
Ferroically Ordered Magnetic Octupoles in d-Wave Altermagnets

Sayantika Bhowal and Nicola A. Spaldin
Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

(Received 18 January 2023; revised 11 September 2023; accepted 22 December 2023; published 15 February 2024)

We show that time-reversal symmetry-broken, centrosymmetric antiferromagnets with nonrelativistic
spin splitting of d-wave symmetry—the so-called d-wave altermagnets—are conveniently described in
terms of the ferroic ordering of magnetic octupoles. The magnetic octupoles are the lowest-order ferroically
ordered magnetic quantity in this case and so are the natural order parameter for the transition into the
magnetically ordered state. They provide a unified description of the broken time-reversal symmetry and
the nonrelativistic spin splitting, as well as a platform for manipulating the latter, and account for other
phenomena, such as piezomagnetism, characteristic of this class of antiferromagnets. Unusually for
antiferromagnets, we show that the magnetic octupoles cause a nonzero magnetic Compton scattering,
providing a route for their direct experimental detection. We illustrate these concepts using density-
functional and model calculations for the prototypical nonrelativistic spin-split antiferromagnet, rutile-
structure manganese difluoride MnF2.
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I. INTRODUCTION

The behavior that we now know as antiferromagnetism
was first noticed around 100 years ago, when peaks in both
specific heat and magnetic susceptibility were observed
in materials such as MnO that have zero net magnetic
moment [1,2]. Soon after, Néel proposed a model in which
local magnetic dipole moments of equal magnitude on two
sublattices order in an antiparallel fashion [3]. While the
predictions of the Néel model were consistent with the
observations [4], another ten years elapsed before neutron
diffraction provided the first direct evidence of antiferro-
magnetic ordering of magnetic dipoles [5].
Usually, the order parameter L⃗ of an antiferromagnet

(AFM) is defined in terms of the difference between the
local magnetic dipole moments M⃗1 and M⃗2 on the two
sublattices: L⃗ ¼ M⃗1 − M⃗2. Such a definition is concep-
tually intuitive but lacks the convenience provided by
ferroic order parameters such as the magnetization M⃗ in
ferromagnets or the electric polarization P⃗ in ferroelectrics.
For example, the Néel vector does not provide information
about the conjugate field required to select for a particular
antiferromagnetic domain and fails to distinguish between
antiferromagnets that do or do not break time-reversal

symmetry. The magnetic dipoles, however, are just one of
the terms in a multipole expansion of the energy of a
general magnetization density in a magnetic field. They are
generally the lowest-order local multipole on an atomic
site, which makes them appealing for classifying magnetic
order, but there is no fundamental reason why they should
necessarily be the best choice. In particular, when the
magnetic dipoles order antiferromagnetically, higher-order
multipoles that order ferroically might be more suitable [6].
Indeed, such a higher-order-multipole description is now

established in the case of AFMs that break both time-
reversal (T ) and space-inversion (I) symmetries and which
are classified by the ferroic ordering of their local mag-
netoelectric multipoles [7–9]. The magnetoelectric multi-
poles make up the next-order term, beyond the magnetic
dipoles, in the multipole expansion of the magnetic
interaction energy [see Eq. (1)] and so depend linearly
on both position r and magnetization density μ. Note that
here (and throughout the manuscript) we refer to the global
T symmetry breaking, for which neither time reversal nor
time reversal plus translation is a symmetry operation. All
such T - and I-broken insulating AFMs with ferroically
ordered magnetoelectric multipoles, therefore, exhibit a
linear magnetoelectric response, in which an applied
electric field induces a magnetization linear in the field
strength and vice versa [10]. Their conjugate field is the
product of electric and magnetic fields, which is exploited
in so-called magnetoelectric annealing to select for a
particular antiferromagnetic domain in magnetoelectric
devices [11,12]. The ferroic ordering of magnetoelectric
multipoles also plays a crucial role in antiferromagnetic
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spintronics [13–15] and skyrmionics [16,17] and can give
rise to unconventional transport properties [18].
Recently, there has been renewed interest in a class of

magnets with zero net magnetization that break time-
reversal symmetry and exhibit a spin splitting of their energy
bands that is not of relativistic origin (in conventional
antiferromagnets, the bands are doubly spin degenerate).
The nonrelativistic spin splitting (NRSS) is found to be
substantial, in fact much larger than relativistic Rashba-like
spin splitting [19–21], in some antiferromagnetic materials
containing only light elements. An important recent devel-
opment was the articulation of guiding principles for
realizing such unconventional magnetism in materials
[22–30], in particular, the use of spin-group theory to
classify the pattern of the spin splitting as d-, g-, or i-wave
[28], so that associated unconventional properties of both
fundamental and technological importance [28,31], includ-
ing efficient spin-current generation [32–34], spin-splitting
torque [35,36], giant magnetoresistance [37], spontaneous
Hall effect [22,38–41], superconductivity [42], and chi-
ral magnons [43], could now be within reach. A new
name was even introduced—altermagnet—to describe this
class of magnets with zero net magnetization [31,44] [see
Figs. 1(a)–1(c)]. Note that these centrosymmetric magnets

with zero magnetization and NRSS cannot be described by
ferroic ordering of magnetoelectric multipoles, as this
existence requires broken inversion symmetry.
We, therefore, pose the question of whether these alter-

magnetic AFMs are characterized by the ferroic ordering of a
higher-order, parity-even magnetic multipole, analogous to
the ferroic ordering of the parity-odd magnetoelectric multi-
poles in the magnetoelectric AFMs. A hint of such an
ordering is already provided by the aspherical but centro-
symmetric magnetization density probed in neutron scatter-
ing measurements [45] for the candidate d-wave NRSS
material MnF2. Ferroically ordered magnetic multipoles
would provide a natural explanation of the observed time-
reversal symmetry breaking, in the same way that ferroic
ordering of magnetic dipole moments breaks time-reversal
symmetry in a ferromagnet, and would unify the various
unconventional physical effects that are universal to this class
of magnets. Furthermore, a description in terms of ferroic
magnetic multipoles would help with identifying routes to
controllingNRSS andmagnetic domain orientations, both of
which are crucial for possible device applications, thus
expanding the potential utility of altermagnetic AFMs [46].
Here, we show that these time-reversal symmetry-

broken, centrosymmetric AFMs with d-wave splitting,
known as d-wave altermagnets, are conveniently described
in terms of the ferroic ordering of magnetic octupoles. The
magnetic octupoles form the next term in the magnetic
multipole expansion after the magnetoelectric multipoles
and are the lowest-order ferroically ordered magnetic
quantity in this case. They are the natural order parameter
for the transition into the magnetically ordered state and
provide a convenient and unified description of the broken
T symmetry and the nonrelativistic spin splitting. They
also account for other phenomena displayed by this class of
antiferromagnets, such as the piezomagnetic effect [47,48]
and strong magnetic anisotropy [49], and allow us to
predict new behaviors such as an antipiezomagnetism.
Finally, we show that, unusually for an antiferromagnet,
magnetic octupoles lead to a nonzero magnetic Compton
scattering, providing a route for their direct experimental
detection.
We illustrate our ideas using rutile-structure manganese

difluoride MnF2. MnF2 has been widely explored as a
classic example of a two-sublattice AFM over the past
century [50–52] and was recently identified as a prototype
centrosymmetric AFM with NRSS [26]. Importantly, Mn
ions of opposite spin orientation have inequivalent fluorine
environments [Fig. 1(d)]. This results in identical, ferroi-
cally ordered O32− magnetic octupoles at each Mn site
[Fig. 1(e)], which cause the broken T symmetry in spite of
the AFM spin compensation.
The remainder of the manuscript is organized as follows.

We begin by briefly describing the crystal and magnetic
structures of MnF2 in Sec. II. This is followed by our
discussion of the ordered magnetic octupoles in Sec. III.

(a)

(d) (e)

(b) (c)

FIG. 1. NRSS antiferromagnets and ferrotype magnetic octu-
polar order. (a)–(c) show the spin splitting of the bands for
conventional ferromagnets (Zeeman splitting), antiferromagnets
(degenerate spin-polarized bands), and the recently discovered
magnets with NRSS in the absence of net magnetization. (d) and
(e) show the antiferrotype magnetic dipolar [arrows, (d)] order
and ferrotype magnetic O−

32 octupolar [colored anisotropic
octupolar magnetic distribution, (e)] order in MnF2, respectively.
The colored regions in (e) depict the angular distribution of the
magnetization density corresponding to the O32− octupole (see
the text for details), where the red and white colors represent the
regions of up and down spin polarization, respectively. As seen
from the figure, the red and white regions of opposite spin
polarization always appear in pairs, contributing thereby zero net
magnetic moment.
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In Sec. IV, we discuss the role of magnetic octupole in
NRSS, predict new behaviors resulting from the ferromag-
neto-octupolar order that await experimental verification,
and propose magnetic Compton scattering as a route to the
direct detection of magnetic octupoles. Finally, we sum-
marize our results and discuss promising future directions
in Sec. V.

