31Þ

Similarly, the action of the wormhole X2 becomes

Z2 ¼ e−I½X2� ¼ Zð2βÞ2e−2m log R�−2m0 log R0� : ð3:32Þ

This result can be derived by taking the large mass limit of
our previous expressions, but it is also obvious from Fig. 8.
Therefore, the overlap for m ≠ m0 reads

jhΨmjjΨm0 ij2jc ¼
Z2

Z1Z0
1

≈
Zð2βÞ2
ZðβÞ4 ; ð3:33Þ

and it is universal in this limit, independently of the actual
masses of the shells.
By similar reasoning, it is easy to show that the

n-boundary wormhole introduced in Appendix B displays
a universal form in this limit,

Zn ¼ e−I½Xn� ¼ ZðnβÞ2e−2
P

α
mα log Rα� ; ð3:34Þ

leading to the nth moment

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc
¼ Zn

Zðm1Þ
1 …ZðmnÞ

1

≈
ZðnβÞ2
ZðβÞ2n : ð3:35Þ

A potential concern for this analysis is that the large shell
mass limit pinches the wormhole geometry (Fig. 8).
However, as we approach this limit, there is no singularity
in the Euclidean geometry because the pinching points are
at the boundary of space and remain infinitely far apart, and
the Lorentzian continuation is also well defined. One might
also worry that, in theory with extended states like string
theory, we could have a condensation of light states in the
pinching limit, requiring a modification of our analysis.
However, no matter how large the mass is, the two-shell
operator insertions are at infinite physical distance from
each other, even though the Euclidean time elapsed goes to
zero, because of a relative conformal factor. Thus, we do
not expect extended states to give rise to a problem. This
finding is consistent with the fact that we do not observe
any singularities in the low-energy theory.

1. Multishell states

The overlaps between multishell states also have the
same form in the limit where all of the masses mi ∈m are
large, i.e., mi ≫ M. The Euclidean time elapsed by each
shell vanishes in this regime, Δτi ¼ 0, and therefore β̃i ≈ βi
as before. In this limit, the normalization of the state (3.7)
becomes

Z1 ≈ ZðβÞ2e−2
P

i
mi log Ri�

Yk−1
i¼1

Zð2βiÞ; ð3:36Þ

where k is the number of shells. Each factor of Zð2βiÞ arises
from the Euclidean black hole bounded by a pair of thin
shells. The two factors of ZðβÞ come from the exterior
black holes. The intermediate factor is the action of each
shell in the limit, which was derived above in Eq. (3.30).

FIG. 8. Wormhole X2 for large masses of the shells. The preparation of the state in this case is done with Euclidean time β̃m ¼ β̃m0 ≈ β.
The background black hole has inverse temperature 2β.
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Similarly, the wormhole action is now

Z2 ¼ e−I½X2�

≈ Zð2βÞ2e−2
P

i
mi log Ri�−2

P
j
mj log Rj

�

×
Yk−1
i¼1

Zð2βiÞ
Yk0−1
j¼1

Zð2βjÞ; ð3:37Þ

where k0 is the number of shells in the second state.
Therefore, the overlap reduces to the universal quantity

jhΨmjjΨm0 ij2jc ¼
Z2

Z1Z0
1

≈
Zð2βÞ2
ZðβÞ4 ; ð3:38Þ

independent of the number of shells, and of the interior
geometries that are characterized by the parameters βi
and β0i.
Finally, the n-boundary wormhole has the action

Zn ¼ e−I½Xn�

≈ ZðnβÞ2e2
P

α

P
i
miα log Riα�

Yn
α¼1

Ykα−1
i¼1

Zð2βiÞ; ð3:39Þ

leading to the nth moment,

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc
¼ Zn

Zðm1Þ
1 …ZðmnÞ

1

≈
ZðnβÞ2
ZðβÞ2n : ð3:40Þ

This formula is a key result of our article. It states that
wormholes in the quantum gravity path integral lead to
universal, nonvanishing moments of the quantum overlaps
of our black hole microstates. In Sec. IV, we will see
how these overlaps lead to a bound on the dimension of
the Hilbert space that equals the Bekenstein-Hawking
entropy.

D. Microscopic interpretation of the overlaps

Inner products between quantum states in a Hilbert space
are, by definition, complex numbers. As such, the product
of a collection of them must factorize. However, this result
is not what we found for the overlaps between shell
microstates computed above via the rules prescribed by
the semiclassical path integral of gravity. Indeed, the
universal expression (3.40) manifestly displays nonfacto-
rization, as a consequence of connected wormhole con-
tributions to the products of overlaps [72]. In what follows,
expanding on Ref. [25] (see also Ref. [74]), we will provide
an interpretation of the semiclassical overlaps starting from
a microscopic description of these states. Basically, we will
view the semiclassical calculation as an approximation that
is only sensitive to the magnitudes and not to the erratic
phases of the real inner products between the correspond-
ing quantum states.

We will argue that the results of the gravitational path
integral are consistent with an assumption that the under-
lying theory, which in the present case is equivalent to the
holographic dual CFT, satisfies something like the eigen-
state thermalization hypothesis (ETH) [82,83]. ETH was
originally formulated as a simple but powerful postulate
that allows us to understand thermalization in isolated
quantum systems. The postulate says that the matrix
elements in the energy basis of a “simple” operator O take
the form

hEnjOjEmi ¼ fðĒÞδnm þ e−SðĒÞ=2ÞgðĒ;ωÞ1=2Rnm; ð3:41Þ

where jEni are energy eigenstates. In this expression, we
defined

Ē≡ En þ Em

2
; ω ¼ Em − En: ð3:42Þ

The functions fðĒÞ; gðĒ;ωÞ are smooth functions of their
arguments in the thermodynamic limit, and they encode
information about the microcanonical one-point and two-
point functions of the operator, respectively. The coefficients
Rnm are erratic complex numbers of Oð1Þ magnitude. The
ETH then asserts that the Rnm entries can be viewed as
independent random variables with zero mean and unit
variance [84]. The domain of applicability of ETH is not
fully understood, but it is generally expected to apply to
quantum chaotic theories, such as the ones expected to
describe black holes [34,87].
Following Ref. [25], the thin fine-grained operator

should be regarded as simple: Applied near the spacetime
boundary, it just creates a gas of particles in the low-energy
effective theory [88]. As such, and in view of the chaotic
Hamiltonian expected for the black hole dynamics, the
shell operator should admit an ETH form (3.41). Under this
assumption, Ref. [25] showed that the semiclassical cal-
culation of the product of correlation functions of the thin-
shell operator follows from the expected random character
of the Rnm coefficients as follows. There are many shells of
the same mass that differ in tiny, microscopic, perhaps
Planck-scaled details, in, e.g., the precise positioning of the
dust particles. These states should have an ETH description
with coefficients of the same magnitude but randomly
varying erratic phases. The semiclassical path integral
should be interpreted as a coarse-grained quantity that
does not have access to the precise microscopic phases and
effectively averages over them, only preserving information
about the magnitudes of amplitudes in which the phases
cancel. In this identification, matching the semiclassical
gravity results for the thin shells requires that fðĒÞ vanish,
while the envelope function takes the form

gðĒ;ωÞ ¼ eSðĒÞ−α−SðĒ−ωÞ−αþSðĒþωÞ−IshellðĒ;ωÞ: ð3:43Þ
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The coefficients α� ≡ Δτ�=β� are specified in terms of
the shell’s Euclidean travel times (2.14). The function
IshellðĒ;ωÞ is the value of the shell’s on-shell action
(see Ref. [25]).
The connection with the shell states presented here

follows in a straightforward manner. Our states are
defined as

jΨi ¼ jρβ̃L=2Oρβ̃R=2i

¼ 1ffiffiffiffiffi
Z1

p
X
n;m

e−
1
2
ðβ̃LEnþβ̃REmÞOnmjn;mi; ð3:44Þ

where O is a shell operator and

Z1 ¼ TrðO†e−β̃LHOe−β̃RHÞ ð3:45Þ

normalizes these pure states. Then, as described above, if
we define the smooth function

fðEn; EmÞ≡ SðĒÞ − log gðĒ;ωÞ
¼ α−SðĒ − ωÞ þ αþSðĒþ ωÞ
þ IshellðĒ;ωÞ; ð3:46Þ

we can reproduce the gravitational results by assuming an
ETH form

jΨi ¼ 1ffiffiffiffiffi
Z1

p
X
n;m

e−
1
2
ðβ̃LEmþβ̃REn−fðEn;EmÞÞRmnjm; ni; ð3:47Þ

where the normalization becomes

Z1 ¼ TrðO†e−β̃LHOe−β̃RHÞ
≈
X
n;k

e−β̃REn−β̃LEk−fðEn;EkÞ: ð3:48Þ

These states look approximately random in the energy
basis, in each microcanonical band. Indeed, projecting onto
a microcanonical band of energies ½E;Eþ ΔE� and nor-
malizing the state, one obtains

jΨiE ≃
1

ΩE

X
n;m

Rmnjm; ni: ð3:49Þ

Thus, we can regard the state preparation procedure,
together with the projection on an energy window, as a
procedure to generate an infinite number of random states
in the band [89]. The infinite number of states arises by
varying the mass of the shell operatorO used as the starting
point or by using multiple shell states. In the holographic
CFT, this result can be achieved by increasing the scaling
dimension of the operator.

