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We experimentally investigate the collective radiative decay of a fully inverted ensemble of two-level
atoms for a chiral, i.e., propagation direction-dependent light-matter coupling. Despite a fundamentally
different interaction Hamiltonian which has a reduced symmetry compared to the standard Dicke case of
superradiance, we do observe a superradiant burst of light. The burst occurs above a threshold number of
atoms, and its peak power scales faster with the number of atoms than in the case of free-space Dicke
superradiance. We measure the first-order coherence of the burst and experimentally distinguish two
regimes, one dominated by the coherence induced during the excitation process and the other governed
by vacuum fluctuations. Our results shed light on the collective radiative dynamics of cascaded quantum
many-body systems, i.e., systems in which each quantum emitter is only driven by light radiated by
emitters that are upstream in the cascade. Our findings may turn out useful for generating multiphoton Fock
states as a resource for quantum technologies.
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I. INTRODUCTION

When a single quantum emitter interacts with a propa-
gating light field, one usually assumes that the emitter–light
coupling strength is independent of the sense of propaga-
tion of the light, forward or backward [1]. However,
under certain circumstances, this symmetry can be broken,
rendering the interaction between the emitter and the field
mode propagation direction dependent or “chiral” [2]. This
chiral coupling lends itself to the implementation of spin-
controlled nonreciprocal devices [3] and is a powerful
resource in quantum information [4,5]. When more than
one quantum emitter is chirally coupled to a common
optical mode, this realizes a so-called cascaded quantum
system [6,7]. There, each quantum emitter is only driven by
light radiated by emitters that are upstream in the cascade.
In other words, there is only one direction in which
information about each subsystem can propagate through
the ensemble.
One of the hallmark collective effects of “symmetric”

quantum optics is Dicke superradiance [8,9], where an

ensemble of initially excited atoms emits light in a short,
so-called superradiant burst into an optical mode. The burst
is characterized by an initial increase of the emitted optical
power, which is due to a spontaneous synchronization
of the initially independent atomic dipoles. The study of
such superradiant emission in spatially extended atomic
ensembles has seen a revival in recent years, driven by
an increasing level of experimental control [10–16] and
theoretical efforts to understand the intricacies of such
many-body quantum systems [17–24]. In his seminal work,
Dicke analyzed an atomic ensemble which featured particle
exchange symmetry; i.e., the system Hamiltonian is invari-
ant under the exchange of two participating atoms [8,25].
Because of this symmetry, the ensemble remains in the
subspace of so-called symmetric Dicke states, which makes
the problem analytically solvable even for a large number
of atoms [9]. In contrast, the interaction Hamiltonian
of a cascaded quantum system does not feature particle
exchange symmetry [26–28]. This implies, e.g., that the
first atom in the cascade is completely independent of the
rest of the ensemble, while the dynamics of the last atom
depends on all other atoms. Recently, it has been theoreti-
cally predicted that superradiant bursts occur even for
perfectly unidirectional coupling [29]. This dynamics
has, however, not been observed experimentally.
Here, we observe a superradiant burst emission by about

1000 cesium atoms that are chirally coupled to a nano-
photonic waveguide. The atomic ensemble extends over
thousands of optical wavelengths and features waveguide-
mediated long-range interactions [30]. The atoms are
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excited through the waveguide by means of a short resonant
optical pulse. Following this excitation, the ensemble emits
a burst of light into the waveguide if the number of atoms
exceeds a threshold value. Interestingly, we find that the
peak power of this burst scales faster with the number of
atoms than in the case of Dicke superradiance in free space.
We show that, because of the initial coherence that is
present in the atomic ensemble after excitation, the super-
radiant bursts are coherent with respect to the excitation
laser field for a wide range of excitation pulse areas.
However, when the excitation pulse area is chosen such
that the ensemble is prepared close to full inversion, the
coherence of the superradiant burst with respect to the
excitation laser field is lost. This shows that the burst
emitted by a fully inverted ensemble is induced by vacuum
fluctuations. Consequently, it exhibits a vanishing expect-
ation value of the electric field, meaning that its phase
is undefined. Still, even then, we find that the field at the
beginning of the burst is coherent with the field at later
times, indicating that the vacuum-induced burst is primarily
emitted into a single temporal mode. Finally, we present a
model whose computational cost only scales linearly with
the number of atoms and which accurately describes all our
experimental observations.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 1(a). We optically interface cesium atoms with the
evanescent field surrounding an optical nanofiber, which is
realized as the waist of a tapered optical fiber with a
nominal diameter of 500 nm. Using nanofiber-guided light,

we implement a two-color optical dipole trap that features
two diametral arrays of trapping sites for the atoms, located
about 230 nm away from the fiber surface. We probabilisti-
cally load atoms into this trapping potential from a
magneto-optical trap [31]. Because of the collisional
blockade effect, there will be at most one atom per trapping
site [32,33]. We then apply a magnetic offset field of about
0.5 G in the z direction. Using a fiber-guided laser field that
is near resonant with the j6S1=2; F ¼ 4i → j6P3=2; F ¼ 5i
D2 transition, we apply side-selective degenerate Raman
cooling (DRC) to the atoms in one of the arrays [34], which
are prepared in the outermost Zeeman state of the F ¼ 4
hyperfine ground state manifold, jgi ¼ j6S1=2; F ¼ 4;
mF ¼ −4i. This process simultaneously removes the atoms
from the opposite trap array. After inferring the number
of trapped atoms N via transmission spectroscopy [31],
see Appendix A 1, we excite the atomic ensemble to the
jei¼ j6P3=2;F¼5;mF¼−5i state using a 4-ns-long fiber-
guided optical pulse that is much shorter than the excited
state lifetime of about 30 ns [35]. The excitation laser
field is locally σ− polarized [36,37] and resonant with the
jgi → jei transition. We recently showed that this technique
allows us to almost fully invert ensembles of up
to 1000 atoms, with an excited state probability of about
80% [38]. Since the subsequently emitted light is σ−

polarized, the probability that a single atom emits into
the locally almost perfectly σ−-polarized forward-
propagating mode is βf ≈ 0.01, about 10 times larger than
the probability for backward emission [37]. We measure the
power of the light that the atoms emit into the forward-
propagating mode Pf; see Appendix A 2. To obtain
sufficient counting statistics, we excite the atoms 400 times
per experimental sequence at a repetition rate of 5 kHz
and average over several thousand sequences. During this
probing, we switch from our fiber-guided DRC as
described above to DRC with a free-space laser beam that
is near resonant with the j6S1=2; F ¼ 4i → j6P1=2; F ¼ 4i
D1 transition. Since the corresponding scattering rate is
much smaller than the collective decay rate of the atomic
ensemble, we can continuously cool the atoms during the
experimental sequence without disturbing their dynamics.
Thanks to the continuous cooling, not more than 15% of the
atoms are lost during the probing sequence with a duration
of 80 ms.