II. CRYSTAL AND MAGNETIC STRUCTURE

MnF2 crystallizes in the centrosymmetric tetragonal rutile
structure with the space-group symmetry P42=mnm (D4h
point group) [26,53]. As depicted in Fig. 1(d), the unit cell
contains two formula units, with twoMn atoms at the corner
and the center of the unit cell, octahedrally coordinated by the
F atoms. Importantly, the F environment around theMn atom
at the center is rotated by 90° around the z axis with respect to
that at the cornerMn atom.As a result of this nonequivalent F
environment, the Mn sites, although equivalent, are not
related by a lattice translation. This has a crucial impact
on the symmetry of the AFM structure of MnF2 (magnetic
space group P402=mnm0) below the Néel temperature
(TN ¼ 67 K [54]), where the collinear Mn spins align
antiparallely along [001] [55] [see Fig. 1(d)]. Such a
magnetic configuration breaks the T symmetry despite the
vanishing magnetization, since time reversal plus translation
is not a symmetry of the antiferromagnetic configuration.

III. MAGNETIC OCTUPOLES IN MnF2

The broken T symmetry in the absence of any net
magnetization is indicative of the existence of magnetic
multipole of higher order than the magnetic dipole. Such
multipoles appear in the expansion of the interaction energy
Eint between a spatially varying magnetic field H⃗ðr⃗Þ and a
magnetization density μ⃗ðr⃗Þ [9,56]:

Eint ¼ −
Z

μ⃗ðr⃗Þ · H⃗ðr⃗Þd3r

¼ −
Z

μ⃗ðr⃗Þ · H⃗ð0Þd3r
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dipolar term

−
Z

riμjðr⃗Þ∂iHjð0Þd3r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
magnetoelectric multipolar term

−
Z

rirjμkðr⃗Þ∂i∂jHkð0Þd3r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
octupolar term

…: ð1Þ

In a compensated AFM, the net magnetization M⃗ ¼R
μ⃗ðr⃗Þd3r is absent, and so the conventional dipolar

Zeeman term, which is the first term in the above
expansion, does not contribute. Furthermore, the presence
of inversion symmetry in centrosymmetric antiferromag-
nets with NRSS forbids the existence of any ferrotype
magnetoelectric multipoleMij ¼

R
riμjðr⃗Þd3r, since these

break inversion symmetry, forming the second term in

Eq. (1). This makes the first symmetry-allowed ferrotype
magnetic multipole the inversion-symmetric rank-3 mag-
netic octupoleOijk ¼

R
rirjμkðr⃗Þd3r, which forms the third

term in the above expansion. While this simple symmetry
argument suggests that the magnetic octupole is the first
allowed net nonzero magnetic multipole in a centrosym-
metric AFM with NRSS, its existence can be confirmed
only through an explicit computational analysis of the
multipoles.
In the following, we take MnF2 as a representative

system for such unconventional AFMs with d-wave split-
ting and explicitly analyze the multipoles in the system.
In particular, we focus on the magnetic octupole and show
its possible manipulation via structural and magnetic
modifications.

A. Multipole analysis

In order to identify the relative arrangement of magnetic
octupoles between the Mn atoms, we compute the multi-
poles within an atomic sphere around each atom, known as
the atomic-site multipoles, in the bulk, periodic solid. For
this, we decompose the density matrix ρl1m1;l2m2

, computed
using density-functional theory (DFT) as implemented in
the ELK code (see the computational details in Appendix A),
into tensor moments centered at each atomic site [9,57].
These atomic-site multipoles offer a microscopic represen-
tation of the existence and ordering of multipoles at each
atomic site [58] and complement other approaches, such as
the local moment [59,60] and cluster multipoles approaches
[61–64]. The local moment approach describes the multi-
poles resulting from the asymmetric arrangement of local
magnetic dipole moments at each magnetic site within the
unit cell. On the other hand, in the cluster multipole
approach, the magnetic configuration, corresponding to
symmetry-adapted multipole moments, is initially defined
within a “virtual” atomic cluster of the target crystal and
subsequently mapped onto the crystal while preserving the
magnetic point group of the multipole moments.
In the present work, for the computation of atomic-site

multipoles, since the desired parity-even multipoles (as the
structure has inversion symmetry) have contributions from
even l1 þ l2 terms, we evaluate both d − d and p − p
matrix element contributions. We consider both T -even
(charge) and -odd (magnetic) multipoles.
We now analyze the computed irreducible (IR) compo-

nents of the rank-3 magnetic octupole Oijk tensor in the
multipole expansion of Eq. (1). The details of these IR
components are discussed later in Sec. IV B and given in
Appendix B. We represent the elements of the totally
symmetric traceless part of the Oijk tensor by Olm, where
the indices l ¼ 3 with components m ¼ −3;−2;…; 2, 3
represent the spherical harmonics that are used to build
these tensors [65]. The only nonzeroOlm in MnF2 areO32−

and O30. Similarly, among the charge quadrupole moment
components Qlm, with l ¼ 2 and m ¼ −2;−1;…1, 2, the
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charge quadrupole moments Q22− and Q20 have nonzero
values in MnF2. The computed values of the magnetic
octupoles,O32− andO30, and charge quadrupoles,Q22− and
Q20, are shown in Figs. 2(a) and 2(c) as the relative strength
of the spin-orbit coupling (SOC) constant λr is varied. As
we can see from this variation, the magnetic octupoles are
nonzero even without the presence of the spin-orbit

coupling. This indicates that the magnetic octupole in
MnF2 is of nonrelativistic origin in contrast to the spin-
orbit coupled higher-order magnetic multipoles in heavy
fermion systems [57,66–68]. Consequently, in contrast to
the symmetry breaking in the spin-orbit coupled J states of
the f shell, the time-reversal symmetry breaking in this case
causes a pure spin splitting, as we discuss later in Sec. IVA.
It is also clear from Fig. 2(a) that the magnitudes of the
magnetic octupoles depend on λr, whereas the values of the
quadrupoles remain invariant, suggesting that the quadru-
poles have only structural origin while the magnetic
octupoles may have both structural and magnetic depend-
encies. The dependence of both magnetic octupoles on the
strength of the spin-orbit coupling is, however, very weak;
for example, the change in the value of the O32− octupole
(ΔO32−) due to the change in the relative strength of
the spin-orbit coupling Δλr, i.e., ΔO32−=Δλr, is only
0.08%. Also, a pure structural origin of quadrupoles is
not a general case for any systems with quadrupolar
distortion; e.g., the quadrupoles in the iso-space-group
compound Ba2MgReO6 (with a canted antiferromagnetic
spin configuration) are reported to have a strong spin
dependence [69].
The computed magnetic multipoles show the presence of

a ferrotype magnetic octupole O32− [Fig. 1(e)] with real-
space representation xymz (wheremz is the z component of
the magnetic moment) at the Mn sites, belonging to the
totally symmetric IR representation A1g of the D4h point
group symmetry (see the character table in Appendix C) of
the crystal structure. The existence of the magnetic octu-
pole is also consistent with the B−

1g active representation
(see Appendix C) of MnF2 and the symmetry analysis
described earlier.
The magnetic octupoles O30 with real-space representa-

tion ð3z2 − r2Þmz also have a nonzero value at the Mn sites;
however, they have antiparallel alignment between the Mn
sites, resulting in an absence of net O30 octupole moment.
Among the other IR components of theOijk tensor, we also

found nonzero magnetic octupole components QðτÞ
x2−y2 and

tðτÞz with ferro- and antiferrotype alignments, respectively.
These are also known as the magnetic toroidal quadrupole

moment (QðτÞ
ij ) and moment of the magnetic toroidal

multipole (tðτÞi ), respectively, and are parts of the non-
symmetric IR components of the full Oijk tensor (see
Appendix B). Thus, the full Oijk tensor in the magnetic
multipole expansion in Eq. (1) contains both magnetic and
magnetic toroidal multipoles, unlike the cluster multipolar
approach [61–64], which uses two separate expansions
for the magnetic and magnetic toroidal multipoles.

Consequently, the QðτÞ
ij and tðτÞi terms naturally appear in

the same order as the totally symmetric traceless compo-
nents Olm in the same magnetic multipole expansion. We
discuss the IR components of the octupole tensor later in
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FIG. 2. Variation of magnetic octupoles at the Mn atoms as the
relative strength of the spin-orbit coupling λr is varied for the
(a) crystal structure of MnF2 and (b) modified structure. The same
variation of the charge quadrupoles for the (c) crystal structure of
MnF2 and (d) modified structure. Here, λr ¼ λf=λ, with λf and λ
being the enforced value of the spin-orbit coupling constant in the
calculation and its actual value in the material, respectively. The
band-decomposed charge densities for the top valence band in
Fig. 4(a) of MnF2 in the a − b plane for the (e) crystal structure of
MnF2 and (f) modified structure. (g) and (h) are the same,
showing the band-decomposed magnetization densities. The up
and down arrows in (g) and (h) indicate the up and down spin
magnetic dipole moment, respectively, with the polarization axis
along ẑ. The opposite MnF6 octahedral rotations are indicated in
black arrows.
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detail in Sec. IV B. In addition to these magnetic octupoles,
the crystal structure of MnF2 also hosts charge quadru-
poles, Q20 with ð3z2 − r2Þ distortion and Q22− , represent-
ing the xy-structural distortion, which have ferro- and
antiferrotype alignments, respectively.
For a physical understanding and better visualization, we

further compute the band-decomposed charge and spin
densities for the top valence band (which also undergoes
NRSS) in the electronic structure ofMnF2, shown inFig. 4(a),
and the results are shown in Figs. 2(e) and 2(g). As apparent
from the figure, the charge density around the Mn atoms is
highly anisotropic in the x–y plane, a signature of the existing
Q22− quadrupole. Interestingly, the spin density around the
Mn atoms, shown in Fig. 2(g), follows the anisotropic charge
density, indicating a correlation between the spin anisotropy
(quantified by the magnetic octupoles) and the charge
anisotropy (quantified by the charge quadrupoles). This
further justifies the weak dependence of the octupoles on λr.
Furthermore, to examine the effect of the HubbardU, we

compute the magnetic octupoles O32− and O30 and the
charge quadrupoles Q22− and Q20 for a range of values of
the U parameter. The results of our calculations are
depicted in Figs. 3(a) and 3(b). As seen from these plots,

the magnitudes of both magnetic octupole and the charge
quadrupole moments decrease with an increase in U. The
similar variation of the quadrupole and the octupole
moments further confirms the dependencies of magnetic
octupole on the structural distortion, quantified by the
charge quadrupole moment. We note that, although with an
increase in U the spin dipole moment increases in magni-
tude [see the inset in Fig. 3(a)] as expected, the magnetic
octupole moments decrease in magnitude, confirming that
the atomic-site magnetic octupole moment is not biased by
the magnetic dipole moment.