We now come back to the moments of inner products,

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmk
jjΨm1

i: ð3:50Þ

In this expression, the overline means we are computing
these products using the gravity path integral. By writing
every state in terms of the shell operators used to prepare
them, and assuming ETH for the thin shell, we can use the
results in Ref. [25] to precisely interpret the overline in
terms of an ETH average of the form

On1m2
On2m3

� � �Onkm1
: ð3:51Þ

In this way, we arrive at a simple interpretation of the
nonfactorization of the semiclassical inner products of our
microstates: The semiclassical path integral only computes
a coarse-grained average over the microstates that are
consistent with the macroscopic semiclassical description
appearing in the saddle point. The fine-grained phase of the
overlap hΨm1

jjΨm2
i depends erratically on the ETH coef-

ficients of the operators O1 and O2, and it averages out to
zero semiclassically, hΨm1

jjΨm2
i ¼ 0 [92]. On the contrary,

the magnitude of the overlap is a smooth quantity with some
nonvanishing average value that is captured by the worm-
hole contribution (3.50) for k ¼ 2. This finding follows
and further supports the ideas of Refs. [36,75,80,85,93,94]
connecting quantum chaos and semiclassical gravitational
physics.
To end the discussion on the interpretation of the gravi-

tational overlaps,wewant tomake it clear that, althoughETH
provides the most natural and physical interpretation of our
results, it is important to notice that we do not need such an
assumption in what follows and, in particular, in the
derivation of the Bekenstein-Hawking degeneracy from
the gravitational overlaps. The Bekenstein-Hawking entropy
will follow from simple algebraic arguments, with the only
input of the universal gravitational overlaps computed above.

1. Connection with the spectral form factor
in chaotic theories

An interesting physical interpretation of our result (3.40)
arises by considering the dynamics of chaotic quantum
theories as follows. Given a quantum mechanical system
with Hamiltonian H and a discrete spectrum, consider the
so-called spectral form factor (SFF), defined by

SFFðtÞ ¼ Zβ−itZ�
βþit

Z2
β

; ð3:52Þ

where Zβ ¼
P

i e
−βEi is the partition function of the

Hamiltonian with eigenvalues Ei. The SFF is well known
in the context of matrix models (see Ref. [95]), and it has
recently been studied in relation to black hole dynamics
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(see Ref. [34]). Consider also the TFD state, defined as
follows:

jψβi≡ 1ffiffiffiffiffiffi
Zβ

p X
n

e−
βEn
2 jn; ni; ð3:53Þ

in the tensor product of the original Hilbert space with
itself. Unitary evolution with a single, say, the left,
Hamiltonian gives

jψβðtÞi ¼ e−iHLtjψβi ¼ jψβþ2iti: ð3:54Þ

The survival probability of this evolution, namely, the prob-
ability that the evolved state is found in the original thermo-
field double, equals the spectral form factor [41,96–99]

PðtÞ ¼ jhψβþ2itjψβij2 ¼ SFFðtÞ: ð3:55Þ

The time average of the spectral form factor is

lim
T→∞

1

T

ZT
0

dt SFFðtÞ

¼ lim
T→∞

1

T

ZT
0

dt
1

ZðβÞ2
X
m;n

e−βðEmþEnÞþiðEm−EnÞt: ð3:56Þ

If the theory is chaotic, we expect level repulsion to remove
all degeneracies in the spectrum. Hence, the time average
gives

lim
T→∞

1

T

ZT
0

dt SFFðtÞ ¼ Zð2βÞ
ZðβÞ2 : ð3:57Þ

Now, recall that the SFF is precisely the survival probability
for the thermofield double state (3.55), i.e., the probability
for the state to return to itself. In a chaotic theory, we expect
an ergodic exploration of the Hilbert space. Thus, the time
average in Eq. (3.57) computes the inner product between
the initial state and a typical, essentially random, state in the
Hilbert space. Notice that Eq. (3.40) for n ¼ 2 is precisely
the square of Eq. (3.57). The square appears because we are
considering an eternal black hole, so the Hilbert space is
doubled. This detail aside, we see that the gravitational path
integral for the square of the overlap gives precisely the
same result as the expected time-averaged survival ampli-
tude in a chaotic theory, suggesting that the shell states we
are computing are essentially random relative to each other.
The nonvanishing long time average of the spectral form

factor is a proxy for the discreteness of the underlying
Hamiltonian and its dimension. Finding this long time
average by means of a gravitational computation has been a
key goal in the context of quantum black holes (see

Ref. [34] and references therein). This goal was recently
accomplished in the context of 2D JT gravity and its
cousins [100,101], but here we have been able to find such
typical inner products for gravity in general dimensions.

2. Reduced density matrices and quantum
black hole hair

Consider the reduced density matrices ρR;L¼TrL;RjΨihΨj
of each of the two boundary subsystems of our eternal black
holes. In terms of the thin-shell operator making our micro-
states, their expression is

ρL ¼ 1

Z1

e−
β̃L
2
HOe−β̃RHO†e−

β̃L
2
H; ð3:58Þ

ρR ¼ 1

Z1

e−
β̃R
2
HOe−β̃LHO†e−

β̃R
2
H: ð3:59Þ

This finding can be verified by constructing the density
matrix representation of the state in Eq. (2.2) and tracing over
the left or right Hilbert spaces. These reduced density
matrices are not exactly thermal. Since the classical geom-
etries outside the horizon are equal to the black hole
geometry, we say that these shell states display “quantum
hair.” To analyze the effect of this quantum hair, we can use
the gravitational path integral, interpreted in terms of the
ETH language above, with the explicit representation of our
states in the energy basis (3.47), to say that

RnkR�
mk ¼ δnm: ð3:60Þ

It then follows that the semiclassical density matrices are
diagonal in the energybasis (because they effectively average
over the ETH phases). The reduced coarse-grained state at
time t ¼ 0 is then given by

ρRnm ¼ pnδnm; ð3:61Þ

where the probabilities are

pn ¼
P

ke
−β̃REn−β̃LEk−fðEn;EkÞP

n;ke
−β̃REn−β̃LEk−fðEn;EkÞ

: ð3:62Þ

These probabilities are close to the thermal values. To see
this, first notice that the expectation value for the left or right
energy is given in terms of the canonical ensemble at
temperature βL;R,

M� ¼ hΨjHR;LjΨi ¼ TrðρβR;LHR;LÞ: ð3:63Þ

The first equality simply expresses the fact that the ADM
mass measured in the left or right external geometries must
equal the expected value of theHamiltonian in the state by the
general reasoning of Ref. [59]. The second equality simply
states that we could obtain the same result by taking the
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expectation value of the left or right Hamiltonian in an
exactly thermal density matrix. In other words, although our
density matrix is not exactly thermal, it gives the same
expectationvalue for the energy. In addition, we can consider
the large mass limit m ≫ E. In this case, we have β̃L ¼ βL
and therefore

pn ¼ e−βRðEn−ERÞ−SðERÞ ¼ e−βREn

ZðβRÞ
; ð3:64Þ

meaning that the reduced density matrix looks increasingly
thermal. At smallm, the expression is more complicated but
not very illuminating for the present purposes. This structure
of reduced densitymatrices suggests that therewill bemodes
of the thermal radiation on both exterior geometries that will
be sensitive to the fact that the reduced state is not thermal.
Effectively, these modes detect the presence of the interior
shell through its quantum hair. One might expect that the
wavelength of these modes is determined by the distance of
the shell to the horizon. When the shell is very far away (its
mass is large), these modes become extremely low energy
compared to the temperature and are suppressed by the
corresponding Boltzmann factors, making them undetect-
able in practice. In a certain sense, the shell can be interpreted
as a sort of soft firewall deep inside the black hole.