III. SUPERRADIANT BURST

In Fig. 1(b), we show an example time trace of Pf as
blue dots. The 4 ns excitation pulse is switched off at time
t ¼ 0 ns. Subsequently, the ensemble of about 1000
inverted atoms decays, and we observe an initial increase
of Pf. The power reaches a maximum value of Pmax

f after a
delay of tD ≈ 9 ns and then decreases. This initial increase
in emitted power is in stark contrast to the exponential
decay of independent atoms and is a characteristic feature

(a)

(b)

FIG. 1. (a) Schematic of the buildup of a superradiant burst in a
cascaded system. Cesium atoms (blue circles) are trapped about
230 nm away from the nanofiber surface and are unidirectionally
coupled to the evanescent field of the forward-propagating
nanofiber-guided mode. This realizes a cascaded quantum system,
where the dynamics of any atom can influence only downstream
atoms. (b) We coherently invert an ensemble of about 1000 atoms
using a forward-propagating nanofiber-guided optical pulse
(purple arrow) and record the transmitted light. As the ensemble
decays, we observe the emission of a superradiant burst into the
forward-propagating mode. The solid black line represents the
prediction of a cascaded interaction model; see main text.
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of a superradiant burst. We observe this burst notwith-
standing the fact that the atoms are chirally coupled to the
nanofiber. The synchronization of the atomic dipoles
during their decay is enabled by the guided mode of the
nanofiber, despite the large distance between atoms [39]. In
addition, the unidirectional coupling makes the dynamics
robust to the randomness of these distances. Since the size
of the Hilbert space grows exponentially with the number
of atoms, a numerical solution of the master equation
describing the system, see Eq. (2) below, is prohibitively
costly for as many as 1000 atoms. Instead, we developed a
cascaded interaction model whose computational cost
scales linearly with the number of atoms, and the result
is shown as a black dashed line in Fig. 1(b). We describe
this model, which agrees quantitatively with all data
presented in this work, in detail below.

IV. SCALING WITH THE NUMBER OF ATOMS

The spontaneous synchronization of the atomic dipoles
in our experiment is in competition with dephasing and
decay into other modes [9]. As a result, the superradiant
burst occurs only when the number of atoms exceeds a
threshold, beyond which spontaneous synchronization
dominates. To study this threshold, we measure the decay
of fully inverted ensembles for varying atom numbers N;
see Figs. 2(a)–2(d). For N ∼ 130 in Fig. 2(a), we observe a
monotonous decay of Pf, closely resembling the exponen-
tial decay expected for independently emitting atoms.

For N ∼ 230 in Fig. 2(b), we observe a plateau before
Pf eventually decreases, indicating that the system is at the
onset of a superradiant burst. For about 570 atoms, a clear
burst is apparent, which is even more pronounced for about
1110 atoms. From these measurements, we extract the
peak-emitted power Pmax

f and plot it as a function of the
atom number N in Fig. 2(e). In this analysis, we first
average PfðtÞ over several thousand experimental runs and
then determine the peak value of this averaged signal. Two
regimes are clearly visible. For small N, Pmax

f increases
linearly, and a power-law fit reveals an exponent of 1.0(2).
In this regime, the peak power occurs directly after
switching off the excitation laser. Since all atoms emit
independently, the power at the very beginning of the
emission process is given by Pmax

f ¼ Pfðt ¼ 0Þ ¼ ΓfEst,
where Est ≈ Nℏω is the energy stored in the ensemble after
the excitation pulse. This energy is radiated into the
forward-propagating mode at a rate Γf ¼ βfΓ, where
Γ=ð2πÞ ≈ 5.22 MHz is the excited state decay rate. As N
is increased further, the scaling changes, and the extracted
exponent becomes 2.6(2). This threshold behavior and the
superlinear scaling are indicative of a synchronization of
the atomic dipoles, such that Pmax

f exceeds ΓfEst. Indeed,
the change of the scaling of Pmax

f ðNÞ is accompanied by the
occurrence of burst dynamics; see Figs. 2(c) and 2(d). In the
textbook case of the emission of a Dicke superradiant burst
by a strongly confined ensemble, the scaling is quadratic
since each atom constructively adds to the macroscopic
dipole moment of the ensemble, and the power is propor-
tional to its square [8]. There, the entire energy stored in the
ensemble is emitted into a single spatial mode, regardless
of whether the dipoles synchronize or not. However, in our
experiment, a single atom emits only about 1% of its
radiation into the (forward-propagating) guided mode, and
about 99% of the light is scattered into the free-space
modes. During the collective decay of the atoms, a phase
pattern is formed across the atomic dipoles, which leads to
constructive interference for emission into the forward-
propagating mode. Therefore, the atoms emit into a
narrower solid angle as N increases. Accordingly, a larger
fraction of the radiated power is collected by the nanofiber-
guided mode. This explains the faster-than-quadratic scal-
ing beyond the threshold observed in our experiment. For
further details on the scaling of Pmax

f , including in the limit
of large N, see Appendix A 7.
In contrast to the weakly excited regime, where a similar

phase pattern can be imprinted on the ensemble by an
external laser field [40–43], here, this pattern forms
spontaneously, as we show further below. We further
analyze the collective enhancement of forward scattering
by measuring the fraction of the stored energy that is
emitted into the forward-propagating mode ηf [38]. We plot
ηf as a function ofN in Fig. 2(f) and find a similar threshold
behavior as for the peak power Pmax

f . For small N, ηf stays

FIG. 2. (a)–(d) Power emitted by an inverted ensemble for
different atom numbers N. As we increase N, the dynamics
changes from an exponential decay to a superradiant burst.
(e) Dependence of the peak-emitted power Pmax on N (purple
dots). We observe a linear scaling for small N (orange dashed
line), which becomes superlinear when N exceeds a threshold
of about 300 (red dash-dotted line). (f) Dependence of the
fraction of absorbed energy emitted into the forward-
propagating mode ηf (orange diamonds) on N. Also here,
we observe a threshold, below which ηf is constant and above
which it increases with N. The corresponding model predic-
tions are shown as solid black lines.
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at a constant value of about 0.01 ≈ βf, as expected for
independently emitting atoms; see dashed gray line in
Fig. 2(f). For larger atom numbers, ηf increases as N1.2ð1Þ;
i.e., forward scattering is indeed collectively enhanced
compared to independent decay. We note that we expect
ηf to saturate for even larger N; see Appendix A 7.