B. Magnetic octupolar domains: Correlation
to structure and spin

We now show how the coupling between magnetic
octupoles and charge quadrupoles determines the magnetic
octupolar domains. Since the magnetic octupoles are linked
to the NRSS, as we show in the next section, the under-
standing of the magnetic octupolar domain is also useful in
manipulating the NRSS.
We begin by changing the fluorine environment around

the Mn atoms, without affecting the spin arrangements at
the Mn sites. Specifically, we change the coordinates of the
F ions from 4f∶ðx; x; 0Þ → 4g∶ðx;−x; 0Þ, which alters
the F-Wyckoff site symmetry from 4f to 4g, while keeping
the space-group symmetry unchanged. We note that struc-
turally (without considering the magnetism), the new
structure is equivalent to the original crystal structure of
MnF2 [shown in Fig. 1(c)], with a shifted origin at (0.5, 0.5,
0.5), so that the central and corner Mn atoms are exchanged
in the new structure. This results in a 90° alternation of
MnF6 octahedral rotation and, hence, their distortion in the
x–y plane [see Figs. 2(e)–2(h)]. Correspondingly, this leads
to a reversal of sign in the computed antiferrotype Q22−

quadrupole for the modified structure, as depicted in
Fig. 2(d). This is also evident from the changes in the
anisotropic charge density distribution around the Mn
atoms in the modified structure as shown in Fig. 2(f).
Note that the modified fluorine environment, however, does
not affect the distortion of the MnF6 octahedra along z
direction, and the sign of the ferrotype Q20 quadrupole,
therefore, remains unaltered [see Fig. 2(d)].
In order to see the impact of the charge quadrupoles on

the magnetic octupoles, we further analyze the magnetic
multipoles of this modified structure. Interestingly, our
computed octupoles show that the sign of theO32− octupole
reverses whereas that ofO30 remains as it is [see Fig. 2(b)],
showing the reversal of the magnetic octupolar domain.
Corresponding changes in the anisotropic magnetization
density around the Mn atoms are shown in Fig. 2(h). This
also emphasizes the correlation betweenO32− octupole and
Q22− quadrupole—and O30 octupole and Q20 quadrupole.
Note that the O32− and O30 octupoles remain ferro- and
antiferrotype, respectively. This suggests selecting the
magnetic octupolar domain by changing only the position

(a) (c)

(d)(b)

FIG. 3. Variation of (a) magnetic octupoles and (b) charge
quadrupoles for each Mn ion as a function of Hubbard U. The
inset shows the same variation for the spin magnetic dipole
moment for each Mn ion in μB. (c) Variation of the difference in
the magnetic octupole moment O32− , ΔO32− ¼ Oc

32− −Oa
32− , as

the difference in the charge quadrupole moment Q22− , ΔQ22− ¼
Qc

22− −Qa
22− , increases. Here, Q

c
22− and Oc

32− are the constrained
quadrupole moment and the resulting magnetic octupole mo-
ment, respectively, while Qa

22− and Oa
32− are the same for the

actual crystal structure without any constrained moment. (d) The
variation of the energy difference Δεs between the spin-split top
two valence bands shown in Fig. 4(a) along Γ → M as ΔO32−

increases. The arrow indicates the increasing absolute value of
ΔO32− from 0 to 2 as depicted in the inset. The inset shows the
variation of Δεs at the k point indicated by the vertical line in the
main plot for different values of ΔO32− .
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of the nonmagnetic F atoms, without affecting the magnetic
Mn atom’s position or its spin arrangements, emphasizing a
strong interplay between lattice and the magnetic configu-
ration, quantified by the magnetic octupole.
We note that the dependence of the surrounding non-

magnetic atoms on the magnetic anisotropy, as discussed
above, is consistent with the discussion in Ref. [22]. The
advantage of the present multipolar formalism, however, is
that it provides a quantification for the surrounding non-
magnetic environment. Such a quantification is particularly
desirable in understanding how to control the magnetic
anisotropy dictated by the magnetic octupoles. While the
dependence of the sign of the magnetic octupole O32− on
that of the charge quadrupole Q22− is apparent from our
previous analysis, for a systematic control of the magnetic
octupole, it is also important to confirm the dependence of
the strength of the magnetic octupole O32− on the charge
quadrupole Q22− .
For this purpose, we constrain the value of the charge

quadrupole moment Q22− in our calculation, keeping the
crystal structure and the magnetic configuration unaltered
(see Appendix A for the computational details). The results
of our calculation are shown in Fig. 3(c), where the resulting
change in the value of magnetic octupole momentΔO32− ¼
Oc

32− −Oa
32− with respect to its value Oa

32− in the actual
crystal structure is shown as a function of the excess
quadrupole moment ΔQ22− ¼ Qc

22− −Qa
22− . Here, Qc

22−

and Oc
32− are the constrained quadrupole moment and the

resultingmagnetic octupolemoment, respectively. Note that
the zero values inΔQ22− andΔO32− in Fig. 3(c) correspond
to the actual crystal structure (without any constrained
moment) with their ground state nonzero values Qa

22− and
Oa

32− of the charge quadrupole and magnetic octupole
moments, respectively. As visible fromFig. 3(c), an increase
in the magnitude of the charge quadrupole moment also
increases the magnitude of the magnetic octupole moment,
suggesting that not only the sign, but also the magnitude of
the magnetic octupole moment O32− can be systematically
controlled by manipulating the charge quadrupole moment
Q22− . This, in turn, also provides a way to manipulate the
nonrelativistic spin splitting, which we discuss later in
Sec. IVA.
We close this section by describing the manipulation of

the magnetic octupole by flipping the direction of all the
Mn spins while keeping the same antiferromagnetic
arrangement between the Mn atoms. Physically, it corre-
sponds to a different antiferromagnetic domain. The rever-
sal of the Mn spins results in a reversal of the sign of both
octupoles, in contrast to the previous case where only the
ferrotype O32− octupole reverses its sign. Note that in this
case charge quadrupoles remain the same, as they do not
depend on the spin arrangement.
It is interesting to point out that this manipulation of the

magnetic octupole has, in fact, important physical impli-
cations. For example, the two antiferromagnetic domains

with ferrotype octupoles of opposite sign can also be
visualized as two separate ferro-octupolar domains. Such
revisualization is particularly useful in describing important
physical properties that are characteristics of the magnetic
octupoles as well as understanding the conjugate fields for
creating such ferro-octupolar domains. Since the free
energy remains invariant under both space inversion and
time reversal, the conjugate field for the magnetic octupole,
which must have the same symmetry as the magnetic
octupole, should also be even under space inversion and
odd under time reversal. This suggests that the product of
the shear stress and the magnetic field is a valid choice
for the conjugate field of the magnetic octupole, which can,
therefore, be used to select a particular magnetic domain, as
we also discuss later in Sec. IV.

IV. IMPLICATIONS OF MAGNETIC OCTUPOLE

Next, we discuss the implications of the existence of the
magnetic octupole, including its role in the NRSS as well as
other unconventional physical properties that, in turn, can
be used for its possible direct measurements. This section is
ordered as follows: (A) the relevance to NRSS, (B) the
resulting piezo- and antipiezomagnetic effects, and (C) the
possible detection of magnetic octupoles using the mag-
netic Compton scattering effect. Once again, we take MnF2
as our example material for illustration. We show that the
existence of the ferrotype magnetic octupole O32− both
conveniently describes the NRSS and provides a way to
manipulate it. Then, we show that the ferromagneto
octupolar ordering is responsible for the well-known
piezomagnetic effect in MnF2. More interestingly, our
identification of the antiferrotype magnetic octupoles
allows us to predict a previously unknown antipiezomag-
netic effect. In addition to the underlying fundamental
physics and technological applications of these effects, we
also propose magnetic Compton scattering as an exper-
imental technique for the detection of the apparently hidden
magnetic octupoles. The corresponding measurement setup
as guidance for future experiments is also discussed.