IV. COUNTING THE MICROSTATES
OF BLACK HOLES

In Sec. II, we constructed several infinite families of
black hole microstates with geometric descriptions whose
existence sharpens the problem of black hole microstate
counting. These states also challenge the holographic
principle [102–104] since it appears that we can fit
arbitrarily many inside a black hole of a given mass.
However, as we showed in Sec. III, these states are not
orthogonal because of nonperturbative effects in quantum
gravity. In fact, they have universal overlaps with each
other [see Eq. (3.40)]. Because of these overlaps, the
dimension of the Hilbert space spanned by these states
is smaller than the number of states. Below, we will
calculate this dimension.

A. One-parameter family of states

First, we consider a convenient one-parameter family of
states: the one-shell states with equal black hole temper-
atures on both sides. Equivalently, these states have the
same ADM mass on both sides. Therefore, they are
microstates of an eternal, finite-temperature black hole.
For a given temperature β, our states are labeled by the rest
mass m of the shell. In the context of AdS=CFT, this mass
is related to the scaling dimension of the field by

mn ¼ nmΔ ¼ nl−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðΔ − dÞ

p
; ð4:1Þ

wheren ∼ ld−1=G ≫ 1 is the number of operator insertions.
Every shell backreacts on the interior geometry as described
previously, leaving the outside geometry unchanged.
Given a field of mass mΔ, we can thus create a discrete

family of states labeled by n. In terms of the CFT, the
family is defined as

jΨni ¼
1ffiffiffiffiffi
Z1

p
X
i;j

e−
1
2
ðβ̃mn

L Eiþβ̃mn
R EjÞOmn

ij ji; ji; ð4:2Þ

where Z1 normalizes the state and where we need the
condition

β̃mn
L ¼ β̃mn

R ¼ β − Δτ ð4:3Þ

on the Euclidean lengths used to prepare the state for the
left or right physical black hole temperatures to be the
same, i.e., βL ¼ βR ¼ β. Here,Δτ was defined in Eq. (2.14)
as the Euclidean time required by the shell trajectory.
Note that, as described in Sec. III, we can choose the initial
size of the shell for any n so that all these states are within
the regime of validity of our approximations. Specifically,
in the Euclidean geometry, the minimum shell radius is R�;
thus, in our limit, it can be verified that the shell density in
Planck units never exceeds a maximum of OðlP=lÞ ≪ 1.
Defined in this way, the difference in wormhole lengths

between subsequent shell states is less than Planckian, and
one cannot consider them to be geometrically different at a
semiclassical level. This finding also implies that the inner
product between subsequent states will not be exponen-
tially suppressed; indeed, the universal result found earlier
for geometrically different states does not apply [105]. For
our purposes, it is convenient to choose an infinite family in
which every member is geometrically different from the
others at scales bigger than the Planck length. To achieve
this goal, it is enough that subsequent states have worm-
holes with lengths differing by order m ¼ nmΔ, where we
take n ∼Oð1=GNÞ. We thus consider microstates with
masses

mp ¼ pm p ¼ 1; 2;…: ð4:4Þ

This choice also ensures that as p grows, the overlap
between different states is controlled by the universal
answer derived before.

B. Microstate Gram matrix and the Hilbert
space dimension

The infinite family of different, geometrical, and semi-
classical states jΨpi with masses mp ¼ pm naively over-
counts the Bekenstein-Hawking entropy. We now show that
this is not actually the case [106]. The key question is not
how many semiclassical or geometrical states we have at
our disposal but rather what the dimension is of the Hilbert
space they span. To find this dimension, we examine the
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overlap matrix, i.e., the Gram matrix G of the microstates,
whose entries are defined as

Gpq ≡ hΨpiΨq: ð4:5Þ

We consider this matrix G for p; q ¼ 1; � � �Ω, withΩ finite.
We then vary Ω ¼ 1;…;∞. This process generates a
sequence ofΩ × ΩGrammatricesG of microstate overlaps.
Gram matrices are Hermitian and positive semidefinite

by construction. They can always be written as

G ¼ B†B; ð4:6Þ

with B being the matrix that has vectors jΨpi as its
columns. Here, B is a Ω × Ω̃ matrix, where Ω̃ is the
dimension of the Hilbert space where the states jΨpi live.
Because it is positive semidefinite, its eigenvalues are
positive or zero. In addition, from the definition of the
Gram matrix, it is clear that the microstate vectors jΨpiwill
be linearly independent if and only if the Gram matrix is
positive definite, namely, if it has no zero eigenvalues.
More generally, the rank of the Gram matrix will count the
number of linearly independent vectors in the family jψpi.
Therefore, for each Ω and associated Gram matrix G, we

need to compute the number of zero eigenvalues of G. To
this end, we first compute the resolvent of the matrix G,
which is defined as

RijðλÞ≡
�

1

λ1 −G

�
ij
¼ 1

λ
δij þ

X∞
n¼1

1

λnþ1
ðGnÞij: ð4:7Þ

The density of eigenvalues of the Gram matrix then follows
from the discontinuity across the real axis of the trace of the
resolvent RðλÞ ¼ PΩ

i¼1 RiiðλÞ. To be precise, the density of
eigenvalues is

DðλÞ ¼ 1

2πi
(Rðλ − iϵÞ − Rðλþ iϵÞ): ð4:8Þ

Reference [73] (see also Refs. [107–109]) showed how
these types of resolvent matrices give rise to a Schwinger-
Dyson equation. One starts by writing the definition of the
resolvent in a diagrammatic expansion. In this version of

Eq. (4.7), the blobs are just the inner products Gij ¼
hΨijΨji that we have been discussing all along. They are
just drawn horizontally instead of vertically as they were in
our gravitational path integrals. The colored dots corre-
spond to the shell insertions. To obtain Eq. (4.7) from this
diagram, we note that the dashed lines are understood as
“free propagators,” and they are assigned factors of 1=λ.
Given this diagrammatic expansion, we can compute the

resolvent matrix by using the gravitational path integral. As
before, we denote a gravity computation in the leading
approximation by an overline, and we arrive at

RijðλÞ ¼
1

λ
δij þ

X∞
n¼1

1

λnþ1
ðGnÞij; ð4:9Þ

This expansion can also be depicted graphically (Fig. 10).
Interestingly, semiclassical gravity produces two terms
when it is applied to the second term in the resolvent
expansion depicted in Fig. 9; the first is disconnected while
the second is a connected wormhole contribution. In the
computation of this expansion in Fig. 10, we have only
included diagrams that are “planar” in the sense explained
in Ref. [73], since nonplanar diagrams will give subleading
contributions in the limit of large entropy and large matrix
G, which is the limit we are interested in.
The elements of ðGnÞij are products of the overlaps

hΨijΨji. Above, we showed, from the gravitational path
integral, that these overlaps display a universal form for
sufficiently high mass [110],

hΨmjjΨm0 i…hΨm0…0 jjΨmi ≃
ZðnβÞ2
ZðβÞ2n ≡ Zn

Zn
1

; ð4:10Þ

where n is the number of inner products on the left-hand
side and where we recall that ZðnβÞ2 ≠ Zn because there
are cancellations between the numerator and denominator.
Notice that the right-hand side is universal, and it does not
depend on the masses of the states.
Thus, we can perform the sum in Eq. (4.9) by observing

that the expansion can be reorganized in a self-consistent
way as depicted in Fig. 11. This case is analogous to the
scenario developed in Ref. [73]. The upshot is that we
obtain the Schwinger-Dyson equation

FIG. 9. Diagrammatic expansion of the resolvent matrix. The external dashed lines represent the ði; jÞ indices. The internal dashed
lines represent summation over indices. The blobs represent the inner products Gij ¼ hΨijΨji, and the color dots are the operator
insertions.
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RijðλÞ ¼
1

λ
δij þ

1

λ

X∞
n¼1

Zn

Zn
1

RðλÞn−1RijðλÞ; ð4:11Þ

where RðλÞ is the trace of the resolvent. Taking the trace of
this equation, we arrive at