V. DEPENDENCE ON THE INITIAL STATE

We now explore the dynamics of the superradiant burst
for different initial states of the atomic ensemble consisting
of about 1000 atoms. By exciting an atom k with a short,
resonant optical pulse of pulse area Ak, we prepare it to
good approximation in a coherent superposition of ground
and excited state [38],

jψki ¼ cos

�
Ak

2

�
jgi − i sin

�
Ak

2

�
jei; ð1Þ

where we have chosen a frame that rotates with the
forward-propagating laser mode. The time traces of the
emitted power Pf are shown as a function of Ā in Fig. 3(a),
where each time trace is normalized to its peak value Pmax

f .
Here, Ā is the mean pulse area “seen” by the first atom that
interacts with the excitation pulse and takes into account
the averaging over the distribution of coupling strengths
between the atom and the waveguide mode; see the
Appendixes A 5 and A 6. We extract the time at which
the maximal power is emitted into the nanofiber tD and
display it as the black dashed line. For small pulse areas
(Ā < 0.7π), the power decreases monotonously as the
ensemble decays, and tD ¼ 0. However, for Ā between
about 0.7π and 1.3π, the ensemble is substantially inverted
and a superradiant burst is apparent, such that tD > 0.
The closer the ensemble is to full inversion, the longer the
delay tD, with a maximal value of tD ≈ 9 ns. When Ā is
further increased beyond 1.3π, the ensemble is coherently

deexcited and the burst gradually vanishes. As one would
expect, we observe maximal inversion and thus the largest
delay for Ā ≈ π. Details on how experimental imperfections
influence the burst dynamics can be found in Appendix A 6.
In Fig. 3(b), we show the corresponding model prediction
and find quantitative agreement, confirming that our cas-
caded interaction model captures the essential physical
mechanism, which determines the system dynamics.

VI. FIRST-ORDER COHERENCE PROPERTIES

To understand the role of coherence of the superradiant
burst in our system, we measure the complex-valued
normalized first-order coherence function of the forward-
propagating light gð1Þðt1; τÞ. Since we analyze a nonsta-
tionary field, gð1Þðt1; τÞ depends explicitly on two times, t1
and t1 þ τ [44] (the excitation pulse is switched off at
t ¼ t1 ¼ 0 ns, cf. Fig. 1). We superpose the light emitted
into the forward-propagating mode with a local oscillator
(LO) that is derived from the excitation laser and detuned
by ωLO ¼ 2π × 230 MHz. The intensity-intensity correla-
tions of the resulting heterodyne signal contain a beating
pattern, whose visibility is a measure of gð1Þðt1; τÞ.
Specifically, the normalized beating pattern is given by
Refe−iωLOτgð1Þðt1; τÞg, where Ref� � �g denotes the real part;
see Appendix A 3. In Figs. 4(a)–4(c), we plot the measured
beating patterns for three different pulse areas Ā and for two
different times t1. Throughout the considered parameter
space, we observe that the beating pattern is well described
by a function of the formXðt1Þ cosðωLOτÞ; i.e., gð1Þðt1; τÞ is
real valued. The amplitude Xðt1Þ thus quantifies the time-
averaged first-order coherence. While full first-order
coherence would in principle lead to jXðt1Þj ¼ 1, a
polarization mismatch between the LO and the signal
field reduces the visibility in our experiment, so that a
fully coherent signal field leads only to jXðt1Þj ≈ 0.5; see
Appendix A 3 for details.
In the top of panels Figs. 4(a)–4(c), we set t1 ¼ −2 ns

(i.e., when the excitation pulse is still on) and τ > 2 ns (i.e.,
during the superradiant burst). Consequently, the interfer-
ence signal corresponds to a cross-correlation between the
excitation laser light and the superradiant burst emitted by
the atoms. In Fig. 4(a), Ā < π, and we observe a beating
pattern with near maximum visibility, Xðt1Þ ≈ −0.5, indi-
cating that the emitted light is coherent with respect to the
excitation laser field. Here, Xðt1Þ is negative, because the
burst light emitted by the atoms is phase shifted by π with
respect to the laser, as expected. In Fig. 4(c), the ensemble
is coherently driven beyond full inversion (Ā > π), and
the atoms radiate in phase with the laser, indicated by
Xðt1Þ ≈þ0.5. Importantly, however, for maximal inver-
sion as shown in Fig. 4(b), we do not observe any
interference fringes, Xðt1Þ ≈ 0.0; i.e., the emitted light
features no fixed phase relationship with respect to the
excitation laser field. In Fig. 4(d), we plot jXðt1 ¼ −2 nsÞj

FIG. 3. Dynamics of the power emitted into the nanofiber-
guided mode Pf for different pulse areas seen by the first atom Ā.
Each time trace is normalized to its peak value Pmax

f . The time at
which the maximum is reached tD is indicated by the black
dashed lines. Panel (a) shows the measured data, while panel
(b) shows the corresponding model predictions.
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as a function of the pulse area Ā (purple diamonds). In
addition, we show the delay time tD at which the peak
power Pmax

f is emitted (orange dots). These are the same
data shown as a black dashed line in Fig. 3(a). We observe
that the minimum of jX j appears when tD reaches its largest
value, i.e., when the ensemble is maximally inverted.
Interestingly, the coherence with respect to the laser
features a dip which is much narrower than the region in
which tD is larger than zero. This allows us to identify two
regimes of superradiant burst dynamics in our experiment.
In the first regime close to full inversion, indicated by the
light red shaded area, the superradiant burst is incoherent
with respect to the excitation laser and is therefore triggered
by vacuum fluctuations. In this case, one also speaks of
superfluorescence [45]. In a second regime comprising a
much broader range of pulse areas indicated by the light
purple shaded regions, the burst is coherent with the
excitation laser. Here, the phase is imprinted onto the
ensemble by the excitation laser field.

In the lower row of Figs. 4(a)–4(c), we set t1 ¼ 5 ns (i.e.,
after the excitation pulse has been switched off), thereby
measuring the first-order coherence of the superradiant
burst. We observe that Xðt1Þ ≈ 0.5 including for Ā ¼ π in
Fig. 4(b). There, the atomic ensemble is maximally
inverted, has effectively no total dipole moment, and is
thus incoherent with respect to any external reference; see
Appendix A 6. This indicates that even the vacuum-induced
superradiant burst is predominantly emitted into a single
temporal mode [46]. Such a behavior has recently been
predicted for Dicke superradiance of ensembles of two-
level systems that are coupled symmetrically [23,47], but
has, to our knowledge, not been confirmed experimentally
so far.
Let us now discuss the observation of an interference

pattern in the heterodyne measurement of the vacuum-
induced burst in the context of the theory of heterodyne
detection of a quantum mechanical, single field mode Ê.
In a Heisenberg picture, where quantum operators depend
on time, the autocorrelation function of the heterodyne
photocurrent is a measure for the correlator, Gð1Þðt1; τÞ ¼
hÊ†ðt1 þ τÞÊðt1Þi [48], as defined by Glauber [49]. In an
equivalent Schrödinger picture, where operators are time
independent, however, this interference is a consequence
of a nonvanishing dipole moment appearing in the condi-
tional atomic quantum state during the heterodyne mea-
surement [50–52]. While a quantitative modeling of our
experiment along these lines is beyond the scope of the
present work, we do present a theoretical study of a fully
inverted ensemble of independently emitting atoms in
Appendix A 4. Interestingly, also in this situation, the
emitted field is predicted to feature full coherence, similar
to our observations.