A. Relevance to nonrelativistic spin splitting

We link the unconventional spin splitting of the energy
bands in the Brillouin zone (BZ) of the antiferromagnetic
MnF2 to the ferro-octupolar order using the reciprocal-
space representation of the ferrotype octupole. Since the
magnetic octupole can be manipulated by modifying the F-
environment or the spin arrangements, as discussed above,
we show that these changes can also be used to manipulate
the spin splitting of the bands.
Our calculated antiferromagnetic band structure of MnF2

in both the presence and absence of spin-orbit interaction is
depicted in Fig. 4(a). As we see from the band structure,
there is a significant energy splitting between the up and
down spin bands along the Γ → M direction in the BZ of
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MnF2. Interestingly, the splitting is present even without
the spin-orbit interaction, and inclusion of spin-orbit
interaction does not affect the energy splitting along that
direction, in agreement with the reported band structure in
Ref. [26]. The splitting is large compared to the typical
relativistic Rashba-type spin splitting and does not require
any broken inversion symmetry of the structure [70].
To understand this unconventional spin splitting in

MnF2, we analyze the reciprocal-space representation of
the ferrotype O32− octupole. The reciprocal space repre-
sentations of the multipoles have been used successfully to
describe the band asymmetries in the BZ of noncentro-
symmetric materials [13,71,72]. In contrast to the odd-
parity multipoles, for which the real and reciprocal-space
representations are rather counterintuitive, for the even-
parity multipoles, such as the O32− magnetic octupole, that
are relevant here, the analysis is much more straightfor-
ward. The reciprocal-space representation in this case can
simply be obtained by replacing r⃗ → k⃗ so that the recip-
rocal-space representation of O32− octupole (xymz in real
space) is kxkymz. This immediately explains the splitting
between up and down spin-polarized bands, with the spin
polarization along ẑ (i.e., with spin moment mz), along the
½110� direction in the momentum space, e.g., Γ → M and
A → Z directions in momentum space. Note that such
splitting will occur along any momentum direction with
nonzero kx and ky.

Interestingly, since the reciprocal-space representation is
an even function of k⃗, the resulting spin splitting should
also be symmetric, in contrast to the antisymmetric spin
splitting in the Rashba interaction. This indeed is the case,
e.g., in MnF2 with identical spin splitting along the [110]
and ½1̄ 1̄ 0� directions in momentum space. In addition, from
the representation kxkymz, we also expect the spin splitting
to reverse as the direction in the momentum space changes
from [110] to [11̄0] (d-wave spin splitting). Indeed, the
computed DFT band structure depicts such reversal of spin
splitting under C4 rotation of the momentum direction, as
shown in Fig. 4(b). The representation analysis, therefore,
confirms that the ferrotype ordering of theO32− octupoles is
responsible for the spin splitting of the energy bands,
analogous to the spin splitting of bands in a conventional
ferromagnet with ferrotype magnetic dipole.
Note that the atomic-site magnetic octupole, discussed

here, is distinct from the cluster and bond multipoles,
proposed by Hayami, Yanagi, and Kusunose [25,73] to
describe spin splitting in collinear antiferromagnets. The
magnetic octupole description has the advantage that it
naturally occurs in a magnetic multipole expansion, cor-
rectly captures the magnetic anisotropy at the atomic scale
without any bias toward particular combinations of the
magnetic dipole moments, and also describes the order
parameter for such unconventional antiferromagnetism, as
discussed above. The rank-3 magnetic octupole is also
distinct from the anisotropic magnetic dipole predicted in
Ref. [74], which is a rank-1 tensor.
To further verify the role of O32− octupole in generating

the spin splitting, we analyze the spin splitting of the bands
for the case of structural modification, discussed in the
previous section, for which the O32− octupole switches
sign. As expected, in this case, the spin splitting also
reverses [see Fig. 4(c)]. Similar reversal of the spin splitting
also occurs for the opposite magnetic dipolar domain (not
shown here), in which the magnetic O32− octupole also
switches sign.
To understand the dependence of the amount of spin

splitting as the magnitude of the magnetic octupole moment
O32− varies, we analyze the band structure for different
values of magnetic octupole momentO32− that we obtain by
tuning the value of the charge quadrupole moment Q22− ,
as discussed in the previous section and also depicted in
Fig. 3(c). The energy difference ΔEs between the topmost
spin-split valence bands in Fig. 4(a) along the Γ → M
direction is shown in Fig. 3(d) for these different values
of the magnetic octupole moments O32− . As evident from
this figure, the magnitude of ΔEs increases as the O32−

octupolemoment increases (indicated by the direction of the
arrow). The value of ΔEs at a specific k point, indicated by
the vertical line in Fig. 3(d), is explicitly shown in the
inset for the different values ofΔO32− , confirming the direct
dependence of the amount of spin splitting on the strength
of the magnetic octupole O32− . This further implies a
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FIG. 4. Spin splitting in MnF2. (a) Band structure of MnF2 in
both the absence and presence of spin-orbit interaction, depicting
the spin splitting along the M → Γ direction. The up and down
spin-polarized bands in the absence of spin-orbit coupling are
shown in solid blue and red lines, respectively, and the bands in
the presence of spin-orbit interaction are indicated in green dots.
(b) The corresponding band structure along the same high-
symmetry k path for the hypothetical modified structure (see
the text for details), showing the reversal of spin splitting along
M → Γ. (c) Band structure of MnF2 showing the reversal of spin
splitting as the momentum direction changes from [11̄0] to [110].
(d) A comparison of the DFT result and the tight-binding
analytical expression, Eq. (6), for the energy splitting between
the two top-most spin-polarized bands in (a).
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systematic control of the nonrelativistic spin splitting by
manipulating the magnetic octupole moment O32− . It is
important to point out that, in general, magnetic octupoles
can occur without causing NRSS, if they are induced by
spin-orbit interaction. In g- and i-wave altermagnets, for
example, only SOC-induced octupoles can be present and
the NRSS is related to higher-order multipoles as we discuss
later. However, their existence in a collinear AFM in the
absence of the spin-orbit interaction always leads to NRSS
in the momentum space.

1. Role of microscopic parameters in the spin splitting

Having shown that the ferrotype ordering of the mag-
netic octupoles generates the spin splitting in MnF2, to
determine the role of different microscopic parameters,
such as electronic hopping, exchange splitting, etc., on the
strength of the spin splitting, we next carry out a low-
energy tight-binding (TB) analysis. For this purpose, we
construct a minimal four-band TB model in the Bloch
function basis with the order of the basis set in the
sequence fMn1 − dxz;Mn1 − dyz;Mn2 − dxz;Mn2 − dyzg.
The Hamiltonian reads as follows:

Ht ¼ αðk⃗ÞI þ βðk⃗ÞΣz ⊗ σx þ γðk⃗ÞΣx ⊗ σ0

þ δðk⃗ÞΣx ⊗ σx: ð2Þ

Here, I is a 4 × 4 identity matrix, Σ⃗ and σ⃗ are the Pauli
matrices in the sublattice bases of Mn1 and Mn2 and in the
orbital bases of dxz and dyz, respectively, and σ0 is an
identity matrix in the orbital bases. The choice of the
orbitals is governed by the predominant orbital characters
of the top pair of valence bands along Γ → M in the BZ of
MnF2 (see Fig. 7 in Appendix D). The functions αðk⃗Þ, βðk⃗Þ,
γðk⃗Þ, and δðk⃗Þ are determined by the effective d − d
hopping parameters (ti, i ¼ 1, 4) and the on-site energies
(εi, i ¼ 1, 2) of the orbitals, and their explicit functional
forms are given below:

αðk⃗Þ ¼ ε1 þ 2t1 cosðkzcÞ;
βðk⃗Þ ¼ ε2 þ 2t2 cosðkzcÞ;

γðk⃗Þ ¼ 8t3 cos

�
kxa
2

�
cos

�
kya

2

�
cos

�
kzc
2

�
;

δðk⃗Þ ¼ −8t4 sin
�
kxa
2

�
sin

�
kya

2

�
cos

�
kzc
2

�
: ð3Þ

Here, a and c are the lattice constants of the tetragonal
structure. For simplicity, we consider electronic hoppings
only up to second nearest neighbor, and the realistic TB
parameters are extracted from the DFT band structure of
MnF2 using the Nth-order muffin-tin orbital (NMTO)
downfolding technique [75].

The diagonalization of the Hamiltonian in Eq. (2) gives
us the four energy eigenvalues:

E−
�ðk⃗Þ ¼ αðk⃗Þ − fβðk⃗Þ2 þ ½δðk⃗Þ � γðk⃗Þ�2g1=2

Eþ
�ðk⃗Þ ¼ αðk⃗Þ þ fβðk⃗Þ2 þ ½δðk⃗Þ � γðk⃗Þ�2g1=2: ð4Þ

Analysis of the corresponding eigenvectors shows that
there is an energy splitting ΔE ¼ E−þðk⃗Þ − E−

−ðk⃗Þ between
bands of dominant Mn1 and Mn2 sublattice contributions.
Note that such energy splitting between bands of different
sublattice characters is present prior to including the effect
of antiferromagnet exchange splitting J. We now show that
the inclusion of J translates the sublattice splitting of the
bands into the spin splitting of the bands.
To include the effect of the antiferromagnetic exchange,

we rewrite the Hamiltonian (2) in the basis of fMn1 −
dxz↑;Mn1 − dyz↑;Mn2 − dxz↑;Mn2 − dyz↑;Mn1 − dxz↓;
Mn1 − dyz↓;Mn2 − dxz↓;Mn2 − dyz↓g and add the
exchange term HAFM

ex ¼ JSz ⊗ ðΣz ⊗ σ0Þ to it. The full
Hamiltonian is given by

H ¼ S0 ⊗ Ht þ JSz ⊗ ðΣz ⊗ σ0Þ: ð5Þ

Here, S⃗ and S0 are the Pauli matrices and the identity
matrix in the spin basis, respectively. The exchange
splitting energy between up and down spin-polarized
bands, 2J ≈ 5 eV, is extracted from the computed spin-
polarized densities of states of MnF2.
By diagonalizing the Hamiltonian (5), we obtain the

energy eigenvalues and focus on the spin-polarized topmost
valence bands, with energies E↑ and E↓. We note that their
eigenvalues are identical to those of E−