λRðλÞ ¼ Ωþ
X∞
n¼1

Zn

Zn
1

RðλÞn: ð4:12Þ

In order to count black hole microstates for a given
energy from these overlaps, i.e., the microcanonical degen-
eracy, we have to first account for the fact that any entry in
the Gram matrix is actually a sum over microcanonical
windows in the energy basis [111]. This is because we
constructed fixed-temperature, rather than fixed-mass,
microstates. Thus, to proceed, we must project our states
via an inverse Laplace transform into the microcanonical
window around energy E,

ZðnβÞ2 ¼
�Z

dEzðEÞe−nβE
�

2

; ð4:13Þ

where zðEÞ is the inverse Laplace transform of ZðnβÞ. The
square appearing in the previous and subsequent formulas
comes from the fact that we are considering eternal black
holes, and the entropies or microcanonical degeneracies
will be doubled since we have two copies of the same
quantum gravity theory.
As in Ref. [73], we now define the functions

eS ≡ ðzðEÞΔEÞ2; Zn ≡ ðzðEÞe−nβEΔEÞ2: ð4:14Þ

Inserting these expressions after projecting Eq. (4.12) into
the microcanonical band, we obtain the simple result

λRðλÞ ¼ Ωþ eS
X∞
n¼1

�
RðλÞ
eS

�n

¼ Ωþ eSRðλÞ
eS − RðλÞ ; ð4:15Þ

FIG. 10. Expansion of the resolvent as computed in the leading semiclassical gravity approximation. The colored blob in the second
term represents the gravitational saddle point computing the first moment of the inner product. It corresponds to the second term in
Fig. 9. The third and fourth terms are the two gravitational saddle-point contributions (disconnected and wormhole, respectively) to the
computation of the third term in Fig. 9.

FIG. 11. Schwinger-Dyson equation for the resolvent, in the leading semiclassical approximation. This figure is a self-consistent
reorganization of Fig. 10.
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leading to a quadratic equation for the resolvent,

RðλÞ2 þ
�
eS − Ω

λ
− eS

�
RðλÞ þΩ

λ
eS ¼ 0: ð4:16Þ

As we said above, the density of states follows from the
discontinuity across the real axis of the trace of the
resolvent of the Gram matrix [Eq. (4.8)] as computed in
semiclassical gravity. This process finally gives

DðλÞ ¼ eS

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½λ− ð1−Ω1=2e−S=2Þ2�½ð1þΩ1=2e−S=2Þ2 − λ�

q
þ δðλÞðΩ− eSÞθðΩ− eSÞ; ð4:17Þ

where S ¼ A=4G. Ultimately, the value A=4G arises from
evaluation of the gravitational action of the wormhole
contribution to the overlap moments (4.13) and (4.14). This
density of states has a continuous part and a singular part.
The continuous part is supported on

ð1 − Ω1=2e−S=2Þ2 < λ < ð1þΩ1=2e−S=2Þ2: ð4:18Þ

The eigenvalues accounted for by this part are all positive
definite because this part is continuous and the measure at
λ ¼ 0 is zero [112]. The singular part counts the number of
zero eigenvalues. It only appears when Ω > eS due to
the Heaviside factor. Regardless, the number of positive
eigenvalues, i.e., the rank of the Gram matrix, is accounted
for by the continuous part of the distribution.
Thus, by separately integrating the continuous and

singular parts of the eigenvalue distribution, we find the
following:

(i) For Ω < eS, where S is the Bekenstein-Hawking
entropy, the Gram matrix G has no zero eigenvalues.
The number of nonzero eigenvalues, i.e., the rank of
G, equals the dimension spanned by the black hole
microstates jΨpi and is given by Ω. These state-
ments are true, on average, in the effective random
matrix ensemble for G that gravity provides.

(ii) For Ω > eS, the Gram matrix G has Ω − eS zero
eigenvalues on average. The number of nonzero
eigenvalues, i.e., the rank ofG, equals the dimension
spanned by the black hole microstates jΨpi and is
given by eS.

(iii) The black hole microstate degeneracy, equal to the
number of possible orthogonal states in a given
energy band, is eS ¼ ðzðEÞΔEÞ2, equal to the
exponential of the Bekenstein-Hawking entropy.

All of these statements are valid, on average, in the effective
ensemble provided by semiclassical gravity. However, the
variances associated with the densities of eigenvalues in
random matrix theory [113] are suppressed by the dimen-
sion of the associated matrix. In this case, they will be
suppressed by factors of e−S. It will be interesting to

compute the effects of these subleading corrections to the
Bekenstein-Hawking entropy.
Intuitively, if we keep adding potential microstates to a

system, there is a point at which these states cannot be
orthogonal anymore. In our case, this point is controlled by
the universal statistics of the inner product displayed in
Sec. III, which is, in turn, controlled by the Bekenstein-
Hawking entropy. Thus, the solution to the problem of
understanding the entropy of general black holes is not to
construct a specific set of eS microstates. Indeed, there may
be infinite numbers of such sets, even when they are
constrained to be semiclassical and geometrical. The
problem is really to show that any such choice gives rise
to the same Hilbert space with the right Bekenstein-
Hawking dimension.
We have proved the linear dependence of the semi-

classical geometrical microstates that we examined. Still,
we have not proved the completeness of the basis generated
from these states. The basis we generate of course has
the right dimension to explain the Bekenstein-Hawking
entropy and is complete in its span. However, one could ask
whether there are states in the black hole that cannot be
expanded in this basis. If that occurs, the true entropy of the
black hole is greater than the Bekenstein-Hawking entropy.
We have derived the black hole degeneracy at leading order.
However, there are subleading corrections to our results,
and some of these could correspond to additional states that
cannot be expanded in this way. These corrections will be
nonperturbatively suppressed, and we expect that adding
them could modify the Hilbert space dimension at sub-
leading order in theG → 0 expansion. That said, we indeed
expect most states to be expandable in the basis generated
from our shell states. For example, we could take the
thermofield double (TFD) state without any shell, along
with the small excitations around this background. These
states again have nonzero, exponentially suppressed over-
laps with all shell states that we have considered. This
overlap can be computed by the same methods as in
previous sections. The dominant contribution will come
from a wormhole saddle with one shell behind the horizon.
Thus, adding the TFD family of states to the Gram matrix
will not increase its rank. Similarly, other semiclassical
black hole microstates can be understood as superpositions
of our dust-shell states, provided that the characteristic
overlaps, given by wormhole configurations, have the
correct magnitude.
We could have similarly considered microstates with

inhomogeneities, microstates rotating with some angular
momentum, or charged microstates. However, generically
in statistical mechanics, such states make subleading
contributions to the entropy. For example, very much like
the shells of dust we are considering, most states of the
particles of a gas in a room are approximately homo-
geneously spread over the volume. Indeed, configurations
with inhomogeneities are suppressed in their phase-space
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volume. The same is true if the system has, say, electric
charge. For a given energy, there will be many more
configurations of the system with equal numbers of positive
and negative charges, and hence vanishing total charge.
Similarly, at a given energy, there are also many more
configurations with net vanishing rotation. These argu-
ments can be made more precise in our context by
considering an ensemble of shells in which the probability
of having a dust particle in a certain position is constant
along the sphere and in which the probability of having a
dust particle with positive or negative electric charge is the
same. This ensemble now contains microstates with inho-
mogeneities and charge, but average quantities such as the
entropy will still be dominated by the spherically sym-
metric shells. Similar considerations also apply to dust-
shell configurations with net angular momentum. Note also
that if a shell has Planck-sized inhomogeneities, it will be
semiclassically described by the same symmetric shells that
we have studied.
Finally, we notice that subleading-in-G corrections to the

black hole entropy can be easily incorporated using these
methods. In particular, a class of corrections at next-to-
leading order arises from the one-loop corrections to the
overlaps of the thin-shell microstates in the large mass
limit. Another class of corrections arises from the worm-
hole variance to the computation of the rank of the Gram
matrix. The former will depend on the particular gravita-
tional theory in question. For theories including charged
black holes in the near-extremal limit, it has been recently
understood that these corrections will universally become
important at very low temperatures, and they will drive the
density of states to zero for nonsupersymmetric black
holes [114,115]. For BPS black holes, methods similar
to the ones presented here have appeared in Ref. [116] to
account for the extremal degeneracy. In Ref. [117], these
quantum corrections to our construction for generic black
holes will be described in detail.