VII. THEORETICAL MODEL

Let us now turn to the theoretical description of our
system. The many-body master equation for the density
operator ρ̂ of N atoms, which are coupled to a unidirec-
tional waveguide, is given by [26,27,29,53,54]

d
dt

ρ̂ ¼ −
i
ℏ
½Ĥcasc; ρ̂� þ ΓfLcoll½ρ̂� þ Γ0L0½ρ̂�; ð2Þ

with the cascaded interaction Hamiltonian,

Ĥcasc ¼ −i
ℏΓf

2

X
k<l

σ̂†l σ̂k þ H:c: ð3Þ

Here, σ̂k ¼ jgikhejk is the spin lowering operator of the
kth atom in a frame which corotates with the forward-
propagating mode with k ¼ 1;…; N. The indices are
increasing in the direction of the propagating mode.
Importantly, this Hamiltonian allows information to propa-
gate in only one direction along the waveguide.

FIG. 4. Heterodyne analysis of the first-order coherence
gð1Þðt1; τÞ of the forward-emitted light, modulated with the local
oscillator detuning of ωLO ¼ 2π × 230 MHz as a function of the
pulse area Ā. The model predictions are shown as solid lines. In
the top of panels (a)–(c), t1 ¼ −2 ns lies within the excitation
pulse. The gð1Þ function is thus given by the cross-correlation of
the excitation laser and the burst light. In (b), when maximal
inversion is reached, the oscillations disappear, indicating that
there is no fixed phase relationship between fluorescence and
excitation laser. In the bottom panels of (a)–(c), t1 ¼ 5 ns lies
within the burst. The interference fringes indicate that the
superradiant emission is first-order coherent for all considered
values of Ā. (d) Magnitude of the coherence of the emitted light
with respect to the laser jX j for different Ā (purple diamonds on
left-hand axis), and time delay of the maximum of the super-
radiant burst tD (orange dots on right-hand axis).
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The collective decay into the waveguide with rate Γf ¼ βfΓ
is described by Lindblad superoperator Lcoll½ρ̂�, while
independent decay into free space with rate Γ0¼ð1−βÞΓ
is described by L0½ρ̂�,

Lcoll½ρ̂� ¼
1

2

X
k;l

ð2σ̂lρ̂σ̂†k − σ̂†kσ̂lρ̂ − ρ̂σ̂†kσ̂lÞ; ð4aÞ

L0½ρ̂� ¼
1

2

X
k

ð2σ̂kρ̂σ̂†k − σ̂†kσ̂kρ̂ − ρ̂σ̂†kσ̂kÞ: ð4bÞ

We note that while the many-body master equation, Eq. (2),
is useful for understanding the physical properties of the
system, its solution is inaccessible for as many as N ¼ 1000
coupled atoms, since the size of the density matrix ρ̂ scales
exponentially with N. In order to approximate the solution
numerically, let us note that the dynamics of each individual
atom in the ensemble is described by the quantum Langevin
equation [55],

d
dt

σ̂k ¼ −
Γ
2
σ̂k − i

ffiffiffiffiffi
Γf

p ð1 − 2σ̂†kσ̂kÞâkðtÞ; ð5Þ

where âkðtÞ is the annihilation operator of the waveguided
light field before the kth atom. Because of the cascaded
interaction, the output field of this mode serves as the next
atom’s input, âkþ1ðtÞ, and is given by the input-output
equation [55]:

âkþ1ðtÞ ¼ âkðtÞ − i
ffiffiffiffiffi
Γf

p
σ̂k: ð6Þ

For our cascaded quantum system, these equations are
equivalent to the master equation (2) [6,7]. In Ref. [38],
we approximated the photonic states between the atoms as
coherent states; i.e., we replaced âkðtÞ by its amplitude
αkðtÞ ¼ hâkðtÞi. This reduces the Langevin equation of the
kth atom to the (single-atom) optical Bloch equations and
allows one to solve the mean-field atomic dynamics of the
whole ensemble with linear computational complexity.
However, it is well known that the output field âkþ1 is in
general no longer in a coherent state. In particular, close to
full inversion there is no coherence left for zero input field.
Therefore, the total output flux, Pkþ1ðtÞ ¼ hâ†kþ1âkþ1iðtÞ, is
always larger than the coherent part, Pc

kþ1ðtÞ ¼ jhâkþ1iðtÞj2.
The difference Pinc

kþ1ðtÞ ¼ Pkþ1ðtÞ − Pc
kþ1ðtÞ is commonly

referred to as the “incoherent” part of the emitted light,
which is due to spontaneous emission. In order to describe
this incoherent driving of the next atom, we model the input
field âkðtÞ as the superposition of a coherent field and a
“randomly phased laser field” [56]. The density operator of
such a field is given by

ρ̂LðtÞ ¼
1

2π

Z
2π

0

dϕjαðϕ; tÞihαðϕ; tÞj; ð7Þ

which represents a mixture of coherent states with ampli-

tudes αðϕ; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
Pc
kðtÞ

p þ eiϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pinc
k ðtÞ

q
, homogeneously

sampled over the phase ϕ. This “mixed coherent state”
has the property that its total power hâ†kâkiðtÞ ¼ Pc

kðtÞ þ
Pinc
k ðtÞ is larger than its coherent part jhâkiðtÞj2 ¼ Pc

kðtÞ.
Moreover, we can still straightforwardly solve the atomic
dynamics of the kth atom given this input state by solving
the optical Bloch equation for each phase ϕ separately. We
then numerically compute the output’s coherent and inco-
herent parts, Pc

kþ1ðtÞ and Pinc
kþ1ðtÞ, respectively, by averaging

over ϕ. We apply this method iteratively to each atom
and finally obtain the output power PfðtÞ ¼ PNþ1ðtÞ. The
computational complexity of this method is thus linear in N.
In addition, we average the simulated time traces over a

truncated Gaussian distribution of βf values to account
for the thermal distribution of atoms in the trapping
potential and, thus, the varying distances of the atoms to
the nanofiber surface. We fit the corresponding mean
and standard deviation of the probability distribution
pðβfÞ to the experimental data, yielding hβfi ¼ 0.011
and σβ ¼ 0.0067, respectively [38]; see Appendix A 5.
Notably, we only need these two free parameters to obtain
quantitative agreement with the data throughout the whole
parameter space studied in this work. We numerically
confirmed that the finite duration of the excitation pulse
and the inhomogeneous spread of coupling strengths
does not qualitatively alter the observed dynamics; see
Appendix A 6 for further detail. The quantitative agreement
of our model with the data attests that our system can
indeed be modeled as a cascaded quantum system and that
our mixed coherent state approximation is justified. Other
methods that account for incoherent dynamics beyond the
mean field typically rely on higher-order cumulant expan-
sions [57]. To our knowledge, while these models are
solvable in polynomial time, the solution for more than a
few hundred atoms remains elusive.