� in Eq. (4), except

that βðk⃗Þ → J þ βðk⃗Þ. Physically, this means that the two
Mn sublattices, that primarily contribute to those bands,
have opposite spin polarization in the presence of anti-
ferromagnetism, and, therefore, they lead to the spin
splitting of the bands. The explicit analytical form of the
energy splitting is given by

ΔEs ¼ E↑ − E↓

¼ fðJþ βÞ2 þ ðδ− γÞ2g1=2 − fðβþ JÞ2 þ ðδþ γÞ2g1=2

≈
32

ϵ
t3t4 sinðkxaÞ sinðkyaÞ: ð6Þ

Here, in obtaining the last equality we use the fact that
ϵ ≫ ðδþ γÞ, where ϵ¼ Jþβ≈Jþ ε2þ2t2, using Eq. (3)
and ignoring terms that are second order in kz or higher.
Note that this approximation in ϵ becomes exact in the
kz ¼ 0 plane, which contains the desired Γ → M momen-
tum direction of spin splitting. For a realistic set of
parameters (listed in Appendix E), we compare the ana-
lytical result in Eq. (6) to the DFT computed energy
splitting of the spin-polarized bands. As depicted in
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Fig. 4(d), they agree reasonably with each other, suggesting
that our minimal model captures the essential physics of the
spin splitting in MnF2.
We pause here and analyze the obtained analytical

relation in Eq. (6) for the spin-splitting energy. First of
all, it is clear from Eq. (6) that ΔEsðk⃗Þ ¼ ΔEsð−k⃗Þ; i.e., it is
symmetric in k⃗ but changes sign under ðkx;kyÞ→ðkx;−kyÞ,
consistent with the computed DFT bands. Second, we see
that the splitting energy ΔEs depends directly on the
intersublattice hopping parameters t3 (intraorbital) and t4
(interorbital), in the absence of which ΔEs vanishes. This
emphasizes the crucial role of interaction between the two
sublattices, which, in combination with the antiferromag-
netic exchange, generates the spin splitting. Physically, this
indicates that a structure-spin correlation, a reminiscent of
the magnetic octupole as discussed before, is responsible
for the spin splitting. It is interesting to point out that the
intersublattice hopping t4 (as well as the product t3t4) in
MnF2 is a symmetric hopping, and it changes sign as the
direction of hopping changes from ½11z� to ½11̄z�with z ≠ 0
leading to symmetric spin splitting. This is analogous to the
antisymmetric hopping in a nonmagnetic broken-inversion
symmetric system that gives rise to Rashba-like antisym-
metric spin splitting of the energy bands [72].
Finally, the TB analysis also provides a microscopic

understanding of the reversal of spin splitting described
before. For the modified structure, the on-site energy ε2 and
the hopping t2 change sign, leading to a sign change in β.
While the sign change does not affect the energy eigen-
values E−

�ðk⃗Þ in Eq. (4) (since the dependence on β comes
in even power), it reverses the dominant sublattice con-
tributions in the corresponding eigenvectors (as also
evident from the full DFT band structure, depicted in
Appendix D), resulting in a reversal of sublattice splitting
of bands. Since the sublattice splitting later transforms into
the spin splitting, this consequently leads to the reversal of
the spin splitting. The reversal of spin splitting for the other
antiferromagnetic domain follows directly from the result-
ing sign change in the antiferromagnetic exchange J,
which, in turn, alters the spin polarization of the bands.
Overall, the TB analysis provides a crucial insight into

the roles of different microscopic parameters in generating
the unconventional spin splitting of the energy bands in
MnF2. The TB analysis further serves as a link between the
proposed “modern” ferro-octupolar order and the conven-
tional antiferromagnetic dipolar order.

B. Piezo- and antipiezomagnetic effects

The piezomagnetic effect describes changes in magneti-
zation due to an applied stress or changes in shape due to an
applied magnetic field. It is particularly promising for
applications, because it provides a means for manipulating
magnetism via strain engineering in antiferromagnets.
In addition, since it is a linear coupling in contrast to

the quadratic coupling in the commonly used magneto-
striction, it also allows for magnetization switching. The
recent demonstration that the dynamically excited optical
phonons can induce the symmetry-breaking lattice distor-
tions required in the piezomagnetic effect [76–78] has
revived interest. Such optically induced strain would over-
come the limitation of a large mechanical strain and lead to
practical applications in memory and spintronic devices.
The piezomagnetic effect has been predicted and exper-

imentally shown for some AFMs with NRSS [47,48,76].
In this section, we show that the piezomagnetic effect is
the result of ferroic ordering of magnetic octupoles and
illustrate our ideas for the specific example of MnF2. In
addition, we predict an antipiezomagnetic effect in MnF2
resulting from the antiferrotype O30 magnetic octupole.

1. General symmetry description

We begin by correlating the symmetries of the magnetic
octupole and the piezomagnetic response. We note that
both are rank-3 tensors and have the same symmetry,
breaking time-reversal symmetry while keeping inversion
symmetry intact. To correlate the elements of the piezo-
magnetic response to the magnetic octupole, we analyze the
nonzero elements in the magnetic octupole tensor Oijk ¼R
μirjrkd3r following the tensor decomposition reported in

Ref. [65]. Note that, in general, i, j, and k are the dummy
indices, and to be consistent with the indices of the
piezomagnetic response tensor Λijk, here, we associate
the index i to the magnetization and j and k to spatial
coordinates so that the octupoleOijk is symmetric under the
exchange of j and k indices by construction.
The octupole Oijk can be decomposed into a totally

symmetric tensor Sijk of dimension 10 and an eight-dimen-
sional nonsymmetric residue tensorRijk that account for the
18 independent elements ofOijk [65]. The totally symmetric
tensor Sijk can be further decomposed into a traceless totally
symmetric part S̃ijk and a trace part T ijk of dimensions 7
and 3, respectively, and the residue tensor Rijk into two

irreducible components R̃ð5Þ
ijk and R̃

ð3Þ
ijk of dimensions 5 and 3,

respectively, so thatOijk ¼ S̃ijk þ T ijk þ R̃ð5Þ
ijk þ R̃ð3Þ

ijk . The
explicit forms of each of these irreducible components are
given in Appendix B. Note that the seven independent
components of the totally symmetric traceless part S̃ijk

can be built from the spherical harmonics with l ¼ 3, and,
hence, these components are often exclusively referred to as
the magnetic octupole, in contrast to the entire Oijk tensor.
We now explicitly consider the case of MnF2, which is

known to exhibit a piezomagnetic effect [47,79–81] with
the nonzero elements of the piezomagnetic response tensor
Λijk, Λxyz ¼ Λyxz ≠ Λzxy so that

Mx ¼Λxyzσyz; My ¼Λyxzσxz; Mz¼Λzxyσxy; ð7Þ
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where M⃗ is the magnetization that results from the
application of shear stress σij. We show next that the
nonzero components of the piezomagnetic response of
MnF2 correlate to the ferrotype O32− octupole.
Analyzing the different elements of S̃ijk, we see that the

O32− octupole, which has a ferrotype ordering in MnF2,
appears only when i ¼ x, j ¼ y, and k ¼ z and for the
permutation of the indices. S̃ijk being symmetric, all these
elements are equal in magnitude. Similarly, analyzing the
elements of other IR components, we find that the only
other magnetic octupole component that has a ferrotype

ordering in MnF2 is QðτÞ
x2−y2 , identified as the x2 − y2

quadrupole component of the toroidal moment density
τðr⃗Þ ¼ r⃗ × μ⃗ðr⃗Þ. This leads to nonzero elements in the

residue tensor R̃ð5Þ
ijk, with R̃ð5Þ

xyz ¼ R̃ð5Þ
yzx ≠ R̃ð5Þ

zxy. Combining
the ferrotype magnetic octupole components in MnF2 and
the tensor decomposition of the magnetic octupoleOijk, we
obtain Oxyz ¼ Oyxz ≠ Ozxy. This nicely correlates with the
symmetry-allowed as well as experimentally observed
components of piezomagnetic response for MnF2 in
Eq. (7), confirming the one-to-one correlation between
the piezomagnetic response and the magnetic octupole
tensor.
Finally, we also predict an antipiezomagnetic response in

MnF2 due to the antiferrotype O30 octupole. Upon appli-
cation of stress, we expect an additional change in the Mn
spin moments which is, however, opposite for the two Mn
atoms so that their contributions cancel each other, leading
to a zero net magnetization. Here, the tensor decomposition
guides us in predicting which spin components will change
due to an applied strain with a certain orientation.
Therefore, we follow the same procedure as before and
analyze first the elements of the symmetric traceless S̃ijk to
identify the elements of S̃ijk in which the O30 octupole
appears. These are S̃xxz ¼ S̃yyz ≠ S̃zzz. The elements with
symmetric permutation of these indices are also allowed.