C. Evaporating black holes and the Page curve

References [73,118] provide a proof of the semiclassical
island formula [119–121] that reproduces the Page curve
[122,123]. One of these scenarios, often called the “West
Coast model” [73], allows detailed computation in the
context of 2D JT gravity [124]. Meanwhile, the “East Coast
model” [118] presents a general argument, based on
gravitational path integrals in general dimensions. Some
aspects of the West Coast model have been extended to
three [126] and higher [52] dimensions as well.
Here, we have reproduced the advantages of the West

Coast model within general relativity in general dimensions
without includingunknowndegrees of freedom, thus giving a
finer microscopic understanding of the East Coast model. In
particular, the West Coast model assumes the existence of
EOW branes equipped with somewhat mysterious color
degrees of freedom. Microscopically, this assumes the

existence of k interior black hole microstates jψ iiB that
are orthogonal to each other, or at least only have non-
perturbatively small overlaps. At the same time, one assumes
that the radiation of the black hole leaks into an external
reservoir with the basis of states given by fjiiRg. The full
state of the system, composed of the black hole and the
radiation reservoir, can beSchmidt decomposed into the form

jΨi ¼ 1ffiffiffi
k

p
Xk
i¼1

jψ iiBjiiR: ð4:19Þ

The entanglement entropy of the radiation is computed from
the reduced density matrix

ρR ¼ 1

k

Xk
i;j¼1

jjihijRhψ iiψ j ¼
1

k

Xk
i;j¼1

jjihijRGij ¼
G
k
; ð4:20Þ

whereGij is theGrammatrix of themicrostateswith anEOW
brane inside the black hole. The connection between this
model of black hole evaporation and our approach to black
hole microstate counting is now clear. At the end of the day,
both computations depend on the eigenvalue statistics of the
Gram matrix of interior microstates. To relate our results to
the analysis of the Page curve, we need tomake the following
associations:

k→Ω; ρR¼G
k
¼G
Ω
; λρR ¼

λG
Ω
; DðλρRÞρR ¼ΩDðλGÞ;

ð4:21Þ

whereΩ is the dimension of the Grammatrix, λρR and λG are
eigenvalues of the density matrix ρR and the GrammatrixG,
respectively, andD are the eigenvalue densities. These results
lead to the following conclusions:

(i) Our approach extends the West Coast model—in
particular, the derivation of the density of states
and Page curve—to general relativity in general
dimensions. Everything follows from the universal
overlaps between black hole microstates derived in
Sec. III.

(ii) Our approach clarifies the West Coast model by
considering physical microstates, such as dust shells
with different masses, which do not require the
inclusion of mysterious EOW branes with novel
degrees of freedom. In the West Coast model, the
EOW brane states are taken to be naively orthogonal;
then, wormhole contributions determine a nonpertur-
bative overlap. In our case, the shells are classically
orthogonal but also have a nonperturbative overlap.

(iii) Our approach makes it clear that any basis, such as
the EOW branes with color, cannot have infinitely
many orthogonal members and that the true dimen-
sion of the Hilbert space is given by the Bekenstein-
Hawking degeneracy.
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These points have important implications. Concerning the
extension of theWest Coast model to a full theory of gravity,
the authors of Ref. [127] argued that such resolutions of the
Page curve puzzle might fail in theories with long-range
gravity, such as general relativity itself [128]. Our results
achieve such an extension to general relativity and help to
demystify the nature of the degrees of freedom needed to
achieve a resolution of the Page curve conundrum. The
universality of gravitational dynamics implies that any
complete, or indeed overcomplete, basis will work.

V. EINSTEIN-ROSEN VOLUME
SATURATION AND COMPLEXITY

The authors of Refs. [18,19] conjectured that the volume
of Einstein-Rosen (ER) bridges is related to the “quantum
complexity” [20] of the underlying state. In classical
gravity, these volumes grow linearly with asymptotic time,
and the conjecture therefore predicts that “complexity” will
increase linearly with time as well. However, the complex-
ity of any circuit is bounded by the dimension of the Hilbert
space on which the circuit acts (Chapter 7 of Ref. [20] and
discussion in Ref. [21]). Thus, the conjecture makes a
second prediction: The volume of an ER bridge must
saturate in quantum gravity at a value exponential in the
black hole entropy, i.e., at OðeSBHÞ. Clearly, no such
saturation is observed semiclassically. One possibility is
that we simply cannot make sense of semiclassical physics
for times exponentially long in the entropy because the
states cease to be geometrical by some still-undiscovered
quantum effect [130]. Alternatively, the geometric volume
may stop being related to complexity at an exponential
time. As we will see below, our results suggest that the
geometric volume, whatever its relation to complexity,
cannot be measured as a linear operator in the theory since
we will show that long wormholes can be written as a
superposition of short wormholes.

A. Interior geometry of the microstates

We start by computing volumes of the Einstein-Rosen
bridges for the families of shell states described in Sec. II.
We also characterize the geometry of the python’s lunch
within these bridges, i.e., regions of maximal transversal
area. These quantities are conjectured to relate to the
complexity of the underlying quantum state [19] and the
complexity of interior reconstruction [40], respectively.
Using the expressions in Sec. II, the volume at time t ¼ 0

in between the horizons for a geometry with a shell of
mass m is

VðjΨmiÞ ¼ 2VΩ

Z
R�

rþ

rd−1drffiffiffiffiffiffiffiffiffiffiffiffi
fþðrÞ

p ; ð5:1Þ

where R� is the minimum radius to which the shell arrives.
Here, VΩ is the volume of the transverse sphere. According

to Ref. [19], the relative complexity between this state and
the TFD is

CðjΨmiÞ ¼
d − 1

8πGl
VðjΨmiÞ

¼ d − 1

8πGl
(VolðΣÞ − VolðΣ0Þ); ð5:2Þ

where Σ is the reflection-symmetric Cauchy slice in the
geometry associated with jΨmi, and Σ0 is the correspond-
ing Cauchy slice of the eternal Schwarzschild black hole.
Since the spacetime is the same outside the black hole, the
relative complexity is associated with the stretching of the
Einstein-Rosen bridge, given by Eq. (5.1).
For d ¼ 2, we can compute the integral explicitly,

CðjΨmiÞ ¼
ðR2� − r2þÞ1=2

2G
¼ ml ¼ nmΔl ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðΔ − dÞ

p
;

ð5:3Þ

from the form of R� in Eq. (2.18). This gives a strikingly
simple relation between the Einstein-Rosen volume and the
mass-scaling dimension for this family of states, supporting
the proposal in Ref. [131], verified by different means in
Refs. [132,133], relating quantum complexity and scaling
dimensions in conformal field theories.
In higher dimensions, the relation between the volume

and mass of the shell is more involved. However, for large
enough shell masses, we obtain

Rd−1� ≈
4πGml

ðd − 1ÞVΩ
: ð5:4Þ

Using this expression in Eq. (5.2), we obtain

CðjΨmiÞ ≈
VΩRd−1�
4πG

¼ ml
d − 1

; ð5:5Þ

again arriving at a simple relationwith the scaling dimension.
For small masses, on the other hand, the solution to

VeffðR�Þ ¼ 0 in Eq. (2.13) satisfies

R� ≈ rþ þ βþ
4π

�
4πGm

ðd − 1ÞVΩrd−2þ

�
2

: ð5:6Þ

In this regime, Eq. (5.2) gives

CðjΨmiÞ ≈
βþrþm
4πl

: ð5:7Þ

Although still linear in the mass of the perturbation,
the slope now depends on parameters of the original black
hole.
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1. Characterization of the python

The interior geometry of jΨmi is a classical python’s
lunch, a geometry with a cross-sectional bulge at the
position of the shell, r ¼ R�. For large m ≫ M, this bulge
has an area

Sb ¼
Areab
4G

¼ VΩRd−1�
4G

≈
π

d − 1
ml: ð5:8Þ

Thus, most of the volume of the ER bridge comes from the
region close to the bulge since the geometry is locally
hyperbolic. To see this quantitatively, we can compute the
proper length of the ER bridge,

L ¼ 2

Z
R�

rþ

drffiffiffiffiffiffiffiffiffiffiffiffi
fþðrÞ

p ≈ 2l log
R�
rþ

≈
2l

d − 1
logml; ð5:9Þ

so that

Sb ≈
π

d − 1
e
d−1
2l L and CðjΨmiÞ ≈

1

d − 1
e
d−1
2l L; ð5:10Þ

which is what we expect from the hyperbolic geometry of
the black hole interior. Note that in order to have an
exponentially large complexity in ld−1=G, the length of the
wormhole need only scale linearly with ld−1=G. Thus, the
single-shell pythons are relatively thick and short hyper-
bolic geometries. To build thin and long pythons, more
similar to cylinders, we can concatenate multiple shells
with reasonably low values of m. This model is depicted
in Fig. 12.