VIII. CONCLUSIONS AND OUTLOOK

In conclusion, we have experimentally observed the
emission of superradiant bursts by an ensemble of atoms
that is unidirectionally coupled to a guided mode of an
optical nanofiber. Our results demonstrate that superra-
diance prevails in a cascaded quantum system, despite the
reduced symmetry of the light-matter coupling. The scaling
of the peak power of the burst with the number of atoms is
observed to be faster than in the Dicke case, which we
could explain in an intuitive way. Lastly, we presented a
direct measurement of the coherence of the burst and its
dependence on the initially prepared atomic state, exper-
imentally demonstrating a textbook prediction. Notably,
this allowed us to show that the superradiant burst is
predominantly emitted into a single temporal mode,
thereby demonstrating an important prerequisite for
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generating multiphoton Fock states with high fidelity,
which may, e.g., turn out useful in quantum metrology
[47,58]. In addition, it has been proposed that even more
complex, entangled states can be generated by mapping
an atomic state to a photonic state using the collective
response of waveguide-coupled atoms [59,60]. Finally,
all data shown in this work are in quantitative agreement
with a model prediction, which is made possible by the
fact that we deal with a cascaded quantum system,
resulting in a drastic reduction of the computational
complexity compared to the exponential scaling of the
many-body master equation.
Future research directions include the experimental

investigation of the second-order coherence of the
burst [61]. It would also be interesting to study the long-
term dynamics of the decay. Here, subradiant features
related to a high degree of correlations between the atomic
dipoles are expected. For continuous driving, a superradiant
phase transition has recently been observed with an atomic
ensemble emitting into free space [62]. When chirally
coupled atoms are driven continuously, steady-state
many-body entanglement between the emitters is pre-
dicted to occur [26,63]. The search for and experimental
investigation of robust entanglement signatures in systems
like ours therefore constitute another promising research
avenue. Finally, placing the atoms in a nanofiber-
integrated optical resonator would yield a versatile test
bed for studying the physical mechanism underlying a
superradiant laser [13,64].
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APPENDIX

1. Loading of the nanofiber-based atom trap

We load cesium atoms into a magneto-optical trap
(MOT) and perform optical molasses cooling to transfer
the atoms into the nanofiber-based trapping potential,
which features two diametral arrays of trapping sites [31].
The trapping potential is created by a running-wave blue-
detuned nanofiber-guided field (wavelength 760 nm, power
20.5 mW) and a standing-wave red-detuned field (wave-
length 1064 nm, total power 2.4 mW). The loading is
probabilistic and, due to the collisional blockade effect,
each potential minimum is occupied by at most one

atom [32]. Then we apply a homogeneous magnetic offset
field of about 0.5 G along þz (see Fig. 1 in the main text)
and further cool the atoms on one side of the nanofiber by
degenerate Raman cooling using nanofiber-guided light
that is near resonant with the j6S1=2; F ¼ 4i → j6P3=2;
F ¼ 5i D2 transition [34]. At the same time, the atoms on
the other side of the nanofiber are subject to degenerate
Raman heating and are expelled from the trap, such that we
are left with a one-dimensional array of atoms on only one
side of the nanofiber. After these preparation steps, we
switch off both the MOT and DRC laser fields such that
during the subsequent measurements there is no resonant
light present at a wavelength of 852 nm, except for the
excitation laser. As described in the main text, we then use
an additional free-space laser resonant with the D1 tran-
sition at a wavelength of 894 nm in order to continuously
cool the trapped atoms by DRC. The number of trapped
atoms N can be tuned by changing the MOT loading time,
which ranges from 80 ms to 7 s in our experiment.

2. Detection setup

Figure 5 schematically depicts the detection setup that
we use to measure the power of the light exiting the
waveguide in the forward direction. We first spectrally filter
the signal field at a wavelength of 852 nm by suppressing
the trapping light fields and other background light using a
volume Bragg grating. The light is first split by a 50∶50
beam splitter and then further separated by a 10∶90 ðR∶TÞ
beam splitter. To further suppress the background, each
beam then passes a bandpass filter that is centered around
852 nm. We detect the light at the different output ports of
the beam splitters using two fiber-coupled single photon

FIG. 5. Schematic of the detection setup. The signal field is
spectrally filtered around a wavelength of 852 nm using a volume
Bragg grating (VBG) and a bandpass filter (BP) in front of each
fiber-coupled detector. The yellow and green lines depict single-
mode and multimode fibers, respectively. We measure the power
of the signal field using two single photon counting modules
(SPCM) and a hybrid photodetector (HPD). The light incident on
the HPD can be overlapped with a local oscillator using a fiber-
integrated 50∶50 beam splitter (FI 50∶50). The frequency of the
local oscillator field is shifted by 230 MHz with respect to the
excitation laser field.
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counting modules (SPCM 1 and SPCM 2) and a fiber-
coupled hybrid photodetector (HPD). We use SPCM 1 to
measure the probe transmission spectrum, from which we
infer the optical depth of the atomic ensemble and the
number of trapped atoms. For the experiments shown in
this paper, we expose the atomic ensemble to intense
optical pulses, which have a power that is several orders
of magnitude larger than the power emitted by the ensemble
during its decay. Since our SPCMs have a dead time of
about 25 ns, we have to substantially attenuate the power
incident on the SPCMs in order to detect the fluorescence
that follows the intense excitation pulse. In contrast, the
HPD features a much shorter dead time of only about 2 ns.
We can therefore saturate the HPD during the excitation
pulse and still detect the fluorescence signal. The signal of
the HPD is strongly saturated during the excitation pulse.
Therefore, we use the signal from SPCM 2 to extract the
fraction of absorbed energy that is emitted into the forward
direction by the atoms ηf. To ensure that the excitation
pulse does not saturate the signal from SPCM 2, we
attenuate the light incident on SPCM 2 using neutral
density filters (not shown).
For the measurements presented in Sec. VI, we super-

impose the signal incident on the HPD with a local
oscillator light field using a fiber-integrated 50∶50 beam
splitter. We derive the local oscillator field from the
excitation laser field and shift its frequency by 230 MHz.
While performing the heterodyne measurements, we also
record the bare signal field (without local oscillator) using
SPCM 2. We use the resulting time traces to normalize
the first-order coherence function that we extract from the
heterodyne signal; see below.