For these same elements of the residue tensors R̃ð5Þ
ijk and

R̃ð3Þ
ijk , we find that only R̃ð3Þ

xxz ¼ R̃ð3Þ
yyz ≠ R̃ð3Þ

zxx ¼ R̃ð3Þ
zyy are

nonzero due to the existence of the antiferrotype multipole

tðτÞz , defined as the z component of the moment of the
toroidal moment density, in MnF2. This means that if both

O30 and tðτÞz were ferrotype, we would have the following
nonzero components in the piezomagnetic response:

Λxxz ¼ Λyyz; Λzxx ¼ Λzyy; and Λzzz: ð8Þ

However, since, in fact, O30 and tðτÞz have antiferrotype
arrangement in MnF2, the first equality in the above
equation instead indicates that a spin component along x̂
(ŷ) will develop at individual Mn sites if we apply a
shearing stress σxz (σyz) to the structure, with the developed

spin components having an antiparallel alignment between
the Mn sites, so that there is no net magnetization along
x̂ (ŷ). We refer to this effect as an antipiezomagnetic effect
due to the generation of antiparallel spin components upon
application of stress, in analogy to the piezomagnetic
effect, where parallel spin moments are generated to give
rise to a net change in magnetization.

2. DFT results for MnF2

Next, to computationally verify our symmetry-guided
prediction of an antipiezomagnetic effect and to better
understand the microscopic details of both piezo- and
antipiezomagnetic effects, we explicitly study the effect
of a shear stress σxz (σyz) on the magnetism of MnF2 within
the DFT framework. The results of our calculations are
depicted in Fig. 5. As is clear from Figs. 5(a) and 5(c),
application of shear stress σxz (σyz) generates a net moment
along ŷ (x̂), as expected due to the piezomagnetic effect.
In addition, as shown in Figs. 5(b) and 5(d), a tiny spin
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FIG. 5. Piezo- and antipiezomagnetic effects in MnF2. The
variation of (a) the net magnetic moment along the y direction and
(b) the individual Mn magnetic moments along the x direction as
the shear strain σxz is varied. The inset in (a) depicts the schematic
of the deformed shape of the unit cell under shear strain σxz (solid
line) with respect to the undeformed tetragonal unit cell (dashed
line). The shear strain σxz ¼ tan θ is determined by the deviation
angle θ. The variations of (c) the net magnetic moment along x
direction and (d) the individual Mn magnetic moments along the
y direction as a function of the shear strain σyz, depicting the
piezomagnetic and antipiezomagnetic effects driven by ferrotype
and antiferrotype magnetic octupoles in MnF2. For the piezo-
magnetic effects in (a) and (c), the variations are shown for two
different magnetic domains (in green and blue data points), while
for antipiezomagnetic effects the variations of local spin magnetic
moments (in green and blue data points) at two Mn atoms are
shown. In both cases, variations are also shown for two different
strengths of the spin-orbit coupling constant, viz., λr ¼ 1 (solid
line) and λr ¼ 2 (dashed line). The parameter λr is defined in the
caption of Fig. 2.
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component appears along x̂ (ŷ) at the individual Mn
sites with an antiparallel orientation at the neighboring
Mn site, corresponding to the predicted antipiezomagnetic
effect.
We see from Fig. 5 that both piezo- and antipiezomag-

netic responses are linear in nature. Also, in both cases, the
generated moments reverse their directions in the opposite
antiferromagnetic domain. Such a reversal of moment
direction is consistent with experimental reports and can
be understood from the fact that both O32− and O30

octupoles have opposite signs in the opposite antiferro-
magnetic domains. We note that the generated moment
due to the piezomagnetic response is larger than that due
to the antipiezomagnetic response. This can be understood

from the fact that the former corresponds to the ½O32− −

ðQðτÞ
x2−y2=6Þ� term of the magnetic octupole tensor, while the

latter corresponds to ½−ðO30=10Þ þ ðtðτÞz =3Þ�, and confirms
that the piezo- and antipiezomagnetic responses depend on
the magnitudes of the magnetic octupoles.
Furthermore, to understand the importance of spin-orbit

interaction on these effects, we artificially double the
strength of the spin-orbit coupling in our calculation,
and, as depicted in Fig. 5, this results in an enhancement
in the generated moment for both cases. This suggests that,
unlike the magnetic Compton scattering described in the
next section, both piezo- and antipiezomagnetic effects are
relativistic effects. Physically, this can be understood from
the fact that the stress applied to the structure needs to be
coupled to the magnetization density of the system, which
is mediated via spin-orbit interaction. We note that the
dependence on the spin-orbit coupling strength also helps
to predict the hierarchy of the piezo- and antipiezomag-
netic effects in different materials. For example, the
relativistic piezo- and antipiezomagnetic effects are
expected to be much stronger in CoF2 compared to
MnF2 due to the strong spin-orbit interaction of the Co
atoms in the former.
The predicted antipiezomagnetic effect should be exper-

imentally observable by detecting the resulting spin canting
in the presence of an applied stress. While the early
experiments [80], indeed, indicated rotation of spins upon
application of a shear stress so that an antiparallel spin
component is generated in addition to a net magnetization
in a piezomagnetic effect, confirmation of the antipiezo-
magnetic effect would require further measurements to
verify the linear generation and the switching of canted
moments. Another possibility of experimental verification
would be to apply a dynamical stress, causing opposite
stresses on the two Mn sublattices, so that the antipiezo-
magnetic effect would lead to a net magnetization. Our
work, correlating the piezo- and antipiezomagnetic effects
to the magnetic octupoles, serves as a guideline for future
observation and manipulation of spin arrangements using
strain [76,77].

C. Direct detection of magnetic octupoles: Magnetic
Compton profile in an antiferromagnet

The Compton scattering [82] of x-ray photons, which
was an early confirmation of quantum mechanical behav-
ior, is a widely used technique today in fields as diverse as
radiobiology, astrophysics, and condensed matter physics.
In condensed matter systems, it is used to measure the
electron density in momentum space or in an extension
known as magnetic Compton scattering, the spin-depen-
dent electron momentum density [83]:

JmagðpzÞ ¼
Z Z

½ρ↑ðp⃗Þ − ρ↓ðp⃗Þ�dpxdpy: ð9Þ

Here, Jmag is the magnetic Compton profile (MCP), the key
quantity measured in the magnetic Compton scattering
measurements. As defined above, it is the one-dimensional
projection of the spin-polarized electron momentum den-
sity ½ρ↑ðp⃗Þ − ρ↓ðp⃗Þ� along the x-ray scattering vector pz.
Here, ρ↑ðp⃗Þ and ρ↓ðp⃗Þ are, respectively, the up and down
spin-polarized electron density in momentum space. The
integrals over px and py [Eq. (9)] are performed over
the plane in momentum space that is perpendicular to the
direction of x-ray scattering vector along pz.
Magnetic Compton scattering has been extensively

applied to ferri- and ferromagnetic systems (with nonzero
magnetization) [84–96] to extract spin polarizations at
Fermi surfaces [93–95]. In one of our recent works, we
proposed that a spin-polarized electron density can also
exist in the momentum space of nonmagnetic systems,
provided that the inversion symmetry is broken, leading to
a MCP [72]. To date, however, MCP has not been proposed
or measured in conventional antiferromagnets, because the
up and down spin-polarized bands are degenerate, leading
to vanishing spin-polarized electron density in momentum
space. Here, we show that the spin splitting of the energy
bands in antiferromagnets with ferrotype magnetic octu-
poles results in a nonzero MCP, despite the zero net
magnetization. This, in turn, facilitates the MCP as a direct
probe for existence of ferrotype magnetic octupoles.
To verify the nonzero MCP for our example material

MnF2, we explicitly compute the MCP using the methods
implemented in the ELK code (see the computational details
in Appendix A). The computed MCP of MnF2 along the
½110� direction in momentum space is shown in Fig. 6(a).
Here, the scattering vector pz is along the [110] direction,
and the integral in the Compton profile is performed over
the (110) plane (perpendicular to the scattering vector
[110]). This is, to our knowledge, the first identification of a
MCP in an AFM. We note that the MCP is present even
without including spin-orbit effects, as expected due to the
nonrelativistic spin splitting in MnF2. Note also that the
integral of the MCP is zero, consistent with the net
vanishing moment in the system.
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The characteristics of the computed MCP are quite
different from those of nonmagnetic ferroelectrics. First,
the computed MCP is symmetric in p⃗ in contrast to the
antisymmetric MCP in ferroelectrics [72]. This follows
from the symmetric and antisymmetric spin splitting in
MnF2 and ferroelectrics, respectively. More importantly,
however, the magnitude of the MCP in MnF2 is larger by
about an order of magnitude compared to the computed
values for the ferroelectrics PbTiO3 and GeTe [72]. This
again is associated with the large NRSS of the bands in
contrast to the weak relativistic spin splitting of the bands
in ferroelectrics. Finally, as shown in Fig. 6(a), the MCP in
MnF2 changes sign as the momentum direction is changed
from the [110] to the [11̄0] direction, unlike the case of
ferroelectrics for which the profile, being antisymmetric,
switches sign as p⃗ → −p⃗. Such sign reversal of the MCP in
MnF2 is understandable from the reversal of the spin
splitting as the momentum direction changes from [110]
to [11̄0] [see Fig. 4(b)].
Since the magnetic octupole leads to the spin splitting of

the bands, which, in turn, gives rise to the MCP, the MCP
provides a direct measurement of the existence of ferroi-
cally ordered magnetic octupoles in MnF2. For further
confirmation, we compute the MCPs for the cases of the
reversed structure and the other AFM domain (described in
Sec. III B), for both of which the ferrotype O32− magnetic
octupole reverses sign. Indeed, the computed MCPs, shown
in Fig. 6(a), reverse the sign of their profile, in agreement
with our expectation.