2. Multiple shells

To construct long wormholes, we consider microstates
with k shells jΨmi for m ¼ ðm1;…; mkÞ. The interior
volume is additive,

CðjΨmiÞ ¼
Xk
i¼1

ðd − 1ÞVΩ

4πGl

Z
Ri�

rþ

rd−1drffiffiffiffiffiffiffiffiffiffiffiffi
fþðrÞ

p
≈
X
i

mil
d − 1

: ð5:11Þ

For d ¼ 2, we again have

CðjΨmiÞ ¼
Xk
i¼1

mil: ð5:12Þ

The python now contains multiple lunches at Ri� (see
Ref. [45]), with associated entropy

Sbi ¼
Areabi
4G

¼ VΩðRi�Þd−1
4G

≈
π

d − 1
mil ð5:13Þ

and total length

L ¼
X
i

2

Z
Ri�

rþ

drffiffiffiffiffiffiffiffiffiffiffiffi
fþðrÞ

p ≈
X
i

2l
d − 1

log mil: ð5:14Þ

Thus, we can build wormholes with high volumes and
small bulges by considering many shells, each with
mil ∼ ld−1=GN .

3. Summary

Since the mass (or, equivalently, the dimension) of the
shell is unbounded from above, we conclude that we can
construct well-controlled geometrical states with Einstein-
Rosen bridges of any size. In particular, there is no evident
saturation of either the wormhole volume or the size of the
python’s lunch, both of which can be superexponential in
the black hole entropy already at t ¼ 0. Thus, super-
exponential wormholes need not be obstructed by quantum
effects, as they can be classically well defined.

B. Saturation of Einstein-Rosen bridges

We now restrict ourselves, without loss of generality, to
the one-shell states jΨβ

pi with masses mp ¼ pm, where
p ¼ 1; 2;… and m ∼Oðld=GÞ. We are now explicitly
labeling the states with the inverse temperature β of the
black hole, with associated ADM energy E.
In Sec. IV, we have shown that, when projected onto the

microcanonical window ½E;Eþ ΔE� associated with the
black hole, using the orthogonal projector ΠE, the unnor-
malized states

jΨE
pi ¼ ΠEjΨβ

pi; ð5:15Þ

for p ¼ 1;…; eSðEiÞ, likely generate a basis of the micro-
canonical black hole Hilbert space

HE ¼ SpanfjΨE
pi∶p ¼ 1;…; eSðEÞg: ð5:16Þ

All of these basis elements have shell masses (and hence
wormhole sizes) at most exponential in entropy and are
thus “short” wormholes. The microcanonical Hilbert space
dimension is set by the Bekenstein-Hawking entropy

FIG. 12. Geometry of the Einstein-Rosen bridge for the micro-
states. The single-shell states with large m contain large portions
of a hyperbolic geometry in the interior, while the multishell
states can have a large volume while keeping the spherical section
relatively small.
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eSðEÞ ≡ ðzðEÞΔEÞ2: ð5:17Þ

Now, consider a one-shell state jΨβ
qi, which has a super-

exponential Einstein-Rosen bridge, q ≫ eSðEÞ. Evidently, its
projection into the microcanonical window can be expanded
in the previous basis built out of shorter wormholes,

q > eSðEiÞ → jΨE
q i ¼

XeSðEÞ
p¼1

cpjΨE
pi: ð5:18Þ

The wave function of the full state jΨβ
qi that we prepared in

the previous section will, however, spread into different
microcanonical windows, and if we want to generate it with
short wormholes, we will need to consider states jΨEi

p i
associatedwith different energywindowsEi. These states are
constructed from projections of short wormhole states with
different temperatures jΨβi

p i into microcanonical windows,
ΠEi

jΨβi
p i, specified by the ADM masses Ei of the corre-

sponding large black holes. Therefore, we can expand the
state as

jΨβ
qi ¼

X
i

XeSðEiÞ
p¼1

cipjΨEi
p i: ð5:19Þ

Equivalently, we can also write the state in a basis of
fixed-temperature states. These states are linearly indepen-
dent when projected to the corresponding microcanonical
windows; thus, they are also linearly independent in the
infinite-dimensional Hilbert space. Making the change of
basis, we obtain

jΨβ
qi ¼

X
i

XeSðEiÞ
p

αipjΨβi
p i ð5:20Þ

in terms of some new coefficients αip. In this last expres-
sion, we have explicitly written the large wormhole as a
linear superposition of geometric short wormhole states
jΨβi

p i for different temperatures of the black hole. The wave
function of the long wormhole in the short wormhole basis,
αip, will follow an approximately thermal distribution, so
the sum (5.20) is dominated by short wormholes with the
temperature β. To see this, one can explicitly make the
computation αip ≈ hΨβ

qΨβi
p i. The overlap is given in terms of

a generalization of the two-boundary Euclidean wormhole
of Sec. III, for states with different temperatures. In the
large mass limit, repeating the calculation that led to
Eq. (3.33) shows that the overlap is independent of p,
and it is given by the wormhole contribution

jαipj ∼
Zðβ þ βiÞ
ZðβÞZðβiÞ

: ð5:21Þ

For large temperatures βi ≪ β, the coefficients αip are
suppressed by the free energy. For small temperatures
βi ≫ β, the amplitude becomes constant, of value ZðβÞ−1.
Thus, the wormhole state jΨβ

qi has most of its support
around the microcanonical energy window, defined by the
equation of state that relates the exterior temperature β and
the mass of the black hole MBH, up to exponentially
decaying Gibbs tails in the distribution [134]. We conclude
that, when q > eSðMBHÞ, i.e., for superexponential values,
the shell states can be written as complicated linear
superpositions of, at most, exponentially large wormholes.
This finding demonstrates a sense in which the volume of
Einstein-Rosen bridges is indeed bounded, and it relates
this bounding quantum mechanically to the finiteness of
black hole entropy.

C. Concerning volume operators

These considerations make it clear that the volume of the
interior cannot be measured by a linear operator in quantum
mechanics. To sharpen this point, we can try to define a
“volume operator” in the naive Hilbert space of infinite
dimension spanned by the family of thin-shell states by
assigning a geometric volume to each of them [135]:

V̂naivejΨpi ¼ VpjΨpi; p∈ f1;…;∞g; ð5:22Þ

where the Vp on the right side is the classically computed
volume. However, we have shown that the fundamental
Hilbert space of the black hole is spanned by a finite
number of these states, in fact, by precisely eS of them.
Therefore, it is clear that the observable V̂naive in Eq. (5.22)
cannot exist in the fundamental description of the black
hole since there cannot be so many linearly independent
eigenstates. We could try to remedy this by defining a linear
operator restricted to subexponential states

V̂jΨpi ¼ VpjΨpi; p∈ f1;…; eSg: ð5:23Þ

However, if q ≥ eS, this linear operator obviously fails to
provide the geometric volume of the state,

hΨqjV̂jΨqi ≈
XeS
p¼1

jαpj2Vp ≠ Vq: ð5:24Þ

This finding suggests that the geometric volume of the
interior states of the black hole must be encoded in a
nonlinear or state-dependent way in the fundamental
description. Such a semiclassical volume function could
still exist in the Hilbert space of the black hole. In the next
section, we describe linear volume operators related to
sensible notions of state complexity that are correspond-
ingly bounded above.
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D. Toy model of interior growth
and saturation of complexity

We have shown that the superexponential wormhole
states can be written as superpositions of exponential ones.
With this in mind, in this section, we will construct a toy
model describing a time evolution between wormholes of
different length. We will then define a notion of volume in
these universes, which is related to the “spread complexity”
of the underlying state in a basis of volume eigenstates,
recently introduced in Ref. [41] (reviewed in Appendix C).
This notion of volume and spread complexity will saturate
at values exponential in the entropy [136].
We start with the family of one-shell states used above,

which are

jΨpi; mp ¼ pm; m ∼Oðld−2=GÞ: ð5:25Þ

As proved previously, projecting these states to energy
windows Ei of size ΔE gives rise to finite-dimensional
Hilbert spaces,

Hi ¼ SpanfjΨi
pi∶p ¼ 1;…; eSðEiÞg: ð5:26Þ

In this scenario, we can create a toy model of black hole
interior growth by defining, for each window of energy E, a
“simple” hopping Hamiltonian that produces transitions
between subsequent shell states of growing volume. This
method is shown schematically in Fig. 13. At late times, the
wave function will be completely spread out over the
subexponential wormhole microstates, but the amplitudes
will keep evolving with time. We showed that all the
classically superexponential wormholes are superpositions
of these subexponential ones, which means that detailed
differences between amplitudes in the superposition,
including the phases, must be involved in determining
the classical length. The details of this will depend on the
choice of the hopping parameters, a question that we will
leave for future work.