3. Extraction of the first-order coherence function
from the heterodyne signal

The first- and second-order correlation functions of a
light field âðtÞ with power PðtÞ ¼ hâ†ðtÞâðtÞi are defined
as [44]

Gð1Þðt; τÞ ¼ hâ†ðtÞâðtþ τÞi;

gð1Þðt; τÞ ¼ Gð1Þðt; τÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞPðtþ τÞp ;

Gð2Þðt; τÞ ¼ hâ†ðtÞâ†ðtþ τÞâðtþ τÞâðtÞi;

gð2Þðt; τÞ ¼ Gð2Þðt; τÞ
PðtÞPðtþ τÞ : ðA1Þ

Here, gð1Þ and gð2Þ denote the normalized first-order and
second-order correlation functions, respectively. Note that
for a nonstationary case, such as the one we analyze, these
correlators explicitly depend on two time instances, t and
tþ τ. Let us assume a light field âðtÞ with power PðtÞ that
describes the nanofiber-guided mode and superpose a
classical, continuous-wave local oscillator field aLO with

power PLO, with a random relative phase θLO and relative
frequency ωLO:

aLOðtÞ ¼
ffiffiffiffiffiffiffiffi
PLO

p
eiðωLOtþθLOÞ: ðA2Þ

The field incident on the detector and its power are then
given by

âDðtÞ ¼
ffiffiffiffiffiffiffiffi
PLO

p
eiðωLOtþθLOÞ þ âðtÞ; ðA3Þ

PDðtÞ ¼ PLO þ PðtÞ: ðA4Þ

In our experiment, we measure the normalized second-
order correlation function of this heterodyne signal. We
average over the relative phase between the local oscillator
and the signal field θLO, since the latter is not stabilized and
drifts randomly on the timescale of the repetition period of
our measurements. Because of these random drifts, there is
no interference term in Eq. (A4) since it averages to zero.
Using the definitions in Eq. (A1), we obtain the normalized
second-order autocorrelation function of the heterodyne
signal:

gð2ÞD ðt; τÞ ¼ 1þ 2PLO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞPðtþ τÞp

PDðtÞPDðtþ τÞ Refe−iωLOτgð1Þðt; τÞg

þ PðtÞPðtþ τÞ
PDðtÞPDðtþ τÞ ½g

ð2Þðt; τÞ − 1�: ðA5Þ

Since, for the experimental parameters in our experiment,
PLO ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞPðtþ τÞp

, we neglect the last term that
includes the contribution of gð2Þðt; τÞ such that we are left
with

gð2ÞD ðt; τÞ ¼ 1þ Vmaxðt; τÞRefe−iωLOτgð1Þðt; τÞg: ðA6Þ

Here, we have introduced the maximum visibility:

Vmaxðt; τÞ ¼
2PLO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞPðtþ τÞp

PDðtÞPDðtþ τÞ : ðA7Þ

The second-order correlation function of our heterodyne
signal is thus given by the first-order correlation function of

the signal field âðtÞ, oscillating at ωLO. We extract gð2ÞD ðt; τÞ
and then Vmaxðt; τÞ from our measurements and infer the
following quantity from our data:

Refe−iωLOτgð1Þðt; τÞg ¼ gð2ÞD ðt; τÞ − 1

Vmaxðt; τÞ
; ðA8Þ

which we show in Fig. 4 of the main text. Note that in this
work we drive the atomic ensemble on resonance such that
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gð1Þ is real valued. As discussed in the main text, it can be
both negative (for excitation pulse areas below π) and
positive (for excitation pulse areas above π). Because of an
imperfect overlap between the polarizations of the signal
field and the local oscillator field, the maximal visibility
in the experiment is further reduced. We experimentally
checked that the oscillations shown in Fig. 4 of the main
text indeed reach maximal contrast if a polarization filter is
placed in front of the detector.

4. First-order coherence of independently
decaying atoms

Consider a single two-level system with lowering oper-
ator σ̂ ¼ jgihej, which is excited at time t ¼ 0, and which
decays through spontaneous emission with rate γ. Using
standard techniques, we find the following time-dependent
correlators [65]:

hσ̂ðtÞi ¼ 0; ðA9aÞ

hσ̂†ðtÞσ̂ðtÞi ¼ e−γt; ðA9bÞ

hσ̂†ðtÞσ̂ðtþ τÞi ¼ e−γt−γτ=2: ðA9cÞ

Here, we consider a rotating frame at the transition
frequency of the atom. If we now consider the emitted
field â ¼ rσ̂ with some coupling constant r, we find the
normalized, first-order correlation function of âðtÞ as

gð1Þðt; τÞ ¼ hσ̂†ðtÞσ̂ðtþ τÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ̂†σ̂iðtÞhσ̂†σ̂iðtþ τÞ

p ¼ 1: ðA10Þ

The field emitted by a single, excited atom is thus first-
order coherent; i.e., it is emitted into a single temporal
mode [46].
Next, we consider N atoms which are all prepared in the

excited state. Let us assume that the scattered light of the
atoms couples to a single optical mode â, which is given by

âðtÞ ¼
XN
n¼1

rnσ̂nðtÞ: ðA11Þ

Here, rn are the individual coupling constants of the
atoms to that mode, and σ̂n is the lowering operator of
the nth atom. We assume independent dynamics of the
atoms; that is, the emitted field of any atom cannot
influence the dynamics of any other atom. Because of
the independence, we have for m ≠ n: hσ̂†mðtÞσ̂nðtþ τÞi ¼
hσ̂†mðtÞihσ̂nðtþ τÞi ¼ 0. With this, we find the first-order
coherence function of âðtÞ as

hâ†ðtÞâðtþ τÞi ¼
XN
n¼1

jrnj2hσ̂†nðtÞσ̂nðtþ τÞi: ðA12Þ

Since all atoms are excited at the same time, the
correlators hσ̂†nðtÞσ̂nðtþ τÞi are identical to Eq. (A9c)
and independent of n. From this, it follows directly that
also in the case of many independent atoms, gð1Þðt; τÞ ¼ 1.

5. Inhomogeneous broadening
of the coupling strength βf

Since the atoms couple to the evanescent field of the
nanofiber-guided mode, the coupling strength of each
individual atom depends on its radial distance from the
nanofiber surface. Because of the thermal motion of the
atoms in the traps, this radial distance and, consequently,
the atom-waveguide coupling strength βf vary. Moreover,
the scattering of photons from the 400 excitation pulses
sent per experimental sequence leads to a small temperature
increase of the atoms during the measurements. While the
coupling strength of each trapped atom changes between
consecutive excitation pulses, we expect it to be approx-
imately constant during one cycle of excitation and
collective decay. This is due to the latter dynamics being
about a thousand times faster than the center-of-mass
motion of atoms in the nanofiber-based trap. In order to
model the inhomogeneous coupling strength in our numeri-
cal simulation, we assume a Gaussian probability distri-
bution of βf values pðβfÞ. We ensure that βf takes only
physically meaningful values by truncating the distribution
below βf ¼ 0 and above βf ¼ 1. The distribution is shown
in Fig. 6.
In order to model the experimental results, we draw a

random value of βf for each atom from this probability
distribution and then compute the propagation of the light
field through the ensemble of atoms using our cascaded
interaction model. We repeat this process 100 times and
average the resulting model predictions. We then fit the
predictions to the experimental data shown in Fig. 3 of the
main text by varying the mean of the truncated distribution

FIG. 6. Probability distribution used to model the temperature-
induced variation of the atom-waveguide coupling strength βf.
The mean value, hβfi ¼ 0.011, and the standard deviation,
σβf ¼ 0.0067, of the truncated Gaussian distribution obtained
from fitting the experimental data are shown as the blue vertical
line and the black double arrow, respectively.
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hβfi and its standard deviation σβf , yielding optimal
parameters hβfi ¼ 0.011 and σβf ¼ 0.0067, respectively.
These values are almost identical to those reported
in Ref. [38].