1. Proposed experimental setup

The measurement setup needed to detect magnetic octu-
poles using MCP will be similar to that of a conventional

magnetic Compton scattering experiment with circularly
polarized light. Generally, the measurements are performed
in backscattering geometry with either parallel spin and
momentum directions or along a momentum direction that
has at least one component along the direction of the spin
polarization. Since the spin polarization direction inMnF2 is
along ẑ, we further compute the MCPs along the [111]
direction in reciprocal space. As depicted in Fig. 6(b), the
computed MCP, although smaller compared to that along
[110], still has amuch largermagnitude compared to the case
of a ferroelectric. Furthermore, the convoluted magnetic
Compton profiles for two different resolutions of 0.22 and
0.44 a.u., as shown in the inset in Fig. 6(b), suggest that the
computedmagneticComptonprofile should bediscernible in
experiments even with a moderate resolution of 0.44 a.u.
Note that the integral of the magnetic Compton profile,R

∞
−∞ JmagðpzÞdpz, gives the net spin magnetic moment in
the unit cell. For the computed magnetic Compton profile,
shown in Fig. 6, the integral becomes zero as expected due
to the absence of any net magnetization. This, along with
the reversal of the magnetic Compton profile with the C4
rotation of the momentum direction, as discussed above,
would be a signature of the unusual magnetism related to
the magnetic octupoles and nonrelativistic spin splitting in
magnetic Compton scattering.
We note that, since the two antiferromagnetic domains

lead to opposite spin splitting, it is crucial to carry out the
measurements on a single antiferromagnetic domain of
MnF2. Such a single antiferromagnetic domain can be
obtained by the simultaneous application of a uniaxial stress
and a magnetic field while cooling the sample through the
Néel temperatureTN ≈ 67 K [47,81]. Interestingly, as stated
before, the combination of stress and magnetic field is, in
fact, the conjugate field of a magnetic octupole, and, as
described before, each of the antiferromagnetic domains can
indeed be identified as a ferro-octupolar domain. Such a
single magnetic domain is also referred to as a piezomag-
netic domain due to its close connection to the piezomag-
netic effect in MnF2 [81], driven by the ferroic magnetic
octupoles as discussed in the previous section.

V. DISCUSSION AND OUTLOOK

In summary, using MnF2 as an example material, we
have shown that the order parameter of centrosymmetric
magnets with NRSS and zero net magnetization is the
magnetic octupole, since it is the lowest-order ferroically
ordered magnetic quantity in this case. The magnetic
octupolar description has the advantage that it not only
provides a convenient description of the NRSS, but also
provides the platform for the systematic control (both
magnitude and sign) of the NRSS, which is highly desirable
for the rational design of such materials. Furthermore,
complementary to the spin-group theory [28], the k-space
representation of the magnetic octupole dictates the direc-
tion in the momentum space along which the NRSS occurs,
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FIG. 6. MCPs of MnF2 along (a) [110] and [11̄0] and (b) [111]
and [11̄1] directions in the momentum space. The reversal of the
profiles is apparent from (a) and (b) as the momentum direction
changes by C4 rotation. (a) also depicts the MCPs along the [110]
direction, JRSmagðp110Þ and JRDmagðp110Þ, for the hypothetical modi-
fied structure and for the reversed magnetic domain, respectively.
In both cases, the MCP switches sign compared to the profile of
MnF2 along the same momentum direction. The inset shows the
comparison of the computed profile (black line) with the
convoluted profiles for the experimental resolutions of 0.22
(green line) and 0.44 a.u. (violet line).
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which drastically reduces the computational effort to search
for NRSS throughout the entire BZ. More importantly,
identifying the magnetic domains as the ferro-octupolar
domain reveals the conjugate field—a combined stress and
magnetic field—required for selection of one of the mag-
netic domains. We note that, since the NRSS is opposite for
the two magnetic domains, selection of a particular
magnetic domain is essential for any practical usage.
Inadditiontotheabove-mentionedkeyinsight intotheNRSS,

wealsodemonstratethelinearpiezomagneticeffectasauniversal
effect associated with magnetic octupoles, independent of the
occurrence of NRSS. They also allow us to predict an as-yet-
unobserved nonlinear magnetoelectric effect, in which a quad-
ratic (orbilinear) electric field (E⃗) inducesa linearmagnetization

(M⃗), of the formMi ¼ αijkEjEk, driven by the ferroic arrange-
ment of the magnetic octupole [65] as well as an antipiezo-
magnetic effect resulting from an additional antiferroic
arrangementofdifferentmagneticoctupoles.Finally,wepropose
magneticComptonscatteringforthedirectdetectionofmagnetic
octupoles in such unconventional antiferromagnetswithNRSS.
We note that, with the change of spin-quantization axis,

different magnetic octupole components appear, corre-
sponding to the different spin polarization axes of the
spin-split bands. Consequently, the k-space representation
of the corresponding magnetic octupole components rep-
resents the NRSS along the same momentum direction but
with different spin polarization directions. Thus, for the
same crystal structure and pattern of magnetic ordering, a
different spin axis may result in an (anti)piezomagnetic
response with different nonzero components, or the mag-
netic Compton profile may appear for a different spin
quantization axis but along the same directions in momen-
tum space, etc. However, the analysis and recipe to
investigate these remain the same. Conversely, systems
with the same structural and magnetic symmetries would
allow for the same components of the magnetic octupoles.
For example, isostructural CoF2 has the same nonzero
magnetic octupole components as MnF2.
It is important to point out here that, although we

specifically discussed the case of MnF2, the presence of
magnetic octupoles is general to all NRSS AFMs with d-
wave splitting. This also includes materials that exhibit
bulk d-wave spin splitting, e.g., CuF2 [28]. For the
monoclinic structure [97] (unique axis c) of CuF2 and
collinear spins along ẑ [28], the k-space representations of

the existing magnetic octupole components O31 (Q
ðτÞ
yz ; t

ðτÞ
x )

and O31− (QðτÞ
xz ; t

ðτÞ
y ) are, respectively, kxkzmz and kykzmz,

thus leading to bulklike d-wave spin splitting that also
depends on kz. In general, the magnetic octupoles have the
inherent d-wave symmetry and are the lowest-order sym-
metry-allowed ferrotype magnetic multipole, as discussed
in Sec. III. As a result, they always provide a convenient
description of the d-wave NRSS. Consequently, the MCP
and the piezomagnetic effect are also universal to AFMs

with d-wave NRSS. We note, however, that the piezomag-
netic effect is a relativistic effect, and, hence, it can also
occur in systems where the magnetic octupoles are induced
by the spin-orbit interaction or noncollinearity of the spins,
beyond the collinear AFMs with d-wave NRSS.
We note that centrosymmetric antiferromagnets with

NRSS may also have higher-order ferroically ordered
even-parity magnetic multipoles in addition to their ferro-
magneto-octupolar order. These higher-order multipoles, if
they exist even without spin-orbit interaction, are relevant
for describing NRSS with g-wave or i-wave symmetry. For
example, Fe2O3 in its low-temperature state with magnetic
moments oriented along the symmetry axis, which is
reported to have a g-wave spin splitting [31], allows for
a magnetic triacontadipole in addition to the magnetic
octupole. Interestingly, while the ferrotype magnetic octu-
pole components, in this case, are induced by the spin-orbit
interaction, the magnetic triacontadipole has nonzero com-
ponents with ferrotype ordering even without the spin-orbit
coupling. The g-wave symmetry of the spatial part of the
magnetic triacontadipole suggests a connection between
this rank-5 even-parity magnetic multipole and the corre-
sponding g-wave NRSS, which is an interesting direction
for future study. It is important to point out here that the
spin-orbit-induced, ferrotype magnetic octupole compo-

nents O33 and QðτÞ
z2

in Fe2O3 allow for a piezomagnetic
effect and the symmetry-allowed response components can
be conveniently described by these magnetic octupole
components, following the same procedure as described
in Sec. IV B.
In addition to providing important insight into the newly

discovered unconventional antiferromagnets with NRSS,
the results presented here are relevant for the prolonged
effort to reveal and detect the magnetic octupolar phase
[65,98–108], as well as for potential applications through
strain engineering of antiferromagnetism via the piezo- or
antipiezomagnetic effect in spintronic devices. We note
that magnetic octupoles are also likely to be relevant for
the reported spin-phonon interaction [109,110] and sur-
face magnetization [111] in MnF2 and could shed light
on the reported strong magnetic anisotropy in doped
FeSb2 [49].
Merging the seemingly disconnected fields of hidden

order, antiferromagnetic spintronics, and inelastic scatter-
ing techniques, our work opens up new directions for
exploration which we hope will motivate both theoretical
and experimental investigation in the near future.
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APPENDIX A: COMPUTATIONAL DETAILS