The Hamiltonian takes the form [137]

H¼

0
BBBBBBBBBB@

a0 b1
b1 a1 b2

b2 a2 b3

. .
. . .

. . .
.

beSðEÞ−2 aeSðEÞ−2 beSðEÞ−1
beSðEÞ−1 aeSðEÞ−1

1
CCCCCCCCCCA
; ð5:27Þ

for some choice of a and b. This Hamiltonian is “simple”
because it acts on small groups of the dust particles making
up the shells at any given time, thereby locally changing the
dust density and the wormhole volume. Starting from the
state with the shortest wormhole, namely, jΨE

1 i, time
evolution with this Hamiltonian will make the expected
wormhole size grow since the wave function will move
along the “1D chain.”
We study the spread complexity of this evolution. As

explained in detail in Appendix C, this is the minimum
spread of the wave function over all choices of basis of the
Hilbert space. The solution to this minimization is the
Krylov basis. For a given initial state jΨi and a Hamiltonian
H, the Krylov basis is the one that arises from the Gram-
Schmidt procedure applied to HnjΨi. The Krylov basis is
simple to compute in our scenario, in which we start with
jΨE

1 i and evolve with the tridiagonal Hamiltonian H
because the Krylov basis is just the basis of the shell states
themselves, jΨE

pi. The wave function can be expanded in
this basis,

jΨ1ðtÞi ¼
X
p

ψpðtÞjΨE
pi: ð5:28Þ

In terms of the probabilities of each of the shell states as
time evolves, spread complexity can be computed as

CSpreadðtÞ ¼ CKðtÞ ¼
X
p

pjψpðtÞj2: ð5:29Þ

This notion of complexity is just the expectation value of
the position operator along the 1D chain. Since the position
in the chain is the mass of the shell in appropriate units and
the classical volume is proportional to the mass as well, the
spread complexity and the expected Einstein-Rosen volume
in the shell basis match. For example, we can use the
precise analytical formulas in d ¼ 2. When acting on shell
states, we thus identify the position operator [138] in the
chain with a linear volume operator as

p̂jΨpi¼pjΨpi; Ĉ≡ d−1

8πGl
V̂jΨpi¼pmljΨpi: ð5:30Þ

FIG. 13. Simple Hamiltonian that effects the transition between
subsequent shell states. This Hamiltonian is simple since it acts
on OðSÞ shell particles at a given time.
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Now, we equate the spread complexity position operator to
a “holographic complexity operator” as

Ĉ ¼ mlp̂: ð5:31Þ

Tridiagonal Hamiltonians such as Eq. (5.27) were
studied extensively in quantum chaotic models in
Refs. [41,42]. Following that work, the spread complexity
will increase for an exponentially long time and saturate at
an exponentially large value. By construction in our toy
model, the average wormhole volume as measured by the
linear volume operator defined above will also show this
behavior. Meanwhile, the state itself can continue to evolve
with time, and the classical volume, no longer simply
related to the volume operator we constructed, or to the
complexity of time evolution, could continue to increase.

VI. SUMMARY AND DISCUSSION

The key insight in our approach is that, to understand
the microscopic origin of black hole entropy, it is enough
to construct any well-controlled and sufficiently large
space of states. The rank of the matrix of overlaps between
these states then reveals the Hilbert space dimension. We
have shown that there are many families of such micro-
states that are geometrical and under semiclassical control.
These states are highly atypical in the Hilbert space
and do not have the standard Schwarzschild interior.
Nevertheless, they are sufficient to demonstrate that the
Bekenstein-Hawking entropy can be explained as the
dimension of an underlying quantum Hilbert space of
the black hole.
Our results followed from the appearance of quantum

wormholes that contribute to the overlaps between appa-
rently distinct classical states. These are nonperturbative
effects in quantum gravity. We also showed that all our
results could be understood phenomenologically by assum-
ing that the geometric configurations we construct are
random phase superpositions of energy eigenstates.
An outstanding question is as follows: Why is the

semiclassical gravitational path integral so useful? It can
compute the black hole entropy [139], and moreover, it
appears to resolve some aspects of the information paradox,
such as the expected decay of the Page curve at late times in
black hole evaporation. At first sight, this seems very
unlikely because both questions seem to require access to
the complete space of microstates. Here, we have shown
that there are enough states under semiclassical control to
give access to the dimension of the full Hilbert space. This
finding makes it possible for the semiclassical path integral
to correctly answer questions that depend on the Hilbert
space dimension, like the entropy of black holes or the
decay of the Page curve.
Finally, our results do not explicitly use any details of

string theory, AdS=CFT, or any other formulation of
quantum gravity. Indeed, the only assumptions we have

used are as follows: (a) There is some ultraviolet com-
pletion, and (b) the semiclassical Euclidean path integral
provides sensible information about the ultraviolet com-
pletion. With these assumptions, our results provide an
explanation for the entropy of black holes in any theory that
has general relativity coupled to massive matter as a low-
energy limit. In particular, this construction works in
specific top-down models of quantum gravity, such as
those appearing in string theory and AdS=CFT since these
theories contain the necessary ingredients to construct our
microstates. Perhaps this explains the universality of the
Bekenstein-Hawking entropy formula. We have worked in
universes with a negative cosmological constant because
there are additional tools in this case that allow us to put our
state-construction methods on an entirely firm footing.
However, there are no obstacles to repeating the analysis in,
for example, asymptotically flat spacetimes [141].
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APPENDIX A: THIN-SHELL FORMALISM

In this appendix, we provide a review of the thin-shell
formalism. The objective is to glue two Euclidean
Schwarzschild-AdS regions X� with local geometry

ds2� ¼ f�ðrÞdτ� þ dr2

f�ðrÞ
þ r2dΩ2

d−1: ðA1Þ

The gluing of the geometries along the trajectory W of
a codimension-one domain is performed using Israel’s
junction conditions. We denote by ðh�ab; K�

abÞ the induced
metrics h�ab and extrinsic curvatures K�

ab in terms of the
metric on each side X�. These quantities are evaluated at
W. Denoting Δhab ¼ hþab − h−ab and ΔKab ¼ Kþ

ab − K−
ab,

the junction conditions are simply

Δhab ¼ 0; ðA2Þ

ΔKab − habΔK ¼ −8πGSab; ðA3Þ

where ΔK ¼ habΔKab [142], and Sab is the energy-
momentum of the thin domain wall. For a dust shell, we
have Sab ¼ −σuaub, where the minus sign in Sab comes
from the analytic continuation σ → −σ in the Lorentzian
fluid.
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The junction conditions determine the motion for the
shell, namely, R ¼ RðTÞ, with T the synchronous proper
time of the shell. First, the angular parts of Eq. (A3) impose
the conservation of

m ¼ σVΩRd−1 ðA4Þ

along W, which is the rest mass of the shell. Second, from
the continuity of the metric (A2), we arrive at

f�τ̇� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ṙ2 þ f�

q
; ðA5Þ

where we use the notation ẋ ¼ dx=dT and the square root
can have either sign, giving different particular trajectories.
The remaining component of Eq. (A3) finally gives

κþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ṙ2þ fþðRÞ

q
− κ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ṙ2þf−ðRÞ

q
¼ 8πGm
ðd− 1ÞVΩRd−2 ;