6. Imperfect state preparation

Ideally, we want to initialize each atom in the same
coherent superposition of ground and excited state:

jψiideal ¼ cos

�
A
2

�
jgi − i sin

�
A
2

�
jei: ðA13Þ

The pulse area A is the product of the Rabi frequency Ω
and the pulse duration Tpulse, i.e., A ¼ ΩTpulse. For an atom
coupled with strength βf to the nanofiber-guided mode,
we find

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4βfΓPpulse

ℏω

r
Tpulse ðA14Þ

¼ C
ffiffiffiffiffi
βf

q
; ðA15Þ

where Ppulse is the power of the excitation pulse, ℏω is the
photon energy, and C is a shorthand notation used in the
following. Two effects reduce the fidelity of preparing
the state of Eq. (A13) for pulsed excitation. First, sponta-
neous decay during the excitation is only negligible for
pulse durations Tpulse ≪ 1=Γ. Second, for a distribution
pðβfÞ of coupling strengths to the optical mode, the pulse
duration and optical power can only be optimized for one
specific value of βf, resulting in imperfect state preparation
if the atom has another coupling strength.
When dealing with many atoms, the decrease of the pulse

power along the nanofiber-trapped atomic ensemble needs to
be considered in addition, since each atom absorbs light from
the excitation pulse. In this section, we study how these
effects influence our experimental results. Note that the
effect of absorption could be eliminated by exciting the
ensemble with a suitably chosen free-space laser beam [66].

a. Average excitation of one atom

Regarding the effects arising from the inhomogeneous
distribution of coupling strengths βf in our experiment, we
first consider one atom, which is excited by consecutive
laser pulses, each time with a different value of βf drawn
from the distribution pðβfÞ. We consider the mean pulse
area Ā, which serves as a characteristic parameter in several
of our measurements. We also discuss how quantities such
as the mean excitation probability depend on the exper-
imental parameters. In order to keep the notation concise
throughout the paper, we omit to explicitly indicate the
averaging for quantities such as the atomic excitation
probability or the dipole moment.

We can calculate the mean pulse area Ā by averaging
Eq. (A15) over the distribution pðβfÞ:

Ā ¼ C
Z

1

0

ffiffiffiffiffi
βf

q
pðβfÞdβf: ðA16Þ

For a given value of βf, the pulse area AðβfÞ can now be
expressed as

AðβfÞ ¼ Ā

ffiffiffiffiffi
βf

p
h ffiffiffiffiffi

βf
p i ; ðA17Þ

where h ffiffiffiffiffi
βf

p i is the mean value of
ffiffiffiffiffi
βf

p
. Equation (A17)

enters in our theory predictions for the burst dynamics in
the presence of inhomogeneous broadening, and Ā is used
as characteristic parameter, e.g., in Figs. 3 and 4.
In Fig. 7(a), we show the mean excited state probability

pexc as a function of Ā in the presence of inhomogeneous
coupling strength (solid red line). For comparison, if all
atoms have the same coupling strength, this probability is
simply given by pexc ¼ sinðĀ=2Þ2 (dashed blue line). For
small mean pulse areas Ā, the excitation probability is
nearly the same with and without inhomogeneous broad-
ening. However, deviations become apparent at larger Ā.
For example, in the presence of broadening, the maximum
of pexc occurs already at Ā ≈ 0.9π instead of at π.
Moreover, the value of pexc reaches, at most, about 0.8
in the presence of broadening.
In Fig. 7(b), we show the predictions for the imaginary

part of the mean dipole moment d upon excitation, taking
into account the averaging over the pðβfÞ distribution.

FIG. 7. Calculated excited state probability pexc (a) and
imaginary part of the dipole moment ImðdÞ (b) of a single atom
when exposed to an infinitely short excitation pulse with varying
mean pulse area Ā. The blue dashed lines show the prediction for
a fixed coupling strength βf . The red solid lines take into account
the distribution of βf values. In (b) we also show an effective
dipole moment d̄eff weighted by the factor

ffiffiffiffiffi
βf

p
=h ffiffiffiffiffi

βf
p i. This

effective dipole moment determines the optical field that the atom
emits into the nanofiber-guided mode.
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Here, we calculate the dipole moment in units of the
transition dipole moment, such that d ¼ 2hσ̂i. Similar to
the case for pexc, the deviation between the predictions for d
with (solid red line) and without (blue dashed line)
inhomogeneous distribution of βf grows as Ā increases.
Since we perform resonant excitation, the real part of the

dipole moment vanishes. For a constant βf, we simply have
d ¼ −i sinðAÞ, and the zero crossing of ImðdÞ coincides
with the point of maximal inversion at A ¼ π, cf. vertical
solid blue lines in Figs. 7(a) and 7(b). For a distribution of
βf values, the mean dipole moment is given by

d ¼ −ihsin ½AðβfÞ�i: ðA18Þ

In this case, zero mean dipole moment occurs at a slightly
larger value of Ā than the one at which pexc is maximized.
The relevant quantity for our burst experiments, however, is
the field that an atom radiates into the waveguide, which is
proportional to

ffiffiffiffiffi
βf

p
d. We thus define an effective mean

dipole moment deff for which dipoles are weighted by
ffiffiffiffiffi
βf

p
in the averaging process,

deff ¼ −i
� ffiffiffiffiffi

βf
p
h ffiffiffiffiffi

βf
p i sin½AðβfÞ�

�
; ðA19Þ

see orange dash-dotted line in Fig. 7(b). The zero crossing
of ImðdeffÞ coincides with the point of maximal inversion
(red vertical line). Thus, when Ā is chosen so that pexc is
maximized, the field emitted by the atom features a
vanishing expectation value; i.e., its phase is undefined.