The electronic structure of MnF2 has been computed
using the linearized augmented plane wave method as
implemented in the ELK code [112]. We use the LDAþ
SOCþ U formalism, with Ueff ¼ 5 eV at the Mn site [26].
A basis set of lmaxðapwÞ ¼ 8, a 5 × 5 × 7 k-point sampling
of the Brillouin zone are used to achieve self-consistency.
The product of the muffin-tin radius (2.4 and 2 a.u. for Mn
and F, respectively) and the maximum reciprocal lattice
vector is taken to be 7. The magnetic Compton profile and
the atomic-site multipoles are computed using the extended
versions [9,113] of the ELK code. The spin-polarized
electron momentum densities are calculated and projected

onto the selected momentum directions (p⃗) to obtain the
magnetic Compton profile following the implementations,
reported in Ref. [113]. The computed MCP is scaled to the
factor that normalizes the valence contribution of the total
Compton profile to the total number of valence electrons
per formula unit of MnF2 in the calculation, which is 29 in
this case. For the computation of atomic-site multipoles, the
density matrix ρl1m1;l2m2

is decomposed into the tensor
moments, of which the parity-even tensor moments have
contributions from terms with l1 ¼ l2. We, therefore,
evaluate both d − d and p − pmatrix element contributions
for the multipoles at the Mn site. The octupole components

Olm, Q
ðτÞ
ij , and tðτÞi correspond to the irreducible spherical

tensor wkpr, where the spatial index k ¼ 2, spin index
p ¼ 1, and r ¼ 3, 2, and 1, respectively. The allowed value
of the spherical component t of wkpr is determined by r,
such that −r ≤ t ≤ r, leading to seven, five, and three

components of Olm, Q
ðτÞ
ij , and tðτÞi , respectively. The l1l2

matrix element of wkpr
t reads as [57,114]

hwkpr
t il1l2 ¼

X
m1;m2

X
σ1;σ2

D
l1; m1;

1

2
; σ1jwkpr

t jl2; m2;
1

2
; σ2

E

¼ 1

nkpr

X
m1;m2

X
σ1;σ2

X
x;y

ð−1Þk−xð−1Þp−yð−1Þl1−m1ð−1Þ12−σ1

×
1

nl1l2k

1

n1
2
p

�
k r p

−x t −y

��
l1 k l2

−m1 x m2

�� 1
2

p 1
2

−σ1 y σ2

�
ρνσ1σ2l1m1;l2m2

: ðA1Þ

Here, the quantities in round brackets are Wigner-3j
coefficients, nkpr is a normalization factor, nl1l2k ¼
½ðl1 þ l2Þ!=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 þ l2 − kÞ!ðl1 þ l2 þ kþ 1Þ!p �, and n1
2
p ¼

ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ 2Þ!p Þ [57,114]. ρν contains the time-reversal
even (ν ¼ 0) and odd (ν ¼ 1) parts of the density
matrix.
The electronic structure of MnF2 is also computed within

the plane-wave-based projector augmented wave [115,116]
method as implemented in the Vienna ab initio simulation
package (VASP) [117,118], and the results agree well with
that computed using the ELK code. The atomic relaxations
in presence of shear strain in the piezomagnetic effect are
carried out until the Hellman-Feynman force on each atom
becomes less than 0.01 eV=Å. The constrained multipole
calculations are performed using the methodology devel-
oped in Ref. [119]. The modifications to the VASP code are
openly accessible and documented on GitHub [120].
Within this approach, a shift matrix, corresponding to
the desired constrained multipole, is added to the potential,
keeping the crystal structure and magnetic configuration
unaltered. The values of both charge and magnetic multi-
poles are then computed once self-consistency is achieved.

APPENDIX B: IRREDUCIBLE COMPONENTS
OF THE MAGNETIC OCTUPOLE

Here, wewrite down the explicit forms of the different IR
components of the magnetic octupole Oijk, as described in
Sec. IV B, following Ref. [65]. The totally symmetric
traceless part S̃ijk is given by

S̃1jk¼
1

20

2
64

5O33−3O31 5O33− −O31− 2ð5O32−O30Þ
5O33− −O31− −ð5O33þO31Þ 20O32−

2ð5O32−O30Þ 20O32− 4O31

3
75:

ðB1Þ

Note that, S̃ijk being completely symmetric, the rest of the
components can be obtained from S̃1jk by permutation of
the indices and S̃222 ¼ −ð5O33− þO31−Þ and S̃333 ¼ 4O30.
Note that the elements of S̃ijk, i.e., Olm in Eq. (B1), can be
built from the spherical harmonics of l ¼ 3 with compo-
nents m ¼ −3;−2;…; 2, 3.
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The components of the five-dimensional residual tensor R̃ð5Þ
ijk can be expressed in terms of the five components of the

quadrupole moment QðτÞ
ij of the toroidal moment density τ⃗ðr⃗Þ ¼ r⃗ × μ⃗ðr⃗Þ, viz.,

R̃ð5Þ
1jk ¼

1

3

2
6664

0 −QðτÞ
xz QðτÞ

xy

−QðτÞ
xz −2QðτÞ

yz − 1
2
ðQðτÞ

x2−y2 þ 3QðτÞ
z2 Þ

QðτÞ
xy − 1

2
ðQðτÞ

x2−y2 þ 3QðτÞ
z2
Þ 2QðτÞ

yz

3
7775;

R̃ð5Þ
2jk ¼

1

3

2
6664

2QðτÞ
xz QðτÞ

yz − 1
2
ðQðτÞ

x2−y2 − 3QðτÞ
z2
Þ

QðτÞ
yz 0 −QðτÞ

xy

− 1
2
ðQðτÞ

x2−y2 − 3QðτÞ
z2
Þ −QðτÞ

xy −2QðτÞ
xz

3
7775;

R̃ð5Þ
3jk ¼

1

3

2
6664
−2QðτÞ

xy QðτÞ
x2−y2 −2QðτÞ

yz

QðτÞ
x2−y2 2QðτÞ

xy QðτÞ
xz

−2QðτÞ
yz QðτÞ

xz 0

3
7775: ðB2Þ

Finally, the components of the three-dimensional
residual tensor R̃ð3Þ

ijk can be expressed in terms of the three
components of the moment ⃗tðτÞ of the toroidal moment
density τ⃗ðr⃗Þ:

R̃ð3Þ
1jk ¼

1

3

2
664

0 tðτÞy tðτÞz

tðτÞy −2tðτÞx 0

tðτÞz 0 −2tðτÞx

3
775;

R̃ð3Þ
2jk ¼

1

3

2
664
−2tðτÞy tðτÞx 0

tðτÞx 0 tðτÞz

0 tðτÞz −2tðτÞy

3
775;

R̃ð5Þ
3jk ¼

1

3

2
664
−2tðτÞz 0 tðτÞx

0 −2tðτÞz tðτÞy

tðτÞx tðτÞy 0

3
775: ðB3Þ

APPENDIX C: CHARACTER TABLE
FOR THE D4h POINT GROUP

The character table for the D4h point group symmetry of
the crystal structure of MnF2 is listed in Table I.

APPENDIX D: DFT BAND STRUCTURES
IN ABSENCE OF MAGNETISM

The computed band structure in the absence of magnet-
ism is shown in Fig. 7, depicting the splitting between
bands of two different sublattice contributions along

TABLE I. Character table for the D4h point group.

D4h E 2C4 (z) C2 2C0
2 2C00

2 i 2S4 σh 2σv 2σd

A1g þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

A2g þ1 þ1 þ1 −1 −1 þ1 þ1 þ1 −1 −1
B1g þ1 −1 þ1 þ1 −1 þ1 −1 þ1 þ1 −1
B2g þ1 −1 þ1 −1 þ1 þ1 −1 þ1 −1 þ1

Eg þ2 0 −2 0 0 þ2 0 −2 0 0
A1u þ1 þ1 þ1 þ1 þ1 −1 −1 −1 −1 −1
A2u þ1 þ1 þ1 −1 −1 −1 −1 −1 þ1 þ1
B1u þ1 −1 þ1 þ1 −1 −1 þ1 −1 −1 þ1
B2u þ1 −1 þ1 −1 þ1 −1 þ1 −1 þ1 −1
Eu þ2 0 −2 0 0 −2 0 þ2 0 0

-0.4

0

0.4

0.8

E
n

e
rg

y
 (

e
V

)

-0.4

0

0.4

0.8

E
n
e
rg

y
 (

e
V

)

-0.4

0

0.4

0.8

E
n

e
rg

y
 (

e
V

)

-0.4

0

0.4

0.8

E
n

e
rg

y
 (

e
V

)

X M Z R A Z

M Z R A ZX M Z R A ZX

M Z R A ZX

(a) (b)

(c) (d)

FIG. 7. Nonmagnetic band structure of MnF2, showing the dxz
and dyz orbital contributions for the (a) Mn1 and (b) Mn2
sublattices. (c) and (d) depict the same for the hypothetical
modified structure, indicating a reversal of Mn1 and Mn2
sublattice contributions for the modified structure.
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Γ → M. For example, for the pair of bands around 1 eV
along Γ → M, the top band has predominant contributions
from the Mn1 sublattice, while the bottom band is
predominantly of Mn2 sublattice character. For the modi-
fied structure, described in Sec. III B, the computed atom
and orbital projected band structure shows that the band
structure remains identical except that the sublattice char-
acters of the same pair of bands are reversed.

APPENDIX E: TIGHT-BINDING PARAMETERS

The realistic tight-binding parameters of the Hamiltonian
(2), i.e., the effective d − d hoppings ti (i ¼ 1, 4) and the
on-site energies εi (i ¼ 1, 2) in Eq. (3), are extracted from
the DFT calculations by downfolding the effect of the F-p
orbitals using the NMTO method [75]. The computed
parameters are listed in Table II.
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[3] L. Néel, Propriétés magnétiques de l’état métallique et
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