ðA6Þ

where κ� ¼ signðτ̇�Þ is the sign of the extrinsic curvature.
We now square this expression, getting an effective equation
of motion for a nonrelativistic particle of zero total energy,

Ṙ2 þ VeffðRÞ ¼ 0; ðA7Þ

where the effective potential reads

VeffðRÞ ¼ −fþðRÞ þ
�
Mþ −M−

m
−

4πGm
ðd − 1ÞVΩRd−2

�
2

:

ðA8Þ

In this nonrelativistic dynamics describing the trajectory of
the shell in the Euclidean geometry, the shell starts at the
boundary R ¼ r∞ and bounces at R ¼ R� with VðR�Þ ¼ 0.
Notice thatR� ≥ r� for the respective horizon radii. The time
the shell takes to complete this motion can be computed from
Eq. (A5). It is given by the integral

Δτ� ¼ 2

Z
∞

R�

dR
f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� þ Veff

−Veff

s
: ðA9Þ

1. 2 + 1 dimensions

The d ¼ 2 case can be worked out more explicitly.
For the BTZ black hole, the event horizon radii are
r� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8GM�
p

, the inverse temperatures are β�¼2π=r�,
and the effective potential (A8) reads

VeffðRÞ ¼ −ðr2 − R2�Þ; ðA10Þ

where the turning point takes the explicit form

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ

�
Mþ −M−

m
− 2Gm

�
2

s
: ðA11Þ

The exact solution for the shell’s motion in Eq. (A7) can be
explicitly found,

RðTÞ ¼ R� cosh T; ðA12Þ

where we have chosen the initial conditions forcing the
shell to pass through R� at proper time T ¼ 0. Finally, the
Euclidean time elapsed by the shell (A9) during its motion
can also be computed to give

Δτ� ¼ β�
arcsinðr�=R�Þ

π
: ðA13Þ

APPENDIX B: HIGHER MOMENTS AND
MULTIBOUNDARY WORMHOLES

In this appendix, we provide details of the semiclassical
computation of higher moments of the overlaps for one-
shell states. The connected part of the nth moment is

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc¼
Zn

Zm1

1 …Zmn
1

; ðB1Þ

where

Zn ¼ e−I½Xn� ðB2Þ

is the contribution from the gravitational action of the
n-boundary wormhole Xn that we now construct. The
normalizations Zmi

1 are the ones computed in Sec. III.
The wormhole Xn with n boundaries consists of a pair of

Euclidean black holes of the same temperature βn [143],
which are glued together along the trajectory of the n thin
shells. This case is shown in Fig. 14 for the sixth moment.
The saddle-point equation reads

βn ¼
Xn
i¼1

ðβ̃mi
þ Δτmi

Þ: ðB3Þ

In this equation, the n preparation temperatures β̃mi
have

already been fixed by Eq. (3.8). Then, in the wormhole
solution, the equation of motion (2.14) fixes the elapsed
Euclidean time for each shell as a function of the mass of
the shell and the background black hole geometry para-
metrized by βn. The constraint (B3) then fixes βn.
Having found this solution, the action of the wormhole

after counterterm subtraction can be derived by the same
logic as in Sec. III, giving
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I½Xn� ¼ 2

�Xn
i¼1

β̃mi

�
FðβnÞ þ

Xn
i¼1

I½Xmi
shell�: ðB4Þ

Including the contributions from the normalizations Z1 and
Z0
1, we obtain the semiclassical overlap squared,

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc
¼ e−2ð

P
i
β̃mi

ÞΔF−
P

i
ΔI½Xmi

shell�; ðB5Þ

where ΔF ¼ FðβnÞ − FðβÞ and ΔI½Xmi
shell� ¼ I½Xmi

shell�jβn −
I½Xmi

shell�jβ.

1. Large mass limit and universality

In the limit mi ≫ M for all of the shells, the preparation
temperature coincides with the physical temperature,
β̃mi

≈ β. Equation (B3) gives βn ≈ nβ, and the moment
(B5) reduces to

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc ≈
ZðnβÞ2
ZðβÞ2n ; ðB6Þ

which is the main result for the overlap that we use in
Sec. IV. It is straightforward to show that Eq. (B6) holds
also for higher moments of the overlaps between general
multishell states in the large mass limit.

APPENDIX C: SPREAD COMPLEXITY

In this appendix, we briefly review the notion of spread
complexity recently introduced in Ref. [41]. Consider a
time-independent Hamiltonian H. Time evolution of a
initial state jψi is determined by the Schrödinger equation

i∂tjψðtÞi ¼ HjψðtÞi: ðC1Þ

A natural notion of quantum complexity arises from quanti-
fication of the spread of jψðtÞi over the Hilbert space. To this
end, we can define a cost function relative to a complete,
orthonormal, ordered basis B ¼ fjBni∶n ¼ 0; 1; 2; � � �g for
the Hilbert space

CBðtÞ ¼
X
n

njhψðtÞiBnj2 ≡
X
n

npBðn; tÞ: ðC2Þ

Unitarity of time evolution implies that the cost of a wave
function increases if it spreads deeper into the basis. The
question then arises as to which basis should be used to
measure the spread. Inspired by other notions of complexity,
such as Kolmogorov complexity [144], we now define
spread complexity as the minimum over a finite time interval
of this cost function over all bases B,

CðtÞ ¼ min
B
CBðtÞ: ðC3Þ

Reference [41] then shows that, under some assumptions,
there is an essentially unique basis minimizing Eq. (C3)
across a finite time domain. This basis follows the expansion

jψðtÞi ¼
X∞
n¼0

ð−itÞn
n!

jψni; ðC4Þ

where we have defined jψni ¼ Hnjψi. These states are
neither orthogonal nor normalized. However, they generate
an ordered, orthonormal basisK ¼ fjKni∶n ¼ 0; 1; 2; � � �g,
by means of the Gram-Schmidt procedure with the initial
condition jψð0Þi≡ jK0i. The basis K is called the Krylov
basis in the recent literature.
To calculate this notion of spread complexity, we

must derive the Krylov basis K. This is achieved via the
Lanczos algorithm [145,146], which recursively applies the
Gram-Schmidt procedure to jψni ¼ Hnjψð0Þi to generate
K ¼ fjKni∶n ¼ 0; 1; 2; � � �g in the following way:

jAnþ1i¼ðH−anÞjKni−bnjKn−1i; jKni¼b−1n jAni; ðC5Þ

where an and bn are dubbed the Lanczos coefficients

an ¼ hKnjHjKni; bn ¼ hAnjAni1=2: ðC6Þ

The initial conditions for this recursive generation are
b0 ≡ 0 and jK0i ¼ jψð0Þi as the initial state.
It is immediate that the Lanczos algorithm (C5) implies

HjKni ¼ anjKni þ bnþ1jKnþ1i þ bnjKn−1i: ðC7Þ

Equivalently, the Hamiltonian becomes a tridiagonal matrix
in the Krylov basis. For finite-dimensional systems, like the

FIG. 14. Wormhole X6, consisting of a pair of Euclidean black
holes of the same mass, M6, which are glued together along the
trajectory of the six thin shells (red lines). The black holes are
the boundaries of the geometry. The second black hole is behind
the figure in this perspective, as indicated by the dashed arrows.
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ones we consider in this paper, this representation is known
as the “Hessenberg form” of the Hamiltonian:

H ¼

0
BBBBBBBBBB@

a0 b1
b1 a1 b2

b2 a2 b3

. .
. . .

. . .
.

bN−2 aN−2 bN−1

bN−1 aN−1

1
CCCCCCCCCCA
: ðC8Þ

This finding leads to the interesting observation that every
quantum dynamical evolution can be framed in terms of an
appropriate one-dimensional hopping Hamiltonian.
To compute the spread complexity, we must expand the

state in the basis in which the spread is minimized:

jψðtÞi ¼
X
n

ψnðtÞjKni: ðC9Þ

Finally, given ψnðtÞ, we apply the definition of complexity
in Eqs. (C2) and (C3):

CðtÞ ¼ CKðtÞ ¼
X
n

npnðtÞ ¼
X
n

njψnðtÞj2: ðC10Þ

This notion of spread complexity can be seen as a
generalization of the notion of Krylov operator complexity,
introduced in Ref. [147], to quantum states, now under-
stood in terms of a minimization of the spread of the wave
function over all choices of basis.
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