b. Cascaded excitation of an atomic ensemble

Since we excite the atomic ensemble through the nano-
fiber-guided mode in our experiment, each atom absorbs a
part of the energy of the excitation pulse. Consequently, the
pulse area seen by each atomdecreases along the ensemble. In
general, the problem is even more complicated because the
pulse area present at each atom along the ensemble depends
on the dynamics and the radiated light of all upstream atoms,
as captured in the mixed coherent state model.
A simple way to parametrize the dynamics of the pulsed

excitation of many atoms along the fiber is to specify the
mean pulse area seen by the first atom in the row Ā. In this
case, given the absorption of the excitation pulse along the
nanofiber-trapped ensemble, the ensemble-averaged exci-
tation probability is maximized for a value of Ā larger than
that required for a single atom. In Fig. 8, we show the pulse
area Āmax that maximally inverts an ensemble of N atoms.
We show the simulation results for a fixed βf as a blue
dashed line and the results of the simulation taking into
account a distribution of βf values as a red solid line. Both
these data show a linear increase, with a similar slope. Note
that even for homogeneous coupling, a single atom is

maximally inverted for Āmax ≈ 1.02π because here we also
take into account the finite pulse duration of 4 ns as used in
the experiment.
Interestingly, in the presence of inhomogeneous cou-

pling, for N ≃ 1000, Āmax ≈ π. This can be understood by
considering the following. First, a single atom is on average
maximally excited for a pulse area clearly smaller than π
given an inhomogeneous distribution of coupling strengths,
cf. Fig. 7. Second, the pulse area seen by each atom
decreases along the ensemble due to absorption of the
excitation pulse, such that one needs a larger pulse area to
maximally excite an ensemble of atoms than a single
atom. Since both effects are of a similar magnitude but
feature opposite sign, the pulse area required to invert the
about 1000 atoms in our experiment turns out to be very
close to π.

FIG. 8. Mean pulse area Āmax seen by the first atom ensuring
that an ensemble of in total N atoms along the nanofiber is
maximally inverted. We show the simulation results for fixed βf
(blue dashed line) and the results for a distribution of βf values
(red solid line). For the latter, we average over 500 randomly
drawn βf configurations and simulate a 4-ns-long excitation
pulse. Because of absorption of the excitation pulse along the
ensemble, the pulse area Āmax needed for maximal inversion
increases for larger ensembles.

FIG. 9. Mean excited state probability (a) and imaginary part
of the effective dipole moment (b) of the kth atom where we
choose the pulse area Ā ¼ Āmax such that the atomic ensemble is
maximally excited. We compute the density matrix of each atom
after a 4-ns-long excitation pulse. We show the simulation results
for a fixed βf (blue dashed line) and for a distribution of βf values
(red solid line). For the latter, we average over 500 randomly
drawn βf configurations.
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In Fig. 9(a), we show the mean excited state probability
of the kth atom where we choose the pulse area Ā ¼ Āmax
such that an ensemble of 1000 atoms is maximally excited.
Both for fixed βf (blue dashed line) and for a distribution
of βf values (red solid line), the excitation probability is
relatively uniform across the ensemble. In Fig. 9(b), we
show the imaginary part of the effective dipole moment of
the kth atom. In first approximation, we observe a linear
decrease of ImðdeffÞ along the ensemble with a zero
crossing occurring in the center. This dependence is
expected since the first atoms are excited with a pulse
area slightly larger than π, while the last atoms are excited
with a pulse area slightly smaller than π.

c. Influence on the collective dynamics

In order to study the influence of these imperfections
on the collective dynamics, we compare different model
predictions for the dynamics of the power emitted into the

forward direction Pf as a function of pulse area Ā.
Figure 10 shows the model predictions for 1000 atoms
for three different assumptions. In Fig. 10(a), we include
the temperature-induced fluctuations of the coupling
strengths, the finite excitation pulse duration of 4 ns,
and the absorption of the pulse during the propagation
through the ensemble. This is the model prediction which
we also show in the main text. In Fig. 10(b), we assume the
same as in Fig. 10(a) except that all atoms now have the
same coupling strength. Qualitatively, the dynamics is still
similar to the one displayed in Fig. 10(a). However, the
asymmetry with respect to the point of maximal excitation
is more pronounced in Fig. 10(b), and the maximal delay is
larger. The asymmetry of the time traces with respect to
maximal excitation is due to a combination of the pulse
absorption along the ensemble and the fact that we work
with a cascaded system. There, the first atom will always
emit independently, while the last atom is driven by the
light emitted by the entire ensemble. For a pulse area Ā

FIG. 10. Comparison of different model predictions for the dynamics of the power emitted into the forward-propagating mode Pf as a
function of the pulse area seen by the first atom Ā. Each time trace is normalized by its peak value Pmax

f . In (a) we assume
inhomogeneous coupling strengths, absorption of the pulse during its propagation through the ensemble, and a 4-ns-long excitation
pulse. (b) Same as in (a), except now assuming the same coupling strength for all atoms; i.e., pðβfÞ is a Delta function. In (c) we assume
the same coupling strength for all atoms and perfect preparation of each atom in the initial state jψiideal.

FIG. 11. Model predictions for the scaling of different quantifiers of the superradiant burst with the number of atoms N. We assume a
homogeneous atom-waveguide coupling strength of βf ¼ 0.011 and perfect inversion at time t ¼ 0 ns. (a) We observe three regimes, in
which the predicted value of Pmax

f scales linearly (blue dashed line), superquadratically (orange dash-dotted line), and quadratically
(green dotted line) with N. (b) The predicted collective coupling efficiency ηf is constant and has a value of ≈βf for small values of N.
In the intermediate-N regime, ηf grows with N. For large N, ηf reaches a constant value.
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slightly larger than π, the last atom is prepared closer to full
inversion than the first atom, and, consequently, the super-
radiant burst is more pronounced than for a pulse area Ā
slightly smaller than π. In Fig. 10(c), we assume that all
atoms are initially prepared in jψiideal and that all atoms
feature the same coupling strength to the nanofiber-guided
mode. In this case, the emission dynamics is symmetric
with respect to Ā ¼ π.

7. Scaling in the large-N limit

We now investigate the scaling of the superradiant burst
for larger N and simulate the dynamics of up to 105 atoms.
To do so, we assume a homogeneous coupling strength of
βf ¼ 0.011 as well as perfect inversion at time t ¼ 0. In
Fig. 11(a), we plot the predicted peak power Pmax

f as a
function of N (black line). We observe three different
regimes of scaling. For small atom numbers, Pmax

f scales
linearly with N (blue dashed line). Above the threshold
atom number for the occurrence of a superradiant burst,
the scaling becomes faster than quadratic, which corre-
sponds to the observation in our experiment. For atom
numbers between 500 and 2000, we extract a power-law
exponent of 3.25 from the fit (orange dash-dotted line).
We numerically checked that the difference to the exper-
imentally observed exponent of 2.6(2) is mainly due to
the inhomogeneous spread of coupling strengths βf.
Eventually, the scaling becomes quadratic for even larger
N (green dotted line). This is expected in the limit of
large N, because we attribute the superquadratic scaling of
Pmax
f to an increase of the collective coupling efficiency

ηf, and ηf is bounded at 1. In Fig. 11(b), we plot ηf as a
function of N and indeed observe that ηf approaches a
constant value for large N. Based on our model prediction,
ηf ≈ 0.4 for N ≃ 105 atoms. However, we note that the
mixed coherent state model used for the simulations has
not been benchmarked with experimental data for such a
large number of atoms.
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